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ABSTRACT

In this dissertation, we study the motion of a relativistic barotropic fluid with a

free boundary. Relativistic barotropic fluids are fluids whose density and pressure

are directly related. Such fluids are used as models in a wide range of scientific

applications from meteorology to astrophysics. We prove that such a system of

equations is locally well-posed, and the unique solution has the same regularity as

the initial data. We use two methods to achieve the result. The first method is to

construct approximate solutions to the equation by mollifying the nonlinear equation

directly in the Lagrangian coordinate, and then passing to the limit so that the

approximate solutions converge to the exact solution. The second method is to

first consider the equation on a linear level, solve the linear equation using Galerkin

approximation, and then solve the nonlinear equation by iterating on the solutions

to these linear equations and passing to the limit.
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CHAPTER I

Introduction

In this dissertation, we consider the motion of a fluid domain in the relativistic

setting. Let (R1+3,m) be the Minkowski space-time with metric

(1.1) m =

 −1 0T3×1

03×1 I3×3

 .

We use mαβ to denote entries in the metric m, and mαβ to denote entries in the

inverse metric m−1.

Throughout the dissertation, we adopt the Einstein summation convention, and

the indices are raised and lowered with respect to the metric. We use Greek letters

α, β etc to denote indices 0, 1, 2, 3, and Latin letters i, j etc to denote indices 1, 2, 3.

We consider a fluid domain Ω ⊂ R1+3, representing a fluid body in the Minkowski

space-time surrounded by vacuum. Before introducing the fluid equation, we define

a few quantities that are associated with the fluid. We have the proper energy

density, denoted by ρ, and the pressure, denoted by p, both of which are non-negative

functions. We also have the number density of particles, denoted by n. Let v be the

fluid velocity, which is a unit-length, future-directed time-like vector field. That is,

mαβv
αvβ = −1, and v0 > 0.

1
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The particle current is defined as

(1.2) Iµ = nvµ.

For a perfect fluid, the energy tensor of matter is given by

(1.3) T µν = (ρ+ p)vµvν + p(m−1)µν .

We know that the motion of the fluid is governed by the conservation laws

∇µT
µν = 0, and(1.4)

∇µI
µ = 0.(1.5)

In this work, we consider a special class of the perfect fluid, namely barotropic

fluid, where the pressure p is a function of the density ρ:

(1.6) p = f(ρ).

Under this setting, the authors in [1] derived a system of equation for the motion of

barotropic fluid, which we present below.

Assume that the function f(ρ) is strictly increasing, so that it has an inverse

ρ = f−1(p). Assume further the following integral converges:

F (p) =

∫ p

0

dp′

p′ + ρ
=

∫ p

0

dp′

p′ + f−1(p′)
.

Let

V := eF · v,

σ := eF ,

G :=
p+ ρ

σ2
.

Remark 1. Here σ determines F , which determines p, which determines ρ through

the function ρ = f−1(p). Hence, G is in fact a function of σ2 alone.
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Observe that since the fluid is surrounded by vacuum, p = 0 on the time-like

boundary of the fluid domain ∂Ω and p ≥ 0 in Ω, so in particular we have that

σ2 ≡ 1 on ∂Ω(1.7)

σ2 ≥ 1 in Ω.(1.8)

Then projecting the conservation laws (1.4)-(1.5) onto the space spanned by v and

the space that is orthogonal to v respectively, we arrive at the following equations of

motion:

V µ∇µV
ν +

1

2
∇νσ2 = 0 in Ω(1.9)

∇µ(G(σ2)V µ) = 0 in Ω.(1.10)

We consider the free-boundary problem, so the time-like boundary ∂Ω evolves ac-

cording to the re-normalized fluid velocity V , and is also part of the unknown. The

boundary conditions, which we call the liquid boundary condition, are that on the

time-like free boundary ∂Ω ⊂ R1+3, σ2 ≡ 1 and the fluid velocity is tangent to the

boundary ∂Ω:

σ2 ≡ 1 on ∂Ω(1.11)

V |∂Ω ∈ T (∂Ω).(1.12)

We assume that the initial fluid domain Ω0 and the initial data (V0, σ
2
0) are given,

and they satisfy the following conditions:

V 0
0 ≥ c0 > 0 in Ω0(1.13)

−(V0)µ(V0)µ = σ2
0 ≥ 1 in Ω0(1.14)

σ2
0 ≡ 1 on ∂Ω0(1.15)

(∇µσ
2
0)(∇µσ2

0) ≥ c0 > 0 on ∂Ω0(1.16)
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for some constant c0 > 0.

From now on, we shall consider the system of equations for the re-normalized

velocity V , and drop the notation v. We prove the local well-posedness of the system

of equations (1.9)-(1.12) with initial conditions satisfying (1.13)-(1.16).

1.1 History of the Problem

One of the earliest work regarding existence of solutions to the relativistic fluid

problem is [9], which models the dynamics of a gaseous star and shows the existence

of local solutions under certain conditions on the initial data. The existence of a

particular class of solutions to the gaseous model was later established in [16]. Other

advances on the well-posedness of the free-boundary relativistic fluid problems are

considerably more recent.

In the case of the gaseous model, an a priori estimate was obtained in [7] and [6].

An existence result on the unbounded domain was obtained in [19].

In the case of the liquid model, [12] proved existence of solutions in two space

dimensions. The author later derived an a priori estimate and an existence result for

a similar kind of liquid model in [14], [13] and [15].

For the case of a three-dimensional free-boundary barotropic fluid, [5] proved an

a priori estimate assuming that the initial data is small. In [10], the authors studied

the free boundary problem with liquid boundary conditions for the hard phase model,

which is an irrotational barotropic fluid for which sound speed is equal to the speed

of light. This corresponds to the case G ≡ 0 in our equation, and furthermore

vorticity is constantly zero. In their work, an priori estimate was established for

general initial data in Sobolev spaces, and a local well-posedness result was shown

using linearization and iteration.
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One of the key ideas in [10] is to reduce the equations (1.9)-(1.12), which is a

fully nonlinear system on a free domain, to a quasilinear system. The authors of [10]

mentioned that they were motivated by the Newtonian counterpart of the problem,

i.e., the water wave problem, which considers the motion of an incompressible and

irrotational ideal fluid in a free domain. It was shown in [20, 21] that for such a

system, taking a material derivative1 Dt of the Euler equations results in a quasilinear

system of equations:

(1.17)

 (D2
t + ã∇ñ)Ṽ = −∇Dtp̃ on ∂Ω̃t

∆Ṽ = 0 in Ω̃t

.

Here Dt := ∂t+ Ṽ ·∇ is the material derivative. The terms ã and ∇Dtp̃ were written

as boundary integrals, and the author proved that (1.17) is a quasilinear equation of

hyperbolic type, and a local well-posedness result was established.

In the more general case with nonzero vorticity, [2] considered the system of

equation

(1.18)



−∇p̃ = ∇iṼ∇iṼ in Ω̃t

−∇Dtp̃ = ∂tp̃∇Ṽ i +G(∇Ṽ ,∇(2)p̃) in Ω̃t

p̃ = 0 on ∂Ω̃t

Dtp̃ = 0 on ∂Ω̃t

,

and replaced the analysis on boundary integrals by the elliptic regularity theory. An

a priori estimate was obtained in [2] assuming that the Taylor sign condition holds:

(1.19) − ∂p̃

∂ñ
≥ c̃0 > 0 on ∂Ω̃t.

Motivated by the aforementioned work in [20, 21] and [2], the authors of [10] took

1The material derivative measures the rate of change of a quantity along the trajectory of a fluid
particle, and is equivalent to ∂t in the Lagrangian coordinate.
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a material derivative

DV = V µ∇µ

of the system (1.9)-(1.12), and established the local well-posedness result after ana-

lyzing the resulting quasilinear system. The authors remarked that although their

quasilinear system looked similar to (1.17), there are a few important differences:

one is that the Laplacian ∆ is replaced by the d’Alembertian �; the second is that

the hyperbolic Dirichlet-to-Neumann map ∇ñ is not obviously seen to be positive;

the third is that it is not clear if the right hand side consists of lower order terms;

and finally it is not obvious in what functional space the Cauchy problem can be

solved. These issues were addressed in [10].

In this dissertation, we will extend the results in [10] and prove an a priori estimate

as well as a well-posedness result for general barotropic fluid with liquid boundary

condition. That is, we work with the general case with non-zero vorticity as well as

non-constant function G. We use two approaches to tackle the problem, which are

summarized in the next section.

1.2 Results and Key Ideas

We prove that the equations (1.9)-(1.12), which govern the motion of a general

free-boundary barotropic fluid with liquid boundary condition, are locally well-posed.

That is, we assume that the initial domain Ω0 as well as the initial data (V0, σ
2
0) are

sufficiently smooth, and prove that there is some time T such that the system of

equations (1.9)-(1.12) has a solution on the time interval [0, T ]. Moreover, the time

T depends only on the initial data, and the fluid domain Ωt as well as the solution

(V, σ2) admit the same regularity as their initial conditions. We will give two proofs

for this result; the first one uses mollification and works well when the initial domain
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Ω0 is unbounded, and the second one is adapted from [10], and address the case

when the domain Ω0 is bounded. We will discuss the ideas after we state the main

Theorem.

Theorem 1.1. Let M = 102. Let Ω0 be the initial domain. If Ω0 is unbounded,

we consider D = R3
+ = {(y1, y2, y3) : y3 ≥ 0}, and if Ω0 is bounded, we consider

D = B = {(y1, y2, y3) : y2
1 + y2

2 + y2
3 ≤ 1}.

Assume that Ω0 is smooth enough such that there is a map Y : Ω0 → D with

(1.20) ∇(p)
x Y ∈ L2(Ω0) ∀p ≤ (M + 2)/2.

Assume further that the initial data (V0, σ
2
0) satisfy the conditions (1.13)-(1.16) and

possess the following regularity:

∇(p)Dk
V0
V0 ∈ L2(Ω0) ∀2p+ k ≤M + 2 and k ≤M + 1(1.21)

Dk
V0
V0 ∈ L2(∂Ω0) ∀k ≤M + 1(1.22)

∇(p)Dk+1
V0

σ2
0 ∈ L2(Ω0) ∀2p+ k ≤M + 2 and k ≤M + 1(1.23)

Dk
V0
σ2

0 ∈ H1
0 (Ω0) ∀k ≤M + 1.(1.24)

Then there exist a time T > 0, a unique domain Ω = ∪t∈[0,T ]Ωt, and a unique solution

(V, σ2), such that the system (1.9)-(1.12) is satisfied in t ∈ [0, T ]. Moreover, the time

T depends only on the initial data, and V, σ2,Ω enjoy the same regularity of their

initial data.

To prove this Theorem, our first step is to borrow the idea of [10] and take material

derivatives of the equations in order to obtain a quasilinear system of equations. The

derivation is shown in Section 1.3.

2The quantity M is the total number of material derivatives that we take in the a priori estimate.
The number 10 carries no special significance; any large integer would work
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After obtaining the quasilinear system of equations, we use two different ap-

proaches to establish the local well-posedness result.

Our first approach is novel, and it enables us to tackle the nonlinear problem

directly. We mollify the nonlinear equation, and study the mollified problem as a

system of ODEs. Note that since we are dealing with a free-boundary problem, the

mollification process is most easily done if the domain is fixed. To this end, we re-

write the quasilinear system in Lagrangian coordinates, so that the domain can be

fixed. The Lagrangian formulation is presented in Section 1.4.

After obtaining the Lagrangian formulation, we use mollification to convert the

nonlinear system into a system of ODEs. One important ingredient in the mollifica-

tion process is that we will fill the vacuum with a virtual flow, so that the mollifiers

are well-defined. This is discussed in Section 1.5.

We will then prove an a priori estimate that is independent of the mollification

parameter, and use the solutions to the mollified equations to construct a solution

to the original equation by passing to the limit.

This method works well for an unbounded fluid domain, and we will use it to

prove Theorem 1.1 for the case when Ω0 is unbounded. In fact, an advantage of this

approach compared to the second is that it tackles the nonlinear equation directly,

and we believe that it will be useful in solving a wide range of free-boundary fluid

problems. However, we encountered some difficulties when extending the result to

a bounded fluid domain. Thus, we will use a second approach to establish the local

well-posedness result for the case of a bounded fluid domain, i.e., Theorem 1.1 for

the case when Ω0 is bounded.

Our second approach is an adaptation from the method in [10] to the general

setting. We consider the equation on a linear level, solve the linear equations using
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Galerkin approximation, and iterate on these solutions to obtain a solution to the

nonlinear equation. Note that our approach is not to linearize the equation around a

solution; rather, we consider the functions that appear in the differential operator, as

well as the functions on the right hand side, as given. We will discuss this approach

in more details in section 1.8.

Summarizing, our goal is to prove Theorem 1.1 for both the unbounded domain

and the bounded domain. Our plan consists of the following steps:

• derive the quasilinear system of equation;

• prove an a priori estimate for the quasilinear system;

• use approach one (i.e. mollification) to obtain the existence of a solution when

the fluid domain Ω0 is unbounded;

• prove the uniqueness of the solution, which shows Theorem 1.1 when Ω0 is

unbounded;

• use approach two (i.e. linearization and Galerkin approximation) to obtain the

existence of a solution when the fluid domain Ω0 is bounded;

• prove the uniqueness of the solution, which proves Theorem 1.1 when Ω0 is

bounded.

Some of the major difficulties in the proof include the following:

1. It is not clear how to mollify the equation, since the fluid boundary ∂Ω is also

part of the unknown. More precisely, let f be a function that is defined in the

domain Ω. Recall that the mollified function Jεf(x) is essentially a weighted

average of the values of f that are close to the point x. Thus, when the point
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x ∈ Ω lies close to the (unknown) boundary ∂Ω, part of the support of Jε may

lie outside of the domain, and it is not clear how to extend f outside of the

fluid domain, so in this case, Jεf is not well-defined. To solve this problem,

we will use the Lagrangian formulation to straighten the boundary and define

a virtual flow outside of the fluid domain, so that the boundary conditions are

maintained, and a mollifier can be defined.

2. When a mollifier is defined, it is not clear if the a priori estimate on the un-

mollified equation still holds for the mollified equation. To tackle this difficulty,

we need to mollify the equation appropriately so that an a priori estimate can

still be obtained.

3. With the addition of the vorticity w and the non-constant function G, it is no

longer clear if the terms involving w and G are lower-order terms. An analysis

is indeed necessary in order to control these terms in the a priori estimate.

In the next section, we achieve the first bullet point; that is, we take a material

derivative to obtain a quasilinear system of equations from (1.9)-(1.12).

1.3 Derivation of the Fluid Equation

As discussed in Section 1.1, the authors of [10] considered the system of equations

(1.9)-(1.12) in the special case where G ≡ 1, the fluid is irrotational, and the sound

speed is equal to the speed of light. In this dissertation, we shall treat the more

general case with a non-zero vorticity, and withG being a sufficiently smooth function

with derivatives satisfying a boundedness condition. We will discuss the details of

the boundedness condition on G when presenting the Lagrangian formulation.

This section, following [10], derives a quasilinear system by equations by taking
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the material derivative of the system (1.9)-(1.12). Recall that V is the re-normalized

fluid velocity, and σ2 = ‖V ‖2.

Throughout the dissertation, we use Ωt ⊂ R1+3 to denote the fluid domain at

time t, and ∂Ω := ∪t∂Ωt to denote the time-like boundary of the fluid domain. That

is, for each t, Ωt is a three-dimensional manifold, and ∂Ωt is its (two-dimensional)

boundary.

1.3.1 Equations for Fluid Velocity V

In what follows, we define the material derivative as

(1.25) DV f := V µ∇µf.

Following the approach in [10], we take a material derivative of equation (1.9) to

obtain

0 = D2
V V

ν +
1

2
V α∇α(∇νσ2)

= D2
V V

ν +
1

2
∇ν(V α∇ασ

2)− 1

2
(∇νV α)(∇ασ

2).(1.26)

Let the space-time normal vector n be the normal vector to ∂Ω under the metric

m. By equation (1.11), we know that ∇σ2 is parallel to n. Let

(1.27) a :=
√

(∇µσ2)(∇µσ2),

then we can write

∇σ2 = −an.

Using this notation, we see that on the boundary ∂Ω, the equation (1.26) can be

written as

D2
V V

ν +
1

2
anα(∇νV α) = D2

V V
ν − 1

2
(∇ασ

2)(∇νV α) = −1

2
∇ν(DV σ

2).
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We would like to write the term anα(∇νV α) as a normal derivative on ∂Ω. To this

end, define the vorticity as

(1.28) wαβ = ∇αV β −∇βV α,

then the preceding equation becomes

D2
V V

ν + anα(∇αV ν) =D2
V V

ν − 1

2
(∇ασ

2)(∇αV ν)(1.29)

=− 1

2
∇ν(DV σ

2) +
1

2
wµα∇ασ

2 on ∂Ω.(1.30)

This is the boundary equation for V .

The interior equation of V is derived from (1.10). By (1.10), we know that

G∇µV
µ + V µ∇µG = 0.(1.31)

Taking one more derivative, we obtain the d’Alembertian operator, so the interior

equation of V is the following wave equation with nonlinearity:

�V ν = ∇µ∇µV ν(1.32)

= ∇µ(∇νV µ + wµν)

= ∇ν

(
−V

µ∇µG

G

)
+∇µw

µν

= −∇ν(DV logG) +∇µw
µν .

Notice that if G ≡ 1 and wαβ ≡ 0, our equations coincide with the equations

derived in [10].

1.3.2 Equations for σ2

Recall that the boundary condition for σ2 is simply σ2 ≡ 1 on ∂Ω.

The interior equation for σ2 follows from (1.9) and (1.31). As with V , the interior

equation of σ2 is also a nonlinear hyperbolic equation, albeit with a different wave
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operator:

∇ν∇νσ2 = −2∇ν(V
µ∇µV

ν)

= −2(∇νV
µ)(∇µV

ν)− 2DV (∇νV
ν)

= −2(∇νV
µ)(∇µV

ν)− 2DV

(
−V

µ∇µG

G

)
= −2(∇νV

µ)(∇µV
ν) + 2D2

V (logG).

Note that since G is a function of σ2, the last term on the right hand side also

involves two derivatives of σ2, and is not a lower order term. So the operator on σ2 is

in fact �σ2− 2D2
V (logG). We will compute what −2D2

V (logG) equates to, in terms

of σ2, when discussing the Lagrangian formulation. Our assumption on the function

G is that the operator �σ2−2D2
V (logG) is a hyperbolic operator on σ2. The precise

condition on G will be presented in Section 1.4.

In summary, the equations for V and σ read:

(1.33)

 D2
V V

µ + 1
2
a · ∇nV

µ = 1
2
wµα∇ασ

2 − 1
2
∇µ(DV σ

2) on ∂Ω

�V µ = ∂αw
αµ − ∂µDV logG in Ω.

(1.34)

 �σ
2 − 2D2

V (logG) = −2∇µV
α∇αV

µ in Ω

σ2 ≡ 1 on ∂Ω.

1.3.3 Equations for DV σ
2

For reasons that will become clear in the energy estimate, we will in fact work

with DV σ
2 rather than σ2. To this end, we shall take one DV derivative of 1.34. We

use

[A,B] = AB −BA

to denote the commutator of operators A and B.
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On the boundary, since V is tangent to ∂Ω, we know that DV σ
2 ≡ 0 on ∂Ω. In

the interior, we take one DV derivative to �σ2 and obtain

�DV σ
2 =[�, DV ]σ2 +DV (�σ2)

=2(∇µV ν)(∇µ∇νσ
2) + 2D3

V (logG)− 2V ν∇ν(∇µV
α∇αV

µ).

The last term, which involves two derivatives of V such as ∇ν∇µV
α, is troublesome

from the energy estimate point of view, since we will see that DV σ
2 and V enjoy

the same regularity, which means that ∇(2)V is not of lower order as compared with

�DV σ
2. We will put this term into a nicer form by commuting V ν∇ν = DV with

∇µ, and use the relation between σ2 and V , namely equation (1.9), to convert DV V

into derivatives of σ2:

�DV σ
2 =2(∇µV ν)(∇µ∇νσ

2) + 2D3
V (logG) + 4(∇µV

ν)(∇νV
α)(∇αV

µ)

− 2(∇µ(DV V
α))(∇αV

µ)− 2(∇α(DV V
µ))(∇µV

α)

=4(∇µV ν)(∇µ∇νσ
2) + 2D3

V (logG) + 4(∇µV
ν)(∇νV

α)(∇αV
µ).

We have converted the terms involving ∇(2)V into ∇(2)σ2, which is easily seen to be

of lower order than ∇(2)DV σ
2. As before, since G involves σ2, the term D3

V logG is

in fact not a lower order term, and we will compute the exact formula for D3
V (logG)

as a function of σ2 when we describe the Lagrangian formulation of the equation.

In summary, the system of equation for DV σ
2 is:

(1.35) �DV σ
2 − 2D3

V (logG) =4(∇µV ν)(∇µ∇νσ
2) + 4(∇µV

ν)(∇νV
α)(∇αV

µ) in Ω

DV σ
2 ≡ 0 on ∂Ω.
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1.3.4 Equations for Vorticity w

Finally, we derive the equation of the vorticity wµν :

DVw
µν = DV (∇µV ν −∇νV µ)

= [DV ,∇µ]V ν − [DV ,∇ν ]V µ +∇µ(DV V
ν)−∇ν(DV V

µ).(1.36)

By equation (1.9),

∇µ(DV V
ν) = −1

2
∇µ∇νσ2 = ∇ν(DV V

µ),

so the last two terms in (1.36) cancel out. We thus have

DVw
µν = [DV ,∇µ]V ν − [DV ,∇ν ]V µ

= −(∇µVα)(∇αV ν) + (∇νVα)(∇αV µ)

= −(∇µVα)wαν − (∇µVα)(∇νV α) + (∇νVα)wαµ + (∇νVα)(∇µVα)

= −(∇µVα)wαν + (∇νVα)wαµ.

Therefore, the equation for the vorticity w is

DVw
µν = −(∇µVα)wαν + (∇νVα)wαµ.(1.37)

1.3.5 Initial Data

We have presented the equations that V, σ2, DV σ
2, w satisfy. The next step in

formulating the Cauchy problem is to specify the initial data.

From the formulation of the problem, we see that the interior equations for u

and Λ are some hyperbolic equations. Hence, we need a set of prescribed initial data

containing V0 and its time derivative. By equation (1.9), we know that

DV V
ν = −1

2
∇νσ2,
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so in fact, prescribing σ2 at t = 0 is equivalent to prescribing the material derivative

V . Thus, the initial data are the initial fluid domain Ω0 and functions (V0, σ
2
0) such

that

(1.38)



V 0
0 ≥ c0 > 0 in Ω0

−(V0)µ(V0)µ = σ2
0 ≥ 1 in Ω0

σ2
0 ≡ 1 on ∂Ω0

(∇µσ
2
0)(∇µσ2

0) ≥ c0 > 0 on ∂Ω0

for some positive constant c0 > 0.

In summary, in this section, we derived the system of equations for V, σ2, DV σ
2, w

in the fluid domain Ω and on the boundary ∂Ω. The goal of this dissertation is to

establish well-posedness of this system of equations. In particular, to establish the

existence of solution, we will appeal to the existence theory of ordinary differential

equations (ODE), which requires us to approximate this system of partial differen-

tial equations so that the equations become an ODE. We will use mollification in

the case of the unbounded domain, and Galerkin approximation in the case of a

bounded domain, to convert the partial differential equations to a system of ODE.

Both mollification and Galerkin approximation work the best when one has a fixed

domain, which motivates us to consider the Lagrangian formulation of the problem,

so that for each time t, the fluid domain Ωt ⊂ R1+3 is transformed into a fixed shape.

This is the goal of the next section.

1.4 Fluid Equation in Lagrangian Coordinates

In this section, we will derive the system of equations for V, σ2, DV σ
2 and w

in the Lagrangian coordinates. The resulting equations will be the same for both

the unbounded and the bounded domain, so we use D to denote the domain of
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the Lagrangian variable. Specifically, when the initial domain Ω0 is unbounded, we

use D = R3
+ := {(y1, y2, y3) : y3 ≥ 0}; when Ω0 is bounded, we use D = B :=

{(y1, y2, y3) : y2
1 + y2

2 + y2
3 ≤ 1}.

We first present the change of coordinate formula. Assume for now that [0, T ] is

some time interval in which V exists, and we write I = [0, T ]. Consider X : I×D →

Ω, defined as the solution of

(1.39) ∂tX
j(t, y) =

V j

V 0
(t,X(t, y)).

Then X(t, ·) : D → Ωt, so X(t, ·)−1 will transform the fluid domain Ωt at time t

into the Lagrangian domain with a fixed shape D. Our next goal is then to apply

the change of coordinate formula induced by X, and write the systems of equations

(1.33), (1.35), (1.37) in terms of the Lagrangian variable y ∈ D.

The pullback Minkowski metric on I ×D is

g =−

(
1−

3∑
i=1

(V i)2

(V 0)2
◦X

)
dt2 + 2

3∑
i,`=1

(
V i

V 0
◦X∂X i

∂y`

)
dtdy`(1.40)

+
3∑

i,k,`=1

∂X i

∂yk
∂X i

∂y`
dykdy`.

We define gαβ as the components of g, gαβ as the components of g−1, and |g| =

− det g.

Using the pullback metric g, the corresponding d’Alembertian (similar to the

Laplace–Beltrami operator, but having a ∂t component) is:

(1.41) �gf :=
1
√
g
∇α

(√
ggαβ∇βf

)
.

The interior equations of V ◦X and (DV σ
2) ◦X will be in terms of this new wave

operator.

We define composition by

f ◦X := f(t,X(t, y)).
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Let u = V ◦ X, Σ2 := σ2 ◦ X, and Λ := (DV σ
2) ◦ X. And by a slight abuse

of notation, we still denote w ◦ X by w. Then, changing variables in (1.33), the

equation of u = V ◦X becomes

(1.42)



(u0)2∂2
t u

ν − 1

2
gαβ(∇αΣ2)∇βu

ν =
1

2
(u0)2wναg

αβ∇β(Σ2)

− 1

2
gαβ∇αX

ν∇βΛ

+ 2u0∂tu
0∂tu

ν

on I × ∂D

�guν = gαβ∇α(Xµ)∇β(wνµ)− gαβ∇αX
ν∇β ((logG)′Λ) in I ×D

.

To simplify the notation, we will define the operator on ∂D as

Pf := (u0)2∂2
t f −

1

2
(∇αΣ2)gαβ∇βf.(1.43)

For the purpose of the energy estimate, we shall work with Λ = (DV σ
2) ◦ X

instead of Σ2. Recall that D3
V (logG) is not a lower order term, so we need to specify

the new wave operator for Λ.

We define the metric h to be:

(1.44) hαβ :=

 g00 − 2(u0)2(logG)′ α, β = 0

gαβ otherwise

.

Upon changing the coordinates, the equation (1.35) becomes

(1.45)



Λ ≡ 0 on I × ∂D

�hΛ =4gαβ(∂βu
ν)∂α

(
mµνg

γδ(∂δX
ν)(∂γΣ

2)
)

+ 4mρνmνκg
αβgγδ(∂δX

κ)(∂αu
ν)(∂βu

µ)(∂γu
ρ)

+ 2∂tu
0(logG)′′Λ2 + u0(logG)(3)Λ3

− ∂tu0(logG)′Λ2 − u0∂tu
0(logG)′∂tΛ

in I ×D
.

In order for the system (1.45) to be hyperbolic, we need to assume further that

h00 < 0 initially. That is, the initial data satisfies

(1.46) −

(
1−

3∑
i=1

(V i)2

(V 0)2

)
− 2(V 0)2 · (logG)′ ≤ −2c < 0 at t = 0
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for some constant c > 0. The control on higher order derivatives on V will then

guarantee that (1.46) is strictly satisfied within some time interval.

Recall that Λ = (DV σ
2) ◦X, so the equation for Σ2 is simply

(1.47) ∂tΣ
2 =

1

u0
Λ in I ×D.

Remark 2. Since Λ ≡ 0 on I × ∂D, in particular we have Σ2 ≡ 1 on I × ∂D, so the

original boundary condition for Σ2 is still satisfied.

Finally, the equation for w is

(1.48) ∂tw
µν =

1

u0

(
−gδγ(∇δX

µ)(∇γuα)wαν + gδγ(∇δX
ν)(∇γuα)wαµ

)
.

In summary, in this section, we applied a change of coordinate formula to convert

the systems of equation (1.33), (1.35), (1.37) into a system in terms of the Lagrangian

variable y, which is defined on a fixed domain y ∈ D. This enables us to either mollify

the equation on D = R3
+ or apply Galerkin approximation on D = B.

We will describe the mollification process on the unbounded domain D = R3
+

in the next section, since the mollifier follows naturally from the Lagrangian formu-

lation. We will postpone the Galerkin approximation process in Chapter IV, since

it involves linearization and the weak formulation, which takes a longer section to

describe in details.

1.5 Mollified Equation in the Unbounded Domain

Recall that our strategy of proof for the unbounded domain is to consider the

mollified equations, so that the system becomes an ODE system. In this section, we

derive the mollified version of equations (1.39)-(1.48).



20

1.5.1 Mollified Operators

To start with, we define the family of mollifiers (Jε)ε>0 to be the frequency cut

off at 1/ε; that is, for f ∈ L2(R3),

Jεf(x) :=

∫
|ξ|<1/ε

f̂(ξ)e2πix·ξ dξ.

We define the mollified operators accordingly:

∇̃0f = ∇0f = ∂tf

∇̃jf = ∂jJεf

∇̃α
g f = gαβ∇̃βf

P εf = (Jεu0)2∂2
t f −

1

2
(∇̃αΣ2) · Jε

(
gαβ∇̃βf

)
�̃gf = ∇̃α

(
gαβ∇̃βf

)
+

1

2
(∇̃α log |g|)gαβ∇βJεf.

It is clear that when Jε = Id, the operators are equal to their un-mollified coun-

terparts. We will describe the mollified equations using these mollified operators,

but before presenting the equations, note that our functions u,Λ etc are defined on

D = R3
+, whereas Jε operates on functions that are defined on R3. Hence, in order

for the mollified operators to make sense, we first need to extend our functions to be

defined on R3. This is our next topic.

1.5.2 Odd and Even Extensions

Before changing all the operators to the mollifier operators above, we need to

extend our functions’ domain from R3
+ to R3, so that the mollification makes sense.

The strategy is to fill the lower half space with a virtual fluid body, whose flow are

compatible with the actual fluid domain on the boundary ∂R3
+. This virtual flow is

defined as follows:

u(t, y1, y2, y3) := u(t, y1, y2,−y3) ∀y3 < 0,(1.49)
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Λ(t, y1, y2, y3) := −Λ(t, y1, y2,−y3) ∀y3 < 0.(1.50)

The preceding equations imply that

X(t, y1, y2, y3) = X(t, y1, y2,−y3) ∀y3 < 0,(1.51)

Σ2(t, y1, y2, y3) = 2− Σ2(t, y1, y2,−y3) ∀y3 < 0.(1.52)

In sum, u is extended to be an even function with respect to y3, and Λ is extended

to be an odd function with respect to y3. Such a distinction is picked so that the

boundary conditions for the virtual and the actual flows are compatible as y3 → 0.

1.5.3 Mollified Equations on the Unbounded Domain

Now we are ready to present the mollified equations. The idea is, on the right hand

side of the equations, we replace the derivative operators with the mollified derivative

operators; on the left hand side, however, the mollification is more delicate, since we

need to mollify appropriately so that the energy estimate would close. The mollified

operators Pε and �̃g are designed so that the energy estimate follows naturally. We

will see some insights on the definition of Pε and �̃g as we discuss the toy models

later.

Note that we leave the ∂2
t derivatives in both Pε and �̃g un-mollified, so that the

system remains an ODE system. The precise formulation of the ODE system will be

specified in Chapter III.

Now we present the mollified equations.

The equation for X is

(1.53) ∂tX
j(t, y) = Jε

Jεu
j

Jεu0
(t, y).
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The metric g is:

g = −

(
1−

3∑
i=1

(Jεu
i)2

(Jεu0)2

)
dt2 + 2

3∑
i,`=1

(
Jεu

i

Jεu0

∂X i

∂y`

)
dtdy` +

3∑
i,k,`=1

(
∂X i

∂yk
∂X i

∂y`

)
dykdy`.

(1.54)

And the metric h is defined as before:

(1.55) hαβ :=

 g00 − 2(u0)2(logG)′ α, β = 0

gαβ otherwise

.

The equations for u become

(1.56)

Pεuν =
1

2
(u0)2wναg

αβ∇̃β(Σ2)

− 1

2
gαβ∇̃αX

ν∇̃βΛ + 2u0∂tu
0∂tu

ν

on I × ∂R3
+

�̃gu
ν =gαβ∇̃α(Xµ)∇̃β(wνµ)

− gαβ(∇̃αX
ν)
(

(logG)′′(∇̃βΣ2)Λ + (logG)′(∇̃βΛ)
) in I × R3

+.

And the equation for Λ is

(1.57)



Λ ≡ 0 on I × ∂R3
+

�̃hΛ =4gαβ(∇̃βu
ν)∇̃α

(
mµνg

γδ(∇̃δX
µ)(∇̃γΣ

2)
)

+ 4mρνmνκg
αβgγδ(∇̃δX

κ)(∇̃αu
ν)(∇̃βu

µ)(∇̃γu
ρ)+

+ 2∂tu
0(logG)′′Λ2 + u0(logG)(3)Λ3

− ∂tu0(logG)′Λ2 − u0∂tu
0(logG)′∂tΛ

in I × R3
+

.

The equation for Σ2 is

(1.58) ∂tΣ
2 = Jε

(
1

Jεu0
JεΛ

)
in I × R3

+.

Remark 3. Observe that Jε is radially symmetric. Since we extend Λ as an odd

function across ∂R3
+, we know that JεΛ ≡ 0 on I × ∂R3

+ as well. Thus the boundary

condition Σ2 ≡ 1 on I × ∂R3
+ is still valid.
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Finally, the equation for w is

(1.59) ∂tw
µν = Jε

[
1

Jεu0

(
−gδγ(∇̃δX

µ)(∇̃γuα)wαν + gγδ(∇̃δX
ν)(∇̃γuα)wαµ

)]
.

1.6 A Toy Model

Before presenting the strategy of the proof, let us consider a toy model, which

motivates the energy that we will use in the a priori estimate.

1.6.1 Toy Model for u

Let us consider the following problem, which is a toy model for the equation of

u:

(1.60)

 −∂
2
t u+∇i∇iJεu = f in R3

+

∂2
t u+ niJε

(
∇̃iu

)
= g on ∂R3

+

.

In what follows, assume that u, f, g are sufficiently smooth and decay fast enough at

infinity.

We multiply the interior equation by ∂tu, integrate on R3
+, and use integration

by parts to obtain

− 1

2

d

dt

∫
R3

+

(∂tu)2 dy

=−
∫
R3

+

∇i∇iJεu · ∂tu dy +

∫
R3

+

(∂tu) · f dy

=

∫
R3

+

∇iJεu · ∂t∇iu dy −
∫
∂R3

+

ni∇iJεu · ∂tu dS +

∫
R3

+

(∂tu) · f dy

=

∫
R3

+

∇iJεu · ∂t∇iJεu dy −
∫
∂R3

+

ni∇iJεu · ∂tu dS +

∫
R3

+

(∂tu) · f dy

=
1

2

d

dt

∫
R3

+

|∇yJεu|2 dy −
∫
∂R3

+

(g − ∂2
t u) · (∂tu) dS +

∫
R3

+

(∂tu) · f dy

=
1

2

d

dt

∫
R3

+

|∇yJεu|2 dy +
1

2

d

dt

∫
∂R3

+

(∂tu)2 dS
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−
∫
∂R3

+

g · (∂tu) dS +

∫
R3

+

(∂tu) · f dy.

Re-organizing the terms, we have

1

2

d

dt

(∫
R3

+

(∂tu)2 + |∇yJεu|2 dy +

∫
∂R3

+

(∂tu)2 dS

)

=

∫
∂R3

+

g · (∂tu) dS −
∫
R3

+

(∂tu) · f dy.

Therefore, if we are able to control ‖g‖L2(∂R3
+) and ‖f‖L2(R3

+), then the a priori es-

timate would follow from Gronwall’s inequality. This is the fundamental building

block of the energy for u. The precise statement of the energy estimate is in Lemma

2.2.

1.6.2 Toy Model for Λ

For Λ, the toy model has a simpler boundary condition:

(1.61)

 −∂
2
t Λ +∇i∇iJεΛ = f in R3

+

Λ = 0 on ∂R3
+

.

Again, we multiply the interior equation by ∂tΛ, integrate on R3
+, and use integration

by parts:

− 1

2

d

dt

∫
R3

+

(∂tΛ)2 dy

=
1

2

d

dt

∫
R3

+

|∇yJεΛ|2 dy −
∫
∂R3

+

ni(∇iJεΛ)(∂tΛ) dS︸ ︷︷ ︸
(∗)

+

∫
R3

+

(∂tΛ) · f dy.

Since ∂tΛ ≡ 0 on ∂R3
+, we know that (∗) ≡ 0, so the energy estimate reads

1

2

d

dt

(∫
R3

+

(∂tΛ)2 dy +

∫
R3

+

|∇yJεΛ|2 dy

)
=−

∫
R3

+

(∂tΛ) · f dy.

However, recall that the boundary equation for u contains a term involving ∇Λ, so

having only
∫
R3

+
(∂tΛ)2 + |∇̃yΛ|2 dy in the energy does not provide sufficient control
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on ‖∇Λ‖L2(∂R3
+). The remedy is to multiply the interior equation not only by ∂tΛ,

but also by a term Qµ∇̃µΛ for some vector field Q. The idea of multiplying by a

vector field to obtain the a priori estimate was also used in, for instance, [4] and [10].

The details are discussed in Lemma 2.4.

Similarly, to control ∇̃u on the boundary, we also need multiply �̃gu by not only

∂tu, but also some Qµ∇̃µu. The details are shown in Lemma 2.5.

1.7 Strategy to Control Lower Order Terms

Judging from the equations (1.56) and (1.57), we see that the right hand sides,

which are supposed to be lower order terms, are roughly of the form

(∇̃p1φ1) · · · (∇̃prφr) · (∇̃pψ),

where ψ ∈ {u,Λ} is the term that contains the most derivatives, and (∇̃piφi) are of

lower order. Our strategy to control this quantity is to bound the lower order terms

in L∞ and highest order term in L2:

‖(∇̃p1φ1) · · · (∇̃prφr) · (∇̃pψ)‖L2 ≤ ‖∇̃p1φ1‖L∞ · · · ‖∇̃prφr‖L∞ · ‖∇̃pψ‖L2 .

From the toy models in the preceding section, however, we are only able to control

L2-based norms of u and Λ, so in order to gain control on L∞ norms, we will use the

Sobolev embedding

‖f‖L∞ . ‖f‖H2 .

However, in the toy models, we can only obtain a bound on the H1 norms of u

and Λ. Since we are working with a free-boundary problem, directly taking spatial

derivatives to the original equations is not feasible. The way to gain H2 control

is to take extra ∂t derivatives of (1.56) and (1.57). This then calls for a trade-

off of derivatives, which roughly says that if u and Λ have sufficiently many time
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derivatives, then they are also somewhat smooth in the spatial sense. The precise

statement is contained in Proposition 2.13, which states that ∂2
t is as “costly” as one

∇y derivative. Intuitively, one can speculate that a result as such is plausible by

looking at the structure of the equation. The boundary equation for u is of the form

(u0)2 · ∂2
t u+ a∇nu = lower order terms,

where, as we will see, u0 and a are strictly positive and bounded from below. This

suggests that ∂2
t is as costly as one ∇ derivative.

One main ingredient that we use when proving this trade-off is the elliptic esti-

mate, which roughly says that

‖∇̃(2)
y f‖L2 . ‖∆f‖L2

with ∆ being the Laplacian (or an elliptic operator in general). If f satisfies the

wave equation, that is,

∆f = �f + ∂2
t f + lower order terms,

then we are able to control ‖f‖H2 if we have bounds on ‖�f‖L2 and ‖∂2
t f‖L2 . This

enables us to obtain control on spatial derivatives from the control on time deriva-

tives, which then allows us to bound the lower order terms in L∞ norm.

1.8 Outline of the Dissertation

Our goal is to establish the local well-posedness result for the system of equations

(1.33)-(1.35). As was discussed in Section 1.1, the free boundary problem for an

irrotational barotropic fluid where the sound speed is equal to the speed of light was

studied in [10], and a well-posedness result was obtained. In this dissertation, we will

establish a local well-posedness result for a general barotropic fluid. We mentioned
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in Section 1.2 that we will present two approaches: the first is to solve the nonlinear

equation directly using mollification, which works well on an unbounded fluid domain;

the second is adapted from [10] to the case of a general barotropic fluid on a bounded

domain.

For the first approach (i.e. mollifying the nonlinear equation directly), we consider

the equations in terms of the Lagrangian variable. We then construct a virtual flow

outside of the fluid domain, mollify the equations to obtain a system of ODEs,

and construct a solution to the original problem from the solutions to the mollified

problem.

This mollification method works well when the original fluid domain is unbounded;

though in the case when the fluid domain is bounded, we encountered some diffi-

culties in constructing the virtual flow and mollifying. Thus, we will instead use

Galerkin method when the fluid domain is bounded, which constitutes our second

approach

In the rest of this section, we will discuss the strategy of our proof in more details.

The idea of our proof is based on an a priori estimate, which is followed by proof of

existence and uniqueness. We will prove the local well-posedness result on both a

bounded domain D = B = {(y1, y2, y3) : y2
1 +y2

2 +y2
3 ≤ 1} and an unbounded domain

D = R3
+ = {(y1, y2, y3) : y3 ≥ 0}. Some of the parallel arguments in the two cases

of obtaining the a priori estimate and the uniqueness of solution are quite similar

and will therefore be omitted for brevity. We will mostly focus on the parts that

are different between the two cases. The proof for existence of solutions, however, is

very different between the two cases.

In Chapter II, we establish an a priori estimate that will be applicable for both the

case of the bounded domain and the case of the unbounded domain. We shall only
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present the proof for the a priori estimate in the unbounded domain though, since

the proof for the case of the bounded domain is completely the same by changing

the domain name from D = R3
+ to D = B. To establish the existence of solution

on D = R3
+, we will use mollification, which requires an a priori estimate for the

mollified equation. Notice, however, that by setting Jε = Id, we may regard the a

priori estimate on the un-mollified equation as a special case for the a priori estimate

on the mollified equation. To avoid such redundancy, we only present the proof of

a priori estimate for the mollified equation on the unbounded domain. That is, our

Theorem 2.1 is the a priori estimate for the mollified equation on D = R3
+. To obtain

the a priori estimate for the un-mollified equation on D = R3
+, one sets Jε = Id; to

obtain the a priori estimate for the un-mollified equation on D = B, one sets Jε = Id

and furthermore D = B in the proof for Theorem 2.1.

Next, Chapter III establishes the existence of solution on the unbounded domain

D = R3
+. We will show that the system of mollified equations is in fact an ODE, with

a Lipschitz continuous right hand side in some suitable space B. We then appeal to

the existence result for ODE to establish existence of solution to the mollified system

of equations. One can then obtain the existence of solution to the un-mollified system

of equations by passing to a subsequence as ε→ 0, and showing convergence in some

lower regularity norm. We will take a sufficiently large number of derivatives so that

the convergence is uniform in space and time, showing that the limit in fact solves

the (un-mollified) system of equations in the strong sense. One can then observe

that the strong limit has to be equal to the weak limit, which shows that the strong

limit enjoys the same regularity as the initial data. This will complete our proof for

the existence of solution in the unbounded domain D = R3
+.

Our next goal is to prove uniqueness of the solution. The same proof works for
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both D = R3
+ and D = B. The idea is to take the difference between two solutions,

and use the a priori estimate to show that the difference vanishes. The details are

presented in the second half of Chapter III. The local well-posedness result on an

unbounded domain, i.e. Theorem 1.1, is thus complete.

For the case of a bounded domain, recall that the a priori estimate was already

proven in Chapter II, and we establish existence using the Galerkin approximation

method. Since Galerkin method calls for a linear equation, we first consider the

linear version of the equations (i.e. where the wave operator �g and �h, as well

as the right hand side terms, are given).3 This enables us to project the equation

onto some finite dimensional subspaces of H1(B), which allows us to, again, appeal

to the existence and uniqueness result of ODEs. We can then pass to the limit as

the dimensions of these subspaces go to infinity to obtain a solution to the linear

equation. The details are discussed in Chapter IV.

Our last step is to show that by iteratively solving the linear equations, the

solutions to the linear problems converge. We will furthermore show that this limit

solves the nonlinear equation, and enjoys the same regularity as the initial data. This

is done in Chapter V. The proof regarding uniqueness is completely identical to the

case of the unbounded domain by changing D = R3
+ to D = B, so we present the

statement and refrain from copying the exact same argument. This will complete

our proof for Theorem 1.1.

3We emphasize again that our approach here is not to linearize around a certain solution. Rather,
we consider the functions that appear in the differential operator as well as on the right hand side
of the equation as given.



CHAPTER II

A priori Estimate on an Unbounded Domain

In this chapter, we prove an a priori estimate, which, in fact, will work for both

D = R3
+ and D = B. As discussed in Chapter I, the result is a critical building block

for the proof for existence and uniqueness, which we achieve using two different

methods for the two types of domains. Specifically, we will use mollification for the

unbounded domain D = R3
+, and will use Galerkin approximation for the bounded

domain D = B. Both cases will share the same a priori estimate. However, the

energy estimate for the mollified equation will take a similar form as the un-mollified

a priori estimate; to minimize redundancy, we shall prove the a priori estimate here

for the mollified equation, bearing in mind that for the case D = B, we set ε = 0, so

that the mollifier equals to the identity operator, and thus all commutators with Jε

automatically vanish.

2.1 Definition of the Energy

The goal of this section is to define the energy for which we perform the a priori

estimate. Let k ≥ 0 be an integer, representing the number of time derivatives

that we take on the variables u and Λ. We define the energy functionals as follows:

Eε
k[u], Eε

≤k[u] will be the functionals for u and its time derivatives, Eε
k, E

ε
≤k will be

30
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the functional for Λ and its time derivatives, and E εk[u,Λ] will be the total energy of

u and Λ as well as their time derivatives.

Eε
k[u](t) =

∫
Dt
|g00| · |∂k+1

t u(t, y)|2 + gij(∂iJε∂
k
t u)(∂jJε∂

k
t u) dy+

+

∫
∂Dt
|g00| · |∂k+1

t u(t, y)|2 dS

Eε
k[Λ](t) = sup

0≤τ≤t

∫
Dτ
|g00| · |∂k+1

t Λ(τ, y)|2 + gij(∂iJε∂
k
t Λ)(∂jJε∂

k
t Λ) dy+

+

∫ t

0

∫
∂Dτ
|g00| · |∂k+1

t Λ(τ, y)|2 + gij(∂iJε∂
k
t Λ)(∂jJε∂

k
t Λ) dSdτ

Eε
≤k[u](t) =

∑
j≤k

Eε
k[u](t)

Eε
≤k[Λ](t) =

∑
j≤k

Eε
j[Λ](t)

E εk[u,Λ](t) =

(
sup

0≤τ≤t
Eε
≤k[u](τ)

)
+ Eε

≤k[Λ](t).

Remark 4. Note that the energy functionals for u and Λ are different, as they satisfy

different boundary conditions. The motivation was discussed in the toy models in

Chapter I. The energy Eε
k[u](t) contains L2 norm of ∂k+1

t u on ∂D, whereas the energy

Eε
k[Λ](t) only contains a weighted L2 norm of ∂k+1

t Λ on ∂D. The difference will be

evident as we prove the basic energy estimates for u and Λ.

Remark 5. The energy E εk depends on not only u and Λ, but also the metric gαβ.

We did not explicitly write out this dependency in order to simplify the notation.

We will show in Chapter III that the equations (1.53)-(1.59) are a system of

ordinary differential equations, and that for each ε > 0, there is a unique solution

(uε,Λε, wε, Xε, (Σ2)ε) on some time interval [0, T ε]. We need to prove that these

solutions exist on some time interval [0, T ] where T > 0 is independent of ε. Then

we extract a solution to the original set of equations and prove regularity. The first

step is to prove the following a priori estimate which is uniform in ε.
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Theorem 2.1. Assume that uε, Λε, (Σ2)ε, wε solve (1.56)-(1.59) on [0, T ]×D, with

E εM [uε,Λε](T ) ≤ C1

for some integer M and constant C1. Denote the energy functional in Sobolev spaces

by

(2.1)

EεM [uε,Λε](T ) := E εM [uε,Λε](T ) + sup
0≤t≤T

∑
(k,p):k+2p≤M+2

∥∥∂kt uε∥∥2

Hp(R3
+t

)
+
∥∥∂kt Λε

∥∥2

Hp(R3
+t

)
.

Then there is some polynomial PM with non-negative coefficients such that if

T > 0 is small (depending only on C1 and EεM(0)), then for all t ∈ [0, T ],

(2.2) EεM [uε,Λε](t) ≤ EεM [uε,Λε](0) +

∫ t

0

PM(EεM [uε,Λε](τ)) dτ

In particular, (by, say, Lemma 2.15), we know that there is a time interval [0, T ],

where T > 0 depends only on the initial data, such that

(2.3) EεM [uε,Λε](T ) . EεM [uε,Λε](0).

Remark 6. We emphasize that the smallness of T only depends on C1 and the initial

data in the preceding Proposition. This enables us to obtain a uniform bound as

ε→ 0.

Remark 7. To obtain a uniform bound, we shall fix an arbitrary ε ≥ 0, and consider

a solution (uε,Λε). To simplify the notation, for the rest of this section we shall drop

the dependence on ε when there is no risk of confusion. For instance, we will write

(uε)0 as u0 to avoid the extra superscript ε.

Remark 8. Let f and g be two functions. We use

f
ε∼ g
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to mean that

‖f − c · g‖L2(Dt) ≤ P (EεM [uε,Λε](t))

for some constant c and some polynomial P with non-negative coefficients. Here c

and P are independent of ε.

We now prove some energy lemmas that will be applicable to generic functions.

These will be the building blocks for showing the a priori estimate in Theorem 2.1.

2.2 Fundamental Energy Lemmas

To obtain the a priori estimate, we first prove a few fundamental Lemmas, which

will be applied to ∂kt u and ∂kt Λ to prove Theorem 2.1.

Lemma 2.2 will be applied to u and ∂kt u.

Lemma 2.2. Assume g00 < 0, and f = f(t, y) is a function such that f ∈ C2([0, T ]×

D) ∩ L∞([0, T ], H2(D)), ∂tf ∈ C1([0, T ] × D) ∩ L∞([0, T ], H1(D)). When D = R3
+,

we extend f in an even manner, that is f(t, y1, y2, y3) := f(t, y1, y2,−y3) for y3 < 0,

so that Jε is well-defined on f . When D = B, we set Jε = Id as usual.

Then we have∫
D
∇̃αf

(
gαβ∇̃βf

)
· a∂tf dy(2.4)

=∂t

[
−1

2

∫
D
a|g00| (∂tf)2 + gij(∂iJεf)(∂jJεf) dy −

∫
∂D
u2

0 (∂tf)2 dS

]
+ 2

∫
∂D
∂tf · Pεf dS + 2

∫
∂D
u0∂tu0 (∂tf)2 dS

−
∫
D
gαβ∇̃βf · [∇̃α, a]∂tf dy +

1

2

∫
D
∂t
(
agαβ

)
∇̃αf∇̃βf dy.

Re-organizing the terms and integrating with respect to time yields

1

2

∫
Dt
a|g00| (∂tf)2 + gij∂iJεf∂jJεf dy +

∫
∂Dt

u2
0 (∂tf)2 dS(2.5)
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=
1

2

∫
D0

a|g00| (∂tf)2 + gij∂iJεf∂jJεf dy +

∫
∂D0

u2
0 (∂tf)2 dS

−
∫ t

0

∫
D
�̃gf · a∂tf dydτ +

1

2

∫ t

0

∫
D

(∇̃α log |g|)gαβ∇̃βJεf dydτ

+ 2

∫ t

0

∫
∂D
∂tf · Pεf dSdτ + 2

∫ t

0

∫
∂D
u0∂tu0 (∂tf)2 dSdτ

−
∫ t

0

∫
D
gαβ∇̃βf · [∇̃α, a]∂tf dydτ +

1

2

∫ t

0

∫
D
∂t
(
agαβ

)
∇̃αf∇̃βf dydτ.

Proof. Let k ∈ C1([0, T ] × R3) ∩ L∞([0, T ], H1(R3)), ∂tk ∈ L∞([0, T ], L2(R3)). We

have1

∫
D
∇̃α

(
gαβ∇̃βf

)
· k dy = ∂t

[∫
D
g0β(∇̃βf)k dy

]
−
∫
D
gαβ∇̃βf∇̃αk dy(2.6)

+

∫
∂D
Jε

(
gjβ∇̃βf

)
knj dS.

Consider k = a∂tf . We further compute each term on the right hand side of (2.6).

The second term on the right hand side is∫
D
gαβ∇̃βf∇̃αk dy

=

∫
D
gαβ∇̃βf [∇̃α, a](∂tf) dy +

∫
D
agαβ∇̃βf∂t∇̃αf dy

=

∫
D
gαβ∇̃βf [∇̃α, a](∂tf) dy +

1

2
∂t

[∫
D
agαβ∇̃βf∇̃αf dy

]
− 1

2

∫
D
∂t(ag

αβ)∇̃αf∇̃βf dy.

The last term on the right hand side of (2.6) is (noting that n0 ≡ 0)∫
∂D
njJε

(
gjβ∇̃βf

)
(a∂tf) dS

=

∫
∂D
anαJε

(
gαβ∇̃βf

)
(∂tf) dS

=

∫
∂D

(∂tf) · 2
(
Pεf − (u0)2∂2

t f
)
dS

=2

∫
∂D

(∂tf)(Pεf) dS − ∂t
[∫

∂D
(u0)2(∂tf)2 dS

]
+

∫
∂D

2u0(∂tu
0)(∂tf)2 dS.

1Recall that ∇̃0 = ∂t and ∇̃j = Jε∇j .
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Substituting back into equation (2.6), we have∫
D
∇̃α

(
gαβ∇̃βf

)
(a∂tf) dy

=∂t

[∫
D
ag0β∇̃βf∂tf dy −

1

2

∫
D
agαβ∇̃αf∇̃βf dy −

∫
∂D

(u0)2(∂tf)2 dS

]
−
∫
D
gαβ∇̃βf [∇̃α, a](∂tf) dy +

1

2

∫
D
∂t(ag

αβ)∇̃αf∇̃βf dy

+ 2

∫
∂D

(∂tf)(Pεf) dS +

∫
∂D

2u0∂tu
0(∂tf)2 dS.

Re-organizing the terms in the square bracket, we obtain equation (2.4). Integrating

with respect to t, and substituting

�̃gf = ∇̃α

(
gαβ∇̃βf

)
+

1

2

(
∇̃α log |g|

)
gαβ∇̃βJεf,

we obtain equation (2.5).

Therefore, we have established the fundamental energy estimate for u and ∂kt u.

The next two Lemmas will be applied to Λ and ∂kt Λ.

Lemma 2.3. Assume g00 < 0, f ∈ C2([0, T ] × D) ∩ L∞([0, T ], H2(D)), ∂tf ∈

C1([0, T ] × D) ∩ L∞([0, T ], H1(D)), and f ≡ 0 on [0, T ] × ∂D. When D = R3
+,

we extend f in an odd manner to the lower half space, that is f(t, y1, y2, y3) :=

−f(t, y1, y2,−y3) for y3 < 0. When D = B, we set Jε = Id as usual.

Then

1

2

∫
Dt

(−g00) · (∂tf)2 + gij∇̃if∇̃jf dy

=
1

2

∫
D0

(−g00) · (∂tf)2 + gij∇̃if∇̃jf dy −
∫ t

0

∫
D
�̃gf · ∂tf dydτ

+
1

2

∫ t

0

∫
D

(
∇̃α log |g|

)
gαβ∇̃βJεf dydτ +

1

2

∫ t

0

∫
D

(∂tg
αβ)∇̃αf∇̃βf dydτ.

Proof. The result follows from multiplying �̃gf by ∂tf and integration by parts.

The computation is similar to the proof of Lemma 2.2, except the treatment of the
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boundary terms. Since f is a constant on the boundary, we know that ∂tf ≡ 0 on

[0, T ]× ∂D, so∫
D
∇̃α

(
gαβ∇̃βf

)
· (∂tf) dy

=∂t

[∫
D
g0β(∇̃βf)(∂tf) dy

]
−
∫
D
gαβ∇̃βf∇̃α(∂tf) dy +

∫
∂D
Jε

(
gjβ∇̃βf

)
(∂tf)nj dS︸ ︷︷ ︸

=0

=∂t

[∫
D
g0β(∇̃βf)(∂tf) dy − 1

2

∫
D
gαβ∇̃βf∇̃αf dy

]
+

1

2

∫
D

(∂tg
αβ)∇̃αf∇̃βf dy.

Integrating with respect to t and substituting the formula for �̃g as before, we obtain

the desired result.

For reasons that will be clear as we complete the energy estimate, the control on

∂kt Λ in the interior is not sufficient. We use the following Lemma to control ∂kt Λ on

the boundary.

Lemma 2.4. Assume g00 < 0, f ∈ C2([0, T ] × D) ∩ L∞([0, T ], H2(D)), ∂tf ∈

C1([0, T ] × D) ∩ L∞([0, T ], H1(D)), and f ≡ 0 on [0, T ] × ∂D. When D = R3
+,

we extend f in an odd manner to the lower half space, that is f(t, y1, y2, y3) :=

−f(t, y1, y2,−y3) for y3 < 0. When D = B, we set Jε = Id as usual.

Then there is a future-directed and time-like vectorfield Q that does not depend

on f , such that

sup
0≤τ≤t

(∫
Dτ
|∂tf |2 + |∇̃yf |2 dy

)
+

∫ t

0

∫
∂D

(
∇̃αfg

αβ∇̃βf
)
dS dτ

.
∫
D0

|∂tf |2 + |∇̃yf |2 dy +

∣∣∣∣∫ t

0

∫
D

(�̃gf)(Qµ∇̃µf) dydτ

∣∣∣∣
+
(
‖∇t,yQ‖2

L∞([0,T ]×D) + ‖∇t,yg‖2
L∞([0,T ]×D)

)
·
∫ t

0

∫
Dτ
|∂tf |2 + |∇̃yf |2 dydτ.

Proof. As in the previous two Lemmas, we integrate by parts to obtain∫
D
∇̃α

(
gαβ∇̃βf

)
(Qµ∇̃µf) dy(2.7)
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=

∫
D
∂t

(
g0β∇̃βf

)
(Qµ∇̃µf) dy +

∫
D
∂jJε

(
gjβ∇̃βf

)
(Qµ∇̃µf) dy

=∂t

∫
D
g0β(∇̃βf)(Qµ∇̃µf) dy −

∫
D

(
gαβ∇̃βf

)
∇̃α(Qµ∇̃µf) dy

+

∫
∂D
njJε

(
gjβ∇̃βf

)
(Qµ∇̃µf) dS.

We shall put the second and third terms on the right hand side into a form that is

easier to work with. For the second term, we have∫
D

(
gαβ∇̃βf

)
∇̃α(Qµ∇̃µf) dy

=

∫
D
gαβ∇̃βf([∇̃α, Q

µ]∇̃µf) dy +

∫
D
gαβ∇̃βfQ

µ∇̃µ∇̃αf dy︸ ︷︷ ︸
(†)

.(2.8)

Now, the term (†) can be further reduced:

(†) =

∫
D
gαβ∇̃βfQ

0∂t∇̃αf dy +

∫
D
gαβ∇̃βfQ

j∂jJε∇̃αf dy

=

∫
D
gαβ∇̃βfQ

0∂t∇̃αf dy +

∫
∂D
njJε(Q

jgαβ∇̃βf)∇̃αf dS

−
∫
D
∂jJε

(
Qjgαβ∇̃βf

)
(∇̃αf) dy

=

∫
D
gαβ∇̃βfQ

0∂t∇̃αf dy +

∫
∂D
njJε(Q

jgαβ∇̃βf)∇̃αf dS

−
∫
D

[∇̃j, Q
jgαβ]∇̃βf∇̃αf dy − (†) +

∫
D
Q0gαβ∂t∇̃βf∇̃αf dy.

That is,

(†) =

∫
D
Q0gαβ∂t∇̃βf∇̃αf dy +

1

2

∫
∂D
njQ

j(gαβ∇̃βf)Jε∇̃αf dS

− 1

2

∫
D

([∇̃j, Q
jgαβ]∇̃βf)∇̃αf dy

=
1

2

∫
∂D
njJε(Q

jgαβ∇̃βf)∇̃αf dS −
1

2

∫
D

([∇̃j, Q
jgαβ]∇̃βf)∇̃αf dy

+
1

2
∂t

∫
D
Q0gαβ∇̃αf∇̃βf dy −

1

2

∫
D
∂t
(
Q0gαβ

)
∇̃αf∇̃βf dy.

Substituting back into equation (2.8) and further equation (2.7), we have∫
D
∇̃α

(
gαβ∇̃βf

)
(Qµ∇̃µf) dy(2.9)
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=∂t

∫
D
g0β(∇̃βf)(Qµ∇̃µf)− 1

2
Q0gαβ∇̃αf∇̃βf︸ ︷︷ ︸

(I)

dy


+

∫
∂D
njJε

(
gjβ∇̃βf

)
(Qµ∇̃µf) dS − 1

2

∫
∂D
njJε(Q

jgαβ∇̃βf)∇̃αf dS︸ ︷︷ ︸
(II)

−
∫
D
gαβ∇̃βf([∇̃α, Q

µ]∇̃µf) dy +
1

2

∫
D

([∇̃j, Q
jgαβ]∇̃βf)∇̃αf dy

+
1

2

∫
D
∂t
(
Q0gαβ

)
∇̃αf∇̃βf dy.

The commutators are, as we will see, of lower order, so we shall focus on the main

terms (I) and (II). We will see that (I) is controlled by ‖∇̃f‖L2(D), so now we massage

(II) into a nicer form.

Since f ≡ const on I × ∂D, we know

nα =
1

|∇̃f |
∇̃αf, and thus Qµ∇̃µf = (Qµnµ)|∇̃f |.

Hence, the first term in (II) can be written as∫
∂D
njJε

(
gjβ∇̃βf

)
(Qµ∇̃µf) dS =

∫
∂D
njJε

(
gjβ∇̃βf

)
(Qµnµ)|∇̃f | dS

=

∫
∂D

(∇̃αf)Jε

(
gαβ∇̃βf

)
(nµQ

µ) dS.

For the same reason, the second term in (II) can be written as:∫
∂D
njJε(Q

jgαβ∇̃βf)∇̃αf dS

=

∫
∂D
nj([Jε, Q

j](gαβ∇̃βf))∇̃αf dS +

∫
∂D

(nµQ
µ)Jε

(
gαβ∇̃βf

)
(∇̃αf) dS.

Summing up the two preceding equations, we obtain

(II) =
1

2

∫
∂D

(∇̃αf)Jε

(
gαβ∇̃βf

)
(nµQ

µ) dS − 1

2

∫
∂D
nj([Jε, Q

j](gαβ∇̃βf))∇̃αf dS

=
1

2

∫
∂D

(
∇̃αfg

αβ∇̃βf
)

(nµQ
µ) dS +

1

2

∫
∂D

(∇̃αf)
(

[Jε, g
αβ]∇̃βf

)
(nµQ

µ) dS
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− 1

2

∫
∂D
nj([Jε, Q

j](gαβ∇̃βf))∇̃αf dS.

Next, we integrate (2.9) with respect to time, and rearrange the terms to obtain

∫
Dt−D0

(I) dy +
1

2

∫ t

0

∫
∂D

(
∇̃αfg

αβ∇̃βf
)

(nµQ
µ) dS dτ︸ ︷︷ ︸

(∗)

(2.10)

=−
∫ t

0

∫
Dτ

(�̃gf)(Qµ∇̃µf) dydτ +
1

2

∫ t

0

∫
Dτ

(
∇̃α log |g|

)
gαβ∇̃βf dydτ

− 1

2

∫ t

0

∫
∂D

(∇̃αf)
(

[Jε, g
αβ]∇̃βf

)
(nµQ

µ) dSdτ

+
1

2

∫ t

0

∫
∂D
nj([Jε, Q

j](gαβ∇̃βf))∇̃αf dSdτ

−
∫ t

0

∫
Dτ
gαβ∇̃βf([∇̃α, Q

µ]∇̃µf) dydτ − 1

2

∫ t

0

∫
D

([∇̃j, Q
jgαβ]∇̃βf)∇̃αf dydτ

− 1

2

∫ t

0

∫
D
∂t
(
Q0gαβ

)
∇̃αf∇̃βf dydτ.

We choose a vector field Q such that Qµnµ ≡ 1 on [0, T ]×∂D and ∇Q ∈ L∞([0, T ]×

D)2. For the two terms on the left hand side of the preceding equation, we will add∫
Dt−D0

(I) dy to the energy in Lemma 2.4; the term (∗) is the main term, and we seek

to control the remaining terms with (∗) and
∫
Dτ |∂tf |

2 + |∇̃yf |2 dy.

The commutators on the boundary can be estimated using interior H1-norms:∫ t

0

∣∣∣∣∫
∂D

(∇̃αf)
(

[Jε, g
αβ]∇̃βf

)
(nµQ

µ) dS

∣∣∣∣ dτ
≤δ
∫ t

0

∫
∂D
|∇̃αf |2 dSdτ +

1

δ

∫ t

0

∫
∂D
|[Jε, gαβ]∇̃βf |2 dSdτ

.δ · (∗) +
1

δ

∫ t

0

∥∥∥[Jε, g
αβ]∇̃f

∥∥∥2

H1(Dτ )
dτ

2In the unbounded domain D = R3
+, the space-time normal vector is n = (0, 0, 0,−1), so the Q

vectorfield can be defined by, for instance, Q = (1, 0, 0,−1). In the case of the bounded domain
D = B, a constant Q will not satisfy our requirement, but the same condition can be achieved by
setting, for instance, Q(t, y1, y2, y3) = (1, (y21 + y22 + y23)y1, (y

2
1 + y22 + y23)y2, (y

2
1 + y22 + y23)y3). In

either case, ‖Q‖L∞([0,T ]×D) and ‖∇Q‖L∞([0,T ]×D) are finite and are independent of all variables
and functions that we are concerned with.
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.δ · (∗) +
1

δ

(
‖∇g‖2

L∞([0,T ]×D) ·
∫ t

0

‖∇̃f‖2
L2(Dτ ) dτ

)
,

and similarly ∫ t

0

∫
∂D
nj([Jε, Q

j](gαβ∇̃βf))∇̃αf dSdτ

.δ · (∗) +
1

δ

(
‖∇Q‖2

L∞([0,T ]×D) ·
∫ t

0

‖∇̃f‖2
L2(Dτ ) dτ

)
.

By choosing a constant δ > 0 small enough, we see that δ · (∗) can be absorbed into

the left hand side of equation (2.10).

The interior commutators can be controlled using Cauchy-Schwarz Inequality:∣∣∣∣∫ t

0

∫
Dτ
gαβ∇̃βf([∇̃α, Q

µ]∇̃µf) dydτ

∣∣∣∣+

∣∣∣∣12
∫ t

0

∫
D

([∇̃j, Q
jgαβ]∇̃βf)∇̃αf dydτ

∣∣∣∣
+

∣∣∣∣12
∫ t

0

∫
D
∂t
(
Q0gαβ

)
∇̃αf∇̃βf dydτ

∣∣∣∣
.
(
‖∇t,yQ‖2

L∞([0,T ]×D) + ‖∇t,yg‖2
L∞([0,T ]×D)

)
·
∫ t

0

∫
Dτ
|∂tf |2 + |∇̃yf |2 dydτ.

Moreover, by Cauchy-Schwarz, we see that (I) can be controlled by the main

energy in Lemma 2.4:∣∣∣∣∫
Dt

(I) dy

∣∣∣∣ . (‖g‖L∞([0,T ]×D) + ‖Q‖L∞([0,T ]×D)

)
·
∫
Dt
|∂tf |2 + |∇̃yf |2 dy.

Therefore, adding (2.10) to a sufficiently large constant times
∫
Dt |∂tf |

2 + |∇̃yf |2 dy,

and using Lemma (2.4), we have

sup
0≤τ≤t

(∫
Dτ
|∂tf |2 + |∇̃yf |2 dy

)
+

∫ t

0

∫
∂D

(
∇̃αfg

αβ∇̃βf
)
dS dτ

.
∫
D0

|∂tf |2 + |∇̃yf |2 dy +

∣∣∣∣∫ t

0

∫
D

(�̃gf)(Qµ∇̃µf) dydτ

∣∣∣∣
+
(
‖∇t,yQ‖2

L∞([0,T ]×D) + ‖∇t,yg‖2
L∞([0,T ]×D)

)
·
∫ t

0

∫
Dτ
|∂tf |2 + |∇̃yf |2 dydτ.

This is the desired estimate.
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The next Lemma is very similar to Lemma 2.4, but applies to functions that are

not necessarily equal to a constant on ∂D. We will apply this Lemma on ∂kt u. The

purpose is to estimate the time-weighted L2(∂D) norm by norms in Lemma 2.2.

Lemma 2.5. Assume g00 < 0, f ∈ C2([0, T ] × D) ∩ L∞([0, T ], H2(D)), ∂tf ∈

C1([0, T ]×D)∩L∞([0, T ], H1(D)). When D = R3
+, we extend f in an even manner

to the lower half space, that is f(t, y1, y2, y3) := f(t, y1, y2,−y3) for y3 < 0. When

D = B, we set Jε = Id as usual.

Then there is a future-directed and time-like vectorfield Q that does not depend

on f , such that

sup
0≤τ≤t

(∫
Dτ
|∂tf |2 + |∇̃yf |2 dy

)
+

∫ t

0

∫
∂D

(
∇̃αfg

αβ∇̃βf
)
dS dτ

.
∫
D0

|∂tf |2 + |∇̃yf |2 dy

+

∣∣∣∣∫ t

0

∫
D

(�̃gf)(Qµ∇̃µf) dydτ

∣∣∣∣+

∫ t

0

∫
∂D
|∂tf |2 + |∇̃nf |2 dSdτ

+
(
‖∇t,y(∇̃Σ2/a)‖2

L∞([0,T ]×D) + ‖∇t,yg‖2
L∞([0,T ]×D)

)
·
∫ t

0

∫
Dτ
|∂tf |2 + |∇̃yf |2 dydτ,

where ∇̃nf = nαJε(g
αβ∇̃βf). In particular, one may choose Qµ = Kδµ=1+gµν∇̃νΣ

2/a

for some large constant K.

Proof. The proof is very similar to that of Lemma 2.4. The only differences are the

treatment of the terms (I) and (II) in equation (2.9). We will omit the derivation

before equation (2.9) since it completely overlaps with the proof of the previous

Lemma, and focus on the analysis of (I) and (II).

Let K > 0 be a large constant to be specified later. We set Qµ = Kδµ=1 +

gµν∇̃νΣ
2/a, so that Qµ = Kδµ=1 + gµνnν on ∂D.

Term (I). Recall that (I) was defined as:

(I) = g0β(∇̃βf)(Qµ∇̃µf)− 1

2
Q0gαβ∇̃αf∇̃βf.
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We show that in fact, using our definition of Q, (I) is approximately 1
2
K(g00(∂tf)2−

gij∇̃if∇̃jf):

(I) =g0β(∇̃βf)(Qµ∇̃µf)− 1

2
Q0gαβ∇̃αf∇̃βf

=
1

2
g00Q0(∂tf)2 +

(
g0iQj − 1

2
Q0gij

)
∇̃if∇̃jf + g00Qj(∂tf)(∇̃jf)

=
K

2

[
g00(∂tf)2 − gij(∇̃if)(∇̃jf)

]
+ g0ν(∇̃νΣ

2/a)g00 · (∂tf)2 − g00Qj(∂tf)(∇̃jf)

−
(

1

2
g0µ(∇̃νΣ

2/a)gij − g0igνj(∇̃νΣ
2/a)

)
∇̃if∇̃jf.

Since g and ∇̃Σ2/a are bounded, we see that indeed, if K is large, then the first term

on the right hand side will be the dominant term. To be more precise, we have∣∣∣∣∣∣∣∣(I)−
K

2

[
g00(∂tf)2 − gij(∇̃if)(∇̃jf)

]
︸ ︷︷ ︸

:=R1

∣∣∣∣∣∣∣∣ ≤
∣∣∣∣K8 [g00(∂tf)2 − gij(∇̃if)(∇̃jf)

]∣∣∣∣ .(2.11)

Term (II). Recall that (II) was:∫
∂D
njJε

(
gjβ∇̃βf

)
(Qµ∇̃µf) dS − 1

2

∫
∂D
njJε(Q

jgαβ∇̃βf)∇̃αf dS.

Then, the first term in (II) can be written as∫
∂D
njJε

(
gjβ∇̃βf

)
(Qµ∇̃µf) dS

=

∫
∂D
K(∇̃nf)(∂tf) dS −

∫
∂D

(∇̃nf)Jε

(
gµνnν∇̃µf

)
dS

=

∫
∂D
K(∇̃nf)(∂tf) dS −

∫
∂D

(∇̃nf)nνJε

(
gµν∇̃µf

)
dS

−
∫
∂D

(∇̃nf)
(

[Jε, ∇̃νΣ
2/a]gµν∇̃µf

)
dS

=

∫
∂D
K(∇̃nf)(∂tf) dS −

∫
∂D

(∇̃nf)2 dS −
∫
∂D

(∇̃nf)
(

[Jε, ∇̃νΣ
2/a]gµν∇̃µf

)
dS.

We compute

njQ
j = nj(g

iνnν) = nµg
µνnν =: |n|2g.
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Using this notation, the second term in (II) can be written as

− 1

2

∫
∂D
njJε

(
Qjgαβ∇̃βf

)
∇̃αf dS

=− 1

2

∫
∂D
njJε

(
Qjgαβ∇̃βf

)
Jε

(
∇̃αf

)
dS

=− 1

2

∫
∂D
nj

(
[Jε, Q

j]gαβ∇̃βf
)
∇̃αf dS −

1

2

∫
∂D
njQ

jJε

(
gαβ∇̃βf

)
(∇̃αJεf) dS

=− 1

2

∫
∂D
nj

(
[Jε, Q

j]gαβ∇̃βf
)
∇̃αf dS −

1

2

∫
∂D
|n|2g

(
[Jε, g

αβ]∇̃βf
)

(∇̃αJεf) dS

− 1

2

∫
∂D
|n|2ggαβ(∇̃βJεf)(∇̃αJεf) dS

=− 1

2

∫
∂D
nj

(
[Jε, Q

j]gαβ∇̃βf
)
∇̃αf dS −

1

2

∫
∂D
|n|2g

(
[Jε, g

αβ]∇̃βf
)

(∇̃αJεf) dS

− 1

2

∫
∂D
|n|2gg00(∂tJεf)2 dS −

∫
∂D
|n|2gg0j(∂tJεf)(∇̃jf) dS

− 1

2

∫
∂D
|n|2ggij(∇̃if)(∇̃jf) dS.

Adding up the two terms of II, we have

(II) =

∫
∂D
K(∇̃nf)(∂tf) dS −

∫
∂D

(∇̃nf)2 dS − 1

2

∫
∂D
|n|2ggij(∇̃if)(∇̃jf) dS

− 1

2

∫
∂D
|n|2gg00(∂tJεf)2 dS −

∫
∂D
|n|2gg0j(∂tJεf)(∇̃jf) dS

−
∫
∂D

(∇̃nf)
(

[Jε, ∇̃νΣ
2/a]gµν∇̃µf

)
dS

− 1

2

∫
∂D
nj

(
[Jε, Q

j]gαβ∇̃βf
)
∇̃αf dS +

1

2

∫
∂D
|n|2g

(
[Jε, g

αβ]∇̃βf
)

(∇̃αJεf) dS.

Then, integrating (2.9) with respect to time, we obtain

∫
Dt

K

2

[
−g00(∂tf)2 + gij(∇̃if)(∇̃jf)

]
−R1 dy +

1

2

∫ t

0

∫
∂D
|n|2ggij∇̃if∇̃jf dSdτ

(2.12)

=

∫
D0

K

2

[
−g00(∂tf)2 + gij(∇̃if)(∇̃jf)

]
−R1 dy

+

∫ t

0

∫
∂D
K(∇̃nf)(∂tf)− (∇̃nf)2 dSdτ − 1

2

∫ t

0

∫
∂D
|n|2gg00(∂tJεf)2 dSdτ

−
∫ t

0

∫
∂D
|n|2gg0j(∂tJεf)(∇̃jf) dSdτ −

∫ t

0

∫
∂D

(∇̃nf)
(

[Jε, ∇̃νΣ
2/a]gµν∇̃µf

)
dSdτ



44

− 1

2

∫ t

0

∫
∂D
nj

(
[Jε, Q

j]gαβ∇̃βf
)
∇̃αf dSdτ

+
1

2

∫ t

0

∫
∂D
|n|2g

(
[Jε, g

αβ]∇̃βf
)

(∇̃αJεf) dSdτ

−
∫ t

0

∫
D
gαβ∇̃βf([∇̃α, Q

µ]∇̃µf) dydτ +
1

2

∫ t

0

∫
D

([∇̃j, Q
jgαβ]∇̃βf)∇̃αf dydτ

+
1

2

∫ t

0

∫
D
∂t
(
Q0gαβ

)
∇̃αf∇̃βf dydτ.

The commutators can be estimated as in Lemma 2.4. The only terms that are

different from Lemma 2.4 are R1 and K(∇̃nf)(∂tf)− (∇̃nf)2. We are able to control

R1 by equation (2.11), and the term K(∇̃nf)(∂tf)− (∇̃nf)2 using Cauchy-Schwarz

Inequality. Therefore, overall, we have obtained the claimed result.

We also have the elliptic estimate (proven, for instance, in [18]):

Lemma 2.6. Let f be a compactly supported function in D. Since

∆̃kf := ∇̃i

(
kij(∇̃jf)

)
is an elliptic operator for k ∈ {g, h}, we have the following elliptic estimates:

‖∇̃(2)
y f‖L2(D) . ‖∆̃kf‖L2(D) + ‖Jεf‖H3/2(∂D)

‖∇̃(2)
y f‖L2(D) . ‖∆̃kf‖L2(D) + ‖∇nJεf‖H1/2(∂D).

2.3 Higher Order Equations

Recall that in Chapter I, we mentioned that the strategy to obtain L∞ controls

on the lower order terms was to use Sobolev embedding, which calls for an energy

estimate on the terms ∂kt u and ∂kt Λ. To use the fundamental energy Lemmas in the

previous section, we compute Pε∂kt u, �̃g∂kt u and �̃h∂kt Λ in this section.

To derive the higher order equations, we first note a few commutator identities.

Lemma 2.7. We have the following commutator identities.
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1. The following are true:

[∂µ, f ]θ =(∂µf) · θ

[∂µ, ∇̃α
g ]θ =∂µg

αβ · ∇̃βθ

[∂µ, �̃g]θ =∇̃α

(
∂µg

αβ∇̃βθ
)

+
1

2
∂µ

(
∇̃α log |g| · gαβ

)
· ∇̃βθ

[∂µ,Pε]θ =∂µ((Jεu
0)2)∂2

t θ −
1

2

(
∇̃α∂µΣ2

)
Jε

(
gαβ∇̃βJεθ

)
− 1

2

(
∇̃αΣ2

)
Jε

(
∂µg

αβ · ∇̃βθ
)
.

2. For k ≥ 1, [∂kt , �̃g]θ is a linear combination of terms of the forms:

(a) Jε

(
(∇p1∂k1

t g)(∇̃p2+1∂k2
t θ)

)
where k1 +k2 = k, p1 +p2 = 1, and k2 ≤ k−1.

(b) (∂t
p1∂k1

t g)(∇̃∂p2+k2
t θ) where k1 + k2 = k, p1 + p2 = 1, and k2 ≤ k − 1.

(c)
(
∂k1
t (∇̃α log |g| · gαβ)

)(
∇̃β∂

k2
t Jεθ

)
where k1 + k2 = k and k1 ≥ 1.

3. For k ≥ 1, [∂kt ,Pε]θ is a linear combination of terms of the forms:

(a) (∂k1
t (Jεu

0)2)(∂2
t ∂

k2
t θ) where k1 + k2 = k and k1 ≥ 1.

(b)
(
∇̃α∂

k1
t Σ2

)
Jε

(
∂k2
t g

αβ · ∇̃β∂
k3
t θ
)

where k1 + k2 + k3 = k and k3 ≤ k − 1.

Proof. We prove each claim.

1. These are obtained via a direct calculation.

2. We prove by induction on k. When k = 1, by the preceding point, we have

[∂t, �̃g]θ = ∇̃α

(
∂tg

αβ∇̃βθ
)

+
1

2
∂t

(
∇̃α log |g| · gαβ

)
· ∇̃βJεθ

= ∇yJε

(
(∂tg)∇̃βθ

)
+ ∂t

(
(∂tg)∇̃βθ

)
+

1

2
∂t

(
∇̃α log |g| · gαβ

)
· ∇̃βJεθ.

These correspond to terms of types (a), (b) and (c) respectively in our claim

for k = 1. For higher order derivatives, we note

[∂k+1
t , �̃g]θ = ∂t

(
[∂kt , �̃g]θ

)
+ [∂t, �̃g](∂

k
t θ).
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Using the formula for k = 1, we see that [∂k+1
t , �̃g]θ takes the desired form.

3. Again, we use induction on k. When k = 1, we have

[∂t,Pε]θ =∂t((Jεu
0)2)∂2

t θ −
1

2

(
∇̃α∂tΣ

2
)
Jε

(
gαβ∇̃βθ

)
− 1

2

(
∇̃αΣ2

)
Jε

(
∂tg

αβ · ∇̃βθ
)
.

The first term on the right hand side constitutes (a) in our claim, and the

second and third terms make (b) in our claim. For higher order derivatives,

again we have

[∂k+1
t ,Pε]θ = ∂t

(
[∂kt ,Pε]θ

)
+ [∂t,Pε](∂kt θ).

and our claim follows from induction.

Using these identities, we are able to derive higher order equations for u and Λ.

In what follows, since only the number of derivatives matters in closing the energy

estimate, we shall suppress the indices (e.g. writing uν as u) to simplify the notations.

In particular, the notation “g” represents the entries in gαβ.

Lemma 2.8. For any k ≥ 0,

(2.13) Pε∂kt u = F ε
k

where F ε
k is a linear combination of terms of the forms

1. (∂k1
t (Jεu

0)2)(∂2
t ∂

k2
t u) where k1 + k2 = k and k1 ≥ 1.

2.
(
∇̃α∂

k1
t Σ2

)
Jε

(
∂k2
t g

αβ · ∇̃β∂
k3
t u
)

where k1 + k2 + k3 = k and k3 ≤ k − 1.

3. (∂k1
t (u0)2)(∂k2

t w)(∂k3
t g)(∇̃∂k4

t Σ2) where k1 + k2 + k3 + k4 = k.
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4. (∂k1
t g)(∇̃∂k2

t X)(∇̃∂k3
t Λ) where k1 + k2 + k3 = k.

5. (∂k1+1
t (u0)2)(∂k2+1

t u) where k1 + k2 = k.

Proof. We write

Pε∂kt u = −[∂kt ,Pε]u+ ∂kt (F ε
0),

where F ε
0 is given in equation (1.56). Terms of the forms 1 and 2 come from [∂kt ,Pε]u

according to Lemma 2.7. Terms of the form 3, 4, 5 come from taking ∂kt to the right

hand side of F ε
0 .

Lemma 2.9. For any k ≥ 0,

(2.14) �̃g∂
k
t u = Gε

k

where Gε
k is a linear combination of terms of the forms

1. Jε

(
(∇p1∂k1

t g)(∇̃p2+1∂k2
t u)

)
where k1 + k2 = k, p1 + p2 = 1, and k2 ≤ k − 1.

2. (∂t
p1∂k1

t g)(∇̃∂p2+k2
t u) where k1 + k2 = k, p1 + p2 = 1, and k2 ≤ k − 1.

3.
(
∂k1
t (∇̃α log |g| · gαβ)

)(
∇̃βJε∂

k2
t u
)

where k1 + k2 = k and k1 ≥ 1.

4. (∂k1
t g)(∇̃∂k2

t X)(∇̃∂k3
t w) where k1 + k2 + k3 = k.

5. (∂k1
t g)(∇̃∂k2

t X)(logG)(p)(∂k3
t Σ2) · · · (∂kmt Σ2)(∇̃∂km+1

t Σ2)(∂
km+2

t Λ) where p ≤ k+

2 and k1 + · · ·+ km+2 = k.

6. (∂k1
t g)(∇̃∂k2

t X)(logG)(p)(∂k3
t Σ2) · · · (∂kmt Σ2)(∇̃∂km+1

t Λ) where p ≤ k+1 and k1+

· · ·+ km+1 = k.

Proof. Similar as the previous Lemma, terms of the forms 1, 2, 3 come from [∂kt , �̃g]u.

Terms of the forms 4, 5, 6 come from taking ∂kt to the formula of Gε
0.
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Lemma 2.10. For any k ≥ 0,

(2.15) �̃h∂
k
t Λ = Hε

k

where Hε
k is a linear combination of terms of the forms

1. Jε

(
(∇p1∂k1

t h)(∇̃p2+1∂k2
t Λ)

)
where k1 + k2 = k, p1 + p2 = 1, and k2 ≤ k − 1.

2. (∂t
p1∂k1

t h)(∇̃∂p2+k2
t Λ) where k1 + k2 = k, p1 + p2 = 1, and k2 ≤ k − 1.

3.
(
∂k1
t (∇̃α log |h| · hαβ)

)(
∇̃βJε∂

k2
t Λ
)

where k1 + k2 = k and k1 ≥ 1.

4. (∂k1
t g)(∇̃∂k2

t u)(∇p1∂k3
t g)(∇p2∇∂k4

t X)(∇p3∇̃∂k5
t Σ2) where p1 + p2 + p3 = 1 and

k1 + · · ·+ k5 = k.

5. (∂k1
t g)(∂k2

t g)(∇̃∂k3
t X)(∇̃∂k4

t u)(∇̃∂k5
t u)(∇̃∂k6

t u) where k1 + · · ·+ k6 = k.

6. (∂k1
t u

0)(∂k2
t u

0)(∂k3
t Λ) · · · (∂kmt Λ)(logG)(p) where k1 + · · · km ≤ k + 1 and p ≤

k + 3.

Proof. Similar as the previous Lemma, terms of the forms 1, 2, 3 come from [∂kt , �̃g]Λ.

Terms of the forms 4, 5, 6 come from taking ∂kt to the formula of Hε
0.

Lemma 2.11. For any k ≥ 0,

(2.16) ∇∂ktX = Jε

(
1

(Jεu0)2k
Iεk

)
where Iεk is a linear combination of terms of the form

(∇̃∂k1
t u)(∂k2

t Jεu) · · · (∂k2k

t Jεu)

with k1 + · · ·+ k2k = k − 1.
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Proof. Recall that

∂tX(t, y) = Jε
Jεu

Jεu0
(t, y).

Taking derivative with respect to y, we have

∇∂tX = Jε

(
1

(Jεu0)2

(
(∇̃u)(Jεu

0)− Jεu(∇̃u0)
))

.

The claim follows from taking ∂k−1
t derivatives of the preceding equation.

Lemma 2.12. For any k ≥ 0,

∂kt g
αβ =

Aεk
P

(2.17)

where Aεk is a linear combination of terms of the form

(∇∂k1
t X) · · · (∇∂kmt X)

with k1 + · · ·+ km = k, and P is a polynomial in ∇X.

Hence,

∇∂kt gαβ =
Bε
k

P

where Bε
k is a linear combination of terms of the form

(∇(2)∂k1
t X) · · · (∇∂kmt X)

with k1 + · · ·+ km = k, and P is a polynomial in ∇X (which may be different from

the polynomial in ∂kt g
αβ).

Proof. Recall that

gij =
∑
k

∂Xk

∂yi
∂Xk

∂yj
,

and gij is the ij-th entry of the inverse metric g−1. Recall that for a matrixM , M−1 =

1
detM

(adjM), so each gαβ can be written as a rational function of gαβ. Therefore,

gαβ is a rational function of the terms ∂Xk

∂yi
. In particular, the polynomial P is in fact

a power of det g. The higher order formulae follow from taking derivatives.
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In this section, we computed the right hand sides of the equations of ∂kt u and

∂kt Λ. The controls on ∂kt u and ∂kt Λ will, as we shall see, provide H2 and hence L∞

controls on the lower order quantities. An essential component in obtaining the L∞

bounds is the trade-off between ∂t and ∇y derivatives, which says that in some sense,

∂2
t is as “costly” as one ∇y derivative. The precise statement is the topic of the next

section.

2.4 Trading Spatial Derivatives with Time Derivatives

In this section, we prove a Proposition that is key to the proof of Theorem 2.1.

It enables the control of the Hp norm of u and Λ in terms of the energies E and E,

and is a key ingredient is obtaining L∞ bounds on lower order terms.

The motivation is as follows: since we can take many ∂t derivatives to the variables

u and Λ, we would like to claim that sufficiently many time derivatives can guarantee

some spatial smoothness. In fact, we claim that ∂2
t f enjoys approximately the same

regularity as ∇yf for f ∈ {u,Λ}. Details are given in the next Proposition.

Proposition 2.13. Assume that for some integer M > 0,

(2.18)
∑

k+2p≤M+2

‖∇̃p
y∂

k
t u‖2

L2(Dt) + ‖∇̃p
y∂

k
t Λ‖2

L2(Dt) ≤ CM <∞.

If M is sufficiently large and T > 0 is sufficiently small, then under the assumptions

of Theorem 2.1, for any t ∈ [0, T ], we have

∑
k+2p≤M+2

‖∇̃p
y∂

k
t u‖2

L2(Dt) + ‖∇̃p
y∂

k
t Λ‖2

L2(Dt)

(2.19)

. sup
0≤τ≤t

EM [u](τ) + sup
0≤τ≤t

EM [Λ](τ) +
∑

k+2p≤M+2

‖∇̃p
y∂

k
t u‖2

L2(D0) + ‖∇̃p
y∂

k
t Λ‖2

L2(D0).

Before we present the proof, let us first note a few results that will be useful in

the proof.
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The first result we will use is the Abstract bootstrap argument. A proof can be

found in, for instance, [17].

Lemma 2.14. Let J 3 0 be a time interval, such that for each t ∈ J , there are

two statements: the “Hypothesis” H(t) and the “conclusion” C(t). Suppose that the

following are true:

1. Hypothesis implies conclusion: if H(t) is true for some t ∈ J , then C(t) is also

true for that t.

2. Conclusion is stronger than hypothesis: if C(t) is true for some t0 ∈ J , then

H(t) is true for some neighborhood of t0.

3. Conclusion is closed: if t1, t2, · · · is a sequence of time in J that converges to

t0 ∈ J , and C(ti) is true for all i = 1, 2, · · · , then C(t0) is also true.

4. Base case: H(t) is true for some t ∈ J .

Then C(t) is true for all t ∈ J .

Lemma 2.15. Assume that E(t) is a continuous function satisfying

E(t) ≤ E(0) +

∫ t

0

cE(τ)r dτ

for some positive integer r and some positive constant c. Assume E(0) < ∞. Then

there is a time interval [0, T ] such that

E(t) ≤ 2E(0) ∀t ∈ [0, T ],

where T only depends on c, r and E(0).
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Proof. This is a direct application of Lemma 2.14. Let H(t) be the statement

E(t) ≤ 4E(0), and C(t) be the statement E(t) ≤ 2E(0). Then assumptions 2-

4 in Lemma 2.14 are clearly satisfied. We only need to prove assumption 1. Let

T = E(0)/(c(4E(0))r). We have

E(t) ≤E(0) +

∫ t

0

c(4E(0))r dτ

≤E(0) + ct · 4rE(0)r

≤2E(0) ∀t ∈ [0, T ].

Thus, C(t) holds for all t ∈ [0, T ].

Corollary 2.16. Let

E(t) :=
∑

k+2p≤M+2

‖∇̃p
y∂

k
t u‖2

L2(Dt) + ‖∇̃p
y∂

k
t Λ‖2

L2(Dt).

Assume

E(t) ≤ E(0) +

∫ t

0

E(τ)r dτ

for some positive integer r. Then for T > 0 is small (depending only on E(0)), we

have

(2.20) ‖∇̃p∂kt u‖L2(Dt) + ‖∇̃p∂kt Λ‖L2(Dt) . 1 ∀(k + 1) + 2p ≤M + 2.

and

(2.21) ‖∇̃p∂kt u‖L∞(Dt) + ‖∇̃p∂kt Λ‖L∞(Dt) . 1 ∀k + 1 + 2(p+ 2) ≤M + 2.

Proof. By Lemma 2.15, we know that there is some T > 0 depending only on E(0)

such that E(t) ≤ 2E(0) for all t ∈ [0, T ]. Then for t ∈ [0, T ], we have

1

2

d

dt

∫
Dt

(∇̃(p)∂kt u)2 dy =

∫
Dt

(∇̃(p)∂kt u)(∇̃(p)∂k+1
t u) dy
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∣∣∣∣12 d

dt

∫
Dt

(∇̃(p)∂kt u)2 dy

∣∣∣∣ ≤ ‖∇̃(p)∂kt u‖L2(Dt)‖∇̃(p)∂k+1
t u‖L2(Dt)

≤ E(t) ≤ 2E(0).

Thus, ∫
Dt

(∇̃(p)∂kt u)2 dy ≤
∫
D0

(∇̃(p)∂kt u)2 dy +

∣∣∣∣ ddt
∫
Dt

(∇̃(p)∂kt u)2 dy

∣∣∣∣
≤ 5E(0).

The estimate for Λ follows similarly.

To obtain the L∞ estimate, we use the Sobolev embedding ‖f‖L∞ . ‖f‖H2 . The

conclusion then follows.

The next two Corollaries guarantee the strict positiveness of a, u0,−g00,−h00, as

well as the positive-definiteness of (gij).

Corollary 2.17. Assume the same assumptions as in Proposition 2.13. Assume

further that there is a constant c > 0 such that

a(t, y) ≥ 2c, Jεu
0(t, y) ≥ 2c, −g00 ≥ 2c, −h00 ≥ 2c

at t = 0. Then there is a time T > 0, depending only on the initial data, such that

for all t ∈ [0, T ] and for any y ∈ D,

a(t, y) ≥ c, Jεu
0(t, y) ≥ c, −g00 ≥ c, −h00 ≥ c.

Proof. All of the estimates follow from control on L∞ norm of the ∂t derivatives of

the respective quantities, and signs on the initial conditions.

Recall that a2 = gαβ(∇̃αΣ2)(∇̃βΣ2), so

a∂ta = gαβ(∇̃α∂tΣ
2)(∇̃βΣ2)
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= gαβ
(
∇̃αJε

JεΛ

Jεu0

)
(∇̃βΣ2).

By the preceding corollary, we may bound the L∞ norm of each term, and thus

control ‖∂ta‖L∞ . But then

a(t, y) ≥ a(0, y)− |t| · ‖∂ta‖L∞ ,

so if T is small, then a(t, y) > c for all t ∈ [0, T ]. The bounds on u are similar.

Corollary 2.18. Assume the same assumptions as in Proposition 2.13. Then if

T > 0 is small (depending only on the initial data), the matrix with (i, j)-th entry

(gij(t)) is strictly positive definite3 on the time interval [0, T ].

Proof. Let G(t) be the matrix with (i, j)-th entry (gij(t)). At t = 0, we know

that G(0) is positive definite by the definition of the pullback metric. Since each

gαβ is a differentiable function of t, by the standard result on eigenvalues (see, for

instance, [8]), there is a time interval [0, T ] such that G(t) is positive definite for all

t ∈ [0, T ].

Equipped with the L∞ bounds on the lower order terms for all t ∈ [0, T ], we are

now ready to prove Proposition 2.13.

Proof for Proposition 2.13. We prove by induction. When p ≤ 1, the claim follows

from the definition of E and E. Now, we impose the inductive assumption that

∑
q≤p

∑
k+2q≤M+2

‖∇̃q
y∂

k
t u‖2

L2(Dt) + ‖∇̃q
y∂

k
t Λ‖2

L2(Dt)

(2.22)

. sup
0≤τ≤t

EM [u](τ) + sup
0≤τ≤t

EM [Λ](τ) +
∑
q≤p

∑
k+2q≤M+2

‖∇̃p
y∂

k
t u‖2

L2(D0) + ‖∇̃p
y∂

k
t Λ‖2

L2(D0),

3Recall that (gij) is the spatial component of the metric.
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and aim at proving that

∑
k+2(p+1)≤M+2

‖∇̃p+1
y ∂kt u‖2

L2(Dt) + ‖∇̃p+1
y ∂kt Λ‖2

L2(Dt)

(2.23)

. sup
0≤τ≤t

EM [u](τ) + sup
0≤τ≤t

EM [Λ](τ) +
∑
q≤p+1

∑
k+2q≤M+2

‖∇̃p
y∂

k
t u‖2

L2(D0) + ‖∇̃p
y∂

k
t Λ‖2

L2(D0),

Note that by Corollary 2.16, we are able to control L∞ norm of the lower order

terms given the inductive hypothesis (2.22).

Let us analyze the terms

‖∇̃p+1
y ∂kt Λ‖2

L2(Dt) and ‖∇̃p+1
y ∂kt u‖2

L2(Dt)

Estimate on the Λ term. We first deal with ‖∇̃p+1
y ∂kt Λ‖2

L2(Dt). Recall that Λ ≡ 0

on ∂D, so ∂kt Λ ≡ 0 on ∂D as well. By Lemma (2.6), we have

‖∇̃p+1
y ∂kt Λ‖2

L2(Dt)

.‖∆̃g∇̃p−1
y ∂kt Λ‖2

L2(Dt)

≤‖[∆̃g,∇p−1
y ]Jε∂

k
t Λ‖2

L2(Dt) + ‖∇p−1
y ∆̃gJε∂

k
t Λ‖2

L2(Dt)

≤‖[∆̃g,∇p−1
y ]Jε∂

k
t Λ‖2

L2(Dt) + ‖∇p−1
y �̃gJε∂

k
t Λ‖2

L2(Dt) + ‖∇p−1
y Jε∂

k+2
t Λ‖2

L2(Dt).

The last term in the preceding equation is bounded by the right hand side of

(2.23) by the inductive hypothesis. We only need to control the first two terms.

The term [∆̃g,∇p−1
y ]Jε∂

k
t Λ is a sum of terms of the forms:

1. Jε

(
(∇(k1+1)g)(∇̃(k2+1)∂kt Λ)

)
where k1 + k2 = p− 1 and k2 ≤ p− 2.

2. Jε

(
(∇(k1)g)(∇̃(k2+2)∂kt Λ)

)
where k1 + k2 = p− 1 and k2 ≤ p− 2.

The highest order term in [∆̃g,∇p−1
y ]Jε∂

k
t Λ is thus ∇̃p

y∂
k
t Λ, the L2 norm of which can

be controlled by the inductive hypothesis. Thus, ‖[∆̃g,∇p−1
y ]Jε∂

k
t Λ‖2

L2(Dt) is bounded

by the right hand side of (2.23).
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We now analyze ∇p−1
y �̃gJε∂

k
t Λ

ε∼ ∇p−1
y Hε

k. Recall that by Lemma 2.10, ∇p−1
y Hε

k

contains six types of terms. The highest order terms of forms 1, 2, 3 in Hε
k are

∇̃p+1
y ∂k−1

t Λ, which can be controlled by the right hand side of (2.23). The highest

order terms in 4 and 5 are ∇̃p∂kt u, ∇̃p+1∂kt Σ2 ε∼ ∇̃p+1∂k−1
t Λ, which are controlled as

desired. The highest order term in 6 is ∇̃p−1∂k+1
t Λ, which is also controlled. Hence,

‖∇p−1
y �̃gJε∂

k
t Λ‖2

L2(D) is bounded by the right hand side of (2.23).

Therefore, we have shown that ‖∇̃p+1
y ∂kt Λ‖2

L2(Dt) is bounded by the right hand

side of (2.23).

Estimate on the u term. Next, we consider ‖∇̃p+1
y ∂kt u‖2

L2(Dt). The interior anal-

ysis is very similar to that of Λ, but the boundary term is more complicated. As

before, by Lemma (2.6), we have

‖∇̃p+1
y ∂kt u‖2

L2(Dt)

.‖∆̃g∇̃p−1
y ∂kt u‖2

L2(Dt) + ‖∇n∇̃p−1
y ∂kt u‖2

H1/2(∂Dt)

≤‖[∆̃g,∇p−1
y ]Jε∂

k
t u‖2

L2(Dt) + ‖∇p−1
y ∆̃gJε∂

k
t u‖2

L2(Dt) + ‖∇n∇̃p−1
y ∂kt u‖2

H1/2(∂Dt)

≤‖[∆̃g,∇p−1
y ]Jε∂

k
t u‖2

L2(Dt) + ‖∇p−1
y �̃gJε∂

k
t u‖2

L2(Dt) + ‖∇p
yJε∂

k+1
t u‖2

L2(Dt)+

+ ‖∇p−1
y Jε∂

k+2
t u‖2

L2(Dt) + ‖∇n∇̃p−1
y ∂kt u‖2

H1/2(∂Dt)

=‖[∆̃g,∇p−1
y ]Jε∂

k
t u‖2

L2(Dt) + ‖∇p−1
y �̃gJε∂

k
t u‖2

L2(Dt) + ‖∇̃p
y∂

k+1
t u‖2

L2(Dt)+

+ ‖∇̃p−1
y ∂k+2

t u‖2
L2(Dt) + ‖∇n∇̃p−1

y ∂kt u‖2
H1/2(∂Dt).

The third and the fourth terms in the preceding equation are clearly bounded by

the right hand side of (2.23) by the inductive hypothesis. We only need to control

the first, the second, and the last terms.

As in the case of Λ, the term [∆̃g,∇p−1
y ]Jε∂

k
t u consists of terms of the form:

1. Jε

(
(∇(k1+1)g)(∇̃(k2+1)∂kt u)

)
where k1 + k2 = p− 1 and k2 ≤ p− 2.
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2. Jε

(
(∇(k1)g)(∇̃(k2+2)∂kt u)

)
where k1 + k2 = p− 1 and k2 ≤ p− 2.

The highest order term in [∆̃g,∇p−1
y ]Jε∂

k
t u is ∇̃p

y∂
k
t u, the L2 norm of which can be

controlled by the inductive hypothesis. Thus, ‖[∆̃g,∇p−1
y ]Jε∂

k
t u‖2

L2(Dt) is bounded by

the right hand side of (2.23).

We now analyze∇p−1
t �̃gJε∂

k
t u

ε∼ ∇p−1
y Gε

k. Recall that by Lemma 2.9, Gε
k contains

six types of terms. The highest order term of forms 1, 2, 3 in ∇p−1Gε
k is ∇̃p+1

y ∂k−1
t u,

which can be controlled by the right hand side of (2.23). The highest order term in

4 is ∇̃p∂kw, which consists of ∇̃p−1
(
∇2∂k−1

t u
) ε∼ ∇̃p+1∂k−1

t u. This is also controlled

as required. The highest order term in 5 and 6 are ∇̃p∂kt Λ, which is also controlled

in the right form. Hence, ‖∇p−1
y �̃gJε∂

k
t u‖2

L2(Dt) can be bounded by the right hand

side of (2.23).

The last term that we need to estimate is ‖∇n∇̃p−1
y ∂kt u‖2

H1/2(∂Dt). We would like

to commute Pε with ∇̃p−1
y , but the commutator requires some special care, since the

∂2
t term in Pε is not mollified. We compute that

∇n∇̃p−1
y ∂kt u = (∇̃αΣ2)Jε

(
gαβ∇βJε∇̃p−1

y ∂kt u
)

= (∇̃αΣ2)Jε
(
[gαβ,∇p−1

y ∂kt ]∇βJεu
)

+ (∇̃αΣ2)∂kt∇p−1
y Jε

(
gαβ∇βJε∂

k
t u
)

= (∇̃αΣ2)Jε
(
[gαβ,∇p−1

y ∂kt ]∇βJεu
)

+ [(∇̃αΣ2),∇p−1
y ∂kt Jε]Jε

(
gαβ∇βJεu

)
+ ∂kt ∇̃p−1

y

(
(∇̃αΣ2)Jε

(
gαβ∇βJεu

))
= (∇̃αΣ2)Jε

(
[gαβ,∇p−1

y ∂kt ]∇βJεu
)

+ [(∇̃αΣ2),∇p−1
y ∂kt Jε]Jε

(
gαβ∇βJεu

)
− 2∇̃p−1

y ∂kt Pεu+ 2∂kt ∇̃p−1∂2
t u.

The last term is readily in the right hand side of (2.23), so we will analyze the

first three terms. The first term is a linear combination of terms of the from

(∇̃αΣ2)Jε
(
∇p1
y ∂

k1
t g

αβ · ∇p2
y ∇βJε∂

k2
t u
)
, p1+p2 = p−1, k1+k2 = k, p2+k2 ≤ k+p−2.
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As before, the derivatives on g can be bounded by those on u (see, for instance,

Lemma 2.20). Thus, the highest order terms are ∇p−1
y Jε∂

k
t u and ∇p−2

y Jε∂
k+1
t u. Their

H1/2(∂D) norms are bounded by their respective H1(D) norms, which are controlled

by the right hand side of (2.23).

The second term is a linear combination of terms of the forms:

1. Jε

(
∇p1∇̃α∂

k1
t Σ2 · ∇̃p2

(
gαβ∇βJε∂

k2
t u
))

where k1 + k2 = k, p1 + p2 = p− 1 and

k2 + p2 ≤ k + p− 2.

2. [Jε,∇p1∇̃α∂
k1
t Σ2]

(
∇̃p2

(
gαβ∇βJε∂

k2
t u
))

where k1 + k2 = k, p1 + p2 = p− 1 and

k2 + p2 ≤ k + p− 1.

The highest order terms in 1 are ∇̃p−1
y ∂kt u and ∇̃p−2

y ∂k+1
t u. Their H1/2(∂D) norms

are bounded by their respective H1(D) norms, which are controlled by the right hand

side of (2.23). To treat terms in 2, note that ‖[Jε, θ]∇φ‖L2 . ‖∇θ‖H2‖φ‖L2 , so the

highest order terms are the same as those in 1, which have shown to be controlled

as required.

The third term is ∇̃p−1
y ∂kt (P εu). By a slight abuse of notation, we shall con-

sider F ε
0 as being defined in D, so ‖∇̃p−1

y ∂kt (P εu)‖H1/2(∂D) . ‖∇∇̃p−1
y ∂kt F

ε
0‖H1(D) .

‖∇̃p
y∂

k
t F

ε
0‖L2(D). We shall analyze the terms in F ε

0 . The highest order terms in ∇̃p∂kt F
ε
0

are ∇̃p+1
y ∂kt Σ2 and ∇̃p

y∂
k+1
t u, and ∇̃p+1

y ∂kt Λ. The first two are readily controlled, and

the third term was shown to be bounded by the right hand side of (2.23), so we have

finished controlling ‖∇̃p+1
y ∂kt u‖2

L2(D).

The proof is now complete.

In this section, we have shown a critical ingredient in the proof for the a priori

estimate. Namely, given the energy E εM , we are able to bound the functions u and
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Λ, as well as their time and spatial derivatives, in the standard Sobolev spaces.

Moreover, we have shown that ∂2
t is as “costly” as ∇y in terms of the Sobolev norms.

We have one more section before closing the a priori estimate. In the next section,

we will establish some controls on the terms X,w, g etc, which will be useful when

we analyze the highest order terms.

2.5 Controlling the Lower Order Terms

Before we close the a priori estimate, let us first establish some controls on the

lower order terms, which utilizes Proposition 2.13. In this section, we assume the

same condition as in Theorem 2.1.

Lemma 2.19. For k ≥ 1, there is a polynomial Rk with non-negative coefficients

such that if T > 0 is small, then for all t ∈ [0, T ],

(2.24) ‖∇∂ktX‖2
L2(R3

+t
) . Rk

(
sup

0≤τ≤r
Eε
k−1[u](τ)

)
+ EεM [u,Λ](0).

Proof. Recall that by Lemma 2.11, we have

∇∂ktX = Jε

(
Iεk

(Jεu0)2k

)
.

The highest order terms in Iεk are ∇̃∂k−1
t u and ∂k−1

t u, and we may control the lower

order terms by

∥∥∥∇̃∂jtu∥∥∥2

L∞(R3
+t

)
.
∥∥∥∇̃∂jtu∥∥∥2

H2(R3
+t

)
.
∥∥∥∇̃∂j+4

t u
∥∥∥2

L2(R3
+t

)
+ EεM [u,Λ](0)

≤ sup
0≤τ≤t

Eε
j+4[u](τ) + EεM [u,Λ](0).

Moreover, by Corollary 2.17, 1
Jεu0 is strictly positive. Our result thus follows.

Lemma 2.20. For k ≥ 1, there is a polynomial Rk (which might be different from the

polynomial in Lemma 2.19) and a polynomial Sk, both with non-negative coefficients,
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such that if T > 0 is small, then for all t ∈ [0, T ],

∥∥∂kt gαβ∥∥2

L2(R3
+t

)
. Rk

(
sup

0≤τ≤r
Eε
k−1[u](τ)

)
+ EεM [u,Λ](0),(2.25)

∥∥∇∂kt gαβ∥∥2

L2(R3
+t

)
. Sk

(
sup

0≤τ≤r
Eε
k+1[u](τ)

)
+ EεM [u,Λ](0).(2.26)

Proof. Recall that by Lemma 2.12, we have

∂kt g
αβ =

Aεk
P
, ∇∂kt gαβ =

Bε
k

P
.

Here P is a power of det g. We know that at t = 0, det g ≥ 2c > 0 for some constant

c, since g is the pull-back metric. But then d
dt

det g is a polynomial in components

of gαβ, and thus a polynomial in ∇X. Thus, by Lemma 2.19, we know that there is

a time T such that for all t ∈ [0, T ], det g ≥ c > 0. Thus 1
P

is strictly positive.

It then remains to control Aεk and Bε
k. The highest order term in Aεk is ∇∂ktX,

which can be controlled by Lemma 2.19, and the lower order terms can be controlled

in L∞ norm as we did in the proof of Lemma 2.19.

The highest order term in Bε
k is ∇̃(2)∂k−1

t u. By Proposition 2.13, we have

∥∥∥∇̃(2)∂k−1
t u

∥∥∥2

L2(R3
+t

)
. sup

0≤τ≤t
Eε
k+1[u](τ) + EεM [u,Λ](0).

The lower order terms can be controlled as before. Thus we obtain the desired

result.

We are now in a position to close the a priori estimate.

2.6 Closing the a priori Estimate

In this section, we prove the claim in Theorem 2.1. Recall that we need to show

that there is some polynomial PM such that

(2.27) Eεk[u,Λ](t) . Eεk[u,Λ](0) +

∫ t

0

PM(Eεk[u,Λ](τ)) dτ
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2.6.1 Estimate on Λ

By Lemma 2.4, we know that for some integer r,

Eε
k[Λ](t) .Eε

k[Λ](0) +

∣∣∣∣∫ t

0

∫
Dτ

(�̃h∂
k
t Λ)(Qµ∇̃µ∂

k
t Λ) dydτ

∣∣∣∣(2.28)

+

∫ t

0

Ek[Λ](τ) · E εM [u,Λ](τ)r dτ.

The first and the last terms on the right hand side are clearly bounded by the right

hand side of (2.27); it remains to analyze the second term. Recall that �̃h∂kt Λ = Hε
k

contains 6 types of terms, and we shall analyze each one of them.

Terms of form 1 in Hε
k. We first deal with terms of form 1 in Hε

k. The highest

order terms are ∇̃∂kt h and ∇̃(2)∂k−1
t Λ. We write ∇̃∂kt h = Fαβ∇̃α∇̃β∂

k−1
t u where Fαβ

is a function such that

sup
0≤t≤T

‖Fαβ‖L∞(Dt) + ‖∇Fαβ‖L∞(Dt) . E εk−1(T )p

for some integer p. Note that if at least one of α, β is 0, then ‖Fαβ∇̃α∇̃β∂
k−1
t u‖L2(Dt) ≤

Ek[u](t), so we may simply use Cauchy-Schwarz. Hence, assume henceforth that

α, β 6= 0. We compute the term (F ij∇i∇jJε∂
k−1
t u)(Qµ∇̃µ∂

k
t Λ):

(F ij∇i∇jJε∂
k−1
t u)(Qµ∇̃µ∂

k
t Λ)

=∇i(F
ij∇jJε∂

k−1
t u)(Qµ∇̃µ∂

k
t Λ)− (∇iF

ij)(∇jJε∂
k−1
t u)(Qµ∇̃µ∂

k
t Λ)

=∇i[(F
ij∇jJε∂

k−1
t u)(Qµ∇̃µ∂

k
t Λ)]− (F ij∇jJε∂

k−1
t u)∇i(Q

µ∇̃µ∂
k
t Λ)

− (∇iF
ij)(∇jJε∂

k−1
t u)(Qµ∇̃µ∂

k
t Λ)

=∇i[(F
ij∇jJε∂

k−1
t u)(Qµ∇̃µ∂

k
t Λ)]− (F ij∇jJε∂

k−1
t u)(∇iQ

µ)(∇̃µ∂
k
t Λ)

− (F ij∇jJε∂
k−1
t u)(Qµ)∇i(∇̃µ∂

k
t Λ)− (∇iF

ij)(∇jJε∂
k−1
t u)(Qµ∇̃µ∂

k
t Λ).(2.29)

The second and the last terms can be controlled using Cauchy-Schwarz. For the first
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term, we have ∫ t

0

∫
Dτ
∇i[(F

ij∇jJε∂
k−1
t u)(Qµ∇̃µ∂

k
t Λ)] dydτ

=

∫ t

0

∫
∂Dτ

ni(F
ij∇jJε∂

k−1
t u)(Qµ∇̃µ∂

k
t Λ) dSdτ

.
∫ t

0

(
1

δ

∫
∂Dτ
|∇̃∂k−1

t u|2 dS
)

+

(
δ

∫
∂Dτ
|∇̃∂kt Λ|2 dS

)
dτ.(2.30)

We will use Lemma 2.5 to estimate the first term on the right hand side. Since we will

re-use this result when closing the estimate on u, let us summarize this conclusion

in the following Lemma.

Lemma 2.21. Let k be an integer, and η > 0 be a fixed number. Then there is a

polynomial Rη such that if T is small (depending only on η), then for all t ∈ [0, T ],

we have ∫ t

0

∫
∂Dτ
|∇̃∂kt u|2 dSdτ . Eε

≤k[u](0) +Rη(E εk[u,Λ](t)) + ηE εk+1[u,Λ](t).(2.31)

We will postpone the proof until the end of finishing estimating terms of form 1

in Hε
k. Now, let us use it to close the estimate (2.30). We have∫ t

0

(
1

δ

∫
∂Dτ
|∇̃∂k−1

t u|2 dS
)

+

(
δ

∫
∂Dτ
|∇̃∂kt Λ|2 dS

)
dτ

.
1

δ

[
Eε
≤k−1[u](0) +Rη(E εk−2[u,Λ](t)) + ηE εk−1[u,Λ](t)

]
+ δ · Eε

k[Λ](t).

The last term, δ ·Eε
k[Λ](t), can be absorbed into the left hand side of equation (2.28).

The remaining terms are of lower order. Thus, we have controlled the first term on

the right hand side of equation (2.29).

Next, we consider the third term in (2.29).

We pay special attention to the case when µ = 0, since ∇i∇̃µ∂
k
t Λ is un-mollified.

We shall borrow a mollifier from the other terms:∫ t

0

∫
Dτ

(∇jJε∂
k−1
t u)(F ijQ0)∇i(∂

k+1
t Λ) dydτ
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=

∫ t

0

∫
Dτ

(∇jJε∂
k−1
t u) ·

(
[Jε, F

ijQ0]∇i(∂
k+1
t Λ)

)
dydτ︸ ︷︷ ︸

I

+

∫ t

0

∫
Dτ

(∇jJε∂
k−1
t u)(F ijQ0)∇̃i(∂

k+1
t Λ) dydτ︸ ︷︷ ︸

II

.

The term, I, being a commutator, can be estimated by Cauchy-Schwarz:

I ≤
∫ t

0

‖∇̃∂k−1
t u‖2

L2(Dτ ) + ‖∇(F ijQ0)‖2
L∞(∂Dτ ) · ‖∂k+1

t Λ‖2
L2(∂Dτ ) dτ

≤
∫ t

0

Eε
k−1[u](τ) + ‖∇(F ijQ0)‖2

L∞(∂Dτ ) · Eε
k[Λ](τ) dτ.

The term II involves ∇̃∂k+1
t Λ, which is of higher order than our energy. Thus, we

will treat this term by integration by parts, which moves one ∂t from Λ to u. The

procedure is similar to the case when µ 6= 0, so we will discuss the details as we treat

the terms with µ 6= 0.

Thus, we have analyzed the case when µ = 0. Henceforth, assume µ 6= 0, so that

∇i∇̃µ∂
k
t Λ

ε∼ ∇̃(2)
y ∂kt Λ. Note that ∇̃(2)∂kt Λ is of higher order than the energy, while

the term ∇̃∂k−1
t u could undertake one more time derivative, so we use integration

by parts to transfer one ∂t onto ∇̃∂k−1
t u. The integrals on D0 and Dt will show up

as we transfer the ∂t derivative:∫ t

0

∫
Dτ

(F ij∇jJε∂
k−1
t u)(Qµ)∇i(∇̃µ∂

k
t Λ) dydτ(2.32)

=

∫
Dt

(F ij∇jJε∂
k−1
t u)(Qµ)∇i(∇̃µ∂

k−1
t Λ) dy

−
∫
D0

(F ij∇jJε∂
k−1
t u)(Qµ)∇i(∇̃µ∂

k−1
t Λ) dy

−
∫ t

0

∫
Dτ

(∇jJε∂
k
t u)(F ijQµ)∇i(∇̃µ∂

k−1
t Λ) dydτ

−
∫ t

0

∫
Dτ

(∇jJε∂
k−1
t u)∂t(F

ijQµ)∇i(∇̃µ∂
k−1
t Λ) dydτ.

By Lemma 2.6, we know that

‖∇̃(2)∂k−1
t Λ‖L2(Dt) . ‖�̃h∂k−1

t Λ‖L2(Dt) + ‖∇̃∂kt Λ‖L2(Dt) + ‖∂k+1
t Λ‖L2(Dt)
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≤ ‖Hε
k−1‖L2(Dt) + Ek[Λ](t)1/2

. Ek[u](t)1/2 + Ek[Λ](t)1/2.

We use this observation to control each term on the right hand side of (2.32):

• The first term. We can absorb part of this term into the left hand side of

equation (2.28). Indeed, for some δ > 0 to be determined,∣∣∣∣∫
Dt

(F ij∇jJε∂
k−1
t u)(Qµ)∇i(∇̃µ∂

k−1
t Λ) dy

∣∣∣∣
≤1

δ

∫
Dt
|∇̃∂k−1

t u|2 dy + δ

∫
Dt
‖F ijQµ‖2

L∞(Dt) · |∇̃
(2)∂k−1

t Λ|2 dy

.
1

δ
Eε
k−1[u](t) + δ‖F ijQµ‖2

L∞(Dt) · (E
ε
k[u](t) + Eε

k[Λ](t)) .

Thus, by choosing δ small enough (independently of ε), the term δ‖F ijQµ‖2
L∞(Dt)·

(Eε
k[u](t) + Eε

k[Λ](t)) can be absorbed into the left hand side of (2.28), and the

term 1
δ
Eε
k−1[u](t) is of the desired form as in the right hand side of (2.27).

• The second term. By the same analysis as the previous bullet point, by choosing

for instance δ = 1, this term is of the desired form as in the right hand side of

(2.27).

• The third term. We have∣∣∣∣∫ t

0

∫
Dt

(∇jJε∂
k
t u)(F ijQµ)(∇̃(2)∂k−1

t Λ) dydτ

∣∣∣∣
.
∫ t

0

‖F ijQµ‖L∞(Dτ ) · (Ek[u](τ) + Ek[Λ](τ)) dτ.

This is clearly of the form as in the right hand side of (2.27).

• The last term. We have∣∣∣∣∫ t

0

∫
Dτ

(∇jJε∂
k−1
t u)∂t(F

ijQµ)∇i(∇̃µ∂
k−1
t Λ) dydτ

∣∣∣∣
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≤
∫ t

0

‖∂t(F ijQµ)‖L∞(Dτ ) · (Eε
k[u](τ) + Ek[Λ](τ)) dτ.

This is also of the form as in the right hand side of (2.27).

Thus, we have controlled every term on the right hand side of (2.32), which completes

our analysis of equation (2.29). This closes our energy estimate for terms of form 1

in Hε
k.

Before moving on to estimating terms of forms 2 – 6 in Hε
k, let us first finish the

proof we owed in closing terms of form 1 in Hε
k.

Proof of Lemma 2.21. We will use induction on k. By Lemma 2.5, we know

sup
0≤τ≤t

(∫
Dτ
|∇̃t,y∂

k
t u|2 dy

)
+

∫ t

0

∫
∂Dτ
|∇̃∂kt u|2 dSdτ

(2.33)

.
∫
D0

|∇̃t,y∂
k
t u|2 dy +

∫ t

0

∫
Dτ
|�̃g∂kt u|2 dydτ + E ε8[u,Λ](t) ·

∫ t

0

∫
Dτ
|∇̃∂kt u|2 dydτ

+

∫ t

0

∫
∂Dτ
|∂k+1
t u|2 dSdτ +

∫ t

0

∫
∂Dτ
|∇̃n∂

k
t u|2 dSdτ.

The first four term on the right hand side are easily seen to be bounded by

Eε
k−1[u](0) + t · E εk[u,Λ](t)p

for some integer p. It remains to treat the last term. We know that

∇̃n∂
k
t u =

1

a

(
F ε
k − (u0)2∂k+2

t u
)
.

Thus,∫ t

0

∫
∂Dτ
|∇̃n∂

k
t u|2 dSdτ

≤
∥∥∥∥1

a

∥∥∥∥2

L∞([0,t]×∂D)

·
∫ t

0

∫
∂Dτ
|F ε
k |2 dSdτ +

∥∥∥∥(u0)2

a

∥∥∥∥2

L∞([0,t]×∂D)

·
∫ t

0

∫
∂Dτ
|∂k+2
t u|2 dSdτ.
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Recall that our strategy was to prove by induction, and the previous analyses apply

to the case when k = 0 as well. To treat F ε
0 , we note that the highest order terms

are ∇̃X, ∇̃Σ2, ∇̃Λ, ∂tu, all of which can be easily bounded by the right hand side in

Lemma 2.21. So the base case is true.

Now, for k ≥ 1, we analyze each term in F ε
k , bearing in mind that by the inductive

hypothesis, Lemma 2.21 holds with k replaced by any positive integer smaller than

k.

• Terms of form 1. The highest order term is ∂k+1
t u, and∫ t

0

∫
∂Dτ
|∂k+1
t u|2 dSdτ ≤ t · E εk[u,Λ](t).

• Terms of form 2. The highest order terms are ∇̃∂k+1
t Λ, ∂kt g, and ∇̃∂k−1

t u. We

have ∫ t

0

∫
∂Dτ
|∇̃∂k+1

t Λ|2 dSdτ ≤ Ek+1[Λ](t),∫ t

0

∫
∂Dτ
|∂kt g|2 dSdτ .

∫ t

0

∫
∂Dτ
|∇̃∂k−1

t u|2 dSdτ,

and the bound on
∫ t

0

∫
∂Dτ |∇̃∂

k−1
t u|2 dSdτ follows from the inductive hypothesis.

• Terms of form 3. The highest order terms are ∂kt u, ∂kt w
ε∼ w∇̃∂k−1

t u, ∂kt g
ε∼

∇̃∂k−1
t u, ∇̃∂kt Σ2 ε∼ ∇̃∂k−1

t Λ. Among these terms, the first and the last terms

are contained in the energy E εk−1[u,Λ](t), and ∇̃∂k−1
t u is controlled by inductive

hypothesis.

• Terms of form 4. The highest order terms are ∂kt g, ∇̃∂ktX
ε∼ ∇̃∂k−1

t u, ∇̃∂kt Λ.

We have shown the bounds on the first two terms, and the last term is contained

in Eε
k[Λ](t).
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• Terms of form 5. The highest order term is ∂k+1
t u, which is contained in

E εk[u,Λ](t).

Hence, we have shown that every term in (2.33) can be controlled by the claimed

formula. The proof is now complete.

In sum, we finished estimating terms of form 1 in Hε
k. To close the estimate on

Λ, we will need to control terms of the forms 2 – 6 in Hε
k.

Terms of forms 2 – 6 in Hε
k.

The highest order terms in form 2 are ∂k+1
t h

ε∼ ∂k+1
t u + ∇̃∂kt u and ∇̃∂ltΛ; the

highest order terms in form 3 are ∇∂kt h and ∇̃∂kt Λ; the highest order terms in form

4 are ∇∂kt g, ∇̃∂kt u, ∇2∂ktX, and ∇̃(2)∂kt Σ2 ε∼ ∇̃(2)∂k−1
t Λ; the highest order terms

in form 5 are ∂kt g, ∇∂ktX, and ∇̃∂kt u; the highest order terms in form 6 are ∂k+1
t u

and ∂k+1
t Λ. When pairing with ∂k+1

t Λ, all of these terms can be controlled using

Cauchy-Schwarz.

Therefore, we have proved

Ek[Λ](t) .Ek[Λ](0) +

∣∣∣∣∫ t

0

∫
Dτ

(�̃h∂
k
t Λ)(Qµ∇̃µ∂

k
t Λ) dydτ

∣∣∣∣(2.34)

+

∫ t

0

Ek[Λ](τ) · E εM [u,Λ](τ)r dτ.

2.6.2 Estimate on u

The strategy of estimating u is similar to that of Λ, except that we have an

additional boundary term.

By Lemma 2.2, we know that there is some integer r such that

Ek[u](t) . Ek[u](0) +

∫ t

0

Ek[u](τ) · E εM [u,Λ](τ)r dτ+

(2.35)
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+

∣∣∣∣∫ t

0

∫
Dτ

(�̃g∂
k
t u)(∂k+1

t u) dydτ

∣∣∣∣+

∣∣∣∣∫ t

0

∫
∂Dτ

(Pε∂kt u)(∂k+1
t u) dSdτ

∣∣∣∣ .
We need to bound the last two terms.

Controlling

∣∣∣∣∫ t

0

∫
Dτ

(�̃g∂
k
t u)(∂k+1

t u) dydτ

∣∣∣∣
We first analyze terms in (�̃g∂kt u)(∂k+1

t u) = Gε
k · (∂k+1

t u). As in the case of Λ, Gε
k

contains 6 types of terms, and we shall control each one of them.

Terms of form 1 in Gε
k. The highest order terms of form 1 in Gε

k are ∇∂kt g and

∇̃(2)∂k−1
t u. The analysis is very similar to that of the terms of form 1 in Hε

k, so we

shall highlight the differences. One major difference is that ∂kt Λ ≡ 0 on ∂D, while

∂k+1
t u is not, leaving us an extra boundary term to tackle. Another difference is that

Qµ∇̃µΛ contains spatial derivatives on Λ, but ∂k+1
t u only contains time derivatives,

making this part of the computation simpler. We now present the result.

As in the case of Λ, ∇̃(2)∂k−1
t u is of higher order than the energy, so we integrate

by parts to move one ∇̃y derivative onto ∂k+1
t u and one ∂t derivative onto ∇̃(2)∂k−1

t u.

The first part of this computation is similar to the case of Λ:

(F ij∇iJε∇jJε∂
k−1
t u)(∂k+1

t u)

=([F ij,∇iJε]∇jJε∂
k−1
t u)(∂k+1

t u) +∇iJε(F
ij∇jJε∂

k−1
t u)(∂k+1

t u)

=− (∇iF
ij)(∂jJε∂

k−1
t u)(∂k+1

t u) + ([F ij, Jε]∇i∇jJε∂
k−1
t u)(∂k+1

t u)

+∇iJε(F
ij∇jJε∂

k−1
t u)(∂k+1

t u).

The first two terms can be controlled by Cauchy-Schwarz. We will focus on the last

term. Integrating on [0, t]×D, we have∫ t

0

∫
Dτ
∇iJε(F

ij∇jJε∂
k−1
t u)(∂k+1

t u) dydτ

=−
∫ t

0

∫
Dτ

(F ij∇jJε∂
k−1
t u)∇iJε(∂

k+1
t u) dydτ
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+

∫ t

0

∫
∂Dτ

niJε(F
ij∇jJε∂

k−1
t u)(∂k+1

t u) dSdt.

The last term vanishes in the case of Λ. In our case here, we shall tackle it using

Lemma 2.21:∣∣∣∣∫ t

0

∫
∂Dτ

niJε(F
ij∇jJε∂

k−1
t u)(∂k+1

t u) dSdτ

∣∣∣∣
.
∫ t

0

∫
∂Dτ
|∇̃∂k−1

t u|2 dSdτ +

∫ t

0

∫
∂Dτ
|∂k+1
t u|2 dSdτ

.Eε
≤k−1[u](0) +Rη(E εk−1[u,Λ](t)) + ηE εk[u,Λ](t) +

∫ t

0

Ek[u](τ) dτ.

By choosing η > 0 small, we can absorb the term ηE εk[u,Λ](t) into the left hand side

of (2.27). All the remaining terms are of the desired form.

The other term,
∫ t

0

∫
Dτ (F

ij∇jJε∂
k−1
t u)∇iJε(∂

k+1
t u) dydτ , can be treated similarly

as in the case of Λ, where the idea is to move one ∂t derivative away from ∇̃∂k+1
t u.

We have

(F ij∇jJε∂
k−1
t u)∇iJε(∂

k+1
t u)

=(F ij∇jJε∂
k−1
t u)∂t(∇iJε∂

k
t u)

=∂t
[
(F ij∇jJε∂

k−1
t u)(∇iJε∂

k
t u)
]
− ∂t(F ij)(∇jJε∂

k−1
t u)(∇iJε∂

k
t u)

− (F ij)(∇jJε∂
k
t u)(∇iJε∂

k
t u).

Integrating on [0, t]×D, we have∫ t

0

∫
Dτ

(F ij∇jJε∂
k−1
t u)∇iJε(∂

k+1
t u) dydτ

=

∫
Dt

(F ij∇jJε∂
k−1
t u)(∇iJε∂

k
t u) dy −

∫
D0

(F ij∇jJε∂
k−1
t u)(∇iJε∂

k
t u) dy

−
∫ t

0

∫
Dτ
∂t(F

ij)(∇jJε∂
k−1
t u)(∇iJε∂

k
t u) dydτ

−
∫ t

0

∫
Dτ

(F ij)(∇jJε∂
k
t u)(∇iJε∂

k
t u) dydτ.
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As in the case of Λ, the first term can be absorbed into the left hand side of (2.35)

by using Cauchy-Schwarz Inequality and choosing a small δ (which is independent of

ε); the other two terms can be controlled using Cauchy-Schwarz Inequality directly.

The computation is precisely the same as in the case of Λ, so we omit the details.

Hence, we have finished controlling∫ t

0

∫
Dτ

(∇∂kt g)(∂k+1
t u) dydτ.

The term (∇̃(2)∂k−1
t u)(∂k+1

t u) has also been controlled in the analysis. Thus, we have

finished estimating the terms in Gε
k that take form 1.

Terms of form 2 – 6 in Gε
k

The highest order terms of form 2 are ∂k+1
t g and ∇̃∂kt u; the highest order terms

of form 3 are ∇∂kt g and ∇̃∂k−1
t u. All are either controlled, or are of lower order than

those in 1.

The highest order terms of form 4 are ∂kt g, ∇∂ktX, and ∇̃∂kt w. The former two

have been estimated in the case of Λ, so we shall focus on the third. Recall that ∂tw

is a linear combination of terms of the form 1
Jεu0 g(∇X)(∇̃u)w. Thus, ∂kt w is a linear

combination of terms of the form

1

(Jεu0)r
(∂k1
t Jεu

0)(∂k2
t g)(∇∂k3

t X)(∇̃∂k4
t u)(∂k5

t w)

where r is a positive integer, and k1 + · · ·+ k5 = k− 1. Therefore, the highest order

terms in ∇∂kt w are: ∇̃∂k−1
t u, ∇∂k−1

t g, ∇(2)∂k−1
t X, ∇̃(2)∂k−1

t u, ∇∂k−1
t w. We have

shown that the first three can be controlled. The last can be controlled by induction.

The most difficult term is ∇̃(2)∂k−1
t u, but we have shown that when paired with

∂k+1
t u, this term can also be bounded. Therefore, ∇̃∂kt w is controlled as required.

The highest order terms of form 5 are ∂kt g, ∇∂ktX, ∇̃∂kt Σ2 ε∼ ∇̃∂k−1
t Λ, and ∂kt Λ.

It is clear that all have their L2(Dt) norms controlled.
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The highest order terms of form 6 are ∂kt g, ∇∂ktX, ∂kt Σ2 ε∼ ∂k−1
t Λ, and ∇̃∂kt Λ. It

is again clear that all have their L2(Dt) norms controlled.

Therefore, we have shown that∣∣∣∣∫ t

0

∫
Dτ

(�̃g∂
k
t u)(∂k+1

t u) dydτ

∣∣∣∣ . Eεk[u,Λ](0) +

∫ t

0

PM(Eεk[u,Λ](τ)) dτ

as claimed in (2.27).

Controlling

∣∣∣∣∫ t

0

∫
∂Dτ

(Pε∂kt u)(∂k+1
t u) dSdτ

∣∣∣∣
It remains to treat the boundary term∣∣∣∣∫ t

0

∫
∂Dτ

(Pε∂kt u)(∂k+1
t u) dSdτ

∣∣∣∣ .
Recall that F ε

k contains 5 types of terms, and we shall deal with each type.

Terms of form 1 in F ε
k . The highest order term of type 1 in F ε

k is ∂k+1
t u, which is

clearly in L2(∂Dt).

Terms of form 2 in F ε
k . The terms of type 2 needs some more analysis. The

highest order terms are ∇̃∂kt Σ2 ε∼ ∇̃∂k−1
t Λ, ∂kt g, ∇̃∂k−1

t u. The first type, ∇̃∂k−1
t Λ, is

already in the energy.

We know that ∂kt g = G∇̃∂k−1
t u where G is a function such that

sup
0≤t≤T

‖G‖L∞(Dt) + ‖∇G‖L∞(Dt) . E εk−1(T )r

for some integer r. Therefore, using Lemma 2.21, we obtain∫ t

0

∫
∂Dτ

G(∇̃∂k−1
t u)(∂k+1

t u) dSdτ

≤
∫ t

0

∫
∂Dτ
|∇̃∂k−1

t u|2 dSdτ +

∫ t

0

∫
∂Dτ
|∂k+1
t u|2 dSdτ

.Eε
≤k−1[u](0) +Rη(E εk−1[u,Λ](t)) + ηE εk[u,Λ](t) +

∫ t

0

Ek[u](τ) dτ.

As before, we choose η > 0 small so that ηE εk[u,Λ](t) can be absorbed into the left

hand side of the energy, and the rest are of the desired form. The only case left for
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terms of form 2 is then ∇̃∂k−1
t u. But the analysis on ∂kt g already contains an analysis

on this term. Hence, terms of form 2 have been shown to be bounded.

Terms of form 3 – 5 in F ε
k . The highest order terms in form 3 are ∂kt u, ∂kt g, ∂kt w,

∇̃∂kt Σ2. The only term that hasn’t been shown to be bounded is ∂kt w. The highest

order term in ∂kt w is ∇̃∂k−1
t u, and we have bounded its L2(∂D) norm.

The highest order terms in form 4 is ∇̃∂kt Λ, and that of form 5 is ∂k+1
t u. Both

are clearly bounded.

Therefore, we have completed the estimate on u.

Summing the energy estimates on u and Λ, we have thus obtained an energy

estimate on u and Λ that is uniform in ε.

2.7 Conclusion on the a priori Estimate

In summary, in this section, we proved an a priori estimate for the mollified

equations (1.56)-(1.59). One important component is the trade-off between spatial

and time derivatives, which enables us to convert the energy E into energies based

on Sobolev norms.

As remarked before, if we set Jε = Id, then we obtain the a priori estimate for

the un-mollified system of equations (1.42)-(1.48). If we set Jε = Id and let D = B,

then we obtain the a priori estimate for the un-mollified system of equations on a

bounded domain.

The a priori estimate plays an important role in the proof for existence and

uniqueness of solutions, which is the topic of the next chapter.



CHAPTER III

Existence of Solution on an Unbounded Domain

Having obtained the uniform bound on energy, we are now ready to address the

existence and uniqueness of solution to the original equation. In this section, we

let M be the same integer that appeared in Theorem 2.1. That is, M is the total

number of ∂t that we commute with �̃g when deriving the a priori estimate on u.

Since we do not aim at achieving the lowest regularity result in this dissertation, we

may assume, for instance, M = 10.

3.1 Existence of Solution to the Mollified Equations

We first show that for any fixed ε > 0, the mollified system of equations (1.56-

1.59) has a solution. To do so, we need to prove that the right hand side of these

equations are Lipschitz continuous with respect to a norm that we will specify. The

precise statement is in Proposition 3.4.

Before stating the proposition, we first describe why mollification makes the sys-

tem an ODE. This is because for ε > 0, mollified derivatives can be annihilated by

orders of 1/ε, as described in the following Lemma.

Lemma 3.1. Let k ≥ 0 be an integer. Then for any φ ∈ L2(R3), we have

(3.1) ‖∇kJεφ‖L2 .
1

εk
· ‖φ‖L2 ,

73
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where the constant does not depend on φ or ε.

In particular, by Sobolev embedding, we also have

(3.2) ‖Jεφ‖L∞ .
1

ε2
‖φ‖L2 .

Proof. We have

‖∇kJεφ‖2
L2 .

∫
|ξ|≤1/ε

|ξ|2k|φ̂(ξ)|2 dξ

≤ 1

ε2k

∫
|ξ|≤1/ε

|φ̂(ξ)|2 dξ.

This is the desired result.

Now we are ready to provide the ODE system.

3.2 The ODE System

Definition 3.1. We define the operators on u and Λ. We write

Φε(u, u′)(y) :=


1

(Jεu0)2

(
Pεu− 1

2
anαJε

(
gα0u′ + gαj∇̃ju

))
if y ∈ ∂R3

+

1
g00

[
−(∂tg

00)u′ − (∂tg
0j)∇̃ju− g0j(∇̃ju

′)

−∇̃j(g
0ju′)− ∇̃i(g

ij∇̃ju) + �̃gu
]

if y ∈ R3
+.

Ψε(Λ,Λ′)(y) :=


0 if y ∈ ∂R3

+

1
h00

[
−(∂th

00)Λ′ − (∂th
0j)∇̃jΛ− h0j(∇̃jΛ

′)

−∇̃j(h
0jΛ′)− ∇̃i(h

ij∇̃jΛ) + �̃hΛ
]

if y ∈ R3
+.

Definition 3.2. To simplify the notation, we suppress the dependence of u,Λ on ε.

We define the ODE system as follows:

d

dt
u(0) = u(1)(3.3)

d

dt
u(k+1) = Φε(u(k), u(k+1)) ∀k = 0, · · · ,M(3.4)
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d

dt
Λ(0) = Λ(1)(3.5)

d

dt
Λ(k+1) = Ψε(Λ(k),Λ(k+1)) ∀k = 0, · · · ,M(3.6)

d

dt
Σ2 = Jε

(
1

Jεu0
JεΛ

)
(3.7)

d

dt
Xj = Jε

(
Jεu

j

Jεu0

)
(3.8)

d

dt
wµν = Jε

(
1

Jεu0

(
−gδγ(∇̃δX

µ)(∇̃γuα)wαν + gγδ(∇̃δX
ν)(∇̃γuα)wαµ

))
.(3.9)

Symbolically, we write u := (u(0), · · ·u(M+1)), Λ := (Λ(0), · · · ,Λ(M+1)), and

(3.10)
d

dt



u

Λ

Σ2

X

w


= Fε



u

Λ

Σ2

X

w


.

In the definition of Φε and Ψε, the formula for Pεu(M), �̃gu(M), and �̃hΛ(M) are

replaced by F ε
M , Gε

M , Hε
M respectively.

Remark 9. Note that we did not define higher order derivatives of Σ2, X, w, so when-

ever we encounter higher order derivatives of Σ2, X, w in the formulae of F ε
M , G

ε
M , H

ε
M ,

we replace them with functions of u(k) and Λ(k). For instance, if ∂kt g contains a term

∇̃∂jtu, then we replace it with ∇̃u(j).

Remark 10. Note that in fact, Φε(u(k), uk+1) and Φε(Λ(k),Λ(k+1)) depends also on

the lower order terms u(j),Λ(j) for j = 0, · · · , k − 1. We chose not to write the full

dependency so that the definition has a clearer format.

Definition 3.3. We consider the space B with norm

∥∥(u,Λ,Σ2, X, w)
∥∥
B(3.11)
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=

(
M∑
k=0

‖u(k)‖H1(R3
+) + ‖u(k+1)‖L2(∂R3

+) + ‖Λ(k)‖H1(R3
+) + ‖Λ(k+1)‖L2(∂R3

+)

)

+ ‖u(M+1)‖L2(R3
+) + ‖Λ(M+1)‖L2(R3

+)

+ ‖Σ2‖H1(R3
+) + ‖X‖H1(R3

+) + ‖w‖H1(R3
+).

We denote the right hand side of (3.3)-(3.9) by Fε. We need to show that Fε is

a map from B to B.

Lemma 3.2. Let (u,Λ,Σ2, X, w) ∈ B satisfy (3.3)-(3.9). Assume (u0)(0) ≥ 2c > 0

at t = 0. Then there is some T ε > 0 such that for all t ∈ [0, T ε], we have

Jε(u
0)(0) ≥ c > 0.

Proof. We have

Jε(u
0(t, y))(0) = Jε(u

0(0, y))(0) +

∫ t

0

d

dt
Jε(u

0(τ, y))(0) dτ

≥ Jε(u
0(0, y))(0) − t ·

∥∥Jε(u0)(1)
∥∥
L∞(R3

+)
.

By Lemma 3.1, ∥∥Jε(u0)(1)
∥∥
L∞(R3

+)
.

1

ε
‖u(1)‖H1(R3

+),

so for t small, we have the desired result.

Lemma 3.3. Let (u,Λ,Σ2, X, w) ∈ B. Then

Fε(u,Λ,Σ2, X, w) ∈ B.

Proof. The idea is that by Lemma 3.1, we can control higher order derivatives by

lower order derivatives (compensated with powers of 1/ε).

We first estimate X,w, g, h in L∞ norm. Recall that ∂tX
j = Jε

(
Jε(uj)(0)

Jε(u0)(0)

)
. Hence,

∥∥∇(`)∂tX
∥∥
L∞(R3

+)
.

1

ε`+2

∥∥Jεu(0)
∥∥
L2(R3

+)
.
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Similarly,

∥∥∇(`)∂ktX
∥∥
L∞(R3

+)
.

1

ε`+2

∥∥Jεu(k)
∥∥
L2(R3

+)
.

Thus, for all ` ≥ 0 and for all k ≤M + 1, we have ∇(`)∂ktX ∈ L∞. Similar estimates

hold for w, g, h.

Next, we may estimate the right hand side of equations (3.3)-(3.9). The most

difficult cases are for d
dt
u(M+1) and d

dt
Λ(M+1), so we shall focus on these two highest

order equations. The lower order equations will follow similarly.

Interior terms. We need to prove that Φε(u(M), u(M+1)) ∈ L2(R3
+). The equation

in the interior part of Φε(u(M), u(M+1)) contains terms of the forms

(∇`1∂r1t φ1) · · · (∇`m∂rmt φm) · (∇̃(p)f (k))

and

(∇`1∂r1t φ1) · · · (∇`m∂rmt φm) · (u(M+1))

where (∇`1∂r1t φ1) · · · (∇`m∂rmt φm) are terms that can be bounded in L∞ norm by the

first paragraph in the proof, and f ∈ {u,Λ} represents the highest order term, with

p ≤ 2 and k ≤M + 1. But by Lemma (3.1),

‖∇̃(p)f (k)‖L2(R3
+) .

1

ε2
‖f (k)‖L2(R3

+),

so overall, Φε(u(M), u(M+1)) ∈ L2(R3
+). The estimate for Ψε(Λ(M),Λ(M+1)), as well as

the right hand side of equations for Σ2, X, w, are similar.

Boundary terms. The boundary condition for Λ is easy to see, so we focus the

discussion on u(M+1). The boundary definition of Φε(u(M), u(M+1)) contains three

types of terms:

• 1
(Jε(u(0))0)2Pε

(
u(M)

)
= 1

(Jε(u(0))0)2F
ε
k . By Lemma 3.2, we are able to control

1
(Jε(u(0))0)2 in L∞ norm, so it suffices to analyze the terms in F ε

k . For the mollified
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terms such as ∇̃ju
(k), we can simply use the Trace Theorem (Lemma B):

∥∥∥∇̃ju
(k)
∥∥∥
L2(∂R3

+)
.
∥∥∥∇̃ju

(k)
∥∥∥
H1(R3

+)
≤ 1

ε

∥∥u(k)
∥∥
H1(R3

+)
.

The only un-mollified terms are φ·u(M+1) where φ is a lower order term that can

be controlled in L∞ norm. Then clearly we may bound this term in L2(∂R3
+).

• anαJε(gα0u(M+1)). Again, the control follows from ‖u(M+1)‖L2(∂R3
+).

• anαJε(gαj∇̃ju
(M)). We may bound this term using the Trace Theorem, similar

to what we did in the first bullet point.

Therefore, Fε is a map from B to B.

Next, we shall prove that Fε is Lipschitz continuous, which will enable us to prove

an existence and uniqueness result of the ODE system.

Proposition 3.4. Let Or := {φ ∈ B : ‖φ‖B ≤ r}. There is a constant C2 > 0 (which

depends on ε and r), such that for any φ, ψ ∈ Or, we have

(3.12) ‖Fε(φ)− Fε(ψ)‖B ≤ C2‖φ− ψ‖B.

Proof. Note that the formula for components of Fε are sums of terms of the form

(∇̃a1φ1) · · · (∇̃apφp)

where p > 0 is an integer, a1, · · · , ap ∈ {0, 1, 2}, and

φ1, · · · , φp ∈ {u(k),Λ(k), ∂kt w, ∂
k
tX, ∂

k
t g, ∂

k
t h : k ≤M + 1}.

Therefore, we may write the difference using the standard triangular trick

(∇̃a1φ1) · · · (∇̃apφp)− (∇̃a1ψ1) · · · (∇̃apψp)



79

= (∇̃a1(φ1 − ψ1))(∇̃a2φ2) · · · (∇̃apφp) + (∇̃a1ψ1)(∇̃a2(φ2 − ψ2))(∇̃a3φ3) · · · (∇̃apφp)+

+ · · ·+ (∇̃a1ψ1) · · · (∇̃ap−1ψp−1)(∇̃ap(φp − ψp)).

By Lemma 3.1, we can again control the terms ∇̃ai(φi − ψi) in ‖ · ‖B and the non-

difference terms in L∞. This gives the desired result.

Next, we appeal to the standard ODE existence and uniqueness theory (see, for

instance, [11]).

Lemma 3.5. Let X be a Banach space, ψ0 ∈ X, B(ψ0, r) = {φ ∈ X : ‖φ− ψ0‖X ≤

r}. Let I = [−T, T ]. Consider the ODE system

(∗) d

dt
φ = F (φ(t)), φ(0, y) = φ0(y).

Assume that F : B(ψ0, r)→ X satisfies the following conditions:

1. There is a constant L <∞ such that

‖F (φ)− F (ψ)‖X ≤ L‖φ− ψ‖X ∀φ, ψ ∈ B(φ0, r).

2. There is a constant K such that for all φ ∈ B(φ0, r),

‖F (φ)‖X ≤ K.

Let T0 < min{T, r/K}. Then the following are true.

1. For each φ0 ∈ B(ψ0, r −KT0), the ODE system (∗) has a unique solution on

the interval J = [−T0, T0].

2. The solution φ depends continuously on φ0, and φ and d
dt
φ are both jointly

continuous in (t, y).
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3. Let U be an open subset of X. Assume that ‖F (φ)−F (ψ)‖X ≤ L‖φ−ψ‖X for

all φ, ψ ∈ U . Let φ0 ∈ U . Then there is a maximal time of existence (−a, b)

(with possibly a, b =∞) such that either

lim sup
t↗b

‖F (φ(t))‖X =∞,

or

lim
t↗b

φ(t) := φ(b−) ∈ X exists, but φ(b−) /∈ U .

Proof. 1. Let Y := C(I, B(φ0, r)). We define

S(φ)(t) := φ0 +

∫ t

0

F (φ(τ)) dτ.

Note that if φ ∈ Y , then

‖S(φ)− φ0‖Y ≤
∣∣∣∣∫ t

0

‖F (φ(τ))‖X dτ
∣∣∣∣ ≤ |t|K,

so for t ∈ [−T0, T0], we know that S(φ) ∈ B(φ0, r). Thus, S : Y → Y .

Now, φ solves the ODE iff S(φ) = φ. We define φ0(t, y) ≡ φ0(y), and φn :=

S(φn−1). Then,

‖φn(t)− φn−1(t)‖X =

∥∥∥∥∫ t

0

F (φn−1(τ))− F (φn−2(τ)) dτ

∥∥∥∥
X

≤ L

∫ t

0

‖φn−1(τ)− φn−2(τ)‖X dτ,

so inductively,

‖φn(t)− φn−1(t)‖X

≤Ln−1

∫ t

0

∫ t1

0

· · ·
∫ tn−2

0

‖φ1(tn−2)− φ0(tn−2)‖X dtn−2 · · · dt1dt

≤ (Lt)n−1

(n− 1)!
‖φ1 − φ0‖Y .
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Now,

‖φ1 − φ0‖Y = sup
t∈I

∣∣∣∣∫ t

0

F (φ0) dτ

∣∣∣∣
≤ T‖F (φ0)‖X ≤ KT.

Therefore,

‖φn − φn−1‖Y ≤
KLn−1T n

(n− 1)!
,

and thus ∑
n

‖φn − φn−1‖Y <∞.

That is, φn is a Cauchy sequence in Y , and thus converges to come φ ∈

L∞(J,X) (uniformly in (t, y)). Hence, φ satisfies the integral form of the ODE:

φ(t) = φ0 +

∫ t

0

F (φ(τ)) dτ.

Thus φ(t) is differentiable in t and satisfies the differential form of the ODE.

To show that φ is unique, suppose φ and φ̃ are two solutions, and let e(t) =

‖φ(t)− φ̃(t)‖X . Then

e(t) ≤ K

∫ t

0

‖φ(τ)− φ̃(τ)‖X dτ

≤ K

∫ t

0

e(τ) dτ.

Since e(0) = 0, by Grönwall’s Inequality (Lemma B.5), we know that e(t) ≡ 0.

Thus φ is unique.

2. The continuity of φ follows since it is a uniform limit of continuous functions.

The continuity of d
dt
φ = φ0 + F (φ) follows since φ0 is continuous in y and F is

Lipschitz continuous.
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3. By uniqueness of local solution, it is clear there there is a maximal time of

existence for solution to the ODE (∗). Assume that

M := lim sup
t↗b

‖F (φ(t))‖X <∞.

Then for all t close to b, we know that ‖F (φ(t))‖X ≤ 2M , so for t, t̃ close to b,

we have

‖φ(t)− φ(t̃)‖X ≤ |t− t̃| · 2M.

Therefore, φ(b−) exists. If φ(b−) ∈ U , then by part 1, we may solve the system

(∗) with initial data φ(b−) and extend the solution on a nonzero interval beyond

b. Hence, it must be that φ(b−) /∈ U .

Hence, we conclude that for each ε > 0, the system of ODE (3.3) - (3.9) has

a unique solution on some time interval [0, T ε), where T ε is the maximal time of

existence according to Lemma 3.5. Our next goal is to appeal to Theorem 2.1 to

show that the solutions exist on an interval [0, T ] where T does not depend on ε. To

do so, we first show that the solution to the ODE system (3.3)-(3.9) in fact solves

the PDE system (1.56)-(1.59).

Lemma 3.6. Let (u,Λ,Σ2, X, w) be the solution to (3.3)-(3.9) on t ∈ [0, T ]. Then

u := u(0) and Λ := Λ(0) satisfy (1.56)-(1.59) on t ∈ [0, T ].

Proof. Let e := (u(0), · · · , u(M+1),Λ(0), · · · ,Λ(M+1))−(u, · · · , ∂M+1
t u,Λ, · · · , ∂M+1

t Λ).

Then e(0, y) ≡ 0 by the initial condition. Taking time derivative, we know that

d

dt
e1 =

d

dt
u0 − ∂tu = u(1) − ∂tu = e2

...
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d

dt
eM+2 =

d

dt
uM+1 − ∂M+1

t u = Φε
(
u(M), u(M+1)

)
−Φε

(
∂Mt u, ∂

M+1
t u

)
d

dt
eM+3 =

d

dt
Λ0 − ∂tΛ = Λ(1) − ∂tΛ = eM+4

...

d

dt
e2M+4 =

d

dt
ΛM+1 − ∂M+1

t Λ = Ψε
(
Λ(M),Λ(M+1)

)
−Ψε

(
∂Mt Λ, ∂M+1

t Λ
)
.

Recall that in Lemma 3.4, we showed that Fε is Lipschitz, so in particular, Φε and

Ψε are also Lipschitz, so

d

dt
‖e‖B ≤ C2‖e‖B.

Since ‖e(0, ·)‖B = 0 by the initial condition, e ≡ 0 by Gronwall, so u and Λ indeed

solve the PDE system on [0, T ].

We are now ready to show that the solutions to the PDE system exist on a

uniform time interval, and thus we are able to construct a solution to the original

un-mollified PDE system.

3.3 Convergence of Mollified Solutions

We first show that there is some T > 0, which does not depend on ε, such that

the mollified system of ODE has a unique solution for t ∈ [0, T ].

Lemma 3.7. There is a time T > 0 such that the solutions (uε,Λε, (Σ2)ε, Xε, wε)

are in C([0, T ],B) for all ε.

Proof. By the criterion for existence of solution (i.e. part 3 in Lemma 3.5), the

solution (uε,Λε) will cease to exist as t↗ T ε if and only if limt↗T ε EM [uε,Λε](t) =∞.

However, by Theorem 2.1, we know that EM [uε,Λε](t) depends only on the initial

data, which is uniform for all ε. Therefore, the time of existence T ε can be taken to

be independent of ε.



84

Thus, we have shown that there is some T > 0 independent of ε such that

uε,Λε ∈ C([0, T ],B) for all ε > 0, and such that there is a constant C3 so that

EM [uε,Λε](t) < C3 ∀t ∈ [0, T ] ∀ε > 0.

This enables us to extract a convergent subsequence from (uε,Λε). A key ingredient

in showing that the subsequence converges is to show that the right hand side of

the ODE system converges to the un-mollified system pointwisely as ε → 0. The

following Lemma will be useful.

Lemma 3.8. Let α > 0. Assume that there is some K > 0 such that ‖fε‖Hα+2 < K

for all ε, and

lim
ε→0
‖fε − f‖Hα+1 = 0.

Then

lim
ε→0
‖∇Jεfε −∇f‖Hα = 0.

In particular, if α ≥ 2, then by Sobolev embedding,

lim
ε→0
‖∇Jεfε −∇f‖L∞ = 0.

Proof. We know that

‖∇Jεfε −∇f‖Hα ≤ ‖∇Jεfε −∇fε‖Hα + ‖∇fε −∇f‖Hα

≤ ‖(Id−Jε)∇fε‖Hα + ‖fε − f‖Hα+1

≤ ε‖fε‖Hα+2 + ‖fε − f‖Hα+1 .

The claim then follows from sending ε→ 0.

We will use Arzela-Ascoli Theorem to extract a subsequence from (uε)ε. We

record the theorem as follows.
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Lemma 3.9. [Arzela-Ascoli Theorem] Let (X, d) be a compact metric space, B be a

Banach space, and C(X,B) be the space of bounded continuous functions f : X →

B. Let F ⊂ C(X,B) be a family of continuous functions satisfying the following

properties:

1. For each x ∈ X, {f(x) : f ∈ F} is precompact in B. That is, every sequence

in {f(x) : f ∈ F} has a convergent subsequence.

2. F is equicontinuous for every x0 ∈ X. That is, for all ε > 0, there is some

δ(x0, ε) > 0 such that for all f ∈ F ,

‖x0 − x‖X ≤ δ(x0, ε) =⇒ ‖f(x0)− f(x)‖B ≤ ε.

Then F is precompact. That is, every sequence (fn)n≥1 in F has a subsequence that

converges uniformly in X to a function in C(X,B).

Theorem 3.10. There is a solution (u,Λ) to (1.42)-(1.45) on an interval I = [0, T ]

with T > 0. Moreover, (u,Λ) possess the same regularity as their initial data.

Proof. We will prove the claim in a few steps.

Step 1. We first show that there is a solution (u,Λ,Σ2, X, w) to the un-mollified

system of equations. For every ε, we know that

∑
0≤`≤4

‖∂`tuε‖C(I,HM/2+1−`) + ‖∂`tΛε‖C(I,HM/2+1−`) < C3.(3.13)

We will use Arzela-Ascoli Theorem (Lemma 3.9) to extract a subsequence from

(uε)ε. To do so, we verify that:

1. (∂`tu
ε)ε are equicontinuous in t for ` ≤ 2. This is because

‖∂`tuε(t1)− ∂`tuε(t2)‖HM/2−` ≤ ‖∂`+1
t uε‖L∞(I,HM/2−`) · |t1 − t2| < C3|t1 − t2|.
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2. For any t, (∂`tu
ε)ε is precompact in HM/2−`. This is because HM/2+1−` ⊂⊂

HM/2−`.

Therefore, by Arzela-Ascoli Theorem, there is a subsequence (∂`tu
εν ) that converges

in C(I,HM/2−`). That is, there are some u(`) ∈ C(I,HM/2−`) for ` = 0, 1, 2 such that

(3.14)
∑

0≤`≤2

‖∂`tuεν − u(`)‖C(I,HM/2−`) → 0 as ν → 0.

To simplify the notation, we restrict to the convergent subsequence and relabel ε = εν .

To prove that (u,Λ) satisfy the un-mollified equation, we first prove that ∂tu
(0) = u(1)

and ∂tu
(1) = u(2). The proof for both claims are very similar, so we only show the

former one in detail.

Let B′ = HM/2−1. We want to show that for any t ∈ [0, T ) and for any η > 0,

there is some δ > 0 such that

(3.15) 0 < |∆t| < δ =⇒
∥∥∥∥ 1

∆t

(
u(0)(t+ ∆t)− u(0)(t)− u(1)(t)

)∥∥∥∥
B′
< η.

Fix some ∆t 6= 0. We write the difference in a symmetric form:∥∥∥∥ 1

∆t

(
u(0)(t+ ∆t)− u(0)(t)

)
− u(1)(t)

∥∥∥∥
B′

≤
∥∥∥∥ 1

∆t
((uε)(t+ ∆t)− (uε)(t))− ∂tuε(t)

∥∥∥∥
B′

+
∥∥∂tuε − u(1)

∥∥
B′

+

∥∥∥∥ 1

∆t

(
(uε)(t+ ∆t)− u(0)(t+ ∆t)

)∥∥∥∥
B′

+

∥∥∥∥ 1

∆t

(
(uε)(t)− u(0)(t)

)∥∥∥∥
B′

=I1 + I2 + I3 + I4.

Since ‖∂2
t u

ε‖L∞(I,B′) < C3 for all ε, we know that

I1 ≤ C3|∆t|,

and clearly

I3, I4 ≤
1

∆t
‖uε − u(0)‖L∞(I,B′).
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Thus, by choosing ε = ε(∆t) small, we can arrange that

I1 + · · ·+ I4 < η.

This shows that ∂tu
(0) = u(1) in B′. In particular, since M/2− 1 > 2, we know that

the two functions agree pointwisely. The proof for ∂tu
(1) = u(2) is almost identical,

so we refrain from repeating ourselves.

Next, we show that the right hand side of the ODE also converges to the un-

mollified equation. The proof is again very similar for u(0), u(1) and u(2), so we only

prove the most difficult case of u(2). That is, we need to show that

1

(gε)00
·
(
−(∂t(g

ε)00)∂tu
ε − (∂t(g

ε)0j)∇̃ju
ε

−(gε)0j(∇̃j∂tu
ε)− ∇̃j((g

ε)0j∂tu
ε)− ∇̃i((g

ε)ij∇̃ju
ε)
)(3.16)

+
1

(gε)00
·
(

(gε)αβ∇̃α((Xε)µ)∇̃β((wε)νµ)

−(gε)αβ∂α(Xε)ν
(

(logG)′′(∇̃β(Σ2)ε)Λε + (logG)′(∇̃βΛε)
))

converges to

1

g00

(
−(∂tg

00)∂tu− (∂tg
0j)∇ju− g0j(∇j∂tu)−∇j(g

0j∂tu)−∇i(g
ij∇ju)

)
(3.17)

+
1

g00

(
gαβ∇α(Xµ)∇β(wνµ)− gαβ∂αXν

(
(logG)′′(∇βΣ2)Λ + (logG)′(∇βΛ)

))
in L∞(I,HM/2−1) as ε→ 0. Here, notice that by Lemma 2.12,

g = g(X, u,∇X,∇u)

is a rational function with strictly positive denominator, and thus has bounded

derivatives of all order. Thus, we can write the difference using the triangular trick,

similar to the proof of Proposition 3.4. By Lemma 3.8, we have estimates that are

of the form, for instance,

‖∇̃uε −∇u‖HM/2−1 ≤ ε‖uε‖HM/2+1 + ‖uε − u‖HM/2 ,
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which, combined with (3.14), proves the convergence.

Thus, the limit (u,Λ) solves the un-mollified problem (1.42)-(1.45) on the interval

[0, T ].

Step 2. We now prove that (u,Λ) enjoy the same regularity as their initial con-

ditions.

For each t, since uε,Λε are uniformly bounded in HM/2+1, upon passing to a

subsequence, they also have a weak limit in HM/2+1. But we have shown that

they converge to (u,Λ) pointwisely, so the weak limit must be equal to the strong

limit, thus showing that for each t, the functions (u,Λ,Σ2, X, w) ∈ B as well. This

establishes the spatial regularity of (u,Λ,Σ2, X, w). To show the regularity in time,

recall that in Step 1, we showed that u(`) ∈ C([0, T ], HM/2−`) for ` ≤ 2. Repeating

the same argument, we can establish the time regularity of u up to ∂
M/2−2
t u; that is,

∂`tu ∈ C([0, T ], HM/2−`) for ` ≤ M/2 − 2. To establish the highest order regularity,

recall from Lemma 2.8 - Lemma 2.10, the highest order terms in �g∂
M/2−2
t u and

�h∂
M/2−2
t Λ are ∇(2)∂

M/2−3
t u and ∇(2)∂

M/2−3
t Λ respectively, so GM/2−2, HM/2−2 ∈

L2([0, T ], H1)∩H1([0, T ], L2). By the regularity of solutions to hyperbolic equations1,

we see that ∂mt ∂
M/2−2
t u, ∂mt ∂

M/2−2
t Λ ∈ L∞([0, T ], H2−m) for m = 0, 1, 2.

Thus, we have shown the regularity of the highest order terms as well.

3.4 Uniqueness of Solution

Finally, we prove that the solution, which was shown to exist, is unique. The proof

takes the difference between two solutions, and show that the difference is subject

to a system of equation that is similar to the original system. The uniqueness thus

follows from the a priori estimate applied to the difference of two solutions, as well

1shown, for instance, in [3]
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as the regularity of each individual solution.

Theorem 3.11. Assume that (u,Λ, X, w,Σ2) solves the systems (1.39)-(1.48) on

some time interval [0, T ] ans satisfies EM [u,Λ](T ) <∞. Then the solution is unique.

Proof. We first need to obtain an energy estimate for the solution to the exact

equation. We in fact consider the energy EM−1[u,Λ], so that the regularity required

in Lemma 2.21 - 2.5 are satisfied.

As was remarked before, by setting Jε = Id, our a priori estimate in Theorem

2.1 would apply to the solution to the exact equation. Assume that there are two

solutions (u,Λ) and (ũ, Λ̃) with the same initial condition, and there is some C1 > 0,

T > 0 such that

EM [u,Λ](T ) < C1, EM [ũ, Λ̃](T ) < C1.

By Theorem 2.1, we know that there is some C2 > 0 such that

EM−1[u,Λ](T ) < C2, EM−1[ũ, Λ̃](T ) < C2.

We consider equations (1.42)-(1.45); that is,

∂2
t u = Φ(u, ∂tu), ∂2

t ũ = Φ(ũ, ∂tũ).

Note that Proposition 3.4 does not apply here since the Lipschitz constant depended

on ε. However, we can achieve a similar result with a reduction in regularity. Let

e = u− ũ, δ = Λ− Λ̃. Then

∂2
t e = Φ(u, ∂tu)−Φ(ũ, ∂tũ) := Fu, ∂2

t δ = Φ(Λ, ∂tΛ)−Φ(Λ̃, ∂tΛ̃) := FΛ.

Here, we use the triangular trick to reduce Fu to a function in terms of e. In the

interior, Fu is a linear combination of terms of the forms:

1. gij

g00∇i∇je.
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2. F (φ1, · · · , φm)·(∂`te), where F is a rational function with bounded derivatives of

all orders, φi ∈ {∂kt∇pf : f = g, g̃, X, X̃,Σ2, Σ̃2, w, w̃, u, ũ,Λ, Λ̃, 0 ≤ k, p ≤ 2},

` ∈ {0, 1}.

3. F (φ1, · · · , φm)·(∇e), where F is a rational function with bounded derivatives of

all orders, φi ∈ {∂kt∇pf : f = g, g̃, X, X̃,Σ2, Σ̃2, w, w̃, u, ũ,Λ, Λ̃, 0 ≤ k, p ≤ 2}.

On the boundary, Fu is a linear combination of terms of the form:

1. 1
2
nαg

αβ∇βe.

2. F (φ1, · · · , φm)·(∂`te), where F is a rational function with bounded derivatives of

all orders, φi ∈ {∂kt∇pf : f = g, g̃, X, X̃,Σ2, Σ̃2, w, w̃, u, ũ,Λ, Λ̃, 0 ≤ k, p ≤ 2},

` ∈ {0, 1}.

Therefore, e satisfies an equation of the form

(3.18)

 (u0)2∂2
t e+ 1

2
nαg

αβ∇βe = F1 on [0, T ]× ∂R3
+

�ge = F2 in [0, T ]× R3
+,

Thus, using Lemma 2.2, and recalling that e, ∂te ≡ 0 at t = 0, we can show that∫
R3

+t

|∇t,ye|2 dy +

∫
∂R3

+t

|∂te|2 dS .
∫ t

0

∫
R3

+τ

F2 · ∂te dydτ +

∫ t

0

∫
∂R3

+τ

F1 · ∂te dSdτ.

Now, by Lemma B.4, we may bound terms of the form F (φ1, · · · , φm) in the definition

of F1 and F2 by Cr
2 for some integer r. Thus, by Gronwall’s inequality,∫
R3

+t

|∇t,ye|2 dy +

∫
∂R3

+t

|∂te|2 dS ≡ 0 ∀t ∈ [0, T ].

To estimate FΛ, we note that δ also satisfies an equation of the form

(3.19)

 δ = 0 on I × ∂R3
+

�hδ = G in I × R3
+,

where G is a linear combination of terms of the forms:
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1. F (φ1, · · · , φm)·(∂`tδ), where F is a rational function with bounded derivatives of

all orders, φi ∈ {∂kt∇pf : f = g, g̃, X, X̃,Σ2, Σ̃2, w, w̃, u, ũ,Λ, Λ̃, 0 ≤ k, p ≤ 2},

` ∈ {0, 1}.

2. F (φ1, · · · , φm)·(∇δ), where F is a rational function with bounded derivatives of

all orders, φi ∈ {∂kt∇pf : f = g, g̃, X, X̃,Σ2, Σ̃2, w, w̃, u, ũ,Λ, Λ̃, 0 ≤ k, p ≤ 2}.

Again, using Lemma 2.3, we can show that∫
R3

+t

|∇t,yδ|2 dy .
∫ t

0

∫
R3

+τ

F · ∂tδ dtdτ,

and we may bound ‖F (φ1, · · · , φm)‖L∞(I×R3
+) by Cr

2 for some integer r. By Gronwall’s

inequality again, we can show that∫
R3

+t

|∇t,yδ|2 dy ≡ 0 ∀t ∈ [0, T ].

This shows the uniqueness of the solution (u,Λ).

In conclusion, we utilized the a priori estimate in Chapter II to establish the local

well-posedness result for equations (1.42)-(1.48) on the unbounded domain D = R3
+.

We furthermore showed that the solutions enjoy the same regularity as their initial

data. This proves Theorem 1.1 with Ω0 is unbounded.



CHAPTER IV

Linear Equation on a Bounded Domain

We have established the local well-posedness of the system of equations (1.42)-

(1.45) when the initial domain Ω0 is unbounded. In this section, we prove a similar

result, but for a bounded domain Ω0. That is, we consider the Lagrangian coordinate

X : Ω→ [0, T ]×B, X(t, ·) : Ωt → B,

where B := {y ∈ R3 : |y| ≤ 1}. Our notations will be the same as the unbounded

case.

The strategy of the proof will be different. We will establish an a priori estimate

for the un-mollified system only, and adapt the proof for existence in [10] to our

system of equations. That is, we prove existence by considering the linear system,

and then use an iteration on the linear system to create a solution to the fully

nonlinear system of equations.

Remark 11. Note that by a linear system, we mean the system of equations with

given coefficients and known right hand side. That is, we replace the coefficients in

�g and �h, as well as the functions on the right hand side of the equations, with

known functions. We do not linearize the equations around a certain solution.

We shall start with an a priori estimate that is very similar to Theorem 2.1.

92
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Proposition 4.1. Assume that u, Λ, Σ2, w solve (1.42)-(1.48) on [0, T ]×B, with

EM [u,Λ](T ) ≤ C1

for some integer M and constant C1. Denote

(4.1) EM [u,Λ](T ) := EM [u,Λ](T ) + sup
0≤t≤T

∑
k+2p≤M+2

∥∥∂kt u∥∥2

Hp(R3
+t

)
+
∥∥∂kt Λ

∥∥2

Hp(R3
+t

)
.

Then there is some polynomial PM with non-negative coefficients such that if

T > 0 is small (depending only on C1 and EM(0)), then for all t ∈ [0, T ],

(4.2) EM [u,Λ](t) ≤ EM [u,Λ](0) +

∫ t

0

PM(EM [u,Λ](τ)) dτ

In particular, (by, say, Lemma 2.15), we know that there is a time interval [0, T ],

where T > 0 depends only on the initial data, such that

(4.3) EM [u,Λ](T ) . EM [u,Λ](0).

Proof. The proof is identical to that of Theorem 2.1 by replacing Jε with Id and D

with B. We omit the details.

The next task is then to establish existence. As remarked earlier, we use a strategy

that is similar to that in [10]: we consider the linear equation, and show that each

linear equation admits a unique solution.

By linear equation, we mean the system (1.42)-(1.45) with g and h replaced by

some known function on the left hand side, and X,w,Σ2,Λ, u replaced by known

functions on the right hand side. We seek to first obtain a weak solution to this

system of linear equations. The weak formulation is motivated by [10] and the

section on linear hyperbolic equations in [3].
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4.1 Existence of Solution u

We will establish the existence of solution u by Galerkin approximation, which

calls for a weak formulation of the problem first. This is our next goal.

4.1.1 Weak Formulation

Let φ : B → R be a smooth function, and θ ∈ C2(B) satisfies (u0)2∂2
t θ + 1

2
anαg

αβ∇βθ = f on ∂B

�gθ = q in B.

Then ∫
Bt

(�gθ)φ dy

=

∫
Bt

∇α(gαβ∇βθ) · φ dy +

∫
Bt

1

2
(∇α log |g|)gαβ(∇βθ)φ dy

=

∫
Bt

∂t(g
0β∇βθ)φ dy −

∫
Bt

gjβ∇βθ∇jφ dy + 2

∫
∂Bt

1

a

(
f − (u0)2∂2

t θ
)
φ dS

+

∫
Bt

1

2
(∇α log |g|)gαβ(∇βθ)φ dy.

Regrouping terms involving derivatives of θ and φ, we have

∫
Bt

qφ dy −
∫
∂Bt

2

a
fφ dS

(4.4)

=

∫
Bt

∂2
t θ · g00φ dy −

∫
∂Bt

∂2
t θ ·

2(u0)2

a
φ dS

+

∫
Bt

∂tθ ·
[
(∂tg

00) +
1

2
(∇α log |g|)g0α − (∇jg

0j)

]
φ dy +

∫
Bt

∂tθ ·
(
−2g0j

)
∇jφ dy

+

∫
∂Bt

∂tθ · (njg0j)φ dS

+

∫
Bt

∇jθ ·
[
(∂tg

0j) +
1

2
(∇α log |g|)gαj

]
φ dy +

∫
Bt

∇jθ ·
(
−gij

)
∇iφ dy.
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In the rest of this section, define1

〈θ, φ〉 :=

∫
B

θφ dy = pairing in L2(B)

⟪θ, φ⟫ :=

∫
∂B

θφ dS = pairing in L2(∂B)

(θ, φ) := pairing between (H1(B))′ and H1(B),

and

γ :=
2(u0)2

a
.

We define the bounded linear map Φ : H1(B)→ (H1(B))′:

(4.5) (Φ(θ), φ) :=
〈
−g00θ, φ

〉
+ ⟪γθ, φ⟫ .

Comparing with (4.4), we see that the weak equation actually involves Φ(θ′′) rather

than Φ(θ)′′, so we compute the difference:

(Φ(θ)′′, φ)

=∂2
t

∫
B

−g00θφ dy + ∂2
t

∫
∂B

γθφ dS

= (Φ(θ′′), φ)−
〈
2(∂tg

00)θ′, φ
〉
−
〈
(∂2
t g

00)θ, φ
〉

+ ⟪2(∂tγ)θ′, φ⟫+ ⟪(∂2
t γ)θ, φ⟫ .

Then by (4.4), we know that the weak equation is:

(4.6) (Φ(θ)′′, φ) + L(θ, φ) = −〈q, φ〉+ ⟪(2/a)f, φ⟫ ∀φ ∈ H1(B),

where L(θ, φ) represents the weak formulation of the lower order derivatives on θ:

L(θ, φ) =
7∑
i=1

Li(θ, φ)

L1(θ, φ) =
〈
θ′, 2g0j∇jφ

〉
L2(θ, φ) =

〈
θ′,

(
(∂tg

00)− 1

2
(∇α log |g|)g0α + (∇jg

0j)

)
φ

〉
1Recall that all the functions we consider are real-valued.
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L3(θ, φ) =
〈
θ, ∂2

t g
00φ
〉

L4(θ, φ) =
〈
∇jθ, g

ij∇iφ
〉

L5(θ, φ) =

〈
∇jθ,

(
−(∂tg

0j)− 1

2
(∇α log |g|)gαj

)
φ

〉
L6(θ, φ) = ⟪θ′, (−njg0j − 2(∂tγ))φ⟫

L7(θ, φ) = ⟪θ,−(∂2
t γ)φ⟫ .

We also need to derive the higher order equations. The difference of these equa-

tions with (4.6) come from the analogue of the commutators [�g, ∂kt ] and [P , ∂kt ].

We first derive the first order equation. Assume that θ satisfies (4.6) and is

sufficiently regular in t. Then

[(Φ(θ)′′, φ) + L(θ, φ)]
′ − [(Φ(θ′)′′, φ) + L(θ′, φ)]

=−
〈
∂tg

00θ′′, φ
〉

+ ⟪∂tγθ′′, φ⟫

+
〈
θ′, 2(∂tg

0j)∇jφ
〉

+

〈
θ′, ∂t

(
−(∂tg

00)− 1

2
(∇α log |g|)g0α + (∇jg

0j)

)
φ

〉
+
〈
∇jθ, (∂tg

ij)∇iφ
〉

+

〈
∇jθ, ∂t

(
−(∂tg

0j)− 1

2
(∇α log |g|)gαj

)
φ

〉
+ ⟪θ′, ∂t

(
−njg0j

)
φ⟫ .

Let θ0 := θ and θ1 := θ′0. We record the highest order terms in the preceding

equation as

(4.7) C(θ1, φ) := −
〈
(∂tg

00)θ′1, φ
〉

+ ⟪(∂tγ)θ′1, φ⟫ ,

and the lower order terms as

Ij1 = −(2∂tg
0j)θ′0 − (∂tg

ij)∇iθ0
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I2 =

(
∂2
t g

00 +
1

2
∂t((∇α log |g|)g0α)−∇j∂tg

0j

)
θ′0

I3 =

(
∂2
t g

0j +
1

2
∂t
(
(∇α log |g|)gαj

))
∇jθ0

B1 = ∂t(njg
0j)θ′0.

Then the equation for θ1 is:

(Φ(θ1)′′, φ) + L(θ1, φ) + C(θ1, φ) = −〈∂tq, φ〉+ ⟪∂t(2f/a), φ⟫(4.8)

+
〈
Ij1 ,∇jφ

〉
+ 〈I2 + I3, φ〉+ ⟪B1, φ⟫ .

Proceeding inductively, we see that the weak equation for θk := θ
(k)
0 , where k ≥ 2, is

(Φ(θk)
′′, φ) + L(θk, φ) + kC(θk, φ)(4.9)

=−
〈
∂kt q, φ

〉
+ ⟪∂kt (2f/a), φ⟫

+
〈
∂k−1
t Ij1 ,∇jφ

〉
+
〈
∂k−1
t (I2 + I3), φ

〉
+ ⟪∂k−1

t B1, φ⟫

+
〈
k(∂2

t g
00)θ′k−1, φ

〉
− ⟪k(∂2

t γ)θ′k−1, φ⟫ .

Assuming sufficient regularity on q, f, a, γ, we shall prove that the equations (4.6)-

(4.9) have a unique solution. This is the content of our next subsection.

4.1.2 Proof for Existence

Theorem 4.2. Let M be the integer in Proposition 4.1, and u,Λ have the regularity

as described in Proposition 4.1. Then there is a time interval [0, T ] with T > 0 in

which (4.6) - (4.9) have a unique solution for all k = 0, · · ·M . Moreover, denoting

the solution to the k-th order equation by θk, then the following are true:

1. Compatibility: θ′j−1 = θj for j = 1, · · · ,M .

2. Energy estimate: let

EM [θ](t) =
M∑
k=0

∫
Bt

(−g00)|θ′k|2 + gij∇iθk∇jθk dy +

∫
∂Bt

γ|θ′k|2 dS.
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Then there is a polynomial P such that for all t ∈ [0, T ],

EM [θ](t) ≤ EM [θ](0) ·
(
1 + tP (EM [u,Λ](T )) · etP (EM [u,Λ](T ))

)
.

Before we give the proof, we shall first note some results on regularity for a

weak solution (assuming its existence). We will use the following result in the proof

of Theorem 4.2, very much like the way we used Proposition 2.13 in the proof of

Theorem 2.1.

Proposition 4.3. Assume the same assumption as Theorem 4.2. Suppose θk solves

the k-th order weak equation for k = 1, · · · ,M on some time interval I = [0, T ].

Then for k ≤M − 2 we have

‖θk‖L∞(I×B) . ‖θ′k+1‖L∞(I,L2(B)) + ‖θk−1‖L∞(I,H1(B)).(4.10)

Before presenting the proof, we note a standard result on weak solutions to a

(second order) elliptic equation, which is similar to Lemma 2.6. This is the same as

Lemma 3.5 in [10], and was proven in, for instance, [18].

Lemma 4.4. Suppose φ ∈ H1(B) satisfies

(4.11)
〈
gij∇iφ,∇jψ

〉
= ⟪b, ψ⟫+ 〈W,ψ〉 ∀ψ ∈ H1(B)

for some b ∈ H1/2(∂B), W ∈ L2(B). Then φ ∈ H2(B) and

(4.12) ‖φ‖H2(B) . ‖W‖L2(B) + ‖b‖H1/2(∂B).

We will use Lemma 4.4 very much like the way we used Lemma 2.6 to prove

Proposition 2.13.

Proof for Proposition 4.3. By assumption, we know that θk ∈ H1(B) for k ≤ M .

Then by Lemma 4.4, we know that for k ≤M − 2,

‖θk‖H2(B) .‖θ′′k‖L2(B) + ‖θk‖H1/2(∂B) + ‖θk‖L2(B) + ‖θk−1‖H1(B)
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≤‖θ′k+1‖L2(B) + ‖θk‖H1(B) + ‖θk‖L2(B) + ‖θk−1‖H1(B).

The claim thus follows.

We are now in a position to prove Theorem 4.2. The strategy of the proof is

somewhat similar to Proposition 3.2 in [10], but there are a few crucial differences.

To start with, our system of equations is different, with a non-constant G and a

non-zero vorticity. Secondly, we first fix an m, and show that the system of ODEs

in θ1, · · · , θM can be solved approximately by projecting onto an m-dimensional

subspace of H1(B). This leads to the approximate solutions θ1,(m), · · · , θM,(m). We

then send m → ∞ to recover the solution to the original weak problem θ1, · · · , θM .

This is in contract to the approach [10], which sends m → ∞ for each order k, and

deals with the highest order equations separately.

Proof for Theorem 4.2. In this proof, assume that {e`} is both an orthogonal basis

of H1(B) and an orthonormal basis of L2(B). Since {e`} is a basis of H1(B), and

tr : H1(B)→ L2(∂B) is surjective, we know that {e`} spans L2(∂B) as well.

Existence of approximate solutions. Let m > 0 be an integer. Let Pm be the

orthogonal projection onto span{e` : ` ≤ m}, so the corresponding approximate

operator Φm : H1(B)→ (H1(B))′ is

(4.13) (Φm(θ), φ) := (Φ(θ), Pmφ) = (−g00θ, Pmφ) + ⟪γθ, Pmφ⟫ .

We look for an approximate solution of the form

θk,(m)(t, y) :=
m∑
`=1

θ`k,m(t)e`(y), θ`k,m ∈ C2([0, T ]) ∀` = 1, · · · ,m.

To define the approximate weak equation, we further consider the projected quanti-

ties:

Ij1,m = −2(∂tg
0j)θ′0,(m) − (∂tg

ij)∇iθ0,(m)
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I2,m =

(
∂2
t g

00 +
1

2
∂t((∇α log |g|)g0α)−∇j∂tg

0j

)
θ′0,(m)

I3,m =

(
∂2
t g

0j +
1

2
∂t
(
(∇α log |g|)gαj

))
∇jθ0,(m)

B1,m = ∂t(njg
0j)θ′0,(m).

The m-th approximate weak equation is then

(
Φm(θk,(m))

′′, e`
)

+ L(θk,(m), e`) + kC(θk,(m), e`)(4.14)

=−
〈
∂kt q, e`

〉
+ ⟪∂kt (2f/a), e`⟫

+
〈
∂k−1
t Ij1,m,∇je`

〉
+
〈
∂k−1
t (I2,m + I3,m), e`

〉
+ ⟪∂k−1

t B1,m, e`⟫

+
〈
k(∂2

t g
00)θ′k−1,(m), e`

〉
− ⟪k(∂2

t γ)θ′k−1,(m), e`⟫ .

We claim that (4.14) is a system of linear second order ODE in ~θk,m := (θ1
k,m, · · · , θmk,m),

where ~θm : [0, T ]→ Rm. To see this, note that (4.14) is of the form

(4.15) A(t)
d2

dt2
~θk,m(t) +B(t)

d

dt
~θk,m = C(t)~θk,m + d(t)

for some matrices A,B,C : [0, T ]→ Rm×m and vector d : [0, T ]→ Rm. The matrices

B and C are clearly bounded as linear operators on Rm, so to utilize the result on

existence and uniqueness of ODE, we only need to show that A(t) is invertible for

all t, and ‖A−1(t)‖L(Rm,Rm) is bounded for all t. We compute A(t) explicitly:

(4.16) A(t)i,j =
〈
−g00(t)ei, ej

〉
+ ⟪γ(t)ei, ej⟫ .

Fix any v ∈ Rm, and let ψ(y) :=
∑m

i=1 viei(y). Then

vTA(t)v =
m∑

i,j=1

viA(t)i,jvj

=

∫
B

(−g00(t))(viei(y))(vjej(y)) dy +

∫
∂B

γ(t, y)(viei(y))(vjej(y)) dS

≥ α ·
(
‖ψ‖2

L2(B) + ‖ψ‖2
L2(∂B)

)
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≥ α‖v‖2
L2(Rm).

It is clear that A(t) is a symmetric matrix for all t; therefore, A(t) is symmetric

positive-definite, and thus

‖A−1(t)‖L(Rm,Rm) ≤
1

α
∀t ∈ [0, T ].

Hence, we know that (4.15) has a unique solution for all t ∈ [0, T ]. Out next goal is

to pass to the limit m→∞.

The approximate solutions are compatible. We claim that θ′k−1,(m) = θk,(m) in

L2(B). This is because by the definition of (4.14), θ′k−1,(m) and θk,(m) satisfy exactly

the same equation with the same initial data, and thus they must agree by the

existence and uniqueness theory of ODE.

Uniform bound on θk,(m). We multiply (4.14) by (θ`k,m(t))′ and sum with respect

to ` to obtain the following:

m∑
`=1

(
Φ(θk,(m))

′′, e`
)
· (θ`k,m(t))′

=
(
Φ(θk,(m))

′′, θ′k,(m)

)
=

1

2

d

dt

[∫
B

(−g00)|θ′k,(m)|2 − (∂2
t g

00)|θk,(m)|2 dy +

∫
∂B

γ|θ′k,(m)|2 + (∂2
t γ)|θk,(m)|2 dS

]
−
∫
B

3

2
(∂tg

00)|θ′k,(m)|2 dy +

∫
∂B

3

2
(∂tγ)|θ′k,(m)|2 dS +

1

2

∫
B

∂3
t g

00|θk,(m)|2 dy

− 1

2

∫
∂B

∂3
t γ|θk,(m)|2 dS.

m∑
`=1

L(θk,(m), e`) · (θ`k,m(t))′

=L(θk,(m), θ
′
k,(m))

=

∫
B

θ′k,(m)(2g
0j)∇jθ

′
k,(m) dy +

∫
B

(
(∂tg

00)− 1

2
(∇α log |g|)g0α + (∇jg

0j)

)
|θ′k,(m)|2 dy
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+

∫
B

θk,(m)(∂
2
t g

00)θ′k,(m) dy +

∫
B

∇iθk,(m)g
ij∇jθ

′
k,(m) dy

+

∫
B

∇jθk,(m)

(
−(∂tg

0j)− 1

2
(∇α log |g|)gαj

)
θ′k,(m) dy

+

∫
∂B

|θ′k,(m)|2(−njg0j − 2(∂tγ)) dS

+

∫
∂B

θk,(m)θ
′
k,(m)(−∂2

t γ) dS

=
1

2

d

dt

[∫
B

(∂2
t g

00)|θk,(m)|2 dy +

∫
B

gij∇iθk,(m)∇jθk,(m) dy +

∫
∂B

|θk,(m)|2(−∂2
t γ) dS

]
+

∫
B

(
(∂tg

00)− 1

2
(∇α log |g|)g0α

)
|θ′k,(m)|2 dy −

∫
B

1

2
∂3
t g

00|θk,(m)|2 dy

− 1

2

∫
B

(∂tg
ij)∇iθk,(m)∇jθk,(m) dy

−
∫
B

∇jθk,(m)

(
(∂tg

0j) +
1

2
(∇α log |g|)gαj

)
θ′k,(m) dy

+

∫
∂B

|θ′k,(m)|2(−2(∂tγ)) dS +
1

2

∫
∂B

∂3
t γ|θk,(m)|2 dS.

m∑
`=1

C(θk,(m), e`) · (θ`k,m(t))′

=C(θk,(m), θ
′
k,(m))

=−
∫
B

(∂tg
00)|θ′k,(m)|2 dy +

∫
∂B

(∂tγ)|θ′k,(m)|2 dS.

Thus, summing up the preceding bullet points, we know that the left hand side of

(4.14), after multiplying by θ`k,m and summing up `, gives:

HLS =
m∑
`=1

[(
Φm(θk,(m))

′′, e`
)

+ L(θk,(m), e`) + kC(θk,(m), e`)
]
· θ`k,m

=
1

2

d

dt

[∫
B

(−g00)|θ′k,(m)|2 + gij∇iθk,(m)∇jθk,(m) dy +

∫
∂B

γ|θ′k,(m)|2 dS
]

−
∫
B

(k +
1

2
)(∂tg

00)|θ′k,(m)|2 dy +

∫
∂B

(k +
1

2
)(∂tγ)|θ′k,(m)|2 dS

+

∫
B

(
(∂tg

00)− 1

2
(∇α log |g|)g0α

)
|θ′k,(m)|2 dy

− 1

2

∫
B

(∂tg
ij)∇iθk,(m)∇jθk,(m) dy
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+

∫
B

∇jθk,(m)

(
−(∂tg

0j)− 1

2
(∇α log |g|)gαj

)
θ′k,(m) dy

+

∫
∂B

|θ′k,(m)|2(−2(∂tγ)) dS.

The right hand side of (4.14), after multiplying by θ`k,m and summing up `, gives:

RHS =−
∫
B

(
∂kt q + ∂k−1

t (I2,m + I3,m)− k∂2
t g

00θ′k−1,(m)

)
θ′k,(m) dy

−
∫
B

(∂k−1
t Ij1)∇jθ

′
k,(m) dy

+

∫
∂B

(
∂kt (2f/a)− ∂k−1

t (B1,m)− k(∂2
t γ)θ′k−1,(m)

)
θ′k,(m) dS.

Let

Em(t) =

∫
B

(−g00)|θ′k,(m)|2 + gij∇iθk,(m)∇jθk,(m) dy +

∫
∂B

γ|θ′k,(m)|2 dS

Then equating LHS and RHS, and integrating with respect to time, we see that

Em(t) .Em(0) +

∫ t

0

Em(τ) ·

(∑
r=0,1

‖∇(r)
t,yg‖L∞(B) + ‖∂tγ‖L∞(∂B)

)
dτ(4.17)

+

∫ t

0

Em(τ) ·
(
‖∂2

t g
00‖L∞(I×B) · ‖θ′k−1,(m)‖2

L2(Bτ )

+‖∂2
t γ‖L∞(I×∂B) · ‖θ′k−1,(m)‖2

L2(∂Bτ )

)
dτ

+

∣∣∣∣∫ t

0

∫
B

(
−∂kt q + ∂k−1

t (I2,m + I3,m)
)
θ′k,(m) dydτ

∣∣∣∣︸ ︷︷ ︸
:=I

+

∣∣∣∣∫ t

0

∫
∂B

(
∂kt (2f/a)− ∂k−1

t (B1,m)
)
θ′k,(m) dSdτ

∣∣∣∣︸ ︷︷ ︸
:=II

+

∣∣∣∣∫ t

0

∫
B

(∂k−1
t Ij1)∇jθ

′
k,(m) dydτ

∣∣∣∣︸ ︷︷ ︸
:=III

.

The first term can be controlled by the assumption on u,Λ. The control on the

second term follows from regularity of θk−1,(m) by induction, and assumptions on

u,Λ. We seek to control the remaining three terms:
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• ‖∂kt q‖L2(I,L2(B)). Recall that q = �gu, so by Lemma 2.9, ∂kt q consists of terms

of the forms 4 – 6 in the statement of Lemma 2.9. As before, each term is

a product of a few terms, where we seek to control the lower order terms in

L∞(B) and higher order terms in L2(B). The highest order terms of form 4 are

∂kt g,∇∂ktX,∇∂kt w; the highest order terms of form 5 are ∂kt g,∇∂ktX,∇∂kt Σ2 ε∼

∇∂k−1
t Λ, ∂kt Λ; the highest order terms of form 6 are ∂kt g,∇∂ktX,∇∂kt Λ. All of

these can be controlled by EM [u,Λ].

• ‖∂k−1
t (I2,m+I3,m)‖L2(I,L2(B)). In fact, we will not be able to control ‖∂k−1

t (I2,m+

I3,m)‖L2(I,L2(B)) when k = M . Instead, to treat the highest order case (which

also works for lower order equations), we will use a computation that is similar

to the F ij manipulation when we estimated
∫
τ

∫
R3

+
(�̃g∂kt u)(∂k+1

t u) dydτ in the

a priori estimate. More precisely, when ∂k−1
t falls on ∂2

t g and θ′0,(m), we are able

to control, for instance,∣∣∣∣∫ t

0

∫
B

∂k+1
t g00θ′0,(m)θ

′
k,(m) dydτ

∣∣∣∣ ≤ ∫ t

0

‖∂k+1
t g00‖2

L2(B) + ‖θ′k,(m)‖2
L2(B) dτ.

The most difficult term is when ∂k−1
t falls on ∇∂tg. That is, we need to control∣∣∣∣∫ t

0

∫
B

(∇∂kt g)(θ′0,(m))(θ
′
k,(m)) dydτ

∣∣∣∣ .
To do so, recall that there is some function Fαβ with

sup
0≤t≤T

‖Fαβ‖L∞(Bt) + ‖∇Fαβ‖L∞(Bt) <∞,

such that

∇∂kt g = Fαβ∇α∇β∂
k−1
t u.

Then, we seek to move one ∇ derivative to θk,(m) and move one ∂t derivative

to g: ∫ t

0

∫
B

(∇∂kt g)(θ′0,(m))(θ
′
k,(m)) dydτ
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=

∫ t

0

∫
B

(Fαβ∇α∇β∂
k−1
t u)(θ′0,(m))(θ

′
k,(m)) dydτ

=

∫ t

0

∫
∂B

nαF
αβ∇β∂

k−1
t u(θ′0,(m))(θ

′
k,(m)) dSdτ

−
∫ t

0

∫
B

(∇β∂
k−1
t u)∇α

(
Fαβ(θ′0,(m))(θ

′
k,(m))

)
dydτ

=

∫ t

0

∫
∂B

nαF
αβ∇β∂

k−1
t u(θ′0,(m))(θ

′
k,(m)) dSdτ

−
∫ t

0

∫
B

(∇β∂
k−1
t u)∇α

(
Fαβ(θ′0,(m))

)
(θ′k,(m)) dydτ

−
∫ t

0

∫
B

(∇β∂
k−1
t u)

(
Fαβ(θ′0,(m))

)
∇α(θ′k,(m)) dydτ.

Recall that by Lemma (2.5), we are able to control∫ t

0

∫
∂B

|∇β∂
k−1
t u|2 dSdτ,

so the first and second term on the right hand side are controlled. We further

work on the last term:∣∣∣∣∫ t

0

∫
B

(∇β∂
k−1
t u)

(
Fαβ(θ′0,(m))

)
∇α(θ′k,(m)) dydτ

∣∣∣∣
≤
∣∣∣∣∫
Bt

(∇β∂
k−1
t u)

(
Fαβ(θ′0,(m))

)
∇α(θk,(m)) dy

∣∣∣∣
+

∣∣∣∣∫
B0

(∇β∂
k−1
t u)

(
Fαβ(θ′0,(m))

)
∇α(θk,(m)) dy

∣∣∣∣
+

∣∣∣∣∫ t

0

∫
B

(∇β∂
k
t u)(Fαβθ′0,(m))(∇αθk,(m)) dydτ

∣∣∣∣
+

∣∣∣∣∫ t

0

∫
B

(∇β∂
k−1
t u)∂t(F

αβθ′0,(m))(∇αθk,(m)) dydτ

∣∣∣∣
≤δ
∫
Bt

|∇αθk,(m)|2 dy +
1

δ

∫
Bt

|Fαβθ′0,(m)∇β∂
k−1
t u|2 dy

+

∫
B0

|∇αθk,(m)|2 dy +

∫
B0

|Fαβθ′0,(m)∇β∂
k−1
t u|2 dy

+

∫ t

0

Em(τ)
(
‖(∇β∂

k
t u)(Fαβθ′0,(m))‖2

L2(Bτ )+

+‖(∇β∂
k−1
t u)∂t(F

αβθ′0,(m))‖2
L2(Bτ )

)
dτ.
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Therefore, by choosing δ small, this term can be absorbed into the left hand

side of (4.17), and we have controlled the term I.

• ‖∂kt (f/a)‖L2(I,L2(∂B)). Recall that a2 = gαβ(∇αΣ2)(∇βΣ2), so the highest order

term in ∂kt a is ∇∂kt Σ2, which is controllable by the assumption on Σ2. Recall

also that f = Pu, so ∂kt f = ∂kt Pu is given by terms of the form 3, 4, 5 in

Lemma (2.8) with ε = 0. The analysis is identical to the computation that we

did when estimating
∫ t

0

∫
∂R3

+
(Pε∂kt u)(∂k+1

t u) dSdτ , except that this case here is

simpler because we do not have the commutators of the forms 1, 2 in F 0
k . We

refrain from copying the same calculation.

• ‖∂k−1
t B1,m‖L2(I,L2(∂B)). The highest order terms in ∂k−1

t B1,m are

∂kt
(
∇jΣ

2g0j
)
θ′0,(m), and ∂t

(
∇jΣ

2g0j
)
∂k−1
t θ′0,(m).

The first term is controlled by ‖∇∂k−1
t Σ2‖L2(I,L2(∂B)) and ‖∇∂k−1

t u‖L2(I,L2(∂B))

by Lemmas 2.4 and 2.5. The second term can be controlled by ‖θ′k−1‖L2(I,L2(∂B)).

Thus we are able to control II in (4.17).

• Finally, we analyze III.∫ t

0

∫
B

(∂k−1
t Ij1,m)∇jθ

′
k,(m) dydτ

=

∫ t

0

d

dt

(∫
B

(∂k−1
t Ij1,m)∇jθk,(m) dy

)
dτ −

∫ t

0

∫
B

(∂kt I
j
1,m)∇jθk,(m) dydτ

=

∫
Bt

(∂k−1
t Ij1,m)∇jθk,(m) dy −

∫
B0

(∂k−1
t Ij1,m)∇iθk,(m) dy

−
∫ t

0

∫
B

(∂kt I
j
1,m)∇jθk,(m) dydτ.

We compute ∂k−1
t Ij1,m, in which the highest order terms are

(∂kt g
0j)θ′0,(m), (∂kt g

ij)∇iθ0,(m), (∂tg
0j)∂k−1

t θ′0,(m), (∂tg
ij)∇i∂

k−1
t θ0,(m).
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Thus, ‖∂j−1
t Ij1,m‖L2(I,L2(B)) can be controlled. The term

∫
Bt

(∂k−1
t Ij1,m)∇jθk,(m) dy

can thus be bounded by∣∣∣∣∫
Bt

(∂k−1
t Ij1,m)∇jθk,(m) dy

∣∣∣∣ ≤ δEm(t) +
1

δ

∫
Bt

|∂k−1
t I3,m|2 dy,

which can be absorbed into the left hand side of (4.17) by choosing δ > 0 small.

Similarly, the term
∫
B0

(∂k−1
t Ij1,m)∇iθk,(m) dy can be bounded by∣∣∣∣∫

B0

(∂k−1
t I3,m)∇iθk,(m) dy

∣∣∣∣ ≤ Em(0) +

∫
B0

|∂k−1
t I3,m|2 dy.

We deal with the most difficult term
∫ t

0

∫
B

(∂kt I
j
1,(m))∇jθk,(m) dydτ . In comput-

ing ∂kt I
j
1,m,, when ∂kt fall on ∂tg, we can easily bound the result by ‖∂k+1

t g‖L2(B),

so we shall focus on the case when ∂kt falls on θ′0,(m) and ∇iθ0,(m). We have∣∣∣∣∫ t

0

∫
B

(∂tg
0j)(∂kt θ

′
0,(m))(∇jθk,(m)) dydτ

∣∣∣∣
=

∣∣∣∣∫ t

0

∫
B

(∂tg
0j)(θ′k,(m))(∇jθk,(m)) dydτ

∣∣∣∣
≤‖∂tg‖L∞(I×B) ·

∣∣∣∣∫ t

0

Em(τ) dτ

∣∣∣∣ ,
and ∣∣∣∣∫ t

0

∫
B

(∂tg
ij)(∇i∂

k
t θ0,(m))(∇jθk,(m)) dydτ

∣∣∣∣
=

∣∣∣∣∫ t

0

∫
B

(∂tg
ij)(∇iθk,(m))(∇jθk,(m)) dydτ

∣∣∣∣
≤‖∂tg‖L∞(I×B) ·

∣∣∣∣∫ t

0

Em(τ) dτ

∣∣∣∣ .
Thus III has been shown to be bounded. Note that this is the reason why we

had to fix m and solve for all orders of the approximate equations before taking

the limit m→∞, for otherwise we will not be able to control ∂kt θ
′
0.

We have analyzed all terms in (4.17), so by Gronwall’s inequality, we have proved

that there is some C4 such that

(4.18) sup
t∈[0,T ]

‖θ′k,(m)‖L2(Bt) + ‖θk,(m)‖H1(Bt) + ‖θ′k,(m)‖L2(∂Bt) < C4 <∞
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for all m ≥ 1. Here C4 depends on EM [u,Λ](T ) only, and does not depend on m.

To finish our uniform bound, we need to estimate ‖Φm(θk,(m))
′′‖L2(I,(H1(B))′). Let

φ ∈ H1(B). Then by (4.14) and the estimate (4.18), we know that

(
Φm(θk,(m))

′′, φ
)
. C4‖φ‖H1(B)

as well, which, after possibly enlarging C4, shows that

(4.19) ‖Φm(θk,(m))
′′‖L2(I,(H1(B))′) ≤ C4 <∞.

To summarize what we have achieved so far, we have proven that for each fixed

integer m, the system of approximate solutions (4.14) has a unique solution on [0, T ]

for k = 0, · · · ,M . And moreover, these solutions satisfy the bounds (4.18) and (4.19)

uniformly in m.

Our next goal is to let m → ∞ and construct a solution to the actual weak

equation.

Existence of weak solutions. By the uniform boundedness established earlier, we

know that there is a subsequence θk,(mn) as well as functions θk ∈ L2(I,H1(B)) with

θ′k ∈ L2(I, L2(B)) and φk ∈ L2(U, (H1(B))′) such that

θk,(mn) ⇀ θk weakly in L2(I,H1(B))

θ′k,(mn) ⇀ θ′k weakly in L2(I, L2(B))

Φmn(θk,(mn)) ⇀ φk weakly in L2(I, (H1(B))′).

We first show a compatibility result. To simplify the notation, in what follows, we

will relabel the subsequence and set m = mn.

• θ′k−1 = θk in L2(B). Let ψ ∈ L2(B), then

〈
θ′k−1, ψ

〉
= lim

m→∞

〈
θ′k−1,(m), ψ

〉
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= lim
m→∞

〈
θk,(m), ψ

〉
= 〈θk, ψ〉 .

Our claim thus follows.

• Φ(θ) = φ in (H1(B))′. To see this, we first compare their action on a dense

subset of H1(B). Let K > 0 and ψ =
∑K

`=1 ψ
`e`. Then

(Φ(θ), ψ) =
〈
−g00θ, ψ

〉
+ ⟪γθ, ψ⟫

= lim
n→∞

〈
−g00θ(mn), ψ

〉
+ ⟪γθ(mn), ψ⟫

= lim
n→∞

(
Φmn(θ(mn)), ψ

)
= (φ, ψ) .

Since ψ of such forms are dense in H1(B), we know that Φ(θ) = φ in (H1(B))′,

that is,

Φmn(θ(mn)) ⇀ Φ(θ) weakly in L2(I, (H1(B))′).

Next, we need to show that θk is a weak solution to (4.9). To see this, we take a

function

ψ =
K∑
`=1

d`(t)e`, d` ∈ C∞([0, T ]) ∀`.

We multiply (4.14) by d`(t) and sum up with respect to `:

(
Φm(θk,(m))

′′, ψ
)

+ L(θk,(m), ψ) + kC(θk,(m), ψ)

=−
〈
∂kt q, ψ

〉
+ ⟪∂kt (2f/a), ψ⟫

+
〈
∂k−1
t Ij1,m,∇jψ

〉
+
〈
∂k−1
t (I2,m + I3,m), ψ

〉
+ ⟪∂k−1

t B1,m, ψ⟫

+
〈
k(∂2

t g
00)θ′k−1,(m), ψ

〉
− ⟪k(∂2

t γ)θ′k−1,(m), ψ⟫ .
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Sending m → ∞, we see that θ satisfies equation (4.9) for this particular ψ. But

then since such ψ are dense in H1(B), we know that θ satisfies equation (4.9) for all

ψ ∈ H1(B), showing that it is a weak solution to the actual weak solution.

Uniqueness of weak solutions. Now we show that the weak solution to (4.9) is

unique. Since (4.9) is a linear equation, by taking the difference of two solutions,

we may assume that θk(0, y) ≡ 0, the right hand side of (4.9) is identically zero,

and need to show that θk(t, ·) ≡ 0 for all t ∈ [0, T ]. For this part, we suppress the

dependence on k, and our goal is to show that θ ≡ 0 is the only solution to

(Φ(θ)′′, ψ) + L(θ, ψ) + kC(θ, ψ) = 0 ∀ψ ∈ H1(B)(4.20)

satisfying θ ∈ L2(I,H1(B)), θ′ ∈ L2(I, L2(B)),Φ(θ) ∈ L2(I, (H1(B))′).

To see this, let θ be any solution to (4.20) with the specified regularity. Fix any

s ∈ (0, T ). and consider

δ(t) :=

 −
∫ s
t
θ(τ) dτ if 0 ≤ t ≤ s

0 if s ≤ t ≤ T

,

so that δ′(t) = θ(t) for t ∈ [0, s]. Clearly δ(t) ∈ H1(B), so substituting ψ = δ and

integrating with respect to time, we have∫ s

0

(Φ(θ)′′, δ) dτ︸ ︷︷ ︸
I

+

∫ s

0

L(θ, δ) dτ︸ ︷︷ ︸
II

+k

∫ s

0

C(θ, δ)dτ︸ ︷︷ ︸
III

= 0.(4.21)

We compute I: ∫ s

0

∂τ (Φ(θ)′, δ) dτ −
∫ s

0

(Φ(θ)′, δ′) dτ

= (Φ(θ)′, δ)

∣∣∣∣s
0

−
∫ s

0

(Φ(θ)′, θ) dτ.

The first term on the right hand side vanishes, since Φ(θ)′ ≡ 0 at τ = 0 and δ ≡ 0

at τ = s, and we continue with the second term:

I =−
∫ s

0

(Φ(θ)′, θ) dτ
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=−
∫ s

0

∫
B

∂t(−g00θ)θdydτ −
∫ s

0

∫
∂B

∂t(γθ)θ dSdτ

=
1

2

∫
Bs−B0

g00|θ|2 dy − 1

2

∫
∂Bs−∂B0

γ|θ|2 dSdτ

+
1

2

∫ s

0

∫
B

(∂tg
00)|θ|2 dydτ − 1

2

∫ s

0

∫
∂B

(∂tγ)|θ|2 dSdτ.

To compute II, we use the fact that θ = δ′ for t ∈ [0, s]. The exact formula for II is

complicated (as we shall see soon), but what is important is that it is equal to some

main terms involving ∇yδ at t = 0, in addition to some lower order terms involving

‖δ‖H1(B), ‖θ‖L2(B), as well as some low order derivatives of g and γ. We remark that

several terms in the result will vanish because δ(s) ≡ 0 and δ′(0) = θ(0) ≡ 0.

II =

∫ s

0

〈
δ′′, 2g0j∇jδ

〉
+

〈
δ′′,

(
(∂tg

00)− 1

2
(∇α log |g|)g0α + (∇jg

0j)

)
δ

〉
+
〈
δ′, ∂2

t g
00δ
〉

+
〈
∇jδ

′, gij∇iδ
〉

+

〈
∇jδ

′,

(
−(∂tg

0j)− 1

2
(∇α log |g|)gαj

)
δ

〉
+ ⟪δ′′, (−njg0j − 2(∂tγ))δ⟫+ ⟪δ′,−(∂2

t γ)δ⟫ dτ

=

∫
Bs−B0

1

2
gij∇iδ∇jδ dy︸ ︷︷ ︸

−
∫
B0
··· dy

+

∫
Bs−B0

δ′δ

(
(∂tg

00)− 1

2
(∇α log |g|)g0α + (∇jg

0j)

)
dy︸ ︷︷ ︸

=0

+

∫
Bs−B0

(2g0j)δ′∇jδ dy︸ ︷︷ ︸
=0

+

∫
Bs−B0

|δ|2∇j

(
−(∂tg

0j)− 1

2
(∇α log |g|)gαj

)
dy︸ ︷︷ ︸

=−
∫
B0
··· dy

+
1

2

∫
∂Bs−∂B0

|δ|2nj
(
−(∂tg

0j)− 1

2
(∇α log |g|)gαj

)
dSdτ︸ ︷︷ ︸

=−
∫
∂B0
··· dS

+

∫
∂Bs−∂B0

δ′δ(−njg0j − 2(∂tγ)) dS︸ ︷︷ ︸
=0

+
1

2

∫
∂Bs−∂B0

|δ|2(−∂2
t γ) dS︸ ︷︷ ︸

=−
∫
∂B0
··· dS

−
∫ s

0

∫
B

δ′δ∂t

(
−1

2
(∇α log |g|)g0α + (∇jg

0j)

)
dydτ

−
∫ s

0

∫
B

|δ′|2
(

(∂tg
00)− 1

2
(∇α log |g|)g0α

)
dydτ

− 1

2

∫ s

0

∫
B

(∂tg
ij)∇iδ∇jδ dydτ



112

+
1

2

∫ s

0

∫
B

|δ|2∇j∂t

(
−(∂tg

0j)− 1

2
(∇α log |g|)gαj

)
dydτ

−
∫ s

0

∫
B

(∇jδ)δ
′
(

(∂tg
0j)− 1

2
(∇α log |g|)gαj

)
dydτ

+
1

2

∫ s

0

∫
∂B

|δ|2nj∂t
(

(∂tg
0j) +

1

2
(∇α log |g|)gαj

)
dSdτ +

∫ s

0

∫
∂B

1

2
|δ|2∂3

t γ dSdτ

−
∫ s

0

∫
∂B

δ′δ∂t(−njg0j − 2(∂tγ)) dSdτ −
∫ s

0

∫
∂B

|δ′|2(−2(∂tγ)) dSdτ.

The computation for III is similar, albeit simpler:

III =−
∫
Bs−B0

(∂tg
00)δ′δ dy︸ ︷︷ ︸

=0

+

∫
∂Bs−∂B0

(∂tγ)δ′δ dS︸ ︷︷ ︸
=0

+

∫ s

0

∫
B

(∂2
t g

00)δ′δ dydτ +

∫ s

0

∫
B

(∂tg
00)|δ′|2 dydτ

−
∫ s

0

∫
∂B

(∂2
t γ)δ′δ dSdτ −

∫ s

0

∫
∂B

(∂tγ)|δ′|2 dSdτ.

Thus, by (4.21) and Gronwall’s inequality, we have a constant C5 depending on

low order derivatives of g and γ, such that

‖δ(0)‖2
H1(B) + ‖θ(s)‖2

L2(B) + ‖θ(s)‖2
L2(∂B)(4.22)

≤C5

∫ s

0

‖δ(τ)‖2
H1(B) + ‖θ(τ)‖2

L2(B) + ‖θ(τ)‖2
L2(∂B) dτ.

Next, consider

κ(t) :=

∫ t

0

θ(τ) dτ,

so for t ∈ [0, s], we have δ(τ) = κ(τ) − κ(s) and thus δ(0) = −κ(s). Hence, (4.22)

gives

‖κ(s)‖2
H1(B) + ‖θ(s)‖2

L2(B) + ‖θ(s)‖2
L2(∂B)

≤C5

∫ s

0

‖κ(τ)− κ(s)‖2
H1(B) + ‖θ(τ)‖2

L2(B) + ‖θ(τ)‖2
L2(∂B) dτ

≤C5

∫ s

0

2‖κ(τ)‖2
H1(B) + ‖θ(τ)‖2

L2(B) + ‖θ(τ)‖2
L2(∂B) dτ + 2sC5‖κ(s)‖2

H1(B),
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implying

(1− 2sC5)‖κ(s)‖2
H1(B) + ‖θ(s)‖2

L2(B) + ‖θ(s)‖2
L2(∂B)

≤C5

∫ s

0

2‖κ(τ)‖2
H1(B) + ‖θ(τ)‖2

L2(B) + ‖θ(τ)‖2
L2(∂B) dτ.

Choose s < 1
2C5

, then we see that θ ≡ 0 for t ∈ [0, s]. Now, repeat the argument

with initial time t = s, we know that θ ≡ 0 on [s, 2s]; iterating, we see that θ ≡ 0

for all t ∈ [0, T ].

Therefore, we have established the existence and uniqueness of weak solution to

(4.9).

Next, we shall prove that a similar result also holds for the equation on Λ.

4.2 Existence of Solution Λ

This section is largely parallel to the previous, except that the boundary condition

on Λ is simpler.

Let θ ∈ C2(B) be a solution satisfying θ = 0 on ∂B

�hθ = q in B.

Let φ : B → R be a smooth function that vanishes on ∂B. Then∫
Bt

(�hθ)φ dy

=

∫
Bt

∇α(hαβ∇βθ) · φ dy +

∫
Bt

1

2
(∇α log |h|)hαβ(∇βθ)φ dy

=

∫
Bt

∂t(h
0β∇βθ)φ dy −

∫
Bt

hjβ∇βθ∇jφ dy +

∫
Bt

1

2
(∇α log |h|)hαβ(∇βθ)φ dy.

Regrouping terms involving derivatives of θ, we obtain

∫
Bt

qφ dy

(4.23)
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=

∫
Bt

∂2
t θ · h00φ dy

+

∫
Bt

∂tθ ·
[
(∂th

00) +
1

2
(∇α log |h|)h0α − (∇jh

0j)

]
φ dy +

∫
Bt

∂tθ ·
(
−2h0j

)
∇jφ dy

+

∫
Bt

∇jθ ·
[
(∂th

0j) +
1

2
(∇α log |h|)hαj

]
φ dy +

∫
Bt

∇jθ ·
(
−hij

)
∇iφ dy.

We define the bounded linear map Φ : H1
0 (B)→ (H1

0 (B))′:

(4.24) (Φ(θ), φ) :=
〈
−h00θ, φ

〉
.

As before, we compute the difference:

(Φ(θ)′′, φ) = (Φ(θ′′), φ)−
〈
2(∂th

00)θ′, φ
〉
−
〈
(∂2
t h

00)θ, φ
〉
.

Then by (4.23), we know that the weak equation is:

(4.25) (Φ(θ)′′, φ) + L(θ, φ) = −〈q, φ〉 ∀φ ∈ H1
0 (B),

where L(θ, φ) represents the weak formulation of the lower order derivatives on θ:

L(θ, φ) =
5∑
i=1

Li(θ, φ)

L1(θ, φ) =
〈
θ′, 2h0j∇jφ

〉
L2(θ, φ) =

〈
θ′,

(
(∂th

00)− 1

2
(∇α log |h|)h0α + (∇jh

0j)

)
φ

〉
L3(θ, φ) =

〈
θ, ∂2

t h
00φ
〉

L4(θ, φ) =
〈
∇jθ, h

ij∇iφ
〉

L5(θ, φ) =

〈
∇jθ,

(
−(∂th

0j)− 1

2
(∇α log |h|)hαj

)
φ

〉
.

Let θ0 := θ and θ1 := θ′0. We have as before

(4.26) C(θ1, φ) := −
〈
(∂th

00)θ′1, φ
〉

+ ⟪(∂tγ)θ′1, φ⟫ ,

and

Ij1 = −(2∂th
0j)θ′0 − (∂th

ij)∇iθ0
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I2 =

(
∂2
t h

00 +
1

2
∂t((∇α log |h|)h0α)−∇j∂th

0j

)
θ′0

I3 =

(
∂2
t h

0j +
1

2
∂t
(
(∇α log |h|)hαj

))
∇jθ0.

Then the equation for θ1 is:

(Φ(θ1)′′, φ) + L(θ1, φ) + C(θ1, φ) = −〈∂tq, φ〉+
〈
Ij1 ,∇jφ

〉
+ 〈I2 + I3, φ〉 .(4.27)

And for θk := θ
(k)
0 , where k ≥ 2, the equation is

(Φ(θk)
′′, φ) + L(θk, φ) + kC(θk, φ) = −

〈
∂kt q, φ

〉
(4.28)

+
〈
∂k−1
t Ij1 ,∇jφ

〉
+
〈
∂k−1
t (I2 + I3), φ

〉
+
〈
k(∂2

t h
00)θ′k−1, φ

〉
.

Assuming sufficient regularity on q, f, a, γ, we shall prove that the equations

(4.25)-(4.28) have a unique solution.

Theorem 4.5. Let M be the integer in Proposition 4.1, and u,Λ have the regularity

as described in Proposition 4.1. Then there is a time interval [0, T ] with T > 0 in

which (4.25)-(4.28) have a unique solution for all k = 0, · · ·M . Moreover, denoting

the solution to the k-th order equation by θk, then the following are true:

1. Compatibility: θ′j−1 = θj for j = 1, · · · ,M .

2. Energy estimate: let

ẼM [θ](t) =
M∑
k=0

∫
Bt

(−g00)|θ′k|2 + gij∇iθk∇jθk dy.

Then there is a polynomial P such that for all t ∈ [0, T ],

ẼM [θ](t) ≤ ẼM [θ](0) ·
(
1 + tP (EM [u,Λ](T )) · etP (EM [u,Λ](T ))

)
.



116

Proof for Theorem 4.5. Again, the proof runs largely in parallel with Theorem 4.2,

so we will be brief on the computational details and focus on the parts that are

different.

Existence of approximate solutions. Let {e`} be an orthogonal basis of H1
0 (B),

which is also an orthonormal basis of L2(B)2. As before, we first construct the

approximate solutions. Let Φm : H1
0 (B)→ (H1

0 (B))′ be

(Φm(θ), φ) =
(
−h00θ, Pmφ

)
,

and the projected quantities be

Ij1,m = −2(∂th
0j)θ′0,(m) − (∂th

ij)∇iθ0,(m)

I2,m =

(
∂2
t h

00 +
1

2
∂t((∇α log |h|)h0α)−∇j∂th

0j

)
θ′0,(m)

I3,m =

(
∂2
t h

0j +
1

2
∂t
(
(∇α log |h|)hαj

))
∇jθ0,(m)

We look for an approximate solution of the form

θk,(m)(t, y) :=
m∑
`=1

θ`k,m(t)e`(y), θ`k,m ∈ C2([0, T ]) ∀` = 1, · · · ,m.

The m-th approximate weak equation is

(
Φm(θk,(m))

′′, e`
)

+ L(θk,(m), e`) + kC(θk,(m), e`)

(4.29)

=−
〈
∂kt q, e`

〉
+
〈
∂k−1
t Ij1,m,∇je`

〉
+
〈
∂k−1
t (I2,m + I3,m), e`

〉
+
〈
k(∂2

t h
00)θ′k−1,(m), e`

〉
.

As before, (4.29) is a system of linear second order ODE in ~θk,m := (θ1
k,m, · · · , θmk,m),

where ~θm : [0, T ] → Rm, because the matrix coefficient in front of the second order

derivative is

(4.30) A(t)i,j =
〈
−h00(t)ei, ej

〉
,

2For instance, we may let e` be the eigenfunctions of the Laplacian ∆ with zero Dirichlet bound-
ary condition



117

which is symmetric positive-definite with a bounded inverse for all t ∈ [0, T ].

The approximate solutions are compatible. As before, θ′k−1,(m) = θk,(m) in L2(B).

Uniform bound on θk,(m). We multiply (4.29) by (θ`k,m(t))′ and sum with respect

to ` to obtain the estimate:

1

2

d

dt

[∫
B

(−h00)|θ′k,(m)|2 + hij∇iθk,(m)∇jθk,(m) dy

]
−
∫
B

(k +
1

2
)(∂th

00)|θ′k,(m)|2 dy +

∫
B

(
(∂th

00)− 1

2
(∇α log |h|)h0α

)
|θ′k,(m)|2 dy

− 1

2

∫
B

(∂th
ij)∇iθk,(m)∇jθk,(m) dy

+

∫
B

∇jθk,(m)

(
−(∂th

0j)− 1

2
(∇α log |h|)hαj

)
θ′k,(m) dy

=−
∫
B

(
∂kt q + ∂k−1

t (I2,m + I3,m)− k∂2
t h

00θ′k−1,(m)

)
θ′k,(m) dy −

∫
B

(∂k−1
t Ij1)∇jθ

′
k,(m) dy.

Let

Em(t) =

∫
B

(−h00)|θ′k,(m)|2 + hij∇iθk,(m)∇jθk,(m) dy,

then

Em(t) .Em(0) +

∫ t

0

Em(τ) ·

(∑
r=0,1

‖∇(r)
t,yg‖L∞(B)

)
dτ(4.31)

+

∫ t

0

Em(τ) ·
(
‖∂2

t h
00‖L∞(I×B) · ‖θ′k−1,(m)‖2

L2(Bτ )

)
dτ

+

∣∣∣∣∫ t

0

∫
B

(
−∂kt q + ∂k−1

t (I2,m + I3,m)
)
θ′k,(m) dydτ

∣∣∣∣︸ ︷︷ ︸
:=I

+

∣∣∣∣∫ t

0

∫
B

(∂k−1
t Ij1)∇jθ

′
k,(m) dydτ

∣∣∣∣︸ ︷︷ ︸
:=II

.

As usual, the first term can be controlled by the assumption on u,Λ. The control on

the second term follows from the regularity of θk−1,(m) by induction, and assumptions

on u,Λ. We seek to control the remaining two terms:

•
∫ t

0
∂kt q · θ′k,(m) dydτ . Recall that q = �hΛ, so by Lemma 2.10, ∂kt h consists of

terms of the forms 4 – 6 in the statement of Lemma 2.10. The highest order
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terms are ∇∂kt g and ∇(2)∂k−1
t Λ. In fact, we won’t be able to bound these two

terms in L2(I, L2(B)), but we can analyze the product when they are paired

with θ′k,(m). The analysis here is similar to the one we did when closing the a

priori estimate on Λ. We start with ∇∂kt h.

Recall that there is some function Fαβ with

sup
0≤t≤T

‖Fαβ‖L∞(Bt) + ‖∇Fαβ‖L∞(Bt) <∞,

such that

∇∂kt h · θ′k,(m) = (Fαβ∇α∇β∂
k−1
t u) · θ′k,(m).

We integrate by part to transfer one ∇ onto θk,(m) and one time derivative onto

u: ∫ t

0

∫
B

(Fαβ∇α∇β∂
k−1
t u) · θ′k,(m) dydτ

=−
∫ t

0

∫
B

(∇β∂
k−1
t u)(∇αθ

′
k,(m))F

αβ dydτ

−
∫ t

0

∫
B

(∇β∂
k−1
t u)(∇αF

αβ)θ′k,(m) dydτ

=−
∫
Bt

(∇β∂
k−1
t u)(∇αθk,(m))F

αβ dy +

∫
B0

(∇β∂
k−1
t u)(∇αθk,(m))F

αβ dy

+

∫ t

0

∫
B

(Fαβ∇β∂
k
t u+ ∂tF

αβ∇β∂
k−1
t u)(∇αθk,(m)) dydτ

−
∫ t

0

∫
B

(∇β∂
k−1
t u)(∇αF

αβ)θ′k,(m) dydτ.

Then, we can write∣∣∣∣∫ t

0

∫
B

(∇β∂
k−1
t u)(∇αθ

′
k,(m))F

αβ dydτ

∣∣∣∣ ≤ δ‖∇θk,(m)‖2
L2(B) +

1

δ
‖∇∂k−1

t u‖2
L2(B)

and choose a small δ such that δ‖∇θk,(m)‖2
L2(B) can be absorbed into the Em(t)

on the left hand side of (4.31). The rest can be estimated using Cauchy-Schwarz

Inequality. The treatment of ∇(2)∂k−1
t Λ is virtually the same, after replacing

u with Λ. Thus we have bounded
∫ t

0

∫
B
∂kt q · θ′k,(m) dydτ .
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•
∫ t

0

∫
B
∂k−1
t (I2,m + I3,m) · θ′k,(m) dydτ . Again, we will not be able to control

‖∂k−1
t (I2,m + I3,m)‖L2(I,L2(B)) when k = M , and we use the integration by parts

trick that is similar to the previous bullet point, and almost identical to the

case of u in Theorem 4.2, to estimate this term. We omit the details. These

two estimates bound I.

• The treatment of II is almost identical to the analysis on III in the proof for

Theorem 4.2. We refrain from copying the same argument.

We have analyzed all terms in (4.31), so by Gronwall’s inequality, we have proved

that there is some C4 such that

(4.32) sup
t∈[0,T ]

‖θ′k,(m)‖L2(Bt) + ‖θk,(m)‖H1
0 (Bt) < C4 <∞

for all m ≥ 1. Here C4 depends on EM [u,Λ](T ) only, and does not depend on m.

The part when we pass to the limit as m → ∞, as well as uniqueness and

compatibility, follows from the same argument as in Theorem 4.2. We omit the

details.

4.3 Conclusion on the Linearized Equations

In summary, in this chapter, we proved an a priori estimate for the system of

nonlinear equations on the bounded domain B. We then considered the original sys-

tem of equations on a linear level, and used Galerkin approximation to find solutions

to this linear system of equations.

Our next and final chapter will be devoted to showing the existence and unique-

ness of a solution to the system of equations (1.42)-(1.48) on a bounded domain.

The strategy is to make use of the linear equations, as well as the associated energy

estimates on the linear level, to obtain the solution iteratively.



CHAPTER V

Solution on a Bounded Domain

Equipped with the linear theory, we are now ready to obtain a solution to the

actual nonlinear equation by iteratively solving the linear equations. This section is

adapted from the iterative scheme in [10]. We provide more details in showing the

convergence of the iterative scheme, and moreover state and prove the uniqueness

result.

5.1 Equation for u(m),Λ(m)

We define the solutions u(m) and Λ(m) inductively. To start with, we specify the

0-th iteration.

5.1.1 Definition for the Initial Iteration

We define the initial iteration as follows. Let X(0)(0, ·) : B → Ω0 be the La-

grangian coordinate at t = 0. We require that X is smooth. Recall that V0(0, x) is

the prescribed initial condition for the velocity, and V 0
0 (0, x) is the first coordinate

of V0(0, x). For later time, define X(0)(0, y) as

X(0)(t, y) = X(0)(0, y) + t · V0(0, X(0)(0, y))

V 0
0 (0, X(0)(0, y))

.
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Let g(0) be the pull-back metric accordingly. We can then define the initial iteration

of u and Λ as a polynomial function in t. The definition is not unique, but the idea is

to define u(0) and Λ(0) so that they are smooth in t, and satisfy the initial condition.

One such choice could be:

u(0)(t, y) = (t2 + 1) · V0(0, X(0)(0, y)) + t · (DV V0)(0, X(0)(0, y))

V 0
0 (0, X(0)(0, y))

Λ(0)(t, y) = (t2 + 1) · (DV σ
2
0)(0, X(0)(0, y)) + t · (D2

V σ
2
0)(0, X(0)(0, y))

V 0
0 (0, X(0)(0, y))

.

One can easily check that they satisfy the initial conditions, have the desired regu-

larity, and that Λ(0)(t, y) ≡ 0 for y ∈ ∂B.

5.1.2 The Iteration

Next, we define the further iterations of u and Λ in the natural way. So far, we

have taken an initial guess of the coefficients of the linear equation, and upon solving

this linear equation, we can use this solution to define the coefficients of the linear

equation in the next iteration.

Let m ≥ 0. Assume u(m),Λ(m), (Σ2)(m), X(m), g(m), h(m), w(m) are given. We define

the known variables that appear in the weak formulation:

γ(m) =
2((u(m))0)2

a(m)(
Φ(m)(θ), φ

)
=
〈
−(g(m))00θ, φ

〉
+ ⟪γ(m)θ, φ⟫ ,

and replace all the variables in the definition of L, C, q, f, Ij1 , I2, I3, B1 with the known

functions u(m),Λ(m), (Σ2)(m), X(m), g(m), h(m), w(m). Our next goal is to prove that

these functions u(m),Λ(m) are uniformly bounded for all m.
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5.2 Uniform Boundedness

In this section, we will show that u(m) and Λ(m) are uniformly bounded in a norm

that we next specify. Define1

EM [u,Λ](t) = sup
0≤τ≤t

M∑
k=0

‖∂k+1
t u(τ)‖2

L2(B) + ‖∂kt u(τ)‖2
H1(B) + +‖∂k+1

t u(τ)‖2
L2(∂B)

(5.1)

+
M∑
k=0

‖∂k+1
t Λ(τ)‖2

L2(B) + ‖∂kt Λ(τ)‖2
H1(B).

Proposition 5.1. Let M be the integer in Theorems 4.2 and 4.5. Then there is

some constant A <∞ and T > 0 such that

EM [u(m),Λ(m)](T ) < A ∀m = 0, 1, · · · .(5.2)

Proof. Recall that by definition of the weak solutions, all u(m) and Λ(m) agree at

t = 0. So we know that

EM [u(m),Λ(m)](0) = E0 ∀m ≥ 0

for some constant 0 ≤ E0 <∞. By Theorems 4.2 and 4.5, we know that there is an

integer r > 1 (such that when x is large, xr > P (x) for the polynomials that appear)

such that

EM [u(m),Λ(m)](T ) ≤ E0

(
1 + TEM [u(m−1),Λ(m)](T )r · eTEM [u(m),Λ(m−1)](T )r

)
.

Denote αm := EM [u(m),Λ(m)](T ). We claim that for T > 0 small, there is a constant

A such that αm < A for all m.

To prove this, let

f(x) = E0 ·
(
1 + Txr · eTxr

)
.

1Here [u,Λ] means that u,Λ are arguments of the functional. It does not represent a commutator.
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In fact, we will prove that αm converges to the smaller fixed point of f . It suffices

to show that f(x) is concave up and has two fixed points. We compute

f ′′(x) = eTx
r

rTxr−2
(
rT 2x2r + (3rT − T )xr + r − 1

)
.

It is clear that f ′′(x) > 0 for all x > 0, so f is concave up indeed. When T → 0, we

see that the equation f(x) = x has at least one solution. The existence of the other

solution follows from concavity.

Since αm converges, we see that is is bounded for all m.

Remark 12. Note that in order to prove uniform boundedness, the time of existence

T might be smaller than the time of existence in Theorems 4.2 and 4.5. This is due

to the nonlinear nature of our equation.

Next, we will show that the iteration converges. In fact, we will show that

u(m),Λ(m) is a Cauchy sequence in m under a norm which we will specify. The main

idea of the proof to use the triangular trick, which is similar to what we did for the

case of the unbounded domain.

5.3 Convergence

We prove that the sequence u(m),Λ(m) is a Cauchy sequence in the following norm.

We define the norm on the difference between two consecutive terms to be

em(t) = sup
0≤τ≤t

∑
k≤5

(∫
Bτ

|∇t,y∂
k
t (u(m+1) − u(m))|2 dy +

∫
∂Bτ

|∂k+1
t (u(m+1) − u(m))|2 dS

)(5.3)

+

(
sup

0≤τ≤t

∑
k≤5

∫
Bτ

|∇t,y∂
k
t (Λ(m+1) − Λ(m))|2 dy

)

+

(∑
k≤5

∫ t

0

∫
∂Bτ

|∂k+1
t (Λ(m+1) − Λ(m))|2 dSdτ

)
.
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One could easily see that em(t) is motivated from the energy E ε=0
M (t) that appeared

in the a priori estimate; except that we are only taking the first 5 time derivatives

and do not utilize the full M time derivatives. We will prove convergence in this

lower regularity space.

Proposition 5.2. There is a constant C such that

(5.4)
∞∑
m=0

em(t) . eCT ∀t ∈ [0, T ].

Here the implicit constant only depends on e0.

Recall that em controls the difference between two consecutive iterations of u and

Λ, so in particular (5.4) show that u(m) and Λ(m) form a Cauchy sequence with norms

‖u‖Bu =
∑
k≤5

‖∂kt u‖L∞([0,T ],H1(B)) + ‖∂k+1
t u‖L∞([0,T ],L2(B)) + ‖∂k+1

t u‖L∞([0,T ],L2(∂B))

‖Λ‖BΛ
=
∑
k≤5

‖∂kt Λ‖L∞([0,T ],H1(B)) + ‖∂k+1
t Λ‖L∞([0,T ],L2(B)) + ‖∂k+1

t Λ‖L2([0,T ],L2(∂B))

respectively.

Proof. Since M � 5, we know that the equations for u and Λ are in fact satisfied in

the strong sense. That is, if we denote

F (m) :=
1

2
((u(m))0)2(w(m))να(g(m))αβ∂β((Σ(m))2)

− 1

2
(g(m))αβ∂α(X(m))ν∂β(Λ(m)) + 2(u(m))0∂t(u

(m))0∂t(u
(m))ν

G(m) :=(g(m))αβ∂α((X(m))µ)∂β((w(m))νµ)

− (g(m))αβ∂α(X(m))ν∂β
(
(logG)′(Λ(m))

)
H(m) :=4(g(m))αβ(∂β(u(m))ν)∂α

(
mµν(g

(m))γδ(∂δ(X
(m))ν)(∂γ(Σ

(m))2)
)

+ 4mρνmνκ(g
(m))αβ(g(m))γδ(∂δ(X

(m))κ)(∂α(u(m))ν)(∂β(u(m))µ)(∂γ(u
(m))ρ)

+ 2∂t(u
(m))0(logG)′′(Λ(m))2 + (u(m))0(logG)(3)(Λ(m))3
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− ∂t(u(m))0(logG)′(Λ(m))2 − (u(m))0∂t(X
(m))0(logG)′∂t(Λ

(m)),

then the equations for u(m+1) and Λ(m+1) can be written as:

(5.5) ((u(m))0)2∂2
t (u

(m+1))ν − 1
2
(g(m))αβ(∂α(Σ(m))2)∂β(u(m+1))ν = F (m) on [0, T ]× ∂B

�(g(m))(u
(m+1))ν = G(m) in [0, T ]×B

and

(5.6)


(Λ(m+1)) ≡ 0 on [0, T ]× ∂B

�(h(m))(Λ
(m+1)) = H(m) in [0, T ]×B

.

And (5.5), (5.6) are satisfied in the strong sense.

The differences u(m+1)−u(m) and Λ(m+1)−Λ(m) then satisfy equations of a similarly

form. On ∂B, the difference u(m+1) − u(m) satisfies

(u0
(m))

2∂2
t

(
u(m+1) − u(m)

)
+ a(m)n(m)

α gαβ(m)∇β

(
u(m+1) − u(m)

)
=G(m) −G(m−1) −

(
(u0

(m))
2 − (u0

(m−1))
2
)
∂2
t u

(m)

−
(
a(m)n(m)

α gαβ(m) − a
(m−1)n(m−1)

α gαβ(m−1)

)
∇βu

(m)

=:G̃(m).

In B, the difference u(m+1) − u(m) satisfies

∇α

(
gαβ(m)∇β(u(m+1) − u(m))

)
=F (m) − F (m−1) −∇α

(
(gαβ(m) − g

αβ
(m−1))∇βu

(m)
)

=:F̃ (m).

It is evident that both equations have exactly the same terms as (5.5) on the left hand

side, and the terms on the right hand side depends on F (m), F (m−1), G(m), G(m−1).

Similarly, on ∂B, the difference Λ(m+1) − Λ(m) is identically zero, and in B, the

difference Λ(m+1) − Λ(m) satisfies

�(h(m))(Λ
(m+1) − Λ(m)) =H(m) −H(m−1) −∇α

(
(hαβ(m) − h

αβ
(m−1))∇βΛ(m)

)
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=:H̃(m).

Inspecting the formulae for F (m), G(m), H(m), we see that they are all linear com-

binations of terms of the form

(∇k1
t,yφ1) · · · (∇kp

t,yφp)

where ki ≤ 2, and φi ∈ {u(m),Λ(m), (Σ2)(m), X(m), g(m), h(m), w(m)}. Among these

terms, (Σ2)(m), X(m), g(m), h(m), w(m) are rational functions of u(m),Λ(m) with bounded

derivatives. So using the triangular trick again, we may write F̃ (m), G̃(m), H̃(m) as

linear combinations of terms of the form

1

P
· (∇k1

t,yφ
(m)
1 ) · · · (∇kp

t,yφ
(m)
p ) · (∇n1

t,yψ
(m−1)
1 ) · · · (∇nq

t,yψ
(m−1)
q ) · (∇r

t,yδ
(m))

where P is a polynomial in u(m),Λ(m), u(m−1),Λ(m−1) such that 1/P is bounded,

ki, ni, r ≤ 5, φi, ψi ∈ {u,Λ}, and δ(m) ∈ {u(m+1) − u(m),Λ(m+1) − Λ(m)}. By

the uniform bound in Proposition 5.1, we know that 1
P
· (∇k1

t,yφ
(m)
1 ) · · · (∇kp

t,yφ
(m)
p ) ·

(∇n1
t,yψ

(m−1)
1 ) · · · (∇nq

t,yψ
(m−1)
q ) can be bounded in L∞ norm. Thus, appealing to the

energy estimates in Theorems 4.2 and 4.5, we know that there is some constant C

such that

em(t) ≤ C ·
∫ t

0

em−1(τ) dτ.

By induction, we see that

em(t) ≤ Cm

∫ t1

0

∫ t2

0

· · ·
∫ tm

0

e0(tm) dtm · · · dt1

≤ Cmtm

m!
sup

0≤τ≤t
e0(τ),

and thus

∞∑
m=0

em(T ) ≤ eCT sup
0≤τ≤T

e0(τ).
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The statement that u(m),Λ(m) form a Cauchy sequence in the ‖·‖Bu and ‖·‖BΛ
norms

respectively clearly follows.

Corollary 5.3. Assume the same conditions as in Proposition 5.2. Then there is

some u,Λ in Bu and BΛ respectively, such that

u(m) → u in Bu

Λ(m) → Λ in BΛ.

Moreover, u,Λ have the same regularity as the initial data.

Proof. The spaces

L∞([0, T ], H1(B)), L∞([0, T ], L2(B)), L∞([0, T ], L2(∂B)), L2([0, T ], L2(∂B))

are complete, so Bu and BΛ are Banach spaces. Thus the limits exist and ‖u‖Bu <∞,

‖Λ‖BΛ
<∞.

The regularity follows because upon passing to a subsequence, u(m) and Λ(m)

also has a weak limit with the same regularity, and since u(m) → u and Λ(m) → Λ

strongly, the weak limit has to coincide with the strong limit. Thus the strong limit

u,Λ have the same regularity as their initial data.

5.4 Uniqueness of Solution

The last ingredient is the uniqueness of the solution, which we have shown to

exist.

Theorem 5.4. Assume that (u,Λ, X, w,Σ2) solve the systems (1.39)-(1.48) on some

time interval [0, T ], such that EM [u,Λ](T ) <∞. Then the solution is unique.

Proof. The uniqueness of the solution follows from exactly the same argument as in

Theorem 3.11, except we change the domain to D = B.
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5.5 Conclusion

In this chapter, we adapted the iterative scheme in [10] to construct a solution to

(1.39)-(1.48) on the bounded domain, and furthermore addressed its regularity and

uniqueness. This proves Theorem 1.1 when the domain Ω0 is bounded.



APPENDICES

129



130

Appendices

A Commutators and Identities

Lemma A.1. We have

1. [∂t, f ]g = (∂tf)g.

2. [∇̃j, f ]g = Jε ((∂jf)g) + [Jε, f ]∂jg.

Proof. Both follow from direct computations.

Lemma A.2. Assume f, g are defined on R3
+, and extended either oddly or evenly

to R3. Then Jε is self-adjoint. That is,∫
R3

+

(Jεf)g dx =

∫
R3

+

f(Jεg) dx.

Proof. For y ∈ R3, write y = (y1, y2), so y = (y, y3). We compute that∫
R3

+

(Jεf)g dx =

∫
x∈R3

+

∫
R3

ηε(x− y)f(y)g(x) dydx

=

∫
x∈R3

+

∫
y:y3>0

ηε(x− y)f(y)g(x) dydx

+

∫
x∈R3

+

∫
y:y3<0

ηε(x− y)f(y)g(x) dydx

=

∫
x∈R3

+

∫
y:y3>0

ηε(x− y)f(y)g(x) dydx+

+

∫
x∈R3

+

∫
y:y3>0

ηε((x− y, x3 + y3))f((y,−y3))g(x) dydy3dx

=

∫
x∈R3

+

∫
y:y3>0

ηε(x− y)f(y)g(x) dydx+

±
∫
x∈R3

+

∫
y:y3>0

ηε((x− y, x3 + y3))f((y, y3))g(x) dydy3dx.

In either case, since η is radial, the equation is symmetric in x and y, so the result

follows.
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Lemma A.3. Let f, g ∈ S(R3). Then∫
R3

+

gf∇jf dy =
1

2

∫
∂R3

+

njgf
2 dS − 1

2

∫
R3

+

(∇jg)f 2 dy.

Proof. We have∫
R3

+

gf∇jf dy =

∫
∂R3

+

njgf
2 dS −

∫
R3

+

(∇jg)f 2 dy −
∫
R3

+

(∇jf)gf dy.

Rearranging the terms gives the desired result.

B Common Estimates

We list here the some common estimates that were used in the proof. In this

section, let ε > 0 be a constant, and Jε be the frequency cut-off:

Ĵεf(ξ) := f̂(ξ) · χ|ξ|<1/ε.

Let η̂(ξ) = χ|ξ|<1/ε, then we may also write

Jεf(x) = f ∗ ηε(x) =

∫
R3

ηε(x− y)f(y) dy =

∫
R3

1

ε
η

(
x− y
ε

)
f(y) dy.

Lemma B.1. Let f, g ∈ S(R3). Then

1. ‖[Jε, f ]g‖L2(R3) . ‖f‖L∞(R3)‖g‖L2(R3).

2. ‖[Jε, f ]∇g‖L2(R3) . ‖f‖H3(R3)‖g‖L2(R3).

3. ‖∇[Jε, f ]g‖L2(R3) . ‖f‖H3(R3)‖g‖L2(R3).

Proof. We prove each one of the estimates.

1. This is clear since ‖Jε‖L(L2,L2) ≤ 1.

2. We have

̂[Jε, f ]∇g(ξ) =

∫
η

f̂(ξ − η)
(
χ|ξ|<1/ε − χ|η|<1/ε

)
2πiηĝ(η) dη.
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Thus, by Cauchy-Schwarz,∫
ξ

∣∣∣ ̂[Jε, f ]∇g(ξ)
∣∣∣2 dξ

.
∫
ξ

(∫
η

|ĝ(η)|2 dη
)(∫

η

|f̂(ξ − η)
(
χ|ξ|<1/ε − χ|η|<1/ε

)
η|2 dη

)
dξ

=‖g‖2
L2 ·

∫
ξ

∫
η

|f̂(ξ − η)|2|η|2
(
χ|ξ|<1/ε − χ|η|<1/ε

)2
dη dξ

=‖g‖2
L2 ·

∫
ξ

∫
η

(
|f̂(ξ − η)|2(1 + |ξ − η|)6

)
·(B.1)

|η|2

(1 + |ξ − η|)6

(
χ|ξ|<1/ε − χ|η|<1/ε

)2

︸ ︷︷ ︸
:=K(ξ,η)

dη dξ.

When |η| < 1/ε, K(ξ, η) 6= 0 iff |ξ| > 1/ε, in which case

|K(ξ, η)| . 1

1 + |ξ|4
.

When |η| > 1/ε, K(ξ, η) 6= 0 iff |ξ| < 1/ε, in which case

|K(ξ, η)| . 1

1 + |η|4
.

Thus, ∫
ξ

∫
η

(
|f̂(ξ − η)|2(1 + |ξ − η|)4

)
K(ξ, η) dη dξ

.
∫
ξ

∫
|η|<1/ε

(
|f̂(ξ − η)|2(1 + |ξ − η|)6

)
· 1

1 + |ξ|4
dηdξ

+

∫
ξ

∫
|η|>1/ε

(
|f̂(ξ − η)|2(1 + |ξ − η|)6

)
· 1

1 + |η|4
dηdξ

=

(∫
ξ

1

1 + |ξ|4
dξ

)∫
|η|<1/ε

(
|f̂(η)|2(1 + |η|)6

)
dη

+

(∫
|η|>1/ε

1

1 + |η|4
dη

)∫
ξ

(
|f̂(ξ)|2(1 + |ξ|)6

)
dξ

.‖f‖2
H3 .

Substituting back into equation (B.1), we obtain the desired result.
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3. We have

∇[Jε, f ]g = [Jε,∇f ]g + [Jε, f ]∇g,

so the estimate follows from the previous two and Sobolev embedding.

Lemma B.2. Let 0 < k < m and f ∈ Hm. Then we have the following interpolation

relation

‖f‖Hk . ‖f‖k/mHm · ‖f‖1−k/m
L2 .

Proof. By Hölder’s inequality (with p = m/k, q = m/(m− k)),∫
(1 + |ξ|)2k|f̂(ξ)|2 dξ =

∫
(1 + |ξ|)2k|f̂(ξ)|2k/m|f̂(ξ)|2(m−k)/mdξ

≤
(∫

(1 + |ξ|)2m|f̂(ξ)|2 dξ
)k/m

·
(∫
|f̂(ξ)|2 dξ

)1−m/k

.

This is the desired estimate.

Lemma B.3. Suppose f ∈ Hk and m ≤ k. Then

‖(Id−Jε)f‖Hk−m . εm‖f‖Hk .

Proof. We have∫
|ξ|>1/ε

(1 + |ξ|)2(k−m)|f̂(ξ)|2 dξ =

∫
|ξ|>1/ε

1

(1 + |ξ|)2m
(1 + |ξ|)2k|f̂(ξ)|2 dξ

. ε2m
∫
|ξ|>1/ε

(1 + |ξ|)2k|f̂(ξ)|2 dξ,

which gives the desired estimate.

Lemma B.4. Let F ∈ C∞ and u ∈ Hk ∩ L∞. Then

‖F (u)‖Hk . 1 + ‖u‖Hk ,

where the constant only depends on ‖F j‖∞ for j = 0, · · · , k.
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Proof. This is a standard result proven in, say, [18].

Lemma B.5. [Grönwall’s Inequality] Let E(t) be a non-negative function on [0, T ]

satisfying

E(T ) ≤ C1 + C2

∫ t

0

E(τ) dτ ∀t ∈ [0, T ]

for some constants C1, C2 ≥ 0. Then

(B.2) E(t) ≤ C1 ·
(
1 + C2te

C2t
)
∀t ∈ [0, T ].

In particular, if C1 = 0, then

E(t) ≡ 0 ∀t ∈ [0, T ].

Proof. This is a standard result proven in, for instance, [3].

Lemma B.6 (Trace Theorem). Let Ω ⊂ Rn be a bounded domain and assume that

∂Ω is C1. Then there exists a bounded linear operator

T : H1(Ω)→ L2(∂Ω)

such that

1. Tf = f |∂Ω is f ∈ H1(Ω) ∩ C(Ω), and

2. for each f ∈ H1(Ω),

‖Tf‖L2(∂Ω) . ‖f‖H1(Ω).

Proof. This is a standard result proven in, for instance, [3].
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