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ABSTRACT

Advanced computational methods are continually pushing the boundary of mod-

ern materials science. They can guide experimental inquiry by surveying a large num-

ber of materials for functional properties as well as guide the design and synthesis

of new materials with targeted properties, at a much faster speed than experimen-

tal approaches. This rise in predictive insight has helped foster the semiconductor

revolution, and in turn, created technologies which make a direct impact on global

challenges such as the energy crisis and global warming. However, even with this

success, there are a wide variety of materials left to be examined in detail.

In this work two-dimensional (2D), hydrogen-passivated III-nitrides are exam-

ined. Density functional theory and many-body perturbation theory are applied to

produce accurate band structures and use the Bethe-Salpeter Equation to predict

exciton binding energies. The strong polarization in III-nitride monolayers results

in a significant quantum-confined Stark effect (QCSE), reducing the large band gaps

caused by quantum confinement. Using the polarization as a degree of freedom in

constructing bilayer heterostructures, it is shown that aligned orientations yield rel-

atively small band gaps (1.9 eV – 3.2 eV), whereas in anti-aligned orientations there

is no QCSE and the gap remains large (>4.4 eV). Exciton binding energies are on

the order of 1 eV. These results show that UV emission from 2D GaN is possible and

that the optical gaps of 2D III-nitrides span the visible and UV spectra.

The second portion of this work is dedicated to examining the carrier mobilities of

xiii



various semiconductors using density functional theory, many-body perturbation the-

ory, and the electron-phonon Wannier method. The phonon-limited hole mobility of

Cu2O is determined and it is shown that at room temperature it is polar optical modes

which are predominantly responsible for carrier scattering. Four ultra-wide-band-gap

(UWBG) materials, rs-BeO, wz-BeO, zb-BeO, and MgO, are then examined. Their

ultra-wide band gaps (>6 eV) highlight their promise in high-power electronics, and

their electron carrier mobilities are high as well (>107 cm2/V s at room temperature).

Finally, the carrier mobility of cubic BN and diamond are examined since experimen-

tal results on cBN hole mobility span two orders of magnitude. Electron-phonon

coupling matrix elements are evaluated to show that acoustic mode coupling is lower

in diamond than in cBN. It is also shown that the room temperature scattering rate

of holes is much faster in cBN than diamond. Overall, electron mobilities are com-

parable while cBN hole mobility (80.4 cm2/Vs) is lower than that of diamond (1970

cm2/Vs).

These computational results emphasize the applicability of 2D and UWBG mate-

rials to optoelectronic devices and suggest that polar materials provide a wide degree

of useful functional properties.

xiv



CHAPTER I

Introduction

In 2015, the United Nations laid out a blueprint for its vision of the next 15 years.

In it, it gives its hopes for what countries of the world will enact to do to tackle

the grand challenges of our time, from global warming to the energy crisis and social

injustice. While it is important to recognize the gravity of these problems, it is also

necessary to underscore the role that individual materials can play in bringing about

change.

While we no longer characterize time periods by the latest material breakthrough

such as in the Bronze Age, materials are still just as crucial in enabling larger-scale

solutions. Goal six of the UN’s Sustainable Development Goals is ensuring all people

have access to clean water, and ultraviolet light-emitting diodes (LEDs) are a strong

contender for enabling portable sanitation. Energy-efficient materials are a key driver

in promoting goals six and thirteen, which are to grow affordable and clean energy

and to take action on climate change, respectively. Even on the goals that seem

mostly social at face value, such as creating sustainable cities and communities and

encouraging responsible consumption and production, materials can make a big dif-

ference. Creating functional materials that are nontoxic, affordable, and derived from

earth-abundant elements go a long way in creating equitable access to next-generation

technologies.
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Part of the success of modern science is in its collaborative nature. Now more

than ever, scientists at every point of the innovation chain can share ideas and work

together. Fundamental materials science is able to break out of the mold of being

considered a pure science removed from solution-driven goals, and it is constantly

changing the frontier of what is possible in the engineering landscape. While the ma-

terials discussed in this work are only a minuscule fraction of the functional materials

leading the change to address global challenges, they still add to the patchwork of

solutions.

1.1 Solid state lighting and the Group-III nitrides

For most of the time that people have used artificial lighting, we have relied on

fire. With the electrification of homes however, incandescent bulbs quickly became

popular. These bulbs function by passing current through a filament, heating it to

the point that it emits a glow. However, these bulbs are quite inefficient (<10%),

as most of the energy input is used to generate heat rather than light.16 Even more

troublesome is the fact that most commercial incandescent bulbs only have an op-

erating lifespan of 1,000 hours, effectively corresponding to a year of functional life

under typical usage patterns before needing to be replaced. Given that approximately

one fifth of U.S. energy is used to power lights,17 reductions in energy use in lighting

applications have the potential to make a large impact in overall domestic energy

demand.

Lighting made another significant advance in the 1990s as compact fluorescent

bulbs started becoming more widespread. Their efficiencies are larger than incan-

descent bulbs, but they are troublesome in other aspects. The main consideration is

that the bulbs contain mercury gas, which is toxic and harmful to the environment.

Improper disposal of these bulbs results in the gas escaping and posing a public health

risk.
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Newer generation light bulbs are based on light-emitting diodes (LEDs), which

avoid both the downfalls of inefficiency and toxicity. These devices function by uti-

lizing doped semiconductors. Doping refers to the process of adding impurities into a

material to change the number of free carriers. N-type semiconductors have an excess

of electrons, and p-type semiconductors have a shortage of electrons. By combining

two of these materials together to create a p-n junction, electrons are able to recom-

bine with holes to emit photons. The wavelength of the emitted light depends on the

particular materials used to make the junction, but this operational principle holds

for all types of LEDs.

A popular configuration for generating white light utilizes ultraviolet (UV) light

emission. The LED produces UV light, and a phosphor coating on the surface of the

bulb down-converts that light into visible colors at a ratio that we perceive as white

light. GaN and AlGaN alloys are key materials in driving this technology. High-

quality GaN was first synthesized in 1986,18 and the 2014 Nobel Prize in Physics was

awarded to a team of researchers who had pioneered its successful doping.19,20 Yet

despite all its success, there is still room for improvement. The low light-extraction ef-

ficiency and lack of deep-UV-transparent p-type contacts limit the overall efficiency of

deep-UV AlGaN LEDs.21 One avenue being investigated for improving the efficiency

is to use the two-dimensional (2D) materials.

1.2 Two-dimensional materials

The 2D materials revolution began in 2004, when graphene was isolated for the

first time.22 Its exotic properties include a band gap of zero, large thermal and elec-

trical conductivity, and a strength over five times that of steel.23 Beyond graphene,

many materials, notably transition metal dichalcogenides, have been produced in a

monolayer or few-layer form. Interestingly, a popular method for obtaining samples

of 2D materials is to use mechanical exfoliation, which is to simply press adhesive
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tape against the surface of a bulk crystal and then gently remove. However, more

precise methods such as chemical vapor deposition and molecular beam epitaxy are

used to produce higher quality samples. The reduced dimensionality of these 2D ma-

terials allows for quantum confinement effects which significantly increase the band

gap. Additionally, the lowered electronic screening allows for enhanced excitonic ef-

fects relative to the bulk material and a significant Quantum-confined Stark Effect

(QCSE). In terms of mechanical stability, because the vertical growth direction is

small, these materials are often able to withstand larger degrees of stress without

compromising material quality, allowing for a wider variety of substrates to be used

with them.

Overall, these characteristics and more make 2D materials, especially the TMDCs,

promising candidates for miniaturized circuits,24 photocatalysis for energy conver-

sion,25,26 large-scale flexible and transparent electronics,27 and more. Significant re-

search attention is being directed at identifying which bulk materials are chemically

and mechanically stable in 2D form, how to synthesize them, and what their functional

properties are. While devices based on 2D architectures are still in their infancy, it

is expected that quantum-dot qubits, single-photon emitters, superconducting qubits

and topological quantum computing elements will usher in the era of quantum infor-

mation science.28 Part of this work is dedicated to calculating the properties of 2D

III-nitrides, which revolutionized the electronics industry as bulk materials and may

do so again with their 2D counterparts.

1.3 High-power electronics

Part of modernizing infrastructure and creating a better platform to electrify

technologies currently based largely on fossil fuels is facilitating the deployment of

high-power electronics. In power lines, high voltages minimize the amount of energy

lost as waste heat, improving overall efficiency. Additionally, some energy production
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facilities generate large amounts of energy, meaning that they require devices able to

withstand these demands. Materials can be classified by their Baliga figure of merit

(BFOM), a metric quantifying a material’s suitability for high-power, low-frequency

applications29,30:

BFOM =
1

4
ε0µE

3
G (1.1)

where ε0 is the static dielectric constant, µ is the carrier mobility, and EG is the band

gap. The largest contributor to this figure is the band gap, making ultra-wide-band-

gap (UWBG) materials highly desirable for these applications.

They are able to withstand larger voltages before reaching the critical breakdown

where the material is irreparably damaged. Materials with band gaps larger than 6 eV

are gaining significant attention because of their large breakdown field values. It was

previously believed that large band gap materials had inferior functional properties

due to challenges associated with doping. However, with some UWBG materials now

showing sufficient dopability, larger BFOMs are being seen now than ever before,

highlighting the power of these materials in enabling next-generation electronics.

Another key contributor to the BFOM is the mobility. While the BFOM scales

with the cube of the band gap and mobility is only a linear scaling, mobility is not

an insignificant contributor. Many challenges are present in optimizing carrier mobil-

ity in a material. Temperature is a key consideration, as mobility falls rapidly with

increasing temperature. Finding materials with sizeable room temperature mobil-

ity is crucial to enabling devices which can operate in standard conditions, outside

of a lab or specialized facility. Another factor in the mobility is material quality.

Grain boundaries and impurities hinder the mobility, making high-quality synthesis

a significant driver of this field as a whole.

However, computation can still play a major role in this arena. First-principles

approaches allow for the consideration of metastable and unstable phases, which are
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important for understanding the relationships between structure and property, even

if some of the structures require conditions such as high pressures to be mechanically

stable. Computation can also examine materials in their pristine state, without any

interference from substrate screening or strain, and at a faster pace. While experiment

is always necessary to confirm properties and examine materials under real-world

conditions, computation still gives critical insight into the theoretical upper limit for

materials, guiding experimental inquiry and saving time.

1.4 Organization of thesis

This dissertation contains computational studies of electronic and optical prop-

erties of several III-nitride materials, their two-dimensional counterparts, several

ultrawide-band-gap (UWBG) semiconductors, and copper (I) oxide. This work is

organized into the following seven chapters.

In Chapter II, we provide details on the computational methods employed through-

out this work. Attention is given to methods involving density functional theory,

quasiparticle corrections, and EPW codes.

Chapter III focuses on the electronic and optical properties of two-dimensional

GaN. We predict electronic band gaps, luminescence energies, and excitonic properties

of monolayer and bilayer 2D GaN as a function of strain, with an overall goal of

elucidating how reduction to the 2D regime affects the overall properties as compared

to the bulk material.

In Chapter IV, we discuss the electronic properties of hydrogen-passivated, mono-

layer BN, AlN, GaN, and InN, as well as their bilayer structures. We treat the

polarization of each layer as an additional degree of freedom in tuning the electronic

properties.

Chapter V is a study on the carrier mobility of copper (I) oxide to access its

potential to be incorporated into a high performance p-type thin film transistor.
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In Chapter VI, we present the quasiparticle band structures and electron mobilities

of several UWBG semiconductors.

Chapter VII details work on the carrier mobilities of cubic BN and diamond.

We perform GW corrections and discuss carrier mobility for both p-type and n-type

materials.

Finally, Chapter VIII gives a summary of this work, puts it in perspective with

current research, and provides directions for future work.
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CHAPTER II

Computational Methods

2.1 Density Functional Theory

Conceptualized in the 1960s, density functional theory has completely revolution-

ized the fields of physics and materials science. As of a 2010 analysis, all of the top

three most-cited physics papers (and eight of the top ten) were in the field of DFT.31

Utilizing a relatively simple conceptual framework, the method has shown remarkable

success at calculating a wide variety of material properties, including bond lengths,

lattice constants, energies of formation, and effective masses, making it colloquially

become known as the workhorse of quantum materials science. This predictive insight

has allowed researchers to guide experimental inquiries into existing materials as well

as probe materials which have never been synthesized. Within the scope of this work,

DFT serves as the starting point for all calculations.

Highlighting the robust capabilities of this approach, DFT-based methods have

been used to investigate the thermal conductivity and carrier mobility of GeO2,
32–34

carrier mobility of AlxGa1−xN,35 strain effects on band alignments and carrier mobility

of BAs,36 and of course the electronic structure of 2D III-nitride heterostructures,37

and carrier mobilities of cBN and diamond,38 the latter two of which are presented

later in this work.
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2.1.1 Theoretical foundations

DFT is a method for determining the ground-state of a system. Ideally, this

information would be obtained by solving Schrödinger’s equation to obtain the wave

function, but in a system of N electrons, the expression becomes

[
N∑
i

(−~2∇2
i

2m
) + v(ri) +

∑
i<j

U(ri, rj)]Ψ(r1, r2, ..., rN) = EΨ(r1, r2, ..., rN) (2.1)

where U(ri, rj) is the electron-electron potential. Once more than two electrons are

under consideration, the expression becomes difficult to solve even with numerical

approaches.

In 1964, Hohenberg and Kohn simplified the approach by establishing the for-

malism that the ground state of a quantum mechanical system is determined by the

system’s electron density.39 This is achieved by using n(r) - the electron density - as a

variable. Thus, the task of calculating electronic properties was retooled into finding

the electron density that minimizes the total energy of the system.

This method was further refined in 1965 when Kohn and Sham proved that it is

equivalent to describe a quantum system as one of non-interacting electrons moving

in a fictitious external potential.40 This approach reduces Schrödinger’s equation to

one dimension and allows electrons to be considered individually. Combining the two

methodologies forms the basis of DFT and provides a robust tool for investigating

ground state properties.

2.2 Density Functional Perturbation Theory (DFPT)

Once the electronic ground state and atomic positions are known, interatomic

force constants can be calculated by the linear response method, also known as density

functional perturbation theory. Through the variational principle of DFT, the second
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order change in energy depends on the first order change in the electron density.

Combined with the linear response to a distortion of atomic positions, the second order

perturbation in the total energy can be self-consistently minimized.41 The strength

of this method is that it allows for the calculation of phonon frequencies at arbitrary

wave vectors q without requiring the use of a supercell to explicitly calculate long-

range forces resulting from a specific atomic displacement.

2.3 Many-body perturbation theory

Despite the success of DFT at calculating a wide range of ground state properties,

it faces significant shortcomings in calculating excited state phenomena. Specifically,

the band gap of many materials are predicted to be on the order of 30%-50% smaller

than values confirmed by experiment. This arises because, with local and semilo-

cal approximations to the exchange-correlation potential, unphysical self-interaction

of the electron with itself arises due to the included Hartree energy. Because the

exchange-correlation cannot precisely negate this effect, the energy of occupied states

is unphysically lowered. Thus, it is common for DFT to be followed by another

method such as many-body perturbation theory.42

2.3.1 The GW method

The GW method is one such process. It provides an approximation to the electron

self-energy given DFT-level wave functions and eigenvalues. The name arises because

the self-energy operator Σ, an infinite power sum, is truncated to:

Σ = iGW (2.2)

where G is Green’s function and W is the screened Coulomb interaction.43 The cor-

rect quasiparticle wave functions and energies are then calculated via the Dyson
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equation:44,45

[−1

2
∇2 + Vion + VH + Σ(EQP

nk )]ΨQP
nk = EQP

nk ΨQP
nk (2.3)

where Vion is the ionic potential, VH is the Hartree potential, EQP
nk is the quasiparticle

energy, and ΨQP
nk is the quasiparticle wave function. This approach has shown tremen-

dous success in calculating the correct band gap of a wide variety of semiconducting

and insulating materials, making it a powerful tool within the field of computational

physics.

2.3.2 Bethe-Salpeter equation (BSE)

The Bethe-Salpeter equation is another many-body method commonly used to

calculate exciton binding energy. Specifically, electron-hole pairs are bound states

Ψij constructed from individual electron and hole states ψi and ψj, respectively,

interacting through the system’s Coulomb interaction:46

(Ei − Ej)ψij +
∑
l,m

〈ij|K|lm〉 = Ωψij (2.4)

where K is the Coulomb interaction kernel. Knowing exciton properties thus enables

the determination of optical properties dependent on the phenomenon.47 Subtract-

ing the exciton binding energy from the GW-corrected band gap energy yields the

accurate luminescence energy, a quantity especially useful in the field of solid state

lighting.

2.4 Maximally-localized Wannier functions

While the optimal method for calculating band structures on dense grids is to

sample every point in the Brillouin zone, in principle this approach is not feasible

due to computational limitations. Even by only calculating points within symmetry-

11



reduced irreducible Brillouin zone wedges, the number of points can easily render a

simple calculation impossible. This problem becomes even more cumbersome when

using GW eigenenergies, as working with even a relatively small number of points in

the GW method can be computationally expensive.

The Wannier method allows for interpolation to very dense sampling grids because

rather than relying on a Bloch state approach, it utilizes maximally-localized Wannier

functions.48 This approach is physically sound and allows for many properties to be

examined in fine detail, such as electronic band structures and optical transition

matrix elements.

2.5 Iterative Boltzmann Transport Equation and Electron-

Phonon-Wannier (EPW)

At equilibrium, electrons are present according to the Fermi-Dirac distribution:

n̄i =
1

1 + exp
{
E−EF
kBT

} (2.5)

where E is the single particle energy and EF is the Fermi level. This equation is

valid in the absence of external forces, but when perturbations such as electric fields

are considered, another tool is needed. The Boltzmann transport equation method

is a semi-classical approach, where electrons are treated as classical particles but the

scattering is treated quantum mechanically, as it arises from short-range forces. The

key input parameters are the band structures, phonon dispersions, and the electron

phonon matrix elements. It describes the statistical behavior of systems not in equi-

librium and is the key method used in this work for evaluating carrier mobilities as a

function of temperature.

The EPW method is a robust way for calculating a variety of electron-phonon-

related properties. Using phonon eigenmodes from density functional perturbation
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theory, electron-phonon coupling matrix elements can be calculated following:

gmn,v(k,k
′) =

1√
2ωk′−kv

〈ψmk′|∂k′−kvV |ψnk〉 (2.6)

where mk′ and nk are Kohn-Sham states, and the equation considers a scattering

between the two.49 Using this quantity, we can then calculate electron self-energies

Σ:

Σnk(ω, T ) =
∑
mv

∫
BZ

dq

ΩBZ

|gmn,v(k,q)|2

×

[
nqv(T ) + fmk+q(T )

ω − (εmk+q − εF ) + ωqv + iδ

+
nqv(T ) + 1− fmk+q(T )

ω − (εmk+q − εF )− ωqv + iδ

] (2.7)

where εF is the Fermi energy, nqv(T ) is the Bose-Einstein distribution, and fnk(T )

is the electronic occupation at band n and wave vector k, and δ is a fitting parame-

ter. The carrier self-energy gives information on the scattering rate, where frequent

scattering leads to an overall reduced carrier mobility.

Electron mobilities can be calculated using the iterative Boltzmann transport

equation (BTE)50:

∂Eβfnk =e
∂f 0

nk

∂εnk
vnk,βτ

0
nk +

2πτ 0nk
~

∑
mv

∫
dq

ΩBZ

|gmnv(k,q)|2

×
[
(1 + nqv − f 0

nk)δεnk − εmk+q − ~ωqv)

+ (nqv + f 0
nk)δ(εnk − εmk+q + ~ωqv)

]
∂Eβfnk+q

(2.8)

where 1
τ0nk

is the relaxation time. The equation is iterative because it is solved self-

consistently for ∂Eβfnk, and an analogous expression is used for holes. By knowing the

13



carrier mobilities of various materials, it is possible to have a strong characterization

of its propensity for a variety of applications requiring effective transport.
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CHAPTER III

Electronic and Optical Properties of

Two-Dimensional GaN from First-Principles

3.1 Background and motivation

Gallium nitride (GaN) is an important commercial semiconductor for optoelec-

tronic applications in the visible and near-ultraviolet part of the spectrum.17,51 Many

efforts directed at producing deep-ultraviolet light with III-nitrides utilize high-Al

content AlGaN alloys grown along the polar c-axis crystallographic direction.52 How-

ever, the low light-extraction efficiency and the lack of deep-UV-transparent p-type

contacts limit the overall efficiency of deep-UV AlGaN LEDs.21 On the other hand,

devices employing atomically thin GaN quantum wells and tunnel injection achieve

deep-UV light emission53 in the desirable spectral range for sterilization applica-

tions.54 These atomically thin wells also exhibit strong excitonic effects55 even at

room temperature that may improve the internal quantum efficiency.56 The suppres-

sion of the quantum-confined Stark shift55 improves the internal quantum efficiency

as well57 and stabilizes the emission wavelength as a function of power.58

In addition to atomically thin quantum wells, freestanding two-dimensional gal-

lium nitride (2D GaN) is also expected to demonstrate desirable properties for opto-

electronic applications. Unlike other 2D materials, such as graphene or MoS2, bulk
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GaN crystallizes in the nonlayered wurtzite structure59 and is not expected to adopt

a 2D form with traditional exfoliation methods. However, 2D GaN has recently been

directly synthesized experimentally via graphene encapsulation.60 Subsequent theo-

retical calculations have confirmed the stability and investigated the properties of

2D GaN, as well as other III-V semiconductors.61–63 Nevertheless, the fundamental

electronic and optical properties of freestanding 2D GaN remain unexplored.

3.2 Project objectives

In this work, we investigate the electronic and optical properties of monolayer and

bilayer freestanding 2D GaN. We apply first-principles calculations based on density

functional (DFT) and many-body perturbation theory to predict accurate electronic

band gaps, luminescence energies, and excitonic properties of monolayer and bilayer

2D GaN as a function of strain. Our results suggest that 2D GaN is a promising

material for nonlinear optics, energy-efficient display applications, and germicidal

and water-purification processes.

3.3 Methods

Our first-principles calculations are based on DFT and many-body perturbation

theory. DFT structural relaxation calculations were performed using the local den-

sity approximation (LDA) for the exchange-correlation functional64,65 within Quan-

tum ESPRESSO66 using a plane-wave basis and norm-conserving pseudopotentials.

The 4s, 4p, and 3d electrons of Ga were included in the valence. The relaxed in-

plane lattice constant is in good agreement with experimental values for bulk GaN

(3.19 Å),67 being underestimated by only 0.77%. Hydrogen atoms of integer charge

were included to passivate surface dangling bonds. In simulations, it is common

to passivate surface dangling bonds of the polar surfaces of compound semiconduc-
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tors with fictitious hydrogen atoms of partial charge to eliminate charge transfer.68

However, in our simulations we are interested in examining the physical effects of

hydrogen passivation, including charge transfer to 2D GaN, and hence we use hydro-

gen pseudopotentials of integer charge. Furthermore, our choice of pseudopotential

is supported by our formation-energy calculations, which confirm that full hydrogen

passivation of surface bonds is energetically favorable for the monolayer. A buckled

geometry of 2D GaN was investigated, as passivation makes it more stable than the

planar variant.60 Phonon calculations with density functional perturbation theory41

and the frozen phonon method69 (Appendix A) were used to explore the mechanical

stability of the investigated structures. (Figure A.1) DFT calculations were carried

out with an 8×8×1 Monkhorst-Pack mesh. To obtain converged band gap values,

an artificial dipole was included in the vacuum space between periodic slabs. The

technical details are analyzed in previous work.70 The magnitude of the dipole is

chosen to cancel out the artificial electric field in the vacuum region between periodic

images of the slabs [i.e., the slopes of the corrected electrostatic potential curves be-

come zero away from the slab, Figure 3.1 c,d]. The band structures were calculated

with the G0W0 method44 as implemented in the BerkeleyGW package.43 The GW

calculations employed semicore norm-conserving pseudopotentials which consider Ga

3s, 3p, and 3d orbitals to be valence states.71 A plane wave cutoff energy of 250 Ry

converges semicore pseudopotential DFT eigenvalues to within 20 meV. To eliminate

interaction between periodic images, a Wigner-Seitz slab truncation was applied to

the Coulomb interaction.72 Simulation cell volumes included vacuum space oriented

perpendicularly to the slabs such that 99% of charge density was contained within

half the cell. Also employed in the GW method were the Hybertsen-Louie gener-

alized plasmon-pole model44 for the dielectric response’s frequency dependence and

the static remainder approach73 to speed up summation convergence over unoccupied

states. Quasiparticle band structure calculations were performed using a converged
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Figure 3.1: Electron and hole wave functions squared for (a) monolayer and (b)
bilayer 2D GaN, and plane-averaged electrostatic potentials for (c)monolayer and (d)
bilayer 2D GaN. The polarization fields within each structure spatially separate elec-
trons and holes. The artificial dipole correction in the vacuum region is necessary to
cancel out artifacts of the periodic boundary conditions. The distance and slope be-
tween peaks of like atoms, indicated by the dashed line in (c), allow for the calculation
of the internal electric field magnitude.

screening cutoff energy of 34 Ry and summing over unoccupied states with energy up

to 50% of the screening cutoff. Sampling grids included 8×8×1, 10×10×1, 12×12×1,

and 16×16×1 Monkhorst-Pack meshes, and converged values were obtained from ex-

trapolation (Figure A.2) in a manner consistent with previous work.74 Quasiparticle

band structures were determined by modifying the DFT-level band energies with a

scissors-shift operator constructed from GW quasiparticle corrections. (Figures A.3

and A.4) Finally, exciton binding energies were calculated using the Bethe-Salpeter

equation (BSE) method. The top three valence bands and the lowest conduction

band were included in this calculation.
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3.4 Energetics of formation and hydrogen-passivation

We performed formation-energy calculations to understand the energetics of for-

mation and H-passivation of 2D GaN. Our results agree with Al Balushi et al. that

the hydrogenated buckled structure is the most stable form of 2D GaN.60 Our cal-

culated enthalpy of hydrogenation per H2 molecule is -1.102 eV for the monolayer

and -1.551 eV for the bilayer relative to the unpassivated buckled structures. More-

over, the formation enthalpy of H-passivated 2D GaN with respect to bulk GaN and

the H2 molecule is -109 meV for monolayer GaN and 82 meV for bilayer GaN. H-

passivated monolayer GaN is therefore a thermodynamically stable compound, while

the H-passivated GaN bilayer is a metastable structure.

3.5 Electronic properties

The interfacial polarization from opposing gallium-and nitrogen-terminated sur-

faces gives rise to a strong inherent electric field perpendicular to the 2D layer, which

works against the effect of quantum confinement and reduces the band gap. The

magnitude of the electric field is calculated to be 74 MV/cm in monolayer GaN and

65 MV/cm in bilayer GaN, as determined by the slope of the plane-averaged elec-

trostatic potential between the H atom minima (Figure 3.1 c,d). The electric-field

values determined from the dipole moment of the structure along the perpendicular

axis are of similar order. These electric-field values are remarkably larger than the

breakdown voltage of bulk GaN (3.3 MV/cm)75 but they do not cause band gap clo-

sure or impact ionization since the slab thicknesses are sufficiently small such that

carriers cannot be accelerated to high energies. On the other hand, these polarization

fields introduce a slope to the energy bands and separate electrons from holes, simi-

lar to strained nitride quantum wells.57 The polarization fields separate the electron

and hole wave functions (Figure 3.1 a,b) and lower the gap (quantum confined Stark
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Figure 3.2: Quasiparticle band structures of (a) monolayer and (b) bilayer 2D GaN.
Both materials exhibit a direct gap at Γ. The polarization fields counteract the effects
of confinement in the bilayer structure.

Monolayer Bilayer

Freestanding Embedded55 Freestanding Embedded55

Band Gap (eV) 6.32 4.76-5.44 4.00 4.55-4.69

Exciton Binding

Energy (eV)
1.31 0.10-0.21 0.75 0.10-0.17

Optical Gap (eV) 5.01 4.66-5.23 3.25 4.45-4.52

The freestanding GaN values are obtained from

extrapolation (Appendix A). Embedded values are

from GaN wells within AlN barriers.55

Table 3.1: Band Gaps, Binding Energies, and Optical Gaps of 2D GaN

effect), counteracting the band gap increase caused by quantum confinement. The

lack of inversion symmetry further enables nonlinear optical properties.42

The quasiparticle band structures of 2D GaN are shown in Figure 3.2. Both the

valence band maximum (VBM) and conduction band minimum (CBM) occur at Γ for

both structures. The VBM is primarily composed of N 2p orbitals while the CBM is

a hybridization of Ga 4s, Ga 4p, N 2s, and H 1s states in both structures. The DFT

band gap of monolayer GaN is 2.95 eV, which is larger than the DFT gap of bulk

GaN (1.79 eV) due to quantum confinement. However, bilayer GaN exhibits a DFT
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band gap of 1.32 eV that is surprisingly lower than the bulk value. The reason for the

gap reduction in bilayer GaN compared to bulk is the Stark effect due to the strong

polarization field. However, DFT/LDA significantly underestimates semiconductor

band gaps, hence GW corrections are needed to obtain accurate gap values. The GW

band gap of monolayer GaN was found to be 6.32 eV, and the band gap of bilayer

GaN is 4.00 eV (Table 3.1). The converged band gap values are listed in Table 3.1

and compared to atomically thin GaN wells surrounded by AlN barriers, which were

presented in previous work.55 The disparity between the freestanding and the AlN-

embedded 2D GaN is due to the polarization fields. As the polarization fields in

freestanding 2D GaN are not screened by the surrounding vacuum, the gap is more

strongly affected by the quantum-confined Stark effect. While the electric field is

stronger in the monolayer than the bilayer structure, the small thickness of the slab

inhibits the spatial separation of electrons and holes, hence the Stark effect on the

gap is small.

3.6 Optical and excitonic properties

Excitonic effects are also much stronger in 2D GaN compared to the bulk coun-

terpart. The lowest-exciton binding energy in monolayer GaN is 1.31 eV, whereas

in bilayer GaN the binding energy is 0.75 eV. Both values are more than 1 order

of magnitude larger than bulk GaN (0.02 eV),76 due to the increased electron-hole

interaction strength caused by quantum confinement. Subtracting the exciton bind-

ing energies from the band gap yields a lowest-exciton (i.e., luminescence) energy

of 5.01 eV for monolayer GaN, which is comparable to the value of AlN-embedded

monolayer-GaN quantum wells. The lowest-exciton energy in bilayer GaN is 3.25

eV, which is slightly smaller than the luminescence energy of bulk GaN. Our results

therefore demonstrate that the effects of confinement and Stark effect on the carriers

and excitons cancel each other out in bilayer GaN. For thicker structures, we antic-
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ipate that the Stark-effect contribution dominates, and the luminescence energy is

lower than the bulk. However, in these thicker structures the polarization fields are

more effectively screened by free carriers, and the quantum-confined Stark effect is

suppressed.

We further evaluated the radiative lifetimes of excitons in monolayer and bilayer

2D GaN. We first determined the singlet-triplet exchange splitting energies to be 63

meV for monolayer GaN and 6 meV for bilayer GaN. The monolayer value is large

compared to kBτ at room temperature and below; hence excitons in the monolayer

predominantly occupy long-lived triplet states with long diffusion lengths. The small

exchange splitting for the bilayer implies a large thermal occupation of singlets and

shorter radiative lifetimes and diffusion lengths. Following the methodology developed

for evaluating radiative exciton lifetimes in two-dimensional materials,77 the effective

radiative lifetime τeff at room temperature is calculated as the thermal average of

the radiative lifetimes τS of exciton states S according to

〈τS〉 = (
8πe2Es(0)

~2c
µ2
S

Auc
)−1

3

4
(
ES(0)2

2MSc2
)−1kBT (3.1)

and

〈τeff〉−1 =

∑
S〈τS〉−1e

−Es(0)
kBT∑

S e
−Es(0)
kBT

(3.2)

where µS is the exciton effective mass, Auc is the area of the unit cell, µ2
S is the square

modulus of the BSE exciton transition dipole divided by the number of 2D k-points,

and ES(0) is the exciton energy calculated using the BSE method. We assumed the

effective mass of electrons and holes to be the same as in bulk GaN (0.2 me and

1.4 me, respectively). The BSE calculation includes the top three valence bands

and the lowest conduction band, while the Brillouin zone was sampled with 8×8×1,

10×10×1, 12×12×1, and 16×16×1 Monkhorst-Pack meshes. Converged values were
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obtained from extrapolation to an infinitely dense grid. We determined the thermally

averaged radiative lifetimes 〈τeff〉 of singlet excitons at 300 K to be 0.6 and 4.6 ns

for monolayer and bilayer GaN, respectively. These values are comparable to those

of other 2D semiconductors77 and approximately 1 order of magnitude shorter than

typical values in InGaN LEDs for typical free-carrier densities (5×1018cm−3).56 The

shorter exciton lifetimes in 2D GaN may be beneficial for improved internal quantum

efficiency, as well as telecommunication (Li-Fi) applications.

3.7 Strain effects

Since in-plane strain is a viable method of tuning the electronic properties of

atomically thin materials78,79 we also explore the effect of strain on the luminescence

properties of 2D GaN. We applied both compressive and tensile in-plane biaxial strain

of up to 5%. Our results (band gap calculated with DFT and adjusted to account

for the zero-strain GW and BSE corrections, Figure 3.3) show that increasing tensile

strain first increases the band gap, and subsequently leads to a small decline. On the

other hand, compressive strain monotonically reduces the gap by up to 0.3 eV for a 5%

strain. To understand these trends, we examined the electron and hole wave functions

as a function of strain (Figure A.5). Electrons and holes are spatially separated due

to the inherent polarization field. While the hole wave function is fully confined inside

the slab, the electron wave function noticeably extends beyond the edge of the slab

and is only weakly bound within the potential well of the structure. Tensile in-plane

strain reduces the thickness of the slab and hence the electron-hole separation, while

compressive strain further shifts the electron probability to the surface of the slab,

amplifying the Stark effect and the gap reduction (Appendix A). The gap decrease at

large tensile strains likely results from the interplay between the quantum-confined

Stark shift and the gap reduction by the deformation potential. The crystal-field

splitting for ±5% biaxial strain spans a range of 1.28-2.80 eV and 0.80-1.63 eV for
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Monolayer GaN

m∗hh m∗lh

5% Compressive Strain 3.63 1.07

Unstrained 4.59 1.00

5% Tensile Strain 4.50 1.04

Table 3.2: Hole Effective Masses of Monolayer GaN

monolayer GaN and bilayer GaN, respectively. Hole effective masses in monolayer

GaN as a function of strain are listed in Table 3.2.

We also investigated the effect of uniaxial compressive and tensile in-plane strain

of up to 5% on the luminescence properties. The uniaxial strain breaks the in-plane

symmetry and lifts the degeneracy of the top two N 2p valence bands, resulting

in optical polarization. The in-plane Poisson ratio is 0.35 for compressive strain

and 0.1 for tensile strain along the directions denoted in Figure 3.4. The band gap

values inFigure 3.4 are estimated using DFT. For the unstrained monolayer GaN GW

corrections increase the crystal-field splitting (i.e., the energy difference between the

topmost two degenerate valence bands and the third from the top at Γ) from the

DFT value of 1.837 to 2.360 eV, that is, an increase of 22%. Because the topmost

three valence bands of GaN are of the same N 2p orbital character, we expect that

quasiparticle corrections will similarly increase the DFT degeneracy splitting due to

strain. Compressive strain results in a larger heavy and light hole splitting than

tensile strain, but even a tensile strain of 1% is sufficient to split the bands by more

than kBT at room temperature (Figure 3.4). The resulting emitted light is linearly

polarized along the direction of compressive strain. Polarized light emission is also

evident from the anisotropic optical absorbance spectra of uniaxially strained 2D GaN

(Figure A.6).Polarized light emission at room temperature is therefore possible with

2D GaN, which is desirable for energy-efficient display applications. The emission

wavelength of the polarized luminescence can be further adjusted in the visible range
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Figure 3.3: Optical gap of monolayer and bilayer 2D GaN as a function of biaxial
strain. Compressive strain is a viable method for controlling the band gap of both
structures. These results were determined from the DFT gap as a function of strain
adjusted to account for the GW and BSE corrections at zero strain.

Figure 3.4: Energy splitting between the heavy and light holes of monolayer and
bilayer GaN as a function of uniaxial strain. Uniaxial strain lifts the band degeneracy,
resulting in polarized light emission along the axis of compressive strain.
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by alloying with InN to form 2D InGaN.

3.8 Conclusions

In conclusion, we investigated the electronic and optical properties of 2D GaN as

a function of thickness and strain with predictive calculations. Monolayer 2D GaN

emits light in the deep-UV range, which is promising for sterilization applications.

The long-lived stable triplet excitons of the monolayer may be promising for excitonic

applications. Uniaxial in-plane strain results in linearly polarized light emission desir-

able for display applications. Our results demonstrate that 2D GaN exhibits an array

of desirable functional properties and is a synergistic compound between established

semiconductors and 2D materials.
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CHAPTER IV

Effect of Stacking Orientation on the Electronic

and Optical Properties of Polar 2D III-nitride

Bilayers

4.1 Background and motivation

Group-III nitrides find broad commercial applications in visible optoelectronic

devices. Recently, AlGaN alloys have been investigated for sterilization and water

purification applications, owing to their emission in the ultraviolet (UV).52 Yet, their

overall efficiency is limited by difficulties in light extraction and p-type doping.21

However, these problems may be alleviated in two-dimensional (2D) nitride materials

such as atomically thin GaN quantum wells, which emit deep-UV light80 and may

have a higher internal quantum efficiency,56 owing to their strong room-temperature

excitonic effects.81 Given the successful synthesis of 2D GaN60,82 and its applicability

in optoelectronic devices, investigations into the properties of 2D III-nitride materials

have become compelling. Al Balushi et al. confirmed that the band gap of 2D GaN

is much wider than its bulk counterpart,60 opening up new avenues for the broad

applicability of GaN. Further synthesis efforts have been directed at the other 2D

III-nitrides. Hexagonal BN is readily available, and graphite-like hexagonal AlN

nanosheets have been epitaxially grown on single crystal Ag(111),83 but 2D InN
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remains challenging to synthesize, though thin films have been grown on GaN (0001)

by molecular-beam epitaxy.84

As experimental techniques continue to improve, there is a clear need for compu-

tation to ascertain the theoretical limits of these materials with respect to functional

properties. Work on 2D GaN quantum wells embedded in AlN capping layers has

shown that the band gap of GaN monolayers and bilayers are tunable over a broad

range by varying the capping thickness of the AlN layers.55 By comparing to work

on freestanding monolayers and bilayers,85 it becomes clear that the capping layers

significantly lower the band gap and exciton binding energies. With these two sce-

narios having been explored, giving more information on properties with respect to

environmental effects, there is now a question of how internal structural properties

within vdW heterostructures affect the resulting properties.

The noncentrosymmetric (wurtzite) structure of the III-nitrides gives rise to a

strong inherent electrical polarization along the polar c-axis crystallographic direc-

tion,86 which, among many other phenomena, leads to the formation of 2D electron

gases at GaN/AlGaN heterojunctions.87 A unique feature of hydrogen-passivated

tetrahedral 2D nitrides is the lack of reflection symmetry across the 2D plane that, in

combination with the reduced screening in the 2D regime,88 amplifies the magnitude

of this intrinsic polarization field to values (74 MV/cm)85 that exceed the critical

dielectric breakdown field (3.3 MV/cm)75 by more than an order of magnitude. The

unique combination of strong electrical polarization with quantum confinement in

atomically thin nitrides may give rise to distinct functional properties compared to

their bulk counterparts or other nonpolar 2D materials for potential applications in

optoelectronic devices. Moreover, multilayer structures of 2D nitride monolayers in

which the electrical polarization of the constituent layers can be aligned in a parallel

or antiparallel fashion enable further control of the functional properties.
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4.2 Project objectives and overview

In this work, we investigate the electronic properties of hydrogen-passivated,

monolayer BN, AlN, GaN, and InN, as well as their bilayer structures, treating the

polarization of each layer as an additional degree of freedom. Our calculations re-

veal that III-nitride monolayer stacks with aligned polarizations have narrower band

gaps than the isolated monolayers due to the strong quantum-confined Stark shift

(QCSS) arising from the large inherent polarizations. On the other hand, the band

gaps of stacks with opposite polarizations are comparable to the isolated monolayers,

due to the offset of reduced quantum confinement by the weaker QCSS. We also find

that the nature of excitons (interlayer vs. direct) and luminescence energy can be

controlled by the choice of parallel or antiparallel stacking orientation, respectively,

while preserving their strong exciton binding and bright character. Our results show

that the stacking orientation acts as an additional degree of freedom to engineer the

electronic, excitonic, and optical properties of polar 2D materials.

4.3 Methods

Our first-principles calculations utilize density functional theory (DFT) and many-

body perturbation theory. Structural relaxation calculations were carried out in DFT

using the local density approximation (LDA) for the exchange-correlation poten-

tial64,65 within Quantum ESPRESSO66 using a plane-wave basis and norm-conserving

pseudopotentials. Hydrogen atoms of integer charge were included to passivate sur-

face dangling bonds. DFT and GW calculations were carried out with an 8×8×1

Monkhorst-Pack mesh for the sampling of the first Brillouin zone. To obtain con-

verged band gap values, an artificial dipole was included in the vacuum space between

periodic slabs to counteract the artificial electric field introduced by the periodic

boundary conditions for polar structures, as in previous work.70 Phonon frequencies
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were found using density functional perturbation theory (DFPT).41 Quasiparticle

band structures were calculated using the one-shot G0W0 method44 within Berke-

leyGW.43 Semicore pseudopotentials for Ga and In were used, which treat the Ga

3s, 3p, and 3d orbitals and the In 4s, 4p, and 4d, orbitals as valence states.71 The

DFT eigenvalues are converged to within 1 meV/atom using a plane-wave cutoff of

100 Ry for BN and AlN and 250 Ry for GaN and InN. A Wigner-Seitz slab trun-

cation was applied to the Coulomb potential72 to eliminate the artificial interaction

between periodic images. The simulation cell included sufficient vacuum space in the

direction perpendicularly to the slabs such that 99% of the charge density was con-

tained within half the cell. Quasiparticle band-structure calculations were performed

using dielectric-matrix screening cutoff energies of 35, 30, 34, and 36 Ry for BN, AlN,

GaN, and InN, respectively. The Hybertsen-Louie generalized plasmon-pole model

was employed for the frequency dependence of the dielectric function,44 and the static

remainder approach73 was used to accelerate the convergence of the summation over

unoccupied states. Unoccupied states with energies up to 50% of the screening cut-

off were included in the summation. Quasiparticle band structures were plotted by

modifying the DFT band structures with a scissors-shift operator constructed from

GW quasiparticle corrections. Exciton binding energies were calculated using the

Bethe-Salpeter Equation (BSE) method46 as implemented in BerkeleyGW,43 where

the top three valence bands and lowest three conduction bands were included. The

radiative exciton lifetimes were calculated with the method of Palummo et al.77

4.4 Thermodynamics and surface passivation

We first performed thermodynamic calculations to understand the surface passiva-

tion of surface dangling bonds in III-nitride monolayers by hydrogen atoms. 2×2×1

supercells were constructed, and hydrogen atoms symmetrically attached to either

0%, 25%, 50%, 75%, or 100% of the III-nitride pairs. Following earlier work,89–91 we
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calculate the Gibbs free energy difference as a function of the fraction of hydrogen

passivated sites under different temperatures and hydrogen partial pressures via eq.

(4.1) – (4.3),

∆G(T, P ) = Gpassivated
slab (T, p,NH)−Gunpassivated

slab (T, p,NH)−NHGH(T, p) (4.1)

Gpassivated
slab (T, p,NH) = E

(un)passivated
slab + ZPE

(un)passivated
slab − T (Svib) (4.2)

GH(T, p) =
1

2
(EH2 + ZPEH2 − T (Strans + Srot + Svib)) (4.3)

where ∆G(T, p) is the change of Gibbs free energy of hydrogen-passivated structures

with respect to the unpassivated structure, G
(un)passivated
slab is the Gibbs free energy of

a hydrogen-(un)passivated slab, E
(un)passivated
slab is the total free energy of a hydrogen-

(un)passivated slab from DFT calculations, T is the temperature, p is the hydrogen

partial pressure, NH is the number of hydrogen atoms, GH is the Gibbs free energy

of one hydrogen atom, EH2 is the total free energy of a hydrogen molecule from DFT

calculation, ZPE is the zero point energy from DFPT calculations, and Strans, Srot,

and Svib are translational, rotational, and vibrational entropies for different struc-

tures, respectively. The vibrational entropy is evaluated using the calculated phonon

frequencies and the temperature derivative of the phonon free energy.92 As shown in

Figure 4.1, at a given hydrogen pressure and temperature the III-nitride monolayers

assume either a fully passivated, buckled tetrahedral structure (similar to the tetra-

hedral wurtzite structure) or an unpassivated, planar hexagonal structure (akin to

the hexagonal structure of bulk BN). Our results show that monolayer BN assumes a

planar, unpassivated structure under standard atmospheric conditions (as expected

from experimental results of its chemical inertness and also reported in previous cal-
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Figure 4.1: Preferred passivation state of (a) BN, (b) AlN, (c) GaN, and (d) InN
monolayer as a function of hydrogen partial pressure (Pa) and temperature (K). Under
standard room-temperature conditions, BN adopts a planar hexagonal, unpassivated
structure, and AlN, GaN, and InN adopt buckled tetrahedral, passivated structures.
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culations93,94) while monolayer AlN, GaN, and InN adopt the buckled, passivated

structure (similar to their bulk tetrahedral wurtzite crystal structures). However, un-

der standard hydrogen pressure but higher temperatures, such as those needed during

the synthesis process, AlN is more stable as a planar, unpassivated material. Other

work has also found that monolayer AlN adopts the buckled form under standard

conditions,95 which suggests that functional properties might be tunable by control-

ling the growth temperature. Finally, the formation of a heterostructure is unlikely to

change the preferred passivation state, as the bilayer interaction energy (on the order

of 0.04 eV/unit cell) is much smaller than the energy needed for dehydrogenation (on

the order of 1 eV/unit cell).

4.5 Electronic properties

A visualization of the nitride heterostructures is shown in Figure 4.2, and the

quasiparticle band structures of monolayer BN, AlN, GaN, and InN as well as each

of their three bilayer structures are presented in Figure 4.3. Structural properties

are shown in Table 4.1. All passivated BN, GaN, and InN structures exhibit a direct

band gap while the gaps of AlN structures are indirect. The band gaps span a broad

spectrum in the visible and UV range, ranging from 1.9 eV for aligned BN to 7.7 eV

for antialigned N-interposed AlN. As a comparison, Prete et al. report unpassivated

nitride monolayers yield band gap values of 1.7 eV (direct) for InN, 4.5 eV (direct)

for GaN, 5.8 eV (indirect) for AlN, and 6.7 eV (indirect) for BN.96 Furthermore, as

discussed in earlier work,97 strong polarization fields can cause band inversion and

produce a topologically insulating state. The additive nature of the electric fields for

aligned multilayer 2D nitride stacks suggest that, as the number of layers increases,

the Stark shift can become sufficiently strong to further reduce the magnitude of

the gap and even invert the order of the valence and conduction bands of 2D BN,

GaN, and InN, giving rise to topological states. Additionally, the total energy of the
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Figure 4.2: The three possible orientations of III-nitride heterostructures, where
the polarization is treated as the degree of freedom. The blue arrows denote the
polarization direction of each monolayer.

aligned GaN heterostructure is found to be 0.04 eV / unit cell lower than its anti-

aligned counterparts, suggesting that the aligned state is the preferable configuration

in these III-nitride heterostructures.

Our results also show that the counteracting effects of quantum confinement and

strong electrical polarization perpendicular to the 2D planes enable the tuning of

the electronic properties of the polar 2D III-nitride bilayers. Previous work found

that monolayer GaN exhibits a strong polarization (74 MV/cm) as a result of charge

transfer between passivating hydrogen atoms,85 and this property is intrinsic to mono-

layer BN, AlN, and InN as well, owing to the fact that they all adopt the buckled

tetrahedral structure when passivated with H. Yet in these monolayers, quantum-

confinement effects dominate rather than QCSS - yielding wide band gaps - because

electrons and holes cannot sufficiently separate in space along the out-of-plane direc-

tion. In aligned monolayers, however, the increased spatial thickness allows for carrier

separation to occur. Coupled with the additive nature of the polarization, a strong

QCSS is present in aligned bilayers, resulting in band gaps much narrower than those

of the respective isolated monolayers. Such is the case in the aligned GaN bilayer,
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Figure 4.3: Quasiparticle band structures of the freestanding monolayer and of the
bilayer stacks [aligned, antialigned with interposed cations (“cation sandwich”), and
antialigned with interposed N (“N sandwich”)] of BN, AlN, GaN, and InN. Red arrows
denote the fundamental band gap. The high-symmetry points are Γ (0,0,0), K (1/3,
1/3, 0), and M (0.5,0,0). The band gaps of 2D III-nitride monolayers and their bilayer
structures span the visible and UV ranges.
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Cation-N

Bond

Length (Å)

Cation-H

Bond

Length (Å)

N-H

Bond

Length (Å)

Interlayer

Distance,

H-H (Å)

Monolayer BN 1.551 1.202 1.032 N/A

BN-B Sandwich 1.551 1.204 1.035 1.758

BN-N Sandwich 1.552 1.201 1.036 1.740

BN-Aligned 1.551 1.209 1.035 1.660

Monolayer AlN 1.917 1.566 1.025 N/A

AlN-Al Sandwich 1.897 1.571 1.024 1.641

AlN-N Sandwich 1.900 1.566 1.026 0.970

AlN-Aligned 1.920 1.577 1.027 1.412

Monolayer GaN 1.966 1.547 1.020 N/A

GaN-Ga Sandwich 1.965 1.551 1.021 1.449

GaN-N Sandwich 1.965 1.547 1.023 0.852

GaN-Aligned 1.966 1.555 1.021 1.336

Monolayer InN 2.171 1.720 1.021 N/A

InN-In Sandwich 2.177 1.734 1.025 1.397

InN-N Sandwich 2.180 1.720 1.025 0.663

InN-Aligned 2.171 1.731 1.021 1.198

Table 4.1: Structural properties of III-nitride monolayers and heterostructures.
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Figure 4.4: Electron and hole wave functions squared for (a) aligned, (b) antialigned
with interposed N, and (c) antialigned with interposed Ga bilayers of GaN. Although
the holes remain localized on the N atoms, electrons reside outside the GaN planes due
to the strong out-of-plane electric dipole moment and their location can be controlled
by the stacking orientation.

which has a band gap of 3.2 eV (Figure 4.3), i.e. narrower than the gap of bulk GaN

(3.4 eV). In anti-aligned orientations, the band-gap magnitudes remain comparable

to those of the respective monolayers. Although the larger layer thickness lowers the

band gap due to a decrease in confinement, the cancellation of the polarization fields

results in a band gap increase due to removal of the QCSS.

The stacking orientation of the 2D bilayers also has a strong effect on the relative

location of electrons and holes. As shown in Figure 4.4, holes in 2D GaN are localized

on the nitrogen atoms independent of orientation. Electrons, however, are located

primarily in the vacuum region surrounding the hydrogens that passivate the nitrogen

side of the individual monolayers. This property extends to 2D BN, AlN, and InN

as well, and arises as a consequence of the inherent polarization of the layers. This

positioning of the electrons and the fact that surface electrons are only weakly bound

to the material implies that electrons in 2D nitrides are not strongly affected by atomic

displacements and can conduct ballistically without being scattered by phonons or

defects, suggesting applicability in fast, energy-efficient microelectronics.

37



4.6 Optical and excitonic properties

Moreover, the aligned polarization fields in the 2D nitride bilayers result in the for-

mation of strongly bound interlayer excitons. Electrons and holes in aligned bilayers

are localized in separate layers (Figure 4.4a), similar to MoSe2/WSe2 van der Waals

interfaces.98,99 While interlayer excitons have also been studied in embedded III-V

heterostructures,100,101 most have been limited to low-temperature applications due

to the weak exciton binding. However, the reduced screening in freestanding atomi-

cally thin structures allows for strongly bound interlayer excitons which are stable at

room temperature. Our calculated exciton binding energies and luminescence gaps

of GaN bilayers are shown in Table 4.2. Even for the polar stacking orientation, the

exciton binding energies of the bilayers remain strong (on the order of 1 eV) and

comparable to the monolayer and the antialigned structures. The thermally averaged

radiative lifetimes 〈τeff〉 of singlet excitons at 300K (Table 4.2) are on the order of a

few ns, i.e. comparable to the lifetimes of bright excitons in other 2D materials,77,85

and do not vary appreciably with stacking orientation. Such short exciton lifetimes

may allow for luminescence with high internal quantum efficiency, indicating the suit-

ability of GaN bilayers for light-emission applications. Additionally, as the exciton

binding energies of GaN heterostructures are comparable to that of the monolayer,

the optical spectra of the GaN heterostructures are expected to be similar to the pre-

viously published optical spectrum of monolayer GaN,85 other than the offset caused

by the different band gap values.

Our results demonstrate that the luminescence energy of polar 2D nitrides can be

controlled via the stacking arrangement of the bilayers, with the aligned GaN bilayer

emitting in the visible and the antialigned GaN structures emitting in the ultraviolet,

primarily through the control of the band gap. As the tunability results from the

polar nature of the individual GaN monolayers, our results can be generalized to

other stacks of polar noncentrosymmetric monolayers, suggesting a robust method
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Structure

Exciton

Binding

Energy

(eV)

Luminescence

Energy (eV)

Exciton

Radiative

Lifetime

(eV)

Ga Sandwich 1.18 4.82 7.3

N Sandwich 1.37 5.13 2.1

Aligned 1.00 2.20 2.7

Table 4.2: Exciton binding energies, luminescence energy, and exciton radiative life-
times of GaN bilayers. The exciton binding energies remain strong (∼ 1 eV) and the
lifetimes short (a few ns) regardless of the stacking arrangement.

for tailoring the luminescence properties of polar 2D materials. In addition, the

properties of interlayer excitons in 2D transition-metal dichalcogenides can be further

tuned via an externally applied voltage, highlighting the propensity of these materials

for novel optoelectronic and excitonic devices.102,103 These observations highlight the

suitability of bilayers of polar 2D materials for controlling the nature and lifetime of

excitons in semiconductor heterostructures.

4.7 Conclusions

In conclusion, we applied first-principles computational methods to investigate

the effect of stacking orientation on the electronic and optical properties of polar 2D

III-nitride bilayers. By treating the polarization orientation as an additional degree of

freedom in the bilayer design, the electronic band gap can be tuned over several eVs.

Furthermore, the nature of excitons (interlayer vs. direct) can be controlled by the

choice of parallel or antiparallel stacking orientation, respectively, while preserving

the strong exciton binding energy (∼ 1 eV) and short radiative lifetime (few ns). Our

results demonstrate that the electronic and optical properties of 2D III-nitride bilayers

can be widely controlled over the visible and UV ranges by the choice of stacking
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orientation, highlighting their promising applications in excitonic and optoelectronic

devices.
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CHAPTER V

Carrier Mobility of Copper (I) Oxide

5.1 Background and motivation

Cu2O is a well-established semiconductor. It is p-type dopable, nontoxic, and

low cost, making it ideal for a wide variety of applications. In particular, its direct

band gap of 2.17 eV104 makes it of interest for solar cell applications and photocataly-

sis.105,106 Additionally, there is significant research progress being made in elucidating

its properties with respect to a thin-film transistor device setting.107,108

However, p-type oxides generally have relatively low hole mobilities, limiting their

performance. Thus it is necessary to directly calculate the mobility of p-type Cu2O

while also gaining understanding into the fundamental mechanisms governing carrier

transport, such as the phonon modes primarily responsible for carrier scattering at

room temperature.

5.2 Project objectives and overview

In this work, we investigate the hole mobility of Cu2O. I apply first-principles

calculations based on density functional (DFT) and many-body perturbation theory

to accurately predict electronic band gaps. The phonon-limited carrier mobility and

phonon-mode-resolved imaginary self-energies are then calculated using the electron-
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phonon Wannier method. Our results show that the Cu2O room temperature hole

mobility is 106 cm2/Vs and that polar optical phonon scattering is the dominant

scattering mechanism.

5.3 Methods

Our approach is based on density functional theory, many-body perturbation the-

ory, density functional perturbation theory, and the maximally localized Wannier

function method. Structural relaxation calculations were carried out in DFT us-

ing the local density approximation (LDA) for the exchange-correlation potential64,65

within Quantum ESPRESSO66 using a plane-wave basis and norm-conserving pseu-

dopotentials for the valence electrons of Cu and O. The relaxed lattice constants

agree well with experiment (4.27 Å)109, being underestimated by only 0.66%. DFT

and GW calculations were carried out with a 6 × 6 × 6 Monkhorst-Pack mesh for

the sampling of the first Brillouin zone (BZ). The DFT eigenvalues are converged

to within 1 meV/atom using a plane-wave cutoff of 120 Ry. Phonon frequencies

were found using density functional perturbation theory (DFPT)41 on a 6 × 6 × 6

BZ sampling grid. Electron-phonon coupling matrix elements were evaluated using

the maximally localized Wannier function method110 within the Electron-Phonon-

Wannier (EPW) code,49 using a carrier density of 1018 cm−3, and interpolated to fine

electron and phonon BZ sampling meshes up to 54 × 54 × 54. Polar corrections to the

electron-phonon matrix elements were applied.111 The phonon-limited hole mobility

was evaluated as a function of temperature with the iterative Boltzmann Transport

Equation method50 for carrier states within a 0.4 eV energy range from the valence

band maximum.
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Figure 5.1: Phonon-limited hole drift mobility in Cu2O as a function of temperature.

5.4 Carrier mobility and scattering

The calculated phonon-limited hole mobility as a function of temperature is shown

in Figure 5.1. The phonon-limited mobility does not account for ionized impurities,

and thus this value represents a theoretical upper limit for the mobility. However,

our value for the room temperature hole mobility (106 cm2/Vs) agrees well with

some of the largest experimental values (90 cm2/Vs107 and 107 cm2/Vs112). At high

temperatures, the curve follows a T−2.31 power law, suggesting that polar optical

phonon scattering is the dominant scattering mechanism.

This result places Cu2O in a promising place with respect to other p-type oxide

semiconductors. β-Ga2O3 only has a room temperature hole mobility of 32 cm2/Vs,113

and TiO2 has a room temperature hole mobility of 35 cm2/Vs.114 The higher mobility

in Cu2O suggests it can enhance the field effect mobility of thin-film transistors when
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Figure 5.2: Phonon-mode-resolved imaginary self-energies as a function of the hole
energy in Cu2O. 0 eV is referenced to the valence band edge.

used as a channel material.

We can further characterize the mobility by examining the phonon-mode-resolved

imaginary self-energies. The phonon modes that give non-negligible contributions to

the hole scattering are shown in Figure 5.2. At higher temperatures, many modes

contribute in significant amounts to the overall scattering. Near the band edge, Modes

11 and 18 give the largest contributions, where the phonons are ordered in number of

increasing frequency. Thus they are the primary modes responsible for hole scattering

at that temperature. Modes 11 and 18 are polar optical modes, and a visualization

of the atomic displacements is shown in Figure 5.3.
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Figure 5.3: Visualization of the atomic displacements of phonon modes (a) 11 and
(b) 18 of Cu2O. The larger atoms are copper, shown in brown, and the smaller atoms
are oxygen, shown in red. These polar optical modes dominate the scattering at room
temperature.

5.5 Conclusions

In conclusion, we applied first-principles computational methods to investigate the

phonon-limited hole mobility of Cu2O as a function of temperature. Cu2O has a large

room temperature hole mobility compared to many other oxides, and that mobility

is primarily limited by the polar optical modes. Our work shows the suitability of

Cu2O for p-type thin-film transistors and other optoelectronic applications.
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CHAPTER VI

Carrier Mobility of Ultra-Wide-Band-Gap

(UWBG) Semiconductors

6.1 Background and motivation

Materials are typically classified as a metal, semiconductor, or an insulator based

on their band gap values. Metals have closed gaps, while insulators are often classified

as having a band gap larger than 3 eV, with semiconductors bridging the divide. The

ease of dopability for semiconductors in this range is part of how they have fueled

the success of the electronics industry. However, materials with gaps larger than 3

eV have rapidly proved their potential. GaN has a band gap of 3.4 eV, and with

its high breakdown voltage and thermal conductivity, it has significant advantages in

its performance comparison against silicon-based devices, allowing it to be used in

high-power optoelectronics and high-frequency devices.

Even beyond that band gap value, with values as large as 6.2 eV, materials such as

AlGaN, β-Ga2O3, cubic BN, and diamond are rapidly proving to be strong competi-

tors in the field of high-power electronics.115 With the band gap criterion becoming

obsolete, there is growing consensus that the dopability of a material should be the

new key factor in classifying its electronic nature. Questions of particular interest in

the community include the potential upper limit to the band gaps of functional semi-
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conductors, the feasibility of doping ultra-wide-band-gap (UWBG) materials, and

the fundamental electronic properties that these materials possess. As the prospects

grow for UWBG materials to be used in devices requiring effective carrier transport,

it is prudent to determine their expected properties once sufficient doping has been

achieved.

The Baliga figure of merit, which provides a metric for evaluating a material’s

applicability for high-power electronics, scales with the cube of band gaps,30 making

this parameter critical in achieving high performance overall. Among UWBG mate-

rials, oxides tend to have larger gaps compared to nitrides and carbides. From there

one can refine further by examining symmetric, atomically dense crystal structures

with small cation-to-oxygen ratios, as they are expected to yield lighter hole masses

due to stronger orbital overlap and reduced band folding, which is desirable for appli-

cations needing efficient p-type mobility. The resulting candidate materials are MgO,

rs-BeO, wz-BeO, and zb-BeO.

6.2 Project objectives and overview

In this work, we investigate the electronic properties of zincblende BeO (zb-BeO),

rocksalt BeO (rs-BeO), wurtzite BeO (wz-BeO), and rocksalt MgO (rs-MgO). We

apply density functional theory and many-body perturbation theory to predict accu-

rate band structures. We then calculate phonon-limited carrier mobilities with the

EPW method. Our results suggest that these materials have large electron mobilities

(>100 cm2/Vs) at room temperature, giving them significant potential in the field of

high-power electronics.
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6.3 Methods

Our calculations on the electric properties are based on density functional theory

and many-body perturbation theory. DFT structural relaxation calculations were

performed using the local density approximation (LDA) for the exchange-correlation

functional64 within Quantum ESPRESSO66 using a plane-wave basis and norm-

conserving pseudopotentials. Phonon dispersions were calculated with density func-

tional perturbation theory (DFPT).41 Band structures were calculated with the G0W0

method44 as implemented in the BerkeleyGW package,43 using the plasmon-pole

model44 and the static remainder approach.73 DFT and DFPT calculations were

carried out with an 8 × 8 × 8 Monkhorst-Pack mesh. Plane wave cutoff energies of

150 Ry and 180 Ry converge DFT and GW eigenvalues to within 4 meV for MgO

and BeO polytypes, respectively. Quasiparticle band structure calculations were per-

formed using a converged screening cutoff energy of 36 Ry for MgO and 40 Ry for

the BeO polytypes. Quasiparticle band structures were plotted with Wannier90116

by replacing the DFT eigenenergies with GW eigenenergies. Electron-phonon cou-

pling matrix elements were evaluated using the maximally localized Wannier function

method110 within the Electron-Phonon-Wannier (EPW) code,49 using a carrier den-

sity of 1018 cm−3, and interpolated to fine electron and phonon BZ sampling meshes

up to 120 × 120 × 120. Polar corrections to the electron-phonon matrix elements

were applied.111 The phonon-limited hole mobility was evaluated as a function of

temperature with the iterative Boltzmann Transport Equation method50 for carrier

states within a 0.54 eV energy range from the band extrema.

6.4 Phonons and band structures

We first calculate the phonon dispersions of MgO and the BeO polytypes to con-

firm mechanical stability. The dispersions are shown in Figure 6.1. MgO and wz-BeO
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Figure 6.1: Phonon dispersions of (a) rs-BeO, (b) zb-BeO, (c) wz-BeO, and (d) MgO.
All structures have positive phonon frequencies after relaxation.

are expected to have positive frequencies owing to natural occurrence at ambient pres-

sures, and this is confirmed by DFPT calculation. zb-BeO is considered a metastable

phase, but we find positive frequencies across the Brillouin zone, similar to other theo-

retical work.117 rs-BeO is considered an unstable phase at atmospheric pressure,117–119

but DFPT finds positive phonon frequencies across the zone.

We then calculate the electronic band structures of MgO and the BeO polytypes.

The quasiparticle band structures are shown in Figure 6.2. rs-BeO has an indirect

gap of 11.92 eV with a VBM along the Γ-K high symmetry path and a CBM at L.

zb-BeO has an indirect gap of 10.52 eV with a VBM at Γ and a CBM at X. wz-BeO

has a direct band gap of 11.81 eV with band extrema at Γ. MgO has a direct gap of

8.62 eV with band extrema at Γ. The band gap values for wz-BeO and MgO agree

reasonably well with experiment, 7.97 eV120 and 10.59 eV120, respectively. The band
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Figure 6.2: Quasiparticle band structures of (a) rs-BeO, (b) zb-BeO, (c) wz-BeO,
and (d) MgO. All four have large band gaps and small electron effective masses.

structures of the metastable phases of BeO have been examined in other theoretical

work. Self-consistent GW yields a gap of 9.92 eV for zb-BeO117. Groh et al. report

a band gap of 10.96 eV for rs-BeO but find that the gap is direct at Γ.121

6.5 Carrier mobility

The calculated phonon-limited carrier mobility as a function of temperature is

shown in Figure 6.3. This value constitutes a theoretical upper limit to the mo-

bility as it does not account for impurity scattering. All four materials have room

temperature electron mobilities greater than 100 cm2/Vs, with rs-BeO and zb-BeO

having the largest values. Hole mobility values range from 12 cm2/Vs (rs-BeO) to 105

cm2/Vs (wz-BeO, z-axis). These hole mobilities are sizable compared to other p-type

wide-band-gap materials (32 cm2/Vs for β-Ga2O3
113 and 35 cm2/Vs for TiO2

114),
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Figure 6.3: Carrier drift mobilities of MgO, rs-BeO, zb-BeO, and wz-BeO.

highlighting the superior performance of wz-BeO and zb-BeO.

6.6 Conclusions

In conclusion, we applied first-principles computational methods to investigate

the phonon-limited carrier mobility of MgO and three BeO polytypes as a function

of temperature. We find that these materials have large electron mobilities (>100

cm2/Vs) at room temperature. Hole mobilities are lower but not insignificant. Our

work shows the promise of UWBG materials for high-performance high-power elec-

tronics applications.
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CHAPTER VII

Phonon- and Defect-limited Electron and Hole

Mobility of Diamond and Cubic Boron Nitride: A

Critical Comparison

7.1 Background and motivation

Diamond and cBN are both ultra-wide-band-gap (UWBG) semiconductors with

promising applications in high-power high-frequency electronic devices. They have

the highest known thermal conductivities of any materials, allowing for efficient heat

dissipation.122,123 Additionally, despite their ultra-wide band gaps, 5.4 eV in dia-

mond124 and 6.4 eV in cBN,125 both show n-type and p-type dopability.115 These

wide band-gap values lead to high breakdown fields (>10 MV/cm in diamond,126

2-6 MV/cm in cBN127), enabling device operation at high voltages. Furthermore,

improvements in sample synthesis area are creating a path to commercialization.

However, despite extensive studies on carrier transport in these materials, there

are discrepancies in the reported carrier mobilities of cBN. Reports of the room-

temperature electron (∼ 2300 cm2/Vs1) and hole (∼ 2100 cm2/Vs2) mobility in

natural diamond lead to very large Baliga figures of merit (over 550,000 106 V2 Ω−1

cm−2),115 confirming its appeal for efficient high-power electronics. Experiments re-

port a large range of carrier mobility values in diamond. Hole mobilities of 138-2016
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cm2/Vs12 and 3800 cm2/Vs128 have been measured in CVD-grown diamond films,

while electron mobilities of 70 cm2/Vs in polycrystalline thin films,129 1800 cm2/Vs

in single-crystal type IIa,130 and 4500 cm2/Vs for an undoped homoepitaxial CVD

diamond film128 have been measured. However, these discrepancies have largely been

characterized. Grain boundaries in polycrystalline samples significantly lower the mo-

bility as compared to single crystals,131 and the highest reported values have not been

reproduced in comparable measurements,132 highlighting that using photo-excitation

to generate free carriers is not well understood in the context of mobility.133,134 The-

oretical work studying diamond hole mobility at thermodynamic equilibrium finds a

maximum value of 2000 cm2/Vs,135 similar to original experimental reports by Reg-

giani et al.2 Recent experimental reports on phosphorus-doped diamond films which

do not use photo-excitation report electron mobilities of 660 cm2/Vs136 and 1000

cm2/Vs,133 but both were carried out with low doping concentrations (∼1016 cm−3).

The measured room-temperature electron mobility of cBN (825 cm2/Vs)3 is modest.

However, the value of the room-temperature hole mobility of cBN is less clear, with

experimental reports spanning a range of two orders of magnitude (2 cm2/Vs4 to

500 cm2/Vs5). Until recently, the growth of high-quality samples of cBN has proven

difficult. Challenges in cBN film deposition and identification of fine grains often lead

to samples that are stressed or mixed phase, containing the hexagonal BN phase and

elemental boron.137 The wide range of sample qualities and preparations have led to

an inconsistent recorded value, so there is a need for fundamental understanding of

the mechanisms that govern carrier transport to elucidate on this disparity.

7.2 Project objectives and overview

In this work, we investigate the phonon-limited electron and mobility of cBN

and diamond with atomistic first-principles calculations in order to understand the

fundamental upper bounds to carrier transport in these ultra-wide-band-gap semi-
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cBN Diamond

Electron

Mobility

(cm2/Vs)

Hole

Mobility

(cm2/Vs)

Electron

Mobility

(cm2/Vs)

Hole

Mobility

(cm2/Vs)

Theory,

phonon-limited

(this work)

1610 80.4 1790 1970

Natural diamond - - ∼23001 ∼27002

CVD-grown

diamond films
- - 4500

138-201612

3800128

Polycrystalline

diamond

thin films

- - 70129 -

Single-crystal

type IIa diamond
- - 1800130 -

P-doped

diamond films
- -

660136

1000133
-

Single-crystal cBN 8253 24 - -

cBN thin film - 5005 - -

Table 7.1: A summary of experimental room-temperature carrier mobility values in
cBN and diamond.
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conductors. Our calculations show that, while the electron mobilities for the two

materials are similarly high, the hole mobility of cBN is lower than that of diamond

by a factor of ∼ 25 at room temperature. We analyze the mode-resolved electron-

phonon coupling matrix elements and scattering rates to elucidate the mechanisms

that hinder the hole mobility in cBN. Our results suggest that the hole mobility of

cBN is much lower than some higher previously reported experimental values mea-

sured for thin-film samples on conducting substrates, and significantly impedes its

performance in p-type high-power electronic devices.

7.3 Methods

Our first-principles approach is based on density functional theory, many-body

perturbation theory, density functional perturbation theory, and the efficient interpo-

lation of the electron-phonon coupling matrix elements with the maximally localized

Wannier function method. Structural relaxation calculations were carried out in

DFT using the local density approximation (Perdew Zunger parameterization) for

the exchange-correlation potential64,65 within Quantum ESPRESSO66 using a plane-

wave basis and norm-conserving pseudopotentials generated with the fhi98PP code138

for the valence electrons of B, N, and C. The relaxed lattice constants are in good

agreement with experiment (3.615 Å for cBN139 and 3.567 Å for diamond140), being

underestimated by only 1.3% for cBN and 0.18% for diamond. DFT and GW calcu-

lations were carried out with an 8 × 8 × 8 Monkhorst-Pack mesh for the sampling

of the first Brillouin zone (BZ). Quasiparticle band structures were calculated using

the one-shot G0W0 method141 within BerkeleyGW,43 as this method has proven to

produce physically-sound and sufficiently accurate band structures. The DFT eigen-

values are converged to within 1 meV/atom using a plane-wave cutoff of 100 Ry for

cBN and 130 Ry for diamond. Quasiparticle band-structure calculations were per-

formed using dielectric-matrix screening cutoff energies of 50 Ry for BN and 34 Ry
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for diamond. The Hybertsen-Louie generalized plasmon-pole model was employed

for the frequency dependence of the dielectric function,44 and the static remainder

approach73 was used to accelerate the convergence of the summation over unoccupied

states. Quasiparticle band structures were Quasiparticle band structures were inter-

polated using the maximally localized Wannier function method and the Wannier90

code.116 Initial projections for the minimization used the valence s and p orbitals

for boron, nitrogen, and carbon s and p orbitals for diamond. Phonon frequencies

were found using density functional perturbation theory (DFPT)41 on a 8 × 8 × 8

BZ sampling grid. Electron-phonon coupling matrix elements were evaluated using

the maximally localized Wannier function method110 within the Electron-Phonon-

Wannier (EPW) code,49 using a carrier density of 1018 cm−3, and interpolated to fine

electron and phonon BZ sampling meshes up to 88 × 88 × 88 for cBN and 80 × 80 ×

80 for diamond. Polar corrections to the electron-phonon matrix elements were ap-

plied for cBN.111 The phonon-limited carrier mobility was evaluated as a function of

temperature with the iterative Boltzmann Transport Equation method50 for carrier

states within a 0.3 eV energy range from the band extrema for cBN and within 0.35

eV for diamond.

7.4 Band structures and effective masses

We first determine the electronic band structures of cBN and diamond. The quasi-

particle band structures are shown in Figure ??. Both materials have indirect band

gaps, with the valence band maximum (VBM) at Γ, a conduction band minimum

(CBM) at X for cBN, and a CBM along the Γ-X high-symmetry path in diamond.

We find a band gap of 6.80 eV for cBN and 5.66 eV for diamond, in reasonable agree-

ment with experiment (6.4 eV for cBN,125 5.47 eV for diamond124). The differences

are primarily due to the renormalization of the band gap by the electron-phonon in-

teraction,142 which we have not considered in this work. The top cBN valence states
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Figure 7.1: The band structure and atom-projected density of states of (a) cBN and
(b) diamond, shown with their crystal structures. While the band gaps are similar,
the hole effective masses are heavier in cBN. This is because the cBN valence bands
consist primarily of second-nearest-neighbor N orbitals, while the diamond valence
band is formed by nearest-neighbor C orbitals.

have predominantly nitrogen character while the bottommost conduction states have

mostly boron character. Diamond valence and conduction states are equally composed

of the sp3 orbitals of the two carbon atoms. The band structures are qualitatively

similar, but this distinction in the valence character is responsible for the different

hole effective masses, shown in Table 7.3, which has a strong impact on the result-

ing carrier-transport properties. A larger effective mass both reduces the mobility

directly, being inversely proportional to the mobility, and indirectly, as it yields a

larger density of states and thus a shorter carrier scattering time.

7.5 Phonon dispersions

The phonon dispersions of cBN and diamond are presented in Figure 7.2. The

calculated sound velocities and optical-mode frequencies at Γ are in good agreement
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Effective

Mass

cBN Diamond

This work
Previous

theory143
This work Experiment

m∗e,l 1.15 (X → Γ) 1.20 (X → Γ) 1.55 (CBM → Γ/X) 1.41

m∗e,t 0.27 (X → W) 0.26 (X → W) 0.27 (X → W) 0.361

m∗hh

3.00 (Γ→ K)

1.20 (Γ→ L)

0.54 (Γ→ X)

3.16 (Γ→ K)

1.20 (Γ→ L)

0.55 (Γ→ X)

2.52 (Γ→ K)

0.71 (Γ→ L)

0.45 (Γ→ X)

1.082

m∗lh

0.50 (Γ→ K)

1.20 (Γ→ L)

0.45 (Γ→ X)

0.64 (Γ→ K)

1.20 (Γ→ L)

0.54 (Γ→ X)

0.48 (Γ→ K)

0.71 (Γ→ L)

0.29 (Γ→ X)

0.362

m∗so

0.27 (Γ→ K)

0.23 (Γ→ L)

0.45 (Γ→ X)

0.44 (Γ→ K)

0.36 (Γ→ L)

0.54 (Γ→ X)

0.33 (Γ→ K)

0.16 (Γ→ L)

0.29 (Γ→ X)

0.152

Table 7.2: Carrier effective masses of cBN and diamond after GW corrections. Al-
though the electron masses are similar, holes are heavier in cBN.
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Figure 7.2: Phonon dispersions of (a) cBN and (b) diamond. With the exception
of the LO-TO splitting at Γ in polar c-BN, both structures exhibit similar maximum
phonon frequencies, sound velocities, and overall band characteristics.

with experiment (Table ??). Aside from the expected LO-TO splitting present at Γ

in cBN due to the polar crystal structure, the dispersions are qualitatively similar,

with comparable phonon frequencies throughout the BZ.

7.6 Scattering mechanisms and carrier mobility

We next analyze the electron-phonon coupling matrix elements for the topmost

valence and lowest conduction band in both materials. We evaluated the matrix

elements for electrons at the CBM and for holes at the VBM and for phonon wave

vectors along high-symmetry directions of the first BZ (Figs. 7.3 and 7.4). In each

case, this approach includes the states occupied by carriers at room temperature. The

polar optical (LO) mode couples most strongly both to electrons and to holes in cBN,

while in diamond the electrons couple most strongly to the LA mode and the holes
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Property
cBN Diamond

Theory

(this work)
Experiment

Theory

(this work)
Experiment

ωTO(cm−1) 1074 1054144 1296 1332145

ωLO(cm−1) 1305 1305144 1296 1332145

VL,(111) (m/s) 16000 14600*,146 14180*146 17100 19039146

VT,(111) (m/s) 9420 9570*,146 9072*146 11100 12300147

Table 7.3: Our calculated values for the optical phonon frequencies at Γ and the
acoustic sound velocities in cBN and diamond compared to experimental measure-
ments. Asterisks denote polycrystalline samples.

couple most strongly to the TO modes. However, although carriers in cBN are more

strongly coupled to the LO mode, the emission rate of these high-frequency phonons is

limited due to the high carrier energy required, while the absorption rate is limited by

the low optical-phonon Bose-Einstein occupation numbers. Similar arguments apply

to the scattering of carriers by the optical modes in diamond. Thus, optical-phonon

scattering is suppressed and the acoustic modes are expected to be the dominant

carrier-scattering phonon modes in both materials, hence leading to high mobility

values.

The suppression of optical-phonon electron scattering is confirmed by our calcu-

lated phonon-mode-resolved imaginary self-energies, which show that while electron

scattering rates are comparable between cBN and diamond, holes scatter at a rate

that is 1-2 orders of magnitude faster in cBN. The phonon-mode-resolved imaginary

self-energies (i.e., carrier scattering rates) as a function of the carrier energy are pre-

sented in Figure 5. As expected from the discussion in the previous paragraph, the

scattering of thermalized carriers (i.e., within a few kB T from the band extrema)

is primarily due to the acoustic modes. On the other hand, the optical phonons

only become the dominant carrier-scattering modes for carrier at least 150 meV away

from the band extrema, which have enough thermal energy to emit these high-energy
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Figure 7.3: Squared electron-phonon coupling intraband matrix elements for the
conduction band of (a)-(b) cBN and (c)-(d) diamond as a function of the phonon
wave vector along two perpendicular crystallographic directions. The 1/4 fractions
denote a quarter of the distance along the reciprocal-space path to the designated
high-symmetry point. The modes that couple most strongly to electrons are the
polar optical (LO) modes in c-BN and the LA modes in diamond.
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Figure 7.4: Squared electron-phonon coupling matrix elements for the topmost va-
lence band of (a)-(c) cBN and (d)-(f) diamond. The 1/4 fractions denote a quarter of
the distance along the reciprocal-space path to the designated high-symmetry point.
The modes that couple most strongly to holes for small wave vectors q are the polar
optical (LO) modes in c-BN and the TO modes in diamond.
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Figure 7.5: Phonon-mode-resolved imaginary self-energies (i.e., carrier scattering
rates) as a function of the carrier energy for (a) electrons in cBN, (b) electrons in
diamond, (c) holes in cBN, and (d) holes in diamond. The scattering rates of thermal
electrons (i.e., within a few kB T from the band extremum) are comparable for the
two materials, but thermal holes scatter at an 1-2 orders-of-magnitude faster rate in
cBN compared to diamond.

phonons. The similarity of the imaginary self-energies of thermal electrons for the

two materials suggests that the electron mobilities are similar in the two materials.

However, the higher scattering rate of thermal holes in cBN by 1-2 orders of magni-

tude caused by the heavy hole effective mass implies that the hole mobility in cBN

should be substantially lower than in diamond.

The calculated phonon-limited carrier mobilities as a function of temperature are

shown in Figure 6. Electron and hole mobility values with respect to electron- and

phonon-grid densities are converged to within 10 cm2/Vs and 3 cm2/Vs, respectively.

The electron mobility of cBN at room temperature (1610 cm2/Vs) is comparable to
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Figure 7.6: Phonon-limited carrier drift mobilities in cBN and diamond as a function
of temperature. The experimental diamond drift mobilities are from natural diamond
samples (Nava et al.,1 and Reggiani et al.2) Experimental cBN Hall mobilities are
from single crystal (Wang et al.3 and Taniguchi et al.4) and thin films. (Livinov
et al.,5 Liao et al.,6 He et al.,7 and Kojima et al.8) Open symbols denote thin-film
samples. Although the electron mobility is similar in the two materials, the hole
mobility in c-BN is much lower than in diamond. The heavier hole effective mass in
c-BN and the resulting larger density of states increase the hole-scattering rates and
reduce the hole mobility compared to diamond.

that of diamond (1790 cm2/Vs). However, our calculated hole mobility for cBN (80.4

cm2/Vs) is significantly lower than for diamond (1970 cm2/Vs). This difference is

attributable to the aforementioned increased hole scattering rate and overall suggests

that p-type cBN faces limitations to its performance in high power electronic devices.

Our mobility results are in overall good agreement with previous experimental

measurements. The experimental data for the diamond carrier mobilities agree well

with our calculated values. Our calculated room-temperature phonon-limited electron

mobility of cBN (1610 cm2/Vs) is higher than experiment (825 cm2/Vs),3 possibly due

to the presence of imperfections in the experimental sample. However, our calculated

value (80.4 cm2/Vs) for the cBN hole mobility is noticeably lower than the highest

reported experimental values (500 cm2/Vs).5 We attribute this discrepancy to the
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possible conductivity of the silicon substrate used to deposit the characterized cBN

thin films in References 5 and 6 and potentially to the non-optimal material quality in

the measured samples that may yield samples with mixed phases. It is possible that

boron may incorporate into the silicon substrate at high concentrations, making the

resulting silicon sample p-type regardless of any original dopant character. This effect

could explain why Litvinov et al.5 measure the same carrier mobility for both n-type

and p-type cBN thin films on silicon, especially given that their measured acceptor

ionization energy (60 meV) does not match the ionization energy of Be acceptors in

cBN (0.23 ± 0.03 eV).148 Furthermore, the mobility of p-type silicon (480 cm2/Vs)149

is similar to the reported hole mobility values in cBN by Liao et al.6 and by Litvinov

et al.,5 raising the question whether the measured conductivities originate from the

substrate rather than the sample. More recent results, which report significantly lower

hole-mobility values, were obtained from thin films deposited on quartz8 or diamond-

coated silicon substrates,7 or single-crystal samples,4 eliminating the possibility of the

substrate contributing to the measured carrier mobility. Overall, our hole-mobility

data are consistent with the lower reported values for hole mobility in cBN single

crystals or thin films on insulating substrates.

7.7 Impurity scattering

Our final analysis was focused on scattering by neutral impurities and charged

impurities. To account for ionized impurity scattering we use the semi-analytical

Brooks-Herring model.50,150–152 We calculate a density-of-states effective mass of 0.48

me for electrons in diamond, 1.11 me for holes in diamond, 0.69 me for electrons in

cBN, and 1.19 me for holes in cBN, which are used as inputs. We used donor/acceptor

energies of 0.37 eV for boron in diamond, 0.84 eV for phosphorus in diamond, 0.24 eV

for silicon in cBN, and 0.19 eV for beryllium in cBN. Our results are shown in Figure

7.7. Because of the deep acceptor/donor energies, ionized impurities play little role
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in limiting the overall mobility. At low donor/acceptor densities lattice scattering

dominates while at higher compensations, neutral impurity scattering is the major

limitation to the mobility. Our calculated total mobility agrees well with experimental

data for n-type cBN and p-type diamond. The significantly lower experimental values

seen in p-type cBN may be due to material quality or the fact that one of the samples is

polycrystalline. Our estimated carrier mean-free paths based on the phonon-limited

carrier mobilities and effective masses, ranging from 5 nm for holes in cBN to an

order of 100 nm for electrons in cBN and electrons and holes in diamond, are shorter

than the typical grain sizes in polycrystalline samples (∼1 µm), indicating that grain-

boundary scattering is not a limiting factor in reducing the carrier mobility. However,

the presence of grain boundaries may introduce additional trapping centers whose

concentration increases with decreasing grain size (higher grain surface-to-volume

ratio). Such increasing carrier trapping at grain boundaries has been applied to

explain the experimentally reported decreasing mobility with decreasing grain size in

diamond.131 Overall we find that defect scattering has a more pronounced effect in

the hole mobility of diamond than in cBN, primarily because of the deeper acceptor

ionization energies and thus the higher density of non-ionized acceptors that dominate

scattering at high doping concentrations.

7.8 Conclusions

In conclusion, we investigated the phonon-limited carrier mobilies of cBN and

diamond. The electron mobility of cBN at room temperature is comparable to that

of diamond, but the hole mobility for cBN is significantly lower than for diamond.

Our results explain the physics of the lower hole mobility values in cBN, corroborating

the findings of recent experiments. Overall, this work highlights the challenges that

p-type cBN faces in its incorporation into high-power electronic devices.
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Figure 7.7: Carrier mobility at 300K as a function of donor/acceptor density den-
sity in (a) n-type, Si-doped cBN, (b) n-type, P-doped diamond, (c) p-type, Be-doped
cBN, and (d) p-type, B-doped diamond. Dashed and dotted lines show the theoret-
ical contributions from lattice scattering, neutral impurities, and ionized impurities.
Experimental data points are from experimental work by Wang et al.,3 He et al.,7

Taniguchi et al.,4 Pernot et al.,9 Gabrysch et al.,10 Werner et al.,11 Mortet et al.,12

Thonke,13 Tsukioka and Okushi,14 and Volpe et al.15
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CHAPTER VIII

Summary and Future Work

8.1 Summary

In conclusion, we applied first-principles methods to investigate the properties of

2D GaN, III-nitride heterostructures, Cu2O, MgO, three BeO polytypes, cBN, and

diamond. We examined the electronic and optical properties of the 2D materials and

characterized the carrier transport properties of the others. A detailed summary of

findings follows.

Chapter III focused on the functional properties of two-dimensional GaN. We

predicted electronic band gaps, luminescence energies, and excitonic properties of

monolayer and bilayer 2D GaN as a function of strain. We found that monolayer 2D

GaN emits light in the deep-UV range, which is promising for sterilization applica-

tions. The long-lived stable triplet excitons of the monolayer may be promising for

excitonic applications, and uniaxial in-plane strain results in linearly polarized light

emission desirable for display applications. Our results demonstrate that 2D GaN

exhibits an array of desirable functional properties and is a synergistic compound

between established semiconductors and 2D materials.

In Chapter IV, we discussed the properties of hydrogen-passivated, monolayer BN,

AlN, GaN, and InN, as well as their bilayer structures. We treated the polarization

as a degree of freedom in tuning the electronic properties and found that the elec-
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tronic band gap can be tuned over several eVs. Furthermore, the nature of excitons

(interlayer vs. direct) can be controlled by the choice of stacking orientation while

preserving the strong exciton binding energy (∼ 1 eV) and short radiative lifetime

(few ns). Our results demonstrate that the electronic and optical properties of 2D

III-nitride bilayers can be widely controlled over the visible and UV ranges by the

choice of stacking orientation, highlighting their promising applications in excitonic

and optoelectronic devices.

Chapter V was spent examining on the carrier mobility of copper (I) oxide. We

determined that Cu2O has a large room temperature hole mobility (106 cm2/Vs)

compared to some other p-type oxides, and that its mobility is primarily limited by

the polar optical modes. Our work shows the suitability of Cu2O for high-performance

p-type thin-film transistors and other optoelectronic applications.

In Chapter VI, we presented the quasiparticle band structures and carrier mo-

bilities of several UWBG semiconductors, with a comparison of their properties to

those of leading materials. Of MgO and the BeO polytypes investigated, zb-BeO

and rs-BeO have largest electron mobilities at room temperature, 391 cm2/Vs and

272 cm2/Vs, respectively. Hole mobilities of all materials are lower, but comparable.

These results highlight the promising carrier mobility properties UWBG materials

possess once they have been successfully doped, pushing against the notion that ma-

terials with large band gaps (∼ 6 eV) are insulators rather than semiconductors.

Chapter VII details work on the carrier mobility of cubic BN and diamond. The

electron mobility of cBN at room temperature is comparable to that of diamond, but

hole mobility is significantly lower in cBN. This drop in mobility is due to larger hole

scattering rates in cBN and a stronger electron-phonon coupling with acoustic modes.

Overall, this work highlights the challenges that p-type cBN faces in its incorporation

into high-power electronic devices.
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8.2 Future work

The work detailed in this dissertation have expanded on robust research areas,

yet many promising avenues of potential investigation remain. Below are several

suggestions for topics that would benefit from further study.

1. Investigate nonlinear optics in 2D III-nitrides, specifically second-harmonic gen-

eration. Many materials do not exhibit this effect, so many codes are not written

to capture this interaction. Writing a robust code to quantify this effect will

be critical in advancing this area of work. The strong polarization in these

2D materials should allow for significant nonlinear effects though, opening up

possibilities in efficient frequency doubling devices, which have implications in

laser devices, LEDs, and more.

2. Study the electronic and optical properties of III-nitride monolayers and het-

erostructures on a variety of substrates. This work only examined freestanding

structures, but substrate selection will be a major consideration for any device

design, as it will have an impact on the resulting functional properties. One

challenge in this investigation will almost certainly be in employing supercells

to adequately capture strain effects in the case of lattice mismatch. While us-

ing supercells is routine, inaccurate strains along the 2D material and substrate

interface will affect the overall results. However, once these issues are resolved,

it will likely be seen that substrate choice presents a significant opportunity to

further tune the resulting functional properties.

3. Calculate the dopability and carrier mobility of other UWBG semiconductors.

UWBG materials that can hold dopants can have large Baliga figures of merit.

Studying the mobility in these materials will further characterize their propen-

sity for high-power electronics and allow for next-generation devices. However,

one downfall in this line of inquiry is that many UWBG materials cannot be
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sufficiently doped, and the EPW code used in this work does not account for

this fact. It is first necessary to perform a thorough defect study to deter-

mine the overall feasibility. However, discovering more UWBG materials with

high mobility values will allow for devices which can operate at higher powers

without sacrificing performance.

4. Add further functionality to the computational methods, specifically the con-

sideration of ionized impurities in the context of carrier mobility. By allowing

for imperfect materials systems, the methods become more robust. Rather than

representing an upper limit to the mobility, it may be possible to predict val-

ues that are even more accurate to experimental findings. As this work shows,

is certainly possible to apply semi-empirical models to results after the fact,

but combining these methods will allow for results being collected much more

efficiently.
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APPENDIX A

Mechanical Stability, Details of Band Gap and

Exciton Binding Energy Calculations, GW

Corrections to DFT/LDA Band Structures, Wave

Functions as a Function of Strain

A.1 Mechanical stability

To confirm the mechanical stability of the freestanding structures, we performed

phonon calculations to identify any vibrational modes with imaginary (negative) fre-

quencies. Two methods, density functional perturbation theory(DFPT)41 in Quan-

tum Espresso and the frozen phonon (FP) method in Phonopy,69 were used and then

compared. The vibrational frequencies were calculated with DFPT on an 8x8x1 grid

and interpolated throughout the Brillouin zone (Figure A.1). The acoustic sum rule

was applied to the vibrational frequencies at the Gpoint. The frozen phonon calcula-

tions were performed withsupercell sizes up to 3x3x1. No imaginary-frequency modes

were found for any reciprocal-space points near the zone edges, which would signify a

mechanical instability of the structure. We attribute the small negative phonon fre-
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Figure A.1: Phonon dispersion plots of (a) monolayer and (b) bilayer GaN. The low
frequency modes for the monolayer (c) and bilayer (d) are also more clearly shown.
Positive frequencies confirm the mechanical stability of the structures. Small negative
phonon frequencies for the flexural mode near Γ are likely due to finite numerical and
convergence accuracy.

quencies that occur for the flexural mode with the parabolic dispersion curve near the

Γ point to the finite numerical and convergence accuracy of the calculations. These

negative frequencies remained even after a more strict force convergence threshold

was used within the DFPT method (10−3 a.u. to 10−6 a.u). Another possibility

is that wrinkling occurs in freestanding 2D GaN, which could give rise to negative

flexural-mode frequencies near Γ. However, our calculations with these two different

computational methods are not in agreement with each other for the low-frequency

flexural mode, pointing to a numerical origin of the discrepancy. Further studies are

therefore necessary to investigate the flexural mode near Γ and the physical signifi-

cance of any negative frequencies.
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A.2 Details of band gap and exciton binding energy calcula-

tions

GW and BSE calculations were carried out on NKxNKx1 grids in the first Brillouin

zone, where NK=8, 10, 12, and 16. To obtain converged band gaps and exciton

binding energies, we extrapolated the results to the limit of an infinitely dense grid.

The band gap converges as 1
NK2 , while the exciton binding energy converges as 1

NK

(Figure A.2).74 The band-gap values for the 12x12x1 calculation are converged to

within 36 meV for monolayer GaN and 14 meV for bilayer GaN compared to the

extrapolated values. Exciton binding energies converge more slowly with respect to

the Brillouin zone sampling grid. The band-gap values follow a linear trend when

plotted as a function of 1
NK2 , while the exciton binding energy curves follow Equation

A.1 for the monolayer and Equation A.2 for the bilayer when plotted as a function of

NK [Figure A.2]:

Eb,monolayer(eV ) =
0.402317

NK − 6.18145
+ 1.31007 (A.1)

Eb,bilayer(eV ) =
1.40857

NK − 3.59358
+ 0.751893 (A.2)

The converged exciton binding energy values are 1.31 eV for monolayer GaN and 0.75

eV for bilayer GaN.

A.3 GW corrections to LDA band structures

To determine the quasiparticle band structures for monolayer and bilayer GaN,

we constructed scissors-shift operators using linear fits to the GW corrections on the

LDA eigenvalues as a function of the LDA band energies. The data and the fits are

shown in Figure A.3. The quasiparticle energies were obtained from GW results on
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Figure A.2: Band gaps (a) and exciton binding energies (b) of 2D GaN as a function
of Brillouin-zone sampling points (NKxNKx1). The data are extrapolated to an
infinite number of grid points with trend lines given in Equations A.1 and A.2 fitted
to the calculated data.

Figure A.3: Quasiparticle corrections to the LDA eigenenergies as a function of
the LDA energy for (a) monolayer and (b) bilayer GaN. Solid lines represent the
constructed scissors operators.

a 12x12x1 Brillouin zone sampling grid. The quasiparticle corrections to the LDA

band structures simultaneously lower the valence bands and shift up the conduction

bands. Figure A.4 shows the shift in band energies after scissors shift operators are

included into the LDA results.

A.4 Wave functions as a function of strain

Figure A.5 shows the electron and hole wave functions of monolayer and bilayer

GaN as a function of in-plane biaxial strain. The polarization fields within each struc-
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Figure A.4: Band structure of (a) monolayer and (b) bilayer GaN calculated with
LDA and LDA+G0W0. Energies are referenced to the valence band maximum. GW
corrections were added via scissors shift operators. Both materials show a direct band
gap at Γ.

ture spatially separate electrons and holes, and compressive strain further accentuates

the electron-hole separation.

A.5 Electric field determination from polarization

In addition to calculating the electric field strength via the slope of the elec-

trostatic potential, the magnitude was determined by directly evaluating the dipole

moment per unit area of the 2D structures. As the system is effectively non-periodic

in the direction perpendicular to the layers, the expectation value of the positive and

negative charges with respect to the z axis is well defined. The positive charge con-

tributions to the dipole moment can be easily determined from the locations of the

nuclei, while the plane-averaged electron charge density allows the calculation of an

expectation value of z. The polarization is then evaluated via Equation A.3:

~pz =
∑
IonsI

eZIzI − e
∫
cell

zn(z) dz (A.3)

where e is electron charge, Z is the ionic charge of ion I, and n(z) is the plane-

averaged electron charge density. This method yields polarization values of -0.34 e

Å for monolayer GaN and -0.13 e Å for bilayer GaN, confirming the direction of the
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Figure A.5: Electron and hole wave functions squared for (a-c) monolayer and (d-f)
bilayer 2D GaN. The application of compressive biaxial strain further increases the
electron-hole separation, which amplifies the Stark effect and band-gap reduction.

electric field as found by the slope of the electrostatic potential. The magnitude of

the electric field can then be evaluated directly following Equation A.4, assuming a

parallel plate capacitor model,

E =
~pz

dAε0ε
(A.4)

where d is the distance between the net positive charge and net negative charge,

A is the x-y area of the unit cell, ε0 is vacuum permittivity, and ε is the dielectric

screening constant of bulk GaN (9.5).153 The separation distance is taken to be the

z-axis distance between the terminating hydrogen atoms. With this method, the

electric field strength was calculated to be 22 MV/cm for monolayer GaN and 5

MV/cm for bilayer GaN. This confirms the presence of a strong electric field, but the

numerical inaccuracy with respect to the values found from the electrostatic potential

can likely be attributed to several sources. On one hand, the plane distance of the

parallel plate capacitor model is not well defined. On the other hand, the dielectric

constant of bulk GaN may not accurately describe the screening of electric fields in
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Figure A.6: Optical absorbance spectra for (a) monolayer and (b) bilayer GaN with
a 5% uniaxial tensile strain applied along the y-axis. Uniaxial tensile strain along
the y-axis breaks the in-plane symmetry of the crystal, resulting in anisotropic light
absorption and hence polarized light emission along the x-axis.

2D GaN due to the large electric-field values and the strong confinement.

A.6 Optical absorption spectra

To validate the occurrence of polarized light emission, we calculated the optical

absorption spectra of uniaxially strained GaN for the two in-plane light polarizations.

The spectra were calculated using BSE using an 8x8x1 Brillouin-zone sampling grid

and including the top three valence bands and the lowest conduction band. The

resulting spectra are directionally anisotropic, verifying that the emitted light is lin-

early polarized. Our results verify that, for tensile uniaxial strain along the y-axis,the

resulting polarization is along the x-axis.
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