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ABSTRACT

In this dissertation, we study the motion of a relativistic barotropic fluid with a
free boundary. Relativistic barotropic fluids are fluids whose density and pressure
are directly related. Such fluids are used as models in a wide range of scientific
applications from meteorology to astrophysics. We prove that such a system of
equations is locally well-posed, and the unique solution has the same regularity as
the initial data. We use two methods to achieve the result. The first method is to
construct approximate solutions to the equation by mollifying the nonlinear equation
directly in the Lagrangian coordinate, and then passing to the limit so that the
approximate solutions converge to the exact solution. The second method is to
first consider the equation on a linear level, solve the linear equation using Galerkin
approximation, and then solve the nonlinear equation by iterating on the solutions

to these linear equations and passing to the limit.



CHAPTER 1

Introduction

In this dissertation, we consider the motion of a fluid domain in the relativistic

setting. Let (R3 m) be the Minkowski space-time with metric

-1 of
(1.1) m = o
O3x1 Isx3

We use mqs to denote entries in the metric m, and m*” to denote entries in the
inverse metric m 1.

Throughout the dissertation, we adopt the Einstein summation convention, and
the indices are raised and lowered with respect to the metric. We use Greek letters
a, B etc to denote indices 0, 1,2, 3, and Latin letters ¢, j etc to denote indices 1, 2, 3.

We consider a fluid domain Q C R!'*™3, representing a fluid body in the Minkowski
space-time surrounded by vacuum. Before introducing the fluid equation, we define
a few quantities that are associated with the fluid. We have the proper energy
density, denoted by p, and the pressure, denoted by p, both of which are non-negative

functions. We also have the number density of particles, denoted by n. Let v be the

fluid velocity, which is a unit-length, future-directed time-like vector field. That is,

magvo‘vﬁ =—1, and °>0.



The particle current is defined as
(1.2) I* = not.
For a perfect fluid, the energy tensor of matter is given by
(1.3) ™" = (p + p)vv” + p(m~H)*.
We know that the motion of the fluid is governed by the conservation laws
(1.4) vV, " =0, and
(1.5) vV, I" = 0.

In this work, we consider a special class of the perfect fluid, namely barotropic

fluid, where the pressure p is a function of the density p:

(1.6) p=f(p).

Under this setting, the authors in [1] derived a system of equation for the motion of
barotropic fluid, which we present below.
Assume that the function f(p) is strictly increasing, so that it has an inverse

p= f"(p). Assume further the following integral converges:

P dp P dp/
F(p) = / ! = / / —1(\"
o P'tp  Jo PAHFHY)

Let
Vi=el v,
o:=e",
G::P;P

Remark 1. Here o determines F', which determines p, which determines p through

the function p = f~!(p). Hence, G is in fact a function of o2 alone.



Observe that since the fluid is surrounded by vacuum, p = 0 on the time-like

boundary of the fluid domain 92 and p > 0 in €2, so in particular we have that
(1.7) o?=1 on 0N

(1.8) o>>1 inQ.

Then projecting the conservation laws (1.4)-(1.5) onto the space spanned by v and

the space that is orthogonal to v respectively, we arrive at the following equations of

motion:

v 1 v_2 :
(1.9) VIV, VY + §V 0°=0 inQ
(1.10) V. (G(@*H)V*) =0 in Q.

We consider the free-boundary problem, so the time-like boundary 9€) evolves ac-
cording to the re-normalized fluid velocity V', and is also part of the unknown. The
boundary conditions, which we call the liquid boundary condition, are that on the
time-like free boundary 09 C R'*3, 62 = 1 and the fluid velocity is tangent to the

boundary 0€:

(1.11) c’=1 on 0N

(1.12) Vloa € T(09).

We assume that the initial fluid domain Qg and the initial data (Vp,03) are given,

and they satisfy the following conditions:

(1.13) VY >co >0 in Qg
(1.14) —(Vo)u(Vo)* =03 > 1 in Qg
(1.15) oo =1 on 00

(1.16) (Vuo3)(VF05) > o >0 on 09



for some constant ¢y > 0.
From now on, we shall consider the system of equations for the re-normalized
velocity V', and drop the notation v. We prove the local well-posedness of the system

of equations (1.9)-(1.12) with initial conditions satisfying (1.13)-(1.16).

1.1 History of the Problem

One of the earliest work regarding existence of solutions to the relativistic fluid
problem is [9], which models the dynamics of a gaseous star and shows the existence
of local solutions under certain conditions on the initial data. The existence of a
particular class of solutions to the gaseous model was later established in [16]. Other
advances on the well-posedness of the free-boundary relativistic fluid problems are
considerably more recent.

In the case of the gaseous model, an a priori estimate was obtained in [7] and [6].
An existence result on the unbounded domain was obtained in [19].

In the case of the liquid model, [12] proved existence of solutions in two space
dimensions. The author later derived an a priori estimate and an existence result for
a similar kind of liquid model in [14], [13] and [15].

For the case of a three-dimensional free-boundary barotropic fluid, [5] proved an
a priori estimate assuming that the initial data is small. In [10], the authors studied
the free boundary problem with liquid boundary conditions for the hard phase model,
which is an irrotational barotropic fluid for which sound speed is equal to the speed
of light. This corresponds to the case G = 0 in our equation, and furthermore
vorticity is constantly zero. In their work, an priori estimate was established for
general initial data in Sobolev spaces, and a local well-posedness result was shown

using linearization and iteration.



One of the key ideas in [10] is to reduce the equations (1.9)-(1.12), which is a
fully nonlinear system on a free domain, to a quasilinear system. The authors of [10]
mentioned that they were motivated by the Newtonian counterpart of the problem,
i.e., the water wave problem, which considers the motion of an incompressible and
irrotational ideal fluid in a free domain. It was shown in [20, 21] that for such a
system, taking a material derivative! D, of the Euler equations results in a quasilinear

system of equations:

(D} +aVy)V =—-VDgp on 9%
(1.17) ]
AV =0 in Qt

Here D; := 0, + V -V is the material derivative. The terms a and V D;p were written
as boundary integrals, and the author proved that (1.17) is a quasilinear equation of
hyperbolic type, and a local well-posedness result was established.

In the more general case with nonzero vorticity, [2] considered the system of

equation
¢ N . B
—Vp =V,VV'V in
—VD;p=0pVVi +G(VV,VPp) in Q,
(1.18) o
p=0 on 0€),
Dip=0 on 0%,

\

and replaced the analysis on boundary integrals by the elliptic regularity theory. An

a priori estimate was obtained in [2] assuming that the Taylor sign condition holds:

(1.19) — 2 >G>0 ondQ,.

SIS

Motivated by the aforementioned work in [20, 21] and [2], the authors of [10] took

!The material derivative measures the rate of change of a quantity along the trajectory of a fluid
particle, and is equivalent to 0; in the Lagrangian coordinate.



a material derivative

DV - V“Vﬂ

of the system (1.9)-(1.12), and established the local well-posedness result after ana-
lyzing the resulting quasilinear system. The authors remarked that although their
quasilinear system looked similar to (1.17), there are a few important differences:
one is that the Laplacian A is replaced by the d’Alembertian [J; the second is that
the hyperbolic Dirichlet-to-Neumann map Vj is not obviously seen to be positive;
the third is that it is not clear if the right hand side consists of lower order terms;
and finally it is not obvious in what functional space the Cauchy problem can be
solved. These issues were addressed in [10].

In this dissertation, we will extend the results in [10] and prove an a priori estimate
as well as a well-posedness result for general barotropic fluid with liquid boundary
condition. That is, we work with the general case with non-zero vorticity as well as
non-constant function G. We use two approaches to tackle the problem, which are

summarized in the next section.

1.2 Results and Key Ideas

We prove that the equations (1.9)-(1.12), which govern the motion of a general
free-boundary barotropic fluid with liquid boundary condition, are locally well-posed.
That is, we assume that the initial domain g as well as the initial data (Vj, 03) are
sufficiently smooth, and prove that there is some time 7" such that the system of
equations (1.9)-(1.12) has a solution on the time interval [0,T]. Moreover, the time
T depends only on the initial data, and the fluid domain €2; as well as the solution
(V,0?) admit the same regularity as their initial conditions. We will give two proofs

for this result; the first one uses mollification and works well when the initial domain



)y is unbounded, and the second one is adapted from [10], and address the case
when the domain 0y is bounded. We will discuss the ideas after we state the main

Theorem.

Theorem 1.1. Let M = 10%. Let y be the initial domain. If € is unbounded,

we consider D = R3 = {(y1,v2,y3) : y3 > 0}, and if Qy is bounded, we consider

D=DB={(y1,92,93) 1 y; +y3 +y3 < 1}.

Assume that Qg is smooth enough such that there is a map Y : Qg — D with
(1.20) VY € L3(Q) Vp < (M +2)/2.

Assume further that the initial data (Vy,03) satisfy the conditions (1.13)-(1.16) and

possess the following reqularity:

(1.21) VPDE Vo€ LA(Q) V2p+k<M+2andk<M+1
(1.22) Dy Vo € L*(0S%) Vk<M+1
(1.23) VP D es € L2 (Q) V2p+ k<M +2andk < M+1
(1.24) Dy o5 € Hy(Q0) Vk<M+1.

Then there exist a time T > 0, a unique domain Q@ = U,co )82, and a unique solution
(V,0?), such that the system (1.9)-(1.12) is satisfied in t € [0,T]. Moreover, the time
T depends only on the initial data, and V,o?,Q enjoy the same regularity of their

initial data.

To prove this Theorem, our first step is to borrow the idea of [10] and take material
derivatives of the equations in order to obtain a quasilinear system of equations. The

derivation is shown in Section 1.3.

2The quantity M is the total number of material derivatives that we take in the a priori estimate.
The number 10 carries no special significance; any large integer would work



After obtaining the quasilinear system of equations, we use two different ap-
proaches to establish the local well-posedness result.

Our first approach is novel, and it enables us to tackle the nonlinear problem
directly. We mollify the nonlinear equation, and study the mollified problem as a
system of ODEs. Note that since we are dealing with a free-boundary problem, the
mollification process is most easily done if the domain is fixed. To this end, we re-
write the quasilinear system in Lagrangian coordinates, so that the domain can be
fixed. The Lagrangian formulation is presented in Section 1.4.

After obtaining the Lagrangian formulation, we use mollification to convert the
nonlinear system into a system of ODEs. One important ingredient in the mollifica-
tion process is that we will fill the vacuum with a virtual flow, so that the mollifiers
are well-defined. This is discussed in Section 1.5.

We will then prove an a priori estimate that is independent of the mollification
parameter, and use the solutions to the mollified equations to construct a solution
to the original equation by passing to the limit.

This method works well for an unbounded fluid domain, and we will use it to
prove Theorem 1.1 for the case when €}y is unbounded. In fact, an advantage of this
approach compared to the second is that it tackles the nonlinear equation directly,
and we believe that it will be useful in solving a wide range of free-boundary fluid
problems. However, we encountered some difficulties when extending the result to
a bounded fluid domain. Thus, we will use a second approach to establish the local
well-posedness result for the case of a bounded fluid domain, i.e., Theorem 1.1 for
the case when € is bounded.

Our second approach is an adaptation from the method in [10] to the general

setting. We consider the equation on a linear level, solve the linear equations using



Galerkin approximation, and iterate on these solutions to obtain a solution to the
nonlinear equation. Note that our approach is not to linearize the equation around a
solution; rather, we consider the functions that appear in the differential operator, as
well as the functions on the right hand side, as given. We will discuss this approach
in more details in section 1.8.

Summarizing, our goal is to prove Theorem 1.1 for both the unbounded domain

and the bounded domain. Our plan consists of the following steps:
e derive the quasilinear system of equation;
e prove an a priori estimate for the quasilinear system;

e use approach one (i.e. mollification) to obtain the existence of a solution when

the fluid domain €}y is unbounded;

e prove the uniqueness of the solution, which shows Theorem 1.1 when () is

unbounded;

e use approach two (i.e. linearization and Galerkin approximation) to obtain the

existence of a solution when the fluid domain €2 is bounded;

e prove the uniqueness of the solution, which proves Theorem 1.1 when €y is

bounded.
Some of the major difficulties in the proof include the following:

1. It is not clear how to mollify the equation, since the fluid boundary 0f2 is also
part of the unknown. More precisely, let f be a function that is defined in the
domain Q. Recall that the mollified function J, f(z) is essentially a weighted

average of the values of f that are close to the point x. Thus, when the point
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x €  lies close to the (unknown) boundary 0f2, part of the support of J. may
lie outside of the domain, and it is not clear how to extend f outside of the
fluid domain, so in this case, J.f is not well-defined. To solve this problem,
we will use the Lagrangian formulation to straighten the boundary and define
a virtual flow outside of the fluid domain, so that the boundary conditions are

maintained, and a mollifier can be defined.

2. When a mollifier is defined, it is not clear if the a priori estimate on the un-
mollified equation still holds for the mollified equation. To tackle this difficulty,
we need to mollify the equation appropriately so that an a priori estimate can

still be obtained.

3. With the addition of the vorticity w and the non-constant function G, it is no
longer clear if the terms involving w and G are lower-order terms. An analysis

is indeed necessary in order to control these terms in the a priori estimate.

In the next section, we achieve the first bullet point; that is, we take a material

derivative to obtain a quasilinear system of equations from (1.9)-(1.12).

1.3 Derivation of the Fluid Equation

As discussed in Section 1.1, the authors of [10] considered the system of equations
(1.9)-(1.12) in the special case where G = 1, the fluid is irrotational, and the sound
speed is equal to the speed of light. In this dissertation, we shall treat the more
general case with a non-zero vorticity, and with GG being a sufficiently smooth function
with derivatives satisfying a boundedness condition. We will discuss the details of
the boundedness condition on G when presenting the Lagrangian formulation.

This section, following [10], derives a quasilinear system by equations by taking
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the material derivative of the system (1.9)-(1.12). Recall that V' is the re-normalized
fluid velocity, and o2 = ||[V||%.

Throughout the dissertation, we use €, C R'*3 to denote the fluid domain at
time ¢, and 0f2 := U;0€); to denote the time-like boundary of the fluid domain. That
is, for each ¢, ; is a three-dimensional manifold, and 0€; is its (two-dimensional)

boundary.

1.3.1 Equations for Fluid Velocity V

In what follows, we define the material derivative as
(1.25) Dy f :=VIV,f.

Following the approach in [10], we take a material derivative of equation (1.9) to

obtain
2y/v 1 a v _2
O:DVV —|—§V va(VO')
1 1
(1.26) =DyVY + §V”(Vavacr2) - 5(vyva)(vaa?).

Let the space-time normal vector n be the normal vector to 92 under the metric

m. By equation (1.11), we know that Vo2 is parallel to n. Let

(1.27) a:= \/(Vu02)(V“02),

then we can write
Vo? = —an.
Using this notation, we see that on the boundary Jf2, the equation (1.26) can be

written as

1 1 1
DIV + §ana(V”Va) =DyVY — 5(vaﬁ)(vyva‘) = —QVV(DVO'Q).
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We would like to write the term an,(V*V®) as a normal derivative on 2. To this

end, define the vorticity as

(1.28) w*? = veVP - vve,

then the preceding equation becomes

(1.29) DYV + an, (VOVY) =D VY — %(VQUQ)(VO“V”)

(1.30) =— %VV(D\/'O'Q) + %w“avaﬁ on 0f.

This is the boundary equation for V.

The interior equation of V' is derived from (1.10). By (1.10), we know that
(1.31) GV, V' +VIV,G = 0.

Taking one more derivative, we obtain the d’Alembertian operator, so the interior

equation of V' is the following wave equation with nonlinearity:

(1.32) OV = V,VAV”

= Vu(VV* 4w

VEV,G
— v (— Z“ )—I—Vuw“”

= —V"(Dylog G) + V ,w"".
Notice that if G = 1 and w™® = 0, our equations coincide with the equations
derived in [10].
1.3.2 Equations for o2

Recall that the boundary condition for o2 is simply o2 = 1 on 0f.
The interior equation for ¢ follows from (1.9) and (1.31). As with V, the interior

equation of 02 is also a nonlinear hyperbolic equation, albeit with a different wave
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operator:

V., V'o? = -2V, (VIV V")

= —2(V,V*)(V,V") = 2Dy (V, V")
V“VHG>

= 2V, V) (V, V") — 2Dy <_ =

= —2(V,V*)(V,.V") + 2D} (log G).

Note that since G is a function of o2, the last term on the right hand side also
involves two derivatives of 02, and is not a lower order term. So the operator on o? is
in fact Oo? — 2D% (log G). We will compute what —2D3 (log G) equates to, in terms
of o2, when discussing the Lagrangian formulation. Our assumption on the function
G is that the operator Oo? —2D% (log ) is a hyperbolic operator on . The precise
condition on G will be presented in Section 1.4.

In summary, the equations for V' and o read:

(133) DiVH + 1a-V,VF = 1wtV ,0? — IV*(Dyo?) on 09

OV# = 0w — 0" Dy log G in Q.

Oo? — 2D% (log G) = =2V, VoV, V# in Q
(1.34) v 8

0.2

1 on 0f).

1.3.3 Equations for Dy o2

For reasons that will become clear in the energy estimate, we will in fact work
with Dy o? rather than o2. To this end, we shall take one Dy derivative of 1.34. We
use

[A,B] = AB — BA

to denote the commutator of operators A and B.
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On the boundary, since V is tangent to 92, we know that Dyo? = 0 on 9. In

the interior, we take one Dy, derivative to (o? and obtain

ODyvo? =0, Dy]o? + Dy (0o?)

=2(V*"V*)(V,V,0°) + 2D}, (log G) — 2V*V,(V,VV,VH).

The last term, which involves two derivatives of V' such as V,,V, V¢ is troublesome
from the energy estimate point of view, since we will see that Dyo? and V enjoy
the same regularity, which means that V@V is not of lower order as compared with
ODyo? We will put this term into a nicer form by commuting V¥V, = Dy, with
V., and use the relation between o and V, namely equation (1.9), to convert Dy V

into derivatives of o2

ODyvo? =2(VHVY)(V,V,02) + 2D¥ (log G) + 4(V V") (V, V) (V. VH)
—2(Vu(Dy V) (Vo VH) = 2(Va(Dy V) (V. V)

=4(V*V¥)(V,V,02) + 2D3 (log G) + 4(V,. V') (V, V) (Vo VH).

We have converted the terms involving V@V into V2, which is easily seen to be

of lower order than V® Dy o2, As before, since G involves o2, the term D3, log G is

in fact not a lower order term, and we will compute the exact formula for D} (log G)

as a function of 02 when we describe the Lagrangian formulation of the equation.
In summary, the system of equation for Dy o? is:

(1.35)
ODyo? — 2D} (log G) =4(VFVY)(V,V,02) + 4(V,, V") (V,V)(V,VF)  inQ

Dyo? =0 on O0N).
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1.3.4 Equations for Vorticity w
Finally, we derive the equation of the vorticity w*":

Dyw" = Dy (V*V* — V'V*)

(1.36) = [Dy,V*VY — [Dy, V"IV + VH*(Dy V") = V" (DyVH).
By equation (1.9),

VH(DyV") = —%V“V” 2 =V"(DyVH),
so the last two terms in (1.36) cancel out. We thus have

Dyw"” = [Dy,V*|VY — [Dy, V']V#
= — (V) (VVY) + (VIVL)(VEVH)
= —(VV )w® — (VHV)(V'VE) + (VI V) w™ + (VV,) (VHVL)

= —(VFV )w + (V" V) w.
Therefore, the equation for the vorticity w is

(1.37) Dyuw" = —(V*V,))w™ + (V"V,)w.
1.3.5 Initial Data

We have presented the equations that V, o2, Dyo?, w satisfy. The next step in
formulating the Cauchy problem is to specify the initial data.

From the formulation of the problem, we see that the interior equations for u
and A are some hyperbolic equations. Hence, we need a set of prescribed initial data

containing Vj and its time derivative. By equation (1.9), we know that

1
DyV" = —5V"o?,
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so in fact, prescribing o at ¢t = 0 is equivalent to prescribing the material derivative
V. Thus, the initial data are the initial fluid domain €y and functions (Vj, 02) such

that

‘/OOZC()>O il’lQO

. ~R =i =1 i

or =1 on 0%

| (Vuod)(VFo5) 2o >0  on 9%
for some positive constant cq > 0.

In summary, in this section, we derived the system of equations for V, 02, Dy.0?, w
in the fluid domain Q and on the boundary 0€2. The goal of this dissertation is to
establish well-posedness of this system of equations. In particular, to establish the
existence of solution, we will appeal to the existence theory of ordinary differential
equations (ODE), which requires us to approximate this system of partial differen-
tial equations so that the equations become an ODE. We will use mollification in
the case of the unbounded domain, and Galerkin approximation in the case of a
bounded domain, to convert the partial differential equations to a system of ODE.
Both mollification and Galerkin approximation work the best when one has a fixed
domain, which motivates us to consider the Lagrangian formulation of the problem,

so that for each time ¢, the fluid domain €, C R'*3 is transformed into a fixed shape.

This is the goal of the next section.

1.4 Fluid Equation in Lagrangian Coordinates

In this section, we will derive the system of equations for V,o?, Dyo? and w
in the Lagrangian coordinates. The resulting equations will be the same for both

the unbounded and the bounded domain, so we use D to denote the domain of
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the Lagrangian variable. Specifically, when the initial domain €2y is unbounded, we
use D = Ri = {(y1,92,v3) : y3 > 0}; when Qg is bounded, we use D = B :=
{(y1,92,08) 17 + 43 + 03 < 1}

We first present the change of coordinate formula. Assume for now that [0,77] is
some time interval in which V' exists, and we write I = [0,7"]. Consider X : I x D —

), defined as the solution of

ot X (1))

(1.39) 0, XI(t,y) =
Then X(¢,-) : D — Q, so X(t,-)~! will transform the fluid domain €, at time ¢
into the Lagrangian domain with a fixed shape D. Our next goal is then to apply
the change of coordinate formula induced by X, and write the systems of equations

(1.33), (1.35), (1.37) in terms of the Lagrangian variable y € D.

The pullback Minkowski metric on I x D is

(1.40) g=— (1—23:

aXlﬁX p
Z a9y 7 8y yFdyt.

X
) dtdy*

(V) > Ve o
oy oX)dt—l—QZ( 3

=1

i,k 0=1

', and [g| =

We define g,s as the components of g, g*° as the components of g~
—det g.
Using the pullback metric g, the corresponding d’Alembertian (similar to the

Laplace-Beltrami operator, but having a 9, component) is:

(1.41) O, f == —=Va (v/99*V5f) .

1
v
The interior equations of V o X and (Dy0?) o X will be in terms of this new wave

operator.

We define composition by

Fo X i=f(t, X(t,y)).
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Let u =V o X, ¥? := 0?20 X, and A := (Dyo?) o X. And by a slight abuse
of notation, we still denote w o X by w. Then, changing variables in (1.33), the
equation of u =V o X becomes

[ ()00 — g™ (VaS2)Vou” = (1) ulig™V(22)

(1.42) - %gaﬁvaX”VﬁA on I'xdD

+ 2u20,u°Opu”

| Ogu” = 9PV ( XMV g(wh) — g*P Vo XV 3 ((log G)'A) in I x D

To simplify the notation, we will define the operator on 9D as
1
(1.3 Pf = (w0 f — 5(VaS?)g* Vs .

For the purpose of the energy estimate, we shall work with A = (Dy0?) o X
instead of 2. Recall that D% (log G) is not a lower order term, so we need to specify
the new wave operator for A.

We define the metric h to be:

00 012 /
g” —=2(u’)*(logG) a,B=0
(1.44) hoP = A )

g’ otherwise

Upon changing the coordinates, the equation (1.35) becomes

.

A=0 on I x 0D
O, A :4ga5(85u”)3a (muyg76(85X”)(3722))
(1.45) + 4mpmu.g®’ g7 (05X ) (0au” ) (Opu ) (0yu”)

inIxD
+ 20,u’ (log G)"A? + u°(log G) P A3

\ — 0 (log G)' A? — u’0,u’(log G)' O, A
In order for the system (1.45) to be hyperbolic, we need to assume further that

h% < 0 initially. That is, the initial data satisfies

(1.46) - (1 -3 E“;O)Z

) ) —2(V9? . (logG) < —2¢<0 att=0
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for some constant ¢ > 0. The control on higher order derivatives on V' will then
guarantee that (1.46) is strictly satisfied within some time interval.

Recall that A = (Dyo?) o X, so the equation for X2 is simply
2 1 :
(147) atE = _OA in I xD.
u

Remark 2. Since A = 0 on I x 9D, in particular we have ¥2 = 1 on I x 9D, so the

original boundary condition for 3?2 is still satisfied.

Finally, the equation for w is

1
(1.48) Oyt = 5 (=g"" (Vs XY (Vyua)w™ + ¢" (Vs X¥) (Voyua)w™) .

In summary, in this section, we applied a change of coordinate formula to convert
the systems of equation (1.33), (1.35), (1.37) into a system in terms of the Lagrangian
variable y, which is defined on a fixed domain y € D. This enables us to either mollify
the equation on D = R? or apply Galerkin approximation on D = B.

We will describe the mollification process on the unbounded domain D = R3
in the next section, since the mollifier follows naturally from the Lagrangian formu-
lation. We will postpone the Galerkin approximation process in Chapter IV, since
it involves linearization and the weak formulation, which takes a longer section to

describe in details.

1.5 Mollified Equation in the Unbounded Domain

Recall that our strategy of proof for the unbounded domain is to consider the
mollified equations, so that the system becomes an ODE system. In this section, we

derive the mollified version of equations (1.39)-(1.48).
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1.5.1 Mollified Operators

To start with, we define the family of mollifiers (J.)e~o to be the frequency cut

off at 1/¢; that is, for f € L*(R3?),

- ¢ 2miz-€
Jf () 4 | JEemta

We define the mollified operators accordingly:

Vof =Vof =0.f

Vif = 8;J.f

Vof =g"'Vsf

Pef = (Joug)?02f — %(%22) g (977V5f)

08 = Vo (09957 ) + 5(Valoglgl)g™ Vs f.
It is clear that when J. = Id, the operators are equal to their un-mollified coun-
terparts. We will describe the mollified equations using these mollified operators,
but before presenting the equations, note that our functions u, A etc are defined on
D = Ri, whereas J, operates on functions that are defined on R3. Hence, in order

for the mollified operators to make sense, we first need to extend our functions to be

defined on R3. This is our next topic.

1.5.2 0Odd and Even Extensions

Before changing all the operators to the mollifier operators above, we need to
extend our functions” domain from R? to R?, so that the mollification makes sense.
The strategy is to fill the lower half space with a virtual fluid body, whose flow are
compatible with the actual fluid domain on the boundary JR%. This virtual flow is

defined as follows:

(1.49) w(t, y1, Y2, y3) == u(t, y1,y2, —y3) Vys <0,
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(1.50) At y1, 92, y3) == —A(t, 1,92, —ys) Yy < 0.

The preceding equations imply that

(1.51) X(t, y1,92,y3) = X(t, 91,92, —ys3) Vys <O,

(1.52) S2(t Y1, y2,y3) = 2 — B2t yr, Y2, —y3)  Vyz < 0.

In sum, u is extended to be an even function with respect to y3, and A is extended
to be an odd function with respect to y3. Such a distinction is picked so that the

boundary conditions for the virtual and the actual flows are compatible as y3 — 0.

1.5.3 Mollified Equations on the Unbounded Domain

Now we are ready to present the mollified equations. The idea is, on the right hand
side of the equations, we replace the derivative operators with the mollified derivative
operators; on the left hand side, however, the mollification is more delicate, since we
need to mollify appropriately so that the energy estimate would close. The mollified
operators P and Ijg are designed so that the energy estimate follows naturally. We
will see some insights on the definition of P¢ and Eg as we discuss the toy models
later.

Note that we leave the 62 derivatives in both P¢ and O, un-mollified, so that the
system remains an ODE system. The precise formulation of the ODE system will be
specified in Chapter III.

Now we present the mollified equations.

The equation for X is

Jou?

1.53 O, X (t,y) = J ==
( ) t ( 7y) Jeuo

(t,y)-
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The metric g is:

(1.54)

(Jou') ) X' . OXI X\ .,
—(1- 2 == == =2 .
( o dt* + § 55y dtdy’ + I I dy* dy

i=1 i0=1 ik, t=1

And the metric h is defined as before:

9% = 2(u’)*(log G)" @, =0

g8 otherwise

(1.55) hoF =

The equations for u become

(1.56)
(
1 _
P’ == (kg 'V 5(52)
2 . on [ X aRi
— 590‘/3@&)(”@3/\ + 20’0l O u”
Egu” :gaﬁ@a(X“)@g(wZ)
in I x Ri.
\ ~ 9" (VaX*) ((10g G)' (V52 + (10g G) (V)
And the equation for A is
(
A=0 on I x 0]1%‘1
CIuA =4g°8 (V g ) Vs (muygw(%xu)(ﬁﬂ))
(1.57) + 41, M g®P g7 (Vs XN (Vo ) (V gt ) (V4 )+
in I x Ri
+ 20,u’ (log G)" A% + u®(log G) B A®
— 9’ (log G)'A* — u0,u(log G) O, A

The equation for X2 is
(1.58) O = (J —Je A) in I xR,

Remark 3. Observe that J. is radially symmetric. Since we extend A as an odd
function across OR? , we know that J.A =0 on I x OR? as well. Thus the boundary

condition X2 =1 on [ x 8]1%1 is still valid.
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Finally, the equation for w is

1

1.59 owt” = Jo | —
( ) 1w {Jguo

<_9M(%Xu)(@vua)ww + 9%(@5)(”)(@7%)1”&“)] '
1.6 A Toy Model

Before presenting the strategy of the proof, let us consider a toy model, which

motivates the energy that we will use in the a priori estimate.

1.6.1 Toy Model for u

Let us consider the following problem, which is a toy model for the equation of

—0*u+V,ViJu=f inR3
(1.60) ' ) T
O2u + n;J. (VW) =g on JR}

In what follows, assume that u, f, g are sufficiently smooth and decay fast enough at

infinity.

We multiply the interior equation by dyu, integrate on R%, and use integration

by parts to obtain

1d )
o€ Ri(atu) dy

=— V.ViJou - O dy + / (Opu) - f dy
R3 R%
= ViJu -0, Vudy — /

3 3
R3 OR?.

nViJau - OudS —I—/ (Owu) - fdy

3
R

= ViJau-0,V;Judy — / n;ViJu - OudS + / (Opu) - fdy

R3 OR3. R3.
1d 9 9
=5 \VyJeul"dy — [ (9= 07u)- (Qu)dS+ | (Owu)- fdy
R3 ORY. RY
1d 1d
—— vV, Joul? dy + = — Opu)? dS
2 dt Ri | Yy U| Y + 2 dt aRi( tu)
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- [ g-@uas+ [ @w-ray
ORY RY
Re-organizing the terms, we have

1d
Sdf (/ (Oeu)® + |V, Joul? dy —|—/ (Opu)? dS)
R% IR

:/aRig~(8tu)dS—/R (D) -  dy.

3
Therefore, if we are able to control [|g|z2grs) and [|f|[z2gs ), then the a priori es-
timate would follow from Gronwall’s inequality. This is the fundamental building
block of the energy for u. The precise statement of the energy estimate is in Lemma

2.2.

1.6.2 Toy Model for A

For A, the toy model has a simpler boundary condition:

—0?N+V,VJA = in R?
(1.61) ' / T
A=0 on 8]Ri’_

Again, we multiply the interior equation by 9,A, integrate on R? , and use integration

by parts:
1d 9
— 5 Ri(atA) dy
1d 2 7
=57 | VA dy — ni (VA (OA) dS+ | (8A) - f dy.
R3 ORY. R}

(*)
Since ;A = 0 on R?, we know that (x) = 0, so the energy estimate reads

1d
—— / (ON)? dy +/ IV, JAPdy | =— / (OA) - fdy.
2 dt Ri Ri R3

+

However, recall that the boundary equation for u contains a term involving VA, so

having only [ps (9:A)? + |V,A|?dy in the energy does not provide sufficient control
+
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on |[VA]] r2(or2)- The remedy is to multiply the interior equation not only by g,A,
but also by a term Q“@MA for some vector field ). The idea of multiplying by a
vector field to obtain the a priori estimate was also used in, for instance, [4] and [10].
The details are discussed in Lemma 2.4.

Similarly, to control Vu on the boundary, we also need multiply Elgu by not only

Oyu, but also some Q“§#u. The details are shown in Lemma 2.5.

1.7 Strategy to Control Lower Order Terms

Judging from the equations (1.56) and (1.57), we see that the right hand sides,

which are supposed to be lower order terms, are roughly of the form
(VP161) - (V7o) - (VP),

where ¢ € {u, A} is the term that contains the most derivatives, and (VP ¢;) are of
lower order. Our strategy to control this quantity is to bound the lower order terms

in L* and highest order term in L?:

1(VP2 1) - (V77 r) - (VP) |12 < (VP [ - VP00 oo - (VP 2.

From the toy models in the preceding section, however, we are only able to control
L?-based norms of u and A, so in order to gain control on L norms, we will use the

Sobolev embedding
1 l[zoe S N e

However, in the toy models, we can only obtain a bound on the H' norms of u
and A. Since we are working with a free-boundary problem, directly taking spatial
derivatives to the original equations is not feasible. The way to gain H? control
is to take extra 0 derivatives of (1.56) and (1.57). This then calls for a trade-

off of derivatives, which roughly says that if « and A have sufficiently many time
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derivatives, then they are also somewhat smooth in the spatial sense. The precise
statement is contained in Proposition 2.13, which states that 97 is as “costly” as one
V, derivative. Intuitively, one can speculate that a result as such is plausible by

looking at the structure of the equation. The boundary equation for u is of the form
(u®)? - 0?u + aV,u = lower order terms,

where, as we will see, u® and a are strictly positive and bounded from below. This
suggests that 92 is as costly as one V derivative.
One main ingredient that we use when proving this trade-off is the elliptic esti-

mate, which roughly says that
IV flle S IAf]|z2

with A being the Laplacian (or an elliptic operator in general). If f satisfies the

wave equation, that is,
Af =0f + 02 f + lower order terms,

then we are able to control || f||zz if we have bounds on |O0f|| 2 and [|0?f]|z2. This
enables us to obtain control on spatial derivatives from the control on time deriva-

tives, which then allows us to bound the lower order terms in L° norm.

1.8 Outline of the Dissertation

Our goal is to establish the local well-posedness result for the system of equations
(1.33)-(1.35). As was discussed in Section 1.1, the free boundary problem for an
irrotational barotropic fluid where the sound speed is equal to the speed of light was
studied in [10], and a well-posedness result was obtained. In this dissertation, we will

establish a local well-posedness result for a general barotropic fluid. We mentioned
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in Section 1.2 that we will present two approaches: the first is to solve the nonlinear
equation directly using mollification, which works well on an unbounded fluid domain;
the second is adapted from [10] to the case of a general barotropic fluid on a bounded
domain.

For the first approach (i.e. mollifying the nonlinear equation directly), we consider
the equations in terms of the Lagrangian variable. We then construct a virtual flow
outside of the fluid domain, mollify the equations to obtain a system of ODEs,
and construct a solution to the original problem from the solutions to the mollified
problem.

This mollification method works well when the original fluid domain is unbounded;
though in the case when the fluid domain is bounded, we encountered some diffi-
culties in constructing the virtual flow and mollifying. Thus, we will instead use
Galerkin method when the fluid domain is bounded, which constitutes our second
approach

In the rest of this section, we will discuss the strategy of our proof in more details.
The idea of our proof is based on an a priori estimate, which is followed by proof of
existence and uniqueness. We will prove the local well-posedness result on both a
bounded domain D = B = {(y1,92,¥3) : ¥ +y5+y3 < 1} and an unbounded domain
D =R} = {(y1,92,93) : y3 > 0}. Some of the parallel arguments in the two cases
of obtaining the a priori estimate and the uniqueness of solution are quite similar
and will therefore be omitted for brevity. We will mostly focus on the parts that
are different between the two cases. The proof for existence of solutions, however, is
very different between the two cases.

In Chapter II, we establish an a priori estimate that will be applicable for both the

case of the bounded domain and the case of the unbounded domain. We shall only
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present the proof for the a priori estimate in the unbounded domain though, since
the proof for the case of the bounded domain is completely the same by changing
the domain name from D = R? to D = B. To establish the existence of solution
on D = R3, we will use mollification, which requires an a priori estimate for the
mollified equation. Notice, however, that by setting J, = Id, we may regard the a
priori estimate on the un-mollified equation as a special case for the a priori estimate
on the mollified equation. To avoid such redundancy, we only present the proof of
a priori estimate for the mollified equation on the unbounded domain. That is, our
Theorem 2.1 is the a priori estimate for the mollified equation on D = R3. To obtain
the a priori estimate for the un-mollified equation on D = R3, one sets J. = Id; to
obtain the a priori estimate for the un-mollified equation on D = B, one sets J, = Id
and furthermore D = B in the proof for Theorem 2.1.

Next, Chapter III establishes the existence of solution on the unbounded domain
D = R3. We will show that the system of mollified equations is in fact an ODE, with
a Lipschitz continuous right hand side in some suitable space B. We then appeal to
the existence result for ODE to establish existence of solution to the mollified system
of equations. One can then obtain the existence of solution to the un-mollified system
of equations by passing to a subsequence as € — 0, and showing convergence in some
lower regularity norm. We will take a sufficiently large number of derivatives so that
the convergence is uniform in space and time, showing that the limit in fact solves
the (un-mollified) system of equations in the strong sense. One can then observe
that the strong limit has to be equal to the weak limit, which shows that the strong
limit enjoys the same regularity as the initial data. This will complete our proof for
the existence of solution in the unbounded domain D = R?.

Our next goal is to prove uniqueness of the solution. The same proof works for
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both D = Ri and D = B. The idea is to take the difference between two solutions,
and use the a priori estimate to show that the difference vanishes. The details are
presented in the second half of Chapter III. The local well-posedness result on an
unbounded domain, i.e. Theorem 1.1, is thus complete.

For the case of a bounded domain, recall that the a priori estimate was already
proven in Chapter II, and we establish existence using the Galerkin approximation
method. Since Galerkin method calls for a linear equation, we first consider the
linear version of the equations (i.e. where the wave operator O, and O, as well

as the right hand side terms, are given).?

This enables us to project the equation
onto some finite dimensional subspaces of H'(B), which allows us to, again, appeal
to the existence and uniqueness result of ODEs. We can then pass to the limit as
the dimensions of these subspaces go to infinity to obtain a solution to the linear
equation. The details are discussed in Chapter IV.

Our last step is to show that by iteratively solving the linear equations, the
solutions to the linear problems converge. We will furthermore show that this limit
solves the nonlinear equation, and enjoys the same regularity as the initial data. This
is done in Chapter V. The proof regarding uniqueness is completely identical to the
case of the unbounded domain by changing D = R? to D = B, so we present the

statement and refrain from copying the exact same argument. This will complete

our proof for Theorem 1.1.

3We emphasize again that our approach here is not to linearize around a certain solution. Rather,
we consider the functions that appear in the differential operator as well as on the right hand side
of the equation as given.



CHAPTER I1

A priori Estimate on an Unbounded Domain

In this chapter, we prove an a priori estimate, which, in fact, will work for both
D= Ri and D = B. As discussed in Chapter I, the result is a critical building block
for the proof for existence and uniqueness, which we achieve using two different
methods for the two types of domains. Specifically, we will use mollification for the
unbounded domain D = Ri, and will use Galerkin approximation for the bounded
domain D = B. Both cases will share the same a priori estimate. However, the
energy estimate for the mollified equation will take a similar form as the un-mollified
a priori estimate; to minimize redundancy, we shall prove the a priori estimate here
for the mollified equation, bearing in mind that for the case D = B, we set € = 0, so

that the mollifier equals to the identity operator, and thus all commutators with J,

automatically vanish.

2.1 Definition of the Energy

The goal of this section is to define the energy for which we perform the a priori
estimate. Let & > 0 be an integer, representing the number of time derivatives
that we take on the variables v and A. We define the energy functionals as follows:

Eilu], S, [u] will be the functionals for v and its time derivatives, £}, ES, will be

30
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the functional for A and its time derivatives, and £f[u, A] will be the total energy of

u and A as well as their time derivatives.

Eglu)(t) = Dwmww“wuwF+W@Wﬁﬁx@memﬁ

+ [ 19110 )P ds
0D:

Ei[AJ(t) = sup / |91 - 105 A, )P + 7 (0 SOy A) (0510 A) dy+

0<7<t

-

t
o[ ] A )+ 6010 0)(3,0.060) dSr
0 JOoD-

EL A1) = > E5[A)(0)
Exlu Al = (s By ldr)) + B AL

Remark 4. Note that the energy functionals for v and A are different, as they satisfy
different boundary conditions. The motivation was discussed in the toy models in
Chapter I. The energy E¢[u](t) contains L? norm of 9™ u on 9D, whereas the energy
E5[A](t) only contains a weighted L? norm of 9™ A on D. The difference will be

evident as we prove the basic energy estimates for u and A.

Remark 5. The energy & depends on not only u and A, but also the metric g**.

We did not explicitly write out this dependency in order to simplify the notation.

We will show in Chapter III that the equations (1.53)-(1.59) are a system of
ordinary differential equations, and that for each ¢ > 0, there is a unique solution
(uf, AS we, X€ (X?)°) on some time interval [0,7¢]. We need to prove that these
solutions exist on some time interval [0,7] where 7" > 0 is independent of €. Then
we extract a solution to the original set of equations and prove regularity. The first

step is to prove the following a priori estimate which is uniform in e.
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Theorem 2.1. Assume that ut, A%, (3?)¢, w® solve (1.56)-(1.59) on [0,T] x D, with
Enlus, ANT) < Cy

for some integer M and constant Cy. Denote the energy functional in Sobolev spaces

by

(2.1)

€ € € . C€ € € E ell2 kAell2

&, [u, AY(T) ._gM[u,A}<T)+§£T > |ofu PRERRA 2

(k,p):k+2p<M+2
Then there is some polynomial Py; with non-negative coefficients such that if

T > 0 is small (depending only on Cy and €5,(0)), then for all t € [0,T],
t

(2:2) &y [u, AY(F) < € fuf, A(0) +/ Py (€ [u, A(7)) dr
0

In particular, (by, say, Lemma 2.15), we know that there is a time interval [0, T,

where T' > 0 depends only on the initial data, such that
(2.3) &y [u, A(T) S €y fus, A(0).

Remark 6. We emphasize that the smallness of 7" only depends on C; and the initial
data in the preceding Proposition. This enables us to obtain a uniform bound as

e — 0.

Remark 7. To obtain a uniform bound, we shall fix an arbitrary ¢ > 0, and consider
a solution (uf, A¢). To simplify the notation, for the rest of this section we shall drop
the dependence on ¢ when there is no risk of confusion. For instance, we will write

(uf)? as u° to avoid the extra superscript e.

Remark 8. Let f and g be two functions. We use

f~yg
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to mean that
1f = gllpep,) < P(E[us, A1)

for some constant ¢ and some polynomial P with non-negative coefficients. Here ¢

and P are independent of e.

We now prove some energy lemmas that will be applicable to generic functions.

These will be the building blocks for showing the a priori estimate in Theorem 2.1.

2.2 Fundamental Energy Lemmas

To obtain the a priori estimate, we first prove a few fundamental Lemmas, which
will be applied to O*u and OFA to prove Theorem 2.1.

Lemma 2.2 will be applied to u and dFu.

Lemma 2.2. Assume ¢°° < 0, and f = f(t,y) is a function such that f € C*([0,T]x
D) N L>([0,T], H*(D)), 8,f € C*([0,T] x D) N L>(|0,T], H'(D)). When D = R3,
we extend f in an even manner, that is f(t,y1,y2,y3) := f(t,y1,Y2, —y3) for ys <0,
so that J. is well-defined on f. When D = B, we set J. = 1d as usual.

Then we have

(2.4) /D@af (gaﬂﬁgf> ~ady f dy
0|5 [Lala™ @) + g @O A) by - [

oD

(@) as]
+ 2 atf . Pef dS + 2/ uoﬁtug (8tf)2 dS

oD oD

5 5 1 o
= [0 Fwdlorf dy+ 5 [ 00(ag?) T Tardy
D D

Re-organizing the terms and integrating with respect to time yields

1 .
@5) 5 [ ol @2+ g0 0t g0 dy+ [ o) ds
Dy

0Dy
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1 .
=5 | old®l @2 + 0ot say+ [ ot as
Do 90Dy
t _ 1 t B B
- / O, f - a0 f dydr + - / / (V. log |g])g°*¥ 5 J.f dydr
D 2 0 D

0

t t
+2/ / 8tf-7?€dedr+2/ / udsuo (9,f)? dSdr
0 oD 0 oD

t ~ ~ 1 [t ~ ~
—/O /Dgaﬁvﬁf-[va,a]ﬁtfdyd7+§/o /Dat (ag®®) VafVsf dydr.
Proof. Let k € C*([0,T] x R3) N L>=([0, T], H(R3)), 9,k € L>([0,T], L2(R?)). We
havel!
2.6 Vo 9%V 5f) - kd :at{ (Vs Ak d } — | ¢*PV,fV kd
(2.6) /D (g 5f> Y /Dg(ﬁf)y /Dg sf y
J. (¢?°Vsf) kn, dS.
+/8D (9 ﬂf) n

Consider k£ = a0,f. We further compute each term on the right hand side of (2.6).

The second term on the right hand side is

/g“"%f%kdy
D
- / 05 [T s ) (00f) dy + / 0G0 5 0 o f dy
D D
_ afo v 1 afo v 1 af\ e =
—/g Vsf(Va,al(0:f) dy+§3t U ag Vﬁfvafdy} —5/@(619 WVafVsfdy.
D D D

The last term on the right hand side of (2.6) is (noting that ng = 0)

/ n;J. (gjﬁ% f) (adyf) dS

oD

:/8D anqJ. (g“ﬂ%f) (8.f)dS

:/ (Duf) -2 (PCf — (u)202f) dS
oD

9 /a @)(Pp S -5, [ /8 WP dS] + /a (0001 dS.

1Recall that Vo = 9; and @j =J. V;.
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Substituting back into equation (2.6), we have

/D Va (gaﬁ %f) (adyf) dy

- 1 - .
=0, { /D ag" Vs fouf dy — 5 /D ag®’V o fVsf dy — /a (u°>2(8tf>2d3]

D

- / 9T (T al(@0f) dy + / On(ag™)VafVsf dy
D D
€ 0 0 2
2 [ @nPepas+ | aeour?as

Re-organizing the terms in the square bracket, we obtain equation (2.4). Integrating

with respect to ¢, and substituting
. - . 1 /- .
Oyf = Va (g BVaf) +3 (Va log |g|> 9"V f,
we obtain equation (2.5). O

Therefore, we have established the fundamental energy estimate for u and 9Fu.

The next two Lemmas will be applied to A and 9FA.

Lemma 2.3. Assume ¢ < 0, f € C?*([0,T] x D) n L>([0,T), H*(D)), o:f €
CY[0,7] x D) N L>=([0,T], H{(D)), and f = 0 on [0,T] x 0D. When D = R3,
we extend f in an odd manner to the lower half space, that is f(t,y1,y2,ys3) =
—f(t,y1,y2, —y3) for ys < 0. When D = B, we set J. = 1d as usual.

Then

1 i
2 /Dt(—goo) (Ouf)* + g"Vif Vif dy
:% /DO(—gOO) O + g7V f dy — /0 /Digf Ouf dydr

1 [ ~ ~ 1 [ -~
5 [ (Satoglol) g75%ads dydr + 5 [ [ @199t dyar
2 0 JD 2 0 JD

Proof. The result follows from multiplying E]g f by 0,f and integration by parts.

The computation is similar to the proof of Lemma 2.2, except the treatment of the
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boundary terms. Since f is a constant on the boundary, we know that d;f = 0 on
[0,T] x 0D, so
/ Vo (9°Vsf) - (00f) dy
D

o[ [ s | eBg s JBE A
o | [ @anan ] - [ ¢ Fasuanars [ 5 (¢9) (@)

~~
=0

o 1 .
9’V fVaf dy} + 5/(@9“5)%fo dy.
D

—0, :/Dgoﬁ(@ﬁf)(atf) dy — %/

D
Integrating with respect to t and substituting the formula for ﬂg as before, we obtain

the desired result. O

For reasons that will be clear as we complete the energy estimate, the control on
OFA in the interior is not sufficient. We use the following Lemma to control A on

the boundary.

Lemma 2.4. Assume ¢ < 0, f € C?*([0,T] x D) N L>=([0,T], H*(D)), 0,f €
CY([0,T] x D) N L>=([0,T), HY(D)), and f = 0 on [0,T] x 9D. When D = R,
we extend f in an odd manner to the lower half space, that is f(t,y1,y2,ys3) =
—f(t,y1, 92, —y3) for ys < 0. When D = B, we set J. = 1d as usual.

Then there is a future-directed and time-like vectorfield () that does not depend

on f, such that

t
s ([ ousP e 9urtay) + [ [ (VusoOas) asds
0<r<t \JD, 0o Jop

S [ 0P + 19,y + / /D (@, F)(Q"Y ) dydr

t
IV Q1 o m) + Vel 2 or1m) - / /D O + |V, /]2 dydr.

Proof. As in the previous two Lemmas, we integrate by parts to obtain

en [ Va(5Var) @V,r)dy
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= [0 (89a8) @ Vuydy+ [ 0,0 (57951 @V uf)dy
D D
01 [ @@y~ [ (59a8) Tul@ V) dy
D D
+/ n;Je (gjﬁﬁﬁf> (Q"V,f)dS.
oD
We shall put the second and third terms on the right hand side into a form that is

easier to work with. For the second term, we have
[ (5951) Val@ ) dy
D

(2.8) - /D 55 (Vs Q1) dy + / GOV QAN f dy.

D
[\

J

g

(t)
Now, the term (1) can be further reduced:

() = /D IV f QO o f dy + /D O 10, T f dy

- / 0T f QO of dy + / 0 (T 5 ) f dS
D o)

D

_ /DajjE <ng“f’@gf> (Vaf)dy

- / OV QO f dy + / 0, T Q@ gV 5 )V o f dS
D 1)

D
- / ¥, Qg 5 ¥l dy — (1) + / Q0T 5% f dy.
D D

That is,

1= [ @200Vt dy+ 5 [ QT ITusdS
D 2 oD

1 ~ . - -
-5 (9@ 90 Vs dy

= %/BD”jJe(ngC“B%f)%de— %/(W%Q@aﬂ]%]p)%]ﬁdy

D
1 -~ 1 -~
4300 [ @VsTasay = [ 0/(Q*) TusVaf dy
D D
Substituting back into equation (2.8) and further equation (2.7), we have

29 [ 9 (57Var) @V dy
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=01 | [ PHTaDN@ V) = 3V Vot dy

N

o

+/8D n;J. (W%f) (Q"V,.f)dS — %/@

N

n;J(Q1g*°V s f)Vaf dS
D

%
= [ (G @Vt g+ 5 [ (95.QI9 1 a) Tt dy
D D

1

- By FY
+3 [ 0@ ) SurVatdy

The commutators are, as we will see, of lower order, so we shall focus on the main
terms (I) and (IT). We will see that (I) is controlled by H@fHLz(D), SO NOW we massage
(II) into a nicer form.

Since f = const on I x 9D, we know
Ne = ——Vaf, and thus Q“@uf = (Q“nu)\@f\.
Hence, the first term in (II) can be written as

/8D n;Je (Qw@gf) (Q"V,.f)dS = [ n;l. (gﬂf%f) (Q"n,)[V | dS

oD

- /a (Val)Je (951 ) (@) 5.

For the same reason, the second term in (II) can be written as:

/ n; J(Q g*°V s f)Vaf dS
oD

= /a (e @GV s )Vl dS + /a (@) (9°7V5F) (Vo) ds.

Summing up the two preceding equations, we obtain

) =5 [ Fap)d (90f) 0@ a5 =5 | 0l @Ua™T51) Vs dS

2 oD

= /6 (Tl gaf) (n@) a5 + : /a (Val) (e g1V ) (n, Q) d
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1

_2 . 700 - £)) % _
5 [ QU Ta0)Taf dS

Next, we integrate (2.9) with respect to time, and rearrange the terms to obtain

(2.10)

/Dt—DO(I) dy + %lt /é)D (@afgaﬂiﬁf) (n,,Q") dS di
()

[ [ @@t [ [ (Satosll) aTar avis

-l / t /a (V) (Veg™1V5f) (n,Q") dSd

w3 | ] e @e s )Tt dsir

[ [ (9 @Vt dudr — 5 [ [ (195,@06 190109 dydr
0 r 0 D

~5 | [ (@) Tur©os dyar

We choose a vector field @ such that Q#n, =1 on [0,7] x 0D and VQ € L*>([0,T] x
D)?. For the two terms on the left hand side of the preceding equation, we will add
th_DO(I) dy to the energy in Lemma 2.4; the term (%) is the main term, and we seek
to control the remaining terms with (x) and [, [0, f|* + IV, fI2 dy.

The commutators on the boundary can be estimated using interior H'-norms:

t

|
t 5 1 t 5
ga// |Vaf|2d8dr+—// [Je, g*° IV g f|? dSdr
0 oD 5 0 oD
I ~ 112
o)+ 5 [ |91
0

?In the unbounded domain D = R?, the space-time normal vector is n = (0,0,0, —1), so the Q
vectorfield can be defined by, for instance, @ = (1,0,0,—1). In the case of the bounded domain
D = B, a constant ) will not satisfy our requirement, but the same condition can be achieved by
setting, for instance, Q(t,y1,y2,y3) = (1, (47 +y3 + ¥3)y1, (vF + 43 + y3)y2, (47 + 43 + y3)ys). In
either case, [|Q| e (0,rxp) and ||[VQ| = (o,rxp) are finite and are independent of all variables
and functions that we are concerned with.

/aD(@af) <[Je,ga5]65f> (n,Q") dS‘ dr

dr

HY(D)
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1 b
- ()4 5 (9l [ 195y )

and similarly

t
| [ e @)V dsis
0o Jop
1 b
)+ 3 (IVQquyeor* [ 197 oy )
By choosing a constant ¢ > 0 small enough, we see that § - (*) can be absorbed into

the left hand side of equation (2.10).

The interior commutators can be controlled using Cauchy-Schwarz Inequality:

[ [ a0as@n @ anis| 4|5 [ [ (9500190091 dnts
0 - 0 JD

1 [ -
|5 [ [ 0@ ) Var st dyir

t
S (IVes @1 o110 + [1Ve0l2 0173 / /D 0 + [V, /]2 dydr.
o Jo,

Moreover, by Cauchy-Schwarz, we see that (I) can be controlled by the main

energy in Lemma 2.4:

/ (I) dy‘ < (l9llze=omyxm) + 1@l eorixmy) = [ 10uf 1> + |V f1* dy.
Dy

Dy
Therefore, adding (2.10) to a sufficiently large constant times [, [0, f|* + \V, fI%dy,

and using Lemma (2.4), we have

t
sup (/ O f 7 + \Vny dy) +/ / (VafgaﬁV5f) dS dr
Osr<t \JD, o Jop

</ O+ 9y / t | Eun (@9, dyir

t
(193 Q01100 + [ Vel 2 oirrm)) - / /D O + |V, 12 dydr.

This is the desired estimate. O
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The next Lemma is very similar to Lemma 2.4, but applies to functions that are
not necessarily equal to a constant on dD. We will apply this Lemma on dFu. The

purpose is to estimate the time-weighted L?(9D) norm by norms in Lemma 2.2.

Lemma 2.5. Assume ¢ < 0, f € C?*([0,T] x D) N L*>=([0,T), H*(D)), o:f €
CY([0,T) x D)NL>([0,T], H'(D)). When D =R, we extend f in an even manner
to the lower half space, that is f(t,y1,y2,v3) = f(t, 1,2, —y3) for y3 < 0. When
D = B, we set J. =1d as usual.

Then there is a future-directed and time-like vectorfield () that does not depend

on f, such that
~ t ~ ~
s ([ ot @stan)+ [ [ (Gutesar) asas
o<r<t \Jp., o Jop
S [ 1077+ 19,0 dy
Do

t
i s [ [ 10?419, dsar
0 oD

/ot | Eun @V, dyar

t
+ (||vt,y(vz]2/a)”iw([o,T]xD) + Hvt,yg”iw([o,T]xD)) . / / 0] + |V f1? dydr,
o Jo,

where V,, f = naJe(gaﬁﬁﬁf). In particular, one may choose Q" = K5“21+g“”@V22/a

for some large constant K.

Proof. The proof is very similar to that of Lemma 2.4. The only differences are the
treatment of the terms (I) and (II) in equation (2.9). We will omit the derivation
before equation (2.9) since it completely overlaps with the proof of the previous
Lemma, and focus on the analysis of (I) and (II).

Let K > 0 be a large constant to be specified later. We set Q* = Ké*=1 +
gV, %% /a, so that Q* = K&*=! + g"n, on OD.

Term (I). Recall that (I) was defined as:

() = ¢ (Vo) (Q V) — 5@V Vst
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We show that in fact, using our definition of @, (I) is approximately %K (g™ (0, f)* —

gij@if@jf):

() =g (Tp)(@F,f) ~ 5Q"0" VS Vs

QO+ (8 - 307 ) TS+ RO,
= [0 = TN + T g™ @) — 4P O )

- (3T g = (9.2 Tus S8

Since g and VX2 /a are bounded, we see that indeed, if K is large, then the first term

on the right hand side will be the dominant term. To be more precise, we have

211) | - 5 [0 - @0 0] | < | [0 - @] |

(.

-~

=Ry

Term (II). Recall that (II) was:
o~ ~ 1 ) ~ ~
|t (79a0) @9,upyds = 5 [ na Qg 0aFas ds
oD oD

Then, the first term in (II) can be written as

/8D n;Je (gjﬂﬁﬁf> (Q"V,.f)dS

— [ K@) ds - /

oD m(@nf )Je (9“%% f) ds

- [ k@up@pas- |

oD oD

(6nf>nut]e (gwjﬁuf) dS
- / (@nf) <[J€7 61/22/(1}gwj6#f> dS
oD

— [ K@) ds - /

oD oD

(Gupas - [

oD

(Vaf) <[J€, V/EQ/a]g‘“’@uf) ds.

We compute

anj = nj(giynu) = nug"'n, =: |n‘§
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Using this notation, the second term in (II) can be written as
=5 [l (@g9ar) Vaf ds

o

oD

oo (@ V5f) 1. (Vaf) as

| (0@ 0ss) Gt ds =5 [ Qi (498) (Vs as
D

1
2
1
2
1
2
1
T2

|5 (0@ 9sr) Vagas =5 [l (Vg™ 195f) (T s ds
1

/a nfig" (Tad ) (Tadef) S

2
%/ s (19 Q19951 @afds—l/ap 0f2 (1 g™ 195 ) (Vadef) dS
__/ In|2g" (0, f)* dS — / 2™ (0 f)(V; f) dS

__/ 26" (Y £)(V,f) dS

Adding up the two terms of II, we have

= [ K¥.f)0f) ds / Sup)ds - L /W (V. f)(V, 1) dS

oD
1
—5/6D|n|2 (9. ) dS — / g% (0,.1)(V, ) dS
_/ (@nf) ([vauzz/&]g’wvuf) dS
oD
1 Coaps ) & 1 e .
5 /m)nj ([Je,Q]]g 5V6f) VaofdS+ 5/@ In|? ([Je,g ﬁ]vﬂf> (Vo f)dS

Then, integrating (2.9) with respect to time, we obtain

(2.12)

/Dg[ 90O + 9" (Vi) (Vi) — Rudy + 5 // In|2g7V: fV; f dSdr
— [ 5[ +gUVf><Vf>}—R1dy

i Ot 8DK nf )(0:f) "f) deT__/ / ]n]Z 09, J.f)* dSdr

// 29" (0, I f) (V5 f) deT—/ (Vaof) Je,vyzz’/a]gwmf) dSdr
0 JoD oD
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- %/Ot /m) n; <[J67Qj]9“5%f) V.fdSdr

+%/Ot /m)\n\ﬁ (176, 9°1V 5 ) (Vade f) dSdr
_/ot/pgawﬁf(wa@“mf) dyd¢+%/OtL([ﬁj,ngaﬁ]ﬁﬁf)ﬁafdydT
w5 [ [ 0(@) Vst dyar.

The commutators can be estimated as in Lemma 2.4. The only terms that are
different from Lemma 2.4 are Ry and K(V,.f)(9,f) — (V,.f)?. We are able to control
Ry by equation (2.11), and the term K (V,f)(d.f) — (V,.f)? using Cauchy-Schwarz

Inequality. Therefore, overall, we have obtained the claimed result. ]
We also have the elliptic estimate (proven, for instance, in [18]):
Lemma 2.6. Let f be a compactly supported function in D. Since
Avf = Vi (K9(,5)
is an elliptic operator for k € {g, h}, we have the following elliptic estimates:

H@?(JZ)JC”L%D) 5 ||A/€f||L2(D) + ||J€f||H3/2(8’D)

IVP Fllrzy S NAf 2y + I Vadef a2 om)-

2.3 Higher Order Equations

Recall that in Chapter I, we mentioned that the strategy to obtain L* controls
on the lower order terms was to use Sobolev embedding, which calls for an energy
estimate on the terms 9Fu and 9FA. To use the fundamental energy Lemmas in the
previous section, we compute P<0Fu, [,0Fu and [J,0FA in this section.

To derive the higher order equations, we first note a few commutator identities.

Lemma 2.7. We have the following commutator identities.



45

1. The following are true:

0 05)0 =V (8u9°7956) + %au (Valoglgl - 9*7) - V4t
10, P10 =0, ((Ju?)2)020 — % (900,52) J. (4°79 5.0
= % (Vax2) Je (9ug™" - V50)
2. For k>1, [0F, EQ]G 18 a linear combination of terms of the forms:
(a) J. ((vmaflg)(@m“at@m) where k1 +ky =k, p1+ps =1, and ko < k—1.
(b) (PO ) (VO ™20) where ky + ko =k, pr+p2 =1, and ky < k — 1.
(c) (8,{“(@0 log |g| -ga6)> <@5852J€9> where ky + ke = k and ky > 1.
3. For k > 1, [0F, P10 is a linear combination of terms of the forms:
(a) (OF (Ju®)?)(020F20) where ky + ky = k and ky > 1.
(b) (%afl 22> J. (at’w g8 . %afse) where ky + kg + ks = k and ks < k — 1.
Proof. We prove each claim.

1. These are obtained via a direct calculation.

2. We prove by induction on k. When k = 1, by the preceding point, we have
- - - 1 - -
[9,,01,]0 = V., <8tg“’8V59> + 50 (va log |g] -gaﬁ) V5.0
. . 1 . N .
=V, ((09)V30) + 0, ((99)V40) + 50, (Valoglgl - 6°) - V0.

These correspond to terms of types (a), (b) and (c) respectively in our claim

for kK = 1. For higher order derivatives, we note

[afH? ljg]e = 0O ([afa E'9]9) + [ata ﬂg]@fe)-
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Using the formula for k& = 1, we see that [0F*! [J,]0 takes the desired form.
3. Again, we use induction on k. When k£ = 1, we have
100, P10 =0,((Ju®)2)020 — % (900,52) J. (509,40
_ % (%22) J. (atgaﬁ - %9) .

The first term on the right hand side constitutes (a) in our claim, and the
second and third terms make (b) in our claim. For higher order derivatives,

again we have
(05, P10 = 0, (107, P10) + [0,, P](050).
and our claim follows from induction.

]

Using these identities, we are able to derive higher order equations for u and A.
In what follows, since only the number of derivatives matters in closing the energy

estimate, we shall suppress the indices (e.g. writing u” as u) to simplify the notations.

[

In particular, the notation “g” represents the entries in ¢g”.
Lemma 2.8. For any k > 0,
(2.13) POy = Ff
where F is a linear combination of terms of the forms
1. (OF (Jul)?)(0207>u) where ky 4 ky =k and ky > 1.
2, (%65122) 7. (afzgaﬁ ~ %aﬁm) where ki + ks + ks = k and ky < k — 1.

3. (OF (u0)2)(AF2w) (9 g) (VOF%2) where ky + ko + ks + ky = k.
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4. (0P g)(VOF X)) (VO A) where ky + ky + ks = k.
5. (0P (u0)?) (0P u) where ky + ky = k.

Proof. We write

PeOfu = —[0f, Plu+ 0; (Fy),

where F¢ is given in equation (1.56). Terms of the forms 1 and 2 come from [0F, P|u
according to Lemma 2.7. Terms of the form 3, 4, 5 come from taking dF to the right

hand side of Fj. O
Lemma 2.9. For any k > 0,
(2.14) 0,080 = G,
where G, is a linear combination of terms of the forms
1. J. ((Vm@flg)(@pﬁl@f?u)) where ki +ky =k, pr +po =1, and ky <k —1.

2. (@plaflg)(@@fﬁk?u) where k1 +ka =k, p1 +p2 =1, and ky < k — 1.

co

(3;“(@05 log |g| -gaﬁ)> (@gJﬁ(‘?fQu) where k1 + ke = k and ky > 1.

(0P g)(VOP X)) (VOFsw) where ky + ko + ks = k.

B

v

(0P 9) (VO X)) (log G)P) (9 532) - . - (9= $2) (VOF™52) (9™ A) where p < k+

2andk1+---—|—km+2:k.

D

- (0F ) (VO X) (log G) PN (92 532) - - - (9F»$2) (VOF™ A) where p < k41 and ky+

..._|_]{;m_~_1:k;.

Proof. Similar as the previous Lemma, terms of the forms 1, 2, 3 come from [0F, ﬁg]u.

Terms of the forms 4, 5, 6 come from taking dF to the formula of G§. O
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Lemma 2.10. For any k > 0,
(2.15) OROFA = H

where Hy is a linear combination of terms of the forms

1. J. ((Vm@flh)(@m“@?/\)) where ky +ky =k, pr +po =1, and ky < k — 1.

2. (@m@flh)(@afﬁbl\) where ki +ky =k, pr +po =1, and ky < k — 1.

3. (afl(m log |h] - h“5)> (%Jeam) where ki + ky = k and ky > 1.

4. (OF g)(VOF2u) (VP 0k g) (VP NV OF X ) (VP V05 52) where py + ps + ps = 1 and
ky+ -+ ks = k.

5. (0F¢)(0F2 ) (VOF X)) (VO u) (VO u)(Voreu) where ky + - + kg = k.

6. (0Fu®)(0F2ul) (0% A) - - (9" A)(log G)P) where ky 4 -+ -k < k+ 1 and p <

k+ 3.

Proof. Similar as the previous Lemma, terms of the forms 1, 2, 3 come from [0F, EQ]A.

Terms of the forms 4, 5, 6 come from taking dF to the formula of H. n

Lemma 2.11. For any k > 0,

1 €

where I}, is a linear combination of terms of the form
(VO u) (02 Jeu) - - (8, Jow)

with ky + -+ + kop = k — 1.
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Proof. Recall that
Jeu
0, X(t,y) = J——(t,y).

€

Taking derivative with respect to y, we have

1 = 0 = 0
VOX = J. ((JTP ((Vu)(Jeu ) — Jau(Vu ))) .
The claim follows from taking OF ! derivatives of the preceding equation. O
Lemma 2.12. For any k > 0,
Aé
2.1 Fgol = =k
(2.17) dr g P

where Aj, is a linear combination of terms of the form
(VO X) -+ (VO X)

with ki + -+ k,, = k, and P is a polynomial in VX.
Hence,
B

Voig =3

where By, is a linear combination of terms of the form
(VPO X) - (VO X)

with ky + -+ + ky, = k, and P is a polynomial in VX (which may be different from

the polynomial in OFg®® ).

Proof. Recall that

oXkox*k
gij:Z a0
— Oy' Oy

and g% is the ij-th entry of the inverse metric g7!. Recall that for a matrix M, M~ =

1
det M

(adj M), so each g*# can be written as a rational function of g,s. Therefore,

g*? is a rational function of the terms %. In particular, the polynomial P is in fact

a power of det g. The higher order formulae follow from taking derivatives. O
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In this section, we computed the right hand sides of the equations of 9%u and
OFA. The controls on dFu and OFA will, as we shall see, provide H? and hence L™
controls on the lower order quantities. An essential component in obtaining the L>
bounds is the trade-off between 0, and V,, derivatives, which says that in some sense,
0?7 is as “costly” as one V,, derivative. The precise statement is the topic of the next

section.

2.4 Trading Spatial Derivatives with Time Derivatives

In this section, we prove a Proposition that is key to the proof of Theorem 2.1.
It enables the control of the H? norm of v and A in terms of the energies F and E,
and is a key ingredient is obtaining L* bounds on lower order terms.

The motivation is as follows: since we can take many 0, derivatives to the variables
u and A, we would like to claim that sufficiently many time derivatives can guarantee
some spatial smoothness. In fact, we claim that 92 f enjoys approximately the same

regularity as V, f for f € {u, A}. Details are given in the next Proposition.

Proposition 2.13. Assume that for some integer M > 0,

(2.18) > IVEOulliaim, + IVEOFAlF2(p,) < Cur < oo,

k+2p<M+2

If M s sufficiently large and T > 0 is sufficiently small, then under the assumptions

of Theorem 2.1, for any t € [0,T], we have
(2.19)

Z |W§5’fu||%2(pt) + ||@585AH%2(D¢)

k+2p<M+2

S sup Eyful(7) + sup By [A)(7) + Z H@ZQEUH%%DO) + ||6585A”%2(D0)'

Os7<t Os7<t k4-2p< M2

Before we present the proof, let us first note a few results that will be useful in

the proof.
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The first result we will use is the Abstract bootstrap argument. A proof can be

found in, for instance, [17].

Lemma 2.14. Let J > 0 be a time interval, such that for each t € J, there are
two statements: the “Hypothesis” H(t) and the “conclusion” C(t). Suppose that the

following are true:

1. Hypothesis implies conclusion: if H(t) is true for somet € J, then C(t) is also

true for that t.

2. Conclusion is stronger than hypothesis: if C(t) is true for some ty € J, then

H(t) is true for some neighborhood of t.

3. Conclusion is closed: if t1,to,--- 1s a sequence of time in J that converges to

to € J, and C(t;) is true for alli = 1,2,-- -, then C(to) is also true.
4. Base case: H(t) is true for somet € J.
Then C(t) is true for allt € J.
Lemma 2.15. Assume that E(t) is a continuous function satisfying
t
E(t) < E(0) +/ cE(r)"dr
0

for some positive integer r and some positive constant c. Assume FE(0) < oo. Then

there is a time interval [0, T] such that
E(t) < 2B(0) Vit e [0,T],

where T only depends on c,r and E(0).
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Proof. This is a direct application of Lemma 2.14. Let H(¢) be the statement
E(t) < 4E(0), and C(t) be the statement E(t) < 2E(0). Then assumptions 2-
4 in Lemma 2.14 are clearly satisfied. We only need to prove assumption 1. Let

T =FE(0)/(c(4E(0))"). We have

E(t) <E(0) + /t c(4E(0))" dr
<E(0)+ct-4"E(0)"
<2FE(0) Vvtel0,T].
Thus, C(t) holds for all ¢ € [0, T]. O

Corollary 2.16. Let

Et):= Y IViofuliam, + I V5OEAlp,)-

k+2p<M+2

Assume

E(t) < E(0) + /tE(T)’" dr

for some positive integer r. Then for T > 0 is small (depending only on E(0)), we

have

(2.20) VPO ull 2y + VPO Al p2py S 1 V(K +1) +2p < M +2.
and

(2.21) VPO u|| oo () + | VPOFA | poopyy S 1 VA +14+2(p+2) < M +2,

Proof. By Lemma 2.15, we know that there is some 7" > 0 depending only on E(0)

such that E(t) < 2E(0) for all ¢ € [0,7]. Then for ¢ € [0,T], we have

1d

s [ (90t dy = [ (9900t u)dy
Dy

D¢
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1d ~ ~ ~
it L (TP ] < 90kl 90
< E(t) < 2E(0).
Thus,
3 _ d 3
/ (VP oFu)? dy < / (VP oFu)? dy + ‘%/ (VP 9Fu)? dy‘
Dy Do Dy

< 5E(0).

The estimate for A follows similarly.
To obtain the L> estimate, we use the Sobolev embedding || f||L= < || f||z2. The

conclusion then follows. O

The next two Corollaries guarantee the strict positiveness of a, u’, —g%, —h%, as

well as the positive-definiteness of (g*).

Corollary 2.17. Assume the same assumptions as in Proposition 2.13. Assume

further that there is a constant ¢ > 0 such that
a(t,y) >2¢, Jal(ty) >2¢, —g%>2c, —h">2c

at t = 0. Then there is a time T' > 0, depending only on the initial data, such that

for all t € [0,T] and for any y € D,
alt,y) > c, Jal(ty)>e¢, —g">c, —nP>c

Proof. All of the estimates follow from control on L norm of the 9, derivatives of
the respective quantities, and signs on the initial conditions.

Recall that a? = g*%(V,%?)(V;3%?), so

adya = g**(V,0,52)(V3%?)
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U JAN -
= g (V]2 ) (V22).
5 (Vad 25 ) (T2
By the preceding corollary, we may bound the L* norm of each term, and thus

control ||0sal|p~. But then
at,y) = a(0,y) — [t] - [[Gall L=,
so if T' is small, then a(t,y) > ¢ for all t € [0,T]. The bounds on u are similar. [

Corollary 2.18. Assume the same assumptions as in Proposition 2.13. Then if
T > 0 is small (depending only on the initial data), the matriz with (i,7)-th entry

(g"(t)) is strictly positive definite® on the time interval [0, T).

Proof. Let G(t) be the matrix with (i,7)-th entry (¢¥(¢)). At t = 0, we know
that G(0) is positive definite by the definition of the pullback metric. Since each
g*? is a differentiable function of ¢, by the standard result on eigenvalues (see, for
instance, [8]), there is a time interval [0, 7] such that G(¢) is positive definite for all

te0,T). 0

Equipped with the L> bounds on the lower order terms for all ¢ € [0, 7], we are

now ready to prove Proposition 2.13.

Proof for Proposition 2.13. We prove by induction. When p < 1, the claim follows

from the definition of I¥ and E. Now, we impose the inductive assumption that

(2.22)

Z Z WZ(?Z“UH%Z@)+||ﬁiaf/\||i2(pt)

q<p k+2q<M+2

S suwp Enful(7) + sup Ey[Al(T)+Y Y IV50fulliam,) + IV ATy,

Os7st Os7st 4<p k+2q<M+2

3Recall that (¢/) is the spatial component of the metric.
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and aim at proving that

(2.23)

Yo IVE Ok ull g, + V5O,

k+2(p+1)<M+2

S sup En[ul(7) + sup Ep[Al(7) + Z Z Hﬁgafu”%%po) + WS@Z’CAH%(%),

OsT<t Os7<t q<p+1 k+2g<M+2

Note that by Corollary 2.16, we are able to control L* norm of the lower order
terms given the inductive hypothesis (2.22).

Let us analyze the terms

vaﬂafAH%?(Dt) and Hvzﬂaqu%?(Dt)

Estimate on the A term. We first deal with H@ZHQ{“AH%Q(Dt). Recall that A =0

on 9D, so OFA =0 on 9D as well. By Lemma (2.6), we have

IVEHOF Al
§||Ag@§_laf/\||%2(pt)
SH[Agvvz_l]JﬁafA”%Q(Dt) + HVZ_IAQJEafAH%Q(Dt)
<[l[A,, ngl]JeafAH%‘Z(Dt) + |’VZ*1|ng€afA|’%2(Dt) + ||V571Jeaf+2AH%2(Dt)‘
The last term in the preceding equation is bounded by the right hand side of

(2.23) by the inductive hypothesis. We only need to control the first two terms.

The term [A,, VP1J0F A is a sum of terms of the forms:
1. J. ((V(lirl)g)(@(kQ“)@fA)) where k1 + ko =p—1and ky < p— 2.
2. J. ((V(kl)g)(@(h”)@f/\)) where ki + ko =p—1and ky < p — 2.

The highest order term in [A,, VP JOF A is thus @gﬁt’“A, the L? norm of which can
be controlled by the inductive hypothesis. Thus, [|[Ay, V21LOFA[2. (p,) 18 bounded

by the right hand side of (2.23).
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We now analyze nglﬂngatkA ~ VgilH;;. Recall that by Lemma 2.10, V§*1H§
contains six types of terms. The highest order terms of forms 1, 2, 3 in Hj are
@5*1(9{“’1& which can be controlled by the right hand side of (2.23). The highest
order terms in 4 and 5 are @pﬁfu, @pH@fEQ < VPHFIA | which are controlled as
desired. The highest order term in 6 is @p_lﬁfHA, which is also controlled. Hence,
IVE= 0, JeOF A3 ) is bounded by the right hand side of (2.23).

Therefore, we have shown that ||@§HafA||i2(Dt) is bounded by the right hand
side of (2.23).

Estimate on the u term. Next, we consider ||@§+18fu\|%2wt). The interior anal-

ysis is very similar to that of A, but the boundary term is more complicated. As

before, by Lemma (2.6), we have

|W§Hatku|’%2(pt)
SHAgVZ’lanH%Q(Dt) + HVnVZ”@fUI\?p/zm)

<|1[Ag, VIO ullT2ipy + IV AgJdfull 2,y + VAV O ullip 2 om,)

<[l[A,, VE IO ul 3 p,) + HVZ_IE’gJean”%%Dt) + IVE IO w2 p,) +
+ IV IO P ullT ey + IVa VI Ol 20,

=l[Ag, Vo IO ul T2,y + V5 Dy JedullFap,y + V50l F2 g, +

IV O P ull Lo,y + VeV O ullip 2 op,-
The third and the fourth terms in the preceding equation are clearly bounded by
the right hand side of (2.23) by the inductive hypothesis. We only need to control

the first, the second, and the last terms.

As in the case of A, the term [A,, VP=1J.0fu consists of terms of the form:

1. J. ((V(k”l)g)(@(kﬁl)@fu)) where k; + ks =p—1and ky < p— 2.
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2. J. ((V(kl)g)(@(““)afu)) where k1 +ky =p—1and ky < p— 2.

The highest order term in [A,, Vi Jofu is @zﬁfu, the L? norm of which can be
controlled by the inductive hypothesis. Thus, ||[A,, VZ~1]J.0Ful|2, (p,) 18 bounded by
the right hand side of (2.23).

We now analyze folﬁgJeﬁfu ~ Vg_lG;. Recall that by Lemma 2.9, Gj, contains
six types of terms. The highest order term of forms 1, 2, 3 in VP71G¢ is @Z“@f‘lu,
which can be controlled by the right hand side of (2.23). The highest order term in
4 is VPOjw, which consists of VP~ (V20§ u) ~ VPT19f 1y, This is also controlled
as required. The highest order term in 5 and 6 are @pﬁf/\, which is also controlled
in the right form. Hence, ||VZ*1E|gJeﬁfu||%2(Dt) can be bounded by the right hand
side of (2.23).

The last term that we need to estimate is |yvﬁg—1afu||§{1/2(m). We would like
to commute P¢ with @Z’l, but the commutator requires some special care, since the

02 term in P¢ is not mollified. We compute that

V.V 0 = (V,52).), (gaﬁvﬂjﬁgflafu)
= (Va2 J ([9°7, VPOV g Jeu) + (Vo £2)0;VE 1, (9*°V g Jc0fu)
= (VaZ2)Je ([9°°, VI 08IV g Jeu) + [(VaE?), VETLOF I . (977 V 5 Jeu)
A ((%22)4 (gO‘BV5J€u)>
= (VaE2)Je ([9°°, VI 08V g Jeu) + [(VaE?), VET10F I . (977 V g Jeu)
— 2V 0P Pu + 20F VP 0} u.
The last term is readily in the right hand side of (2.23), so we will analyze the

first three terms. The first term is a linear combination of terms of the from

(VaE2) e (V1051 g°F - VPN 5 J0Fu) ,  pitpe = p—1, kitks = k, paths < k+p—2.
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As before, the derivatives on g can be bounded by those on u (see, for instance,
Lemma 2.20). Thus, the highest order terms are V2~ J.0fu and V2~2J.0; " 'u. Their
H*'?(0D) norms are bounded by their respective H'(D) norms, which are controlled
by the right hand side of (2.23).

The second term is a linear combination of terms of the forms:

1. J. (V’”@a@tklEQ v (gO‘BVgJe@fQuD where k1 + ko =k, py +p2=p—1 and

k2+p2§k+p—2.

2. [Je, vplﬁaa?z?] (@pz (go‘ﬁv[gJeathu)) where k1 + ko =k, p1 +p2 =p—1 and

ko +ps<k+p—1

The highest order terms in 1 are V2~'0Fu and V?=29f"u. Their H'/?(0D) norms
are bounded by their respective H'(D) norms, which are controlled by the right hand
side of (2.23). To treat terms in 2, note that [|[J., 0]V |12 < ||VO| g2]|¢] L2, so the
highest order terms are the same as those in 1, which have shown to be controlled
as required.

The third term is @Z‘laf(Peu). By a slight abuse of notation, we shall con-
sider F§ as being defined in D, so [[VETLOF (Peu)|| g1/2opy S |VVELOFES| iy S
|VPOF Fs || 12(py. We shall analyze the terms in F§. The highest order terms in VPO F§
are VPHLOFY? and VPO u, and VPHOFA. The first two are readily controlled, and
the third term was shown to be bounded by the right hand side of (2.23), so we have
finished controlling ||6§+1afu||%2(p).

The proof is now complete.

]

In this section, we have shown a critical ingredient in the proof for the a priori

estimate. Namely, given the energy £j,, we are able to bound the functions u and
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A, as well as their time and spatial derivatives, in the standard Sobolev spaces.
Moreover, we have shown that 97 is as “costly” as V,, in terms of the Sobolev norms.

We have one more section before closing the a priori estimate. In the next section,
we will establish some controls on the terms X, w, g etc, which will be useful when

we analyze the highest order terms.

2.5 Controlling the Lower Order Terms

Before we close the a priori estimate, let us first establish some controls on the
lower order terms, which utilizes Proposition 2.13. In this section, we assume the

same condition as in Theorem 2.1.

Lemma 2.19. For k > 1, there is a polynomial Rj with non-negative coefficients

such that if T > 0 is small, then for allt € [0,T],

220 0N I, A sup B () + €50l ALO),

0<7<r

Proof. Recall that by Lemma 2.11, we have

[E
‘785)(::<k <(jzﬁ$§;>

The highest order terms in I are VOF 1y and 9F'u, and we may control the lower
order terms by

2 2

|vor|

‘2
H

= 2J = 0j+4 €
)§HV@tu 2(@)5”%5 uH | €l A0

L (RY, L2(R3.

< sup Ejy[u](7) + €yu, AJ(0).

0<r<t

Moreover, by Corollary 2.17, ﬁ is strictly positive. Our result thus follows. O

Lemma 2.20. Fork > 1, there is a polynomial Ry (which might be different from the

polynomial in Lemma 2.19) and a polynomial Sy, both with non-negative coefficients,
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such that if T > 0 is small, then for all t € [0,T],

(07 2 € €

(2.25) 109" N iogey) < B (p Ejlu] <¢>) + €[, A1(0),
(0] 2 € €

(2.26) Hvafg ﬂHLQ(RiJ < Sy (Oiug Ej . [ul (7')> + &, [u, A](0).

Proof. Recall that by Lemma 2.12, we have

AS B¢
o9 =7, Vg =7

Here P is a power of det g. We know that at t = 0, det g > 2¢ > 0 for some constant
¢, since g is the pull-back metric. But then % det g is a polynomial in components
of gap, and thus a polynomial in V.X. Thus, by Lemma 2.19, we know that there is
a time T such that for all ¢ € [0,71], det g > ¢ > 0. Thus  is strictly positive.

It then remains to control A§ and Bf. The highest order term in A is VOFX,
which can be controlled by Lemma 2.19, and the lower order terms can be controlled
in L* norm as we did in the proof of Lemma 2.19.

The highest order term in Bj, is @(2)8571% By Proposition 2.13, we have

2

H@(Q)atk_lu‘

S sup Eli+1[u](7) + €4rlu, AJ(0).

LQ(RE”H) ~ 0<r<t
The lower order terms can be controlled as before. Thus we obtain the desired

result. O

We are now in a position to close the a priori estimate.

2.6 Closing the a priori Estimate

In this section, we prove the claim in Theorem 2.1. Recall that we need to show

that there is some polynomial Pj; such that

(2.27) & u, AJ(t) < €5lu, A)(0) + / Pr(€[u, A](r)) dr
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2.6.1 Estimate on A

By Lemma 2.4, we know that for some integer r,

(2.28) EL[A](1) SELIA(0) +

t
/ / (OLOFA)(QMV O N) dydT
0 T
t
+ [ BN - gl A
0
The first and the last terms on the right hand side are clearly bounded by the right
hand side of (2.27); it remains to analyze the second term. Recall that [J,0FA = H

contains 6 types of terms, and we shall analyze each one of them.

Terms of form 1 in Hj,. We first deal with terms of form 1 in Hj. The highest

order terms are VOFh and VPOF 1A, We write VOFh = F*PV,V30F 1u where F°

is a function such that

sup || ooy + [V F|[L(py) S €51 (T)

0<t<T

for some integer p. Note that if at least one of a, 8 is 0, then || F**V ,V 508 u|| 12(p,) <
Exlu](t), so we may simply use Cauchy-Schwarz. Hence, assume henceforth that

a, B # 0. We compute the term (F¥V,V;J.0f 'u)(Q*V ,0F\):

(FIV:V;J0f ) (Q*V, 0 A)
=Vi(FIV;J0F ) (Q "V ,u0F N) — (ViFY) (Y, Je0F  u) (Q"V .0 M)
=Vi[(FIV;J 0 u)(Q"V W07 N)] — (FIV . J 0F ) Vi(QMV,9F A)
— (ViF7)(V; 007 u) (Q"V . 0F A)
=Vi[(FIV;J.07 ) (Q"V ,,0F N)] = (FIN . J.0F ' u) (ViQ")(V,0F A)

(220)  — (FUV,J0F ) (Q)Vi(,08A) — (VF) (V.00 u) Q19,0 A).

The second and the last terms can be controlled using Cauchy-Schwarz. For the first
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term, we have
t
/ Vi(F9V ;.08 ) (Q*V ,,0FA)) dydr
0o Jp,

t
= / / ni(FIV;J.0F ) (Q"V ,0F A) dSdr
0 oD,

t 1 5 _
(2.30) 5/ (—/ |Vaf—1u|2ds) + (5/ |vafA|2ds> dr.
0 4 0D, oD~

We will use Lemma 2.5 to estimate the first term on the right hand side. Since we will
re-use this result when closing the estimate on wu, let us summarize this conclusion

in the following Lemma.

Lemma 2.21. Let k be an integer, and n > 0 be a fized number. Then there is a
polynomial R, such that if T is small (depending only on n), then for all t € [0,T7,

we have

t
(2.31) / / V0kul? dSdr < ESyul (0) + Ry(E5us AJ(8)) + €. [u, A](0).
o Jop,
We will postpone the proof until the end of finishing estimating terms of form 1
in Hf. Now, let us use it to close the estimate (2.30). We have

t 1 B 5
/ (—/ |vaf—1u|2ds) + (5/ |vafA|2ds) dr
0 0 0D~ oD~

< (B 1 [u)(0) + Ry (&5 _o[u, AJ()) + néi_y[u, AJ(£)] + 0 - EL[A](1).

The last term, §- E}[A](t), can be absorbed into the left hand side of equation (2.28).
The remaining terms are of lower order. Thus, we have controlled the first term on
the right hand side of equation (2.29).

Next, we consider the third term in (2.29).

We pay special attention to the case when p = 0, since vﬁuafA is un-mollified.

We shall borrow a mollifier from the other terms:

t
/ / (V;J.08 ) (FPQ)V,(0F T A) dydr
0 -
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// (V; .08 ) -([ Je, F9QCIV (07T A)) dydr

J/

t
+ / / (VjJeaf’lu)(Fion)@i(af“A)dydT.
0 JD,

~-
11

The term, I, being a commutator, can be estimated by Cauchy-Schwarz:
t
I S/ IVOFullZ ) + IVEYQ) 2 op,) - 105 Al Z2(op, dT

< [ B0 + 19 am, - BN
The term II involves VO**'A, which is of higher order than our energy. Thus, we
will treat this term by integration by parts, which moves one 9, from A to u. The
procedure is similar to the case when p # 0, so we will discuss the details as we treat
the terms with p # 0.

Thus, we have analyzed the case when p = 0. Henceforth, assume p # 0, so that
Vi@;ﬁfA ~ @3(,2)(9,5/&. Note that @(2)82“/\ is of higher order than the energy, while
the term VO 'u could undertake one more time derivative, so we use integration
by parts to transfer one J; onto @@k—lu. The integrals on Dy and D; will show up

as we transfer the 0; derivative:
(2.32) / / (F9%;J.0F ') (Q")Vi(V ,,0FA) dydr
/Dt (F9V;J.0F ) (Q")Vi(V,,0F1A) dy
~ [ A @A, A dy
/ / (V;J.0Fu) (FIQ")V(V .08 A) dydr

- / / (V,;J.0F )0, (FIQ")Vi(V,0F 1 A) dydr.
0 T

By Lemma 2.6, we know that

IV Al 2oy S NOR0F " Allre(pyy + IIVOF Al r2ipy) + |07 All 2oy
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< 1Hi N2, + Ex[A)(1)Y?
< Bilul(t)'? + B4 [A)(1)'2.
We use this observation to control each term on the right hand side of (2.32):

e The first term. We can absorb part of this term into the left hand side of

equation (2.28). Indeed, for some § > 0 to be determined,

[ (F99,00 (@)W, ) dy'
Dy

1 S N

<5 [ IO Py +0 | FQ oy - VOO AP dy
1 € 1) € €

S5 Ealu]() + 01 FYQ ey - (BR) (1) + ER[A](2)) -

Thus, by choosing d small enough (independently of €), the term 6|| F*Y Q"(| 7,y
(Eful(t) + E3[A](t)) can be absorbed into the left hand side of (2.28), and the

term $Ef_[u](t) is of the desired form as in the right hand side of (2.27).

e The second term. By the same analysis as the previous bullet point, by choosing

for instance = 1, this term is of the desired form as in the right hand side of

(2.27).

e The third term. We have

¢
/ / (V;JOFu) (FPQ") (VP oF1A) dydr
0 JD
t
S [ IFQ oy (Blulr) + EJAID)) dr
0
This is clearly of the form as in the right hand side of (2.27).

e The last term. We have

t
/ / (V;J0F )0, (FIQ")V(V .08 A) dydr
0 -
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¢
< [ 10F Qo) (i) + ElAI)) dr
This is also of the form as in the right hand side of (2.27).

Thus, we have controlled every term on the right hand side of (2.32), which completes
our analysis of equation (2.29). This closes our energy estimate for terms of form 1
in Hj.

Before moving on to estimating terms of forms 2 — 6 in Hj, let us first finish the

proof we owed in closing terms of form 1 in Hj.

Proof of Lemma 2.21. We will use induction on k. By Lemma 2.5, we know

(2.33)

t
sup </ |@t,yﬁfu|2dy> +/ / |VoFu|? dSdr
0<r<t : o Jop,
t t
,S/ |Vt7y8fu|2dy+/ / |Elgﬁfu|2dyd7+5§[u,A](t)-/ / |Vﬁfu|2 dydr
Do 0o Jo, 0o Jo,

t t
+// |8t’“+1u|2d5d7+// |V, 0Fu|? dSdr.
0 JoD- 0 JoD-

The first four term on the right hand side are easily seen to be bounded by
Ep 1 [ul(0) + ¢ - & [u, AJ(2)?
for some integer p. It remains to treat the last term. We know that
=k L 042 9k+2
Va0fu = = (Ff — (u°)*0 u) .
a

Thus,

// V,0Fu)? dSdr
8DT

// |Fk|2deT+‘
L ([0,t] x D) oD

(u”)?

2 t
: / / |08 2u)? dSdr.
Leo([0,t]xoD) JO JID;

CL
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Recall that our strategy was to prove by induction, and the previous analyses apply
to the case when £ = 0 as well. To treat I, we note that the highest order terms
are VX, VX2 VA, dyu, all of which can be easily bounded by the right hand side in
Lemma 2.21. So the base case is true.

Now, for k > 1, we analyze each term in F}, bearing in mind that by the inductive
hypothesis, Lemma 2.21 holds with k£ replaced by any positive integer smaller than

k.

e Terms of form 1. The highest order term is 07 u, and
t
/ / |OF > dSdr < t - E[u, A)(t).
o Jop,

e Terms of form 2. The highest order terms are VOF+!A, Okg, and VoFtu. We

have

t
/0 /a VOFTIAPdSdr < By (A0

t t
// |8fg|2deT§// |VoF—tu|? dSdr,
0 JoD- 0 JoD;

and the bound on fot Jop. IVOFYu|? dSdr follows from the inductive hypothesis.

e Terms of form 3. The highest order terms are dFu, 0Fw ~ wVoftu, dFg ~
@85_116, @8{“22 ~ @85‘1/\. Among these terms, the first and the last terms
are contained in the energy £_, [u, A](t), and VOF 1w is controlled by inductive

hypothesis.

e Terms of form 4. The highest order terms are dfg, VOFX <~ VoFf~tu, VOFA.
We have shown the bounds on the first two terms, and the last term is contained

in E5[A](0).
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k+1
0

o Terms of form 5. The highest order term is u, which is contained in

Exlu, AJ(1)-

Hence, we have shown that every term in (2.33) can be controlled by the claimed

formula. The proof is now complete. O

In sum, we finished estimating terms of form 1 in H;. To close the estimate on
A, we will need to control terms of the forms 2 — 6 in Hj.

Terms of forms 2 — 6 in H.

The highest order terms in form 2 are 9f™'h ~ 95y + Vofu and VOIA; the
highest order terms in form 3 are V9*h and VOFA; the highest order terms in form
4 are VoFg, Vofu, V20FX, and V@ 9Fx2 L VA EIA; the highest order terms
in form 5 are OFg, VOFX, and @Gfu; the highest order terms in form 6 are 9F*'u
and OF*'A. When pairing with 07T A, all of these terms can be controlled using
Cauchy-Schwarz.

Therefore, we have proved

(2.34) E[A](1) SEGA(0) +

t
/ / (0,08 N)(Q'V ,0F ) dydr
0 D,
t
n / ELAN() - €54l Al ()" dr.
0
2.6.2 Estimate on u

The strategy of estimating u is similar to that of A, except that we have an
additional boundary term.

By Lemma 2.2, we know that there is some integer r such that

(2.35)

Exlul(t) < Eklu](0) + /0 Exul(r) - Exrlu, AJ(7)" dT+
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+ +

¢
/ / (Egafu)(ﬁf“u) dydr
0 T

¢
// (POFu)(0F T u) dSdr| .
0 oD,

We need to bound the last two terms.

t
/ / (E1,0Fu)(0F ) dydr
0 D,

We first analyze terms in ((0,08u)(9F T'u) = G5 - (85 u). As in the case of A, G

Controlling

contains 6 types of terms, and we shall control each one of them.

Terms of form 1 in G§. The highest order terms of form 1 in G are VOFg and

@(2)85_1% The analysis is very similar to that of the terms of form 1 in H, so we
shall highlight the differences. One major difference is that OFA = 0 on 9D, while
OF 1 is not, leaving us an extra boundary term to tackle. Another difference is that
Q“@NA contains spatial derivatives on A, but " 'u only contains time derivatives,
making this part of the computation simpler. We now present the result.

As in the case of A, V@ 1y is of higher order than the energy, so we integrate

by parts to move one @y derivative onto 9 u and one 9, derivative onto V@ 9F 1y,

The first part of this computation is similar to the case of A:

(FIV,J.V;J0F  u)(0F 1)
=([F,V;J ]V J0F ) (08 ) + Vi J(F9N 5 J.0F ) (0F ™ u)
= — (ViF7)(9;J0; u) (9 ) + ([FY, JIV,V . J0F ) (97 )
+ Vi (FV ;J.0F ) (08 ).

The first two terms can be controlled by Cauchy-Schwarz. We will focus on the last

term. Integrating on [0,%] X D, we have

t
/ / Vid(F9¥ ;. J.08 ) (08 ) dydr
0 JD,

t
- _ / / (FIV;J.0F )V, J (0F ) dydr
0 -
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t
+ / / n; J(F9% ;. J.0F ) (08 ) dSdt.
0 B’Dr

The last term vanishes in the case of A. In our case here, we shall tackle it using

Lemma 2.21:

¢
// n; J(F9% ;. J.0F u) (08 ) dSdr
0 Jop,

t t
5// |@af-1u|2d5dr+// |05+ 1)? dSdr
0 JoD, 0 JoD-

SES[u](0) + RBy(E i [u, A1) + néglu, AJ(t) + /0 Elu](T) dr.

By choosing > 0 small, we can absorb the term n€glu, A](¢) into the left hand side
of (2.27). All the remaining terms are of the desired form.

The other term, f; Jp. (FIV;J0f ' u) Vi (07 u) dydr, can be treated similarly
as in the case of A, where the idea is to move one 8, derivative away from Vof*tu.

We have
(FIV;J0F  u) Vi (0F )
=(FV;J.0F 'u)0,(V,J.08u)
=0, [(FV ;1 J.0f ') (Vi J0fu)| — 0(F7)(V;J0F ) (Vi J.0f u)
— (F9)(V;J.0Fu)(V;JOFu).

Integrating on [0, ¢] x D, we have

t
/ / (FIN ;. J0F  u) Vi J (0F ) dydr
0 T
= / (FIV;J.0F ) (Vi J.0Fu) dy — / (FN ;108 u) (Vi J.0Fu) dy
Dt DO

t
— / O (F)(V ;1.0 u) (V] OFu) dydr
0 D,

t
[ [ 0k o)
0 D,
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As in the case of A, the first term can be absorbed into the left hand side of (2.35)
by using Cauchy-Schwarz Inequality and choosing a small § (which is independent of
€); the other two terms can be controlled using Cauchy-Schwarz Inequality directly.
The computation is precisely the same as in the case of A, so we omit the details.

Hence, we have finished controlling

¢
//(V@fg)(@f“u)dydr
0 T

The term (V®9F10)(8#+ u) has also been controlled in the analysis. Thus, we have
finished estimating the terms in G, that take form 1.

Terms of form 2 — 6 in G,

The highest order terms of form 2 are 07'g and @afu; the highest order terms
of form 3 are Vg and VOF~'u. All are either controlled, or are of lower order than
those in 1.

The highest order terms of form 4 are dFg, VOFX, and Vdfw. The former two
have been estimated in the case of A, so we shall focus on the third. Recall that d,w

L g(VX)(Vu)w. Thus, dFw is a linear

is a linear combination of terms of the form AT

combination of terms of the form

1

oy O T 0F0) (V0 X) (V2 ) 0w

where 7 is a positive integer, and k + - - - + ks = k — 1. Therefore, the highest order
terms in VOFw are: VoFlu, VoF g, V@oF1X, V@ok-ly Vol tw. We have
shown that the first three can be controlled. The last can be controlled by induction.
The most difficult term is V@9 1u, but we have shown that when paired with
OFu, this term can also be bounded. Therefore, VOFw is controlled as required.

The highest order terms of form 5 are 9Fg, VOFX, VOFE? & VOF~'A, and 9FA.

It is clear that all have their L?(D;) norms controlled.
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The highest order terms of form 6 are dFg, VOFX, 9Fx? < 9F A, and VOFA. Tt
is again clear that all have their L?(D;) norms controlled.

Therefore, we have shown that

< & fu, AJ(0) + / Pay(€[u, A](r)) dr

t
/ / (01,0k4) (0 ) dydr
o Jo,

as claimed in (2.27).

t
/ / (POFu)(OF ™ u) dSdr
0 oD,

It remains to treat the boundary term

Controlling

t
// (POFu)(OF ™ u) dSdr
o Jop,

Recall that F} contains 5 types of terms, and we shall deal with each type.

Terms of form 1 in F}. The highest order term of type 1 in Ff is OF 1y, which is

clearly in L?(0D).

Terms of form 2 in F}. The terms of type 2 needs some more analysis. The

highest order terms are @8{“22 ~ @8;“_1& kg, @af_lu. The first type, @85_1& is
already in the energy.

We know that 9Fg = GVOF~'u where G is a function such that
sup ||Gllzoe(p)) + [IVGllLp) S 1 (T)
0<t<T
for some integer r. Therefore, using Lemma 2.21, we obtain

t
/ / G(VOF~tu)(0F u) dSdr
0 JIOD;

t t
g// |wflu|2d5dr+/ / |OF T ul* dSdr
0 JOD, 0 JID,

SES 1 [ul(0) + By (& [u, AJ(#)) + néglu, AJ(1) + /0 Ey[u](7) dr.

As before, we choose 1 > 0 small so that n€glu, A](t) can be absorbed into the left

hand side of the energy, and the rest are of the desired form. The only case left for
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terms of form 2 is then @@k_lu. But the analysis on 9Fg already contains an analysis
on this term. Hence, terms of form 2 have been shown to be bounded.

Terms of form 3 — 5 in Ff. The highest order terms in form 3 are OFu, 9Fg, OFw,

@8{“22. The only term that hasn’t been shown to be bounded is OFw. The highest
order term in dfw is VOF~'u, and we have bounded its L?(0D) norm.

The highest order terms in form 4 is VOFA, and that of form 5 is 0f*'u. Both
are clearly bounded.

Therefore, we have completed the estimate on w.

Summing the energy estimates on uw and A, we have thus obtained an energy

estimate on uw and A that is uniform in e.

2.7 Conclusion on the a priori Estimate

In summary, in this section, we proved an a priori estimate for the mollified
equations (1.56)-(1.59). One important component is the trade-off between spatial
and time derivatives, which enables us to convert the energy £ into energies based
on Sobolev norms.

As remarked before, if we set J. = Id, then we obtain the a priori estimate for
the un-mollified system of equations (1.42)-(1.48). If we set J. = Id and let D = B,
then we obtain the a priori estimate for the un-mollified system of equations on a
bounded domain.

The a priori estimate plays an important role in the proof for existence and

uniqueness of solutions, which is the topic of the next chapter.



CHAPTER I11

Existence of Solution on an Unbounded Domain

Having obtained the uniform bound on energy, we are now ready to address the
existence and uniqueness of solution to the original equation. In this section, we
let M be the same integer that appeared in Theorem 2.1. That is, M is the total
number of 0, that we commute with ﬂg when deriving the a priori estimate on w.
Since we do not aim at achieving the lowest regularity result in this dissertation, we

may assume, for instance, M = 10.

3.1 Existence of Solution to the Mollified Equations

We first show that for any fixed € > 0, the mollified system of equations (1.56-
1.59) has a solution. To do so, we need to prove that the right hand side of these
equations are Lipschitz continuous with respect to a norm that we will specify. The
precise statement is in Proposition 3.4.

Before stating the proposition, we first describe why mollification makes the sys-
tem an ODE. This is because for € > 0, mollified derivatives can be annihilated by

orders of 1/¢, as described in the following Lemma.

Lemma 3.1. Let k > 0 be an integer. Then for any ¢ € L*(R3), we have
k < 1
(3.1) IV*Jegllze S = - llle,

73
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where the constant does not depend on ¢ or €.

In particular, by Sobolev embedding, we also have

wl*_‘

(3.2) 1Jedllz= S Sz

Proof. We have

IV* T < / EPHIO(E) P de
|€]<1 /e

<+ 1B(€) 2 de.

e Jiei<1/e
This is the desired result. O
Now we are ready to provide the ODE system.

3.2 The ODE System

Definition 3.1. We define the operators on v and A. We write

( ~
s (= (7495, e
(I)E(U, ul)(y) = g% [_(8tg00)u/ _ (atg()])@ju — goj(ﬁju/)
x —V;(g"u') = Vi(g7Vu) + ﬂgu} if y € RY.
,
\IIG(A, A’)(y) — % [ (athOO)A/ (8th0j)@j/\ — R0 (ﬁjA/)
\ —V,;(RYN) — Vi(hV;A) + ihA] if y € RY.

Definition 3.2. To simplify the notation, we suppress the dependence of u, A on e.

We define the ODE system as follows:

(3.3)  —u® =W

(3.4)
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d

35)  —A0 =AW
(35) =
(3.6) %A(’““) = W(AB AFDY yE =0, M
d 1
. —¥? = —JA
(3 7) dt ‘]6 (Jeuo Je )
d . Jou?
3.8 — X =J ==
(38) dt (Jeuo)
d v 1 v v av v A Vaw a
(3.9) Ew“ =J (m (—g‘w(V(;X”)(Vﬂ,ua)w + ¢ (Vs X") (Vo ta)w “)) .
Symbolically, we write u := (u(®, - uM+D) A= (AO ... AMFD) and
u u
A A
d
3.10 — 2 | =F¢ 2
(3.10) il B >
X X
w w

In the definition of ®¢ and W€, the formula for Pu™), O,u™) and O,AM) are

replaced by Fy,, G, Hj, respectively.

Remark 9. Note that we did not define higher order derivatives of 2, X, w, so when-
ever we encounter higher order derivatives of ¥2, X, w in the formulae of F§,, GS,, H,,
we replace them with functions of u® and A®). For instance, if O¥g contains a term

V& u, then we replace it with Vu).

Remark 10. Note that in fact, ®¢(u®, u**!) and &<(A® A*+D) depends also on
the lower order terms u), AU) for j = 0,--- ,k — 1. We chose not to write the full

dependency so that the definition has a clearer format.

Definition 3.3. We consider the space B with norm

(B11) [ (w, A 22, X, w)| 5
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M
= <Z ||u(k)||H1(]Ri) + ||U(k+1)||L2(aR1) + ||A(k)||H1(R1) + ||A(k+1)||L2(aRi)>
k=0

+ HU(MH)HLZ’(Ri) + HA(MH)HL2(R3)
+||22||H1(1R3)Jr ||X||H1(]R y T ||w||H1(R3)

We denote the right hand side of (3.3)-(3.9) by F¢. We need to show that F¢ is

a map from B to B.

Lemma 3.2. Let (u, A, %2, X, w) € B satisfy (3.3)-(3.9). Assume (u°)© > 2¢ >0

at t = 0. Then there is some T > 0 such that for all t € [0,T°], we have
J.(u®)© > ¢ > 0.
Proof. We have

L) = 0.0 + [ L) i

2 J&(uo(()?y))m) —t- HJ€(UO 1)HL°°(R3-) ’

By Lemma 3.1,
H‘Jf(uo)(l)HLoo(Ri) 5 E”u(l)HHl(Ri)a

so for ¢ small, we have the desired result. O

Lemma 3.3. Let (u, A, Y% X, w) € B. Then
Fe(u, A, X% X, w) € B.

Proof. The idea is that by Lemma 3.1, we can control higher order derivatives by
lower order derivatives (compensated with powers of 1/¢).

We first estimate X, w, g, h in L® norm. Recall that 8, X7 = J. (%) Hence,

”V atX”Loo (R%)

© ”L?(Ri) ’
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Similarly,

IVORX e

R%) S el+2 } qu(k)Hp(Ri

)
Thus, for all £ > 0 and for all k < M + 1, we have VW9F X € L. Similar estimates
hold for w, g, h.

Next, we may estimate the right hand side of equations (3.3)-(3.9). The most
difficult cases are for %U(M'H) and %A(M +1) 50 we shall focus on these two highest
order equations. The lower order equations will follow similarly.

Interior terms. We need to prove that ®¢(u™) uM+1) € L2(R3). The equation

M+1))

in the interior part of ®°(u™) contains terms of the forms

(VO 1) - (VO ) - (VP f)

and

(VA0 61) - (V07 o) - (uF)
where (V40, ¢1) -+ (V9]™¢,,) are terms that can be bounded in L> norm by the
first paragraph in the proof, and f € {u, A} represents the highest order term, with
p<2and k <M+ 1. But by Lemma (3.1),

1
2

199 /O 2e) € 51 Pz,

so overall, ®¢(u™) vM+1)) € L2(R%). The estimate for ¥(AM) AN as well as
the right hand side of equations for X2, X, w, are similar.

Boundary terms. The boundary condition for A is easy to see, so we focus the

discussion on u™*1. The boundary definition of ®¢(u™) 4M+1)) contains three

types of terms:

o WFE (uM)) = WF,; By Lemma 3.2, we are able to control

Ty (U}O))O)z in L norm, so it suffices to analyze the terms in F};. For the mollified
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terms such as @ju(’“), we can simply use the Trace Theorem (Lemma B):

|9

e

. < [
L2(9R3. HY(R3) ~ € HI(RY)

M+1)

The only un-mollified terms are ¢-u! where ¢ is a lower order term that can

be controlled in L* norm. Then clearly we may bound this term in L*(9R2).
o angJ(g*u™*Y). Again, the control follows from [[u™*+V]| 2 (s ).

e angJ.(¢*V;u™)). We may bound this term using the Trace Theorem, similar

to what we did in the first bullet point.
Therefore, F€ is a map from B to B. m

Next, we shall prove that F€ is Lipschitz continuous, which will enable us to prove

an existence and uniqueness result of the ODE system.

Proposition 3.4. Let O, := {¢ € B: ||¢||g < r}. Thereis a constant Cy > 0 (which

depends on € and r), such that for any ¢, € O,, we have

(3.12) [F(¢) = F(¥)llg < Callo — ¢l
Proof. Note that the formula for components of F¢ are sums of terms of the form
(V61) -+ (V™)
where p > 0 is an integer, ay,--- ,a, € {0,1,2}, and
G, bp € {uP AW OFw, OF X, 0F g, 0Fh : k < M + 1}.
Therefore, we may write the difference using the standard triangular trick

(V9 h1) - (VoB,) — (V1) -+ (V24h,)
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= (V™ (1 — 1)) (V2 ha) -+ (V2,) + (V1) (V2 (B2 — 102)) (V33) - -+ (V™) +
o (V) - (V2 1) (V2 (6, — 1))

By Lemma 3.1, we can again control the terms V% (¢; — v;) in || - ||z and the non-

difference terms in L°°. This gives the desired result. O

Next, we appeal to the standard ODE existence and uniqueness theory (see, for

instance, [11]).

Lemma 3.5. Let X be a Banach space, 1y € X, B(vg,r) = {p € X : ||¢ — to|lx <

r}. Let I = [=T,T]. Consider the ODE system
() Lo=FO(0). 9(0.4) = bo(y)
Assume that F : B(1o,r) — X satisfies the following conditions:
1. There is a constant L < oo such that

1F(¢) = F(¥)lx < Lllo —lx Vo, ¢ € B(go,r).

2. There is a constant K such that for all ¢ € B(¢g,r),

IF(¢)llx < K.

Let Ty < min{T,r/K}. Then the following are true.

1. For each ¢y € B(vpo,r — KTp), the ODE system (x) has a unique solution on

the interval J = [Ty, Tp].

2. The solution ¢ depends continuously on ¢o, and ¢ and % are both jointly

continuous in (t,y).
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3. LetU be an open subset of X. Assume that |F(¢) — F(¥)||x < L||¢ — || x for
all p,7p € U. Let ¢po € U. Then there is a maximal time of existence (—a,b)
(with possibly a,b = co) such that either

liril/sblm 1F(6(8))]x = o0,
or

}SI/I‘% o(t) == ¢(b—) € X emists, but ¢p(b—) ¢ U.

Proof. 1. Let Y := C(I, B(¢o,r)). We define

S(9)(t) = do + /0 F(o(7)) dr.

Note that if ¢ € Y, then
15(¢) = ¢olly <

/WF Dilx dr

so for t € [Ty, Ty], we know that S(¢) € B(¢o,r). Thus, S:Y — Y.

< t|K,

Now, ¢ solves the ODE iff S(¢) = ¢. We define ¢y(t,y) = ¢o(y), and ¢, =
S(¢n—1). Then,

[6n(t) = dn-1(t)llx = F(d)nfl(T)) — F(¢n2(7)) dr

X
<L/H%1 — Gualr) . d.
so inductively,
|0 () — dn—1(t)]|x
<L" 1/ / / |p1(tn—2) — Po(tn—2)|lx dtn—z - - dt1dt
( — ¢olly-

=(n- )
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Now,
t
o1~ dully =sup | [ Flon) dr
tel |Jo
< T|F(g0)llx < KT,
Therefore,
KLnflTn
— oy < ——
and thus

> b — dnally < oo

That is, ¢, is a Cauchy sequence in Y, and thus converges to come ¢ €&

L*>(J, X) (uniformly in (t,y)). Hence, ¢ satisfies the integral form of the ODE:

¢m=%+z¥wmmm

Thus ¢(t) is differentiable in ¢ and satisfies the differential form of the ODE.

To show that ¢ is unique, suppose ¢ and g5 are two solutions, and let e(t) =

|6(t) — ¢(t)]|x. Then

deKAnwﬂ—&ﬂum

gxékﬂw

Since ¢(0) = 0, by Gronwall’s Inequality (Lemma B.5), we know that e(t) = 0.

Thus ¢ is unique.

. The continuity of ¢ follows since it is a uniform limit of continuous functions.
The continuity of %gb = ¢o + F(¢) follows since ¢y is continuous in y and F' is

Lipschitz continuous.
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3. By uniqueness of local solution, it is clear there there is a maximal time of

existence for solution to the ODE (x). Assume that
M :=limsup | F(¢(1))]|x < 0.
¢t/

Then for all ¢ close to b, we know that |F(¢(t))||x < 2M, so for t, close to b,

we have
lo(t) — o) x < |t — ¢ - 2M.

Therefore, ¢(b—) exists. If ¢(b—) € U, then by part 1, we may solve the system
(*) with initial data ¢(b—) and extend the solution on a nonzero interval beyond
b. Hence, it must be that ¢(b—) ¢ U.

]

Hence, we conclude that for each ¢ > 0, the system of ODE (3.3) - (3.9) has
a unique solution on some time interval [0,7¢), where T¢ is the maximal time of
existence according to Lemma 3.5. Our next goal is to appeal to Theorem 2.1 to
show that the solutions exist on an interval [0, 7] where T" does not depend on €. To
do so, we first show that the solution to the ODE system (3.3)-(3.9) in fact solves

the PDE system (1.56)-(1.59).

Lemma 3.6. Let (u, A, Y% X, w) be the solution to (3.3)-(5.9) ont € [0,T]. Then

u:=u? and A := A satisfy (1.56)-(1.59) on t € [0,T).

PT’OOf. Let e := (U(O), R ’U(MﬂLl),A(O)’ R ’A(MJFI))_(UJ’ A ,va“rlu,A, . ’at]\/["‘lA).

Then e(0,y) = 0 by the initial condition. Taking time derivative, we know that

d d
—e1=—u' —du=u

dt +  dt

1) _ 8tu = €2
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d d
giose = g = 0 u = @ (u, uMY) — @ (91, 0" )
ieMJr?) = iAO — O\ = A(l) — O\ = eMid

dt dt

d d

gieomra = A = ML = e (ACD, ACTD) — @ (910,01 A)

Recall that in Lemma 3.4, we showed that F¢ is Lipschitz, so in particular, ®¢ and

W are also Lipschitz, so
d
—llells < Cslle]|5-
Zlells < Collels

Since ||e(0,-)|[g = 0 by the initial condition, e = 0 by Gronwall, so u and A indeed

solve the PDE system on [0, 7. O

We are now ready to show that the solutions to the PDE system exist on a
uniform time interval, and thus we are able to construct a solution to the original

un-mollified PDE system.

3.3 Convergence of Mollified Solutions

We first show that there is some T" > 0, which does not depend on ¢, such that

the mollified system of ODE has a unique solution for ¢ € [0, 7.

Lemma 3.7. There is a time T > 0 such that the solutions (u, A¢, (3?)¢, X, we)

are in C([0,T], B) for all e.

Proof. By the criterion for existence of solution (i.e. part 3 in Lemma 3.5), the
solution (u°, A°) will cease to exist as ¢ T if and only if limy ~pe €pr[uc, A|(t) = oo.
However, by Theorem 2.1, we know that &;/[u, A|(¢) depends only on the initial
data, which is uniform for all €. Therefore, the time of existence T¢ can be taken to

be independent of e. O
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Thus, we have shown that there is some 7" > 0 independent of e such that

u¢, A € C(]0,T], B) for all € > 0, and such that there is a constant C3 so that

Crlu, AJ(t) < Cy Wt € [0,T] Ve > 0.

This enables us to extract a convergent subsequence from (u, A€). A key ingredient

in showing that the subsequence converges is to show that the right hand side of

the ODE system converges to the un-mollified system pointwisely as ¢ — 0. The

following Lemma will be useful.

Lemma 3.8. Let a > 0. Assume that there is some K > 0 such that || fe||go+z < K

for all €, and
lim || fe — f||ge+r = 0.
e—0

Then

lim |VJ.fe — Vf||g = 0.
e—0

In particular, if o > 2, then by Sobolev embedding,
lim ||VJ.fe — Vf|lz~ = 0.
e—0

Proof. We know that

||VJEfe - foH“ < HVJEfE - vaHHD‘ + vae - VfHH“
< |[Ad =J)V fellre + [ fe = fllgan

< €| fellgose + (I fe = fll o

The claim then follows from sending € — 0.

We will use Arzela-Ascoli Theorem to extract a subsequence from (uf)e.

record the theorem as follows.
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Lemma 3.9. [Arzela-Ascoli Theorem] Let (X, d) be a compact metric space, B be a
Banach space, and C(X, B) be the space of bounded continuous functions f : X —
B. Let F C C(X,B) be a family of continuous functions satisfying the following

properties:

1. For each x € X, {f(x) : f € F} is precompact in B. That is, every sequence

in {f(z): f € F} has a convergent subsequence.

2. F is equicontinuous for every xo € X. That s, for all € > 0, there is some

d(zo,€) > 0 such that for all f € F,

[z0 = zllx < 6(z0,€) = [[f(x0) = f(2)]|B <e

Then F is precompact. That is, every sequence (f,)n>1 in F has a subsequence that

converges uniformly in X to a function in C(X, B).

Theorem 3.10. There is a solution (u,A) to (1.42)-(1.45) on an interval I = [0,T]

with T > 0. Moreover, (u, \) possess the same reqularity as their initial data.

Proof. We will prove the claim in a few steps.
Step 1. We first show that there is a solution (u, A, 3? X, w) to the un-mollified
system of equations. For every e, we know that

(3.13) > 08| ogr,mrrzii-ey + (A o mmasesr-ey < Cs
0<¢<4

We will use Arzela-Ascoli Theorem (Lemma 3.9) to extract a subsequence from

(u)e. To do so, we verify that:

1. (0fuc)° are equicontinuous in ¢ for £ < 2. This is because

107w (t1) — Ofu (to) | gara—e < (|OF T US| poo (g pnrre—ey - [t — ta] < Calty — to].
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2. For any t, (0{uf)¢ is precompact in H*/?>=*. This is because HM/>T'~¢ cc

IIAJ/Q—Z‘

Therefore, by Arzela-Ascoli Theorem, there is a subsequence (9fu®) that converges
in C(I, HM/2=%). That is, there are some u¥) € C(I, HM/?>=%) for ¢ = 0,1, 2 such that

(3.14) Z | Ofu — u(z)Hc(LH]M/Z—l) —0 asv—0.

0<e<L2

To simplify the notation, we restrict to the convergent subsequence and relabel € = ¢,,.
To prove that (u, A) satisfy the un-mollified equation, we first prove that 9,u(® = u(
and 9,u) = u®. The proof for both claims are very similar, so we only show the
former one in detail.

Let B = HM/?>=!. We want to show that for any ¢ € [0,T) and for any n > 0,

there is some § > 0 such that

<.

(3.15) 0<|A <6 = HAit (u®(t + At) — uO(t) — u(l)(t))
B/

Fix some At # 0. We write the difference in a symmetric form:

H— It + At —uO(t)) —uD(2)

Bl

+ || O — u
B/

H— )(t + At) — (u)(t)) — Ou(t)

H YVt + At) —uV(t + Ab))

| (@0 - )

B/

=0 +Ir + I3+ 1.
Since ||02u|| 1,51y < C3 for all €, we know that
I, < Cs|At,

and clearly

1
Iy, Iy < o juf = u || oo (1.7)-
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Thus, by choosing € = ¢(At) small, we can arrange that
Il+"'+I4<’f].

This shows that d,u® = u(V) in B. In particular, since M/2 — 1 > 2, we know that

) i almost identical,

the two functions agree pointwisely. The proof for d,u") = u
so we refrain from repeating ourselves.
Next, we show that the right hand side of the ODE also converges to the un-

mollified equation. The proof is again very similar for v(?, 4™ and «?, so we only

prove the most difficult case of u(?. That is, we need to show that

a1 @ (~@ug )0 = (@lg") )T

() (V300) = V5((g") " 0) = Vil ()7 Vju))
1 A A w EV\ T €\v
o (07Tl Va(@))
(9" 0a(X)" (108 G)(V3(E?))A" + (log G) (V1)) )

converges to

1 . ‘ . )
(3.17) 00 (—(8:9™)0u — (8:9™)V ju — g% (V0u) — V(g% Ou) — V(g7 V ju))

L (VXM a(w) — 670, X7 (108 G) (V5E2)A + (log G) (V510)))

+go
in L>(I, HM/>71) as ¢ — 0. Here, notice that by Lemma 2.12,
g=9(X,u, VX, Vu)

is a rational function with strictly positive denominator, and thus has bounded
derivatives of all order. Thus, we can write the difference using the triangular trick,
similar to the proof of Proposition 3.4. By Lemma 3.8, we have estimates that are

of the form, for instance,

VU — V|| garsz-1 < e||us]| garsern + |Ju€ — w|| e,
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which, combined with (3.14), proves the convergence.

Thus, the limit (u, A) solves the un-mollified problem (1.42)-(1.45) on the interval
[0,T7.

Step 2. We now prove that (u, A) enjoy the same regularity as their initial con-
ditions.

For each t, since uf, A¢ are uniformly bounded in H™/?*! upon passing to a
subsequence, they also have a weak limit in H™/?*'. But we have shown that
they converge to (u, A) pointwisely, so the weak limit must be equal to the strong
limit, thus showing that for each ¢, the functions (u, A, ¥?, X, w) € B as well. This
establishes the spatial regularity of (u, A, ¥?, X, w). To show the regularity in time,
recall that in Step 1, we showed that u¥) € C([0,T], HM/>7%) for £ < 2. Repeating

gM/2=2

the same argument, we can establish the time regularity of v up to 0, u; that is,

Olu € C([0,T), HM/>*) for £ < M/2 — 2. To establish the highest order regularity,

atM/%Q

recall from Lemma 2.8 - Lemma 2.10, the highest order terms in [, u and

DthM/Q_QA are V(z)&f\/]m_?’u and V(2)8tM/2_3A respectively, so Garja—2, Hyjo—2 €
L2([0,T), H"YNH([0,T], L?). By the regularity of solutions to hyperbolic equations?,
we see that 8{"8,5]‘4/272% 8{”85\4/272/& € L>([0,T), H>™) for m = 0,1, 2.

Thus, we have shown the regularity of the highest order terms as well. O]

3.4 Uniqueness of Solution

Finally, we prove that the solution, which was shown to exist, is unique. The proof
takes the difference between two solutions, and show that the difference is subject
to a system of equation that is similar to the original system. The uniqueness thus

follows from the a priori estimate applied to the difference of two solutions, as well

Ishown, for instance, in [3]
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as the regularity of each individual solution.

Theorem 3.11. Assume that (u, A, X,w,%?) solves the systems (1.39)-(1.48) on

some time interval [0, T| ans satisfies Enr[u, A|(T) < oco. Then the solution is unique.

Proof. We first need to obtain an energy estimate for the solution to the exact
equation. We in fact consider the energy Ey,_1[u, A], so that the regularity required
in Lemma 2.21 - 2.5 are satisfied.

As was remarked before, by setting J. = Id, our a priori estimate in Theorem
2.1 would apply to the solution to the exact equation. Assume that there are two
solutions (u, A) and (%, A) with the same initial condition, and there is some C > 0,
T > 0 such that

gM[U,A](T) < Cl, gM[QNL, ]\](T) < Cl.

By Theorem 2.1, we know that there is some C5 > 0 such that

@M_l[U,A](T) < CQ, QEM_l[INL,A](T) < Cz.
We consider equations (1.42)-(1.45); that is,

OPu = ®(u,0u), O = ®(a,0,0).

Note that Proposition 3.4 does not apply here since the Lipschitz constant depended
on €. However, we can achieve a similar result with a reduction in regularity. Let

e=u—1,0 =A—A. Then
e = ®(u, Qu) — ® (0, 04i1) := F,, 0?6 = ®(A,0A) — ®(A,Q,A) := Fy.

Here, we use the triangular trick to reduce F, to a function in terms of e. In the

interior, F, is a linear combination of terms of the forms:

1. 45V:Vje.

g
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2. F(¢1, -+, 0m) (df€), where F is a rational function with bounded derivatives of
all orders, ¢; € {OFVPf : f = g,5, X, X, 5% 5% w,d,u, i, A, A0 < k,p < 2},

¢ e {0,1}.

3. F(¢1, -+ ,0m)-(Ve), where F is a rational function with bounded derivatives of

all orders, ¢’L € {8fvpf : f = g?.g?X?X’ 227 EQ,U),TI),U,'[L,A,]\,O S k7p S 2}
On the boundary, F, is a linear combination of terms of the form:
1. %nagO‘BVge.

2. F(¢1, -+, 0m) (0fe), where F is a rational function with bounded derivatives of
all orders, ¢; € {OFVPf : f = 9,5, X, X, %%, X2 w, b, u, 0, A, A, 0 < k,p < 2},

¢ e€{0,1}.
Therefore, e satisfies an equation of the form

u®)20%e 4 In,g*®Vge = F1  on [0,T] x OR?
(3.18) (u”)*fe + 3 5 [0, 7] i
Oye = Fy in [0,7] x R?,
Thus, using Lemma 2.2, and recalling that e, ;e = 0 at t = 0, we can show that
t t
/ |V.el? dy+/ |0e|? dS < / / F2~8tedyd7'+/ / Fy - 0iedSdr.
R3, ORY | 0 JRY 0 JOoRr3

Now, by Lemma B.4, we may bound terms of the form F'(¢y,- - , ¢,,) in the definition
of 7 and F, by C for some integer r. Thus, by Gronwall’s inequality,

/ ’vt,ye|2 dy+/ |8t€|2 dsS =0 Vtel0,T].
R3 15)

3
+¢ ]R-H

To estimate F, we note that ¢ also satisfies an equation of the form

§=0 on I x IR
(3.19)

0,6 =G in xRS,

where G is a linear combination of terms of the forms:
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1. F(¢y, -, bm)(059), where F is a rational function with bounded derivatives of
all orders, ¢; € {OFVPf : f = g,3, X, X, 5% 5% w,d,u, i, A, A0 < k,p < 2},

¢ e{0,1}.

2. F(¢1, -+ ,0m)-(V0), where F is a rational function with bounded derivatives of

all orders, ¢; € {OFVPf: f=g,5, X, X, %252 w, 0, u,i,A, A0 <k p<2}.

Again, using Lemma 2.3, we can show that

t
/ |Vt,y5|2 dy 5 / / F 3t5 dth,
R3 0 JR3

+t

and we may bound || F'(¢y,- -, qu)”Loo(IX]Ri) by C% for some integer r. By Gronwall’s
inequality again, we can show that
/ Vdl2dy =0 vite[0,T].
R3,

This shows the uniqueness of the solution (u, A). O

In conclusion, we utilized the a priori estimate in Chapter II to establish the local
well-posedness result for equations (1.42)-(1.48) on the unbounded domain D = R3.
We furthermore showed that the solutions enjoy the same regularity as their initial

data. This proves Theorem 1.1 with €2 is unbounded.



CHAPTER IV

Linear Equation on a Bounded Domain

We have established the local well-posedness of the system of equations (1.42)-
(1.45) when the initial domain €2 is unbounded. In this section, we prove a similar

result, but for a bounded domain €2y. That is, we consider the Lagrangian coordinate
X:Q—=[0,T]x B, X(t,-): % — B,

where B := {y € R®: |[y| < 1}. Our notations will be the same as the unbounded
case.

The strategy of the proof will be different. We will establish an a priori estimate
for the un-mollified system only, and adapt the proof for existence in [10] to our
system of equations. That is, we prove existence by considering the linear system,
and then use an iteration on the linear system to create a solution to the fully

nonlinear system of equations.

Remark 11. Note that by a linear system, we mean the system of equations with
given coefficients and known right hand side. That is, we replace the coefficients in
[y and Oy, as well as the functions on the right hand side of the equations, with

known functions. We do not linearize the equations around a certain solution.

We shall start with an a priori estimate that is very similar to Theorem 2.1.

92
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Proposition 4.1. Assume that u, A, ¥?, w solve (1.42)-(1.48) on [0,T] x B, with
Enlu, A|(T) < Cy
for some integer M and constant Cy. Denote

(41) €ulu AI(T) = Entlu, AUT) + sup >~ [[0Fu g ) + O] -

0St<T ) op<iry2

Then there is some polynomial Py with non-negative coefficients such that if

T > 0 is small (depending only on Cy and €;(0)), then for all t € [0,T],
¢

(4.2) Enrlu, A)(t) < Eprlu, AJ(0) +/ Pr(Eprfu, A(T)) dr
0

In particular, (by, say, Lemma 2.15), we know that there is a time interval [0,T],

where T' > 0 depends only on the initial data, such that
(4.3) Enrlu, AJ(T) < €nlu, AJ(0).

Proof. The proof is identical to that of Theorem 2.1 by replacing J. with Id and D

with B. We omit the details. O

The next task is then to establish existence. Asremarked earlier, we use a strategy
that is similar to that in [10]: we consider the linear equation, and show that each
linear equation admits a unique solution.

By linear equation, we mean the system (1.42)-(1.45) with g and h replaced by
some known function on the left hand side, and X, w, X2, A, v replaced by known
functions on the right hand side. We seek to first obtain a weak solution to this
system of linear equations. The weak formulation is motivated by [10] and the

section on linear hyperbolic equations in [3].
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4.1 Existence of Solution u

We will establish the existence of solution u by Galerkin approximation, which

calls for a weak formulation of the problem first. This is our next goal.
4.1.1 Weak Formulation
Let ¢ : B — R be a smooth function, and 6 € C?(B) satisfies
(u)2070 + Lan,g*’V30 = f on OB
U0 = ¢q in B.

Then

/ @)ody
-/ Valo ) oy + /

By

1
5(Valog 191)g** (V 56) ¢ dy
. 1

=/ at<g°5v59>¢dy—/ 9]6V59Vj¢dy+2/ —(f — (u")?070) ¢ dS

B B, oB, @

1
+ [ 3 (Valoglghg™(Vatp0dy
By

Regrouping terms involving derivatives of 6 and ¢, we have

(4.4)

/thqbdy—/m %fods

0\2
- afe.g%dy—/ 839-2(“> o dS
0B

B a

1 . .
+/ d,0 - [(6%900) +5(Valog lg]) g — (ng%)} pdy+ | 0,0 (—2¢") V¢ dy
B

By

+ 00 - (njg™)¢pdS

0By

+ [ v @5+ §(Tatoslaha] odnt [ V8- (~g%) Tioay
By

By
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In the rest of this section, define!

0, 0) := / 0¢ dy = pairing in L*(B)
B

(0, 0) = / 0¢ dS = pairing in L*(0B)
oB

(0, ¢) := pairing between (H'(B)) and H'(B),

and

We define the bounded linear map @ : H'(B) — (H'(B))"

(4.5) (©(0),¢) = (—9"0.6) + (0, ) -

Comparing with (4.4), we see that the weak equation actually involves ®(0") rather

than ®(#)”, so we compute the difference:
(®(0)", ¢)
=0? / —g"0¢ dy + 0? / v0¢ dS
B OB

=(2(0"),¢) — (2(0,9™)0', ¢) — ((979™)0. &) + (2(0:)0', 9) + {(977)0. )

Then by (4.4), we know that the weak equation is:

(4.6) (D(0)",9) + L(0,¢) = —(a.0) +((2/a)f,¢) Vo€ H (D),

where L£(0, ¢) represents the weak formulation of the lower order derivatives on 0:

L1(0.0) = (0',29"V;0)

£2(6,6) = (0, ((097) = 5(Tutogll)g™ + (V6" ) 0)

IRecall that all the functions we consider are real-valued.
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= (0,079"¢)

— <V-Q gijV»gb>

<ve( (05"~ 5(Valoglal)s™ ) )

(0. (—njg" —2(07)) )

(6. ~(@77)9) -

We also need to derive the higher order equations. The difference of these equa-
tions with (4.6) come from the analogue of the commutators [O,, 9] and [P, 9F].
We first derive the first order equation. Assume that 6 satisfies (4.6) and is

sufficiently regular in ¢. Then

(8(6)".6) + LI0.0)] ~ [(@(0)',0) + L, 0)
= — (890", ¢) + (00", b))
+(0',2(0,9")V ;)
+ (0.0 (~(0) - §(Taloglag™ + (7,5%)) o)
+(V,0,(0:97)V.¢)
+ <Vj9, O (—(@g‘”) - %(Va log |g|)g°‘j> ¢>
+ (0,01 (=n59") 0}

Let 6y := 0 and 6, := 6. We record the highest order terms in the preceding

equation as

(4.7) C(01,¢) == — ((0eg™)01, &) + ((@:7)01, 0)

and the lower order terms as

[{ = —(28tgoj>96 — (&gg”)Vﬂo
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1 AW
= (30" 4§ oslag™) - Vi00” ) 0

) 1 ;
I3 = (afg‘“ + 50 ((Valog !g!)g‘”)) Vb
B, = 8t(njg0j)66.

Then the equation for 6 is:

(4.8)  (2(61)",0) + L(61,0) + C(61,¢) = — (O, ¢) + (0:(2f /a), &)

+ (I, V;¢) + (I + Is,¢) + (B, ¢) .

Proceeding inductively, we see that the weak equation for 6, := Gék), where k > 2, is

(4.9) (©(0k)", &) + L(Ok, §) + kC(0, &)
=~ (0a.0) + (07 (2f/a), ¢)
+{OF T, V,0) + (0F (I + I), ) + (0 By, )
+ <k(at2900)92717 ¢> - <<k<at27)92717 ¢>> :
Assuming sufficient regularity on ¢, f, a,~y, we shall prove that the equations (4.6)-

(4.9) have a unique solution. This is the content of our next subsection.
4.1.2 Proof for Existence
Theorem 4.2. Let M be the integer in Proposition 4.1, and u, A have the reqularity
as described in Proposition 4.1. Then there is a time interval [0,T] with T > 0 in

which (4.6) - (4.9) have a unique solution for all k = 0,--- M. Moreover, denoting

the solution to the k-th order equation by 0y, then the following are true:
1. Compatibility: 0, = 0; for j =1,---, M.
2. Energy estimate: let

M
Ealo](t) =Y / (—g™) 0112 + g7V ,0, 16, dy + / 6L dS.
k=0 v Bt

0By
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Then there is a polynomial P such that for all t € [0,T],

En[0](t) < Ea[0)(0) - (1 + tP(€prfu, A(T)) - e PIEwbuMI))

Before we give the proof, we shall first note some results on regularity for a
weak solution (assuming its existence). We will use the following result in the proof

of Theorem 4.2, very much like the way we used Proposition 2.13 in the proof of

Theorem 2.1.

Proposition 4.3. Assume the same assumption as Theorem 4.2. Suppose 0, solves
the k-th order weak equation for k = 1,--- M on some time interval I = [0,T].

Then for k < M — 2 we have

(4.10) 10kl Lo (1xB) S 10hs1lloor,2(8)) + N0k—1ll oo (1,11 () -

Before presenting the proof, we note a standard result on weak solutions to a
(second order) elliptic equation, which is similar to Lemma 2.6. This is the same as

Lemma 3.5 in [10], and was proven in, for instance, [18].

Lemma 4.4. Suppose ¢ € H'(B) satisfies

(4.11) (97Vi, Vi) = (bv) + (W) Vo € H(B)
for some b € HY2(0B), W € L*(B). Then ¢ € H*(B) and

(4.12) 19l 2y S Wl L2(m) + 10l 1/2(08) -

We will use Lemma 4.4 very much like the way we used Lemma 2.6 to prove

Proposition 2.13.

Proof for Proposition 4.3. By assumption, we know that 6, € H'(B) for k < M.

Then by Lemma 4.4, we know that for £k < M — 2,

10kl 28y SNOkllL28y + 110kl ir1200m) + 10kl 228y + [10k-1 1m0 ()
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NOsillzesy + 10kl sy + 10kl 23y + 10k—1 1|1 (-

The claim thus follows. ]

We are now in a position to prove Theorem 4.2. The strategy of the proof is
somewhat similar to Proposition 3.2 in [10], but there are a few crucial differences.
To start with, our system of equations is different, with a non-constant G and a
non-zero vorticity. Secondly, we first fix an m, and show that the system of ODEs
in 61,---,0) can be solved approximately by projecting onto an m-dimensional
subspace of H'(B). This leads to the approximate solutions 01, 0m)> +  Onry(my- We
then send m — oo to recover the solution to the original weak problem 6y, -, 0,,.
This is in contract to the approach [10], which sends m — oo for each order k, and

deals with the highest order equations separately.

Proof for Theorem 4.2. In this proof, assume that {e,} is both an orthogonal basis
of H'(B) and an orthonormal basis of L?(B). Since {e,;} is a basis of H*(B), and
tr: H'(B) — L*(0B) is surjective, we know that {e,} spans L?*(0B) as well.

Existence of approximate solutions. Let m > 0 be an integer. Let P,, be the

orthogonal projection onto span{e, : £ < m}, so the corresponding approximate

operator ®,, : H'(B) — (H'(B))" is
(4.13) (Pin(0), ¢) == (D(0), Pud) = (=9"0, Pud) + (10, Pu6) -
We look for an approximate solution of the form
Bt (t.9) = 3 6. B € COT) V=1, m.
=1

To define the approximate weak equation, we further consider the projected quanti-

ties:

If,m = —Q(atQOj)%,(m) - (8tgij)vi90,(m)
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1
Lo = (247 + 30V, log g)4™) ~ 9,05 ) 0

. 1 .
I3 = (83903 + 50 ((Valog Igl)g”)) V 00, (m)

Bim = 0:(1;9" )06 (m)-
The m-th approximate weak equation is then

(4.14) (@m(9k7(m))ll, 64) -+ E(&,@(m), 6() + kC(ek,(m)a 66)
<8fq, €e> + << (2f/a), €g>>
+ (0 4 Vier) + (OF  (Lom + Tsm), e0) + (01 Bim, )

< (83900 Q;C 1,( 6£> << 837 ek 1, m)7€€>>-

We claim that (4.14) is a system of linear second order ODE in 5k,m = (9,1C mo s O,
where 0, : [0, T] — R™. To see this, note that (4.14) is of the form

d2

(4.15) Alt)

d - i}
Orem (1) + B() 2 0km = C(1)0km + d(t)

for some matrices A, B,C : [0,T] — R™*™ and vector d : [0,T] — R™. The matrices
B and C are clearly bounded as linear operators on R™, so to utilize the result on
existence and uniqueness of ODE, we only need to show that A(t) is invertible for

all t, and ||A~1(¢)]| cerm gmy is bounded for all t. We compute A(t) explicitly:

(4.16) A(t)iy = (9" ()i e5) + (v(t)es, ) -

Fix any v € R™, and let ¢(y) := > ", v;e;(y). Then

TAt =) viA(t)i v

ij=1

= /B (—g™ () (wiei(y)) (vie; (y)) dy + / 1t y)(viei(y)) (vie;(y)) dS

oB

> - (108 + 141320
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> al[of| 22 gm)-

It is clear that A(t) is a symmetric matrix for all ¢; therefore, A(t) is symmetric

positive-definite, and thus

AT ()] cmmmy < —  VE € [0,T].

Q|+

Hence, we know that (4.15) has a unique solution for all ¢ € [0, 7. Out next goal is
to pass to the limit m — oc.

The approximate solutions are compatible. We claim that 0;71’%) = Ok,(m) in

L?(B). This is because by the definition of (4.14), 0} 1 (my and Oy () satisfy exactly
the same equation with the same initial data, and thus they must agree by the
existence and uniqueness theory of ODE.

Uniform bound on 6y, ). We multiply (4.14) by (6} ,,,(¢)) and sum with respect

to £ to obtain the following:

S (@O ee) - (Of (1))

/=1
1d , ,

== /(—900)\9k,(m)!2 — (079") |6k, m)|* dy + / VN0 |+ (7O (i |* S
2dt | Jg OB

3 , 3 , |
_/B5(8t900)|9k,(m)|2dy+/(935(8t’7)|9k,(m)|2d5+ 5[98?900|9k,(m)|2dy

1
—5/ 0, V1Or,my |” dS.
0B

D LBk imys e0) - (O (1))

(=1

=L Ok, (m)» O (1m))

/ j / 1 [ j
I/BQk,(m)(2QOJ)Vj9k,(m> dy+/B <(3t900) —5(Va log [g])g” +(V190J)> 1O | dy
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+ / O (m) (079") 0} (my Ay + / Vil m) 97V 0 (my Ay
[ 9t (~(@5) = 5(Tutox ol)g™ ) 4y
[ P nsg® =20 ds

+ [ Oyl oy (—07y) dS

0B

1d B
=37 [/ (8752900)|0k,(m)|2dy+/g”viek,(m)vjek,(m) dy+/ |0k, > (—077) dS
B B OB

1 1

+/ <(3t900) - §(Va log |9|)90a> "92,(m)|2dy —/ 533900|9k,(m)|2dy

B B

1 .
T2 [g(atg”)vﬂk,(mﬁﬂk,(m) dy

. 1 .

- / V 0k, (m) ((&sg(’]) +5(Valog Igl)g‘”) O my AY

B

1
[ P -2000a5 + 5 [ 3l ds.
0B 0B

=C (O, (m)> Ok (m))
- / (0:9™) 0 (o |* dy +/ ()0 oy I* dS.
B OB
Thus, summing up the preceding bullet points, we know that the left hand side of
(4.14), after multiplying by 6} ,, and summing up /, gives:

HLS = Z (O €0) + L(Ok,m)s €0) + kC(Ok s €0)] - Of o

{ / (—9")N0% o |> + 97V Ok, () V 0k, (m) dy + /a 7|92,<m>|2d5]

T 2dt
1 1 ,
- / (k + 5)(at900)|9;c,(m)|2 dy + / (k + 5)(3t7)|9k,(m)|2 ds
B 0B
1 /
+ [ (@) = §(Taoglal)g™ ) e P
B

1
/ (OGO oy ¥ 3By Iy

B

2
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1 N\
/Vek ( (09" )—§(Valoglgl)g‘”) Oy (m) Y
+ [ il (=200 s

The right hand side of (4.14), after multiplying by %,m and summing up ¢, gives:
RHS = — /B (0 + 08 (Lo + s ) — KORG8y o) O oy
- / (af_llf)vj9;7(m) dy
B
+ /aB (atk@f/@) - 81571(Bl,m) - k(&fv) k—1 (m)) 92,(m) ds.

Let

Enlt) = [ (=480l + 87 ki Vb + [ 16?5

Then equating LHS and RHS, and integrating with respect to time, we see that

(417)  Eu(t) SEa(0) + / (Zuv Joll s +||am|Loo<aB>> dr

r=0,1
t
+ [ Bute)- (1086 imtan 164 s
+||at27\|Loo(1xaB) : H%q,(m)H%%aB,)) dr

t

+ / / (—0Fq + 0y (Tam + I3.m)) O () dydT
0 B

1

t
0 JoB

=11
t
+ /0 /B (af—lf{)vjegﬁ(m) dydr| .

'
=III

J/

The first term can be controlled by the assumption on u, A. The control on the
second term follows from regularity of 6j_; ) by induction, and assumptions on

u, A. We seek to control the remaining three terms:
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o ||0F |21 12(p))- Recall that ¢ = Ogu, so by Lemma 2.9, f¢ consists of terms
of the forms 4 — 6 in the statement of Lemma 2.9. As before, each term is
a product of a few terms, where we seek to control the lower order terms in
L>°(B) and higher order terms in L?(B). The highest order terms of form 4 are
OFg, VOF X, VOFw; the highest order terms of form 5 are 9Fg, VOF X, VoFy2 <
VOr~A, 0FA; the highest order terms of form 6 are 9fg, VOF X, VOFA. All of

these can be controlled by &,[u, A].

o 105 (Iym+ L3 m)| r2(1,22(8))- In fact, we will not be able to control ||0f ™" (Lo, +
I3 ) || L2(1,02(3)) Wwhen k& = M. Instead, to treat the highest order case (which
also works for lower order equations), we will use a computation that is similar
to the F¥ manipulation when we estimated | fRi (0,0Fu)(9f " u) dydr in the
a priori estimate. More precisely, when 9F ! falls on 92g and 06,(7%)’ we are able

to control, for instance,

t
/0 /Bafﬂgoo%,(m)e;g,(m) dydr

The most difficult term is when 97! falls on Vd,g. That is, we need to control

t
< / 105692y + 16 2

t
/0 /B (V09 (B ) O )

To do so, recall that there is some function F*? with

sup [|[F*?||poe(m,) + [IVF || Lo, < 00,
0<t<T

such that

Vokg = FPV V0 u.
Then, we seek to move one V derivative to 8y, (,,) and move one 0, derivative

to g:

t
/0 /B (V05 9) (6) ) (Bl ) il
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(FON oV 50~ ) (06, (m)) (O () dyd

—

S— S—

0B
/B vﬁak ' (Faﬂ( 0,(m) )(0;6,(7%))) dydT

\»\’*Q\»

=+ Q

I
S—

N FPV 50 u(6; 0,6m)) Ok (m)) ASdT
B

/0 (V50 0) Vo (F2(0, ) (B ) i

B

/ / Vﬁak ! FQB( 0 (m))) Va(%(m)) dydr.
Recall that by Lemma (2.5), we are able to control

t
/ / |V 30F ul? dSdr,
0 JoB

so the first and second term on the right hand side are controlled. We further

work on the last term:

Of ") (FW(%,(m))) Vo Oy (my) dydr

< /B (V0 u) (F° (0 (m))) Ve Ok,m)) dy’

+ /B(vﬁaf tu) (F(0 ny)) Va(9k,<m>)dy‘

t
[ ] (T (P, 1) (Vo)
0 JB

t
+ / / (Vgaf_lu)at(Faﬁe&(m))(Voﬂk,(m)) dydt
0 JB

1
IV o,y |* dy + 5 /B |Fa696,(m)vﬁatk_lu|2 dy

By

|v Or.(m) | dy+/ |FP00 () V 500wl dy

/ Bo(r) (109 5080) (P28 )

+||(vﬁaf—lwat(wﬂeg,(m))||iz<BT>) dr.
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Therefore, by choosing § small, this term can be absorbed into the left hand

side of (4.17), and we have controlled the term I.

o |0F(f/a)llr2(r,r20m))- Recall that a? = g*%(V,5?)(VX2), so the highest order
term in OFa is VOFYX2 which is controllable by the assumption on %2. Recall
also that f = Pu, so OFf = OFPu is given by terms of the form 3, 4, 5 in
Lemma (2.8) with ¢ = 0. The analysis is identical to the computation that we
did when estimating [, | or? (P<OFu)(OF 1 u) dSdr, except that this case here is
simpler because we do not have the commutators of the forms 1, 2 in F. We

refrain from copying the same calculation.
° ||Gf_lBl7m||L2([7L2(83)). The highest order terms in af—lBl,m are

oy (V;5%¢%) 0 and 0, (V;X%gY) af—le’o,(m)

m)»

The first term is controlled by ||V} ' 22| 12(r.r20m)) and VO ullr2(1.12(0m))
by Lemmas 2.4 and 2.5. The second term can be controlled by [|0},_, || .2(1,.2(08))-

Thus we are able to control II in (4.17).

e Finally, we analyze III.

//a’f ")V 0 oy dydT
—/ p (/(8’“ Y OV 50k ) dy)dr—//ak )V 0% (m) dydT

= [ O it~ [ G it
By

/ / (08I )V 10k, (my dydT.

We compute 917 in which the highest order terms are

1,m>»

(afg()])e(l),(m)a (afg”)vleo,(m)u (atg )ak 190 ,(m)» (atg”)vlafileoa(m)
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Thus, |8/~ 1]{m||L2(IL2 ) can be controlled. The term [, ( (oF~ 1]] ) Vi0k,(m) dy

can thus be bounded by

1
5 |ak 1ISm|2 dya

/ (af_llim)vj'gk’,(m) dy‘ S 5Em( )
By
which can be absorbed into the left hand side of (4.17) by choosing § > 0 small.

Similarly, the term [, ( B (OF~ 'n J m) Vil (m) dy can be bounded by

/ ((’)f_lfg,m)vi%(m)dy‘gEm(O)+ |0F 1 I3, | dy.
By

By
We deal with the most difficult term fot [,(08T] (my) Vi0k,(m) dyd7. In comput-

ing F I/ m»» when Of fall on 0,9, we can easily bound the result by |oF !

9llz2(m)

so we shall focus on the case when 9F falls on ng(m) and V;00 (). We have

/ (D9") () () (V300 o)) iyl

/ (0:g")( O (m)) (V30 (my) dydT

<10l miins) \ [®
0

and

t
/ (8:9")(V:0; 00, m)) (V 10k, my) dydT
0 B

t
/ (0:9" ) (Vi (m) ) (V 0k (m)) dydT
0 B

/Ot By (r)dr| .

Thus IIT has been shown to be bounded. Note that this is the reason why we

<109l Lo (1x By -

had to fix m and solve for all orders of the approximate equations before taking

the limit m — oo, for otherwise we will not be able to control 9r6).

We have analyzed all terms in (4.17), so by Gronwall’s inequality, we have proved

that there is some C4 such that

(4.18) tSBI;] 0% oy 12282y + 110k, L1 By + 1|0k oy | £2(08,) < Ca < 00
€
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for all m > 1. Here C, depends on €[u, A](T) only, and does not depend on m.
To finish our uniform bound, we need to estimate ||y, (O om))” || L2(1,(r1 (B)y)- Let

¢ € H'(B). Then by (4.14) and the estimate (4.18), we know that

(ém(eh(m))”@) S C4||¢||H1(B)

as well, which, after possibly enlarging Cy4, shows that
(419) ||(I)m(0k,(m))”||L2(I,(H1(B))’) < 04 < Q.

To summarize what we have achieved so far, we have proven that for each fixed
integer m, the system of approximate solutions (4.14) has a unique solution on [0, T']
for k =0,---, M. And moreover, these solutions satisfy the bounds (4.18) and (4.19)
uniformly in m.

Our next goal is to let m — oo and construct a solution to the actual weak
equation.

Existence of weak solutions. By the uniform boundedness established earlier, we

know that there is a subsequence 0y, (,,,,.y as well as functions 6, € L*(I, H'(B)) with

0, € L*(I,L*(B)) and ¢, € L*(U, (H'(B))') such that

Ok (m.) — Ox  weakly in L*(I, H'(B))
Oy (myy — 01, weakly in L*(I, L*(B))

P, (Ok (m,)) = ¢ weakly in L*(I,(H'(B))).

We first show a compatibility result. To simplify the notation, in what follows, we

will relabel the subsequence and set m = m,,.

o 0, =0, in L*(B). Let v € L*(B), then

(01 0) = tm (B . 0)
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= T (B, ¥)

Our claim thus follows.

e d(0) = ¢ in (H'(B))'. To see this, we first compare their action on a dense

subset of H'(B). Let K > 0 and ¢ = Y1t 1‘e;. Then

(®(6),1) = (—9"0,v) + (16, ¥)
= lim (=¢"0um,) ¥) + (V0(mn), )

n—o0

= lim (@, ((m,)), )

n—o0

= (0,7).

Since 1) of such forms are dense in H'(B), we know that ®(0) = ¢ in (H'(B))’,
that is,

D, (Om,)) — ®(0) weakly in L*(I, (H'(B))').

Next, we need to show that 6y, is a weak solution to (4.9). To see this, we take a

function
K
Y=Y d'(t)e, d'eC>([0,T]) VL.
=1

We multiply (4.14) by d*(t) and sum up with respect to ¢:

((I)m(ek,(m))”a w) + ‘C<0k,(m)7 W + kc<0k,(m)7 @D)
== (Oq.¥) + (072 /a).¥)
+ (OF T H 1y V) + (OF  Tom + Tsm), ) + (07 B, ¥0)

+ <k(at2.goo)0;cfl,(m)7 ¢> - <<k<81€27)9271,(m)7 2/}» .
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Sending m — oo, we see that 6 satisfies equation (4.9) for this particular ¢. But
then since such 1 are dense in H'(B), we know that 6 satisfies equation (4.9) for all
Y € H'(B), showing that it is a weak solution to the actual weak solution.

Uniqueness of weak solutions. Now we show that the weak solution to (4.9) is

unique. Since (4.9) is a linear equation, by taking the difference of two solutions,
we may assume that 6,(0,y) = 0, the right hand side of (4.9) is identically zero,
and need to show that 6x(¢,-) = 0 for all ¢ € [0,7]. For this part, we suppress the

dependence on k, and our goal is to show that 8 = 0 is the only solution to
(4.20) (D(O), ) + L(8,0) + kC(6,4) =0 Vo) € H'(B)

satisfying 0 € L*(I, H'(B)),0' € L*(I,L*(B)),®(0) € L*(I,(H'(B))).
To see this, let § be any solution to (4.20) with the specified regularity. Fix any

s € (0,7). and consider

— [7O0(r)dr if0<t<s
i(t) = ft ™ ,
0 fs<t<T
so that &'(t) = 0(t) for t € [0,s]. Clearly 6(¢t) € H'(B), so substituting ) = § and
integrating with respect to time, we have

(4.21) / (®(6)",6) dT+/S£(9, 5) dr +k /SC(G, 8)dr = 0.

N

TV TV TV
I 11 111
We compute I:

/0 0, (®(0Y, ) dr — /0 (@), 5) dr
(@ - /0 C(®(0),0) dr

(6)',9)

0

The first term on the right hand side vanishes, since ®(0)’ =0 at 7 =0 and 6 =0

at 7 = s, and we continue with the second term:

[=— / (®(0)',0) dr
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= - / / O (—g"0dydr — / 01(70)0 dSdr
0 B 0 oB
1

1
1 / 0162 dy — / 2102 dSdr
2 Bs 2 0Bs—0Bg

—Bo
+1/ /(atgoo)yeﬁdym—l/ / (9,7)|6)* dSdr.
2Jo JB 2)y Jos

To compute II, we use the fact that § = ¢’ for ¢ € [0, s]. The exact formula for II is
complicated (as we shall see soon), but what is important is that it is equal to some
main terms involving V,6 at ¢ = 0, in addition to some lower order terms involving
|61l e2(mys 1022, as well as some low order derivatives of g and 7. We remark that

several terms in the result will vanish because §(s) = 0 and §'(0) = 0(0) = 0.

= [7(5%.29,6) + (5", (00~ §(Tuloglallg™ + (7,4 5)
+0.080%8) + (9,0, 99.0) + (V0 (~(01g”) ~ 3(Vaoglallg™ ) )
+ (07, (—=n39% — 2(8i7))8) + (0, —(077)5) dr

1 .. , 1 o .
=/ §g”Vz~5Vj5dy+/ ) ((@900) —5(Va log |g])g** + (ng(”)) dy
s*BO S*BO

/

g g

_fBO...dy =0

. . 1 .
+/ (290J)5'Vj5dy+/ 0]V, (—(&g‘”) - 5(Va log\g\)g‘”) dy
B;—By Bs—DByp

. J/
-~ -~

=0 :,fBO...dy

1 ) 1 )
L1 / 6%n, (—(atg% Lo oe |g|>gaﬂ) dSdr
2 Jop.—o8, 2

J

~

== faBO“'dS

) 1
N / §'5(—n;g% — 2(9)) dS 4= / 62(—02) dS
0Bs—0Bg , 2 0Bs—0Bg

(. N J/
-~ -~
=0

= JypdS

s 1 )
- / / 0'60; (—5(% log [g])g"™ + (ng(”)> dydr
0 B

s 1
- [ [ (@) - 5(Fatolahg™ ) duar
0 B

1 /[° .
- = / / (8tg”)Vi5Vj6 dydT
2 0 JB



112

1 [° ) 1 )
w5 | [1rva (—(atg% - —<valog|g|>g°”) dydr
2 )y s 2
s ) 1 .
- [ [ (@) - 5(Tutosllia® ) duar
0 B
1 B 2 07 ]‘ o ° ]‘ 293
+ = 16°n;0; { (Org ])—l——(Valog\g\)g 1) dSdT + — |00,y dSdr
2 0 oB 0B 2
—/ / §'00,(—n;g% — 2(0yy)) deT—/ / 16'>(—2(8,y)) dSdr.
0 0B 0B

The computation for III is similar, albeit simpler:

I = — / (0:9")8'6 dy + / (Dyy)d'0dS
Bs—By . 0Bs—0Bg ,

=0 =0
+ / / (07g°)0'S dydr + / / (0:9")|0')? dydr
0 B 0 B
- / / (02)5'5 dSdr — / (07|02 dSdr.
0 0B 0 0B

Thus, by (4.21) and Gronwall’s inequality, we have a constant C5 depending on

low order derivatives of g and =, such that

(4.22) 16015y + 10() 1228y + 10(5)IIZ20m)

<05/0 16T 12y + 10D 22y + 10(7) 1220 AT

Next, consider

so for t € [0, s], we have §(7) = k(1) — k(s) and thus 6(0) = —k(s). Hence, (4.22)

gives

I5($)1[1 () + !\H(S)Hiz(g) +[10(5) 1122 o5)
/ I( )l sy + 100 L2y + 10(7) 1220 AT

§C5/ 2015z () + 10T T2y + 10D 22 0m) AT + 25C5[15() 75y
0
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implying

(1= 25C5)[15(s) Il () + 10(5) 122 () + 10(5) 122 0)

SC%/O 2||K(T)||12LIl(B) + HQ(T)H%Q(B) + ||‘9(T)||%2(BB) dr.

Choose s < ﬁ, then we see that @ = 0 for ¢ € [0,s]. Now, repeat the argument
with initial time ¢t = s, we know that 8 = 0 on [s, 2s]; iterating, we see that § = 0
for all t € [0, 7.

Therefore, we have established the existence and uniqueness of weak solution to

(4.9). O
Next, we shall prove that a similar result also holds for the equation on A.

4.2 Existence of Solution A

This section is largely parallel to the previous, except that the boundary condition
on A is simpler.

Let 8 € C*(B) be a solution satisfying

=0 on 0B
0,0 =¢ in B.

Let ¢ : B — R be a smooth function that vanishes on dB. Then

/Bt(Dh9)¢ dy

1
= [ an950) 6yt [ (Talog (V)0 dy
By

By

. 1
= [ a0 00dy [ 1PVVi6dy+ [ 5 (TaloghDh (V)0 dy
Bt Bt

By

Regrouping terms involving derivatives of 6, we obtain

(4.23)

/thcbdy
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= [ 020-h"¢dy

By

+ /B 0,0 - [(@hoo) + %(va log |h|)h%* — (vjhof')} ¢ dy + B 9,0 - (—2h") V;¢ dy
+ /Bt V,0 - [(@hoj) + %(Va log |h|)h0‘j] ody + /Bt V;0 - (—=h7) V¢ dy.
We define the bounded linear map @ : Hy(B) — (H}(B))"
(4.24) (®(6), ¢) := (—h"0,¢).
As before, we compute the difference:
(2(0)",6) = (®(0"),¢) — (2(0h™)0', &) — ((9;h™)0, ¢)
Then by (4.23), we know that the weak equation is:

(4.25) (D(0)",0) + L(0,¢) = —(0,0) Vo € Hy(B),

where £(0, ¢) represents the weak formulation of the lower order derivatives on 0:

£a(6.0) = (8, (@) = SV gl + (7, ) 0
Ls(0,¢) = (0,0;h"¢)
£4(0,0) = (V,0, V)
£4(6,6) = (9,0, (=)~ J(Tatog ) ) o).
Let 0y := 60 and 6, := 6. We have as before
(4.26) C(61,0) = — {(BR%)0%, 6) + ((01)64, 0)
and

I = —(20,h)0)) — (,h")V 6,
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1 ‘
I = (afhoo + Eat((va log |h|)h%) — Vjathoﬂ) A

. 1 .
I = (afhoﬂ + 50 ((Valog |h])h‘”)) V..
Then the equation for 6, is:

(4.27)  (D(61)",0) + L(61,¢) +C(01,0) = — (Owq, ¢) + <I{, Vo) + (I + I3, 9) .
And for 6, := Qék), where k > 2, the equation is

+ (O, V) + (0F (I + 13), 6)

+ (k(57h")0;,_,, ¢) .

Assuming sufficient regularity on g, f,a,7, we shall prove that the equations

(4.25)-(4.28) have a unique solution.

Theorem 4.5. Let M be the integer in Proposition 4.1, and u, A have the reqularity
as described in Proposition 4.1. Then there is a time interval [0,T] with T > 0 in
which (4.25)-(4.28) have a unique solution for all k = 0,--- M. Moreover, denoting

the solution to the k-th order equation by 0y, then the following are true:
1. Compatibility: 0, = 0; for j =1,--- , M.

2. Energy estimate: let

M
Balolt) = /B (—g™)[6L + V0V 05 dy.
k=0 t

Then there is a polynomial P such that for all t € [0,T],

Er[0](t) < Ear[0](0) - (1 + tP(Eplu, A)(T)) - etP(GM["’A](T))) _
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Proof for Theorem 4.5. Again, the proof runs largely in parallel with Theorem 4.2,
so we will be brief on the computational details and focus on the parts that are
different.

Existence of approximate solutions. Let {e,} be an orthogonal basis of H}(B),

which is also an orthonormal basis of L*(B)% As before, we first construct the

approximate solutions. Let ®,, : H}(B) — (HJ(B))' be
(Pi(0),¢) = (=h™0, Png) .
and the projected quantities be
By = =2(0ch")05 1y = (0:07)V i, (1)
Iy, = (8t2h00 + §at((va log |h|)R%™) — V]BthO]) 967(m)
I3 = (8,?h0j + %at ((Valog |h|)h°‘j)) V00, (m)
We look for an approximate solution of the form
Or.(my(t, ) : Ze oy), 0, €CHOT) V=1, ,m.

The m-th approximate weak equation is
(4.29)
(P (Orm))”s €0) + L(Or,(my» €2) + kC Ok (1m), €2)
=— (07 q,e0) + (05 ' ., Vieo) + (0 (Tagm + L3m), €0) + (K(OFh™)0} 1 (- €0) -
As before, (4.29) is a system of linear second order ODE in @y, := (N )

where 6,,, : [0,T] — R™, because the matrix coefficient in front of the second order

derivative is

(4.30) A(t)ig = (—h (t)es, e5) ,

2For instance, we may let e; be the eigenfunctions of the Laplacian A with zero Dirichlet bound-
ary condition
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which is symmetric positive-definite with a bounded inverse for all ¢ € [0, T].

The approximate solutions are compatible. As before, 9;71’(@ = O, (m) in L*(B).

Uniform bound on 6y, ). We multiply (4.29) by (6} ,,,(¢)) and sum with respect

to ¢ to obtain the estimate:

1d

—— / (—h*) G5 oy |+ PINiOk m) V 0k, () Ay
2dt |/,

1 1
- /B(k + 5)(ath00)|0;c,(m)|2 dy +/ ((3th00) - §(Va log |h|)h0a) |0y |* dy

B

1 ~
9 /B(ath” IV ik (m) V Ok (m) dy

A 1 i\ o
+ / Vjek,(m) (_(&fhm) - §(Vo¢ log |h|)haj) ek,(m) dy
B

=— /B (0Fq + 0F " (yym + Lsm) — kTR0 1 (1)) Ohc oy Ay — A(af_lff)vj%,(m) dy.

Let
Enlt) = [ (=H) G + 179V s o
then
(4.31) En(t) gEm(o)+/0t Ep(7) - (Z HVETy)gHLw(m) dr
r=0,1

t
- / Bun(r) - (N02A™ | oe1x8) - 10 r o 3s, ) 7

t
+ / / (=0Fq + 07 (Logn + I3.m) ) O (m) dydT
0 B

-

J/

=1
t
[ ] @1V dyir
0 B

~
=11

As usual, the first term can be controlled by the assumption on u, A. The control on

J/

the second term follows from the regularity of ;1 (,,) by induction, and assumptions
on u, A. We seek to control the remaining two terms:

° fot Okq - 92;,(m) dydr. Recall that ¢ = O,A, so by Lemma 2.10, d%h consists of

terms of the forms 4 — 6 in the statement of Lemma 2.10. The highest order
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terms are VOFg and V@9F'A. In fact, we won’t be able to bound these two
terms in L?(I, L*(B)), but we can analyze the product when they are paired
with 0}, (m)- The analysis here is similar to the one we did when closing the a

priori estimate on A. We start with VoFh.

Recall that there is some function F*? with

sup [|F*|| oo,y + [[VF || 1o (s, < 00,
0<t<T

such that

VOih - O oy = (FVa V50, ) - O ).

We integrate by part to transfer one V onto 0y, (,,) and one time derivative onto
u:
t
/ / (FN o V307 ) - 0, (1) dydT
0 JB
t
=— / / (V0 ™ u) (Vb (o)) F° dydr
0o JB
t
[ [0 0 (TuF 8 i
0o JB
== / (Vﬁaf_lu)(vaek,(m))Faﬂ dy + / (V,Baf_lu)(vaek,(m))Faﬁ dy
Bt BO
t
i / /B<F°“ﬁvﬁé‘fu + 0PV 508 ) (Vb)) dyddr
t
- /0 /B (V30r ' w) (Va FP)0;, () dydr.

Then, we can write

t
_ N 1 _
[ (7500080 | < 518 )+ 5190l

and choose a small § such that §||V Oy, ) ||%2(B) can be absorbed into the E,,(t)
on the left hand side of (4.31). The rest can be estimated using Cauchy-Schwarz

Inequality. The treatment of V®9F A is virtually the same, after replacing

u with A. Thus we have bounded fot I kg - sz(m) dydr.
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° f(f fB 8;“_1(]27771 + I3.) - 9;7(7”) dydr. Again, we will not be able to control
105 (Zom + Ism) | 22(1,12(3)) when k = M, and we use the integration by parts
trick that is similar to the previous bullet point, and almost identical to the
case of v in Theorem 4.2, to estimate this term. We omit the details. These

two estimates bound I.

e The treatment of II is almost identical to the analysis on III in the proof for

Theorem 4.2. We refrain from copying the same argument.

We have analyzed all terms in (4.31), so by Gronwall’s inequality, we have proved

that there is some C4 such that

(4.32) sup |0, oy 1220 + 10k.0m) 13 (5,) < Ca < 00
te[0,7)

for all m > 1. Here C, depends on €[u, A](T) only, and does not depend on m.
The part when we pass to the limit as m — oo, as well as uniqueness and
compatibility, follows from the same argument as in Theorem 4.2. We omit the

details. O

4.3 Conclusion on the Linearized Equations

In summary, in this chapter, we proved an a priori estimate for the system of
nonlinear equations on the bounded domain B. We then considered the original sys-
tem of equations on a linear level, and used Galerkin approximation to find solutions
to this linear system of equations.

Our next and final chapter will be devoted to showing the existence and unique-
ness of a solution to the system of equations (1.42)-(1.48) on a bounded domain.
The strategy is to make use of the linear equations, as well as the associated energy

estimates on the linear level, to obtain the solution iteratively.



CHAPTER V

Solution on a Bounded Domain

Equipped with the linear theory, we are now ready to obtain a solution to the
actual nonlinear equation by iteratively solving the linear equations. This section is
adapted from the iterative scheme in [10]. We provide more details in showing the
convergence of the iterative scheme, and moreover state and prove the uniqueness

result.
5.1 Equation for «(™ A(™
We define the solutions u(™ and A™) inductively. To start with, we specify the

0-th iteration.

5.1.1 Definition for the Initial Iteration

We define the initial iteration as follows. Let X(©(0,-) : B — g be the La-
grangian coordinate at t = 0. We require that X is smooth. Recall that V5(0,x) is

the prescribed initial condition for the velocity, and V(0,z) is the first coordinate

of V4(0, ). For later time, define X(©(0,y) as

XO,y) = XO0,y) +t- Yol0

120
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Let ¢ be the pull-back metric accordingly. We can then define the initial iteration
of u and A as a polynomial function in ¢t. The definition is not unique, but the idea is
to define v(® and A so that they are smooth in ¢, and satisfy the initial condition.

One such choice could be:

DVVO)(O? X(0)<Oa y))
V' (0, X (0, y))

DY03)(0, X©(0,y))
V' (0, X(©(0,y))

O (t,) = (£ +1) - Vo(0, XO(0,5)) + £ -

AO(t, ) = (2 + 1) - (Dyod)(0, XO(0,)) + -

One can easily check that they satisfy the initial conditions, have the desired regu-

larity, and that A (¢,y) = 0 for y € OB.

5.1.2 The Iteration

Next, we define the further iterations of u and A in the natural way. So far, we
have taken an initial guess of the coefficients of the linear equation, and upon solving
this linear equation, we can use this solution to define the coefficients of the linear
equation in the next iteration.

Let m > 0. Assume u(™), A0 (£2)0m) X () g0m) B 4,(m) are given. We define

the known variables that appear in the weak formulation:

(m) _ 2((U(m))0)2

v a(m)

(2(0),0) = (—(g"™)*0, ¢) + (™0, ¢},

and replace all the variables in the definition of £,C, q, f, I f , I, I3, By with the known
functions «™, At (£2)m) - X () gm) Bm) 4p(m) - Our next goal is to prove that

these functions u(™, A are uniformly bounded for all m.
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5.2 Uniform Boundedness
In this section, we will show that (™ and A(™) are uniformly bounded in a norm
that we next specify. Define!
(5.1)

M
En[u, A)(?) ZOiuth 108 () 2y + 107w () + +107 w720
=720 k=0

M
+ > N A2y + 105 AT 5 ).
k=0

Proposition 5.1. Let M be the integer in Theorems 4.2 and 4.5. Then there is

some constant A < oo and T > 0 such that
(5.2) Ep[u™, A (T) < A ¥Ym=0,1,--- .

Proof. Recall that by definition of the weak solutions, all ©™ and A™ agree at

t = 0. So we know that
Ea[u™, AT](0) = E, Vm >0

for some constant 0 < Ey < co. By Theorems 4.2 and 4.5, we know that there is an
integer r > 1 (such that when x is large, 2" > P(x) for the polynomials that appear)

such that
E[u™, A™(T) < E, <1 + TEp [ul™ D, A(T)" - eTEM[“(m)’A(m_I)](T)T) .

Denote a,, := Ep[u™, At](T). We claim that for T > 0 small, there is a constant
A such that «,,, < A for all m.

To prove this, let

fl@)=Ey- (1+Ta"-e"™").

'Here [u, A] means that u, A are arguments of the functional. It does not represent a commutator.
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In fact, we will prove that «,, converges to the smaller fixed point of f. It suffices

to show that f(x) is concave up and has two fixed points. We compute
() =™ rTa™? (rT?2™ + (3rT = T)a" +1r —1).

It is clear that f”(x) > 0 for all x > 0, so f is concave up indeed. When 7" — 0, we
see that the equation f(z) = x has at least one solution. The existence of the other
solution follows from concavity.

Since v, converges, we see that is is bounded for all m. O

Remark 12. Note that in order to prove uniform boundedness, the time of existence
T might be smaller than the time of existence in Theorems 4.2 and 4.5. This is due

to the nonlinear nature of our equation.

Next, we will show that the iteration converges. In fact, we will show that
u™ A is a Cauchy sequence in m under a norm which we will specify. The main
idea of the proof to use the triangular trick, which is similar to what we did for the

case of the unbounded domain.

5.3 Convergence

We prove that the sequence u™, A is a Cauchy sequence in the following norm.

We define the norm on the difference between two consecutive terms to be

(5.3)
em<t>:sup2( | ot ) pay - \af“<u<m“>—u<m>>\2ds)
o<r<t i= \JB, B,
+ | sup > / V1, OF (A — A™))|12 gy
Osr<tics /Br

(Z/ / akJrl (m+1) A(m))‘2 deT> )
0B

k<5
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One could easily see that e,,(t) is motivated from the energy £7°(¢) that appeared
in the a priori estimate; except that we are only taking the first 5 time derivatives
and do not utilize the full M time derivatives. We will prove convergence in this

lower regularity space.

Proposition 5.2. There is a constant C' such that
(5.4) D em(t) ST VEe[0,T).
m=0

Here the implicit constant only depends on eg.
Recall that e,, controls the difference between two consecutive iterations of u and
A, so in particular (5.4) show that u™ and A™ form a Cauchy sequence with norms
lulls, = Y 10Full ooy, sy + 108 ull ooy, r2my + 108 ull e oy, r20m))
k<5

1A llsy = D NOF Al Loy sy + 105 Al Looqo.ry.zmy + 108 Al 2o1.220m))
k<5

respectively.

Proof. Since M > 5, we know that the equations for v and A are in fact satisfied in

the strong sense. That is, if we denote

Fm) ::%((u(m))U)Q(w(m))g(g(m))aﬁaﬂ((z(m)y)
- %(g(m))aﬁaa(X(m))”Gg(A(m)) + 2(u™)09, (u™)09), (u™)”
G 2= (g™) 0 (X)) 9s((w™);)

= (g") 7 0a(X ™) 95 ((log G)' (A™))

H =4(g ) 05(u))n (s (9 (B5(X 7)), (509

+20,(u™)(log G)"(A"™)? + (u!™)"(log G) P (A™)?
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— 0,(u™)°(log G)' (AU™)? — (u™)°8,(X™)° (log G) 0, (A™),

then the equations for vt and A+ can be written as:

(5.5)
((ut™)0)282 (ulm D) — 2(g™)P (90 (B™)2)Dp (um D) = F™ on [0,T] x OB

Oy (ulm D) = GO in [0,7] x B
and
5.6 (A1) =0 on [0,T] x OB
5.6 :

D(h(m)(/\(mﬂ)) — g™ in [0,T] x B
And (5.5), (5.6) are satisfied in the strong sense.
The differences u™*+D —u ™ and A+ —A(™) then satisfy equations of a similarly

form. On OB, the difference (™Y — 4™ satisfies

(uf))207 (u™) — ™) 0™ g8 75 (D gy

=G = G ()~ () B

(m

«

_ (a<m>ng”> ge2 — alm =Vl gf’,ffl)) V u™
=G,
In B, the difference u™*+Y — (™ satisfies
Va (gfif)vﬁ(u(m“) - um))) =pm — pm= _y, ((g?m - gfﬁ_l))vﬂu(m))
)

It is evident that both equations have exactly the same terms as (5.5) on the left hand
side, and the terms on the right hand side depends on F(™ p(m=1 Gim) Gm-1)
Similarly, on 0B, the difference A1) — A(™) is identically zero, and in B, the

difference A™m*+1) — A(M) gatisfies

Dl (A= A 1 — 0 =, (1) =)
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=H.

Inspecting the formulae for F™ G™ H™) we see that they are all linear com-

binations of terms of the form

(VEL 1) (V2 )

where k; < 2, and ¢; € {u™ A (£2)m) X (M) g0m) pm) 9y(M1  Among these
terms, (22)(m), X ) gm) p(m) 45(m) are rational functions of u(™, A™ with bounded
derivatives. So using the triangular trick again, we may write £ G(™ Hm) a9
linear combinations of terms of the form

1 1 4 (m kp 1 (m ny .(m— ng | (m— r o(m
5 (V™) (Vinof™) - (V™) - (Vi D) - (V5,8™)

where P is a polynomial in u(™ A ¢(m=D A(m=1 guch that 1/P is bounded,
ki,ni, v < 5, ¢i,1b; € {u, A}, and 60 € {umFt) — ym) A+ A3 By
the uniform bound in Proposition 5.1, we know that + - (Vfly (my... (Vf’; )y
(Vﬁlyzbim_l)) - (Vig "Dy can be bounded in L* norm. Thus, appealing to the

energy estimates in Theorems 4.2 and 4.5, we know that there is some constant C'

such that
t
en(t) < C- / em—1(7) dT.
0

By induction, we see that

t1 to tm
en(t) gcm/ / / coltm) by - - - b
0 0 0

cmgm
— sup eo(7),
m:  o<r<t

IN

and thus

Z em(T) < e“T sup eo(7).

m—0 0<r<T
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The statement that u(™, A(™) form a Cauchy sequence in the ||-||, and || -||5, norms

respectively clearly follows. O

Corollary 5.3. Assume the same conditions as in Proposition 5.2. Then there is
some u, A in B, and By respectively, such that
'™ S u in B,

A(m) — A in BA.
Moreover, u, A have the same reqularity as the initial data.

Proof. The spaces
L>=([0,T], H'(B)), L=([0, T], L*(B)), L*([0,T], L*(9B)), L*([0, T], L*(0B))

are complete, so B, and B, are Banach spaces. Thus the limits exist and ||u||z, < oo,
A1z, < o

The regularity follows because upon passing to a subsequence, (™ and A
also has a weak limit with the same regularity, and since u(™ — u and A™ — A
strongly, the weak limit has to coincide with the strong limit. Thus the strong limit

u, A have the same regularity as their initial data. O]

5.4 Uniqueness of Solution

The last ingredient is the uniqueness of the solution, which we have shown to

exist.

Theorem 5.4. Assume that (u, A, X, w,%?) solve the systems (1.39)-(1.48) on some

time interval [0, T], such that Eylu, A|(T) < 0o. Then the solution is unique.

Proof. The uniqueness of the solution follows from exactly the same argument as in

Theorem 3.11, except we change the domain to D = B. O
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5.5 Conclusion

In this chapter, we adapted the iterative scheme in [10] to construct a solution to
(1.39)-(1.48) on the bounded domain, and furthermore addressed its regularity and

uniqueness. This proves Theorem 1.1 when the domain €2 is bounded.
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Appendices

A Commutators and Identities

Lemma A.1. We have
1. [0, flg = (0:f)g-
2. [Vj, flg = Je((9:)9) + Ve, fl0jg.
Proof. Both follow from direct computations. m

Lemma A.2. Assume f,g are defined on R3., and extended either oddly or evenly

to R3. Then J, is self-adjoint. That is,

| Gehgde= [ f0g)dn

Proof. For y € R3, write ¥ = (y1,¥2), so y = (¥, y3). We compute that

[ enade= [ ne st ds
| - / | e =) dys
i / / e =) ()t dyda
-/ / 1w =) f(9)g(x) dyda+
’ / | T ) (5 n)o(e) s
-/ / 1w = ) f(9)g(x) dyda+
- / | @ =5 ) 5@ 0)) dd

In either case, since 7 is radial, the equation is symmetric in x and y, so the result

follows. O]
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Lemma A.3. Let f,g € S(R®). Then

1 1
[Lorvistn=5 [ waras-3 [ Vo
R3 OR%. R}

+ +

Proof. We have

/RS ngjfdyZ/aRg njngdS_/Rg(ng)dey_/Rg)(vjf)gfdy-

+ +

Rearranging the terms gives the desired result. O]

B Common Estimates

We list here the some common estimates that were used in the proof. In this

section, let € > 0 be a constant, and J. be the frequency cut-oft:

—_

Jf(€) = F(&)  Xigl<1se-

Let 7(£) = Xj¢|<1/e, then we may also write

1t = fento) = [ e nsoay= [ o (T7Y) sy

3 €

Lemma B.1. Let f,g € S(R3). Then
L e, Flgll pz@ay S 1 llzoe sy gl 22 es)-
2. e, FIVYl r2may S N 12 9]l L2re)-
3. Ve, flallr2@ey S 1F 112 @) ll9ll 22re)-
Proof. We prove each one of the estimates.
1. This is clear since ||Jc||z(z2,22) < 1.

2. We have

—

o fIVa(€) = / F(6 = 1) (eerje — Xinjeaye) 2ming(n) diy.
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Thus, by Cauchy-Schwarz,
— ‘ 2

/£ o fve©)| de

5/ (/ |§(77)|2d77) </ 1£(& = n) (Xer<1/e = Xinl<1/e) 77|2d77) 3

—IIQIILz-//IfS D101 (Xel<1se = Xinj<1se)” di dé

B1) =l [ [ (1Fe-mPa+ie—n))

J/

When |n| < 1/e, K(&,n) # 0 iff |£| > 1/¢, in which case

1

|K(§777)|5T|a4-

When || > 1/e, K(&,n) # 0 iff |£] < 1/e, in which case

Thus,

[ (e =nra i —an') K(emande
[ (sl - g s
# [ (Uit ) s e
=([mgee) [ (Fra ) o
() [(era i) a

S lrs-

Substituting back into equation (B.1), we obtain the desired result.
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3. We have

ViJe, flg = [J, V flg + [Je, fIV g,

so the estimate follows from the previous two and Sobolev embedding.
O

Lemma B.2. Let 0 < k <m and f € H™. Then we have the following interpolation

relation

Al S IS AN ™
Proof. By Holder’s inequality (with p = m/k,q = m/(m — k)),

Jasip™if@rde = [ @+ lehH AP miEpm g
k/m 1-m/k
< ( Ja+ |§|>2m|f<5>|2ds) - ( / |f(§)|2d€) |

This is the desired estimate. L]
Lemma B.3. Suppose f € H* and m < k. Then

10T fllam S €l

Proof. We have

/|g (LIPS de = (11 e F(6)]? de

1
g[>17e (1+[€])*m
sen [ arltiferds
€1>1/€
which gives the desired estimate. O
Lemma B.4. Let F € C* and u € H* N L>. Then

IE(w)lls S 1+ lullmx,

where the constant only depends on ||F?|« for 7 =0,--- k.
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Proof. This is a standard result proven in, say, [18]. O

Lemma B.5. [Gronwall’s Inequality] Let E(t) be a non-negative function on [0, T]
satisfying

E(T) < Cy+ O, /tE(T) dr vVt e[0,T]
0
for some constants Cy,Cy > 0. Then
(B.2) E(t) < Cy- (1+ Cote™) vt e[0,T).
In particular, if C; =0, then
E(t)=0 Vvtel0,T).
Proof. This is a standard result proven in, for instance, [3]. O

Lemma B.6 (Trace Theorem). Let 2 C R™ be a bounded domain and assume that

0 is C'. Then there exists a bounded linear operator
T:H(Q) — L*(09)
such that
1. Tf = floq is f € H(Q)NC(Q), and
2. for each f € H'(Q),

| T fllz200) S 11 fll @)

Proof. This is a standard result proven in, for instance, [3]. O
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