
Contribution of Crevasse Advection and Mixed
Mode Calving to Glacier Dynamics

by
Brandon Berg

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Physics)

in The University of Michigan
2021

Doctoral Committee:
Associate Professor Jeremy Bassis, Co-Chair
Associate Professor Robert Deegan, Co-Chair
Professor Charles Doering (Deceased)
Associate Professor Gretchen Keppel-Aleks
Associate Professor Kevin Wood



Brandon Berg
brberg@umich.edu

ORCID iD: 0000-0002-2760-6112

© Brandon Berg 2021



To all my teachers, past, present, and future, who communicate the beauty of the
universe.

ii



ACKNOWLEDGEMENTS

First and foremost, I would like to thank my wife, Kate, for her unwavering,

unconditional, and unbelievable support during these past six years. None of this

is possible without you. Thank you to my parents Rich and Jo-Ann for your love

and support through all that I do and for encouraging me to be thoughtful, curious,

and kind. To my brother Erik for being an inspiration to me from a young age and

expecting the highest levels of achievement. And to my most influential teacher,

Mark Bautista, without whom I may never have studied physics in the first place.

Thank you to my advisor, Jeremy, for being a fantastic mentor and advisor. I

have learned so much from you over the past few years, arriving confused from the

Physics department and leaving slightly less confused (but significantly happier)

as a glaciologist. You consistently remind me why all of your students and mentees

(myself included) have countless positive things to say. You are an extremely talented

scientist and more importantly, a kind and humble person.

This dissertation would not be possible without the support of my committee:

my co-chair Robert Deegan, Gretchen Keppel-Aleks, Kevin Wood, and especially

Charles Doering, may he rest in peace. I also owe a great deal to my fellow vintage

glaciology group members (current and emeritus): Yue Ma, Lizz Ultee, Morgan

Whitcomb, Ray Watkins, Sam Kachuck, and Mac Cathles. I don’t take lightly your

emotional support, great advice, and putting up with my incessant sarcasm.

As I prepare for life after grad school, I am deeply grateful to Washtenaw Com-

iii



munity College, Danette Bull, Robert Hagood, and Suzanne Albach for giving me

the opportunity to find my passion for teaching. Thank you to Lauren Woolsey, Bob

Cebelak, Tari Mattox, and all others at Grand Rapids Community College for your

kindness as I finish this dissertation and I look forward to working with you soon.

Lastly, to Stephen DiIorio, Michael Viray, Callum Jones, Rachel Hyneman, Steve

Novakov, and everyone else who has made this journey with me. I wish you all the

best of luck and I will always treasure all the memories we’ve made together in our

little corner of the universe.

iv



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Ice as a solid and a fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Modeling ice at different scales . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Glacier flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Glacier calving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Existing parameterizations of calving . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Our mixed mode full Stokes calving model . . . . . . . . . . . . . . . . . . . 10
1.6 Numerical implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.6.1 The finite element method . . . . . . . . . . . . . . . . . . . . . . . 11
1.6.2 FEniCS implementation . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6.3 Meshing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.6.4 Advection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

II. Time Step Dependence (and Fixes) in Stokes Simulations of Calving Ice
Shelves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Glacier Stress Balance . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 Numerical Stabilization of Buoyant Uplift . . . . . . . . . . . . . . 19

2.3 Calving-Based Convergence Test . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Proposed Solution - Reintroduce Acceleration Term into Stress Balance . . . 22
2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

III. Impact of Tensile Crevasse Advection and Shear Localization on Glacier
Calving Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

v



3.2.1 Incompressible viscous flow . . . . . . . . . . . . . . . . . . . . . . 29
3.2.2 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.3 Crevasse penetration and calving model . . . . . . . . . . . . . . . 31

3.3 Model Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.1 Flow solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.2 Boundary forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.3 Tensile crevasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.4 Initial conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.5 Meshing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Suite of Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.1 Ice temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.2 Sliding coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.3 Bed slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5.1 Effect of crevasse advection on calving . . . . . . . . . . . . . . . . 41
3.5.2 Effect of shear localization . . . . . . . . . . . . . . . . . . . . . . . 44

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

IV. Collapse in Mixed Mode Calving Model Highly Sensitive to Shear Strength 49

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1 Tensile failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.2 General Coulomb failure . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.3 Coulomb failure with zero internal friction . . . . . . . . . . . . . . 54
4.2.4 Submarine melt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Model Implementation and Tests . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3.1 Model geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.2 Role of tensile and shear strength in determining behavior . . . . . 60

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.1 Sharp thresholds in shear strength predict retreat . . . . . . . . . . 61
4.4.2 Submarine melt weakens ice to catastrophic retreat . . . . . . . . . 64
4.4.3 Pro-glacial sill stabilizes advance but not retreat . . . . . . . . . . 65

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

V. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

vi



LIST OF FIGURES

Figure

1.1 Illustration of basis functions near the m-th node in one dimension for first order
Continuous Galerkin (a) and first order Discontinuous Galerkin (b) finite element
spaces. Dashed colored lines indicate different first order polynomial basis functions
and colored dots indicate nodal values of polynomials. The CG space has continuous
values across nodes while the DG space is discontinuous. . . . . . . . . . . . . . . . 14

2.1 A diagram showing the boundary conditions of an idealized floating ice shelf. The
ice-ocean interface is subject to two normal stresses - the depth dependent water
pressure and the numerical damping force for stabilization to hydrostatic equilib-
rium. The dashed red line illustrates an iceberg that breaks off from the top of the
calving front (exaggerated), reducing the freeboard and instantaneously perturbing
the ice shelf from hydrostatic equilibrium. . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 L2 norm of (a) vertical velocity, (b) effective strain rate, (c)maximum shear stress,
and (d) greatest principal stress immediately after the emulated calving event. The
norm is calculated based on cell-averaged values. Solutions after a single time step
are shown for sea-spring damping and sea-spring with Navier Stokes (NS) for time
step size ranging from 1 second to 30 years. The sea-spring with Navier Stokes
term gives physical solutions for all time steps but still shows variability with time
step consistent with the evolution of the system. . . . . . . . . . . . . . . . . . . . 20

2.3 Maximum (a) maximum shear stress and (b) greatest principal stress immediately
after the emulated calving event. The maximum is calculated based on cell-averaged
values. Solutions after a single time step are shown for sea-spring damping and sea-
spring with Navier Stokes (NS) for time step size ranging from 1 second to 30 years.
Without corrections, maximum stress is overestimated in the Stokes model, which
could lead to overestimation of glacier retreat due to calving. . . . . . . . . . . . . 23

3.1 An illustration of the different processes in the calving model. Incompressible flow
with indicated boundary conditions determines the viscous time evolution of the
glacier. Based on the Nye zero stress criterion, tensile crevasses form and advect
with the ice. A calving event occurs when surface and basal crevasses meet. . . . . 29

3.2 Snapshot of floating ice tongue with with purple showing crevassed ice and verti-
cal calving indicated by a dashed white line. Model results shown without tensile
crevasse advection (a) and with tensile crevasse advection (b). Slippery bed pa-
rameters as given in Table 3.1. Crevasses moving downstream from the grounding
line lead to a calving event if advection is included. After a calving event occurs,
all downstream ice from the calving location is removed and is no longer present in
the model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

vii



3.3 Glacier length change over time relative to initial grounding line position without
advection (a-d) and with advection (e-f) (omitting shear localization) for baseline
parameters (a,e), slippery bed (b,f), warm ice (c,g), and both slippery bed and
warm ice (d,h). Grounding line is plotted only when the glacier terminus is floating.
The inclusion of crevasse advection causes ice tongue disintegration for three of the
parameter sets. The effect of advection on terminus position is most pronounced
for warmer ice, where we observe retreat and then stabilization of the calving front
for approximately a decade before re-advance. . . . . . . . . . . . . . . . . . . . . . 34

3.4 Glacier evolving in time without advection (a-c) and with advection (d-f). Warm
ice parameters as given in Table 3.1. Without advection, the ice tongue grows and
advances over time. Advection increases calving, leading to ice tongue disintegra-
tion followed by stabilization of calving front position for approximately a decade.
At the end of simulation, the grounded calving cliff has started to re-advance. . . . 35

3.5 Glacier crevasses (a) and Nye stress (b) after ice tongue collapse, 2 years after start
of simulation. Warm ice parameters as given in Table 1. The contour of zero Nye
stress is indicated by a dashed black line, indicating regions of newly crevassed
ice. Current Nye stress is insufficient for basal crevasse formation at the base of
the calving front. However, basal crevasses developed when the glacier had a ice
tongue are present and cause further calving. . . . . . . . . . . . . . . . . . . . . . 36

3.6 Glacier length change over time relative to initial grounding line position without
advection (a) and with advection (b) (omitting shear localization) for a constant
prograde bed with a Gaussian bump 250 m ahead of the glacier starting position.
Brown dashed line indicates location of the sill. Baseline parameters as given in
Table 3.1. Grounding line is plotted only when the glacier terminus is floating. Both
tests have a transient period characterized by large calving events before settling
into steady behavior after approximately 30 years. With advection, the sill strongly
inhibits glacier advance, leading to a stable calving cliff. Without advection, an ice
tongue forms and periodically calves, giving a stable grounding line at the sill. . . . 37

3.7 Maximum shear stress during manual shear localization test using a shear strength
of 130 kPa without advection (a-c) and with advection (d-f). The contour of 130
kPa maximum shear stress is indicated by a dashed black line. Baseline parameters
as given in Table 3.1. In both cases, further retreat due to tensile failure after a
single shear calving event leads to an ice cliff that would calve again under high
shear stress. With advection, the calving front retreats slightly further, exposing a
higher cliff with larger shear stresses. . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 General calving failure envelope with tensile strength of T0, shear strength of S0,
and zero internal friction. Shading and labels indicate regions of tensile failure,
shear localization, and no failure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Failure strengths as a function of starter flaw size for a constant critical stress
intensity factor. Dashed vertical lines indicate starter flaw sizes used to select the
approximate failure strengths in this study. Chosen starter flaw sizes are 0.05 m,
0.2 m, and 0.8 m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 (a) Time evolution of calving front position for tests with 125 kPa tensile strength
and no submarine melt. Results shown for tests with different shear strengths of
100 kPa, 225 kPa, and 450 kPa. The 100 kPa shear strength test rapidly collapses,
225 kPa has a rapid 600 m initial retreat follow by steady advance, and 450 kPa
advances without any significant calving. This shows a high sensitivity to strength
strength, with lower shear strengths predicting rapid collapse. (b) Time evolution
of calving front position for tests with 450 kPa shear strength and no submarine
melt. Results shown for tests with different tensile strengths of 0 kPa, 30 kPa, 60
kPa, and 125 kPa. Although the 30 kPa tensile strength test has a rapid 1 km
initial retreat, it quickly readvances without further calving. Over 10 years, lower
tensile strength predicts a lower average calving front advance rate, with negligible
difference between 60 kPa and 125 kPa. . . . . . . . . . . . . . . . . . . . . . . . . 61

viii



4.4 Average calving front advance rate over 10 years with varying tensile strengths and
shear strengths for prograde bed without submarine melt. Higher tensile strengths
cause higher advance rates and shear strengths below approximately 225 kPa cause
rapid collapse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5 Time evolution over three time steps on constant prograde bed with submarine
melt, with 225 kPa shear strength and 30 kPa tensile strength. Purple indicates
areas with advected tensile crevasses. (a) Small initial calving events form a short
ice tongue. (b) Advected crevasses at the base of the glacier contribute to a second
calving event extending the ice tongue. Tensile surface crevasses deepen upstream
in response to adjusting stresses. (c) Advected tensile crevasses upstream cause an-
other calving event with a small contribution from shear localization. This process
continues leading to complete glacier collapse. . . . . . . . . . . . . . . . . . . . . . 63

4.6 Average calving front advance rate over 10 years with varying tensile strengths
and shear strengths for prograde bed with submarine melt. Calving behavior is
less sensitive to varying the tensile strength, depending strongly on shear yield
strength. Shear strengths greater than 225 kPa with a tensile strength greater
than 60 kPa prevent catastrophic collapse through high material strength. . . . . . 64

4.7 Average calving front advance rate over 10 years with varying tensile strengths and
shear strengths for prograde bed with bump and submarine melt. Varying the
tensile strength when shear strength is greater than 225 kPa changes advance rate.
Shear strengths less than 225 kPa result in rapid retreat. This behavior is similar
the test with a constant prograde bed, indicating that catastrophic collapse is not
sensitive to a pro-glacial sill. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

ix



LIST OF TABLES

Table

3.1 Set of parameters used for model tests. . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1 List of constant parameters used in model tests. . . . . . . . . . . . . . . . . . . . . 58

x



ABSTRACT

Modeling of the climate system including, but not limited to, atmospheric dy-

namics, ocean dynamics, and ice dynamics, is one of the crucial scientific problems

of the 21st century. This work focuses on modeling of iceberg calving, the process by

which high stresses within ice cause fractures and eventual detachment of icebergs

from glaciers. Iceberg calving causes approximately half of mass loss of the world’s

glaciers, but remains poorly understood and implemented in climate models. Exist-

ing model implementations of calving exist at a wide range of spatial and temporal

scales, ranging from models that seek to resolve crevasse propagation on the scale of

seconds or minutes to broad parameterizations of calving implemented in ice sheet

scale climate models. In this work, we seek to develop an intermediate model that

can run for year to decade timescales and determines calving based on the internal

stresses within the ice. We first focus on crevasse advection, the memory of previ-

ously formed crevasses within the ice and their impact on calving behavior. Second,

we implement the possibility for mixed mode calving, where ice can fail either via

high tensile stresses, high shear stresses, or a combination of the two. Lastly, we

include submarine melt to see the combined effect of melt and mixed mode calving

on glacier stability. This model is developed using the highly flexible Python finite

element library FEniCS and LEoPart, a particle tracking library developed for use

with FEniCS. Our novel use of particles to track previously crevassed ice provides

a computationally efficient method to track glacier parameters that does not diffuse

xi



over time. In initial model development, we identified a key numerical consideration

related to the buoyant boundary condition on ice that can create unphysical results

if not careful managed in a calving model. Once this issue was documented and

addressed through a simple addition to the glacier momentum balance, including

crevasse advection in the model, which should increase calving rates, reduces overall

rate of glacier advance but is incapable of causing retreat in most cases. This indi-

cates that other mass loss mechanisms, such as shear calving and submarine melt,

are crucial to mass balance and should be included in future models whenever pos-

sible. When mixed-mode calving is included, we find that glacier behavior is highly

unstable with regards to the shear strength of ice. Sharp transitions exists at shear

strengths where the ice transitions from slow advance or retreat to rapid, catas-

trophic collapse. Including submarine melt causes further steady mass loss, but does

not significantly alter the shear strength threshold necessary for rapid collapse. This

shows that if models seek to model potential catastrophic glacier collapse, which is a

point of current scientific contention, mixed mode failure including shear localization

should be a key focus of modeling efforts.

xii



CHAPTER I

Introduction

1.1 Motivation

Human-caused global climate change, caused primarily by the increase in carbon

dioxide emissions from the accelerated burning of fossil fuels, is one of the greatest

challenges faced by humanity in the upcoming century. According to Pörtner and

others (2019), under the “worst-case” Representative Concentration Pathway (RCP)

8.5 scenario which assumes fossil fuel emissions continues to rise over the next next

century, average global temperature is expected to rise approximately 4 degrees Cel-

sius. The conservative RCP 2.6 scenario which requires zero carbon dioxide emissions

by 2100 would result in a temperature increase of 1 degree Celsius.

These rising temperatures can cause ice, located primarily near the poles in ice

sheets, to melt and raise global sea level. Two major ice sheets, massive regions of

ice that cover large portions of the Earth’s surface, exist in the world today. The

Greenland ice sheet is the smaller of the two, and represents 6 meters of sea level rise

should it completely disintegrate. The Antarctic ice sheet is significantly larger and

holds enough ice to rise the world’s oceans by 60 meters. Glaciers are the “flowing”

portions of these ice sheets that drain the ice from the center of the ice sheets into

the surrounding oceans.
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Although sea-level rise is nonuniform due to ocean circulation, gravitational changes

from mass redistribution, and vertical rebound by the Earth’s crust and mantle, av-

erage sea-level rise over the next 100 years in the conservative Intergovernmental

Panel on Climate Change (IPCC) RCP 2.5 scenario is modeled to be approximately

half a meter (Pörtner and others, 2019). It is expected that even a sea-level rise

under 1 meter could have a variety of negative effects upon the world’s population,

including more frequent extreme weather events (Zanocco and others, 2018; Bellprat

and others, 2019), damaging agricultural production (Moore and others, 2017), in-

creasing the spread of infectious diseases (Lafferty, 2009; Altizer and others, 2013),

and displacing coastal populations (Hauer and others, 2016; Chen and Mueller, 2018;

Barnard and others, 2019). Many effects are most likely to affect regions of the de-

veloping world, where resources to mitigate risk to sea level rise may be limited

(Dasgupta and others, 2009).

While even conservative estimates could be devastating for many communities, the

uncertainty in this prediction is extremely high (Pörtner and others, 2019). Particu-

larly on the lower end of estimated sea level rise values, high uncertainties represent a

large difference in necessary adaptation on the local scale. Plans for local adaptation

are typically made on yearly or decadal timescales and plan for more fine-grained

changes in predictions (Barnett and others, 2014; Haasnoot and others, 2020). Thus,

reducing the uncertainty of sea level rise predictions over decade to century timescales

is crucial for informing efforts to mitigation damage to communities at risk.

When modeling future sea level rise, approximately 50% of the mass lost from the

Greenland and Antarctic ice sheets is due to iceberg calving (Depoorter and others,

2013; Khan and others, 2015). Iceberg calving is the process by which high internal

stress causes brittle fractures in ice, causing icebergs to detach and discharge into the
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ocean. Because iceberg calving is poorly understood and there is no widely accepted

model on the best way to model calving, this process accounts for an extremely

large source of uncertainty in sea level rise projections (Stocker and others, 2013;

Pörtner and others, 2019; Pattyn and Morlighem, 2020). Better understanding of

this process is crucial for improving overall projections of sea level rises in decade

to century timescales. The focus of this work is to model the physical processes

underlying the calving process to better inform future large scale climate models.

1.2 Ice as a solid and a fluid

Ice is a fascinating material that, in modeling ice dynamics on the glacier or ice

sheet scale, may be thought of both as a brittle solid susceptible to rapid fracture

or as a non-Newtonian fluid that deforms and flows slowly over time. At sufficiently

high stresses (in the hundreds of kilo-Pascals), observed routinely in glacier and

ice sheet environments, ice deforms primarily through the mechanism of dislocation

creep. In dislocation creep, defects in the ice cause a discontinuity in the crystal

structure (dislocations), and allow for the ice’s crystal bonds to break slowly over

time and form new dislocations, resulting in the slow creeping motion of ice (Duval

and others, 2010). Following the discussion of Cuffey and Paterson (2010) on crystal

deformation, the strain rate ε resulting from dislocation glide, a primary mechanism

of dislocation creep, can be written as:

(1.1) εc = b∗ρdvd,

where b∗ is a coefficient related to the lattice offset from a single dislocation, ρd is

the length of linear dislocation per unit volume, and vd is the dislocation velocity. ρd

and vd both vary with stress according to power laws, leading to the assertion that
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strain rate is linearly proportional to stress in the form of:

(1.2) ε ∝ τn,

where τ is the deviatoric stress tensor and n is the flow law exponent. The effective

viscosity of ice η can be defined by writing the relationship between strain rate as

stress as:

(1.3) τjk = 2ηεjk.

In this manner, ice can be modeled as a non-Newtonian fluid. Typically, this flow

rheology is represented through an empirical relationship known as Glen’s flow law,

which defines the viscosity of ice as:

(1.4) η = B

2 ε
1
n

−1
e ,

where B is a temperature dependent constant, εe is the effective strain rate, and n

is the Glen’s flow law exponent, typically set equal to 3 based on observations. The

effective strain rate is defined as a sum over the individual components of the strain

rate tensor ε by:

(1.5) εe =
√
εijεij/2.

This is combined with the momentum balance for fluid flow:

(1.6) ~∇ · σ + ρi~g = ρi
D~u

Dt
,

and the definition of the Cauchy stress tensor σ:

(1.7) σ = 2ηε− pI,
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to model ice as a fluid. ρi denotes the density of ice, ~g the acceleration due to

gravity, ~u the ice velocity, p the pressure, and I the identity tensor.

However, ice can also be thought of as a brittle solid. At sufficiently high stresses

and strain rates, the material cannot sufficiently dissipate stress through slow creep-

ing flow. In this case, brittle fracture occurs, ice separates to form gaps in the

material known as crevasses, and, if crevasses fully penetrate through the ice, ice

detaches from the glacier in a process known as calving. This calved glacier ice is

known as an iceberg.

Glacier ice can fail under multiple modes of failure. The simplest and most com-

monly modeled mode is tensile failure, where extensional stress within the glacier

overcomes internal cohesion and opens a crevasses. Calving also occurs due to shear

failure, where shear stress overcomes the material strength and internal friction and

causes a diagonal crack to open. The importance of shear failure is a hotly debated

topic in the context of a process known as the marine ice cliff instability, originally

proposed by Bassis and Walker (2012).

The marine ice cliff stability proposes that if glacier cliffs become too high, the

cliff will fail under shear failure, exposing a higher cliff with even larger shear stresses,

leading to runaway calving retreat. The unknown importance of including the marine

ice cliff instability remains a large source of uncertainty in mass loss projected by

climate models (Edwards and others, 2021; DeConto and others, 2021). Developing

new models that include multiple modes of failure, including shear failure, is crucial

to inform the importance of shear calving mechanisms to glacier mass loss.
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1.3 Modeling ice at different scales

When modeling the dynamics of glaciers and ice sheets, efforts are made on a range

of temporal and spatial scales to improve understanding of processes and eventually

make long-term predictions that can be used when considering social and political

action. In addition to glacier flow and calving, a number of additional factors oper-

ating on multiple timescales may be considered that affect overall glacier behavior.

Some of these factors include atmospheric temperatures, snowfall, and ocean temper-

atures. Depending on the complexity of the model, weather patterns, atmospheric

circulation, and ocean circulation may be considered as well. Each of these factors

come with their own set of difficulties, approximations, and computational costs. In

many cases it can be beneficial to forego complexity in favor of probing the effects

of a few isolated processes.

1.3.1 Glacier flow

Many classes of models with varying level of approximations exist to model the

flow of glaciers and ice sheets. Some examples include the shallow ice approximation,

the shallow shelf approximation, and full Stokes. This list spans from extremely

simplified idealistic models that neglect most components of stress to a complete

balance of all stresses acting on the glacier.

The shallow ice approximation assumes that the ratio of the thickness to length

of the ice mass is small, and neglects longitudinal and transverse stresses in addition

to vertical stress gradients. This effectively simplifies the problem to a balance

between gravitational driving stress and drag from the glacier bed. This type of

approximation has extremely low computational demand and works well for the slow

flowing portions of ice sheet interiors. However, it does not perform well for fast
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flowing regions or in regions that transition from grounded to floating ice.

The shallow shelf approximation is well suited to model ice shelves, which are

completely floating and not in contact with the bed. In this case, shear stress along

the bottom of the ice shelf is zero and longitudinal stresses dominate the solution.

This model is two-dimensional and does not resolve vertical gradients in velocity.

Although this performs well for ice shelves, like the shallow ice approximation, it

does not perform well in regions of transition from grounded to floating ice.

Higher order models exist that relax the approximations made in the shallow ice

and shallow shelf approximations. However, as approximations are relaxed, computa-

tional efficiency decreases and so models must be careful to balance model resolution

and accuracy with computational feasibility.

Naturally, more simplified models with many approximations are well-suited for

modeling large glaciers or ice sheets or domains over a long period of time where

computation time is a key concern. In contrast, full Stokes models, which retain

all terms in the stress balance, are well-suited for idealized models that seek to

understand the underlying fundamentals of glacier processes or for simulations of

individual glaciers over a limited range of time. In the our work, a full Stokes model

is used to better understanding the process of glacier calving.

1.3.2 Glacier calving

Calving happens on a time scale of seconds to minutes that is much faster than

the time it takes for a glacier to flow a significant distance. Models that run on

short timescales to resolve the propagation of individual crevasses within the ice are

highly computationally expensive and are not feasible to run for months or years

to encompass glacier flow as well (Tsai and Rice, 2010; Benn and others, 2017). In

contrast, parameterizations of calving for use in lower resolution models that can
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run over larger areas and longer time periods do not behave uniformly for different

environments and have high uncertainties (Choi and others, 2018). Development of

models at intermediate scales is helpful for bridging the gap in understanding and

identifying macroscopic properties that can be used to parametrize calving in future

models.

Thus, instead of relying on high resolution fracture models, it is beneficial to have

a model that resolves glacier flow on longer timescales while also being able to predict

calving behavior based on more macroscopic properties. The purpose of this work is

to develop a model that can predict both glacier flow and fracture with low enough

computational demand to run on year to decade timescales.

1.4 Existing parameterizations of calving

Although there is no agreed upon best parameterization of calving to include in

ice flow and fracture models, there have nonetheless been many attempts to develop

calving criteria for inclusion with flow models. For example, Choi and others (2018)

compared the predictions of four existing calving laws on Greenland glaciers: height

above buoyancy, eigencalving, crevasse depth, and von Mises tensile stress. The

implementations of these calving laws by Choi and others (2018) provide two different

types of predictions depending on the law being tested. Height above buoyancy and

crevasse depth determine the location of the calving front, while eigencalving and

von Mises tensile stress predict a calving rate that factors into calculation of the

ice terminus. These laws predict calving behavior through varied criteria on the

ice geometry, internal strain rate, and internal stress. However, predictions are not

necessarily consistent with one another and often need to be calibrated for particular

glaciers to match observations.
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Other studies have approached simulating calving through damage mechanics,

which allows for the advection of damaged ice through the domain as ice flows (Pra-

long and Funk, 2005; Borstad and others, 2012; Duddu and others, 2013; Krug and

others, 2014; Jiménez and others, 2017). This is of great benefit because observations

show that advection is crucial in predicting the state of crevasses within a glacier

(Mottram and Benn, 2009; Enderlin and Bartholomaus, 2020). However, these im-

plementations are also empirical, depend on parameterizations that are difficult to

constrain, and can be computationally demanding to implement for long times scales

spanning years to decades.

An existing simple, stress-based criterion to predict calving is known as the Nye

zero stress criterion. This criterion assumes that tensile crevasses extend to the depth

in the glacier where the extensional internal stress vanishes and becomes compressive.

This effectively assumes a zero yield strength of ice - it has no internal cohesion.

While real glacier ice certainly has a nonzero yield strength, laboratory experiments

on ice give values that are difficult to reconcile with observations and possible values

for yield strength are also difficult to constrain. Therefore, while simplistic, the Nye

zero stress criterion can provide a useful upper bound on calving rates. Furthermore,

studies that use the Nye zero stress criterion have been able to reproduce behavior

consistent with observations (Nick and others, 2010; Todd and Christoffersen, 2014),

demonstrating its usefulness as a calving criterion. Due to the simplicity of the Nye

zero stress criterion, we use this criterion as the starting point for model development

and seek to improve on it by adding advection of tensile crevasses and mixed mode

failure.
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1.5 Our mixed mode full Stokes calving model

Initially, full Stokes flow, the Nye’s zero stress criterion, and crevasse advection are

combined to leverage the simplicity of the Nye’s zero stress criterion and the insight

into ice history given by advection. Developing this model also provides valuable and

novel insight into careful numerical and computational considerations for modeling

calving. Our model is tested on a variety of ice temperatures, frictional properties

of the bed, and bed shapes.

Subsequently, we improve our model by adding shear failure and basal melt. By

adding shear failure, we allow for another mode of rapid brittle failure in the ice

that is caused by excessive compressive stress rather than extensional stress. This

is particularly important as it is the driving mechanism behind the controversial

marine ice cliff instability (Bassis and Walker, 2012). Basal melt, the melting of ice

at the bottom of the glacier through contact with warmer ocean water, is another

crucial mass loss mechanism for glaciers, which can also influence calving behavior

(Ma and Bassis, 2019). By adding these additional and interacting mechanisms for

further mass loss, our model captures a wider range of possible glacier behaviors.

1.6 Numerical implementation

Our glacier model is written in Python using the open-source finite element library

FEniCS (Alnæs and others, 2015) and leveraging the LEoPart library (Maljaars and

others, 2020) for advection of crevasse data. Developing the model using FEniCS

provides a high level of customization and control over development when compared

to existing full Stokes glacier models such as Elmer-Ice (Gagliardini and others, 2013).
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1.6.1 The finite element method

The finite element method is a numerical approach used to solve a range of scien-

tific problems, including those in glacier flow. In our model, we apply the standard

procedure for incompressible full Stokes flow with the re-addition of the acceleration

term of the momentum balance for numerical stability as will be discussed further

in Chapter II.

We start with the momentum balance given in Equation 1.6 along with the con-

dition for incompressibility written as:

(1.8) ~∇ · ~u = 0.

The set of differential equations written in their standard form in Equation 1.8 and

Equation 1.6 are referred to as the strong form of the equations.

To transform the strong form of the differential equations into their corresponding

weak form, which can be solved using the finite element method, we first write

Equation 1.6 as a function of the two unknown variables, the vector velocity ~u and

the scalar pressure p. Using Equation 1.7, Equation 1.6 can be rewritten as:

(1.9) ~∇ · (2η(~u)ε(~u))− ~∇p+ ρi~g = ρi
D~u

Dt
,

where η(~u) is the viscosity defined in Equation 1.4 and ε(~u) is the strain rate tensor

defined via:

(1.10) ε(~u) = 1
2

((
~∇~u
)

+
(
~∇~u
)T
)
.

To transform the strong form of Equation 1.9 into its corresponding weak form,

we multiply Equation 1.9 by a velocity test function ~v. We then perform a volume

integral (dV ) over the entire domain of interest Ω to find:

(1.11)
∫

Ω
~∇ · (2η(~u)ε(~u)) · ~v dV −

∫
Ω
~∇p · ~v dV +

∫
Ω
ρi~g · ~v dV =

∫
Ω
ρi
D~u

Dt
· ~v dV.
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Next, we rewrite the first two terms in Equation 1.11 using the product rule of

differentiation to:

(1.12)
∫

Ω
~∇ · (2η(~u)ε(~u)) · ~v dV = −

∫
Ω

(2η(~u)ε(~u)) · ~∇v dV +
∫

Ω
~∇ · (2η(~u)ε(~u) · ~v) ,

and:

(1.13) −
∫

Ω
~∇p · ~v dV =

∫
Ω
p~∇ · ~v dV −

∫
Ω

(
~∇ · (p~v)

)
dV.

The divergence theorem can be used to rewrite the final terms in Equation 1.12 and

Equation 1.13 as surface integrals (dS) on the domain boundary ∂Ω:

(1.14)
∫

Ω
~∇·(2η(~u)ε(~u)) ·~v dV = −

∫
Ω

(2η(~u)ε(~u)) · ~∇v dV +
∫

∂Ω
(2η(~u)ε(~u)) · n̂ ·~v dS

and:

(1.15) −
∫

Ω
~∇p · ~v dV =

∫
Ω
p~∇ · ~v dV −

∫
∂Ω
p~v · n̂ dS,

where n̂ is the unit normal vector.

Plugging in Equation 1.14 and Equation 1.15 into Equation 1.11 leads to the weak

form of the partial differential equation:

(1.16)

−
∫

Ω
(2η(~u)ε(~u)) · ~∇v dV +

∫
∂Ω

(2η(~u)ε(~u)) · n̂ · ~v dS +
∫

Ω
p~∇ · ~v dV −

∫
∂Ω
p~v · n̂ dS

+
∫

Ω
ρi~g · ~v dV =

∫
Ω
ρi
D~u

Dt
· ~v dV.

Similarly, the incompressibility condition expressed in Equation 1.8 is multiplied by

a pressure test function q and integrated over the entire domain to obtain:

(1.17)
∫

Ω
q~∇ · ~u dV = 0.

Equation 1.17 is added to equation 1.16 to complete the variational form. This

equation holds for any set of test functions ~v and q as long as the original functions
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~u and p satisfy the differential equation. While the original strong form of the

differential equation must be true at every point in the domain, the weak form only

holds in an integrated, averaged sense.

1.6.2 FEniCS implementation

The weak form of the problem expressed in Equation 1.16 and Equation 1.17 is

implemented and solved in the open-source finite element library FEniCS (Alnæs and

others, 2015). The user-friendly Python interface of FEniCS allows for specification

of the variational form for the differential equation to be solved, boundary conditions,

mesh, and function spaces. Once the problem is specified, DOLFIN, the C++ and

Python problem solving environment for differential equations in FEniCS, handles

the numerical solution.

The solution to Equation 1.16 can be approximated by a discrete solution using

the finite element method. First, the full domain Ω is divided into a number of N

sub-domains Ωi with M nodes each. Thus, an integral of any function g(~u, p) over

the entire domain Ω can be represented by a sum of integrals over each sub-domain

as:

(1.18)
∫

Ω
g(~u, p) dV ≈

N∑
i=1

(∫
Ωi

g(~u, p) dV
)
.

The solutions for velocity and pressure are also discretized over a sum of basis

functions. For example, the solution for pressure can be written as:

(1.19) p ≈
M∑

j=1
Ujφj,

where Uj are shape functions and φj are basis functions summed over the nodes in

each sub-domain Ωi. Basis functions must be carefully chosen to achieve stability

when solving a particular problem, and there are a variety of choices for basis func-

tions available and supported by FEniCS. In this work, we use either Continuous
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Figure 1.1: Illustration of basis functions near the m-th node in one dimension for first order Con-
tinuous Galerkin (a) and first order Discontinuous Galerkin (b) finite element spaces.
Dashed colored lines indicate different first order polynomial basis functions and colored
dots indicate nodal values of polynomials. The CG space has continuous values across
nodes while the DG space is discontinuous.

Galerkin or Discontinuous Galerkin finite elements, which correspond to continuous

or discontinuous piecewise polynomial basis functions, respectively.

Figure 1.1 shows the differences between a first order Continuous Galerkin (CG1)

and a first order Discontinuous Galerkin (DG1) finite element space. In a CG1

space, values are continuous across nodes, with linear basis functions contributing to

two neighboring cells. In contrast, for a DG1 space, values are discontinuous across

nodes, with different functions approximating each cell.

To ensure a stable discretization of the problem, Taylor-Hood elements are chosen

as the basis for the velocity and pressure solutions (Helanow and Ahlkrona, 2018).

Taylor-Hood elements consist of a second order Continuous Galerkin (CG2) space for

velocity and a CG1 space for pressure. Diagnostic stresses and strains are calculated
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from velocity and pressure solutions and projected to a DG1 space when necessary.

1.6.3 Meshing

An unstructured triangular mesh is generated using the open-source meshing soft-

ware Gmsh (Geuzaine and Remacle, 2009) and imported into FEniCS after being

saved as an .xml file. Using Gmsh allows for finer control over mesh resolution and

structure than the meshing tools available in FEniCS. For example, areas of different

mesh resolutions can be specified, increasing mesh resolution near regions of interest

to improve numerical accuracy and decreasing mesh resolution elsewhere to maintain

computational efficiency. Our mesh is Langrangian and corresponds to the domain

of the glacier. At each time step, the existing mesh is moved based on the velocity

solution to reflect the new glacier location. However, a new mesh is generated if the

model predicts a calving event, drastically changing the glacier (and mesh) domain,

or if the ratio of minimum to maximum finite element radii drops below 0.1 according

to the FEniCS MeshQuality class. The latter prevents numerical issues due to highly

distorted finite elements.

1.6.4 Advection

So that information on ice history can be retained after remeshing, ice properties

are advected using LEoPart (Maljaars and others, 2020), a particle tracking library

developed for integration with FEniCS. Using LeoPart, a set of particles is generated

and distributed randomly throughout the finite element mesh with a set number of

particles per element. Using LEoPart, data on velocity and stress can be interpolated

between the particles and the mesh while limiting numerical diffusion.
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CHAPTER II

Time Step Dependence (and Fixes) in Stokes Simulations of
Calving Ice Shelves

This chapter appears in its entirety in the following:

Berg B and Bassis J (2020) Brief communication: Time step dependence (and

fixes) in stokes simulations of calving ice shelves. The Cryosphere, 14, 3209–3213

(doi: 10.5194/tc-14-3209-2020)

2.1 Introduction

Stokes simulations are used in glaciology as a tool to determine the time evolution

of glaciers (e.g., Gagliardini and others, 2013). Increasingly, these models are also

used to examine the stress field within glaciers to better understand factors that

control crevasse formation and the onset of calving events (Ma and others, 2017;

Benn and others, 2017; Nick and others, 2010; Todd and Christoffersen, 2014; Ma and

Bassis, 2019). This type of model can provide insight into the relationship between

calving, climate forcing, and boundary conditions (e.g., Todd and Christoffersen,

2014; Ma and others, 2017; Ma and Bassis, 2019).

Here we show that a common method used to implement the ice-ocean boundary

condition in Stokes models can result in solutions that are unphysically sensitive to
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the choice of simulation time step size. This behavior manifests in applications that

allow for rapid changes in the model domain — a type of change associated with

models that allow for instantaneous calving events or crevasses (Todd and Christof-

fersen, 2014; Todd and others, 2018; Yu and others, 2017). The time step dependence

arises because for glaciers outside of hydrostatic equilibrium, the acceleration is not

small as assumed in Stokes flow. We illustrate both the issue and the solution using

an idealized ice shelf geometry (Fig. 2.1) where the upper portion has calved away,

emulating the “footloose” mechanism proposed by Wagner and others (2014) where

an aerial portion of the calving front first detaches.

2.2 Problem Description

2.2.1 Glacier Stress Balance

Denoting the velocity field in two dimensions by ~u(x, z, t) = (ux(x, z, t), uz(x, z, t))

and pressure by P (x, z, t), conservation of linear-momentum can be written in the

form:

(2.1) ~∇ · ~σ + ρi~g = ρi
D~u

Dt
,

where D/Dt denotes the material derivative. The Cauchy stress is defined in terms

of strain rate, effective viscosity, pressure, and the identity matrix ~I:

(2.2) ~σ = 2η~ε− P ~I,

with strain rate tensor ~ε given by:

(2.3) ~εij = 1
2

(
∂ui

∂rj

+ ∂uj

∂ri

)
.

Here ρi is the density of ice, ~g is the acceleration due to gravity, and η is the effective

viscosity of ice:

(2.4) η = B

2 ε
1
n

−1
e .
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Sea-Spring Damping Force

Figure 2.1: A diagram showing the boundary conditions of an idealized floating ice shelf. The ice-
ocean interface is subject to two normal stresses - the depth dependent water pressure
and the numerical damping force for stabilization to hydrostatic equilibrium. The
dashed red line illustrates an iceberg that breaks off from the top of the calving front
(exaggerated), reducing the freeboard and instantaneously perturbing the ice shelf from
hydrostatic equilibrium.

The effective viscosity is a function of the effective strain rate εe =
√
~εij~εij/2, a

temperature dependent constant B, and the flow-law exponent n = 3.

In the Stokes approximation, we drop the acceleration term on the right hand

side of Eq. (2.1), which is justified for most glaciological applications (e.g., Greve

and Blatter, 2009). However, as we shall show, this assumption is problematic for

applications where the ice rapidly departs from hydrostatic equilibrium.

2.2.2 Boundary Conditions

To illustrate an example where the Stokes flow problem rapidly departs from

hydrostatic equilibrium, we consider a two-dimensional floating ice shelf (Fig. 2.1).

Along the inflow portion of the domain (Γ1), shear traction vanishes and we specify

the normal component of the velocity ~u · n̂ = u1, where u1 is a constant and n̂ is the

normal vector along Γ1. At the ice-atmosphere boundary (Γ2) we assume the surface

is traction free. At the boundary between ice and ocean (Γ3) the shear traction

along the ice-interface vanishes and continuity of normal traction along the ice-ocean

interface can be written as σnn(x, t) = −ρwgb(x, t) where b(x, t) is the position of the
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ice-ocean interface.

Problems arise with this form if the glacier is not exactly in hydrostatic equilibrium

because buoyancy forces along the ice-ocean interface cannot be balanced by internal

stresses. In this case, there is no unique solution. In reality, of course, inertial effects

are not negligible and the ice will quickly re-adjust to hydrostatic equilibrium as a

consequence of buoyant uplift through the (nearly) inviscid ocean.

We can more appropriately specify the boundary condition for Stokes flow at the

ice-ocean interface by writing it in the form:

(2.5) σnn(x, t) = −ρwg [b(x, t) + ∆z(x, t)] on Γ3

where ∆z(x, t) is an a priori unknown isostatic adjustment that could potentially

include a rigid body translation and, for a freely floating iceberg, rigid body rotation.

Crucially, the rigid body motion must be determined as part of the solution to enable

the local and global force balance to close.

The additional isostatic adjustment term ∆z has a simple physical explanation: if

normal stress was exactly hydrostatic, σnn = ρigH where H is the ice shelf thickness.

Equation (2.5) can then be solved for ∆z to determine the position of the bottom

interface needed for the forces to balance, which is exactly what is done in the

shallow shelf approximation. The full Stokes approximation is more complex as

internal stresses also contribute to the normal stress at the ice-ocean interface, but

the location of the ice-ocean interface needs to be solved for as part of the solution

to the problem, which we examine next.

2.2.3 Numerical Stabilization of Buoyant Uplift

Different numerical methods use different techniques to estimate ∆z in Eq. (2.5).

For example, in Elmer/Ice, a popular package for modeling Stokes glacier flow, Du-
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Figure 2.2:
L2 norm of (a) vertical velocity, (b) effective strain rate, (c) maximum shear stress,
and (d) greatest principal stress immediately after the emulated calving event. The
norm is calculated based on cell-averaged values. Solutions after a single time step are
shown for sea-spring damping and sea-spring with Navier Stokes (NS) for time step
size ranging from 1 second to 30 years. The sea-spring with Navier Stokes term gives
physical solutions for all time steps but still shows variability with time step consistent
with the evolution of the system.

rand and others (2009) proposed an ingenious solution in which ∆z is estimated

based on a Taylor series of vertical position of the ice-ocean interface:

(2.6) ∆z = uz(x, t)∆t+O(∆t2).

This Taylor series transforms the isostatic adjustment into a time step-dependent

Newtonian velocity damping:

(2.7) σnn(x, t) = −ρwg [b(x, t) + uz(x, t)∆t] .

Here, the velocity uz can include rigid body translation. The coefficient of the damp-

ing force in this approximation is proportional to the time step size ∆t and vanishes

in the limit of small ∆t. We refer to the damping method given in Eq. (2.7) as the

“sea-spring” method based on the nomenclature used in Elmer/Ice documentation.
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We illustrate the time step dependence using a floating ice shelf as an example. In

this case, global force balance is not guaranteed, leading to a formally ill-posed prob-

lem. However, the lack of a solution (which results in an exceptionally large velocity

using the sea-spring stabilization) persists even when grounded ice is included in

the domain because the velocity (and strain rate) solution can become unphysically

sensitive to the position of the ice-ocean interface.

2.3 Calving-Based Convergence Test

For our test, we implement an idealized rectangular ice shelf of thickness 400 m

and length 10 km. This ice shelf is initialized to be in exact hydrostatic equilibrium.

We set the inflow velocity for the upstream boundary condition to 4 km a−1. These

thickness and velocity parameters are broadly consistent with observations for the

last 10 km of Pine Island ice shelf (Rignot and others, 2017, 2011; Mouginot and

others, 2012; Paden and others, 2010). The temperature dependent constant in

Glen’s flow law is chosen to be 1.4 × 108 Pa s 1
3 , the value given by Cuffey and

Paterson (2010) for −10◦C.

To emulate the occurrence of a calving event that would perturb the ice shelf from

hydrostatic equilibrium, a rectangular section of length 50 m and thickness 20 m is

removed from the upper calving front of the glacier (Fig. 2.1). This type of calving

behavior has been proposed as the trigger of a larger calving mechanism related to

buoyant stresses on the ice shelf (Wagner and others, 2014). The numerical effects we

document are not unique to this style of calving and this mechanism is only meant

to illustrate the numerical issues.

The problem is implemented in FEniCS (Alnæs and others, 2015), an open source

finite element solver with a Python interface that has been previously used for Stokes
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glacier modeling (Ma and others, 2017; Ma and Bassis, 2019). The problem is solved

using an Arbitrary Lagrangian-Eulerian formulation using mixed Taylor-Hood ele-

ments with quadratic elements for velocity and linear elements for pressure. The

open source finite element mesh generator Gmsh is used to generate a unstructured

mesh with uniform grid spacing of 10 m near the calved portion of the domain and

grid spacing of 40 m elsewhere.

In Fig. 2.2, we show the L2 norm of vertical velocity, effective strain rate, maxi-

mum shear stress, and greatest principle stress immediately after the calving event,

but computed using different values for ∆t in Eq. (2.7). This shows the sensitiv-

ity of the vertical velocity, effective strain rate, maximum shear stress, and greatest

principal stress to time step size when using the sea-spring boundary condition. In

addition to the behavior of the L2 norm, we also examine the maximum value of the

maximum shear stress and greatest principal stress (Fig. 2.3). Maximum values may

be a better predictor of the effect of time step dependence on the results of Stokes

calving models. Because calving models often assume that calving is likely if a stress

threshold is exceeded (Ma and others, 2017), outliers in stress are more important

than a stress averaged over the entire domain.

2.4 Proposed Solution - Reintroduce Acceleration Term into Stress Bal-
ance

The velocity solution is unphysical because the neglected acceleration term is not

actually small relative to the other terms in Eq. (2.1). This is because large velocities

associated with hydrostatic adjustment rapidly change on time scales that are short

compared to the internal deformation of the ice. It may be possible to separate a rigid

body translation and rotation that satisfies global force and torque balance from the
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Figure 2.3:
Maximum (a)maximum shear stress and (b) greatest principal stress immediately after
the emulated calving event. The maximum is calculated based on cell-averaged values.
Solutions after a single time step are shown for sea-spring damping and sea-spring with
Navier Stokes (NS) for time step size ranging from 1 second to 30 years. Without
corrections, maximum stress is overestimated in the Stokes model, which could lead to
overestimation of glacier retreat due to calving.

internal deformation, but this quickly becomes cumbersome and impractical when we

include the potential for ice to break: global force and torque balance would have to

be maintained on each intact portion of ice. Instead, we reintroduce the acceleration

term directly to the Stokes equation and show that this regularizes the solution for

small time steps. We use a simple first order backwards differentiation scheme in a

Lagrangian reference frame:

(2.8) D~ui

Dt
= ~ui − ~ui−1

∆t ,

where ~ui and ~ui−1 denote the velocity of Lagrangian fluid parcels at the current

time step and the velocity at the previous time step, respectively. In the example
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considered here, the fixed horizontal velocity at the upstream boundary does not

permit rigid body rotation and Eq. (2.8) remains a valid approximation even in

a Eulerian coordinate system. As an initial condition on velocity, we assume a

uniform velocity field of 4 km a−1 (equal to the inflow velocity) in the horizontal

direction and zero in the vertical direction. The choice of zero initial velocity in the

vertical direction is consistent with the idea that the ice shelf has instantaneously

been perturbed from hydrostatic equilibrium.

Restoring the inertial term effectively introduces a Newtonian damping term on

the entire body of the glacier where the damping coefficient is C = 1/∆t. Compu-

tational difficulty is not impacted by reintroducing the acceleration term in this way

because the term is linear with respect to velocity. However, unless a fully implicit

scheme was implemented, the solution becomes inaccurate (and unstable) for long

time steps. Therefore, we propose to use both damping terms so that the system of

equations is numerically accurate for all time step sizes.

When we include both damping terms, vertical velocity, effective strain rate, max-

imum shear stress, and greatest principal stress maintain physical values for both

small and large time steps (Fig. 2.2). At small time steps the acceleration term

dominates and the sea-spring with Navier Stokes solution departs from the sea-spring

solution. In this limit, the (nearly) rigid body isostatic adjustment of the ice shelf

dominates the solution. By contrast, for large time steps, the sea-spring damping

dominates and the two methods overlap. At intermediate time steps, both damping

terms contribute as the solution transitions from the regime dominated by inertial

effects to one where inertial effects are small. It is crucial to note that although

the sea-spring with Navier Stokes solution retains time step dependence for small

time steps, the time step dependence now results from the physical evolution of the
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system: the solution resolves the acceleration and deceleration of the glacier as it

bobs up-and-down in the ocean and approaches a steady-state.

Although the sea-spring solution shows a smaller L2 norm of greatest principal

stress than the sea-spring with Navier Stokes solution, this is due to large negative

compressive stresses associated with being outside of hydrostatic equilibrium. If

we instead examine the maximum of the stress fields, the sea-spring solution shows

larger values for both maximum shear stress and greatest principal stress (Fig. 2.3).

This is particularly evident for the maximum shear stress, which is overestimated

by an order of magnitude at the shortest time step tested. In the footloose calving

mechanism, when a portion of the upper calving front is removed, the front of the ice

shelf becomes buoyant and produces increased shear stress upstream on the ice shelf

(Wagner and others, 2014). This over prediction of stresses could cause a calving

model to predict unphysical calving events due to numerical inaccuracies.

2.5 Conclusions

Our study shows that using a common numerical stabilization method of the ice-

ocean boundary in Stokes glacier modeling there is an explicit time step dependence

of the solution that is unphysical for small time steps when the domain rapidly

departs from hydrostatic equilibrium. For model applications where changes in the

domain are only due to viscous flow, the time step dependence is not problematic as

long as domains are (nearly) in hydrostatic equilibrium at the start of simulation.

However, for applications where rapid changes to the model domain occur, such as

when calving rules are implemented, sudden departure from hydrostatic equilibrium

is not only possible, but expected. In these cases, time step dependence of the

solution will appear. This can contaminate solutions of the stress after calving,
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potentially leading to a cascade of calving events and an overestimate of calving flux

if numerical artifacts are not addressed. However, the time step dependence can be

easily cured with little computational cost by reintroducing the acceleration term to

the Stokes flow approximation. The acceleration term regularizes the solution for

small time step sizes and provides consistent solutions for all time steps.
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CHAPTER III

Impact of Tensile Crevasse Advection and Shear
Localization on Glacier Calving Behavior

This chapter is a manuscript currently under review for publication in the Journal

of Glaciology.

3.1 Introduction

Calving is one of the largest sources of uncertainty in projected mass loss from ice

sheets and glaciers (Stocker and others, 2013; Pörtner and others, 2019; Pattyn and

Morlighem, 2020) and developing better models of the calving process is essential for

accurate sea level projections. Current parameterizations of calving, such as height

above buoyancy (Vieli and others, 2001), eigencalving (Levermann and others, 2012),

or von Mises stress (Morlighem and others, 2016) can replicate behavior of glacier

advance and retreat in some cases, but the predictions made by these parameteriza-

tions often need to be tuned to match glacier behavior and result in projections of

rates of mass loss that diverge over time (Choi and others, 2018).

The Nye zero stress criterion provides a simple method to introduce a physi-

cally motivated parameterization of calving into glacier models (Nye, 1957; Nick and

others, 2010; Todd and Christoffersen, 2014; Ma and others, 2017; Ma and Bassis,
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2019). This criterion assumes crevasses penetrate to the depth in the glacier where

the largest effective principle stress vanishes. This method is computationally cheap

to incorporate into models and straightforward to implement compared to other the-

ories that can be cumbersome to include in ice sheet models, such as linear elastic

fracture mechanics (Krug and others, 2014; Yu and others, 2017; Jiménez and Duddu,

2018).

Previous crevasse depth studies, however, omit the effect of crevasse advection de-

spite the fact that observations show advection is important in predicting the location

and depth of crevasses (e.g., Mottram and Benn, 2009; Enderlin and Bartholomaus,

2020). The omission of advection and the assumption that crevasses immediately

“heal” makes modeled calving solely dependent on the instantaneous stress within

the glacier. Although instantaneous stress near the terminus may be diagnostic of

criteria for calving in some cases, it may not adequately predict calving events where

ice near the terminus is highly crevassed due to upstream crevasse formation and

advection.

An alternative approach to simulating fractures in ice uses damage mechanics,

which can easily incorporate advection of a scalar (or tensor) damage variable (Pra-

long and Funk, 2005; Borstad and others, 2012; Duddu and others, 2013; Krug and

others, 2014; Jiménez and others, 2017). Damage mechanics has the advantage that

it is well suited to simulate the propagation of crevasses within numerical models.

However, damage mechanics relies on poorly constrained empirical damage produc-

tion criteria that are difficult to constrain with field or laboratory data and can be

computationally expensive to implement for long time scale simulations.

Here, we formulate a calving model that combines elements of the Nye zero stress

model with damage mechanics. The basis of our model is the Nye zero stress crevasse
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Figure 3.1: An illustration of the different processes in the calving model. Incompressible flow with
indicated boundary conditions determines the viscous time evolution of the glacier.
Based on the Nye zero stress criterion, tensile crevasses form and advect with the ice.
A calving event occurs when surface and basal crevasses meet.

criterion. However, we generalize the Nye zero stress model to include advection of

“damaged” or crevassed regions of ice along with adding the potential for shear

localization. Although similar to damage based models, our model assumes that

brittle failure occurs rapidly compared to the time scale of ice flow and thus portions

of the ice transition immediately from "intact" to "fractured".

3.2 Model Description

We include crevasse formation and advection in a two dimensional flowline glacier

model. Choosing a two dimensional representation reduces computational cost and

simplifies the implementation of the calving criteria. A schematic illustration of the

model is shown in Figure 3.1. The different elements are described in detail below.

3.2.1 Incompressible viscous flow

We use a modified version of the incompressible equations describing slow, viscous

flow, which can be written as:

(3.1)
∇ ·

(
η
(
∇u + (∇u)T

))
−∇p+ ρg = ρ

Du
Dt

in Ω

∇ · u = 0 in Ω,

where Ω indicates the entire glacier domain. The effective viscosity is denoted by η,
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the velocity vector by u(x, z, t), and the pressure by p(x, z, t). We retain the accel-

eration term following Berg and Bassis (2020) as a physically based regularization

that avoids unphysical time step dependence of the velocity and stress fields.

The effective viscosity of ice is calculated using Glen’s flow law using a temperature

dependent constant B and a flow law exponent n = 3:

(3.2) η = B

2 ε
1
n

−1
e ,

where the effective strain rate is related to the strain rate tensor by:

(3.3) εe =
√
εijεij/2,

and we have used summation notation.

3.2.2 Boundary conditions

Denoting the upstream boundary as Γ1 and the ice-bed interface as Γ2, the bound-

ary conditions on velocity are given by:

(3.4)
u · n̂ = 0 on Γ1

u · n̂ ≤ 0 on Γ2,

where n̂ is defined as the outward facing unit normal vector. The velocity bound-

ary condition on Γ1 represents a free slip boundary condition at the ice divide with

zero inflow. The inequality condition on Γ2 is a no-penetration boundary condition

for grounded ice.

For simplicity, we use a modified Weertman sliding law with the drag force along

the bed proportional to the cubed root of the sliding velocity. Defining Γ3 as the
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portion of the ice boundary beneath sea level, the applied stresses for basal drag and

water pressure are thus given by:

(3.5)
τ̂ · σ · τ̂ = −β|u|− 2

3 (u · τ̂) on Γ2

n̂ · σ · n̂ = −ρwgzw on Γ3.

Here τ̂ denotes the unit vector tangential to the surface, β is the sliding coefficient,

ρw is the density of water, and zw is the ice depth relative to sea level.
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Figure 3.2: Snapshot of floating ice tongue with with purple showing crevassed ice and vertical
calving indicated by a dashed white line. Model results shown without tensile crevasse
advection (a) and with tensile crevasse advection (b). Slippery bed parameters as given
in Table 3.1. Crevasses moving downstream from the grounding line lead to a calving
event if advection is included. After a calving event occurs, all downstream ice from
the calving location is removed and is no longer present in the model.

3.2.3 Crevasse penetration and calving model

We consider both purely tensile failure and shear localization. Shear localization

is considered to occur on pre-existing faults and is a consequence of the instantaneous
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stress within the glacier; advection of crevasses in our model is thus limited to tensile

failure.

Tensile crevasse formation and advection

For tensile crevasses to form, we assume that the local stress field must satisfy

the Nye’s zero stress criterion (Nye, 1957). The largest effective principle stress σNye

is defined using the greatest principle stress σ1 as:

(3.6) σNye = σ1 + ρwgzw.

We model crevasse formation and advection as a binary scalar field of “crevasses”

in the ice. The crevasse field cn at time step tn, given by:

(3.7) cn =


1 if σNye > 0 or cn−1 = 1

0 otherwise,

is dependent on the Nye stress exceeding zero and the crevasse field at the previous

iteration. This implementation of the Nye’s zero stress criterion is equivalent to

the choice of a zero tensile yield strength for ice. One limitation of our approach

is that we do not resolve individual crevasses, but instead consider a macroscopic

“field” where regions are either fractured or intact. Moreover, our crevasse criterion

effectively introduces a binary damage parameter that is zero or unity. This implies

that the time scale of damage growth is fast compared to the viscous time scale. For

this study, we assume crevasses are narrow brittle features that do not affect the

larger scale rheology.

Once formed, crevasses persist indefinitely and, in our model, are not allowed

to heal. Extended time under compressive stress may allow crevasses to close and
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Table 3.1: Set of parameters used for model tests.
Parameter Set T (◦C) β (Pam− 1

3 s 1
3 )

Baseline -10 7.6 E6
Warm Ice -2 7.6 E6
Slippery Bed -10 3.8 E6
Warm Ice and Slippery Bed -2 3.8 E6

refreeze. However, we assume that even if crevasse do close, they remain weak planes

that are prone to reactivating under appropriate stress conditions. For simplicity,

we restrict calving to occur along vertical planes of the glacier and assume calving

occurs when crevasses penetrate through the entire glacier thickness.

Shear localization

To determine shear localization, we examine the shear stress in the ice and check

for maximum shear stress at the calving front exceeding the shear strength τc (set

arbitrarily to 130 kPa here). Empirically choosing a value of 130 kPa is sufficient for

shear localization in our test cases, and we focus our analysis on the nature of the

calving retreat. If the maximum shear stress exceeds the threshold of 130 kPa, we

emulate an idealized calving event by assuming a 45 degree failure originating at the

base of the calving front and remove the calved ice from the model domain. We then

run the model forward to see the effects of tensile failure on the altered geometry.

Results are insensitive to changes in the failure angle as long as the maximum shear

stress exceeds the threshold for a calving event.

3.3 Model Implementation Details

3.3.1 Flow solver

We implement our model using the open source finite element solver FEniCS using

mixed Taylor-Hood elements with CG2 elements for velocity and CG1 elements for

pressure (Alnæs and others, 2015). We solve the incompressible flow equations (Eqn
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Figure 3.3: Glacier length change over time relative to initial grounding line position without advec-
tion (a-d) and with advection (e-f) (omitting shear localization) for baseline parameters
(a,e), slippery bed (b,f), warm ice (c,g), and both slippery bed and warm ice (d,h).
Grounding line is plotted only when the glacier terminus is floating. The inclusion of
crevasse advection causes ice tongue disintegration for three of the parameter sets. The
effect of advection on terminus position is most pronounced for warmer ice, where we
observe retreat and then stabilization of the calving front for approximately a decade
before re-advance.

(3.1)) using Picard iterations with a linear solver and calculate the acceleration term

in the momentum balance using a backwards Euler step with a zero velocity initial

condition (Berg and Bassis, 2020). For all simulations we use a maximum time step

of 3 days and restrict to a shorter time step if necessary based on the CFL criterion

with a Courant number of 0.5. Decreasing the time step does not affect results,

indicating numerical convergence.
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Figure 3.4:
Glacier evolving in time without advection (a-c) and with advection (d-f). Warm ice
parameters as given in Table 3.1. Without advection, the ice tongue grows and advances
over time. Advection increases calving, leading to ice tongue disintegration followed
by stabilization of calving front position for approximately a decade. At the end of
simulation, the grounded calving cliff has started to re-advance.

3.3.2 Boundary forces

We implement the no penetration boundary condition on Γ2 (Eqn (3.4)) by adding

an additional force on grounded ice. This force represents the elastic properties of

subglacial rock and sediment and is numerically equivalent to a penalty method.

This boundary condition is given by:

(3.8) σ · n̂ = α(rb − r) on Γ2.

The elastic force is directly proportional to the distance under the bed that the

ice has penetrated, where the location of the bed is denoted by rb, the location of

the ice is r, and α is the elastic coefficient. We use a value of 100 kPa
m for the elastic

coefficient. Our results are insensitive to the value of α over a wide range, and our

chosen value agrees broadly with measurements of the Young’s modulus of glacial

35



-200

-150

-100

-50

0

50

H
ei

gh
t (

m
)

a

49.8 49.9 50.0
Distance (km)

-200

-150

-100

-50

0

50

H
ei

gh
t (

m
)

b

−10 0 10
Nye Stress (kPa)

Figure 3.5:
Glacier crevasses (a) and Nye stress (b) after ice tongue collapse, 2 years after start of
simulation. Warm ice parameters as given in Table 1. The contour of zero Nye stress
is indicated by a dashed black line, indicating regions of newly crevassed ice. Current
Nye stress is insufficient for basal crevasse formation at the base of the calving front.
However, basal crevasses developed when the glacier had a ice tongue are present and
cause further calving.

till. Taking the Young’s modulus of a loose glacial till to be 10 MPa (Bowles, 1996),

our value for the elastic coefficient corresponds to a plausible glacial till thickness of

100 m (Walter and others, 2014).

For implementation of the elastic bed force and force due to water pressure (Eqn

(3.5) and Eqn (3.8)), we introduce a damping term for vertical velocities to ensure

that the ice displacement during flotation or rebounding from the bed is numerically

stable. These damping terms are those of the form derived in Durand and others

(2009), which result from a Taylor expansion in the vertical position dependence of

the elastic and water pressure forces and includes dependence on the time step ∆t:
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Figure 3.6: Glacier length change over time relative to initial grounding line position without ad-
vection (a) and with advection (b) (omitting shear localization) for a constant prograde
bed with a Gaussian bump 250 m ahead of the glacier starting position. Brown dashed
line indicates location of the sill. Baseline parameters as given in Table 3.1. Grounding
line is plotted only when the glacier terminus is floating. Both tests have a transient
period characterized by large calving events before settling into steady behavior after
approximately 30 years. With advection, the sill strongly inhibits glacier advance, lead-
ing to a stable calving cliff. Without advection, an ice tongue forms and periodically
calves, giving a stable grounding line at the sill.

(3.9)
σ · n̂ = −ρwg∆t (u · ẑ) ẑ on Γ2

σ · n̂ = −α∆t (u · ẑ) ẑ on Γ3.

3.3.3 Tensile crevasses

To advect tensile crevasses in the model, we use massless tracers in a “particle-

in-cell” method and store the binary crevasse field independently from the finite

element mesh. Using particles to advect tracer properties limits numerical diffusion

and allows us to resolve sharp changes separating regions that are crevassed from

those that are not. We use LEoPart (Maljaars and others, 2020) to implement the

particle-in-cell advection, an add-on to FEniCS that includes this functionality.

A set of tracers are randomly distributed throughout the domain with 32 tracers

initially in each cell. At each time step, the diagnostic stress is projected to a DG1

space and then evaluated at the particle locations to determine if new crevasses form.
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Figure 3.7: Maximum shear stress during manual shear localization test using a shear strength of
130 kPa without advection (a-c) and with advection (d-f). The contour of 130 kPa
maximum shear stress is indicated by a dashed black line. Baseline parameters as given
in Table 3.1. In both cases, further retreat due to tensile failure after a single shear
calving event leads to an ice cliff that would calve again under high shear stress. With
advection, the calving front retreats slightly further, exposing a higher cliff with larger
shear stresses.

Similarly, the velocity solution on a CG2 space is evaluated at the particle locations

to advect tracers.

After every time step, we analyze the stress field using a method similar to that

used by (Todd and Christoffersen, 2014). We generate a contour of crevassed ice

based on the binary scalar crevasse field stored on the tracers. This contour indicates

where the ice transitions from crevassed to intact. In places where the contour

indicates crevassed ice through the entire ice thickness, vertical calving occurs due

to tensile failure and all ice downstream of the calving event is removed. After a

calving event and subsequent remeshing, tracers are added to the domain randomly

to maintain a minimum of 32 tracers per cell and initialized by interpolating existing

tracers. Figure 3.2b shows a snapshot of the crevasse field during a modeled calving

event with tensile crevasse advection and the location of calving based on our criteria.
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In our implementation, calved ice “vanishes” and does not provide any back stress

after detachment from the glacier, neglecting the effect of mélange on future calving.

3.3.4 Initial conditions

We initialize the bed and ice surface to a constant prograde slope of 0.01 and

constant thickness of 200 m from the ice divide boundary to the terminus at 50

km, roughly consistent with geometry of Svalbard outlet glaciers (Dunse and others,

2012). From the initial ice configuration we run the model with the calving front held

fixed at its initial location until the ice relaxes to a steady state (2500 a). Once the

glacier has reached steady state, we allow the ice to flow unconstrained an additional

0.5 years to ensure complete relaxation and then allow calving using the Nye zero

stress criterion. We do these experiments with and without advection of crevasses

and start simulations with no crevasses initially present in the glacier.

3.3.5 Meshing

We use the external remeshing package Gmsh (Geuzaine and Remacle, 2009) for

remeshing of the domain. Using Gmsh, we have precise control over the meshing

process and break the glacier into high resolution and low resolution subdomains.

Dividing the glacier into high resolution and low resolution regions allows us to

simulate the entire glacier and maintain the ice divide boundary condition (Eqn

(3.4)) upstream while avoiding excessive computation time. We use an initial mesh

size of 10 m in the high resolution region and a mesh size of 100 m in the low resolution

region, with the high resolution region starting five ice thicknesses upstream of the

grounding line. Model results are insensitive to changes in the low resolution mesh

size and converged with high resolution mesh size such that sizes smaller than 10 m

do not significantly change results. We remesh after every calving event or when the
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ratio of minimum to maximum cell radii drops below a threshold of 0.1 according to

the built in FEniCS mesh quality class.

3.4 Suite of Tests

To test the effects of crevasse advection on calving behavior in different environ-

ments, we ran the model on a set of parameters with different ice temperatures and

sliding coefficients. These parameter sets are listed in Table 3.1 in four different

combinations: baseline, warm ice, slippery bed, and warm ice and slippery bed. A

constant surface mass balance of 0.25 m/a is applied in all cases, a moderate value

for the Austfonna ice cap (Schuler and others, 2007).

3.4.1 Ice temperature

We use a moderate temperature of −10◦C as our baseline temperature, roughly

corresponding to near surface temperatures on Jackobshavn Isbræ(Iken and others,

1993; Lüthi and others, 2002) and modeled ice temperatures of the Austfonna ice cap

(Østby and others, 2013). To investigate the case of warmer ice we use a tempera-

ture of −2◦C, which agrees with borehole observations of warmer Greenland glaciers

(Harrington and others, 2015) and modeled melt season temperatures at Austfonna

(Harrington and others, 2015). The Glen’s flow law coefficient B was taken for each

temperature from the values given by Hooke (2005).

3.4.2 Sliding coefficient

We use a baseline sliding coefficient of 7.6 × 106 Pam− 1
3 s 1

3 , which is identical to

the coefficient used for the modified Weertman sliding law in the Marine Ice Sheet

Intercomparison Project (Pattyn and others, 2012). Because this is a fairly high

sliding coefficient, we halve the coefficient to see the effects of a more slippery bed.
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3.4.3 Bed slope

In addition to the ice temperature and sliding coefficient tests on a constant

prograde slope, we also perform tests on a prograde bed with an idealized sill to

investigate the combination of varying bed topography and advection on calving

behavior. In this case, we superimpose a Gaussian bump with amplitude 25 m and

standard deviation 50 m on the constant prograde bed 250 m ahead of the initial

calving front.

3.5 Results

3.5.1 Effect of crevasse advection on calving

Constant slope prograde bed

We first examined the effect of crevasse advection on terminus position using a

prograde bed without a sill and without shear localization. Figure 3.2 and shows

snapshots illustrating initial ice tongue advance with and without advection on a

slippery bed. Without advection (Figure 3.2a), bending near the calving front results

in a compressive stress at the grounding line that prevents basal crevasse formation.

However, with advection (Figure 3.2b), basal crevasses that initiate just upstream of

the grounding line advect past the grounding line, resulting in a crevassed region that

penetrates the entire thickness 300 m upstream from the calving front. This effect

is shown over time in Animation S1. Advection causes increased calving frequency

and decreased glacier length relative to when advection is omitted.

The cumulative effect of the increased calving frequency is illustrated in Figure

3.3, which shows the change in glacier length over time relative to initial grounding

line position for the suite of scenarios. In the baseline parameter tests (Figures

3.3a,e), advection makes little difference to glacier terminus position. However, when
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we decrease the sliding coefficient (more slippery bed) or increase ice temperature

(warmer ice), we see advection has a larger effect on terminus position. For example,

in all tests that have warmer ice or a lower sliding coefficient (Figures 3.3f-h), the ice

tongue disintegrates, resulting in a grounded calving cliff. This is a consequence of the

enhanced deformation of the calving front associated with these conditions, widening

the region where the Nye zero stress is positive within the glacier. The warmer ice

and slippery bed conditions are representative of many Greenland glaciers that only

rarely form permanent floating tongues.

Crevasses formed upstream of the grounding line when the glacier had an ice

tongue persist after ice tongue disintegration, resulting in transient behavior as these

crevasses advect through the system. For example, Figure 3.5 shows crevasses and the

Nye stress after ice tongue disintegration for warm ice. The Nye stress is insufficient

to form sufficient basal crevasses near the calving front. However, with advection,

existing crevasses take time to move through the domain resulting in a transient that

can last a few years to a decade.

Crucially, the contribution of advection is most pronounced for our test with warm

ice (Figure 3.3f, Animation S2). Glacier retreat continues after ice tongue disinte-

gration and results in a stable grounded calving front position upstream from the

initial calving front for approximately a decade before the glacier starts re-advance.

This temporary retreat followed by re-advance is observed in the other tests but is

shorter: approximately two years with a slippery bed (Animation S1) and under a

year for warm ice with a slippery bed. In the slippery bed simulations, increased

deformation rapidly exports transient basal crevasses away from the grounding line.

In the warm ice with a slippery bed case, the short ice tongue disintegrates quickly

and is not able to form basal crevasses near the grounding line. These results hint
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that glacier calving behavior is not solely a consequence of immediate forcing and

suggests glacier advance or retreat could be dependent on earlier conditions.

Surprisingly, in no case do we observe sustained glacier retreat regardless of ice

temperature or sliding coefficient. Instead, glaciers either advance or temporarily

retreat to a terminus position upstream before re-advancing. However, this may be

a consequence of the constant prograde bed.

Stabilizing behavior of sill

Because many glaciers stabilize on sills near the terminus, we performed simula-

tions using our baseline parameter set with a bump in the bed. In tests with and

without advection, when the ice tongue is forced over the sill, high bending stresses at

the grounding line cause a large calving event that removes the ice tongue. The newly

formed grounded ice cliff advances again towards the sill. After a few large calving

events, both tests achieve steady behavior after approximately 30 years. Glacier

evolution for a total of 50 years is shown in Animation S3.

Without advection, Figure 3.6 shows that the glacier advances over the sill and

forms a short ice tongue. The tongue periodically disintegrates from increasing de-

formation at the top of the calving front as the ice tongue advances. Thus, even

in the absence of advection, bed geometry has a strong effect on glacier advance.

However, without advection, the glacier retains a short floating ice tongue that may

provide some protection against perturbations in ocean forcing.

In contrast, when advection is included, Figure 3.6 shows that the sill strongly

inhibits advance and the glacier forms a stable calving cliff at the location of the sill.

As the glacier advances over the bump in the bed, a higher cliff and the concave bed

shape increase stresses. Advected crevasses caused by these higher stresses inhibit

advance over the sill. We also observe brief periods where the glacier temporarily
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retreats to the base of the sill before re-advancing at approximately 37 years, 42

years, and 47 years. This behavior is caused by slowly advecting surface crevasses

at the top of the calving cliff that eventually meet with basal crevasses and cause a

more significant calving event.

The resulting calving front is qualitatively similar to Store Glacier, which termi-

nates at a bump in the bed (Todd and Christoffersen, 2014). Store glacier exhibits

ice front advance and retreat coinciding with the presence of seasonal ice mélange

(Howat and others, 2010), with our advection results showing behavior similar to

Store glacier in the absence of additional mélange back stress. In our simulations,

glaciers advance on a prograde bed until they reach a bump in the bed where they

can stabilize. This is analogous to the behavior of most stable glaciers that remain

perched on sills, but our model still fails to reproduce sustained retreat.

3.5.2 Effect of shear localization

Tensile crevasse advection is sufficient in our model to cause temporary glacier

retreat on a prograde bed and grounded calving cliffs on a sill. However, we also

investigate the effects of idealized shear localization on subsequent calving behavior.

Here we examine the onset of tensile failure after a single shear localization event.

We focus on a recently retreated grounded calving cliff in our advection experiment

with a sill, which we expect to have higher shear stress at the calving front.

Starting with an initial geometry immediately after the glacier retreat correspond-

ing to approximately 37 years elapsed in our previous test, the shear stress exceeds

our chosen threshold of 130 kPa. Figure 3.7 shows results with and without crevasse

advection as the glacier evolves over the next 30 days after the initial shear calving

event. In both cases, buoyant stresses cause cascading tensile failure events. Glacier

retreat continues until a second ice cliff with high shear stress is reached.
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Advection slightly increases the magnitude of retreat, leading to higher shear

stresses in the new ice cliff when compared to the case without advection. However, in

both cases the shear stress increases after rapid tensile failure, indicating catastrophic

retreat regardless of crevasse advection. Therefore, the coupling of tensile failure

and shear localization predicts catastrophic retreat where tensile failure and crevasse

advection does not. However, in this test our threshold for shear failure is low and

we don’t anticipate glaciers with such low shear stresses to disintegrate.

3.6 Discussion

Our results show that tensile failure and shear localization contribute to signifi-

cantly different styles of calving behavior. In our suite of tests, advection of tensile

crevasses results in advancing glaciers or stabilization on a sill. However, we do not

observe sustained retreat in any of these cases. One possible reason for the minimal

observed retreat in our model is the omission of submarine melt. Submarine melt

rates vary over a wide range. For example, estimated values in Hansbreen, Sval-

bard span the range from 0-15 m/week (De Andrés and others, 2018), which would

strongly contribute to total mass loss.

Furthermore, calving rates for Svalbard glaciers are strongly dependent on ocean

temperature (Luckman and others, 2015) and previous modeling has demonstrated

that relatively small melt rates can promote calving (Ma and Bassis, 2019)—an

effect that could be magnified with the inclusion of tensile crevasse advection. A

melt profile focused at the grounding line reduces glacier thickness and promotes a

buoyant transition. This could increase the contribution of tensile crevasse advection

to calving rates given that we see the deepest advected crevasses near the grounding

line as the ice transitions to flotation. Nonetheless, our results suggest that, with the
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exception of significantly thicker glaciers where shear localization may play a role,

internal stresses within the glaciers alone are insufficient to trigger retreat due to

calving. Instead, retreat is more likely driven by ocean melt along the calving front

or water filling surface crevasses and allowing deeper penetration depths.

In contrast, shear localization and mixed-mode failure has a much stronger contri-

bution to rapid, unstable retreat. In our model, when a piece of the glacier is removed

via failure due to shear localization, a series of buoyant calving events quickly ex-

pose a second, higher calving cliff. This higher cliff has higher shear stress and the

continuing cycle of a shear event followed by buoyant calving leads to complete dis-

integration. Because the process is rapid, it is not dependent on the advection of

crevasses and is purely driven by the interaction between the two failure modes.

However, there are sources of stabilization to the catastrophic failure that are

not accounted for in our model. For example, we do not include coupling between

crevasses and the ice rheology. Coupling of crevasses with the rheology may de-

crease cliff heights, reducing calving from shear localization and the potential for

catastrophic collapse. However, a different rheology could affect tensile failure as

well. If viscosity decreases as ice becomes crevassed, ice may fail more easily under

tensile failure. This could increase the effect of tensile crevasse advection on calving

behavior.

Another possible contributor to stabilization is backstress due to calved mélange

rather than instantaneously removing all calved ice from the model domain. Back

stress from mélange has been shown to have significant effects on calving behavior

(Todd and Christoffersen, 2014; Joughin and others, 2012). For a rapidly retreating

grounded ice cliff, the rapid buildup of mélange would provide significant stabilizing

stress and potentially stop collapse. Additionally, the catastrophic collapse observed
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in our model is contingent upon our choice of glacier shear strength. Because shear

stress increases with grounded ice cliff height (Bassis and Walker, 2012), this collapse

mechanism is not important for small outlet glaciers such as Store glacier, but could

be important for larger glaciers such as Thwaites Glacier or Pine Island Glacier.

Specifying a more precise threshold for shear localization and improving under-

standing of mixed-mode failure is crucial for future modeling of glacier collapse.

However, advection, which is easily included in existing models, also appears to play

an important role in controlling glacier behavior. This is especially important be-

cause phases of retreat and advance are not necessarily instantaneously connected

with climate forcing. Instead, we anticipate a response time comparable to the time

it takes crevasses to advect through the domain. This may aid in explaining some of

the confusion in attributing glacier retreat to atmospheric or oceanic forcing.

3.7 Conclusion

Our results show that when tensile failure is the only mode of failure and advection

is omitted, glaciers continuously advance. Including tensile crevasse advection in

a two dimensional flowline calving model reduces the overall rate of advance by

increasing calving and also leads to temporary glacier retreat. Because crevassed ice

is allowed to persist over time, crevasses formed near the grounding line of the glacier

advect and cause ice tongues to periodically calve, exposing a grounded cliff. This

effect is more pronounced with warmer ice. Advection also enhances the importance

of basal topography. Crevasse memory contributes strongly to calving events as a

glacier approaches a sill and prevents further advance, leading to a stable ice cliff

rather than a transient ice tongue.

Although crevasse advection does increase the contribution of calving to glacier
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mass loss, it does not cause catastrophic collapse in the absence of additional driving

factors such as shear calving. For a grounded terminus, we conduct some idealized

tests on the consequence of a shear calving event and show that the combination of

shear localization and tensile failure can cause catastrophic retreat.

Given that basal crevasses dominate the advection related effects in our study,

the importance of ocean forcing may increase when coupled with crevasse advection.

Small increases in melt to a previously stable calving front position could drive a

glacier into a regime of catastrophic retreat initiated by shear localization. With-

out advection, less calving and a buttressing ice tongue would necessitate a more

dramatic change in ocean forcing to catalyze retreat. Our study shows that tensile

crevasse advection can play a significant role of calving behavior and shear local-

ization could be a key contributor to catastrophic collapse. Future calving models

should take care to include a mechanism for advection and multiple modes of calving

whenever possible.
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CHAPTER IV

Collapse in Mixed Mode Calving Model Highly Sensitive to
Shear Strength

This chapter is a draft manuscript currently in preparation for publication.

4.1 Introduction

Models of the iceberg calving process remain a large source of uncertainty in mass

loss from ice sheets and their corresponding contribution to sea level projections

(Stocker and others, 2013; Pörtner and others, 2019; Pattyn and Morlighem, 2020).

Developing improved models that can better reproduce the diversity of calving be-

haviors and physical drivers of the calving process is essential to inform large scale

ice sheet and glacier models.

The high source of mass loss uncertainty from calving is exacerbated by debate

regarding the importance of the marine ice cliff instability, originally proposed by

Bassis and Walker (2012). The marine ice cliff instability starts when ice cliffs reach

the critical height where shear stress overcomes the strength of ice and calving occurs.

This exposes a higher ice cliff and because the shear stress scales linearly with the

height of the cliff, leads to catastrophic retreat. Although such an instability has

never been directly observed in modern observations, paleo records provide hints and
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clues that it might have occurred in the past. For example, marine ice cliff instability

has been implicated in Heinrich events—massive armadas of icebergs episodically

discharged from the Laurentide Ice Sheet (Bassis and others, 2017). Similarly, iceberg

scour marks in the sea floor have been used to infer that the ice thickness in the

Amundsen Sea Embayment portion of West Antarctica rarely exceeded the critical

height (Wise and others, 2017).

However, because a marine ice cliff instability type collapse has never been directly

observed in modern ice sheets, the hypothesis remains controversial with disagree-

ment on the necessity of including it in ice sheet models (Edwards and others, 2021;

DeConto and others, 2021). One study done by Bassis and others (2021) implicitly

includes shear localization via a complex ice rheology, albeit at high computational

cost. However, the number of calving models running at longer temporal scales that

explicitly include shear localization as a failure mechanism is limited.

Although too computationally expensive to be used for predictions at the ice sheet

scale, full Stokes models of glaciers are a valuable tool to examine the physical drivers

of glacier advance and retreat and can be designed to run on timescales of years to

decades. Previous full Stokes models have considered the effects of damage advection

on calving behavior (Pralong and Funk, 2005; Borstad and others, 2012; Duddu

and others, 2013; Krug and others, 2014; Jiménez and others, 2017), using damage

as a continuous variable to broadly track regions of crevassed ice. Other models

have included additional effects such as submarine melt (Todd and Christoffersen,

2014; Todd and others, 2019; Ma and Bassis, 2019) or mixed mode failure Crawford

and others (2021). However, none have studied the simultaneous interplay between

crevasse advection, submarine melt, and mixed mode failure.

In this work, we improve upon a previously developed model presented in Chapter
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III that was designed to probe the effects of crevasse advection on tensile failure be-

havior. Given that submarine melt accounts for a high percentage of mass discharge

from glaciers and ice sheets (van den Broeke and others, 2009; Enderlin and Howat,

2013) and even small amounts of melt can increase calving (Ma and Bassis, 2019), we

examine the effect of submarine melt in the model. Second, and more importantly,

we add shear localization into the model. The inclusion of both tensile failure, shear

localization, and crevasse advection allows us to gain a more complete picture of the

calving process due to a wider range of mechanisms. Novel in our model is the ability

for calving events due to a combination of different fracture origins, where part of the

fracture occurs due to shear localization and another part occurs to tensile failure.

4.2 Model Description

Our model builds on Chapter III. Below we describe the failure mechanisms we

include in our model, along with our implementation of submarine melt.

4.2.1 Tensile failure

We use the ’Nye zero stress’ model, which assume tensile failure occurs when the

greatest effective principle stress σNye is greater than the tensile strength of ice T0.

This is an appropriate approximation for closely spaced crevasses, typical of most

outlet glaciers. We, however, allow for a general nonzero strength of ice T0 more

realistic for ice. The greatest effective principle stress is defined as the sum of the

greatest principle stress σ1 and the water pressure at a given depth:

(4.1) σNye = σ1 + ρwgzw > T0,

where ρw is the density of water, g is the acceleration due to gravity, and zw is
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the depth under water. This criterion assumes that pressure from ocean water fill-

ing crevasses contributes to the stress field. Tensile failure occurs along the plane

corresponding to the greatest principle stress that causes the failure, which is ap-

proximately vertical in the cases considered here.

The strength of ice under tensile failure as a function of the critical stress intensity

factor of mode-I crack propagation KIC , and c, where 2c is the length of pre-existing

starter cracks is given byAshby and Hallam (Née Cooksley) (1986) as:

(4.2) T0 = KIc

(πc)1/2 .

This form of the tensile strength is useful because the shear strength can be consis-

tently specified using the same set of material parameters.

4.2.2 General Coulomb failure

The criteria for shear localization follows (Schulson, 2001; Jaeger and others,

2009). Shear localization along a given plane will occur if the shear stress along

that plane exceeds the shear strength of the ice and the internal friction of the ice.

This criterion is expressed as:

(4.3) |τ | > S0 + µσ,

where |τ | is the magnitude of the shear stress along a given plane, S0 is the shear

strength of ice, µ is the coefficient of internal friction, and σ is the normal stress

acting along the same plane.

As shown by Jaeger and others (2009), in two dimensions Equation 4.3 can be

rewritten as:

(4.4)
(
1 + µ2

) 1
2 τm > S0 + µσm,
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where τm is the maximum shear stress and σm is the two-dimensional mean stress.

τm and σm can be expressed in terms of σ1, the greatest principle stress, and σ2, the

smallest principle stress, as:

(4.5)
τm = 1

2 (σ1 − σ2)

σm = 1
2 (σ1 + σ2) .

In addition to exceeding the necessary stress threshold for failure, an additional

constraint is placed upon the Coulomb failure criterion. First, we define the con-

finement ratio as the ratio of the least compressive to most compressive principle

stress:

(4.6) R21 = σ1

σ2
.

For confinement ratios greater than a critical ratio R21c given by Renshaw and

Schulson (2001) as:

(4.7) R21c = 1− µ
1 + µ

,

brittle failure transitions from shear localization to a failure model called plastic

faulting by Schulson (2002) and has been discussed recently in the context of ice

failure and cliff instability by Clerc and others (2019). Thus, the Coulomb failure

criterion only allows for failure at confinement ratios less than the critical ratio.

Renshaw and Schulson (2001) gives the equation for the critical stress leading to

failure, which is equal to the shear strength S0:

(4.8)

S0 =

2KIc

c1/2

[(
1 +

(
1− µ1+R21

1−R21

)2/3
)1/2
− 1

] (
1 + 3µ2α2 (1−R21)2

)1/2
,
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where α is the aspect ratio of the columns of ice spaced by comb cracks during

Coulomb failure.

The angle of shear fault formation θ due to Coulomb failure relative to the prin-

ciple axis associated with the most compressive principle stress is given by Jaeger

and others (2009) and can be calculated using:

(4.9) µ = tanφ,

and:

(4.10) θ = π

4 −
φ

2 .

Once large secondary cracks have formed via the above failure mechanism, they are

considered permanent and can reactivate under the appropriate stress conditions.

Following the process outlined by Moore and others (2010) and where only friction

inhibits further faulting, this condition is:

(4.11) (σ2 + ρwgzw)
(σ1 + ρwgzw) = (1 + µcotγ)

(1− µtanγ) ,

where γ is the angle between the existing fracture orientation and σ2.

However, due to limitations with the binary and continuous nature of our crevasse

tracking method presented in Chapter III, we do not track the fault angle of indi-

vidual fractures over time. Therefore, we restrict our implementation of crevasse

advection to tensile failure and assume that shear localization must always satisfy

the stress criteria in Equation 4.8. This will lead to an underestimate of calving due

to shear localization for our model.

4.2.3 Coulomb failure with zero internal friction

The internal friction of ice can vary widely with temperature and sliding velocity

from close to zero to close to one (Kennedy and others, 2000; Schulson, 2001). Be-
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cause of the uncertainty associated with choosing a friction coefficient, we remove it

from our analysis by setting it to zero for the remainder of this study and focus our

analysis on the strength of ice. However, increasing internal friction would qualita-

tively have a similar effect as increasing shear strength while keeping tensile strength

constant.

If the coefficient of internal friction µ is zero, Equation 4.4 simplifies to:

(4.12) τm > S0.

In the absence of internal friction, Equation 4.4 simplifies to the straightforward

assertion that the maximum shear stress must exceed the shear strength of ice for

failure to occur. In two dimensions, this is identical to the von Mises yield criterion

for ductile materials. Figure 4.1 shows a general failure envelope with zero internal

friction for an arbitrary tensile strength T0 and shear strength S0. Three regimes

exist: tensile failure due to high extensional stress, shear failure due to high shear

from compressive stress, or no failure from compressive stress.

Setting internal friction to zero in Equation 4.8 gives a simplified form of the shear

strength of ice:

(4.13) S0 = 2KIc

c1/2 .

Using Equation 4.2 and Equation 4.13, the tensile strength and shear strength of ice

can be specified consistently using only the critical stress intensity factor of mode-I

crack propagation and the length of pre-existing starter cracks. Figure 4.2 shows

both tensile strength and shear strength as a function of starter flaw size c given a

critical stress intensity factor of 0.05 M Pa m 1
2 as given in Table 4.1.
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Figure 4.1: General calving failure envelope with tensile strength of T0, shear strength of S0, and
zero internal friction. Shading and labels indicate regions of tensile failure, shear local-
ization, and no failure.

Additionally, when assuming zero internal friction, the critical confinement ratio

given in Equation 4.7 is equal to one and therefore failure will never transition to

plastic faulting. Lastly, based on Equation 4.9 and Equation 4.10, zero internal

friction gives a constant fault angle of 45 degrees.

4.2.4 Submarine melt

In this study, we also examine the interplay between submarine melt and calving

from mixed mode failure. In our implementation, submarine melt is applied to the

exterior of the glacier at all points underwater and downstream of the grounding

line. For this purpose, we define the grounding line to be the furthest downstream

location where ice is in contact with the bed. Therefore, we do not include any melt

due to ocean water intrusion at the bed or due to frictional heating between the

glacier and the bed.
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Figure 4.2: Failure strengths as a function of starter flaw size for a constant critical stress intensity
factor. Dashed vertical lines indicate starter flaw sizes used to select the approximate
failure strengths in this study. Chosen starter flaw sizes are 0.05 m, 0.2 m, and 0.8 m.

Following the study of Ma and Bassis (2019), we use a parabolic melt rate of the

form:

(4.14) ṁ(z) = 6 ¯̇m z

D

(
1− z

D

)
,

where ¯̇m is the specified depth-averaged melt rate, D is the water depth, and z

is the vertical position relative to the bed. Melt undercutting due to submarine

melt maximized between the ocean surface and the bed has been observed (Rignot

and others, 2015) and modeled (Sciascia and others, 2013; Slater and others, 2017).

Previous work by Ma and Bassis (2019) has shown that a parabolic melt profile has a

moderate effect on calving behavior. Lastly, using a parabolic melt profile has model

implementation advantages, avoiding numerical issues that arise from applying melt

directly at the base of a calving cliff.
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Table 4.1: List of constant parameters used in model tests.
Parameter Value
Basal Friction Coefficient 7.6× 106 Pa ·m− 1

2 · s 1
3

Ice Temperature −2◦C
Surface Mass Balance 0.25 m/a
Average Submarine Melt 0.1 m/day
Critical Stress Intensity Factor 0.05 M Pa m 1

2

4.3 Model Implementation and Tests

The flow, tensile failure, and crevasse advection parts of the model are imple-

mented in FEniCS (Alnæs and others, 2015) and LEoPart (Maljaars and others,

2020) identical to the study presented in Chapter III. We use a modified Weertman

sliding law and basal friction coefficient identical to the coefficient used in the marine

ice sheet intercomparison project (Pattyn and others, 2012). For all tests, we use

constant values for basal friction coefficient, ice temperature, surface mass balance,

and submarine melt as given in Table 4.1. Ice temperature is chosen to be consistent

with temperatures of tidewater glaciers in West Greenland (Harrington and others,

2015). Submarine melt can vary seasonally and spatially over a wide range from

centimeter to meters per day. Our chosen average submarine melt of 0.1 m/day is

on the higher end for cold tidewater glaciers in Antarctica and on the lower end of

estimates for warmer Greenland glaciers (Truffer and Motyka, 2016).

Meshing is also handled in an identical fashion using Gmsh (Geuzaine and Remacle,

2009), with 10 m mesh resolution close to the grounding line and 100 m upstream.

Results are converged at these resolutions are not affected significantly by altering

either mesh size. Maximum time step is set to 3 days and restricted to a shorter

time step based on the CFL criterion with a Courant number of 0.5. Model results

are insensitive to shorter time step sizes.

For shear localization, at each time step local extrema of maximum shear stress

58



are identified on the exterior of the glacier. These local extrema are the possible

starting points of shear faults. For each local extrema, conjugate fault planes (at

45 degrees for zero internal friction) are traced out using a step distance equal to

the high resolution mesh size. Tracing the fault plane continues until the maximum

shear stress is too low to exceed the shear strength or the fault intersects with the

glacier boundary.

If a shear fault intersects a region of ice that either exceeds the tensile failure

criteria or has advected tensile crevasses, the fault will preferentially propagate ver-

tically rather than along the 45 degrees shear direction. In this manner, we trace

out faults that are truly mixed mode and are due to more than one brittle failure

mechanism. As in Chapter III, if any calving event occurs, the downstream ice is

removed instantaneously.

4.3.1 Model geometries

We perform a total of three suites of tests. First, we examined a constant prograde

bed with a slope of 0.01, an initial length of 50 km, and a constant thickness of 200

m. This geometry is identical to that used in Chapter III and is in agreement with

the basic geometry of Svalbard outlet glaciers (Dunse and others, 2012). Surface

mass balance of 0.25 m/a is uniformly applied to the glacier surface and the model is

run with the calving front held constant until the glacier reaches steady state with a

vertical calving front. After steady state is reached (after ∼2500 a), calving is turned

on and the glacier is allowed to evolve normally in time. The second set of tests is

identical except that we include a component of mass balance due to submarine

melting on the calving face.

Lastly, we also super-imposed a Gaussian bump, designed to represent a pro-

glacial sill to examine the effects of a sill on glacier behavior. This bump has an
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amplitude of 25 m and a standard deviation of 50 m and is placed 250 m ahead of

the steady state calving front.

4.3.2 Role of tensile and shear strength in determining behavior

To explore the effect of mixed mode failure model over a range of possible yield

strengths, we varied two parameters: the tensile strength and shear strength of ice.

In theory, these can be specified simultaneously using the size of pre-existing starter

cracks and the critical stress intensity factor for mode-I crack propagation. However,

the actual tensile and shear strengths depend on the initial orientation of pre-existing

fractures and may not necessarily be optimally oriented. To explore this possibility,

we varied both tensile and shear strengths independently to sweep out a larger area

in the failure envelope.

For each suite of simulations, we ran the model with a variety of different ice

strengths. First, we calculated tensile strengths and shear strengths using starter

flaw sizes c of 0.05 m, 0.2 m, and 0.8 m, which are indicated by vertical dashed lines

in Figure 4.2. This gives approximate tensile strengths of 30 kPa, 60 kPa, and 125

kPa and approximate shear strengths of 100 kPa, 225 kPa, and 450 kPa. However,

in addition to testing the strength combinations derived from the same starter flaw

sizes, we ran all possible combinations of tensile strength and shear strength to more

fully understand the effect of varying yield strengths on calving behavior. We also

added 0 kPa tensile strength tests to examine the limit of the original Nye zero stress

criterion.
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4.4 Results

4.4.1 Sharp thresholds in shear strength predict retreat

Figure 4.3 shows the time evolution of calving front location over 10 years of

simulation for 125 kPa tensile strength with varying shear strengths and 450 kPa

shear strength with varying tensile strengths. If tensile strength is held constant,

varying shear strength leads to sharp transitions between types of calving behavior.

At the lowest shear strength, rapid catastrophic collapse occurs at the beginning of

simulation. At a higher shear strength of 225 kPa, a large initial calving event occurs,

but the glacier is able to stabilize and begins to re-advance. With a shear strength

of 450 kPa, nearly all calving is suppressed and the glacier constantly advances.

Figure 4.3:
(a) Time evolution of calving front position for tests with 125 kPa tensile strength and
no submarine melt. Results shown for tests with different shear strengths of 100 kPa,
225 kPa, and 450 kPa. The 100 kPa shear strength test rapidly collapses, 225 kPa has
a rapid 600 m initial retreat follow by steady advance, and 450 kPa advances without
any significant calving. This shows a high sensitivity to strength strength, with lower
shear strengths predicting rapid collapse. (b) Time evolution of calving front position
for tests with 450 kPa shear strength and no submarine melt. Results shown for tests
with different tensile strengths of 0 kPa, 30 kPa, 60 kPa, and 125 kPa. Although the 30
kPa tensile strength test has a rapid 1 km initial retreat, it quickly readvances without
further calving. Over 10 years, lower tensile strength predicts a lower average calving
front advance rate, with negligible difference between 60 kPa and 125 kPa.
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In contrast, Figure 4.3b shows that holding shear strength constant and varying

tensile strength leads to smaller changes in calving behavior. With zero tensile

strength, a gradual retreat of approximately 1 km occurs over the 10 year time

period. A tensile strength of 30 kPa leads to a large initial calving event instead of a

series of smaller events, but the glacier quickly begins to re-advance. Larger tensile

strengths of 60 kPa and 125 kPa suppress nearly all calving.

Figure 4.4 shows the average calving front advance rate over 10 years of simulation

for different tensile strengths and shear yield strengths. On average, as both tensile

strength and shear strength are increased, there is an increase in the calving front

advance rate. Varying tensile strength at high shear strengths shifts glacier behavior

between slow advance and slow retreat. The glacier achieves a positive average

advance rate with tensile strength greater than 60 kPa and and shear strength greater

than 225 kPa. This is a clear reflection that as failure strengths increase, calving

flux decreases because the glacier is less likely to fail.

Figure 4.4: Average calving front advance rate over 10 years with varying tensile strengths and
shear strengths for prograde bed without submarine melt. Higher tensile strengths
cause higher advance rates and shear strengths below approximately 225 kPa cause
rapid collapse.

However, at lower shear strengths, the calving behavior undergoes an abrupt tran-
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sition to what could be deemed a marine ice cliff instability behavior. The glacier

first slowly retreats through incremental tensile failure events. Eventually, either

the ice cliff reaches sufficient height that shear localization occurs, detaching a large

aerial berg, or basal tensile crevasse accumulate and contribute to an underwater

calving event as shown in Figure 4.5b. This is followed by further calving events

caused by changing stresses from a buoyancy adjustment (Figure 4.5c). This process

continues until the glacier fully collapses. Qualitatively, this is identical to the be-

havior observed by Bassis and others (2021) with a different approach to modeling

mixed mode failure. Catastrophic collapse is not guaranteed at low shear strengths,

but a shear strength less than approximately 225 kPa appears to be a prerequi-

site for this behavior. Slow rather than catastrophic retreat for intermediate tensile

strengths and low shear strengths indicates that varying tensile strength at low shear

strengths could affect the occurrence of catastrophic collapse.

Figure 4.5: Time evolution over three time steps on constant prograde bed with submarine melt,
with 225 kPa shear strength and 30 kPa tensile strength. Purple indicates areas with
advected tensile crevasses. (a) Small initial calving events form a short ice tongue.
(b) Advected crevasses at the base of the glacier contribute to a second calving event
extending the ice tongue. Tensile surface crevasses deepen upstream in response to
adjusting stresses. (c) Advected tensile crevasses upstream cause another calving event
with a small contribution from shear localization. This process continues leading to
complete glacier collapse.
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4.4.2 Submarine melt weakens ice to catastrophic retreat

Figure 4.6 shows that when submarine melt is included, the average calving front

advance rate as a function of tensile strength and shear strength is largely unchanged.

However, with submarine melt, the requisite initial retreat can be provided by mass

loss due to melt rather than mass loss to incremental tensile calving events. This

initial retreat is further accelerated by the chosen melt profile: a parabolic melt

profile with maximum melt halfway between the water line and the bed produces

glacier “feet” at the bed and aerial portions at the top of the calving front that are

most susceptible to failure at lower yield strengths.

Figure 4.6: Average calving front advance rate over 10 years with varying tensile strengths and shear
strengths for prograde bed with submarine melt. Calving behavior is less sensitive to
varying the tensile strength, depending strongly on shear yield strength. Shear strengths
greater than 225 kPa with a tensile strength greater than 60 kPa prevent catastrophic
collapse through high material strength.

In addition, mass loss due to melt prevents slow glacier advance in the case of

high tensile strength and high shear strength. Varying tensile strength at high shear

strength again makes small adjustment to the average advance rate, but catastrophic

collapse due to shear localization dominates behavior at lower shear strengths.
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4.4.3 Pro-glacial sill stabilizes advance but not retreat

When a Gaussian sill is introduced to the bed geometry, at high yield strengths,

overall glacier advance is stalled on the sill. This is consistent with results omitting

shear localization and submarine melt (Chapter III). Figure 4.7 shows the region of

catastrophic collapse appears similar to the case of the constant prograde bed without

a sill, indicating that the sill does little to prevent the onset of marine ice cliff insta-

bility. It’s primary effect remains limited to restricting glacier advance. Comparing

Figure 4.6 and Figure 4.7 indicates that a shear strength of 225 approximately kPa

is sufficient to prevent catastrophic collapse in both cases. Varying tensile strength

at higher shear strengths again transitions between slow advance and retreat.

Figure 4.7: Average calving front advance rate over 10 years with varying tensile strengths and
shear strengths for prograde bed with bump and submarine melt. Varying the tensile
strength when shear strength is greater than 225 kPa changes advance rate. Shear
strengths less than 225 kPa result in rapid retreat. This behavior is similar the test
with a constant prograde bed, indicating that catastrophic collapse is not sensitive to
a pro-glacial sill.

4.5 Discussion

In all of our tests, there is a portion of the failure envelope where the glacier

reaches a marine ice cliff type instability and rapidly disintegrates. However, this

behavior occurs primarily at shear strengths below 225 kPa. Using the linear elas-
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tic fracture mechanics formulation to consistently specify both yield strengths, this

would correspond to a tensile strength of 60 kPa.

Using our prescribed critical stress intensity factor and internal friction, a shear

strength of 225 kPa gives a pre-existing starter flaw size of 0.2 m. These are relatively

small strengths and large starter crack lengths compared to value ranges proposed by

observation (Pfeffer, 1992) and used in previous modeling efforts (Moore and others,

2010), but not so large to be unrealistic for heavily damaged ice, as can be found near

the terminus of outlet glaciers. Therefore, the fact that our model predicts a marine

ice cliff instability in certain regimes, in spite of the lack of observations, points to a

lack of stabilizing mechanisms.

Even if a marine ice cliff instability type collapse is initiated, it could be arrested

by negative feedback mechanisms such as backstress from melange or piled up ice

or stronger ice upstream that has undergone less melt and refreezing. However, this

does not preclude the possibility of marine ice cliff instability in the past or in the

future if glaciers retreat to high enough cliffs due to other forcings such as increased

surface ablation, submarine melt, or hydrofracture.

Finally, the shear stress at a calving cliff scales linearly with cliff height (Bassis

and Walker, 2012). As seen in Figure 4.5, glaciers considered in this study start with

approximately 10 meters of freeboard in 150 meters of water, which is relatively small

compared to large tidewater glaciers such as Thwaites glacier and Pine Island glacier

in West Antarctica or larger Greenland glaciers such as Helheim or Jackobshavn.

Thus, significantly higher shear strengths than 225 kPa are likely necessary to prevent

catastrophic collapse for these large glaciers. For example, the grounding line of

Thwaites glacier is currently approximately 600 meters below sea level. Using the

estimate for the depth-averaged deviatoric stress as a function of cliff height and
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water depth derived by Bassis and Walker (2012) and calculating using a hypothetical

50 meter cliff height for Thwaites glacier gives a factor of 10 increase in the shear

strength necessary to prevent failure. This would bring estimates of pre-existing

starter crack size into the range of a few millimeters, which is consistent with previous

observations and models (Pfeffer, 1992; Moore and others, 2010).

4.6 Conclusion

Our study shows on idealized geometries that our full Stokes calving model in-

cluding tensile crevasse advection, shear calving, and submarine melt can successfully

reproduce glacier patterns of advance, steady state, slow retreat, and catastrophic

retreat. Notably, in contrast to earlier work (Chapter III), the revised version of our

model can produce sustained, gradual retreat and steady state behavior without a

stabilizing sill.

Submarine melt lowers the net ice velocity by directly impacting the rate at which

the calving front can advance. However, melt also has a demonstrable nonlinear effect

on the net ice velocity by affecting calving rates. With the parabolic melt profile

used in our study, melt is highest halfway between the bed and the water line. Over

time, this causes an overhang to develop near the top of the calving front and a foot

to develop at the base (for a grounding calving front). This calving front geometry is

more susceptible to small calving events, hastening retreat and eventually triggering

a marine ice cliff instability.

Regardless of the inclusion of submarine melt, our results show a high sensitivity

of calving behavior to ice shear strength. Varying tensile strength provides small

shifts to calving front advance rate in the absence of melt and when melt is included,

the effect of varying tensile strength is largely eliminated. In contrast, all tests show
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that catastrophic collapse is highly sensitive to shear strength. While lower shear

strengths do not guarantee catastrophic collapse, avoiding a marine ice cliff stability

at lower shear strengths appears highly sensitive to the exact glacier geometry and

combination of other mass balance inputs to the system.

This work introduces a novel glacier flow and calving model that includes a variety

of important mass balance mechanisms simultaneously, and future work would be

well positioned to test this model on historical data to see how well observations

can be matched and what tuning parameters including viscosity, yield strength, and

submarine melt are most important to replicating observed behaviors.
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CHAPTER V

Conclusion

Our work addresses the important consideration of crevasse advection on calving

as well as the contribution of mixed mode failure in conjunction with the memory

of previously crevassed ice. This is an effort towards better understanding the ice

calving process, which accounts for a significant uncertainty in future sea level rise

projections.

In Chapter II we showed the importance of carefully considering the ice-ocean

boundary condition in full Stokes models that have a rapid calving mechanism. With

the typical approximation used for full Stokes models in glaciology, adding a rapid

calving mechanism can lead to stresses with an unphysical numerical origin. The

simple re-addition of the acceleration term to the stress balance eliminates these

numerical issues without noticeable computational cost. We implement this solution

for all subsequent modeling efforts presented, and we hope that future calving studies

using full Stokes models take note of this subtle numerical issue. For example,

this solution has also been implemented in the newly developed m-ice model that

considers different rheologies for different stress and strain regimes (Bassis and others,

2021).

Using numerical methods established in Chapter II, we proceed in Chapter III to
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implement a full Stokes model with tensile calving and including crevasse advection

using a particle-in-cell method. This extends upon previous work by adding crevasse

advection to the established Nye’s zero stress model, which is a popular implemen-

tation of calving. We test our model on idealized glacier geometries and show that

adding crevasse advection to the Nye’s zero stress model discourages ice tongue for-

mation and can lead to temporary glacier retreat. Crevasse advection also enhances

the stabilizing properties of a bump in the glacier bed. However, we do not observe

catastrophic retreat in any cases, which is of high interest to the glaciological com-

munity due to the proposed “marine ice cliff instability”. Our model’s inability to

produce catastrophic retreat motivates the inclusion of other mass loss mechanisms

including submarine melt and mixed-mode failure. With simple idealized tests, we

show in Chapter III that adding shear failure to our model would be sufficient to

cause catastrophic retreat in some cases.

Improving on the crevasse advection model presented in Chapter III, we conclude

in Chapter IV by including the shear localization process using a brittle compressive

failure model and allow for calving to occur with fractures initiated through both

shear and tensile failure. This model moves away from the Nye’s zero criterion and

allows for the tensile and compressive stress of ice to be defined consistently with

material and microscopic properties of the glacier ice. In this updated model, we

also add submarine melt as an additional source of mass loss. We test this improved

model on the same idealized geometries in III and show that a sharp transition exists

at critical yield strengths where the glacier transitions from steady state behavior

to catastrophic collapse. Adding submarine melt increases overall mass loss, but

does not alter the threshold shear strength necessary to avoid rapid collapse. In

reality, this collapse could be mitigated by negative feedbacks such as backstress
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from mélange buildup due to calving.

Based on the model development presented here, future work would be well moti-

vated to implement mélange backstress, given that mélange formation after calving

provides some stabilization to future calving until ice has been removed from proxim-

ity to the calving front. Additionally, model results on observational data of Green-

land or Antarctic glaciers would provide insight on the most important parameters

to replicate observed glacier advance and retreat patterns. However, in addition to

parameters such as ice fracture toughness and pre-existing crack sizes that directly

impact the calving model, considerations such as ice rheology and basal sliding law

can significantly alter model results and are not direct inputs to the calving model.

The importance of rheology and basal sliding is apparent in Chapter III, where we see

significantly different calving results based on changing ice temperature and sliding

coefficient. Thus, model studies of observational data must take care to explore the

full parameter space and not simply the space directly related to the calving law.
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