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ABSTRACT 
 

 Evolutionarily, the nervous system and immune system have been intertwined for hundreds 

of millions of years. In healthy conditions, these systems work diligently to maintain homeostasis 

and proper functioning. In summation, they keep our bodies moving, our organs operating, our 

minds thinking, and our bodies safe from foreign pathogenic invaders. However, in the event of a 

challenge to homeostasis, like a traumatic injury, both systems engage complex signaling cascades 

to degenerate parts of cells that can’t be saved, protect those that can, remove harmful debris, and 

regenerate and repair to again obtain homeostasis. A common system to study these complex 

response mechanisms is that of a peripheral nerve injury.   

 My research over the past several years has been focused around fully understanding the 

complex immune-nerve communication and consequences that occurs following peripheral nerve 

injury. The work herein keenly elaborates on the time course and content of the immune response 

after peripheral nerve crush injury. We show that granulocytes are the first to respond with 

infiltrating monocytes entering a few days later and finally dendritic cells about a week after injury. 

We however show little evidence of significant immune infiltration into dorsal root ganglia of the 

sciatic nerve and rather DRG-resident immune cell morphological changes. It is also demonstrated 

that mesenchymal progenitor cells are key in shaping the inflammatory milieu after injury. The 

requirement of Csf2 for conditioning-lesion-induced dorsal column axon regeneration is evidenced 

as well as its role in skewing the inflammatory response. The dynamicity of the immune non-

immune responses to nerve injury in wild-type an SARM1 knockout animals at multiple timepoints 

is compared and contrasted. Finally, we are the first group to show the occurrence of efferocytosis 

(the phagocytosis of apoptotic cells) in the injured nerve, identify a specific transcriptomic identity 

for macrophages engaged in this action, and investigate the anti-inflammatory signaling this 

process propagates.  
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1 Introduction: They Dynamic Interplay Between the Immune and 

Nervous Systems 

1.1 Abstract 
 There exists a litany of cells types in the peripheral nerve environment including 

fibroblasts, endothelial cells, resident immune cells, myelinating Schwann cells (SCs), and most 

importantly for the function of the nerve, neuronal extensions called axons. In the case of the 

sciatic nerve, theses axons extend from their cells bodies in dorsal root ganglia (DRGs) near the 

spinal cord all the way to the muscles they innervate in the leg and foot. Many forms of injury can 

occur in the nerve including chronic constriction, complete transection, and crush. Following a 

crush injury one can break down the damaged axon into three portions: the injury site where the 

insult occurred, the proximal stump that is still attached to the cell body in the DRG, and the distal 

stump that is cut off from cell body by the injury (Figure 1.1). The proximal stump will seal its 

ruptured membrane and begin to upregulate several pro-regenerative genes and proteins that will 

aid in its extension back toward its muscular targets. The distal stump however will undergo an 

active destructive process known as Wallerian degeneration. Following injury, SCs trans-

differentiate into repair SCs and circulating immune cells infiltrate through the ruptured blood-

nerve barrier. These cells act to remove cellular debris from the distal segment, create a cellular 

bridge through the hypoxic injury site, and release pro-growth factors to aid proximal segment 

regeneration. If all goes well, the peripheral nerve has the amazing capability to significantly 

regenerate and return function. Though, the repair process is not always complete and novel 

therapies to improve regeneration efficacy are needed. 

 Within the peripheral nerve there may be a yet unexplored biological phenomenon called 

efferocytosis, or the phagocytosis of apoptotic cells (ACs). This process occurs frequently in our 

bodies, every second of every day, to maintain homeostasis and prevent tissue damage that would 

result from secondary necrosis. To accomplish this, an AC releases several chemotactic “find me” 

signals into its environment to attract patrolling phagocytes. An AC also expresses several “eat 

me” signals—not involved in normal pathogen phagocytosis—that bind to specific efferocytic 

receptors, differentiating the two processes. Once bound, the AC is ingested and its many cellular 

components catabolized and either exported or utilized by the phagocyte for anabolic processes 

and to promote an anti-inflammatory and pro-resolution environment. Efferocytosis has received 
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much attention in other systems and diseases including atherosclerosis, auto-immune disorders, 

areas of immune cell development (spleen and thymus), and only recently stroke, but not in the 

peripheral nerve. Deciphering the role efferocytosis plays in the nerve injury response will not 

only further elaborate our understanding of immune function following injury, but also provide 

key insights into potential routes for effective therapies. 

  

1.2 Tissue and Cellular Responses to PNS Injury 
 The ability of the peripheral nervous system (PNS) to spontaneously regenerate injured 

fibers has long been evidenced. Following injuries including sciatic nerve crush/injury (SNC/I), 

chronic constriction, and transection, peripheral neurons are able to initiate pro-growth and 

regenerative pathways that enable them to extend axons across the injury site and reconnect with 

their peripheral targets. For this to proceed properly, a litany of events needs to occur: 1) 

degradation of nerve fibers in the distal nerve stump; 2) subsequent removal of fragmented axons 

and myelin debris by glia and immune cells; 3) the activation of pro-regenerative signaling 

pathways in the surviving cell soma and axonal segment; 4) extension of the axonal growth cone 

past the injury site and toward target tissues; and 5) reconnection of the neuron to its target tissue 

and rebuilding of normal synaptic function. The first two stages will be discussed here and the 

following three in Introduction Section 1.3.  

 

1.2.1 Distal stump degeneration 
 The sheer force of a neuronal injury causes immediate damage and necrosis to surrounding 

cells of the injury site including glia, cells associated with the vasculature, tissue-resident 

fibroblast-like and immune cells, and others. Neuronal extensions (axons) are damaged as well 

and depending on injury severity, the distal portions of injured axons may separate from their cell 

bodies. At this point, the axon can be separated into three distinct regions: the portion remaining 

in-tact with the soma is termed the proximal segment; the separated axonal portion is called the 

distal stump; and finally, the injury site where the direct insult has occurred (Figure 1.1). In the 

peripheral nervous system (PNS), the surviving neuron and its proximal segment have the ability 

to regenerate (an event that will be discussed later), though first the distal segment must degenerate 

and be cleared away. Surprisingly, even though cut-off from its source of nutrients from the soma 
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(Gaudet et al., 2011a; Gordon, 2016; Gordon & Borschel, 2017; Lieberman, 1971), the distal 

segment appears relatively normal for up to 24hrs after transection injury (Coleman, 2005). 

Though quickly after this period the distal stump begins an active process of self-destruction 

termed Wallerian degeneration (WD) (Cattin & Lloyd, 2016), which is distinct from classic cell 

death and apoptosis pathways (Gerdts et al., 2016; Wang et al., 2012; Waller, 1850). Central to 

this process are several molecular initiators, they include elevation of intra-axonal calcium, 

activation of calcium-dependent proteases calpain, degradation of the nicotinamide adenine 

dinucleotide (NAD+)-synthesizing enzyme nicotinamide mononucleotide adenylyltransferase 2 

(NMNAT2), reduction in axonal metabolites NAD+ and adenosine triphosphate (ATP), and 

activation of executioner molecules including sterile alpha and TIR motif containing 1 (SARM1), 

dual leucine kinase (DLK), and axundead (Axed). 

 Immediately after injury there is a rapid influx of calcium which activates proteases like 

calpain that begin to digest the cytoskeleton (Adalbert et al., 2012; M. Ma, 2013; Stirling et al., 

2014; P. Tang et al., 2015; Williams et al., 2014; J. N. Zhang et al., 2016a). Loss of cytoskeletal 

integrity and the rise in intracellular calcium (Avery et al., 2012; R. Villegas et al., 2014) activate 

one of the first key initiators of WD, the sensor molecule DLK. At the same time there is a loss of 

bioenergetic enzymes like NMNAT2 (J. Wang et al., 2005) and essential metabolites NAD+ 

(Belenky et al., 2007; Chiarugi et al., 2012; J. Wang et al., 2005) (which NMNAT2 produces from 

NMN or NaMN) and ATP. DLK senses abnormal cytoskeletal structure, an event that occurs 

following injury (Bounoutas et al., 2011; Hammarlund et al., 2009b; Marcette et al., 2014; J. E. 

Shin et al., 2012b; Valakh et al., 2013a; Watkins et al., 2013; Yan et al., 2009). Though DLK can 

also be regulated by changes in calcium (Yan et al., 2012), activity of ubiquitin ligases (Collins et 

al., 2006; Nakata et al., 2005), and phosphorylation states of other proteins (Watkins et al., 2013). 

DLK promotes further loss of NMNAT2 by promoting its turnover (Shin et al., 2012; Summers et 

al., 2018.; Walker et al., 2017). DLK also activates other downstream executions of axonal 

degeneration like c-Jun N-terminal kinase (JNK) and SARM1. Mutant mice lacking DLK that 

experience sciatic nerve crush showed delayed axonal degeneration (B. R. Miller, Press, Daniels, 

Sasaki, Milbrandt, & Diantonio, 2009). 

 JNK regulates microtubule dynamics and promotes axon fragmentation. Genetic disruption 

of all three JNKs (JNK1-3) protects axons from degenerating after injury (Bennett et al., 2001; B. 

R. Miller, Press, Daniels, Sasaki, Milbrandt, & DiAntonio, 2009). SARM1 interacts with axundead 
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and further promotes loss of NAD+ through enzymatic degradation (Gerdts et al., 2015; Essuman 

et al., 2017; Neukomm et al., 2017). Further loss of NAD+ leads to extended depletion of ATP 

and energetic failure with the distal stump becoming unable to continue normal cellular processes. 

ATP depletion also contributes to loss of mitochondrial membrane potential via a now defective 

Na+/Ca2+ exchanger and calcium channels which leads to a secondary calcium wave (Gerdts et al., 

2015; Gerdts et al., 2013; Loreto et al., 2015; Rishal & Fainzilber, 2014) and release of reactive 

oxygen species (ROS). Collectively, activated SARM1, elevated calcium, and reduced NMNAT2 

(Jonathan Gilley & Coleman, 2010) and NAD lead to increased protease calpain activity which 

carries out degradation and collapse of the cytoskeletal elements of the distal stump. 

 

1.2.1.1 Sterile Alpha and TIR Motif Containing 1 (SARM1) 

 Since the 1980s we have known that axonal degeneration after injury is an active rather 

than passive process. This was first realized with the serendipitous discovery of the Wallerian 

degeneration slow (WldS) mutant mouse whose axons would be spared following sciatic nerve 

injury for weeks (Lunn et al., 1989). Genetic analyses of these mice found they had a highly stable 

fusion protein of the bioenergetic enzyme NMNAT1 and a fragment of the ubiquitination factor 

UBE4B (Conforti et al., 2000; Mack et al., 2001). The WldS gene not only protects from axotomy, 

but also glaucoma, peripheral neuropathy, and moto neuron diseases (Beirowski et al., 2008; Ferri 

et al., 2003; Mi et al., 2005; Sajadi et al., 2004; M. S. Wang et al., 2002). Some have suggested a 

pro-survival role for WldS in the nucleus, where it predominates and interacts with SIRT1 (Araki 

et al., 2004; Mack et al., 2001). Though, later studies verified that it was the long-lived, and 

aberrantly-located, NMANT1 which substituted for the rapidly depleted NMNAT2 in the distal 

axon following injury that conferred axoprotection (Araki et al., 2004; Beirowski et al., 2009; M. 

S. Cohen et al., 2012; J Gilley & Coleman, 2010a; Mack et al., 2001; Sasaki & Milbrandt, 2010). 

NMNAT1 was able to maintain distal segment NAD+ levels and thus inhibit downstream 

degeneration mechanisms including activation of SARM1. 

 Years later a forward genetic screen in flies identified dSarm (the fly homologue of 

SARM1) as an essential gene for WD and solidified its role in axon degeneration in mammals 

(Osterloh et al., 2012). Intriguingly, genetic deletion of SARM1, akin to WldS, in the mouse led to 

prolonged distal stump survival up to 14 days post-injury (Gerdts et al., 2013b; Osterloh et al., 

2012). Though SARM1 knockout mice, compared to WldS mice, seem to be a more useful tool in 
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studying WD mechanisms as WldS mice begin to show signs of denervation and neuromuscular 

abnormalities with age (Jonathan Gilley et al., 2017). In vitro, SARM1 knockout dorsal root 

ganglia (DRGs) are also protected from axon degeneration induced by withdrawal of nerve growth 

factor (Gerdts et al., 2013a). Further, activation of SARM1 in the absence of injury is sufficient to 

promote axon degeneration (Gerdts et al., 2015b; Essuman et al., 2017; Neukomm et al., 2017). 

Activated SARM1 not only promotes neuronal death following injury, but also in response to a 

variety of stressors including mitochondrial toxins, oxygen/glucose deprivation, and viral infection 

(P. Mukherjee et al., 2013; Summers et al., 2014). 

 A more recent body of evidence suggests that SARM1 is the main executioner of axon 

degeneration primarily through the enzymatic NADase activity of its TIR domain (Gerdts et al., 

2015b; Horsefield et al., 2019). Accordingly, reduction in NMNAT2 and NAD+ occurs around 2-

3 hours after axotomy, around the same time that SARM1 becomes active. The loss of NAD+ is 

drastically repressed in Sarm1-/- and catalytically dead SARM1 axons (Gerdts et al., 2015b; 

Essuman et al., 2017). Expectedly, as an essential biosynthetic enzyme, knocking out NMNAT2 

in mice is embryonically lethal. Though NMNAT2 and SARM1 or WldS double knockout mice 

are completely healthy and live into adulthood (J Gilley & Coleman, 2010b; Jonathan Gilley et al., 

2015; Milde et al., 2013). Though primarily thought to be triggered by DLK, another potential 

mechanism of SARM1 activation has been recently supported, focusing on the ratio of NMN to 

NAD+. This hypothesis postulates that NMN can activate SARM1 through its ARM domain and 

competes with NAD+ for this binding site. The loss of NMNAT2, which keeps NMN at low levels 

during homeostasis, leads to a buildup of its metabolite NMN which overwhelms NAD+ and 

activates the NADase activity of the SARM1 TIR domain (Loreto et al., 2020). 

 

1.2.2 Removal of cellular debris 
 Following sciatic nerve injury, the environment of the distal nerve and injury site is laden 

with degenerating and fragmented axonal segments, myelin debris shed by Schwann cells (SCs), 

and other debris from surrounding supporting cells (endothelial cells, pericytes, vascular smooth 

muscle cells, and endoneurial fibroblast-like cells). This debris, including neurite outgrowth 

inhibitor (Nogo), myelin-associated glycoprotein (MAG), and chondroitin sulfate proteoglycans 

(CSPGs), is inhibitory for regeneration and must be cleared if the surviving axons are to regenerate  

(Case & Tessier-Lavigne, 2005; S. Chen & Bisby, 1993; Gordon, 2020; Martini et al., 2008a; M. 



 

 7 

E. Schwab & Strittmatter, 2014; Yiu & He, 2006). This act is carried out primarily by surviving 

SCs, tissue-resident macrophages, and infiltrating myeloid cells (Mi et al., 2005; Vaquié et al., 

2019a; Vargas & Barres, 2007; K. M. Wong et al., 2017). Injury signals prompt SCs to begin a 

complex reprogramming process into repair Schwann cells (rSCs). In this process, myelinating 

SCs downregulate several pro-myelination genes (MBP, P0, EEgr2, Krox20, Pmp22, and MAG) 

(Kristjan R. Jessen & Mirsky, 2008; Nocera & Jacob, 2020a) and upregulate immature/progenitor 

SC factors including p75NTR, GFAP, ErbB2, p38, Erk1/2, MAP, and NCAM (Arthur-Farraj et 

al., 2017; Z. L. Chen et al., 2007a; Gordon, 2009; Guertin et al., 2005; Kristjan R. Jessen & Mirsky, 

2008; D. P. Yang et al., 2012). In preparation for the digestion of myelin, SCs also upregulate 

lysosomal/autophagic digestion genes (Gomez-Sanchez et al., 2015; Jang et al., 2016). 

 SC reprogramming is orchestrated by the master transcription factor c-Jun (Arthur-Farraj 

et al., 2012; Monje et al., 2010; Parkinson et al., 2008). Deactivation of c-Jun prevents the de-

differentiation process and impedes both myelin removal and axon regeneration (Arthur-Farraj et 

al., 2012; Fontana et al., 2012; Hantke et al., 2014a; Klein et al., 2014a; Parkinson et al., 2004, 

2008). Other signaling cascades have been implicated in SC trans-differentiation including 

Ras/Raf/MEEK/ERK, p38-MAPK, JNK-MAPK, Notch, YAP, Notch, and specific epigenetic 

modifications (Agthong et al., 2006; Arthur-Farraj et al., 2012; Mindos et al., 2017; Monje et al., 

2010; Napoli et al., 2012; Parkinson et al., 2008; Woodhoo et al., 2009). Activation of the 

transcription factor STAT3 is also needed for long-term survival of rSCs (Benito et al., 2017). 

Damage associated molecular patters (DAMPs) and/or alarmins like DNA, cytochrome C, and 

H2O2 released by damaged mitochondria contribute to SC reprogramming via sustained 

upregulation of Erk-MAP signaling (Duregotti et al., 2015a). rSCs also leave quiescence, re-enter 

the cell cycle, and begin to proliferate (D. P. Yang et al., 2008). Interestingly in the distal nerve 

stump of WldS mice, SCs do not trans-differentiate into rSCs (Arthur-Farraj et al., 2012) 

suggesting a potential reason for the lack of clearance of the distal segment in these mice.  

 The adult mouse sciatic nerve harbors two physically separated populations of nerve-

resident macrophages. Epineurial macrophages are located in the epineurium, the connective tissue 

surrounding the nerve, while endoneurial macrophages are located within the nerve fascicle in 

close contact with axons (M. Mueller et al., 2003; Ydens et al., 2020a). Following injury-induced 

reprogramming, rSCs begin to phagocytose myelin debris and axonal fragments alongside tissue-

resident endoneurial macrophages. This occurs within 2 days post-injury before the peak influx of 
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circulating monocytes (M. Mueller et al., 2001), though infiltrating immune cells contribute to 

nerve repair in following days as discussed below. Clearance of myelin debris by rSCs and immune 

cells is thought to occur primarily through TAM receptor tyrosine kinases (RTKs) like Axl and 

MER (Lutz et al., 2017), other phosphatidylserine receptors like Tim-1/4 and CD300a, and various 

scavenger receptors including CR3, AI/II, TREM2, and Fc receptors  (Cabral da Costal et al., 1997; 

Dejong & Smith, 1997; Safaiyan et al., 2021). Macrophage release of nitric oxide (NO) has also 

been implicated as one of the methods through which they aid the continual breakdown of myelin 

(D. Levy et al., 2001; Panthi & Gautam, 2017). 

 While local SCs and macrophages could likely complete the clearance process on their 

own, the process is expedited by recruitment of circulating monocytes that differentiate into 

phagocytic macrophages. Following injury, the blood-nerve-barrier is breached and allows for 

ample access to the injury site. To recruit blood-borne immune cells, several cytokines and 

chemokines that promote chemotaxis are released by SCs, endoneurial fibroblasts, tissue-resident 

macrophages, and fast-responding neutrophils. The main chemoattractant drawing in monocytes 

is C-C motif chemokine ligand 2 (CCL2), which binds monocyte C-C motif chemokine receptor 

2 (CCR2) and CCR4 and promotes chemotaxis (Abbadie et al., 2003a; Charo & Ransohoff, 2006; 

Deshmane et al., 2009; Mack et al., 2001). Studies show many of the cell types listed above release 

CCL2, though SCs seem to be a primary source (Subang & Richardson, 2001) and may be 

triggered by rising levels of tumor-necrosis factor alpha (TNFα), leukemia inhibitory factor (LIF), 

interleukin-6 (IL-6), or SARM1-JUN signaling (Subang & Richardson, 2001; Sugiura et al., 2000; 

Tofaris et al., 2002; Q. Wang et al., 2018). CCL2 mRNA is expressed in the injury site and 

proximal stump adjacent to the injury site, while the distal stump has widespread CCL2 

(Cheepudomwit et al., 2008). This occurs as early as 12 hours post-injury and peaks between 1-3 

days post-injury. Application of CCL2-neutralizing antibodies after nerve injury prevented 

macrophage accumulation in the sciatic nerve and reduced myelin clearance (Lindborg et al., 

2017a; Perrin et al., 2005). Similar to the absence of SC response, there is not an increase in 

macrophage infiltration in WldS or CCR2 knockout mice after injury (Niemi et al., 2013). 

 SCs have also been shown to release TNFα, monocyte chemoattractant protein-1 (MCP-

1), placenta growth factor (PGF) (Chaballe et al., 2011; Deshmane et al., 2009; Gaudet et al., 

2011b; Martini et al., 2008b), IL-6, ciliary neurotrophic factor (CNTF) (He & Jin, 2016), IL-1ß, 

IL-1α, and LIF (Rigoni & Negro, 2020) which contribute to monocyte recruitment. Endoneurial 
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fibroblasts secrete CSF1 to attract monocytes (Groh et al., 2015) and injury site ROS (likely from 

axonal mitochondria and other sources) recruit leukocytes (Rigoni & Negro, 2020). Once 

circulating monocytes enter the injury site, the microenvironment instructs their differentiation 

into mature phagocytes which bolster the clearance of cellular and myelin debris through similar 

mechanisms as in SCs (Klein & Martini, 2016). How these cells exit or are removed from the nerve 

environment is still under investigation, but studies suggest they may either traffic back to local 

lymph nodes or undergo apoptosis and subsequent clearance  (Kuhlmann et al., 2001). Ablation of 

macrophages via genetic toxicity or liposome delivery has shown to be detrimental to WD 

(Barrette et al., 2008b; T. Liu et al., 2000). 

 While macrophages are the primary professional phagocyte with the highest capacity for 

fiber debris clearance, neutrophils also play a significant role following nerve injury (Lindborg et 

al., 2017b). They infiltrate the injury site within hours and peak around 24h. Neutrophils are 

recruited by binding of their G-protein-coupled receptors (GPCRs), including C-X-C motif 

chemokine receptor 2 (CXCR1) and CXCR2, by DAMP molecules released after injury like DNA, 

histones, high mobility group protein B1 (HMGB1), N-formyl peptides, ATP, interleukin-1α, 

TNFα, CXCL1/2, and many others (G. Y. Chen & Nuñez, 2010; de Filippo et al., 2013; Eash et 

al., 2010; Nadeau et al., 2011a; Rajarathnam & Desai, 2020). Neutrophils work alongside SCs and 

macrophages to phagocytose debris by recognizing opsonized targets with complement receptor 3 

(CR3) or Fc receptors like FcγRIIa (Daniele Notarangelo et al., 2017). They also secrete several 

pro-inflammatory factors that recruit additional circulating immune cells including CCL2. Further, 

neutrophils release several pro-growth factors and can promote phagocytic macrophages to release 

anti-inflammatory factors like transforming growth factor beta (TGFß) and IL-10 (Robertson et 

al., 2014a; Soehnlein & Lindbom, 2010a). Interestingly, when monocyte-derived macrophages are 

lacking, neutrophils become long-lived and take over a large portion of the phagocytic load in their 

stead (Lindborg et al., 2017b). 

 

1.3 Intrinsic and Extrinsic Growth Mechanisms 
 If the distal axon segment has successfully undergone Wallerian degeneration and 

Schwann cells and immune phagocytes have cleared away debris and myelin and axon fragments, 

the axon stump connected to the neuronal cell soma can begin the regeneration process. Depending 

on the type and severity of injury, some axons will reconnect with their postsynaptic targets and 
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re-form synapses. Within the environment of a regenerating neuron, there are complex intrinsic 

and extrinsic growth mechanisms that come into play. Intrinsically the surviving neuron 

upregulates numerous regeneration-associated genes (RAGs), seals the terminus of the damaged 

proximal stump, restructures its cytoskeleton to form a growth cone, and initiates extension 

towards the injury site. Meanwhile extrinsically, tissue-resident and infiltrating immune cells, 

repair Schwann cells, fibroblasts, endothelial cells, and other elements work in synchrony to 

promote the extension of the injured peripheral nerve. These two broad mechanisms should not be 

thought of as separate entities, as close and frequent cross-talk between all cell types involved is 

required for proper and complete regeneration.  

 

1.3.1 Intrinsic responses to injury 
 Immediately following PNS injury, the proximal stump retracts up to the nearest node of 

Ranvier and begins to re-seal its exposed cytoplasm and form a growth cone (Ertürk et al., 2007a; 

Fishman & Bittner, 2003; Kamber et al., 2009; Martin Kerschensteiner et al., 2005; Knöferle et 

al., 2010; Koley et al., 2019; Spira et al., 1993; J. N. Zhang et al., 2016b). Vesicles originating 

from the cell body endoplasmic reticulum and Golgi being anterogradely transported toward the 

axon are captured by a net of microtubules and fuse with the remaining proximal stump plasma 

membrane to accomplish this feat (Erez et al., 2007; Erez & Spira, 2008; Kamber et al., 2009; 

Spira et al., 2003). The sudden influx of intracellular calcium plays a paramount role in membrane 

sealing and growth (Bradke et al., 2012a; Czogalla & Sikorski, 2005; McNeil, 2005; Tuck & 

Cavalli, 2010; Yoo et al., 2003) and activates kinases like mitogen-activated protein kinase 

(MAPK) and calcium/calmodulin-dependent protein kinase (CaMK) (Ghosh-Roy et al., 2010; 

Mahar & Cavalli, 2018), phosphatases including LAR, PTP, and BEM-1 (Haworth K et al., 1998) 

and proteases like calpain to affect gene expression and remodel the cytoskeleton to a more 

mailable state (Bradke et al., 2012a; Ertürk et al., 2007a; Ghosh-Roy et al., 2010; Kamber et al., 

2009; Martin Kerschensteiner et al., 2005; Spira et al., 1993; Verma et al., 2005a). Calpain 

restructures microtubules and neurofilaments as well as cleaves spectrin at the plasma membrane 

(PM), thus reducing the PMs rigidity (Gitler & Spira, 1998, 2002; Kamber et al., 2009; Spira et 

al., 2003). Superior cervical ganglion 10 (SCG10) has also been shown to play a role in the 

proximal stump as it promotes microtubule dynamicity and supports growth cone formation (M. 

R. J. Mason et al., 2002; E. Shin et al., 2014).  
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 While the surviving neuron is attempting to reinstate homeostasis, there are numerous 

changes in gene and protein expression that initiate the process of regeneration. Sensibly, there is 

a reduction in synaptic transmission proteins including ion channels and synaptic proteins  

(Tedeschi et al., 2016; Y. Zhou et al., 2001) and increase in hundreds of regeneration-associated 

genes (RAGs) and proteins like GAP43, tubulin, actin, SCG10, CAP23, SCG10, SPRR1, galanin, 

gp130, ATF3, mTOR, STAT3, and others (Abe et al., 2012; Bonilla et al., 2002a; Bosse et al., 

2006; Gumy et al., 2011; Holmes et al., 2000a; N. Lee et al., 2004a; K. Liu et al., 2010, 2011; M. 

R. J. Mason et al., 2002; K. K. Park et al., 2008; Y. Zhou et al., 2001; Zigmond, 2001, 2012). 

Increases and decreases have been documented in the expression of several particular mRNAs 

(Boeshore et al., 2004; Costigan et al., 2002). Many of these RAGs are expressed strongly during 

development as well, prompting some to suggest many regeneration programs are a reactivation 

of these developmental signaling systems. Retrograde signals transported from the injury site to 

the nucleus promote expression of many of these pro-regenerative genes and inhibit expression of 

pro-degenerative genes to initiate and sustain axon regeneration (Ben-Yaakov et al., 2012; Cavalli 

et al., 2005; Michaelevski et al., 2010; Rishal & Fainzilber, 2014b; J. E. Shin et al., 2012b; 

Terenzio et al., 2017; Xiong et al., 2010a). Additionally, several transcription factors; like c-Jun, 

STAT3, and ATF (Ben-Yaakov et al., 2012; Chandran et al., 2016; R. P. Smith et al., 2011), growth 

factors; like NGF, and cytokines; like LIF (Holmes et al., 2000a; Zigmond, 2001), have been 

identified to trigger expression or de-repression of several RAGs. 

 Growth-associated protein 43 (GAP43) has been shown to regulate actin cytoskeleton 

dynamics during regeneration and also acts as a substrate for protein kinase C (PKC) to promote 

axonal growth (Larsson, 2006; Laux et al., 2000). Some RAGs like activating transcription factor 

3 (ATF3) have regulatory roles and instead of directly affecting regeneration mechanisms, they 

activate other RAGs like small proline-rich protein 1 (SPRR1), Galanin, and growth-associated 

protein 43 (GAP43). STAT3, potentially by working with mTOR (W. Chen et al., 2016; Gey et 

al., 2016), is necessary for the initiation of growth but not for growth cone elongation (Bareyre et 

al., 2011a; N. Lee et al., 2004b). At the injury site there is a reduction in phosphatase and tensin 

homolog (PTEN) and corresponding increase in mTOR expression (Terenzio et al., 2018). SCG10 

is upregulated in motor and dorsal root ganglion neurons after sciatic nerve crush (Voria et al., 

2006) and its signal prolonged if successful regeneration is delayed (M. R. J. Mason et al., 2002). 

It also localizes in the growth cone of regenerating fibers and its overexpression enhances neurite 
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outgrowth (Grenningloh et al., 2004). SCG10 not only promotes regeneration in the PNS, it is also 

upregulated in neurons following injury to the olfactory bulbs (Ronique Pellier-Monnin et al., 

2001). SPRR1A increases over 60-fold following sciatic nerve injury and localizes to axonal 

compartments. Overexpression of SPRR1A improves neurite outgrowth while reducing its 

signaling detriments outgrowth (Bonilla et al., 2002b). Galanin has shown importance as pro-

survival signal in DRGs following peripheral nerve injury. Genetic mutation of galanin prompted 

a nearly 3-fold increase in DRG apoptosis and a 35% reduction in regenerating peripheral neurons 

(Holmes et al., 2000b). In a different injury system, peripheral diabetic neuropathy, regular 

administration of galanin was found to improve sciatic nerve regeneration and reduce neuropathic 

pain (X. F. Xu et al., 2016). 

 Interestingly many proteins and pathways have dual roles in both regeneration and 

degeneration. For example, axon transport, mitochondrial and cytoskeletal dynamics, and 

microtubule-associated CRMPs show this dichotomous relationship (Blanquie & Bradke, 2018; L. 

H. Forbes & Andrews, 2017; Frati et al., 2017; Gitler & Spira, 1998; Pease & Segal, 2014; Prior 

et al., 2017; G. M. Smith & Gallo, 2018). Previously discussed factors including DLK, JNK, 

calpain, SCG10, and NMNAT2 also maintain this relationship (Y. Fang et al., 2012; J Gilley & 

Coleman, 2010c; Hammarlund et al., 2009a; B. R. Miller, Press, Daniels, Sasaki, Milbrandt, & 

DiAntonio, 2009; J. E. Shin et al., 2012a; Y. Suzuki et al., 2003; Watkins et al., 2013; Yan et al., 

2009). DLK specifically, as a sensor of axonal integrity (Hammarlund et al., 2009a; Valakh et al., 

2013b; Xiong et al., 2010b; Yan et al., 2009), has the ability to activate pro-regenerative and 

degenerative pathways (Hammarlund et al., 2009a; B. R. Miller, Press, Daniels, Sasaki, Milbrandt, 

& DiAntonio, 2009; Yan et al., 2009). In the proximal stump after nerve injury, activated DLK is 

retrogradely transported with JNK to the cell body where it can activate activator protein 1 (AP-

1) and transcription factors like c-Jun (Cavalli et al., 2005; Drerup & Nechiporuk, 2013; Kenney 

& Kocsis, 1998; Lindwall & Kanje, 2005) that act to promote RAG expression including GAP43, 

PARG, CEBP-1, and shy-2 (Rishal & Fainzilber, 2014c; J. E. Shin et al., 2012a; Watkins et al., 

2013). As mentioned previously in the distal stump, DLK can activate the primary executioner of 

Wallerian degeneration SARM1, leading to the fragmentation and degeneration of nerve fibers in 

the distal stump.  

 Mitochondria also have a key role in promoting regeneration by buffering local damage 

signals and regulating the high-energy task of axon extension (Q. Han et al., 2016; Rawson et al., 
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2014). Reduction in mitochondrial transport suppresses regeneration (Cartoni et al., 2016, 2017; 

Q. Han et al., 2016), while increased motility or local injection of mitochondria into the injured 

nerve enhances neuroprotection (B. Zhou et al., 2016). Additionally, upon injury, mitochondria 

release another set of important signaling molecules, reactive oxygen species (ROS). Some 

evidence suggests ROS are primarily harmful molecules which damage cell function and integrity, 

inhibition of which improves recovery after injury (Caillaud et al., 2018; M. Kim et al., 2019; Y. 

Qian et al., 2018; Ullah et al., 2018). Though recent studies admonish these claims as ROS seem 

to be important in tissue healing and regeneration (Gough & Cotter, 2011; Holmström & Finkel, 

2014; Niethammer et al., 2009; Rieger & Sagasti, 2011). Reduced levels of ROS actually impair 

regeneration (Love et al., 2013; Niethammer et al., 2009) and H2O2 can act as a chemoattractant 

for leukocytes imperative for clearing axonal and myelin debris (Gauron et al., 2016; Klyubin et 

al., 1996; Love et al., 2013; E. W. Miller et al., 2010; Romero et al., 2018). H2O2 can interact with 

regeneration-promoting Hedgehog (Gauron et al., 2016; Klyubin et al., 1996; Love et al., 2013; 

Meda et al., 2016; E. W. Miller et al., 2010; Romero et al., 2018) and activates MAPKs and other 

RAGs like Src (Foley et al., 2004). Additionally, H2O2 has been shown to aid in the trans-

differentiation of Schwann cells (Negro et al., 2018), a process imperative for proper regeneration. 

 After the proximal axon stump is re-sealed, cytoskeletal elements come together and 

promote dynamic extension toward the injury site. Growth cones form within hours following a 

PNS crush injury (Ertürk et al., 2007b; Pan et al., 2003) and are composed of microtubules at its 

most proximal portion with actin extending distally to form lamellipodia and filopodia (Dent & 

Gertler, 2003). Much cytoskeletal remodeling must occur for formation of the growth cone 

including microtubules, neurofilaments, actin, spectrin, and ankyrin (Bradke et al., 2012b; Kamber 

et al., 2009; Verma et al., 2005b). Much of this is driven by the activity of calpain (Gitler & Spira, 

1998, 2002; Spira et al., 2003). To extend, growth cone F-actin is continuously polymerized at the 

distal front and binds to existing and repaired extracellular matrices. This traction, with the help 

of actin-myosin motors, pulls the regenerating axon forward toward the site of injury (Dent & 

Gertler, 2003). Local translation of mRNA is also imperative for successful axon regeneration and 

provides local access to proteins that are critical for growth cone reformation and motility (Verma 

et al., 2005b; Vogelaar et al., 2009; Yan et al., 2009). As the growth cone extends toward the injury 

site, it actively senses and utilizes many extrinsic signals from repair Schwann cells, immune cells, 

and fibroblast-like cells that promote regeneration. 
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1.3.2 Extrinsic responses to injury 
 While activation of intrinsic growth capacities of surviving neurons is essential for axon 

regeneration, extending growth cones and re-growing axons would make almost no headway if it 

were not for the many extrinsic factors present to facilitate. The removal of cellular and myelin 

debris is an important first step in this process, though the regenerating axons now must cross the 

tumultuous terrain of the injury site and extend further distally to reach their target tissues. A 

variety of cells aid in this process including repair Schwann cells that guide and provide substrate 

for growth cone extension, macrophages that stimulate blood vessel formation, fibroblasts and 

epithelial cells that stimulate frequent cross-talk amongst these different populations to help build 

a bridge across the injury site, and finally the neuromuscular junction that provides chemotactic 

guidance ques. Most of these cells have multiple roles throughout the regeneration process, each 

of which will be described in detail below.  

 

1.3.2.1 Schwann cells 

 As touched upon briefly when removal of debris from the injury site was discussed above, 

following injury Schwann cells (SCs) undergo a reprogramming process into repair Schwann cells 

(rSCs). Their pro-myelination genes are downregulated while pro-growth and proliferative genes 

are upregulated. The master regulator identified in this process is the transcription factor c-Jun 

(Arthur-Farraj et al., 2012; Fontana et al., 2012; I. S. Han et al., 2007; Harrisingh et al., 2004). 

Alterations of c-Jun through deactivation or genetic deletion significantly impairs rSC myelin 

clearance, trophic factor release, and regeneration (Arthur-Farraj et al., 2012; Fontana et al., 2012; 

Hantke et al., 2014b; Klein et al., 2014b; Parkinson et al., 2004, 2008; Zanazzi et al., 2001). Other 

important factors for the trans-differentiation process and maintenance of the rSC state include 

extracellular signal-regulated kinase (ERK) (Arthur-Farraj et al., 2012; Fontana et al., 2012; 

Harrisingh et al., 2004; Napoli et al., 2012), STAT3 (Benito et al., 2017), JNK (Monje et al., 2010; 

Parkinson et al., 2004, 2008; Yamauchi et al., 2008, 2011), sonic hedgehog (Hashimoto et al., 

2008), and even epigenetic modifications including histone (de)methylation and (de)acetylation 

(Fuhrmann et al., 2018; Kristjan R Jessen & Mirsky, 2019; K. H. Ma & Svaren, 2016, 2018; Nocera 

& Jacob, 2020b). 
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 One of the primary roles for rSCs in promoting repair is the formation of a cellular bridge 

extending through the damaged, hypoxic space of the injury (Parrinello et al., 2010a; Rosenberg 

et al., 2014; Y. Xiao et al., 2015) rSCs release basal lamina factors that deposit in the extracellular 

matrix of the injury site (Chernousov & Carey, 2000; Namgung, 2014) and mediate interactions 

between the axonal growth cone and rSC integrins (Bunge & Bunge, 1994; Carr & Johnston, 2017; 

Namgung, 2014). They also express Netrin 1 which has been shown to interact with the neuronal 

CDC receptor and guide axons across the bridge (Dominici et al., 2017; X. P. Dun & Parkinson, 

2020; Jaminet et al., 2013; Rosenberg et al., 2014; Webber et al., 2011). rSCs increase expression 

of SRY-box transcription factor 2 (SOX2) and ephrin receptor EphB2 which interact directly with 

ephrin B ligands on fibroblasts (Coulthard et al., 2012; Parrinello et al., 2010a; Roberts et al., 

2017). This signaling prompts an increase and re-localization of N-CAM and N-cadherin to the 

cell surface which prompts a signaling switch from contact-inhibition to attraction. This promotes 

rSCs to form extended cords and migrate collectively across the injury site (Arthur-Farraj et al., 

2012; Parrinello et al., 2010a). Though they can be halted if they come into contact with any 

remaining debris, emphasizing the necessity for effective myelin removal beforehand (Parrinello 

et al., 2010a). 

 In addition to providing substrate for regenerating axons, rSCs release several pro-growth 

and survival factors necessary for successful regeneration. rSCs release exosomes containing 

RNAs, p75NTR, and other proteins which are ingested by re-growing axons and stimulate positive 

growth cone dynamics (Lopez-Verrilli et al., 2013). They also upregulate neuronal pro-survival 

and growth factors like c-Jun, GDNF, NT3, BDNF, NGF, and VEGF (Arthur-Farraj et al., 2012; 

Z. L. Chen et al., 2007b; Fontana et al., 2012; Kristjan R Jessen & Mirsky, 2019; Vaquié et al., 

2019b) which foster a pro-regenerative environment. Released rSC cytokines including LIF, IL-6, 

and CNTF can bind gp130 receptors on neurons and activate JAK-STAT pathways to initiate 

upregulation of axonal growth systems (Bareyre et al., 2011b; Cafferty et al., 2001; Kristjan R 

Jessen & Mirsky, 2019; Madduri & Gander, 2010; Müller et al., 2007; P. D. Smith et al., 2009). 

Interestingly, rSCs release differential factors based on the type of neuron (sensory vs. motor) they 

myelinate (Bolívar et al., 2020; Brushart et al., 2013; Höke et al., 2006). Additionally, there are 

specialized perisynaptic SCs present at the neuromuscular junction where the axon meets 

innervated muscle fibers (Sanes & Lichtman, 1999; Son & Thompson, 1995). Following injury, 
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they maintain their placement and help guide regenerating axons to re-innervate motor endplates 

(Auld & Robitaille, 2003; Kang et al., 2014; Y. Xiao et al., 2015). 

 Once the axonal growth cones have extended across the bridge they reach another set of 

SCs in the distal segment that survived injury, maintained their basal laminae, and formed 

structures call the “Bands of Büngner.” (Arthur-Farraj et al., 2012; Burnett & Zager, 2004; Fontana 

et al., 2012; Kristján R Jessen et al., 2015). Here, SCs express high levels of laminin, NCAM, N-

cadherin, and other adhesion molecules all while adopting a lengthened, “band-like” morphology. 

These bands act as guiding tubes for regenerating axons to growth through and prevent them from 

following aberrant routes (Gomez-Sanchez et al., 2017; Hoffman-Kim et al., 2010; Kristján R 

Jessen et al., 2015; Parrinello et al., 2010a). Interestingly the transcriptome of these SCs differs 

from injury site rSCs as they show less of an increase in genes that promote cell motility, plasticity, 

migration, and proliferation (Arthur-Farraj et al., 2017; Clements et al., 2017a; Kristjan R. Jessen 

& Arthur-Farraj, 2019). 

 

1.3.2.2 Immune cells 

 The sciatic nerve is full of tissue-resident macrophages that maintain immune surveillance. 

Their primary role is to preserve homeostasis by clearing regularly turning over cell populations, 

patrolling for pathogens, and support normal cell-cell interactions. Though, upon injury, they 

become activated and first shift to clearing away cellular debris and myelin. Though they have 

several additional parts to play in promoting regeneration including repairing injury-site 

vasculature, releasing pro-growth factors for neurons, and providing directional cues for both 

axons and SCs. As these tissue-resident immune cells quickly respond to injury, they are 

accompanied by infiltrating neutrophils which aid in debris removal. These, in partnership with 

SCs, and endoneurial and epineural macrophages, release several chemotactic factors (CCL2, 

TNFα, and CSF-1) to recruit circulating monocytes. Infiltrating monocytes then differentiate into 

macrophages and dendritic cells which further aid in removal of cellular debris and later release 

of trophic factors. Recent evidence has suggested natural killer cells (NKs) infiltrating a few days 

after peripheral nerve injury also play a role. Through the interaction of NK natural killer group 

2D (NKG2D) receptor and injured axon ribonucleic Acid export 1 (RAE1), NKs release granzyme 

B to activate axon degeneration programs (Davies et al., 2019). 
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 Though there are many immune cell types involved, macrophages seem to be one of the 

most important contributors to the injury and repair process. Accordingly, lack of macrophages 

due to pharmacological or genetic manipulation is quite detrimental to both Wallerian 

degeneration and regeneration (Barrette et al., 2008b; T. Liu et al., 2000). Comparatively, a delay 

in the recruitment of macrophages into the injured nerve, as in mice lacking common chemotactic 

molecules like Nos2, IL-1ß, or TNFα, led to a similar phenotype (D. Levy et al., 2001; Liefner et 

al., 2000; Perrin et al., 2005). In line with their varying roles, macrophages have also been known 

to exhibit a wide spectrum of phenotypes (S. J. Forbes & Rosenthal, 2014; Murray et al., 2014; 

Novak & Koh, 2013; Wynn et al., 2013) a point discussed in introduction section 1.4. 

 The injury site of a peripheral nerve becomes highly hypoxic due to the damaging of local 

blood vessels that would normally supply a steady stream of oxygen. This hypoxic environment 

encourages macrophages to secrete vascular endothelial growth factor (VEGF) to stimulate 

angiogenesis of new blood vessels and to aid in the initial formation of the tissue bridge that spans 

the injury site and later allows for a stable platform for rSC cords (Cattin et al., 2015). Macrophage 

slit guidance ligand 3 (Slit3) and VEGF work in unison to promote bridge formation across the 

injury site (Cattin et al., 2015; B. Chen et al., 2020; X. P. Dun & Parkinson, 2020; X. peng Dun et 

al., 2019). As many macrophages are responding locally at the site of injury, remaining outer layer 

macrophages in the epineurium work to provide a barrier to rSC joint migration and aids in their 

pathfinding across the injury site and toward the “Bands of Büngner” (Cattin et al., 2015). These 

macrophages express high levels of Slit3 (X. peng Dun et al., 2019) which interacts with rSC 

roundabout guidance receptor 1 (Robo1) that is upregulated due to increased Sox2 expression. 

This interaction acts as a repulsive signal to keep SCs on the right path (Blockus & Chédotal, 

2016). 

 There are several factors expressed by immune cells that could putatively promote axon 

regeneration including arginase 1, oncomodulin, and NGF (DeFrancesco-Lisowitz et al., 2015; 

Gilad et al., 1996; Kurimoto et al., 2013; S. K. Lee & Wolfe, 2000; Leon et al., 2000; Sas et al., 

2020; Schreiber et al., 2004; Y. Yin et al., 2003, 2006, 2009). Indirectly, macrophages promote 

regeneration by encouraging the expression of neuronal RAGs (Kwon et al., 2013; Niemi et al., 

2013, 2016). While canonically thought to amplify the inflammatory response, neutrophils may 

also play a significant role in promoting repair. As mentioned previously they contribute early on 

to the phagocytosis of myelin fragments at the injury site, they are also known to release several 
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growth factors like NGF (Sas et al., 2020) and angiogenic factors like VEGF (Christoffersson et 

al., 2010; Dalli, Montero-Melendez, et al., 2013; Gong & Koh, 2010). They are too known to 

release macrovesicles containing nucleic acids and proteins that drive a pro-resolving phenotype 

in other myeloid cells (Dalli, Montero-Melendez, et al., 2013; Gasser & Schifferli, 2004). 

Additionally, their eventual apoptosis and subsequent phagocytosis by macrophages pushes these 

macrophages toward an anti-inflammatory phenotype by promoting release of TGFß and IL-10 

(Robertson et al., 2014b; Soehnlein & Lindbom, 2010b), a topic that will be discussed later in the 

final introduction section on efferocytosis. 

 

1.3.2.3 Fibroblasts and epithelial cells 

 While a majority of focus is placed on the crucial roles of SCs and immune cell in the 

injured PNS, they paint an incomplete picture. One must also consider additional surrounding cells 

including endothelial cells and fibroblasts (including fibroblast-like mesenchymal cells). These 

cells populate the nerve environment, cross-talk with SCs and macrophages, and are imperative in 

the formation of the tissue-bridge. In response to VEGF and other angiogenic factors, endothelial 

cells proliferate and migrate to generate new blood vessels, reduce the hypoxic state, and work to 

form the tissue bridge between the proximal and distal nerve stumps. As mentioned earlier, these 

vessels in turn provide a substrate and directionality for rSCs to migrate (Bergert et al., 2015; 

Cattin et al., 2015; Y. J. Liu et al., 2015; Potente et al., 2011; Tozluoǧlu et al., 2013). Without 

endothelial cells, rSC migration is inhibited and they are unable to guide regenerating axons (Cattin 

et al., 2015). Once new blood vessels are solidified, they upregulate several survival factors like 

VEGF which activates PI3K/AKT signaling. This not only promotes endothelial cell survival 

(Warren & Iruela-Arispe, 2010) but VEGF is also known to have beneficial effects on regenerating 

fibers (Z. Fang et al., 2020; Kilic et al., 2006; Storkebaum et al., 2004). Another survival factor. 

Fibroblast growth factor (FGF), is also known to have similar effects on endothelial cells and nerve 

fibers (Beenken & Mohammadi, 2009; Grothe et al., 2006; Guzen et al., 2012; Jungnickel et al., 

2006). Finally, endothelial cells have been extensively evidenced to interact with and direct the 

immune response to damage and pathological circumstances (Danese et al., 2007; Y. Shao et al., 

2020). 

 Fibroblast-SC interactions are essential for regeneration (Cattin et al., 2015; Parrinello et 

al., 2010b). Fibroblast-released TGFß not only shifts the inflammatory milieu toward a pro-
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resolving phenotype, but also promotes shifts in SC gene expression in their reprogramming 

toward rSCs (Clements et al., 2017b). These cells also promote collective SC migration across the 

injury site through interactions of Tenascin C and ß-1 integrin (Z. Zhang et al., 2016). They also 

aid in the degradation of myelin in the sciatic nerve (Goodrum et al., 1994; Schubert & Friede, 

1981). Further, fibroblasts can play a role in regulating the inflammatory response in a variety of 

tissues (Buechler & Turley, 2018). They can upregulate factors like IL-6, CCL20, and IL-1ß under 

inflammatory conditions or following injury to magnify the immune response and/or recruit 

circulating immune cells (Hideya Kitamura et al., 2011; H. N. Nguyen et al., 2017; Richard et al., 

2012). Contrastingly, they too can suppress inflammation and maintain/promote homeostasis by 

release of IL-33, IDO1, and cultivation of inhibitory regulatory T cells (Tregs) (Haniffa et al., 

2007; Kolodin et al., 2015; Mahapatro et al., 2016; Tykocinski et al., 2017). 

 

1.3.2.4 Neuromuscular junction 

 Intriguingly, PNS axons that are able to regenerate after injury can sometimes find their 

original post-synaptic partners with surprising accuracy (Q. T. Nguyen et al., 2002). However, this 

is not always the case (Lingappa & Zigmond, 2013) and the number of axons that reach their 

targets can be quite partial (Gordon et al., 2009). Degenerating nerve terminals release several 

DAMPs including ATP, and mitochondrial DNA and cytochrome c which activate ERK1/2 in SCs 

and promote their activation though calcium-dependent pathways (Duregotti et al., 2015b; Negro 

et al., 2016). Evidence also suggests some factors released at the nerve terminal like CXCL12α 

(also called SDF-1) can act as a chemoattractant for regenerating and extending axons via binding 

to axonal CXCR4. The administration of recombinant CXCL12α in vivo and in vitro enhances 

axonal growth after neurotoxin synapse degeneration and quickens motor recovery. Sensibly, 

inhibition of CXCL12α with a neutralizing antibody significantly delays recovery (Negro et al., 

2017). Direct pharmacological agonism of CXCR4 also quickens the rescue of neurotransmission 

after injury, while antagonism is preventative (Negro et al., 2019). Zanetti et al., further verified 

the significance of this receptor-ligand interaction in regeneration following sciatic nerve crush on 

top of toxin-induced synaptic degeneration (Zanetti et al., 2019). 

 

1.4 “Bad” Inflammation and “Good” Inflammation 
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 Upon injury, insult, or infection to any biological system, there is inevitably an immune 

response. This is triggered primarily by factors released by injured cells into the blood and 

surrounding area. These factors recruit first-responding immune cells (often neutrophils), which 

begin phagocytosis of debris and subsequent release of additional inflammatory and chemotactic 

signaling molecules. These proceed to recruit more specialized innate immune cells like 

monocytes/macrophages and dendritic cells, which can activate the adaptive arm of the immune 

system (B and T cells) if needed. While this is the stereotypical story of the immune system’s 

recruitment and activation, instilled within this formula are vast nuances and distinct 

specializations that have crucial and long-lasting consequences to human health, tissue repair, and 

homeostatic function. 

 

1.4.1 The harms of immunity in the nervous system 
 In most popular and scientific culture, a commonly relayed message is that inflammation 

is inherently bad. This is indeed true in some cases. Evidence shows that excessive inflammation 

is deleterious through production of toxic cytokines, free radicals, neurotransmitters, and proteases 

(Czeh et al., 2011; Glass et al., 2010; M. Kerschensteiner et al., 2009; Takeuchi, 2010; Wee Yong, 

2010). When an inflammatory response persists, continued production of inflammatory cytokines 

and ROS can result in synapse loss, cell death, and functional impairment in the nervous system 

(Amor et al., 2010; Bao et al., 2009; Hein & O’Banion, 2009; Horn et al., 2008; Kigerl et al., 

2009a; Rao et al., 2012). Chronic inflammation is also associated with neurodegenerative disorders 

like Alzheimer’s disease (AD) (Sokolova et al., 2009; Walter et al., 2007). Amyloid beta (Aβ), a 

key feature of AD, induces inflammatory astrocyte and microglia phenotypes that can contribute 

to neurodegeneration (S. Liu et al., 2012; Meraz-Ríos et al., 2013a; Wirz et al., 2013). Aβ can 

directly bind and activate microglial pro-inflammatory receptors like toll-like receptor 2 (TLR2), 

TLR4, cluster of differentiation 14 (CD14), and TLR6 (Landreth & Reed-Geaghan, 2009; S. Liu 

et al., 2012; Stewart et al., 2010). Expectedly, microglia surrounding Aβ plaques exhibit increased 

inflammatory signaling (W. S. T. Griffin et al., 1995). Forming a positive feedback loop, 

inflammation can also increase Aβ species by enhancing expression of its precursor protein and 

activating necessary cleavage enzymes (Karran et al., 2011). Another CNS disease with chronic 

inflammation, multiple sclerosis (MS), is commonly thought to be propagated by autoreactive B 

cells and certain subsets of T cells which cause white matter loss and subsequent 
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neurodegeneration (Jadidi-Niaragh & Mirshafiey, 2011; Linker et al., 2002; Lovas et al., 2000; 

Reboldi et al., 2009; samoilova, EB; Horton, JL; Hilliard, B; Liu, TST; Chen, 1998). The 

inflammation they propagate leads to axonal demyelination in part by toxic signaling to 

oligodendrocytes (Tanner et al., 2011). 

 Another set of afflictions effected by inflammation include spinal cord injury (SCI) and 

neuropathic pain. SCI is followed by a large influx of inflammatory cells which, if persistent, can 

contribute to further neuronal death on top death from the initial insult (Ankeny et al., 2006; 

Bastien et al., 2015; David et al., 2012; Hansen et al., 2013; L. Yang et al., 2004). It was found 

that preventing infiltration of neutrophils and/or macrophages into the spinal cord can improve 

recovery (Bao et al., 2004, 2008; Popovich et al., 1999). While these cells may not be 

fundamentally destructive, their surrounding pro-inflammatory environment containing pro-

inflammatory factors like TNFα, IL-1ß, and free radicals which may drive them toward a more 

damaging phenotype (Bao et al., 2004, 2008; David & Kroner, 2011; Genovese et al., 2008; A. 

Kumar et al., 2013; Moskowitz et al., 2010; Zong et al., 2012). Metalloproteinases and pro-

inflammatory cytokines like TNFα released by granulocytes, macrophages, and epithelial cells 

may also make neurons more susceptible to excitotoxicity (Love, Louis, & Ellison, 2008). Though, 

macrophages and spinal cord-resident microglia are relatively plastic. If the environment were to 

change with a reduction of these factors, they can shift and take on a pro-resolving phenotype and 

begin to alleviate pathology (Davis et al., 2013; Guerrero et al., 2012; Shechter et al., 2013). 

 A few weeks after peripheral nerve injury (PNI) inflammation normally subsides and 

returns to homeostatic levels, though if there is no resolution it can lead to chronic neuropathic 

pain (Huh et al., 2017; Ji et al., 2016; Littlejohn, 2015). Activation of spinal cord microglial 

purinergic receptor P2 purinoceptor 7 and TLRs can lead to release of inflammatory mediators IL-

1ß and TNFα through nuclear factor-κB (NF-κB), all known to be crucial for promotion of 

neuropathic pain (Chessell et al., 2005; Clark et al., 2010; Heneka et al., 2014; Inoue, 2006; Ji et 

al., 2014; K. Kobayashi et al., 2011; Peng et al., 2016; Tanga et al., 2005). IL-1ß acts on spinal 

cord neurons and increases their excitatory synaptic transmission by regulating N-methyl-d-

aspartate receptor (NMDARs) and gamma-aminobutyric acid (GABA)-release (Clark et al., 2015; 

Kawasaki et al., 2008; Reeve et al., 2000; Viviani et al., 2003). TNFα alters synaptic plasticity and 

pushes astrocytes toward a reactive phenotype (Kronschläger et al., 2016; Liddelow et al., 2017). 

PNI leads to increased brain-derived neurotrophic factor (BDNF) release from spinal cord 
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microglia which binds TrkB receptors on surrounding neurons which downregulates the 

potassium-chloride transporter channel KCC2, leading to an increase in intracellular Cl- ions. 

Increased Cl- converts GABAergic inhibition in these neurons to excitation, shifting the balance 

toward synaptic over-excitation and contributing to neuropathic pain (Coull et al., 2005; Guan et 

al., 2016; Hildebrand et al., 2016; Keller et al., 2007; Trang et al., 2009; Tsuda et al., 2003; Tsuda, 

Kuboyama, et al., 2009; Ulmann et al., 2008). Accordingly, specific deletion of BDNF from 

microglia reduces PNI-induced pain (Sorge et al., 2015). Preventing microglial proliferation also 

improved neuropathic pain following PNI (Gu et al., 2016).  

 Patients with neuropathy have two to three times higher IL-2 and TNF and lower IL-10 

and IL-4 mRNA compared to healthy patients (Üçeyler et al., 2007). IL-4 was 20-fold higher and 

TNF much lower in patients with painless neuropathies compared to those with painful conditions 

(Doupis et al., 2009). In animal models of neuropathic pain, IL-4 has a significant analgesic effect 

(Hao et al., 2006; Kiguchi et al., 2015; S. Sun et al., 2016; Vale et al., 2003). IL-4 knockout mice 

with peripheral nerve injures have higher pain levels along with increased inflammation in their 

spinal cords pain (¨ C ¸eyler et al., 2011). Other factors known to be involved in promoting nerve 

hypersensitivity following PNI include CX3CR/L1 (Clark et al., 2009; Staniland et al., 2010; 

Zhuang et al., 2007), CCR5 (Matsushita et al., 2014), IFNγR1 (Tsuda, Masuda, et al., 2009), 

CSF1R (Guan et al., 2016; Okubo et al., 2016), Trem2 (M. Kobayashi et al., 2016), complement 

(Carroll, 2004; R. S. Griffin et al., 2007), prostaglandins (Galli et al., 2005; Kalinski, 2012), IL-6 

(Kawasaki et al., 2008), purinergic receptors (Barragán-Iglesias et al., 2014; K. Kobayashi et al., 

2011; Tsuda et al., 2003), and CCR/L2 (Abbadie et al., 2003b; Echeverry et al., 2011; Thacker et 

al., 2009). 

 Inflammation not only has a negative connotation in the CNS, but in the PNS as well 

including diabetic neuropathy. Most patients with diabetes (60-70%) are also afflicted by some 

form of neuropathy (Edwards et al., 2008; Sinnreich, M; Taylor, BV; Dyck, 2005; Smith, AG; 

Singleton, 2012; Tracy et al., 2009). Advanced neuropathy eventually results in segmental 

demyelination and axon degeneration (Dyck & Giannini, 1996). Some evidence suggests increased 

levels of long-chain fatty acids and oxidized cholesterol penetrate the blood-nerve barrier and 

initiate neurogenic inflammation and recruit innate and adaptive immune cells (Nowicki et al., 

2010; O’brien et al., 2014). Diabetic patients with neuropathies often have heightened levels of 

several inflammatory factors like TNFα, IL-6, ROS, and master inflammatory transcription factor 
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NF-κB (Cameron & Cotter, 2008; Hussain et al., 2013; Salmenniemi et al., 2005; Shoelson et al., 

2006; Timmins et al., 2009; Vincent, AM; Callaghan, CC; Smith, AL; Feldman, 2011; Y. Wang 

et al., 2006). In animal models of diabetes, many pro-inflammatory mediators are increased and 

dysregulated in early and late disease (Hinder et al., 2018; Hur et al., 2015; Lupachyk et al., 2012; 

O’brien et al., 2015). Adipocytes, fat cells with increased accumulation in diabetics, release 

inflammatory mediators like TNFα, leptin, and adiponectin (Shimomura et al., 2002).  

 Myasthenia gravis (MG) is an auto-immune disorder characterized by degenerating 

neuromuscular junctions (NMJ) and resulting muscle weakness and fatigue (Gilhus & 

Verschuuren, 2015). The focal point of MG pathology is dysfunction in the thymus, where 

structural and functional abnormalities prevent developing auto-reactive T cells from being 

eliminated (Berrih-Aknin et al., 1987; Cavalcante et al., 2011). Normally germinal centers—where 

B cells mature—are rarely present in the thymus, though in MG many germinal centers can be 

found and are surrounded by acetylcholine receptor-expressing myeloid cells (Roxanis et al., 2002; 

Sims et al., 2001). Auto-antibodies and complement factor opsonization of NMJ nicotinic 

acetylcholine receptor, muscle-specific tyrosine kinase, and/or lipoprotein receptor-related protein 

4 facilitate the destruction of the NMJ (Conti-Fine et al., 2006; Dalakas, n.d.; Tüzün & Christadoss, 

2013). Many chemokines, cytokines, and lymphocytes are increased in the MG thymus including 

CCL17, CXCL10, IFNs, MHC-II, CCL5, CCL21, IL-17, IL-32, CXCL12, IL-6, and CCL19 

(Aricha et al., 2011; Berrih-Aknin et al., 2009; Cordiglieri et al., 2014; Feferman et al., 2005; le 

Panse et al., 2006; Meraouna et al., 2006; Poëa-Guyon et al., 2005; Roche et al., 2011; A Uzawa 

et al., 2014; Akiyuki Uzawa et al., 2016; Z. Wang et al., 2012; Xie et al., 2016). Further, the 

number of circulating inflammatory Th17 T cells is increased in patients with MG (Z. Wang et al., 

2012) which secrete inflammation-propagating factors like IL-17, INFg, and GMCSF, while 

reducing expression of anti-inflammatory IL-10 (Cao et al., 2016; Masuda et al., 2010; J. A. 

Villegas et al., 2019; Z. Wang et al., 2012). 

 

1.4.2 The benefits of immunity in the nervous system 
 Though there is abundant evidence and several contexts in which inflammation causes 

harm and destruction, a significant body of work highlights the necessity and benefit of an 

inflammatory response. As stated previously, the clearance of cellular debris after injury is 

essential for returning to homeostasis and for any potential of regeneration after nervous system 
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injury. Tissue-resident macrophages and infiltrating neutrophils and monocyte-derived 

macrophages play significant roles in this process. Inflammatory responses can also have 

beneficial effects on promoting neuroprotection and regeneration (Bollaerts et al., 2017; Morganti-

Kossmann et al., 2002; Schwartz et al., 1999; Stoll et al., 2002). Interestingly in some conditions, 

preventing inflammation has been shown to increase cell death and secondary tissue damage 

(Allan & Rothwell, 2001; Morganti-Kossman et al., 1997). Importantly, certain forms of immune 

signaling are essential for normal nervous system function. In response to peripheral infection or 

insult, there is a transient level of CNS inflammation which activates microglia and astrocytes to 

encourage an evolutionary “sickened behavior” including increased temperature, lethargy, and 

hypophagia which allows the body to reallocate resources toward healing (Bluthé et al., 2000; 

Dantzer et al., 2008; Henry et al., 2009; Imeri & Opp, 2009; Serrats et al., 2010). This response is 

quelled quickly and does not involve entrance of circulating immune cells or neuropathology 

(Dantzer et al., 2008; Norden & Godbout, 2013). Further, hippocampal neurogenesis promoted by 

learning and cognitive performance is regulated by effective T cell signaling (Derecki et al., 2010; 

Kipnis et al., 2012; Ziv et al., 2006). Additionally, co-culture of pro-resolving macrophages with 

neural stem cells activates peroxisome proliferator activated receptor gamma (PPARγ) and TLRs 

to enhance differentiation into neurons and oligodendrocytes while promoting neurite outgrowth 

(Lei et al., 2016; S. F. Ma et al., 2015; Rolls et al., 2007). Other inflammatory factors like IFNγ, 

TNFα, IL-4 IL-6, and others have known roles in regulating neurogenesis, successful long-term 

potentiation, and learning (Baron et al., 2008; Bosak et al., 2018; del Rey et al., 2013; Elmariah et 

al., 2005; McAfoose & Baune, 2009; Schneider et al., 1998). 

 While chronic or aberrant activation can propagate diseases like AD and MS, proper 

immune cell functioning can act to prevent or recover from these conditions. Myeloid cells are 

major players in clearing Aβ plaques and act to delay onset of the disease (Simard et al., 2006). 

CCR2 knockout mice that have impaired monocyte/macrophage recruitment show accelerated AD 

progression, likely due to lack of Aβ clearance (Michaud et al., 2013; Naert & Rivest, 2011). 

Inflammatory astrocyte and microglia phenotypes early in AD may also be beneficial as they aid 

in clearing of Aβ peptides (Meraz-Ríos et al., 2013b). Endogenous cytokines released by anti-

inflammatory T cells and macrophages, like IL-4 and IL-10, can also improve the phagocytosis of 

Aβ (Koenigsknecht-Talboo & Landreth, 2005; Michelucci et al., 2009). Outside administration of 

these factors can induce phagocytosis and are similarly beneficial for neurodegenerative diseases 
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(Sokolowski & Mandell, 2011). Further, mice lacking anti-inflammatory factors like IL-4, IL-33, 

or IL-10 show significantly worsened MS-like pathology (Jiang et al., 2012; Ponomarev et al., 

2007; Jingxian Yang et al., 2009). 

 In addition to their roles in phagocytosis in the CNS and normal brain function, immune 

cells also play key positions in tissue regeneration and nervous system remyelination following 

injury. Injection of the fungal wall extract zymosan promotes optic nerve regeneration after crush 

injury (Baldwin et al., 2015) via macrophage release of oncomodulin (Y. Yin et al., 2006, 2009) 

and/or neutrophil-released growth factors like NGF (Sas et al., 2020). IL-4 or IL-13-exposed, anti-

inflammatory macrophages can suppress deleterious inflammation, promote angiogenesis, axon 

regeneration, oligodendrogenesis, and functional recovery after traumatic brain injury (Kigerl et 

al., 2009b; Schonberg et al., 2007; B. Zhang et al., 2015). Injection of therapeutic microglia 

following spinal cord injury induces axonal regeneration (Barrette et al., 2008a). T cells have even 

been shown to facilitate axonal regeneration and functional recovery after injury (Hauben et al., 

2000; Ishii et al., 2012; Walsh et al., 2015). 

 As mentioned previously, leukocytes and also microglia are significant sources for 

neurotrophic factors like EGF, PDGF, FGF, CNTF, GDNF, IFG-1, osteopontin, BDNF, and 

oncomodulin (Sousa-Victor et al., 2018; Yong & Rivest, 2009). Several of these factors are also 

beneficial for the proliferation and differentiation of oligodendrocytes which can then begin 

remyelination (Higashiyama et al., 1991; Miron et al., 2013a; O’Donnell et al., 2002; Scafidi et 

al., 2014; Yuen et al., 2013). Broadly, immune cells aid remyelination (Goldstein et al., 2016; 

Rawji et al., 2016) through myelin debris clearance. Depletion of monocytes and macrophages 

through clodronate liposomes reduces remyelination potential (Kotter et al., 2001; Triarhou & 

Herndon, 1985). Mice lacking inflammatory factors IL-1ß or TNFα had delayed remyelination 

after injury (Arnett et al., 2001; J. L. Mason et al., 2001). Further, stimulation of immune cells 

with TLR ligands (Glezer et al., 2006; Setzu et al., 2006), IL-4 (Butovsky et al., 2006), or M-CSF 

(Laflamme et al., 2018) is able to indirectly enhance remyelination. 

 

1.4.3 Layered complexity in immune phenotypes 
 As shown by the examples and studies above, much of our thinking regarding inflammation 

has been dichotomous, the “bad” and the “good.” For decades much of the work examining 

inflammation used this distinction with common annotations of “X1” and “X2,” where is “X” is 
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the cell of interest, “1” designates classically activated/pro-inflammatory, and “2” designates 

alternatively-activated/anti-inflammatory/pro-resolving. This was initially and most commonly 

used when examining M1 and M2 macrophages (Mills et al., 2000; Orecchioni et al., 2019; 

Shapouri-Moghaddam et al., 2018; Yunna et al., 2020). The inspiration for the scheme originated 

from T cell nomenclature in which Th1 cells activate macrophages and Th2 cells inhibit 

macrophage activation and instead promote antibody production by mature B cells. The primary 

factors released by these T cell subtypes, IFNγ by Th1 and IL-4/10 by Th2, can skew macrophages 

toward a pro-inflammatory “1” or pro-resolution “2” phenotype (F. O. Martinez & Gordon, 2014; 

Wynn & Vannella, 2016). These two macrophage phenotypes have been studied extensively over 

the years in many injury/disease models and across several organisms. Following injury there is a 

preferential influx of M1 macrophages that are a few days later replaced with M2 macrophages 

(Nadeau et al., 2011b). Intriguingly, in vitro studies have shown that macrophages can shift 

between M1 and M2 phenotypes (Davis et al., 2013; Khallou-Laschet et al., 2010a; van den 

Bossche et al., 2016). Other in vitro studies often indicate that M2-like, but not M1-like, 

macrophages promote neurite growth in DRG neurons, characteristic of regeneration (Kigerl et al., 

2009c). In vivo, a nerve conduit releasing IL-4, an M2-skewing factor, was placed between the 

two stumps of an axotomized sciatic nerve. There it significantly increased the number of 

regenerating fibers, suggestive that M2 macrophages are indeed pro-regenerative (Mokarram et 

al., 2012). 

 This naming notation soon spread to other cells including A1 and A2 astrocytes (Clarke et 

al., 2018; Liddelow et al., 2017; Neal et al., 2018; X. Xu et al., 2018), M1 and M2 microglia (X. 

Liu et al., 2016; Miron et al., 2013b; Orihuela et al., 2016; Y. Tang & Le, 2016), and N1 and N2 

neutrophils (Fridlender et al., 2009; García-Culebras et al., 2019; Y. Ma et al., 2016; Masucci et 

al., 2019), among others. While this characterization of cells was useful in determining cell 

function and polarization, with access to novel and more powerful tools, such as single cell RNA 

sequencing (scRNA-seq), we are now able to more fully examine and characterize these cells and 

begin to understand the truly nuanced and complex identities of these cellular subsets. For 

example, through scRNA-seq, our lab has been able to identify at least five different macrophage 

populations following sciatic nerve crush. This is in line with and adds upon research from other 

researchers (Burl et al., 2018; Gubin et al., 2018; Qie et al., 2020; Ydens et al., 2020b). Others 

have found further nuances in differeent immune populations, with multiple distinct subtypes of 
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brain microglia identified in recent studies (Kubick et al., 2020; Q. Li et al., 2019; Syage et al., 

2020). As we begin to utilize new tools, we can begin to further our understanding of these 

different cellular populations and break away from the simple distinction of “bad” pro-

inflammatory and “good” anti-inflammatory cells. Findings ways to harness and direct these 

inflammatory responses in the direction we desire can be an invaluable tool, not only in reducing 

its negative effects as in AD, peripheral neuropathy, and neuropathic pain but in its capacity to 

promote growth, regeneration, and repair.  

 

1.5 Efferocytosis and the Catabolism of Apoptotic Cells 
 In the human body, the turnover rate for different cell types is highly variable. The range 

spans from highly stable neurons that can last a life time to neutrophils in the immune system that 

perish daily (200 billion per day). Hundreds of billions of cells die in the human body every day 

(Kinchen & Ravichandran, 2008; Nagata, 2018) and millions every second (C. Gregory, 2009). In 

order to maintain homeostasis, they must be quickly and effectively cleared in a process called 

efferocytosis, the phagocytosis of apoptotic cells (ACs). While seemingly a semantic difference, 

the efferocytosis of dying cells involves a myriad of signaling molecules, receptors, and 

intracellular mediators that are quite distinct from those of phagocytosis of pathogens. Further, 

while phagocytes engage in both processes, their activation states and the paracrine signaling 

molecules they release differ greatly. Below I will touch upon the three distinct phases of 

efferocytosis, the signaling molecules involved, and what happens when this process goes awry. 

 Efferocytosis is composed of three main stages: Apoptotic cell finding, cell binding, and 

internalization and degradation. Upon apoptosis, a cell releases several molecules termed “find 

me” signals which promote the efferocyte’s (phagocytic cell “eating” the apoptotic cell) 

chemotaxis to the apoptotic cell. These include several lipid mediators (lysophosphatidycholine, 

sphingosine-1-phosphate), nucleotides (ATP, UTP), cytokines (CX3CL1), and other molecules 

(RP S19, EMAP II, ttRS, ICAM-1). Each with their own families of receptors, LRP1, P2Y2, 

CX3CR1, and various scavenger receptors, respectively. Once the efferocyte has found the AC, it 

then binds to various “eat me” signals displayed on the AC cell surface. The key “eat me” signal 

is phosphatidylserine (PS), which is normally retained on the cytoplasmic portion of the plasma 

membrane by flippases. This externalized orientation is mediated by scramblases in a calcium- 

and caspase-dependent manner upon induction of apoptosis. The efferocyte can bind PS directly 
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through receptors like stabilin-1, TIM-4, and BAI1 or indirectly via bridging molecules like Gas6, 

protein S, and MFG-E8. Additionally, components of complement like C1q, C3, IgM bind ACs 

and act as “eat me” signals when bound to efferocyte receptors LRP1, CRT, and FcγRIIA. 

Activation of theses efferocytic receptors causes downstream, Rac1-dependent actin 

polymerization, efferocytic cup formation, and ingestion of the AC. Finally, the AC is internalized 

and undergoes processing through the endolysosomal compartment and its components 

catabolized. 

 

1.5.1 Apoptotic cell finding 
 Many cells are capable of acting as efferocytes including macrophages, dendritic cells, 

fibroblasts, and epithelial cells. While these cells share extra- and intra-cellular signaling cascades 

in this process, their capacity and voraciousness differ quite greatly (Lars Peter Erwig et al., 2006; 

S. Kumar & Birge, 2016; Parnaik et al., 2000). Often these cells are split into two camps: 

professional and non-professional phagocytes, a characterization that is maintained when 

discussing efferocytosis. Professional phagocytes include macrophages, dendritic cells, 

neutrophils while non-professional phagocytes include fibroblasts, endothelial cells, epithelial 

cells, and most other cells. As macrophages are the most abundant and most frequently involved 

in efferocytosis, they will be the primary focus moving forward. Professional phagocytes have the 

capacity to efferocytose multiple apoptotic cell targets nearly simultaneously and can catabolize 

and process apoptotic cell components relatively quickly (25-95min). On the other hand, non-

professional phagocytes are only able to eat one cell at a time and take much longer (5-9hr) to 

process cellular components (Parnaik et al., 2000). While this may seem highly ineffective and 

suggest a build-up of ACs overtime, it has been exemplified that mice lacking macrophages are 

still able to effectively—though delayed—clear ACs (C. S. Lee et al., 2016; Jenifer Monks et al., 

2008; Wood et al., 2000). 

 Macrophages are arguably the most abundant and active efferocyte throughout the body. 

There are approximately 200 billion macrophages spread out through the average adult human, 

constantly sensing their environment for ACs (Lukens, Lee, Bithell, Foeerster, & Athens, 1993). 

They are uniquely positioned with their cellular machinery to bind AC targets and dispose of them 

quickly. Remarkably, some macrophages have been observed eating/digesting up to 20 ACs at one 

time (Church et al., 2016a; Dransfield et al., 2015a; Firdessa et al., 2014b; Lam et al., 2009; Nakaya 
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et al., 2006a; Schlam et al., 2015a). Interestingly, macrophages seem to preferably ingest ACs 

through one side of its cell surface to bring them through their digestive machinery, almost like an 

assembly line (Nakaya et al., 2008). Within macrophages are multiple, primed homeostatic and 

reactive signaling cascades ready to upregulate their digestive machinery and process the massive 

intake of AC-derived cellular contents including cholesterol, calcium, lipids, glucose, membrane 

components, and others. The details of these signaling mechanisms will be covered in-depth in 

later sections. 

 Sensibly, microglia and macrophages are highly abundant in areas of high levels of 

apoptosis. The dentate gyrus of the brain, where there is high neuronal precursor cell turnover, has 

an abundance of microglia (Luo et al., 2016). Elsewhere in the intestine, lung, bone marrow, testes, 

and thymus, macrophages are known to be ever-present and actively eating the continual supply 

of apoptotic cells (R. W. Bailey et al., 2002; de Paepe et al., 2004; DeFalco et al., 2015; Elliott & 

Ravichandran, 2016; C. S. Lee et al., 2016; D. Park et al., 2011; Pittet & Weissleder, 2011; Sunaga 

et al., 2013; Surh & Sprent, 1994). Non-professional phagocytes are used more often by the body 

to clear dead cells in areas that are scarce in professional phagocyte presence such as lung alveoli 

and intestinal epithelium (Burstyn-Cohen et al., 2012; Dini et al., 2002; Elliott et al., 2010; 

Juncadella et al., 2013; Kevany, BM.; Palczewski, 2010; C. S. Lee et al., 2016; Z. Lu et al., 2011; 

Lysiak et al., 2000; J Monks et al., 2005; Jenifer Monks et al., 2008; Wood et al., 2000). They tend 

to eat dying cells in much later stages of apoptosis, suggesting they may need a stronger summation 

of “eat-me” signals to carry out the act (Parnaik et al., 2000). Further, while professional 

phagocytes ingest apoptotic cells upon first interaction, non-professional cells often delay eating 

of the dying cell for hours after first contact (Lööv et al., 2015; Parnaik et al., 2000). Interestingly, 

it has been shown that macrophages release IGF-I which binds IGF-IR on epithelial cells and 

reduces their appetite for apoptotic cells (C. Z. Han et al., 2016). This can help prevent an epithelial 

cell-initiated inflammatory response as non-professional phagocytes are less capable in 

maintaining tolerance than professional cells. 

 

1.5.1.1 AC-released “find me” signals and associated efferocyte receptors 

 Apoptotic cells are not merely standing by awaiting their eventual phagocytosis, they are 

active participants in their clearance. To attract phagocytes, ACs release several “find me” signals 

into the extracellular space that act as chemoattractants for efferocytes. Signals released include 
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lipids (lysophosphatidycholine & sphingosine-1-phosphate), chemokines (CX3CL1), nucleotides 

(ATP/UTP), and others (Elliott et al., 2009; Gude et al., 2008; Lauber et al., 2003; Medina & 

Ravichandran, 2016; R. B. Mueller et al., 2007; Peter et al., 2008; Truman et al., 2008). 

Lysophosphatidycholine (LPC) was one of the first “find me” signals to be discovered and some 

argue it is the most important (Elliott et al., 2009; Hochreiter-Hufford & Ravichandran, 2013; 

Lauber et al., 2003; Peter et al., 2008). LPC is a lipid produced by the cleavage of 

phosphatidylcholines by activity of phospholipase A2 (Peter et al., 2008, 2010, 2012). Upon 

secretion, LPC acts as an attractant by binding the G-protein coupled receptor (GPCR) G2A on 

macrophages (Peter et al., 2008). Another lipid “find me” signal is sphingosine-1-phosphate (S1P). 

S1P is generated from sphingosine by sphingosine kinase and can bind to phagocyte GPCRs like 

S1P receptors 1-5 to promote efferocyte chemotaxis (Gude et al., 2008). 

 Another key “find me” signal is the cytokine CX3CL1/fractalkine which mainly acts as a 

ligand for CX3CR1 (Peter et al., 2010; Truman et al., 2008). In a specific in vivo example, many 

B cells die during maturation and were found to release CX3CL1 upon apoptosis which bound to 

phagocyte CX3CR1 and influenced phagocyte migration (Truman et al., 2008). A final set of “find 

me” signals includes nucleotides, specifically ATP and UTP (Elliott et al., 2009) which can be 

released through pannexin-1 channels (Chekeni et al., 2010; Elliott et al., 2009). These can attract 

efferocytes by binding to purinergic receptors like the P2Y purinoceptor 2 (Elliott et al., 2009). 

While those discussed above have received the most attention, there are several additional “find 

me” signals including thromobospondin-1 (Moodley et al., 2003), tRNA synthetase (Wakasugi & 

Schimmel, 1999), and even altered electrical activity (Pethig & Talary, 2007; Weihua et al., 2005). 

 

1.5.2 Apoptotic cell binding 
 Upon arrival of an efferocyte to an AC, it next must decide to “eat” or “not eat” the dying 

cell. It does this by weighing the summation of positive “eat me” and negative “don’t eat me” 

signals (Elliott & Ravichandran, 2010; L. P. Erwig & Henson, 2008; Hanayama et al., 2002; 

Hoffmann et al., 2001; Kojima et al., 2017; J. Martinez, 2017). If the “eat me” signals overwhelm 

opposing signals, the efferocyte will proceed with AC ingestion and degradation. Far and away 

the most powerful “eat me” signal is the lipid mediated phosphatidylserine (PS). PS is produced 

by phosphatidylserine synthase 1 and 2 (Arikketh et al., 2008; Kay & Grinstein, 2013). In a healthy 

cell PS is important for the function of several intracellular proteins and aids in tethering proteins 
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to the plasma membrane. Some of these include E3 ubiquitin-ligase NEDD4, isoforms of protein 

kinase C, isoforms of phospholipase C and D, several phosphatases, a number of synaptotagmins, 

and several annexins that have roles in membrane-cytoskeletal anchoring and membrane 

trafficking (Lemmon, 2008).  

 In homeostatic conditions, choline-containing phospholipids like phosphatidylcholine are 

predominantly maintained in the outer plasma membrane leaflet, and amino-phospholipids 

including PS are predominately on the inner leaflet (Leventis & Grinstein, 2010). In these 

conditions, flippase transporters (primarily ATP11A and ATP11C) maintain PS on the 

intracellular portion of the plasma membrane (Segawa et al., 2014, 2016). Upon initiation of 

apoptosis, rising levels of intracellular calcium active scramblases (mainly the XKR family) via 

caspase activity (Elmore, 2007) which flip PS onto the extracellular leaflet of the plasma 

membrane (Valerie A. Fadok et al., 1998; J. Suzuki et al., 2013, 2014, 2016). Caspases also work 

to inactivate flippases to prevent PS from flipping back to the intracellular leaflet (Valerie A. Fadok 

et al., 1998; Segawa et al., 2014, 2016; Tajbakhsh et al., 2020). A secondary and recently 

recognized AC ligand is calreticulin (Calr) which functions similarly to PS. Calr is upregulated on 

the surface of ACs and is recognized by LDL receptors like LRP1 on phagocytes to aid in the 

induction of engulfment (Gardai et al., 2005b; Gold et al., 2010; Reddy et al., 2002; Tajbakhsh et 

al., 2018). Additional “eat me” signals include ICAM-3, oxidized LDL, annexin I, 

thrombospondins, components of complement like C1q, and altered plasma membrane 

glycosylation states (Arur et al., 2003; Lauber et al., 2004). Interestingly, autophagy has been 

shown to be necessary for generation of find-me (lysophosphatidycholine) and eat-me (PS) signals 

(Qu et al., 2007). 

 Efferocytes employ a multitude of diverse receptors in order to perceive the many “eat me” 

signaling molecules expressed by ACs. Most signal through PS including single-pass 

transmembrane receptors like TIM-4, stabilin-2 and CD300f, G protein-coupled receptors like 

BAI1, integrins such as αvβ3/5, immunoglobulins like Trem2, and TAM family receptor tyrosine 

kinases (RTKs) like Mer, Axl, and Tyro3 (Matthew L Albert et al., 2000; Burstyn-Cohen et al., 

2012; S. Das et al., 2011; Dransfield et al., 2015b; Lemke & Burstyn-Cohen, 2010; Lu, Q.; Gore, 

M.; Zhang, Q.; Camenisxh, T.; ...; Goff, SP.; Leemke, 1999; Miyanishi et al., 2007; Nishi et al., 

2014; D. Park et al., 2007; S. Y. Park et al., 2008; Rothlin et al., 2015; Scott, RS.; McMahon, EJ.; 

Pop, SM.; ...; EEarp, HS.; Matsushima, 2001; Seitz et al., 2007; Linjie Tian et al., 2014a; Y. Wu 
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et al., 2005; P. G. Zagórska et al., 2014). Efferocyte TIM-4 directly binds PS (Miyanishi et al., 

2007; Thornley et al., 2014) but is unable to signal intracellularly (N. Kobayashi et al., 2007; 

Miyanishi et al., 2007). It has a very high affinity for PS and thus primarily acts as a tethering 

protein, maintaining the connection with the AC (Freeman et al., 2010; K. Wong et al., 2010; 

Yanagihashi et al., 2017). Stabilin-2 binds PS directly and interacts with GULP and αvβ3/5 to 

activate the ELMO (engulfment and cell motility) family of proteins which inevitably activate 

Rac1 (Akakura et al., 2004a; Matthew L Albert et al., 2000; S. Kim et al., 2012; Kinchen et al., 

2005a). CD300f is another direct PS-binding receptor which promotes efferocytosis, mice 

deficient for CD300f had an accumulation of ACs and increased chance to develop lupus-like 

disease (L Tian et al., 2016). BAI1 can also directly bind PS and signals downstream to activate 

ELMO (D. Park et al., 2007).  

 While most receptors are activated by PS-binding, some receptors are unable to connect to 

PS directly and instead rely on bridging molecules. Integrin αvβ3/5 relies on the lactadherin 

bridging molecule milk fat globule-EGF factor 8 protein (MFG-E8) which binds PS (Akakura et 

al., 2004a; Matthew L Albert et al., 2000; M. H. Andersen et al., 1997; Mikkel H. Andersen et al., 

2000; Hanayama et al., 2002; Poon et al., 2010a; Ravichandran & Lorenz, 2007; Shi et al., 2004). 

MFG-E8 is secreted by macrophages and immature DCs (Hanayama et al., 2006). TAM RTKs 

MER, Tyro3, and Axl rely on bridging molecules Gas6, protein S, tubby-like protein 1, and MFG-

E8 to bind with PS (Burstyn-Cohen et al., 2012; Caberoy et al., 2010; J. Chen et al., 1997; Hall et 

al., 2005; C. Y. Hu et al., 2009a; Kawano & Nagata, 2018; Lemke, 2013; Lew et al., 2014; Scott, 

RS.; McMahon, EJ.; Pop, SM.; ...; EEarp, HS.; Matsushima, 2001; Stitt et al., 1995; Tibrewal et 

al., 2008; Tsou et al., 2014; Y. Wu et al., 2005; A. Zagórska et al., 2014). Interestingly some 

bridging molecules bind with higher affinity than others, with MGF-E8 binding more tightly than 

protein S or Gas6 (Hanayama et al., 2002) 

 Triggering receptor expression on myeloid cells-2 (Trem2) is expressed on myeloid cells 

including macrophages and dendritic cells (Daws et al., 2001; Seno et al., 2009; Turnbull et al., 

2006; K. Wu et al., 2015) and, when working with DAP12, has known roles in proliferation, 

phagocytosis and anti/pro-inflammation (Bouchon et al., 2001; Chu et al., 2008; M. Colonna & 

Wang, 2016; Hsieh et al., 2009; Poliani et al., 2015; Quan et al., 2008; Takahashi et al., 2005). A 

definitive ligand for Trem2 has been elusive, but there is some evidence it binds phospholipids 

like PS and phosphatidylcholine and lipoproteins like ApoE (Atagi et al., 2015; C. C. Bailey et al., 
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2015; J. P. Cannon et al., 2012; Yeh et al., 2016). One group found that infiltrating macrophages 

in mice fed a high-salt diet and subjected to a transient middle cerebral occlusion injury to induce 

stroke were skewed toward an inflammatory and anti-efferocytic phenotype. Enhancement of 

Trem2 signaling improved efferocytic capacity and reduced inflammation (M. Hu et al., 2021a).  

 PS can come in a few different flavors, each of which having different effects on classic 

PS signaling. One major modification generated in a caspase-dependent manner is oxidation, 

creating oxidized-PS (oxPS). oxPS can act as a stronger “eat me” signal for phagocytes (Kagan et 

al., 2002; John Savill et al., 2002a; Tyurin et al., 2014). Some of the PS-binding molecules 

described above, including Gas6, MFG-E8, and Tim-1, bind oxPS with higher affinity than PS 

(Tyurin et al., 2014) and thus enhance efferocytosis. Blocking of oxPS with neutralizing antibodies 

reduced efferocytic effectiveness by macrophages (M. I. K. Chang et al., 1999; Greenberg et al., 

2006). An additional PS modification is hydrolyzation into lysophosphatidylserine (lyso-PS). 

Rather than classic PS receptors, lyso-PS binds GPCRs and can act as an endogenous anti-

inflammatory mediator (Frasch et al., 2013; Frasch & Bratton, 2012; Hajime Kitamura et al., 

2012). 

 While these efferocytic receptors and bridging molecules vary greatly in their make-up and 

binding partners, intriguing evidence suggests there may be a master regulator for many of these 

molecules, ERK5. ERK5 is in the family of MAPKs and GPCRs. Heo found that macrophages 

lacking ERK5 had reduced expression of many efferocytosis bridge molecules and receptors 

including MER, Gas6, and MFG-E8 among others. Thus, Heo indicated ERK5 activation is 

required for AC clearance via upregulation of these efferocytic signaling molecules and also 

shifting of macrophages toward a pro-resolution “M2” phenotype. In vivo, these knockout mice 

showed reduced clearance of ACs and enhanced progression of atherosclerosis due to ineffective 

efferocytosis and buildup of necrotic cells (Heo et al., 2014). 

 

1.5.2.1 Rac1 activation and efferocyte cup formation 

 While there is generous diversity in the number and types of efferocytosis receptors, nearly 

all of them culminate into the activation of a singular pathway. Perhaps the simplest example of 

this is activation of the efferocyte receptor BAI1 by PS. Activated BAI1 stimulates engulfment 

and cell motility 1 (ELMO1). ELMO1 in turn recruits the guanine nucleotide exchange factor 

(GEF) Dock180 to the plasma membrane for activation which switches out GDP for GTP on the 
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RHO family GTPase Rac1 (Brugnera et al., 2002; D. Park et al., 2007). Rac1, via WASP-family 

verprolin homologous protein 1 (WAVE1) and Arp2/3 (I. R. Evans et al., 2013; Kinchen et al., 

2005b; Miki et al., 1998), promote actin polymerization to form an efferocytic cup which the 

efferocyte utilizes to ingest the AC. The set of efferocyte receptors Stabilin-2 and LRP1 both 

interact with GULP to elicit Rac1 activity (S. H. Lee et al., 2008; S.-Y. Park et al., 2008; Su et al., 

2002). Integrins αvβ3/5 also signal through the ELMO-Dock180-Rac1 pathway (Akakura et al., 

2004b; M L Albert et al., 2000). TAM RTK binding to PS through Gas6 and protein S promotes 

their dimerization and phosphorylation which activates PLCg2. PLCg2 then recruits p130CAS to 

activate the CrkII-ELMO-Dock180 module (M L Albert et al., 2000; Brugnera et al., 2002; Y. Wu 

et al., 2005). Quite beautifully, all of these diverse AC ligands, free-floating bridging molecules, 

and efferocyte receptors come together to activate one simple and common pathway and initiate 

the complex task of efferocytosis. 

 As efferocytes are constantly surveying their environment and are prepared to eat potential 

apoptotic cells, healthy cells need a mechanism to ward off these hungry efferocytes. The primary 

technique employed here is expression of “don’t eat me” signals. The most potent inhibitor of 

efferocytosis is CD47, or integrin associated protein (IAP) (Elward et al., 2005; Oldenborg et al., 

2000; Poon et al., 2010b; Ravichandran, 2010). AC plasma membrane-associated CD47 binds to 

SIRPα receptors on efferocytes (Gardai et al., 2005a; Nilsson & Oldenborg, 2009) which leads to 

activation of phosphatases SHP-1 and SHP-2 and attenuation of downstream activation of Rac 

signaling (Blazar, BR.; Lindberg, FP.; Taylor, 2001; Okazawa et al., 2005; Oldenborg et al., 2000), 

which is necessary for phagocytic/efferocytic cup formation. In order to induce apoptosis, 

expression levels of CD47 are reduced as caspase activation leads to shedding of the molecule 

(Azuma et al., 2011). An additional “don’t eat me” signal is CD31 (Brown et al., 2002; Poon et 

al., 2010b), or platelet endothelial cell adhesion molecule (PECAM-1), which binds 

homophilically to CD31 and causes detachment of phagocytes from ACs (Brown et al., 2002). 

CD300a is another potent “don’t eat me” signal (Voss et al., 2015). Interestingly the cellular 

microenvironment plays a key role in deciding if efferocytosis occurs or does not. In inflammatory 

conditions TNFα is often present, this cytokine can upregulate the expression of CD47 to reduce 

efferocytosis (Kojima et al., 2016). Another inflammatory factor, HMGB1, can block integrin 

αvß3 and PS signaling, thus blocking efferocytosis (Friggeri et al., 2010). In addition to membrane-
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bound signals, some cells even express “keep out” signals like lactoferrin to impair homing of 

efferocytes like neutrophils and eosinophils (Green et al., 2016; Seung Yoon Park & Kim, 2017). 

 

1.5.3 Apoptotic cell internalization and degradation 
 After an efferocyte has contacted stronger and/or more “eat me” signals than “don’t eat 

me” signals, the next stage of efferocytosis begins, internalization and degradation. The efferocyte 

plasma membrane envelopes the AC and brings it into an early endosome. As the endosome 

matures, the protein Rab5 is recruited which initiates fusion with a phagosome (Kitano et al., 

2008). Rab5 is exchanged for Rab7 which mediates fusion with late endosomes and lysosomes 

into a phagolysosome, where cellular contents are digested (Cantalupo et al., 2001; Elliott et al., 

2010; Epp et al., 2011; Harrison et al., 2003; Johansson et al., 2007; Rink et al., 2005). Classically, 

if the phagocytosed cell was infected or the phagocyte had ingested a pathogen, the phagolysosome 

would fuse with MHC-II loading compartments that would be loaded with peptides from the 

ingested cell/pathogen and presented to activate other immune cells (Chakraborty et al., 2005; 

Martinez-Pomares & Gordon, 2007; Meier et al., 2003; Saric et al., 2016). Though in efferocytosis, 

instead of fusing with MHC-II loading compartments, the mature phagolysosome is shunted 

toward recycling endosomes (C. Yin et al., 2016, 2019). This unique step in efferocytosis avoids 

presentation of “self” peptides form the AC to other immune cells and avoids initiating 

autoimmunity. 

 Though an AC has carried out much self-digestion and compartmentalization before being 

ingested by an efferocyte, it still contains significant levels of cellular components the efferocyte 

must process. Ingestion of an AC results in a doubling of intracellular content (Kiss et al., 2006). 

The efferocyte takes on lethal amounts of excess lipids, cholesterol, glucose, and other molecules. 

AC-derived cholesterol is processed by the cholesterol acyl transferase ACAT which forms 

cholesterol esters (Cui et al., 2007). This helps prevent the membrane-damaging effects free, 

unmodified cholesterol would have on the efferocyte. Once ACAT has done its work, the modified 

cholesterol is either used by the cell or exported from the efferocyte via the ATP-binding cassette 

transporter (ABCA1) (Kiss et al., 2006; Yvan-Charvet et al., 2010). Interestingly, efferocytes 

begin to upregulate their expression of ABCA1 even before ingestion via signaling through 

efferocyte PS receptors like LRP1 and nuclear receptors like PPARγ (Chawla et al., 2001; Kiss et 

al., 2006; Venkateswaran et al., 2000; Xian et al., 2017). Signaling through efferocyte receptor 
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BAI1 and AC-derived sterols also promote ABCA1 expression (Fond et al., 2015). AC-derived 

glucose and lactate are exported from the cell by various glucose and lactate transporters including 

GLUT1 through upregulation of of Sgk1 and MCT1 (Galván-Peña & O’Neill, 2014; Morioka S, 

et al., 2018). A recent group also suggested a major role for the solute carrier (SLC) family of 

proteins which are increased during efferocytosis and are involved in the release of lactate, shifting 

of efferocyte metabolic pathways, and enhancement of anti-inflammatory signaling (Morioka S, 

et al., 2018). 

 In order to keep up with large numbers of ACs and efferocytic events, efferocytes can 

engage several pathways to ensure continual AC clearance is maintained (Ortega-Gómez et al., 

2013). Efferocyte activation of PPARγ/δ and LXR α/β aids in upregulating and replenishing 

phagocytic receptors (A-Gonzalez et al., 2009; Mukundan et al., 2009) as well as upregulating 

lipid metabolism pathways (Mukundan et al., 2009; Rőszer et al., 2011). Loss of PPARδ reduces 

expression of efferocytosis factors like C1q, MFG-E8, and MER which reduces efferocyte 

effectiveness (Mukundan et al., 2009). 

 Though, efferocytes do have their limit. Once they reach capacity, there is a drastic decline 

in AC clearance (Zent & Elliott, 2017). There have been reports that macrophages can be digesting 

10-20 cells at a time (Church et al., 2016b; Firdessa et al., 2014a; Lam et al., 2009; Miyanishi et 

al., 2007; Nakaya et al., 2006a; D. Park et al., 2011; Schlam et al., 2015b). However excess 

carbohydrates (glucose/sucrose) can cause a macrophage to become vacuolated, lose phagocytic 

capacity, and potentially face death as a result of too much energy production (G. J. Cannon & 

Swanson, 1992; D. Park et al., 2011). One mechanism efferocytes employ to avoid this is 

upregulating mitochondrial uncoupling protein 2 (UCP2) to reduce mitochondrial membrane 

potential and ATP production (D. Park et al., 2011). Interestingly, reduced UCP2 reduced 

efferocytosis while overexpression enhances it (Blanc et al., 2003; D. Park et al., 2011). Though, 

macrophages do not eat cells to the point of lysis and tend to reach capacity around 4 hours of 

continuous eating (Church et al., 2016b; Grandjean et al., 2016). Prolonged exposure (24 hours) 

to apoptotic cells can dampen further efferocytic activity due to fatigue (Church et al., 2016b). 

This could be due to multiple factors including lack of sufficient plasma membrane to surround 

the AC, depletion of efferocytosis surface receptors, or unavailability of intracellular signaling 

molecules like plasma membrane-associated Rac. Contrastingly, short-term exposure (4 hours) 

followed by a break period and then re-exposure can actually enhance their efficiency with 
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increased signaling efficiency and endosome transport as macrophage efferocytic machinery is 

primed after their first exposure (A-Gonzalez et al., 2009). 

 

1.5.4 The immune-modulating effects of efferocytosis 
 As stated above, normal phagocytosis of a pathogen leads to further activation of the 

immune system through peptide presentation via MHC-II to non-phagocytic immune cells. 

Further, a pro-inflammatory cascade is initiated that aids the immune system in mobilizing quickly 

and efficiently to remove the invading threat. When an efferocyte is ingesting an apoptotic “self” 

cell, like a dying neuron, skin cell, or hepatocyte, the aforementioned cascade is the last thing one 

wants. Instead, the AC and efferocyte have multiple mechanisms to instead drive an anti-

inflammatory and regulated pro-resolving response to avoid the breaking of self-tolerance. Upon 

AC ingestion there is a small burst in pro-inflammatory signaling, mainly TNFα (Lucas et al., 

2003). This trend is quickly squashed by PPARγ and D6 signaling which act to suppress 

inflammatory mediators like TNFα, IL-6, INF-1, and CCL5 primarily via inhibition of the master 

inflammatory transcription factor NF-κB (Am et al., 2006; A. Das et al., 2014; C. D. Gregory & 

Devitt, 2004; Pashover-Schallinger et al., 2012; von Knethen et al., 2013; Yoon et al., 2015). 

Congruently the efferocyte enhances anti-inflammatory signaling by promoting release of TGFß 

and IL-10 (de Paoli et al., 2014; Kleinclauss et al., 2006; F. O. Martinez et al., 2009; Zent & Elliott, 

2017; Shuang Zhang et al., 2019). Components of the ingested AC, including sterols, actually feed 

into this process by activating sterol receptors like PPARγ/d and LXRα which stimulate IL-10 and 

TGFß. They also prevent removal of a corepressor on the promoter sequence of TNFα and IL-1ß 

and inhibit their transcription. Many of these factors go on to promote anti-inflammatory 

phenotypes in other cells like T cells. TGFß and IL-10 signaling leads to differentiation into 

regulatory T cells (Tregs) and Th2 cells which go on to promote pro-resolution (A-Gonzalez et al., 

2009; A-González & Castrillo, 2011; Hsu et al., 2015; Mukundan et al., 2009; Oh & Li, 2013; 

Proto et al., 2018). Tregs also enhance efferocytosis efficiency via secretion of IL-13 which 

promotes macrophage upregulation of IL-10 to enhance downstream Rac1-dependent actin 

assembly of phagosomes (Proto et al., 2018). 

 There is indeed an entire category of these anti-inflammatory factors termed specialized 

pro-resolving mediators (SPMs). These include lipoxins, resolvins, protectins, and maresins 

(Bannenberg et al., 2005; Claria & Serhan, 1995; Dalli, Zhu, et al., 2013; J, Dalli; C, 2016; B. D. 
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Levy et al., 2001; Mitchell et al., 2002; Serhan et al., 2000, 2002, 2009, 2015). Lipoxins, or 

lipoxygenase interaction products, are metabolites of arachidonic acid and signal the resolution of 

acute inflammation (Samuelsson et al., 1987; Serhan, 2005). Interestingly they can act as 

chemoattractants for mononuclear cells but do not stimulate pro-inflammatory chemokine release 

(Serhan, 2007). Resolvins are derived from omega-3 fatty acids and contain two common families, 

E (RvE) and D (RvD) series (J. M. Schwab et al., 2007; Serhan et al., 2002). Resolvins are potent 

blockers of inflammation and can halt neutrophil infiltration (Y. P. Sun et al., 2007) and reduce 

cytokine expression (S. Hong et al., 2003). Protectins are produced by the oxygenation of 

docosahexaenoic acid (DHA) and have anti-inflammatory and protective effects (S. Hong et al., 

2003). One of the most well-known members, protectin D1, has a significant role as an anti-

inflammatory, anti-apoptotic, and neuroprotective molecule (S. Hong et al., 2003; Marcheselli et 

al., 2003; P. K. Mukherjee et al., 2004; Serhan et al., 2006). Maresins, derived from the phrase 

“macrophage mediator in resolving inflammation” are also DHA metabolites with potent anti-

inflammatory effects (Deng et al., 2014; Serhan et al., 2009). Interestingly the administration of 

Aspririn can “jump-start” resolution by quickening production of several SPMs (Arita et al., 2005; 

Chiang et al., 2004). 

 As mentioned earlier, after injury neutrophils act as a rich source of ACs after injury and 

can polarize efferocytic macrophages to be more efficient efferocytes (Horckmans et al., 2017). 

For example, binding of MER by Gas6 and PS activates 5-LOX which enhances production of 

SPMs (B. Cai et al., 2016). As a potential therapy, omega-3 fatty acids are known to increase 

presence of several SPMs (Serhan, Charles N., Chiang, 2013). Intriguingly, SPMs play dual roles 

here, in addition to acting as anti-inflammatory mediators they also promote apoptosis of 

neutrophils after they have completed their immune function. They do this by enhancing caspase 

activation and suppressing ERK/Akt pro-survival signaling (el Kebir et al., 2007; el Kebira et al., 

2012). Certain AC-derived molecules act as precursors for SPMs like n-3/6 fatty acids including 

arachidonic, eicosapentaenoic, and docosapentaenoic acid (Claria & Serhan, 1995; Serhan et al., 

2002, 2009, 2015). Additionally, these SPMs help create a positive feedback cycle by increasing 

efferocytosis capacity of macrophages which in turn produce more SPMs (Chiang et al., 2015; 

Dalli & Serhan, 2012; Freire-de-Lima et al., 2006; Godson et al., 2000; Ohira et al., 2010; Prieto 

et al., 2015; J. M. Schwab et al., 2007; Serhan et al., 2002). 
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 In addition to increasing SPMs, efferocytosis promotes many other signaling pathways to 

resolve inflammation. Signaling through efferocyte receptors like TAM RTKs is known to 

stimulate production of IL-10, TGFß, prostaglandin e2, platelet-activating factor (Valerie A Fadok 

et al., 1998; Grimsley & Ravichandran, 2003; Peter M. Henson et al., 2001; Michalski, Megan N, 

et al., 2016; Ren & Savill, 1998; Rothlin et al., 2007; John Savill, 1997; John Savill et al., 2002b). 

Activation of nuclear hormone receptors like PPARγ and LXR also have direct inflammatory 

effects by inhibiting pro-inflammatory IL-23, IL-17, and G-CSF (C. Hong et al., 2012; Johann et 

al., 2006; Mukundan et al., 2009; Rőszer et al., 2011; Stark et al., 2005). In vitro efferocytosis 

studies with human PLB-985 cells that do not express PS during apoptosis failed to induce TGFß 

upon ingestion. Though when PS was exogenously induced in these cells the secretion of TGFß 

by efferocytes was restored (Huynh et al., 2002). As these anti-inflammatory factors are released, 

macrophages take on a more pro-resolving phenotype (Schif-Zuck et al., 2011) and increase 

expression of immunoregulatory signaling like 12/15-lipoxygenase (Uderhardt & Krönke, 2012) 

which creates pro-resolving lipid mediators and encourages immune cell emigration back to 

lymphoid organs and cessation of inflammation (Schif-Zuck et al., 2011). 

 In addition to increasing production of anti-inflammatory factors, activation of many of the 

same receptors also acts to reduce pro-inflammatory signaling. TAM RTKs act to broadly suppress 

TLR, INFR, IL-1, and IL-12 signaling (Cvetanovic & Ucker, 2004; Sunjung Kim et al., 2004; 

Rothlin et al., 2007). Mechanistically it is thought the JAK-STAT signaling of these pro-

inflammatory factors is inhibited by RTK-dependent activation of SOCS1 and SOCS3 (Rothlin et 

al., 2007). Further, activation of MER is known to suppress pro-inflammatory NF-κB (Camenisch 

et al., 1999; Cui et al., 2007; V A Fadok, Savill, et al., 1992; V A Fadok, Voelker, et al., 1992; 

Scott, RS.; McMahon, EJ.; Pop, SM.; ...; EEarp, HS.; Matsushima, 2001). Even some of the 

bridging molecules alone are able to regulate immune responses like MFG-E8 (Ait-Oufella et al., 

2007; Dai et al., 2014; Jinushi et al., 2007; Kojima et al., 2017; G. Sun et al., 2017). Other 

downstream receptors like PPARγ/δ, when activated by sensation of increased cholesterol, can 

suppress inflammatory responses (Ipseiz et al., 2014; Kidani & Bensinger, 2012; Mukundan et al., 

2009). 

 Some groups have sought to employ the inherent downstream activation of anti-

inflammatory pathways through effective efferocytosis by adding apoptotic cells to a highly 

inflammatory environment. Indeed, therapeutic injection of apoptotic cells is able to induce 
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immunosuppression and improve conditions of graft versus host disease (GvHD), diabetes, 

arthritis, and others (Bonnefoy et al., 2016; Gatza et al., 2008; Mevorach et al., 2014; Morelli & 

Larregina, 2010, 2016; Mougel et al., 2012; Perruche et al., 2009; Xia, Chang-Qing, 2007). 

Interestingly the route of administration makes a key difference with ACs injected intravenously 

primarily producing immune tolerance and ACs injected subcutaneously more often leading to 

immunogenicity. This is in part due to the fact that ACs in the blood traffic to the spleen, thought 

to be a primarily tolerogenic organ, while ACs in the skin are engulfed by skin-derived dendritic 

cells and trafficked to lymph nodes, considered a more immunogenic organ (Battisto & Bloom, 

1966; Chaput et al., 2007; Conlon et al., 1980; Ferguson et al., 2002; C. F. Scott et al., 1983). 

Encouragingly this therapy is currently in Phase I/IIa clinical trials for preventing GvHD during 

stem cell transplantation (Mevorach et al., 2014). 

 

1.5.4.1 Induction of tolerance and avoidance of auto-immunity 

 In order to avoid auto-inflammatory conditions brought on by presentation of self-peptides 

to other immune cells, efferocytes have several clever techniques they employ while engulfing and 

digesting ACs. One employed mechanism mentioned earlier is shunting of some efferocytosed 

cargo toward recycling endosomes instead of the MHC-II loading compartments of 

phagolysosomes (C. Yin et al., 2016, 2019). This minimizes the potential contact of self-peptides 

with MHC-II molecules. As a parallel safety measure, phagosomes in pro-resolving macrophages-

those more likely to carry out efferocytosis-undergo acidification more efficiently (Canton et al., 

2014). This acts to advance the digestion of ingested peptides into fragments too small to load onto 

MHC-II molecules. Outside of efferocyte, the immune system has derived additional methods to 

avoid auto-immunity and induce tolerance. Dendritic cells that have engulfed dead or dying cells 

present antigens to CD8+ and CD4+ T cells while DCs that have efferocytosed apoptotic cells 

present only to CD8+ T cells. This lack of dual activation causes the cytotoxic T cells to upregulate 

TRAIL once they are exposed to their activating antigen which acts to inhibit further immune 

activation (Janssen et al., 2003, 2005; Joseph C. Sun & Bevan, 2003). Further, the anti-

inflammatory factors released from successful efferocytosis like IL-10 and TGFß act to promote 

tolerance (John Savill et al., 2002b; Voll et al., 1997). Interestingly when portions of the efferocytic 

pathway are altered, including MFG-E8, MER, C1q, AC-efferocyte bridging molecules, and 

PPARδ, it can lead to auto-immune conditions (Botto et al., 1998; Hanayama et al., 2004; R. S. 
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Scott et al., 2001). The harmful consequences of defective efferocytosis will be discussed further 

in the next section. 

 

1.5.5 When efferocytosis goes awry 
 Efferocytosis often carries on unnoticed, clearing away dying cells and maintaining 

homeostasis. Though when this process goes awry, the consequences can be dire. As stated above, 

millions of cells die every second in the human body, and in the case of an injury hundreds of 

millions can die in an instant. A vast majority of these cells are quickly cleared through successful 

efferocytosis and prevents the spewing of intracellular contents into the extracellular space (Peter 

M. Henson et al., 2001; Kurosaka et al., 2003; Maderna & Godson, 2003; Peter et al., 2010; J 

Savill & Fadok, 2000; John Savill et al., 2002b; Voll et al., 1997). If an AC is stagnant for a time, 

a second wave of clearance mechanisms kicks in, opsonization. Surrounding immune cells release 

molecules like C1q (L. Colonna et al., 2016; Liang et al., 2014), IgM (L. Colonna et al., 2016; S. 

J. Kim et al., 2002; Liang et al., 2014), ficolins (Schmid et al., 2012), pentraxins (Bijl et al., 2003; 

Janko et al., 2011; van Rossum et al., 2004), and even nuclear materials (Zirngibl et al., 2015) to 

tag and opsonize the late apoptotic cell (Gaipl et al., 2001; Mevorach et al., 1998; Ogden et al., 

2001, 2005; Poon et al., 2010b; Quartier et al., 2005; Taylor et al., 2000). This added layer of 

signaling highlights the AC and engages additional phagocytic receptors to ensure its clearance 

including FcγRIIA, C1q receptor, CR1, CD91, and calreticulin (Franz et al., 2007; Hart et al., 

2004; Ogden et al., 2001). 

 Though, if an AC escapes both these layers of targeting, they can become secondarily 

necrotic which results in an explosion of the cell and release of all intracellular contents—also 

termed damaged associated molecular patterns (DAMPs)—including genetic material 

(nucleotides), free-floating calcium, and pro-inflammatory factors (HMGB1) among others into 

the environment (Linton et al., 2016; Scaffidi et al., 2002; Schrijvers et al., 2005a; Thorp & Tabas, 

2009; Yamasaki et al., 2008). Now, instead of AC clearance occurring in its normal 

immunologically silent fashion (Peter M. Henson et al., 2001; Hoffmann et al., 2001; 

Ravichandran & Lorenz, 2007), a large inflammatory response can occur. This process can have 

highly damaging effects, leading to pathological inflammation and even breaking of self-tolerance 

and initiation of autoimmunity (Baumann et al., 2002a; A. L. Evans et al., 2017; Fink & Cookson, 

2005; Poon et al., 2010b; Ren et al., 2003; John Savill et al., 2002b). Comfortingly even if a cell 
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becomes necrotic, phagocytes can employ certain machinery to clean up the debris. Phagocyte 

DNase1 and DNase1L3 can digest extracellular DNA released from necrotic cells (Napirei et al., 

2005; Sisirak et al., 2016) and their scavenger receptors including MSR1, MARCO, and SCARF1 

can be used to clear other released cellular components (Ramirez-Ortiz et al., 2013; Shichita et al., 

2017). Though, this process is not perfect and sometimes cellular contents escape capture do 

promote an inflammatory response, especially if there are any defects in efferocytic machinery. 

 

1.5.5.1 Alterations in efferocytic pathways lead to pathology 

 In an effort to understand the complexities of efferocytic machinery, several groups have 

genetically or pharmacologically altered different components and assessed outcomes on health 

and disease. With the large number of efferocytic ligands and receptors, one would expect the 

system would be highly redundant. Surprisingly, loss of a single receptor in many cases 

significantly reduces efferocytic efficiency in mice. Alterations of MER (P. L. Cohen et al., 2002b; 

Garbin et al., 2013b; Thorp et al., 2008), CD36, LRP1 (Garbin et al., 2013b), SR-BI (Tao et al., 

2015), Tim-1/4 (Miyanishi et al., 2007; S. Xiao et al., 2012), SCARF1 (Ramirez-Ortiz et al., 2013), 

or CD300f (Linjie Tian et al., 2014b) resulted in reduced clearance of ACs (Ait-Oufella et al., 

2008; Doran et al., 2017; Thorp et al., 2008). Even more, double or triple receptor knockouts in 

mice leads to exaggerated advanced onset and/or more severe disease than single knockouts (Q. 

Lu & Lemke, 2001; Miyanishi et al., 2012). This suggests that perhaps PS receptors act in a 

complex together and all portions are needed. As efferocytosis is impaired in these conditions, 

there is also a concordant increase in pro-inflammatory cytokines that are normally inhibited in 

this process (Ait-Oufella et al., 2008; Kimani et al., 2014; Linjie Tian et al., 2014b). Further, 

reduction is efferocyte receptor signaling directly leads to pathologies in mice including auto-

immunity, advanced atherosclerosis, and other diseases. These diseases will be discussed in more 

detail in following sections. 

 Interestingly some receptors, like MER, can be endogenously altered and prompted to 

inhibit efferocytosis. MER can be cleaved by metalloproteinases like ADAM17 to produce a shed 

form of the protein (sMer) (Sather et al., 2007a; Thorp, Vaisar, et al., 2011; Wan et al., 2013). 

sMer can act in a dominant negative fashion and compete for binding with essential bridging 

molecules like Gas6 and protein S, reducing effective efferocytic signaling (Doran et al., 2017; 

Wan et al., 2013). ADAM17 also cleaves the scavenger receptor CD36 and reduces efferocytosis 
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(Driscoll et al., 2013). Accordingly, employing antagonists against ADAM17 can result in 

increased efferocytosis, a potential therapy for disorders with an efferocytic etiology (Boersma et 

al., 2005; Kenis et al., 2006). Finally, other forces of nature including viruses and cancers have 

been able to hijack the efferocytosis system to their advantage. Viruses and cancers cleverly 

increase their expression of surface PS to broadly reduce inflammation and promote immune 

tolerance (Chiba et al., 2012; Ferris et al., 2014; Graham et al., 2014; Kelleherjr et al., 2015; 

Morganti-Kossmann et al., 2002). Viruses also use this technique to invade cells of the immune 

system through their efferocytosis of infected ACs (Amara & Mercer, 2015; Y. H. Chen et al., 

2015; Czuczman et al., 2014; Feng et al., 2013; Mercer & Helenius, 2008, 2010; Morizono & 

Chen, 2014). Potential PS-blocking strategies have been employed as potential therapies in both 

these cases with promising results (Bondanza, Zimmermann, Rovere-Querini, et al., 2004; Dowall 

et al., 2015; Frey et al., 2009; Huang et al., 2005; Moody et al., 2010; Shibata et al., 2014; Soares 

et al., 2008). 

 

1.5.5.2 Atherosclerosis 

 An area of disease where efferocytosis is heavily studied is atherosclerosis (AS). AS 

cardiovascular disease is a major cause of death in men and women across the world (Mozaffarian 

et al., 2015; H. Wang et al., 2016). In healthy blood vessels, macrophages digest any small 

cholesterol and lipid plaques that may form. Though once an individual has entered advanced 

stages of AS, macrophages can become overwhelmed through ingestion of oxidized low-density 

lipoproteins (LDL), other modified lipoproteins, and fat plaques transforming them into “foamy” 

macrophages gorged with lipids (S. G. Chen et al., 2010). These “foamy” macrophages have a 

reduced efferocytic capacity of around 20-fold compared to those in healthy tissues (Kockx, 1998; 

Schrijvers et al., 2005b). In AS lesions there is an accumulation of extracellular debris and 

increased numbers of ACs, suggesting a defect in efferocytosis (M. I. K. Chang et al., 1999; 

Ravichandran, 2010). Macrophages make up >40% of ACs in AS lesions (Frank D. Kolodgie et 

al., 2000) and contribute to plaque necrosis and deleterious cardiovascular events (Hansson et al., 

2015; Y. Li et al., 2013; Liao et al., 2012; Martinet et al., 2011; Y. N. Qian et al., 2014). Here they 

have reached capacity and are unable to continue efferocytosis of additional plaques, propagating 

the disorder. Indeed, the level of AC accumulation is correlated with AS progression (Frank D. 

Kolodgie et al., 2000). 
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 Interestingly in early stages of AS macrophage apoptosis is beneficial as it reduces the 

cellularity of the lesion (Liao et al., 2012; Tabas, 2005) and maintains an anti-inflammatory 

environment as they eat and are eaten by other immune cells, promoting IL-10 production (Babaev 

et al., 2008; Caligiuri et al., 2003; Y. Liu et al., 2006). Though in late stages of AS, as the necrotic 

core forms and efferocytosis is reduced, these apoptotic macrophages become necrotic (Ball et al., 

1995; F D Kolodgie et al., 2004; Schrijvers et al., 2007; Tabas, 2005), activate detrimental 

inflammatory pathways (via IL-6, IL-12, TNFα, etc.), and release damaging proteases 

(Apostolakis & Spandidos, 2013; S. G. Chen et al., 2010; Ohayon et al., 2008; Shah, 2007). 

Advanced AS “foamy” macrophages accumulate more ROS (Chistiakov et al., 2016), activating 

12/15-lipoxygenase which further inhibits efferocytosis (Y. I. Miller, Viriyakosol, et al., 2003; Y. 

I. Miller, Worrall, et al., 2003; Schrijvers et al., 2005b; Swarnakar et al., 1999). 

 Increasing ROS in lesion sites also leads to the formation of oxidized lipids (Song et al., 

2016) that not only further promote the formation of “foamy” macrophages, but they actively 

compete with ACs for efferocyte recognition (Aprahamian et al., 2004; Bird et al., 1999; M. I. K. 

Chang et al., 1999; Oka et al., 1998; Schrijvers et al., 2005b). These molecules compete for 

immune receptors CD14 and SR-BI, scavenger receptors, and can increase Rho kinase activity in 

AS lesions to impair macrophage actin polymerization (Y. I. Miller, Viriyakosol, et al., 2003; 

Nakaya et al., 2006b; Ogden et al., 2005; Randolph, 2014; Schrijvers et al., 2007; Song et al., 

2016). Macrophages aren’t the only cell type that lose their efferocytic capacity with disease 

progression, as blood vessel smooth muscle cells (Vengrenyuk et al., 2015) and dendritic cells 

(Thorp, Subramanian, et al., 2011) interact with oxidized lipids they too are less able to clear 

accumulating ACs. Oxidized LDL (oxLDL) promotes the accumulation of inedible ACs in AS 

plaques (Schrijvers et al., 2005b). oxLDL also induces the production of phospholipid antibodies 

which may cause the shedding of AC “eat me” ligands (M. I. K. Chang et al., 1999; Y. I. Miller, 

Viriyakosol, et al., 2003). When LPC (a major component of oxLDL) was continuously infused in 

AS mice, it impaired efferocytosis and worsened disease (Aprahamian et al., 2004). This could 

also be due to disturbance in the LPC “find me” chemoattractant gradient released by ACs. 

 While excess modified lipids seem to the primary culprit for promotion of AS, alterations 

in several efferocytic receptors and signaling pathways have also been implicated. Some groups 

have found a reduction in efferocytosis mediators including MGF-E8 (Ait-Oufella et al., 2007), 

LRP1 (Gorovoy et al., 2010), and MER (Thorp, Vaisar, et al., 2011), as well as increased “don’t 
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eat me” signal CD47 (Boucher & Herz, 2011) in the necrotic AS core. These alterations often lead 

to the accumulation of ACs and acceleration of atherosclerotic disease (Ait-Oufella et al., 2008; 

Tajbakhsh et al., 2018; Thorp et al., 2008). Experimental alterations of factors like Gas6 (Maree 

et al., 2007), MER (Ait-Oufella et al., 2007; P. L. Cohen et al., 2002a; Thorp et al., 2008), MFG-

E8 (Asano et al., 2004; Hanayama et al., 2004), C1q (van Vré et al., 2012), LRP1 (Boucher et al., 

2003; Lillis et al., 2008; Yancey et al., 2010), SR-BI (Tao et al., 2015), and Calr (Gardai et al., 

2005a) reduce efferocytic capacity, increase inflammation (TNFα and MMP-9), and enhance 

lesion formation (Ait-Oufella et al., 2007, 2008; Bhatia et al., 2007; Thorp et al., 2008; Yancey et 

al., 2010). In human GWASs, AS patients were shown to have reduced expression of the “eat me” 

signal Calr (Kojima et al., 2014). Weakened Calr-LRP1 signaling may reduce the magnitude of 

ABCA1 upregulation macrophages need to export excess cholesterol, thus propagating the disease. 

 Most arterial defects of efferocytotic signaling are tied to the heightened inflammation 

found there (Y. I. Miller, Viriyakosol, et al., 2003; Tao et al., 2015). TNFα promotes expression 

of the potent “don’t eat me” signal CD47 on ACs (Kojima et al., 2016). As mentioned previously, 

defective efferocytosis often leads to heighted inflammation, thus increasing levels of TNFα and 

creating a powerful positive feedback loop (Zhu et al., 2016). TLR signaling can also reduce the 

expression of bridge molecule MFG-E8 and prevent proper formation of MER, LRP1, and SR-BI 

(A-Gonzalez et al., 2009; Costales et al., 2013). ADAM17, which as mentioned earlier can cleave 

MER, is abundantly present in AS necrotic cores and acts to impede efferocytosis (Garbin et al., 

2013a; Gorovoy et al., 2010; Sather et al., 2007b; Thorp, Vaisar, et al., 2011; Wan et al., 2013). 

Interestingly in AS, macrophages were more inclined toward a pro-inflammatory M1 phenotype 

instead of an M2 resolution phenotype (Yamamoto et al., 2011). M2 macrophages have higher 

efferocytic capacity than M1 macrophages (W. Xu et al., 2006) and tend to reduce the severity of 

AS (H. Y. Chang et al., 2015) as they reduce pro-inflammatory mediators like MCP-1 and TNFα 

while upregulating pro-resolution factors including mannose receptor and CD163 (Feig et al., 

2011). Arginase 1 is an M2 marker associated with efferocytosis and is expressed in early AS 

where efferocytes are effectively clearing ACs (Leitinger & Schulman, 2013). Contrastingly, 

arginase 2 is an M1 marker and is expressed more highly in late, progressive AS (Khallou-Laschet 

et al., 2010b). Many potential therapies for treating AS employ a reduction in inflammatory 

signaling and/or an increase in efferocytic effectiveness (Arai et al., 2005; Bories et al., 2013; 
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Boucher & Herz, 2011; Caligiuri et al., 2003; Gautier et al., 2009; Kojima et al., 2016; S. Li et al., 

2009; Y. Liu et al., 2006; Tao et al., 2015). 

 

1.5.5.3 Lupus and auto-immunity 

 When a phagocyte does arrive and attempt to clean up the remnants of a cell that has 

undergone secondary necrosis, some self-peptides (like DNA) can be ingested, processed, and 

presented via MHC-II molecules to activate the inflammatory arm of the immune system that then 

produces autoreactive antibodies (Bondanza, Zimmermann, Dell’Antonio, et al., 2004; Bondanza, 

Zimmermann, Rovere-Querini, et al., 2004; Kuenkele et al., 2003; Muñoz et al., 2010; Rovere et 

al., 2000; Silva et al., 2008). When released into circulation, these antibodies can bind to other 

“self” cells and propagate an autoimmune response (Muñoz et al., 2009, 2010) leading to disorders 

like systemic lupus erythematosus (SLE). SLE is an autoimmune disease affecting several organs 

including the lungs, skin, kidneys, heart, nervous system, and other sysstems (Cancro et al., 2009). 

SLe patients have circulating auto-antibodies that tag nuclei, DNA, phospholipids, and other 

cellular contents which propagates the disease (Rahman et al., 2008). 

 It is known that clearance of ACs in humans with SLE is reduced, pointing toward defective 

efferocytosis (Baumann et al., 2002b; Hepburn et al., 2007; Herrmann et al., 1998; Kuhn et al., 

2006; Muñoz et al., 2010). As further evidence for this, AC challenged macrophages derived from 

SLE patients cannot carry out efferocytosis as effectively as healthy patient macrophages 

(Baumann et al., 2002b; Herrmann et al., 1998; W. H. Shao & Cohen, 2011). Mechanistically it is 

though that, similar to atherosclerosis, there are endogenous alterations in efferocytic machinery 

that reduce the capacity for AC clearance (Herrmann et al., 1998; Muñoz et al., 2010). Indeed, 

humans with deficient C1q expression (Botto & Walport, 2002) or higher levels of shed TAM 

RTKs (Ballantine et al., 2015; J. Wu et al., 2011) in their serum are more prone to developing SLE. 

Genetic polymorphisms in bridging molecule MFG-E8 are also associated with patients being 

afflicted with SLE (C. Y. Hu et al., 2009b). Genetic deletion of several efferocytic signaling 

proteins in animals like MGF-E8, BAI1, TIM-4, MER, and C1q led to reduced efferocytosis and 

SLE-like disorders  (Asano et al., 2004; Hanayama et al., 2004; Q. Lu & Lemke, 2001; Rodriguez-

Manzanet et al., 2010; Schweigert et al., 2014; Scott, RS.; McMahon, EJ.; Pop, SM.; ...; EEarp, 

HS.; Matsushima, 2001). 
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 SLE targets multiple tissues and has widespread accumulation of ACs, but interestingly in 

more targeted inflammatory disease like cystic fibrosis, asthma, and COPD, the accumulation of 

ACs occurs predominantly in the lung (P M Henson & Tuder, 2008). This points to the local role 

efferocytosis plays in health and disease. While atherosclerosis and SLE have gained the most 

attention regarding defective efferocytosis, links to several other disorders have been posited. 

Evidence exits that links other auto-immune disorders including rheumatoid arthritis, diabetes, and 

others (Green et al., 2016; Heimberg et al., n.d.; S. Li et al., 2009; B. A. O’Brien et al., 2002; 

Bronwyn A. O’Brien et al., 2006; Ravichandran, 2010; Waterborg et al., 2018, 2019) to impaired 

AC clearance. 

 

1.5.6 Efferocytosis in the nervous system 
 While efferocytosis has received an abundance of attention in other areas like 

atherosclerosis, lupus, diabetes, and others, its function in the nervous system is only recently 

being explored. There are just a handful of publications investigating the role of efferocytosis 

following strokes in the CNS, almost all in the last six years. As microglia are the primary immune 

cell of the CNS, they carry out the vast majority of efferocytosis there (Damisah et al., 2020; Fu 

et al., 2014), though peripheral immune cells do infiltrate and aid in the process following injury 

(W. Zhang et al., 2019). Interestingly macrophages in vitro were shown to respond to apoptotic 

neurons more quickly and with greater phagocytic capacity than microglia (Iadecola & Anrather, 

2011; Ritzel et al., 2015). Though microglia are imperative for the later stages of healing as they 

become the major efferocyte around seven days after ischemic stroke, as monocytes leave (Ritzel 

et al., 2015). Non-professional phagocytes participate in CNS efferocytosis as well including 

endothelial cells (Grutzendler et al., 2014; Saha et al., 2018), pericytes (Shibahara et al., 2020), 

oligodendrocytes (Ludwin, 1990; K. B. Nguyen & Pender, 1997), and astrocytes (Damisah et al., 

2020; Sloan et al., 2017). 

 Several common efferocyte signaling molecules found in the peripheral are also active in 

the CNS. Microglial Tim-4 and BAI1 are important for phagosome formation and stabilization 

around dying neurons (Mazaheri et al., 2014). Brain microglia and macrophage utilize the IL-4-

STAT6- PPARγ-Arg1 signaling axis to carry out efferocytosis in the ischemic brain (Szanto et al., 

2010). PPARγ activation regulates several efferocytic gene targets (like CD36) and is induced 

during annexin 1-mediated efferocytosis of apoptotic neurons (da Rocha et al., 2019; Flores et al., 
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2016). Astrocytes and microglia employ MER, GULP1, complement, and MGEF-10 to engulf 

synapses and apoptotic neurons as well as ABCA1 to facilitate release of ingested cholesterol 

(Chung et al., 2013; Damisah et al., 2020; Iram et al., 2016; Konishi et al., 2020; Morizawa et al., 

2017; Stevens et al., 2007). Ischemia following stroke elicits reprogramming of phagocytes toward 

an efferocytic phenotype with upregulation of efferocyte receptors and bridging molecules, 

alterations of their cytoskeleton, and activation of anti-inflammatory regulators (W. Cai et al., 

2019; Perego et al., 2011; Shengxiang Zhang, 2019). 

 Similar to the peripheral systems, abolishment or reduction in efferocyte signaling can lead 

to disease and worsened outcomes after injury. A deficiency in STAT6 leads to larger infarct 

volumes and impaired neurological behavior in an animal stroke model (W. Cai et al., 2019). 

Defects in Axl or MER also led to reduced efferocytosis and worsening of outcomes after stroke 

(C. F. Chang et al., 2018). Interestingly it was recently revealed that a high-salt diet can lead to a 

reduction in macrophage efferocytic receptor Trem2, reducing efferocytosis and impairing 

recovery after stroke (M. Hu et al., 2021b). Arginase 1 (Arg1), known to designate pro-resolving 

immune cells, has shown to play a main role in CNS efferocytosis. Efferocytic molecules like 

annexin 1 and IL-4 as well as AC-derived L-arginine increase Arg1 expression (Gray et al., 2005; 

Yurdagul et al., 2020). Arg1, through L-arginine catabolism, activates Rac1 to polymerize actin 

for phagocytic cup formation (Yurdagul et al., 2020). Deletion of Arg1 impairs an efferocyte’s 

ability to ingest multiple ACs (C. Ma et al., 2021; Yurdagul et al., 2020), impairs lysosomal activity 

(C. Ma et al., 2021; Shen et al., 2016), and de-represses inflammatory nitric oxide and superoxide 

production (Fouda et al., 2018). 

 Culmination of research in the CNS and other tissues has identified a few potential avenues 

for treatments following stroke and other CNS disorders. Injection of IL-4 enhances microglial 

efferocytosis and improves recovery after stroke (Zhao et al., 2015). Introduction of a PPARγ 

agonist before and after a rat cerebral artery occlusion improves neurologic function and reduces 

infarct size (Sundararajan et al., 2005; Zhao et al., 2007). Treatment of hemorrhagic stroke with 

the retinoid bexarotene, which activates retinoid X receptors (RXRs), results in increased 

expression of efferocytosis receptors like Axl and CD36 which improve neurological outcomes 

(Certo et al., 2015; C. F. Chang et al., 2020). Further, several specialized pro-resolving mediators 

(SPMs) discussed earlier can reduce severity of stroke and improve recovery by reducing immune 

infiltration and inflammation, enhancing efferocytosis, and reducing neuronal injury (P. Yin et al., 
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2018). Interestingly some literature reveals a potential detriment of CNS efferocytosis where 

damaged neurons that could potentially survive and regenerate are cleared by efferocytes as they 

express “eat me” signals (Fricker et al., 2012). In fact, inhibition of phagocytosis following 

transient ischemia can reduce neuronal loss (Bellizzi et al., 2016; Neher et al., 2013; Jin Yang et 

al., 2021). Though crucially one must consider the timing of these therapies to achieve optimal 

success. Immediately following stroke, infiltrating immune cells are actually skewed toward a 

reparative phenotype, though it is replaced by a pro-inflammatory and non-efferocytic phenotype 

in later phases. Thus, it is important to reduce the ingestion of damaged neurons that could survive 

early on, but increase efferocytosis in later stages to enhance post-stroke recovery (Ting et al., 

2020). 

 In addition to ischemic and hemorrhagic stroke, frequent observations are made of 

increased and accumulating ACs in neurodegenerative disorders including Parkinson’s, 

Alzheimer’s, and Huntington’s disease (Mattson, 2000). This in part may be due to increased rates 

of cell death, but importantly loss of “find me” CX3CL1 signaling was shown to worsen these 

diseases (Cardona et al., 2006). While this work has been encouraging, there remain several 

unanswered questions regarding the role of efferocytosis in the nervous system. Is efferocytosis 

involved in injury and disease states of the peripheral nervous system? If so, are similar signaling 

mechanisms employed including the many “find me,” “eat me,” and “don’t eat me” molecules and 

receptors? What are the specific cell types involved in the process, both the ACs and efferocytes? 

How quickly after injury does efferocytosis engage? Does the process last only during 

degeneration and debris clearance or is it sustained throughout the regeneration process? What are 

the consequences of successful and unsuccessful efferocytosis both in terms of debris clearance 

and immune regulation? Do defects in efferocytosis contribute to conditions like diabetic 

neuropathy, myasthenia gravis, and neuropathic pain? While the work described below answers 

some of these questions, large advancements must still be made to understand the key principles 

governing effective efferocytosis in peripheral nervous tissues. Once these mechanisms are more 

fully understood, they can be better employed as potential therapies for the treatment of debilitating 

and deadly nervous system injuries and diseases.   
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1.6 Figures 
 

 
 

 
 

Figure 1-1 Anatomy of lumbar spinal cord, DRGs, and injured sciatic nerve. 
Diagram displaying the relation of the spinal cord, DRGs, and sciatic nerve within the nervous system. 
After sciatic nerve crush using forceps, the sciatic nerve can be broken down into three segments: proximal 
segment, injury site, and distal stump. The distal stump will undergo Wallerian degeneration and be cleared 
away by Schwann and immune cells. The proximal stump will seal its ruptured membrane, form a growth 
cone, and extend through the injury site after endothelial cells, fibroblasts, and Schwann cells have formed 
a cellular bridge. The proximal stump will then reach the surviving Schwann cells in the Bands of Büngner 
which will guide it toward its terminal muscle targets.  

Proximal Distal Injury 
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2 Analysis of the Immune Response to Sciatic Nerve Injury: 

Efferocytosis as a Key Mechanism of Nerve Debridement 

2.1 Abstract 
 Sciatic nerve crush injury triggers sterile inflammation within the distal nerve and 

axotomized dorsal root ganglia (DRGs). Granulocytes and pro-inflammatory Ly6Chigh monocytes 

infiltrate the nerve first, and rapidly give way to Ly6Cnegative inflammation-resolving macrophages. 

In axotomized DRGs, few hematogenous leukocytes are detected and resident macrophages 

acquire a ramified morphology. Single-cell RNA-sequencing of injured sciatic nerve identifies 

five macrophage subpopulations, repair Schwann cells, and mesenchymal precursor cells. 

Macrophages at the nerve crush site are molecularly distinct from macrophages associated with 

Wallerian degeneration. In the injured nerve, macrophages “eat” apoptotic leukocytes, a process 

called efferocytosis, and thereby promote an anti-inflammatory milieu. Myeloid cells in the injured 

nerve, but not axotomized DRGs, strongly express receptors for the cytokine GM-CSF. In GM-

CSF deficient (Csf2-/-) mice, inflammation resolution is delayed and conditioning-lesion induced 

regeneration of DRG neuron central axons is abolished. Thus, carefully orchestrated inflammation 

resolution in the nerve is required for conditioning-lesion induced neurorepair.   

 

2.2 Introduction 
 In the injured adult mammalian CNS, the regenerative capacity of severed axons is very 

limited. However, regeneration of dorsal column axons in the rodent spinal cord can be augmented 

if preceded by a conditioning lesion to the sciatic nerve (McQuarrie et al., 1977; Neumann and 

Woolf, 1999; Richardson and Issa, 1984). This seminal observation has been exploited extensively 

to identify mechanisms that promote axon regeneration (Abe and Cavalli, 2008; Blesch et al., 

2012; Chandran et al., 2016). Traumatic PNS injury leads to sterile inflammation at the site of 

injury and within the distal nerve stump where axons undergo Wallerian degeneration (Kim and 

Moalem-Taylor, 2011; Perry et al., 1987). In addition, a remote inflammatory response is observed 

in axotomized dorsal root ganglia (DRGs) (Hu and McLachlan, 2003; Lu and Richardson, 1991) 

and the lumbar spinal cord (Guan et al., 2016; Hu et al., 2007; Zhang et al., 2007). The innate arm 

of the immune system is important for peripheral nerve regeneration, as well as conditioning-
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lesion-induced dorsal column axon regeneration (Kwon et al., 2015; Niemi et al., 2013; Salegio et 

al., 2011; Zigmond and Echevarria, 2019). Very recent studies employed single cell RNA 

sequencing (scRNA-seq) to describe gene expression in naïve and injured peripheral nervous 

tissue at cellular resolution (Wang et al., 2020; Wolbert et al., 2020; Ydens et al., 2020). A 

comparative analysis of immune cell profiles within the injured sciatic nerve and axotomized 

DRGs, however, has not yet been carried out.  

The sciatic nerve trunk is covered by the epineurium, a protective connective tissue sheath 

that harbors fibroblasts, macrophages, and blood vessels. The more delicate perineurium covers 

nerve bundles and the endoneurium is a tube-like structure wrapped around individual myelinated 

fibers. The endoneurium contains macrophages and fibroblast-like mesenchymal cells (MES) 

(Carr et al., 2019; Ydens et al., 2020). Following PNS injury, Schwann cells (SC) reprogram into 

repair cells and together with MES and nerve-resident macrophages produce chemokines and 

cytokines to promote entry of hematogenous immune cells (Arthur-Farraj et al., 2012; Muller et 

al., 2010; Richard et al., 2012; Ydens et al., 2020). Repair SC, together with innate immune cells, 

contribute to nerve debridement, formation of new blood vessels, and release of growth promoting 

molecules, thereby creating a microenvironment conducive for long-distance axon regeneration 

and tissue repair (Barrette et al., 2008; Clements et al., 2017; DeFrancesco-Lisowitz et al., 2015; 

Hoke et al., 2000; Martini et al., 2008). Despite recent progress, it remains unclear which cell types 

in the injured nerve contribute to tissue debridement and there is a paucity in our understanding of 

the underlying molecular mechanisms (Brosius Lutz et al., 2017; Klein and Martini, 2016). 

Sciatic nerve injury leads to a remote and strong cell body response in axotomized DRG 

neurons (Chandran et al., 2016). This includes induction of neuron-intrinsic growth programs, 

neuronal release of cytokines and chemokines, activation of intra-ganglionic tissue-resident 

macrophages, immune-like glia, and entry of hematogenous leukocytes (Cafferty et al., 2004; 

McLachlan and Hu, 2014; Richardson and Lu, 1994; Richardson et al., 2009; Wang et al., 2018; 

Zigmond and Echevarria, 2019). Experimentally induced intra-ganglionic inflammation, triggered 

by injection of C. parvum bacteria into DRGs, increases axon regeneration following dorsal root 

injury (Lu and Richardson, 1991). Intra-ganglionic expression of recombinant CCL2 leads to 

increased macrophage staining, enhanced DRG neuron outgrowth in vitro (Niemi et al., 2016), and 

regeneration of DRG neuron central projections following spinal cord injury (Kwon et al., 2015).  
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 Here we employed a combination of flow cytometry, mouse reporter lines, and 

immunofluorescence labeling to describe the leukocyte composition in the injured sciatic nerve 

and axotomized DRGs. We used parabiosis to show that upon sciatic nerve crush injury (SNC), 

the origin, magnitude, and cellular composition of immune cell profiles is very different between 

the nerve and DRGs. For a comparative analysis, we carried out bulk RNA sequencing of DRGs 

and single cell RNA sequencing (scRNA-seq) of injured nerves. We report the cellular make up, 

cell-type specific gene expression profiles, and lineage trajectories in the regenerating mouse PNS. 

Computational analysis revealed cell-type specific expression of engulfment receptors and 

bridging molecules important for eating of apoptotic cell corpses, a process called efferocytosis 

(Henson, 2017). We show that within the injured nerve, monocytes (Mo) and macrophages (Mac) 

eat apoptotic leukocytes, and thus, contribute to inflammation resolution. Strikingly, Mac at the 

nerve injury site are molecularly distinct from Mac in the distal nerve stump. Csf2ra and Csf2rb, 

obligatory components of the GM-CSF receptor (Hansen et al., 2008), are strongly expressed by 

myeloid cells in the injured nerve, but not in axotomized DRGs. Functional studies with Csf2-/- 

mice, deficient for GM-CSF, show that this cytokine regulates the inflammatory milieu in the 

injured nerve and is important for conditioning lesion elicited dorsal column axon regeneration. 

Taken together, our work provides novel insights into a rich and dynamic landscape of injury-

associated cell states, and underscores the importance of properly orchestrated inflammation 

resolution in the nerve for neural repair. 

 

2.3 Results 
2.3.1  Quantitative analysis of immune cell profiles in the injured sciatic 

nerve 
 Despite recent advances in our understanding of PNS injury-induced inflammation, a 

comparative analysis of the leukocyte subtypes within the injured sciatic nerve and axotomized 

DRGs does not yet exist. For identification and quantification of immune cell profiles at different 

post-injury time points, adult mice were subjected to a mid-thigh sciatic nerve crush (SNC) injury. 

SNC leads to axon transection, but preserves the surrounding epineurium (Figure 2.1A). Flow 

cytometry was used to assess the composition of injury-mobilized immune cell profiles in the 

nerve and DRGs (gating strategy is illustrated in Figure 2.2). To minimize sample contamination 
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with circulating leukocytes, mice were perfused with physiological saline prior to tissue collection. 

The nerve trunk was harvested and divided into a proximal and distal segment. The distal segment 

included the injury site together with the distal nerve stump (Figure 2.1A). For comparison, the 

corresponding tissues from naïve mice were collected. In naïve mice, ~300 live leukocytes 

(CD45+) are detected within a ~5 mm nerve segment. At day 1 following SNC (d1), the number 

of CD45+ cells in the distal nerve increases sharply, peaks around 23,100± 180 cells at d3, and 

declines to 14,000± 200 at d7 (Figure 2.1B). Further analysis shows that granulocytes (GC), 

identified as CD45+CD11b+Ly6G+CD11c- cells, are absent from naïve nerve, but increase to 

7,800± 300 at d1. By d3, the number of GC dropped below 1,000 (Figure 2.1C). A robust and 

prolonged increase of the Mo/Mac population (CD45+CD11b+Ly6G-CD11c-) is observed, 

reaching 7,300± 120 cells at d1, peaking around 13,200± 240 at d3, and declining to 3,200± 90 at 

d7 (Figure 2.1D). Monocyte-derived dendritic cells (MoDC), identified as CD45+CD11b+Ly6G-

CD11c+ cells, increase more gradually. They are sparse at d1, reach 1,100± 30 at d3, and 3,400± 

60 at d7 (Figure 2.1E). Few CD11b- conventional DC (cDC), identified as CD45+CD11b-Ly6G-

CD11c+ cells, are present at d1 and d3 and cDC increase to 600± 20 at d7 (Figure 2.1F). The total 

number of lymphocytes (CD45+CD11b-CD11c-Ly6G-) is low, but significantly elevated at d1, d3, 

and d7 post-SNC (Figure 2.1G, 1H). In marked contrast to the distal nerve stump, flow cytometry 

of the proximal nerve stump shows that SNC does not significantly alter immune cells number or 

composition (Figure 2.3A-K). The sharp divide in myeloid cell distribution within the injured 

nerve is readily seen in longitudinal sections stained with anti-F4/80 (Figure 2.3L). The distal 

nerve stump was identified by anti-GFAP staining, a protein upregulated in repair Schwann cells 

(Figure 2.3L). In sum, SNC-elicited inflammation in the nerve is confined to the crush site and 

the distal nerve stump where severed fibers undergo rapid Wallerian degeneration. GC increase 

sharply and peak within 24h, followed by Mo/Mac, MoDC, and few lymphocytes.  

 

2.3.2 Quantitative analysis of immune cell profiles in axotomized DRGs 
Immunofluorescence staining of DRG sections shows that SNC causes a transient increase in Iba1 

and F4/80 immunolabeling, peaking around d3 and declining at d7 (Figure 2.4A). Flow cytometric 

analysis of DRGs from naive mice identifies on average ~600 live leukocytes per ganglion, 

including GC, Mo/Mac, MoDC, cDC, and lymphocytes (Figure 2.4B-G). At d1, no significant 

change in intra-ganglionic immune cell profiles is observed. At d3, there is a ~2-fold increase in 
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leukocytes, however a significant increase is only observed for Mo/Mac (Figure 2.4C). At d7, the 

Mo/Mac population is significantly reduced compared to d3. The MoDC and cDC populations are 

elevated at d7 when compared to DRGs from naïve mice (Figure 2.4D-E). Lymphocytes are 

present in naïve DRGs but do not significantly increase during the first week post-SNC (Figure 

2.4F-G). The presence of CD3+ T cells in DRGs was validated by immunofluorescence labeling 

of L5 DRG sections (Figure 2.5). For an independent assessment of the kinetics and magnitude of 

SNC-induced inflammation in the nerve trunk and DRGs, we used Western blotting to carry-out a 

3-week time-course analysis.  Probing tissue lysates with anti-CD11b shows that the injury-

induced increase in myeloid cells in the nerve trunk exceeds the one in axotomized DRGs by an 

order of magnitude (Figure 2.4H-I). Taken together, these studies show that SNC induces a remote 

immune response in axotomized DRGs that is strikingly different in magnitude and cellular 

composition from injured nerve tissue.  

 

2.3.3 Sciatic nerve injury triggers massive infiltration of immune cells into 

the injured nerve, but not axotomized DRGs 
 Endoneurial Mac in the sciatic nerve and DRGs respond to injury (Mueller et al., 2003; 

Muller et al., 2010), however, there are no reliable cell surface markers to distinguish between 

tissue-resident and injury-mobilized hematogenous immune cells that enter the nerve or 

axotomized DRGs. To examine cell origin, we employed parabiosis, that is conjoined wildtype 

(WT) and tdTomato (tdTom) reporter mice that share blood circulation. We chose parabiosis over 

bone marrow transplantation because of potential confounding effects caused by irradiation 

(Guimaraes et al., 2019). One month after parabiosis surgery, both parabionts were subjected to 

unilateral SNC. Sciatic nerves, DRGs, and spinal cords were harvested at different post-injury time 

points (Figure 2.6A). Shared blood circulation was assessed by flow cytometry of the spleen, and 

revealed a myeloid cell (CD45+CD11b+) chimerism of 27.3± 1.5 (Figure 2.7). At d3 following 

SNC, flow cytometric analysis of nerves isolated from WT parabionts identifies 28.4± 6.7% 

tdTom+ myeloid (CD45+CD11b+) cells (Figure 2.6B). Fractionation of myeloid cells into Mo/Mac 

(CD45+CD11b+Ly6G-CD11c-) and MoDC (CD45+CD11b+Ly6G-CD11c+) further revealed that 

27.1± 6.9% of Mo/Mac and 30± 5.6% of MoDC are tdTom+ in the injured WT parabiont (Figure 

2.6C). When coupled with ~27% chimerism (Figure 2.7C), this suggests that blood-borne cells 

make up the vast majority of immune cells in the injured nerve. Histological analysis of injured 
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nerves from WT parabionts identified numerous tdTom+ cells (Figure 2.6D). During the first 24h, 

tdTom+ cells are confined to the injury site (data not shown). At d3 and d7, tdTom+ cells are 

preferentially found at the injury site but also present within the distal nerve stump where fibers 

undergo Wallerian degeneration (Figure 2.6D and Figure 2.19C). In the proximal nerve, very 

few tdTom+ cells are detected at any post-SNC time point (Figure 2.6D). A two-week time course 

analysis of axotomized DRGs harvested from WT parabionts identified a modest and transient 

increase of tdTom+ cells (Figure 2.6E). DRG sections from naïve mice revealed that the number 

of tdTom+ cells per field-of-view (4,000 µm2) is very low. Following SNC, there is a modest, but 

statistically significant increase in tdTom+ cells at d3 and d7, but not at 14d, suggesting that only 

a small number of hematogenous leukocytes enter axotomized DRGs (Figure 2.6F). Together 

these studies show that SNC-elicited intra-ganglionic increase of Iba1+ and F4/80+ immune 

profiles (Figure 2.4A) primarily occurs through mechanisms that involve DRG-resident 

macrophages, rather than hematogenous immune cells. Of note, during the first two weeks post-

SNC, no tdTom+ cells were detected in the lumbar spinal cord (data not shown), suggesting that 

hematogenous immune cells do not significantly contribute to SNC-triggered spinal cord 

inflammation. 

 

2.3.4 Sciatic nerve injury triggers significant macrophage morphological 

changes in axotomized DRGs 
 In tissue sections of axotomized DRGs, there is a rapid increase in Iba1 and F4/80 

immunoreactive profiles (Figure 2.4A), yet in DRGs of parabiotic mice the number of blood-

derived tdTom+ immune cells  is modest (Figure 2.6E-F). This raises questions regarding the 

underlying cellular basis of increased Iba1 immunoreactivity. Previous studies reported that upon 

sciatic nerve injury, DRG-resident Mac undergo limited proliferation (Leonhard et al., 2002; Yu 

et al., 2020). To examine whether altered macrophage morphology may contribute to increased 

Iba1 staining, axotomized DRGs were subjected to whole-mount immunofluorescence labeling 

with anti-Iba1 (Figure 2.6G). Three-dimensional projection analysis of Mac profiles, in the 

absence of nerve injury (intact) and at 3d post-SNC, revealed a 2.3-fold increase in the total volume 

occupied by Iba1+ cells (Figure 2.6I). Two distinct Mac morphologies were observed in intact 

DRGs, a majority (84± 2%) of amoeboid cells and a smaller population (16± 2%) of elongated 

cells (Figure 2.6H-J). SNC triggers Mac morphological changes in axotomized DRGs (Figure 
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2.6H). Many Iba1+ cells acquire a more complex, stellate morphology and exhibit enveloping 

extensions. At d3, Mac with amoeboid (60± 2%), elongated (10± 3%), and stellate morphologies 

(30± 4%) are identified. And at d7, amoeboid (40± 3%), elongated (5± 1%), and stellate (55± 4%) 

shaped Mac are detected (Figure 2.6J). While the SNC-triggered Mac morphological changes are 

quite striking, they do not alter the average volume of individual cells (Figure 2.6K).  Based on 

these studies we conclude that local proliferation and morphological changes, rather than 

infiltration of blood-borne cells, contribute to increased Iba1 immunoreactivity in axotomized 

DRGs. 

 

2.3.5 Immune-associated co-expression networks in axotomized DRGs 
 To gain insights into SNC-triggered genome wide transcriptional changes in DRGs, we 

carried out bulk RNA sequencing of ganglia harvested from naïve, d1, d3, and d7 injured mice. 

To understand the modular network structure associated with peripheral axotomy, we carried out 

weighted gene co-expression network analysis (WGCNA) at different post-injury time points 

(Geschwind and Konopka, 2009; Zhang and Horvath, 2005).  WGCNA permits identification of 

modules of highly co-expressed genes that likely function together. Focusing on prominently 

regulated gene modules, we find a previously described module (pink module (Chandran et al., 

2016)), enriched for regeneration associated gene (RAG) products, including Jun, Fos, Stat3, 

Smad1, Atf3, among other genes. In addition, WGCNA identifies a large turquoise module (Figure 

2.8A-B), which along with the pink module, is stably upregulated following SNC (Figure 2.9A-

B).  To annotate module function, we applied gene ontology (GO) enrichment analyses, which 

showed enrichment (Benjamini-corrected p values < 0.05) for several GO categories associated 

with immune system function in the turquoise module. The enrichment plot for GO regulation 

shows a strong upregulation for immune system processes (Figure 2.8C). The most significantly 

upregulated GO terms include cell activation, immune effector process, and defense 

response (Figure 2.9). Ingenuity pathway analysis (IPA) identified several upstream activators, 

including cytokines and growth factors (IFNγ, TNF, IL1b, IL6, TGFβ1, IL10, IL4, IFNβ1, IL2) 

and the transcription regulators STAT1, STAT3, IRF7, RELA (Figure 2.9D).  The upregulation 

of immune system processes in axotomized DRGs correlates with a modest ~1.5-fold increase of 

gene products encoding the canonical macrophage markers Itgam (CD11b), Aif1 (Iba1), 

and Adgre1 (F4/80) (Figure 2.8D-F). In comparison, expression levels and fold-upregulation 
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of Atf3, Jun, and Stat3 are very robust (Figure 2.8G-I).  Expression of the chemokine 

receptor Ccr2 and the receptor subunits for the GM-CSF receptor (Csf2ra and Csf2rb) are elevated 

in axotomized DRGs, however expression levels are low, especially for Csf2rb (~1 fpkm) (Figure 

2.8J-L). Moreover, some of the immune gene activity observed in axotomized DRGs may involve 

non-hematopoietic cells. Collectively, RNA-seq provides independent evidence that SNC triggers 

a remote inflammatory response in DRGs, however this does not result in a massive increase in 

transcripts encoding canonical Mac markers. This conclusion is consistent with flow cytometry 

(Figure 2.4B-G), Western blot analysis (Figure 2.4H-I), and 3D reconstruction of Mac (Figure 

2.6G-K) in axotomized DRGs. 

 

2.3.6 The cellular landscape of injured peripheral nerve tissue 
 To de-convolute the cellular complexity of injured sciatic nerve tissue in an unbiased 

manner, we applied scRNA-seq to capture the transcriptional landscape at single cell resolution. 

Because injury-induced expansion of the immune compartment peaks around d3 (Figure 2.1B), 

we chose this time point to dissect and process whole nerves for single cell capture, using the 10x 

Genomics platform. A total of 17,384 cells was sequenced with 16,204 used for downstream 

analysis after removing cells with fewer than 200 genes, more than 7,500, or mitochondrial content 

greater than 25%. Median unique genes per cell was 2,507. More than 20 different cell clusters 

were identified using shared nearest neighbor clustering algorithm. Results are visualized using 

Uniform Manifold Approximation and Projection (UMAP) for dimension reduction (Figure 

2.10A). The top 100 genes enriched in each cluster (Table 2.1) were used to assign cluster specific 

cell identities. Most prominently featured are immune cells, identified by their strong expression 

of Ptprc (encoding CD45). Innate immune cells (Itgam/CD11b) make up a median 42.22% (± 

1.39%), and lymphocytes less than 1.73%(± .27%), of the cells in the injured nerve (Figure 2.10B-

C). Other abundantly featured cell types include mesenchymal progenitor cells (MES). We 

identify three distinct MES subpopulations (Figure 2.10A), reminiscent of a recent study 

examining the nerve response to digit tip amputation (Carr et al., 2019). In the injured sciatic nerve, 

MES make up 18.49%(±.98%) of cells and differentially express the markers Pdfgra and Sox9 

(Figure 2.10D-E). MES are a rich source of extracellular matrix (ECM) molecules, including 

collagens (Col1a, Col3a, Col5a, Col6a), Fn1/fibronectin, Fbn1/fibrillin-1, Lamb2/laminin-b2, and 

numerous proteoglycans (Figure 2.11A). Individual MES clusters are identified as perineural 
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MES (pMES) (Slc2a1/Glut1, Itgb4/integrin-β4, Stra6/stimulated by retinoic acid 6, Sfrp5/secreted 

frizzled related protein 5), endoneurial MES (eMES) (Wif1/Wnt inhibitory factor 1, Bmp7), and 

differentiating MES (dMES) (Gas1/Growth arrest-specific 1, Ly6a/SCA-1, Tnc/tenascin, 

Sfrp1/secreted frizzled-related protein 1). The dMES cluster is fused to a small population of 

fibroblasts (Fb) (Figure 2.10A). STRING Reactome pathway analysis for MES clusters identifies 

extracellular matrix organization as top hit (Figure 2.12). Further analysis revealed that cells in 

eMES, but not in clusters pMES and dMES, are neural crest derived  (Carr et al., 2019; Gugala et 

al., 2018).   

Three clusters of Schwann cells (SC1-3) represent 17.48% (±1.53%) of cells in the injured 

nerve (Figure 2.10A). Cluster SC1 contains proliferating cells marked by Mki67/Ki67 expression 

(Figure 2.10J) and many cells that strongly express Ncam1, Chl1/cell adhesion molecule L1-like, 

Erbb3, Epha5, Thbs2/thrombospondin-2, Tnc, Hbegf, and the BMP antagonist Sostdc1 (Figure 

2.10F, Figure 2.13, and Table 2.1).  SC1 enriched transcription regulators (SC1-TR) include 

Zfp706, Tead1, Sox6, Nr2f1/COUP-TF (Figure 2.10K).  SC3 cells express high levels of Ngfr/p75, 

Nrcam, Gfra1/GDNF family receptor alpha 1, Btc/betacellulin, Gjb1/connexin-32, 

Cryab/crystallin alpha B, Tnfrsf12a/Fn14, Gadd45b (Figure 2.10G, Figure 2.13, and Table 2.1).  

SC3-TR include Sox4, Runx2, Hmga1, Jun, and the POU family member Pou3f1, a repressor of 

BMP and Wnt signaling, associated with a pro-myelinating cell state (Figure 2.10K). Cluster SC2, 

flanked by SC1 and SC3, expresses nes/nestin and Cryab. UMAP splits the SC2 cluster and places 

a subset of cells near MES cells, likely because of relatively higher expression in ECM encoding 

genes (Bgn, Dcn, and Fn1) compared to clusters SC1 and SC3. SC2 cells have a median 584 (± 

22) genes per cell and may have a higher degree of technical variation.  STRING identified axon 

guidance and integrin cell surface interactions as top REACTOME pathways for SC1. Axon 

guidance, gap junction assembly, and microtubule-dependent trafficking are top hits for SC3 

(Figure 2.13).  

Cells associated with the nerve vasculature make up 14.2% (± 3.19%). They include three 

clusters of endothelial cells (EC1-3), strongly expressing Pecam/CD31, representing 9.92% (± 

2.69%) of cells (Figure 2.10H and Figure 2.14). There are two pericyte cell clusters (PC1 and 

PC2) enriched for the pericyte markers (Pdgfrb, Rgs5) and vasculature-associated smooth muscle 

cells (Acta2, Des, Myl9, Mylk), representing 4.2% (± .44%) (Figure 2.10I and Figure 2.15). A 

small cluster of chondrocyte-like cells (CL: Comp/cartilage oligomeric matrix protein, Col27a1, 
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Jun) represents 0.5% (± 0.44%). A cell cluster (3.09% (±1.08%)), designated Hyb, harbors few 

erythrocytes (Hba, Hbb) and some cell hybrids (Hyb). These cells had a median 521 (± 27) 

expressed genes which was the lowest of any cell cluster and no clear identity could be assigned 

(Figure 2.10B). 

Of relevance for neuronal regeneration, ECM components and numerous extracellular 

molecules known to regulate axon growth and regeneration are expressed by different cell types 

in the injured nerve (Figure 2.11A). MES and Fb are rich sources of gene products with 

neurotrophic and neurotropic properties, and thus may act in a paracrine fashion to regulate 

neuronal survival and direct axonal growth (Figure 2.11B). dMES express (Igf1, Ogn/osteoglycin, 

Nid1/Nidogen-1, Ntn1/netrin-1, Postn/periostin, Gdf10/BMP3b, Cxcl12/SDF1, Dcn/decorin, 

Grn/progranulin, Sparc/osteonectin, lamb2/laminin-b2, Serpinf1), eMES (Spp1, Dcn, 

Nid1/nidogen-1, Sparc, Serpine2/glia-derived nexin, Lum/lumican, Gpc3/glycpican-3), and pMES 

(Ntn1, Cldn1/claudin-1, Efnb2/ephrin-b2, Mdk/midkine, Nid1, Sdc4/syndecan-4, 

Thbs4/thrombospondin-4, Gpc3). Repair Schwann cells in clusters SC1 and SC3 express high 

levels of cytokine receptor like factor 1 (Crlf1), and SC3 highly express cardiotrophin-like 

cytokine factor 1 (Clcf1). Crlf1 and Clcf1 are both members of the CNTF ligand family that signal 

through gp130.  In addition, SC1 (Chl1, Ncam1, Nrn1/neuritin-1, Ptn/pleiotrophin, Sema3e, 

Sema7a, Reln/reelin), and SC3 (Reln, Dag1/dystroglycan, Gdnf, Nrcam, Sema3b) express 

numerous membrane-bound and soluble factors with known roles in axon growth and guidance. 

Subpopulations of myeloid cells exhibit high expression of the osteopontin-encoding gene, Spp1 

and progranulin (Grn), powerful neurite outgrowth promoting factors (Figure 2.11B) (Altmann et 

al., 2016; Wright et al., 2014). Taken together, scRNA-seq of injured nerve reveals that multiple 

cell types contribute to a large repertoire of extracellular molecules with neurotrophic and axon 

growth promoting properties.   

 

2.3.7 Mesenchymal progenitor cells in the injured nerve shape the 

inflammatory milieu 
 Non-hematopoietic cells in the injured nerve, including structural cells such as MES and 

Fb, show high immune gene activity and likely play a major role in shaping the inflammatory 

milieu (Figure 2.16). In comparison, repair SC exhibit low immune gene activity, suggesting they 

play a less important role in shaping nerve inflammation (Figure 2.16). In the 3d injured nerve, 
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eMES express several chemokines (Ccl2, Ccl7, Ccl9, Ccl11/Eotaxin), Mif/Macrophage migration 

inhibitory factor, Spp1, Thbs4/Thrombospondin-4, and Il33. Cells in dMES express Mif, Csf1, 

Cxcl14 and the complement components C1s1, C1ra, C3, C4b. Cells in pMES express Ccl11, 

Cfh/Complement factor h, Mdk, and Thbs4.  Moreover, MES in the injured nerve likely contribute 

to wound healing and fibrosis, since they express several WNT pathway antagonists, including 

Wfi1, Sfrp1/Secreted frizzled related protein 1, Sfrp2, Sfrp4, and Sfrp5 (Figure 2.12 and Table 

2.1).  In the injured heart for example, blocking of WNT signaling was found to be critical to limit 

fibrosis and to promote differentiation of Mo into Mac (Meyer et al., 2017).   

 

2.3.8 The immune repertoire of injured sciatic nerve 
 The mononuclear phagocyte system (MPS) is comprised of Mo, Mac, and DC, cell types 

that are readily detected in the injured nerve by flow cytometry (Figure 2.1). UMAP, overlaid 

with Seurat-based clustering of scRNA-seq datasets, identified a connected continuum of 7 cell 

clusters in the MPS (Mo, Mac1-5, and MoDC), characterized by strong expression of 

Itgam/CD11b (Figure 2.10C) and various degrees of the commonly used myeloid cell markers 

Adgre1/F4/80, Aif1/Iba1, Cd68, Cx3cr1 and Cd209a/DC-SIGN (Figure 2.17A-E). Cells in the 

MPS strongly express the myeloid lineage-defining transcription factor PU.1 (Spi1). The C/EBP 

family member TF (Cebpb) is expressed by Mo/Mac, but not dendritic cells (Figure 2.17F). 

Myeloid cells are a rich source of fibronectin, extracellular proteases, and hydrolases (Fn1, Tgfbi, 

Adam15, CtsC, CtsS, Gusb) and likely play a major role in ECM remodeling, cell adhesion, and 

fibrosis. Monocytes strongly express Ly6c2/Ly6C, Chil3/chitinase-like 3, Ifitm6/interferon-

induced transmembrane protein 6, Itgal/integrin αL, Gsr/glutathione reductase, Hp/haptoglobin 

(Figure 2.18). In addition, they express the TRs Hif1a, Trps1, and Cebpb/C-EBPβ, a bZIP TR 

important for Mo survival (Figure 2.17F).  

 In the UMAP plot, the Mo cluster is flanked by three macrophage subpopulations (Mac1-

Mac3) (Figure 2.10A). Mac1 cells express (Fcgr2b/Fc gamma receptor 2b, Arg1/arginase-1, 

Ltc4s/leukotriene C4 synthase, Lpl/lipoprotein lipase, Camkk2). Mac2(Cx3cr1, Ccr2, Csf1r) and 

Mac3 (Cx3cr1, Mrc1/CD206, Ccr2, Adgre1/F4/80, Csf1r, Cd38) express overlapping, yet distinct, 

sets of surface receptors (Figure 2.18). Of note, individual Mac subpopulations often co-express 

markers traditionally associated with M1-like and M2-like cells, indicating that these markers are 

of limited use to describe the more complex physiological states of Mac subpopulations in the 
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injured nerve. Mac4 cells are characterized by high levels of Trem2/ triggering receptor expressed 

on myeloid cells 2, Arg1/arginase-1, Pf4/CXCL4, Stab1/stabilin-1, Cd68 (Figure 2.18) and 

express the TRs Cebpa, Mafb, Mef2a (Figure 2.17K). Cluster Mac5 is small, 239 cells, and 

harbors dividing (Mki67) myeloid cells with “stem-like” features (Stmn1/ Stathmin-1, Top2a, 

Hmgb2, Tupp5) (Figure 2.10J, Figure 2.18, and Table 2.1). In addition, a smaller group of 

dividing cells (Mki67, Top2a) is embedded in the MPS and located between clusters Mac2 and 

MoDC (Figure 2.19A-B). To distinguish between dividing nerve resident myeloid cells and 

dividing blood-derived myeloid cells, we subjected WT-tdTom parabionts to SNC (Figure 2.6A). 

At 3d post-SNC, WT nerves were analyzed for tdTom+ cells that co-stain with anti-Ki67 and anti-

F4/80 (Figure 2.19C). TdTom+F4/80+Ki67+ cells were identified, indicating that blood-borne, 

stem-like myeloid cells are present in the injured sciatic nerve. Mac2 cells express high levels of 

MHCII genes (H2-Aa, H2-Ab1, H2-Eb1, M2-DM) and the CD74 invariant chain of MHCII (Cd74), 

typically associated with antigen presentation to CD4+ T cells. The MPS harbors monocyte-

derived dendritic cells (MoDC), professional antigen presenting cells, characterized by high level 

expression of MHCII genes, Itgax/CD11c, Itgb7/integrin-β7, Napsa/Napsin-A, and Cd209a/DC-

SIGN (Figure 2.17E, Figure 2.18). Mac2 and MoDC express Ciita (Figure 2.17F), a class II 

transactivator, that promotes MHCII gene expression (Accolla et al., 2019). Few plasmacytoid 

DCs (pDC) (Siglech, Ly6d) and conventional DCs (cDC) (Clec9a, Xcr1, Itgae, Tlr3, Ifi205, Cd24a, 

Btla/CD272) are detected in the MPS (Figure 2.19D-E).  

 cDC show enriched expression of the TRs Batf3, Id2, Irf5, Irf8, Mycl, Srebf2 (Figure 

2.17F). DC clusters can readily be distinguished from other myeloid cells, based on their 

expression of Bcl11a, a TR that determines DC fate (Ippolito et al., 2014). Cells in the MoDC 

cluster show high expression of the TRs Nfkb1, Pou2f2, Runx1, Rel/c-Rel, and Ikbkb/IKKβ 

(Figure 2.17F). The GC cluster in the d3 nerve is small, 314 cells, and mainly includes neutrophils 

(S100a8, S100a9, Mmp9, Retnlg/Resistin-like gamma), intermingled with few eosinophils 

(Siglecf) (Figure 2.10A, Figure 2.18).  Overall, the Seurat cluster analysis is in good agreement 

with the abundance and identity of immune cell profiles detected by flow cytometry and also 

reveals the presence of a large and connected continuum of cell states in the myeloid compartment 

(Figure 2.10A). To infer the most probable differentiation trajectories from Mo toward their 

descendants, we used Slingshot, a method for pseudo-time trajectory analysis (Street et al., 2018). 

The analysis reveals a bifurcated trajectory and provides independent evidence that blood-borne 
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Mo that enter the nerve where they give rise to different Mac subpopulations as well as MoDC. 

The predicated differentiation trajectory indicates that Mo first give rise to Mac3, and cells in 

cluster Mac3 then differentiate either into Mac1, Mac2, or Mac4 cells. Furthermore, Mac2 cells 

are predicted to differentiate into MoDC (Figure 2.20). 

The “connected continuum” of Mo/Mac in the injured nerve, as revealed by scRNA-seq, 

was independently verified by flow cytometry. The Mo/Mac population (CD45+CD11b+Ly6G-

CD11c-) is highly plastic and can be subdivided based on surface levels of the lymphocyte antigen 

6C (Ly6C).  Ly6C is expressed at high levels on proinflammatory, circulating monocytes and is 

downregulated as they infiltrate tissues and mature into macrophages and dendritic cells (King et 

al., 2009).  As expected, scRNA-seq of injured nerve shows that Ly6c2, the gene encoding Ly6C, 

is strongly expressed by Mo, but much less by Mac subpopulations (Figure 2.17G). Flow 

cytometry shows that naïve nerve tissue harbors a small Mac population, mostly comprised of 

Ly6C- (70%) cells and few Ly6Cint (16%) and Ly6Chi (14%) cells (Figure 2.17H). At d1 post-

SNC, the number of Mo/Mac increases sharply and Ly6C distribution is skewed toward classically 

activated Ly6Chi cells (50%), with fewer Ly6Cint (41%) and Ly6C- (9%) cells (Figure 2.17I). At 

d3, Ly6Chi (28%), Ly6Cint (47%), and Ly6C- (25%) cells are detected (Figure 2.17J) and at d7, 

the majority of Mo/Mac are non-classical Ly6C- (65%) and intermediate Ly6Cint (25%), with few 

Ly6Chi cells (10%) (Figure 2.17K). This shows that Ly6Chi Mo migrate into the injured nerve in 

large numbers and increase inflammation during the acute phase. Later, as nerve inflammation 

resolves, the Mo/Mac number and polarization gradually return back to pre-injury homeostatic 

levels (Figure 2.17L-M). Noteworthy, the Mo/Mac population in axotomized DRGs shows an 

opposite response with regard to surface Ly6C distribution. In naïve DRGs, Mo/Mac are 

comprised of Ly6C- (30%), Ly6Cint (27%), and Ly6Chi (43%) cells. Upon SNC, the distribution 

shifts to 75%, 16%, and 9% on d1, to 53%, 20%, and 27% on d3, and 52%, 23%, and 25% on d7 

(Figure 2.21). Together, these data show that SNC-triggered inflammation in the nerve is massive 

and characterized by a short pro-inflammatory phase that rapidly transitions to a resolving state. 

A similar immune response is not observed in axotomized DRGs. 
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2.3.9 Identification of macrophage subpopulations with distinct functions and 

distribution patterns in the injured nerve 
Mac subpopulations show overlapping, yet distinct, expression patterns of the canonical markers 

Adgre1(F4/80), Aif1(Iba1), Cd68, and Cx3cr1 (Figure 2.17A-D). Moreover, cells in Mac4 and 

some cells in clusters Mac1 and Mac3 express high levels of Arg1, while other Mac subpopulations 

do not (Figure 2.17N). To explore tissue distribution of Arg1+ cells relative to F4/80+ and CD68+ 

cells in naïve and injured nerves, we subjected Arg1-YFP reporter mice to SNC. In naïve mice, no 

YFP+ cells are observed (Figure 2.17O) while few F4/80+ and CD68+ are detected (Figure 2.22). 

At d1, few YFP+ cells accumulate near the injury site (data not shown) and at d3 many more are 

present (Figure 2.17P). Unexpectedly, YFP+ cells are confined to the nerve crush site and largely 

absent from the distal nerve stump. This stands in contrast to F4/80+ and CD68+ macrophages, 

found at the injury site and the distal nerve (Figure 2.22). At d7, only few Arg1-YFP+ cells are 

found at the injury site and none in the distal nerve stump (Figure 2.17Q). F4/80+ Mac, on the 

other hand, are more uniformly distributed within the injury site and distal nerve stump (Figure 

2.22). This shows the existence of different immune compartments in the injured nerve. A 

subpopulation of Arg1+ macrophages (including cells in cluster Mac4) is preferentially localized 

to the crush site, whereas F4/80+ macrophages (including cells in cluster Mac2 and Mac3) are 

abundant in the distal nerve where fibers undergo Wallerian degeneration.  Pathway analysis of 

cell clusters in the innate immune compartment reveals common functions in phagocytosis, 

phagosome, and endolysosomal digestion, but also highlights important differences (Figure 2.18). 

KEGG pathways specific for Mo include cytokine signaling and leukocyte trans-endothelial 

migration, providing independent evidence for their hematogenous origin. Mo are highly plastic 

and predicted to give rise to monocyte-derived Mac subpopulations in the injured nerve (Figure 

2.20). Top KEGG pathways for Mac3 are chemokine signaling pathway, complement and 

coagulation cascades, and cytokine-cytokine receptor interaction (Figure 2.18). For Mac1 cells, 

complement and coagulation cascades, suggesting that Mac1 and Mac3 play roles in opsonization 

and blocking of endoneurial bleeding. For Mac2 cells, KEGG pathway analysis identified 

Leishmaniasis and Tuberculosis as top hits (Figure 2.18). For Mac4 cells, pathway analysis 

identified negative regulation of immune system processes and cholesterol metabolism. 

Cholesterol metabolism in Mac4 cells includes gene products that regulate reverse cholesterol 

transport (Abca1/ ATP-binding cassette subfamily A1, Abcg1/ATP-binding cassette subfamily 
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G1 , Ctsd/Cathepsin-D, Ctsb/Cathepsin-B), cholesterol and lipid storage (Plin2/perilipin), 

formation of cholesterol esters (Soat1), cholesterol ester hydrolysis and lipoprotein metabolism 

(Lipa/lipase-A, Nceh1/Neutral cholesterol hydrolase 1, Apoe/Apolipoprotein E) and intracellular 

cholesterol transport (Npc2/Niemann-Pick C2 and Scarb2/Scavenger receptor class B member 2) 

(Figure 2.23A-I). The abundance of gene products that protect from cholesterol overloading 

(Haidar et al., 2006; Viaud et al., 2018; Wu et al., 2018), suggests that this cluster is comprised of 

cholesterol laden cells. Importantly, tissue-resident macrophages in naïve nerves (Wang et al., 

2020), either do not express cholesterol regulatory gene products, or express them at significantly 

lower levels (Figure 2.23J-S). 

 

2.3.10 Cell-type-specific expression of engulfment receptors in the injured 

nerve 
 In the injured nerve, blood-borne phagocytes and repair SC collaborate in myelin removal. 

Repair SC use the receptor tyrosine kinases AXL and MER for myelin phagocytosis (Brosius Lutz 

et al., 2017). Clusters SC1 (Axlhi, Mertk-) and SC3 (Axllow, Mertkint) exhibit differential expression 

of these two receptors (Figure 2.25). Interestingly, Axl and Mertk expression in myeloid cells is 

very low, suggesting that innate immune cells and repair SC employ different mechanisms for 

myelin phagocytosis. Mac subclusters strongly express the myelin binding receptors Lrp1 (low 

density lipoprotein receptor-related protein 1), Pirb (paired Ig-like receptor B), Cd300lf 

(sphingomyelin receptor), and several scavenger receptors (Msr1, Cd36, Cd68), including high 

levels of opsonic receptors (Fcgr1, Fcgr3, Fcgr4, Fcer1g) that may contribute to phagocytosis of 

antibody marked myelin debris (Figure 2.25, and Table 2.1) (Atwal et al., 2008; Grajchen et al., 

2018; Izawa et al., 2014; Kuhlmann et al., 2002; Stiles et al., 2013). Compared to Mo/Mac of 

injured nerves, phagocytosis receptor expression is much lower in naïve nerve Mac (Figure 2.25). 

In addition to debris phagocytosis, myeloid cells participate in removal of apoptotic cells 

(AC), primarily dying neutrophils and other leukocytes. Phagocytic uptake of AC, called 

efferocytosis, is mediated by a range of specialized engulfment receptors and mechanisms for 

ingestion (Boada-Romero et al., 2020). AC are selectively recognized due to phosphatidylserine 

(PS) or calreticulin (Calr) accumulation on their surface; both function as strong “eat me” signals 

(Figure 2.24A). Conversely, healthy cells display the “don’t eat me” signal CD47 that binds to the 

cell surface receptor SIRPα (signal regulatory protein α) encoded by Sirpa, to block efferocytosis 
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(Kourtzelis et al., 2020). Calr and Cd47 are boadly expressed by cells in the injured nerve, while 

Sirpa is largely confied to myeloid cells (Figure 2.24B). PS is directly recognized by cell surface 

receptors such as CD300 family members (Cd300a, Cd300lb, Cd300lf), stabilin-1 (Stab1), and 

oxidized-PS by the scavenger receptor Cd36, molecules that are expressed by phagocytes in the 

injured nerve (Figure 2.24C). Alternatively, PS binds indirectly, via bridging molecules, to 

engulfment receptors (Voss et al., 2015). Interestingly, in the injured sciatic nerve, numerous cell 

types express specific sets of bridging molecules, indicating that they may contribute in an 

autocrine or paracrine manner to AC removal. Bridging molecules prominently expressed include 

complement C1q components (C1qa, C1qb, C1qc, C1ra), annexins (Anxa1-5), pentraxin (Ptx3), 

thrombospondin 1 (Thbs1), collectin kidney protein 1 (Colec11), soluble collectin placenta 1 

(Colec12), galectin-3/MAC-2 (Lgals3), growth arrest-specific 6 (Gas6), protein S (Pros1), milk 

fat globule-EGF factor 8 (Mfge8), and apolipoprotein E (Apoe) (Figure 2.24B). Bridging 

molecules that bind to PS are recognized by a large and diverse set of engulfment receptors on 

phagocytes, including Lrp1, Trem2, Dap12 (Tyrobp), C1q receptor (C1qr/Cd93), C3a receptor 1 

(C3ar1), integrin αMβ2, (Itgam, Itgb2), integrin αv (Itgav), integrin β3 (Itgb3), CD14, and 

members of the scavenger receptor family (Cd68 and Msr1/Mac scavenger receptor 1) (Doran et 

al., 2020; Erriah et al., 2019; Korns et al., 2011). Strikingly, many of these engulfment receptors 

are expressed by myeloid cells, and are particularly abundant in cluster Mac4 (Figure 2.24C). 

Indirect evidence that Mac4 cells eat AC corpses, is the strong expression of gene products that 

regulate lipid metabolism and mechanisms that protect cells from excessive cholesterol loading, 

such as reverse cholesterol transport and cholesterol esterification (Figure 2.23). To assess 

whether expression of gene products involved in efferocytosis are upregulated following nerve 

injury, we took advantage of recently published scRNA-seq data sets generated from naïve mouse 

sciatic nerve tissue (Wang et al., 2020; Ydens et al., 2020). Importantly, bridging molecules and 

engulfment receptors are either not expressed by macrophages in the naïve nerve, or expressed at 

much lower levels than in Mac4 cells in the injured nerve (Figure 2.26). 

 

2.3.11 Efferocytosis of leukocytes in the injured sciatic nerve 
 To directly test whether efferocytosis takes place in the injured nerve, we first examined 

the presence of AC corpses. Viability-dye labeling, combined with flow cytometry, identified an 

increase in AC at d3 and d7 post-SNC (Figure 2.24D). During nerve debridement, degenerated 
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nerve fibers and AC corpses are removed. In order to distinguish between efferocytosis of dying 

leukocytes and phagocytosis of nerve fiber debris, we generated WTCD45.1-tdTomCD45.2 parabiotic 

mice (Figure 2.24E). Both mice in the parabiosis complex were subjected to bilateral SNC. At d3 

post-SNC, live cells in the injured WTCD45.1 nerve were analyzed by flow cytometry (gating 

strategy is illustrated in Figure 2.7). All tdTom+ cells in the injured nerve of the WTCD45.1 parabiont 

are blood-borne immune cells. Moreover, cells that are CD45.1+tdTom+CD45.2- represent tdTom+ 

leukocytes that were eaten in the nerve by CD45.1+ phagocytes. In non-parabiotic (single) tdTom 

mice, ~95% of myeloid cells (CD11b+) in the 3d injured nerve are tdTom+ (Figure 2.24F) and in 

the WTCD45.1 parabiont ~39% are CD11b+tdTom+ (Figure 2.24G). Importantly, in the WTCD45.1 

parabiont, CD45.1+tdTom+CD45.2- (Q3) cells are readily detected in the injured nerve and such 

cells are not present in tdTom (single) mice (Figure 2.24H-I). This indicates that efferocytosis of 

apoptotic leukocytes takes place in the injured nerve. To determine which immune cell types eat 

apoptotic leukocytes, we analyzed CD45.1+tdTom+ cells for surface levels of Ly6C and CD11c to 

distinguish between maturing Mo/Mac (Ly6Chi to Ly6C-) and MoDC (CD11c+). Mo/Mac have the 

biggest appetite for tdTom+ apoptotic leukocytes, more so than MoDC, suggesting they remove 

the bulk of dying leukocytes (Figure 2.24K-M and Figure 2.27). As negative controls, non-

parabiotic tdTomCD45.2 mice were processed in parallel (Figure 2.24J-L and 2.27). Collectively, 

these studies show that efferocytosis of dying leukocytes takes place in the injured sciatic nerve, 

and thus, serves as an important mechanism to clear the nerve of AC corpses.  

 

2.3.12 Csf2 deficiency skews the immune response in the injured nerve toward 

classically activated Ly6Chi monocytes 
 While PNS injury elicited inflammation is important for axon regeneration, it is not clear 

whether inflammation in the nerve or axotomized DRGs is a primary driver of peripheral axon 

regeneration, or conditioning-lesion-induced central axon growth (Figure 2.28A). Bulk RNA-seq 

of axotomized DRGs and scRNA-seq of injured nerve identified chemokine and cytokine ligand-

receptor systems preferentially expressed in the injured nerve. GM-CSF signaling is of interested 

because this cytokine is present in the injured nerve and has been implicated in neuroprotection 

and axon repair (Be'eri et al., 1998; Franzen et al., 2004; Legacy et al., 2013). Moreover, GM-CSF 

increases surface expression of galectin-3 (Saada et al., 1996) and in non-neural tissues galectin-3 

functions as a bridging molecule for efferocytosis of apoptotic immune cells (Erriah et al., 2019; 
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Wright et al., 2017). Transcripts for the GM-CSF receptor subunits (Csf2ra and Csf2rb) are 

abundantly expressed by myeloid cells in the injured nerve (Figure 2.28B-C), but not in 

axotomized DRGs (Figure 2.8K-L). To assess the role in nerve injury triggered inflammation, we 

employed Csf2-/- mice (Figure 2.29) and subjected them to SNC.  Flow cytometry was used to 

quantify immune cell profiles in naïve nerves and at 1d, 3d, and 7d post-SNC.  In naïve WT and 

Csf2-/- mice, the number of endoneurial Mac is comparable, and the majority of them are Ly6C- or 

Ly6Cint cells (Figure 2.28D-E). In the d3 injured nerve, there is a strong increase in the Mo/Mac 

population, in both, WT and Csf2-/- mice (Figure 2.28F-G). However, when analyzed for surface 

Ly6C expression, significantly fewer Ly6C- cells are present in Csf2-/- mice. Conversely, the 

population of Ly6Chi cells is significantly elevated in Csf2-/- mice when compared to WT mice 

(Figure 2.28H). This indicates that Mo/Mac maturation and inflammation resolution in the injured 

nerve of Csf2-/- mice is significantly delayed. Delayed maturation is only observed in the Mo/Mac 

population, since analysis of surface Ly6C expression on MoDC is comparable between WT and 

Csf2-/- mice (Figure 2.28I).  

 

2.3.13 Csf2 is required for CL-induced dorsal column axon regeneration 
 To assess whether proper Mo/Mac maturation in the injured nerve is important for 

conditioning-lesion-induced regeneration of central axon projections, adult WT and Csf2-/- mice 

were either subjected to bilateral SNC or sham operated. Seven days later, a dorsal column lesion 

(DCL) was placed at cervical level 4 of the spinal cord. Five weeks following DCL, cholera-toxin 

B (CTB) traced dorsal column axons were analyzed in longitudinal spinal cord sections (Figure 

2.28A). DCL causes axon “die-back” (Horn et al., 2008). In WT mice without conditioning lesion, 

there is a 600± 80 µm gap between the lesion center, and the most proximal, CTB labeled axons 

(Figure 2.28J-K). In WT mice that received a conditioning lesion, traced axons grew close to the 

spinal cord injury site (Figure 2.28J-K). In parallel processed Csf2-/- mice, without conditioning 

lesion, there is a 720± 120 µm gap between the lesion center, and the most proximal CTB labeled 

axons (Figure 2.28J-K). However, in Csf2-/- mice subjected to a conditioning lesion, dorsal 

column axon regeneration is not significantly enhanced (Figure 2.28J-K).  This shows that Csf2 

is important for conditioning-lesion-induced central axon regeneration.  

GM-CSF has pleiotropic functions and its receptors are found on hematopoietic cells, glial 

cells, and subsets of neurons (Donatien et al., 2018; Franzen et al., 2004). SNC leads to 
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upregulation of GM-CSF in the nerve (Mirski et al., 2003) and acute administration of GM-CSF 

following SNC leads to a transient increase in PNS axon regeneration (Bombeiro et al., 2018). To 

assess whether loss of Csf2 attenuates neurite outgrowth in vitro, we cultured DRG neurons from 

adult WT and Csf2-/- mice. After 20 h, many neurons with axons were identified in both WT and 

Csf2-/- cultures (Figure 2.28L). Quantification of axon growth did not identify Csf2 dependent 

differences in total axon length or the longest axon (Figure 2.28M). A second cohort of WT and 

Csf2-/- mice was subjected to a conditioning lesion 3d prior to harvesting of axotomized DRGs. In 

both WT and Csf2-/- cultures, neurite outgrowth is significantly increased when compared to DRGs 

prepared from naive mice (Figure 2.28M). Collectively, this shows that reduced axon regeneration 

in the dorsal columns of Csf2-/- mice is not due to loss of conditioning-lesion-induced activation 

of neuron-intrinsic growth programs and indicates that Csf2 promotes regeneration through cell 

non-autonomous, extrinsic mechanisms. 

 

2.4 Discussion 
 We show that compression injury to the sciatic nerve triggers massive infiltration of blood-

borne immune cells into the nerve. Granulocytes enter first, closely followed by Ly6Chi 

monocytes. After a short pro-inflammatory phase, the immune milieu rapidly transitions toward 

resolution and is dominated by Ly6C- Mac. Analysis of axotomized DRGs revealed upregulation 

of immune-associated gene co-expression networks, however infiltration of blood-borne immune 

cells was very limited.  DRG-resident macrophages downregulate surface Ly6C upon nerve injury 

and undergo striking morphological changes.  Single-cell RNA-seq identified 10 immune cell 

clusters in the injured nerve. Monocytes and their descendants, Mac1-Mac5 subpopulations and 

MoDC are abundantly present. The immune compartment includes a population of blood-derived, 

proliferating myeloid cells (Mac5) with stem-like features. Mononuclear phagocytes in the injured 

nerve form a connected continuum of 8 cell clusters, including a subpopulation of Arg1+ Mac 

localized to the nerve crush site. In contrast, F4/80+ Mac are more evenly distributed in the nerve 

and associated with Wallerian degeneration. Apoptotic cell corpses rapidly accumulate in the 

injured nerve. Experiments with parabiotic mice show that Mo/Mac and MoDC contribute to nerve 

debridement by “eating” apoptotic leukocytes. In Csf2-/- mice, pro-inflammatory Ly6Chi Mo/Mac 

are elevated in the injured nerve, while the number of anti-inflammatory Ly6C- cells is reduced. 

This exacerbation of inflammation correlates with loss of conditioning-lesion induced central axon 



 

 156 

regeneration. Collectively, a comparative analysis of the immune response to PNS injury reveals 

striking differences in the inflammatory landscape between the nerve injury site, the degenerating 

nerve stump, and axotomized DRGs. Efferocytosis of apoptotic leukocytes is identified as a key 

mechanism of nerve debridement and inflammation resolution. Perturbed resolution of nerve 

inflammation, as observed in Csf2-/- mice, blocks conditioning-lesion-induced central axon 

regeneration.  

 

2.4.1 Evidence for specific immune compartments within the injured nerve 
 Traumatic PNS injury causes necrosis of SC, MES, and vasculature-associated cells at the 

nerve injury site. Disruption of the vasculature leads to endoneurial bleeding and tissue hypoxia. 

Necrosis is a violent form of cell death that disrupts the plasma membrane and leads to the release 

of intracellular damage-associated molecular patterns (DAMPs) into the extracellular milieu. 

Release of intracellular content, in any tissue, causes a strong pro-inflammatory response (Frank 

and Vince, 2019; Vannella and Wynn, 2017). Distal to the nerve crush site, transected nerve fibers 

undergo Wallerian degeneration and release DAMPs as they disintegrate. However, in the distal 

nerve the abundance and composition of DAMPs, such as the absence of double-stranded DNA 

and nuclear proteins, is very different from the nerve crush site (Bortolotti et al., 2018). Thus, 

depending on where Mo enter the injured nerve, they may encounter very different 

microenvironments and adapt site specific phenotypes (Cane et al., 2019). The strong 

accumulation of Arg1-YFP+ cells at the nerve injury site, but not along degenerating fibers, 

supports the idea that Mo/Mac adapt microenvironment specific phenotypes. Studies with chimeric 

mice show that hematogenous leukocytes first accumulate at the injury site and later along severed 

fibers that undergo Wallerian degeneration. The density of blood-derived leukocytes is highest at 

the injury site and correlates with the extent of tissue damage. We speculate that F4/80+ Mac 

associated with Wallerian degeneration function in phagocytosis of myelin debris and degenerated 

axons, whereas Arg1+ Mac near the injury site primarily function in removal of apoptotic cell 

corpses. In support of this idea, Arg1+ Mac, highly enriched in cluster Mac4, express the highest 

levels of engulfment receptors and gene products important for reverse cholesterol transport, a 

strong indicator for ongoing efferocytosis (Yvan-Charvet et al., 2010). 
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2.4.2 Efferocytosis of apoptotic leukocytes in the injured sciatic nerve 
 Studies with chimeric mice show that upon sciatic nerve injury, Mo/Mac, and to a lesser 

extent MoDC, participate in nerve debridement by eating dying leukocytes. Bridging molecules 

that facilitate recognition of AC are abundantly expressed by immune and non-immune cells in 

the injured nerve. Compared to Mac from naïve PNS tissue, cells in subcluster Mac4 of the injured 

nerve show highly elevated expression of engulfment receptors. Some engulfment receptors, 

including Lrp1, Axl, and the scavenger receptor class B member 2 (Scarb2), are expressed by MES 

and repair SC, suggesting that immune and non-immune cells participate in nerve debridement, 

possibly including efferocytosis. Whether the large and diverse array of engulfment receptors 

expressed in the injured nerve reflects eating of specific debris, AC corpses, or a high degree of 

functional redundancy is unknown and requires further investigation. The most likely prey eaten 

by Mo/Mac and MoDC are dying neutrophils. Neutrophils are very abundant at early post-injury 

time points, have a short life span, and spontaneously die by apoptosis (Greenlee-Wacker, 2016; 

Lindborg et al., 2017). In non-neural tissues, efferocytosis of neutrophils triggers anti-

inflammatory responses in Mo, Mac, and DC, a prerequisite for inflammation resolution 

(Greenlee-Wacker, 2016). Thus, efferocytosis is not simply a mechanism for garbage removal, but 

also a key driver to reprogram professional phagocytes from a pro-inflammatory to an anti-

inflammatory state (Boada-Romero et al., 2020; Eming et al., 2017; Ortega-Gomez et al., 2013). 

In a similar vein, efferocytosis in the injured sciatic nerve may drive inflammation resolution and 

wound healing. In humans, dysregulation of efferocytosis can cause chronic inflammatory and 

autoimmune diseases, including asthma, systemic lupus erythematous, and atherosclerosis 

(Kawano and Nagata, 2018). Additional studies are needed to determine whether defective 

efferocytosis and impaired inflammation resolution in the PNS contribute to excessive tissue 

damage and neuropathic pain. 

 

2.4.3 The immune compartment of the 3-day injured sciatic nerve exhibits an 

immunosuppressive character 
 Rapid removal of AC corpses protects from secondary necrosis and is closely associated 

with the induction of immunological self-tolerance. Commensurate with this, the low presence of 

lymphocytes and Natural killer cells in the nerve indicates that the microenvironment is 

immunologically “cold” and dominated by immunosuppressive mechanisms. We propose that 
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efferocytosis in the injured nerve is key to switch from a pro-inflammatory environment to 

resolution and restoration of tissue integrity (Kourtzelis et al., 2020; Ortega-Gomez et al., 2013). 

At 3d post-SNC, expression of the pro-inflammatory cytokines and chemokines (Ifng, Il1a, Il1b, 

Tnf) is very low.  Most myeloid cells express high levels of anti-inflammatory Cd52, a glycoprotein 

that binds to HMGB1 to suppress T cell function (Bandala-Sanchez et al., 2018; Rashidi et al., 

2018). Trem2+Arg1+ cells are strongly enriched in cluster Macs4 and show gene signatures 

suggestive of myeloid suppressive cells (Katzenelenbogen et al., 2020; Yurdagul et al., 2020). 

Further evidence for an immunosuppressive environment is the strong expression of Pirb by 

myeloid cells, a type 1 membrane protein with four cytoplasmic immunoreceptor tyrosine-based 

inhibitory motifs (ITIMs) that inhibit immune cell activation (van der Touw et al., 2017). Myeloid 

inhibitory C-type lectin-like receptor (Clec12a), Lair1 (leukocyte-associated Ig-like receptor-1), 

Fcgr2b (low affinity immunoglobulin gamma Fc region receptor IIb), and the CD300 family 

receptors Cd300a and Cd300lf, all of which contain ITIMs (Rozenberg et al., 2018), are strongly 

expressed, and thus, may reduce nerve inflammation.  TGFβ is expressed by efferocytotic Mac in 

the lung (Yoon et al., 2015). In the injured sciatic nerve, Tgfb1 is expressed by myeloid cells and 

is important for axon regeneration (Clements et al., 2017; Kourtzelis et al., 2020). Cells in clusters 

Mac1, Mac2, and Mac3 express high levels of Rbpj, a TR that restrains ITAM (immunoreceptor 

tyrosine-based activation motif) signaling and promotes a, resolving Mac phenotype (Foldi et al., 

2016). Mac4 cells express the transmembrane glycoprotein NMB (Gpnmb), a negative regulator 

of inflammation that has protective effects following tissue injury (Zhou et al., 2017). Of interest, 

in the 3d injured nerve, Mac1, Mac3, and Mac4 strongly express the TRs Maf/c-Maf and 

Mafb/MafB. MafB promotes reprogramming of macrophages into an M2-like, resolving 

phenotype (Kim, 2017) and c-Maf is a checkpoint that programs Mac and is critical for the 

acquisition of an immunosuppressive phenotype (Liu et al., 2020). 

 

2.4.4 Csf2 deficiency alters nerve inflammation and blocks conditioning-

lesion-induced axon regeneration 
 Parabiosis revealed massive infiltration of blood-borne immune cells into the injured nerve 

but not axotomized DRGs. This finding was independently confirmed by flow cytometry, Western 

blotting, 3D reconstruction of Iba1+ cells, and RNA-seq of axotomized DRGs. The small increase 

in hematogenous leukocytes in axotomized DRGs was unexpected, since infiltration of Mo/Mac 
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is thought to be a key driver of conditioning-lesion-induced axon regeneration (Kwon et al., 2015; 

Richardson and Issa, 1984; Zigmond and Echevarria, 2019).  Consistent with previous reports, 

sciatic nerve injury causes a strong increase in Iba1 immunoreactivity in DRGs. We provide 

evidence that increased Iba1 immunoreactivity is, at least in part, a reflection of macrophage 

morphological changes triggered by nerve injury.  Additional mechanisms may include local 

myeloid cell proliferation (Yu et al., 2020) and infiltration of a small number of blood-borne 

myeloid cells.  

SNC triggers an inflammatory response in the nerve and in axotomized DRGs, although 

quantitatively and qualitatively very different, it remains unclear which immune compartment is 

important for conditioning lesion elicited axon regeneration. To revisit this question, we took 

advantage of RNA-seq datasets generated from DRGs and nerves and searched for immune 

signaling pathways preferentially upregulated in the injured nerve, but not axotomized DRGs. 

Focusing on GM-CSF signaling, a cytokine that rapidly accumulates in the distal nerve stump 

(Mirski et al., 2003), we observed strong expression of both GM-CSF receptor subunits (Csf2ra 

and Csf2rb) in nerve macrophages but not axotomized DRGs. GM-CSF is known to promote Mo 

migration and Mac polarization (Ijaz et al., 2016; Vogel et al., 2015; Wicks and Roberts, 2016). 

Of interest, GM-CSF upregulates surface expression of galectin-3 on SC and Mac (Saada et al., 

1996) and galectin-3 is thought to promote phagocytosis of myelin debris and participate in re-

programming of Mac toward an anti-inflammatory phenotype (Erriah et al., 2019; Rotshenker, 

2009). Recent evidence shows that galectin-3 promotes efferocytosis of neutrophils and promotes 

inflammation resolution (Quenum Zangbede et al., 2018; Wright et al., 2017). Following SNC in 

Csf2-/- mice, the ratio of Ly6Chi to Ly6C- Mo/Mac is significantly skewed toward the former.  

Functional studies with Csf2-/- mice highlight a critical role for conditioning-lesion-induced 

regenerative growth of severed dorsal column axons. Neurite outgrowth studies with primary DRG 

neurons suggest that the regenerative failure in Csf2-/- mice is not due to failed activation of DRG 

neuron-intrinsic growth programs, but due to changes in extrinsic, environmental influences. 

Because Csf2 receptor expression is very low in axotomized DRGs, this suggests that Csf2 

dependent accumulation of Ly6C- Mac in the nerve is important for conditioning-lesion-induced 

axon regeneration. We speculate that Csf2 functions non-cell autonomously in the injured nerve 

to generate an extracellular milieu capable to sustain neuron-intrinsic growth programs activated 

by injury. In a similar vein, axotomy to corticospinal neurons is sufficient for the induction of 
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neuron-intrinsic growth programs, but not maintenance. However, neuron-intrinsic growth 

programs in corticospinal neurons can be maintained by environmental cues released from stem 

cells grafted near the injury site (Kumamaru et al., 2018; Poplawski et al., 2020).  While our studies 

demonstrate an important role for Csf2 in conditioning-lesion-induced axon regeneration, we 

cannot rule out potential contributions by DRG macrophages. However, the small number of 

hematogenous macrophages detected in axotomized DRGs suggests that potential pro-

regenerative immune mechanisms would need to be exerted by tissue-resident macrophages. We 

acknowledge that axon regeneration was examined in Csf2 global knock-out mice, and thus, it is 

possible that Csf2 deficiency affects immune cells before they enter the injured sciatic nerve 

(Hamilton, 2019) or within the injured spinal cord (Choi et al., 2014; Huang et al., 2009).  

 Taken together, we provide a comparative analysis of SNC-induced inflammation in the 

nerve and axotomized DRGs and identify two very different immune compartments, the former 

primarily comprised of hematogenous leukocytes and latter of tissue-resident endoneurial Mac. 

Mac subpopulations in the injured nerve are not uniformly distributed, indicating the existence of 

specific immune microenvironments. Efferocytosis of dying leukocytes is observed in the injured 

nerve, and thus, contributes to nerve debridement and inflammation resolution. If this process is 

curtailed, conditioning-lesion induced regeneration of DRG neuron central axons is impaired.   

 

2.5 Materials and Methods 
2.5.1 Animals 
 All procedures involving mice were approved by the Institutional Animal Care and Use 

Committee at the University of Michigan and Weill Cornell Medicine, and performed in 

accordance with guidelines developed by the National Institutes of Health. Adult (8-16 week-old) 

male and female mice on a C57BL/6 background were used throughout the study. Mice were 

housed under a 12 h light/dark cycle with standard chow and water ad libitum. Mouse lines 

included, Csf2-/- (Jackson Laboratories, Stock No: 026812), ROSA26-tdTom, constitutively 

expressing membrane bound tdTomato in all cells (Jackson Laboratories, Stock No. 007576), 

CD45.1 (Jackson Laboratories, Stock No: 002014), and Arg1-eYFP reporter mice (Jackson 

Laboratories, Stock No: 015857).  
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2.5.2 Genotyping of Csf2 mice 
 Genomic (g) DNA was isolated from adult WT or Csf2-/- mice. Briefly, tissue samples were 

harvested and digested in lysis buffer (10 mM TrisHCl pH8, 25 mM EDTA, 0.1 M NaCl, 1% SDS) 

with Proteinase K overnight at 55°C. The following day, gDNA was extracted and resuspended in 

water. The following PCR primers were used: Csf2 forward 5’-

GTGAAACACAAGTTACCACCTATG-3’, Csf2 reverse 5’-TTTGTCTTCCGCTGTCCAA-3’; 

neomycin forward 5’-CTTGGGTGGAGAGGCTATTC-3’, neomycin reverse 5’-

AGGTGAGATGACAGGAGATC-3’. PCR parameters: 95°C for 2 min, (95°C for 1 min, 55°C 

for 30 s, 72°C for 20 s) repeated for 35 cycles, 72°C for 5 min.  

 

2.5.3 Surgical procedures 
 All surgeries were carried out under aseptic conditions. Mice were deeply anesthetized 

with a mixture of ketamine (100 mg/kg) and xylazine (10 mg/kg) or with isoflurane (5% induction, 

2-3% maintenance, SomnoSuite Kent Scientific). Buprenorphine (0.1 mg/kg) was given pre-

emptively and post-operatively. 

 

2.5.3.1 Sciatic nerve crush injury 

 For sciatic nerve surgery, thighs were shaved and disinfected with 70% ethanol (Covidien, 

6818) and iodine (PDI Healthcare, B40600 A small incision, at mid-thigh, was made on the skin, 

underlying muscles separated, and the sciatic nerve exposed. For sham operated mice, the nerve 

was exposed but not touched. For SNC, the nerve was crushed for 15 seconds, using fine forceps 

(Dumont #55, Roboz Surgical Instruments, RS-5063). Skin was closed with 7mm reflex wound 

clips (Cell Point Scientific, 203-1000). 

 

2.5.3.2 Dorsal column lesion 

 Spinal cord surgery was carried out as described previously (Yoon et al., 2013). Briefly, 

the C4 lamina was removed using micro-rongeurs (Roboz Surgical Instruments, RS-8306) under 

a stereomicroscope. The spinal column was exposed, and McPherson-Vannas Micro Dissecting 

Spring Scissors (Roboz Surgical Instruments, RS-5600) were inserted 1 mm deep. A hemisection 
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of the dorsal spinal cord was carried out to transect all axons in the dorsal columns. The lesion was 

confirmed by probing with fine forceps. Next, dorsal muscle layers were closed using Perma-Hand 

Black sutures (5-0, Ethicon) and skin incisions were closed using coated Vicryl sutures (5-0, 

Ethicon, J463G). 

 

2.5.3.3 Axon tracing 

 For tracing of ascending sensory axons in the dorsal columns, tracer was injected into the 

sciatic nerve 5 weeks after SCI (Yoon et al., 2013). Briefly, the sciatic nerve was exposed at mid-

thigh level and held in place using dumont #7 curved forceps (Fine Science Tools, 11271-30) and 

Miltex halsted mosquito forceps (Integra LifeSciences, 12460-174) to provide tension for the 

injection. Cholera toxin B (CTB, List Biological Laboratories, #104, 1.5 µl of 1% solution in 

water) was injected into sciatic nerves using a Nanofil 10 µL syringe with a 36 gauge beveled 

needle (World Precision Instrument, NF36BV-2). The needle was removed ~30 sec after injection 

to prevent backflow of fluid. Mice were sacrificed 3 days after tracer injection, spinal cords 

sectioned and stained as described (Yoon et al., 2013).  Dorsal column lesion completeness was 

confirmed by absence of traced axons in transverse spinal cord sections rostral to the lesion.  The 

distance between the lesion epicenter and the tip of traced axons was quantified by an investigator 

blinded with respect to mouse genotype and whether a conditioning lesion was applied or not. 

 

2.5.3.4 Parabiosis 

 Isochronic, same sex mice were housed in the same cage for at least 2 weeks prior to 

surgery. Mice were deeply anesthetized and their left or right sides shaved from just above the 

shoulder to below the knee. Eye ointment was applied to both mice to prevent drying. The skin 

was cleaned 3 times using ethanol and iodine pads before a unilateral skin-deep incision was made 

from the elbow to the knee on each animal. Skin fascia adjacent to the incision was peeled back 

using a pair of blunt forceps. Mice were joined at the knee and elbow joints using non-absorbable 

sutures by running the suture needle through the muscle just under each joint in both animals and 

completing the suture. Absorbable sutures were used to join the skin of each mouse around the 

shoulder and hindlimbs. 7mm reflex wound clips were used to join the remainder of skin between 

the mice. Mice were allowed to recover for 3-4 weeks before further surgery 
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2.5.4 DRG cultures 
 Unilateral SNC was performed on adult mice 3 days prior to culture. The uninjured side 

was used as control. The dorsal spinal column from adult mice was exposed and the identity of 

lumbar DRGs established by counting vertebras from the hipbone (Sleigh et al., 2016). L3-L5 

DRGs were dissected and harvested into L-15 with N2 (Gibco, 17502048) or N1 (Sigma-Aldrich, 

N6530) supplement on ice. DRGs were rinsed 5 times in L-15 with Penicillin/ Streptomycin (Life 

Technologies, 15140-122) and minced in growth media (DMEM Ham’s F-12, 10% FBS, 1X N2 

or N1 supplement and 16 nM Cytosine arabinoside (Sigma-Aldrich, C1768) with McPherson-

Vannas Micro Dissecting Spring scissors. DRGs were digested in collagenase type 2 (10 mg/ml, 

Worthington Biochemical, LS004176) in Ca2+, Mg2+ free PBS (Gibco, 100010023) at 37°C for 20 

minutes. Ganglia were dissociated by trituration using a fire polished Pasteur pipette, followed by 

centrifugation (5 minutes, 160 x g) and trituration in wash buffer (DMEM Ham’s F-12, Gibco, 

10565-018; 10% FBS, Atlanta Biologicals, S11550; 1% Penicillin/Streptomycin, Life 

Technologies, 15140-122) twice. Cells were plated in growth media at a density of 0.5 DRG per 

well in a 24-well plate (flat bottom plates, Corning, 3524) coated with poly-L-lysine 0.01% (MW 

70,000-150,000) (Sigma-Aldrich, P4707) for 45 minutes at 37°C, followed by wash in dH20, dried 

and coated with 0.2 mg/mL laminin (Sigma-Aldrich, L2020). Cells were placed in a humidified 

incubator at 37°C, 5% CO2 for 20 hours. 

 

2.5.5 Immunofluorescence staining 
 Primary DRG neuron cultures were fixed in 4% paraformaldehyde (PFA) in 1x PBS 

(Sigma-Aldrich, 158127) for 15 minutes at RT, followed by 2 brief rinses in PBS. Cells were 

permabilized in 0.3% Triton-X100 (Sigma, T8787) in PBS for 5 minutes at RT. Cells were 

incubated in blocking buffer, 2% FBS, 2% heat shock fraction V BSA (Fisher Scientific, BP1600), 

0.3% Triton-x-100 in PBS for 1 hour. Cells were incubated with anti-Neurofilament heavy chain 

(NFH, 1:100; Aves Lab, NFH) in blocking buffer overnight at 4°C and rinsed 3x in 0.3% triton-x-

100 in PBS, 5 minutes each. Donkey anti-chicken Cy3 (1:200, Jackson Immunoresearch, 703-165-

155) in blocking buffer was added for 45 minutes at room temperature. Cells were rinsed in PBS 

for 5 minutes. Hoechst 33342 (1:50,000 in PBS; Invitrogen, H3570) was added for 10 minutes at 

RT, followed by 2 washes in PBS. Cells were imaged on a Zeiss Axio Observer Z1 fitted with a 
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Zeiss Axiocam 503 mono camera using the EC PlnN 10x objective. Single plane, tile scans were 

randomly acquired for each well. For immunofluorescence staining of neural tissues, mice were 

killed and perfused transcardially with ice-cold PBS for 2 min followed by ice-cold, freshly 

prepared 4% paraformaldehyde for 10 min. Spinal cord, sciatic nerves, and L4-L5 DRGs were 

collected and post-fixed in perfusion solution overnight. After that the solution was switched to 

30% sucrose in PBS and tissues were kept at 4ºC degrees for at least 12 h. Tissues were covered 

with tissue Tek (Electron Microscopy Sciences, 62550-01) and stored at -80 ºC. Spinal cord 

sections and longitudinal sciatic nerve sections were cut at 12 µm and DRGs at 10 um thickness 

using a cryostat (Leica Biosystems, CM3050S). Sciatic nerve and DRG sections were mounted on 

Superfrost+ microscope slides (Fisher Scientific, 12-550-15) and air dried for at least 12h. Spinal 

cord sections were stained in 24-well plates as free floating sections. The following primary 

antibodies were used, anti-Iba1 (1:500; WAKO, 019-19741), anti-F4/80 (1:500; Thermo Fisher 

Scientific, MA1-91124), anti-CD68 (1:500, Abcam, ab125212), anti-GFAP (1:500, DAKO, 

Z0334), anti-SCG10 (1: 2,000, Novus Biological, NBP1-49461), anti-CTB (1: 10,000, List 

Biological Laboratories, #703). 

 

2.5.6 Quantification of neurite outgrowth 
 Neurite lengths was quantified as described previously(Robak et al., 2009). Briefly, 

neurofilament-H stained cultures were used for neurite growth analyses. Only cells with neurites 

≥ 30 µm were included in the analyses from randomly acquired tile scans using WIS-Neuromath 

(Kalinski et al., 2019). 

 

2.5.7 Whole mount DRG analysis 

2.5.7.1 Staining 

 Mice were subjected to unilateral SNC as described above. L4 DRGs from the uninjured 

(intact) and injured side were dissected and post-fixed in 4% PFA/PBS overnight at 4˚C. For tissue 

clearing of DRGs, we used the iDISCO technique (Bray et al., 2017; Renier et al., 2014). Briefly, 

post-fixed samples were washed in 1x PBS and then dehydrated at room temperature with a series 

of 15 minute washes with methanol in 0.05x PBS (20%, 40%, 60%, 80% and 100% vol/vol). 

Samples were bleached overnight with 5% H2O2 in 100% methanol at 4˚C. The next day samples 
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were rehydrated with a series of 15 minute washes of methanol in 0.05x PBS + 0.2% Triton x-100 

(80%, 40%, 20%, and 0% vol/vol). Samples were permeabilized in 1xPBS with 0.2% Triton X-

100, 20% DMSO, and 0.3M Glycine at 37ºC for 4 hours, followed by blocking with overnight 

incubation at 37˚C in 1xPBS with 0.2% Triton X-100, 10% DMSO, and 6% donkey serum. 

Samples were then washed twice for 1 hour in room temperature 1xPBS with 0.2% Tween 20 and 

10 µg/ml heparin (PTwH). Then, samples were incubated with goat anti-Iba1 (1:200, Novus 

Biologicals, NB100-1028) in PTwH plus 5% DMSO and 3% donkey serum at 37˚C for 3 days. 

Samples were washed 6 times in PTwH: 3 washes for 15 minutes at room temperature, followed 

by 2 washes for 1 hour at 37˚C and last wash overnight at 37˚C. Incubation with donkey anti-goat 

Alexa Fluor 488 (1:200, Jackson ImmunoResearch, 705-545-147) and the pan-nuclear stain 

TOPRO3 (Thermo Fisher Scientific, T3605) was performed in PTwH solution plus 3% donkey 

serum for 2 days at 37˚C. Then, the 6 washes in PTwH were repeated as above, and the next day 

samples were processed for clearing. Samples were dehydrated in methanol/water series of 20%, 

40%, 60%, and 80% vol/vol for one hour each at room temperature followed by two washes in 

100% methanol for 30 minutes each. Samples were then incubated in 66% dichloromethane 

(DCM) and 33% methanol, followed by two incubations in 100% DCM for 30 minutes each. 

Finally, samples were cleared and stored in dibenzylether (DBE).   

 

2.5.7.2 Morphological analysis 

 For each cleared DRG, three different regions of interest were acquired on an inverted 

Nikon C1 confocal microscope at 60X using 0.25µm z-steps.  Image stacks were processed in 

ImageJ software for background subtraction (rolling ball radius of 10 pixels for Iba1 channel, and 

20 for Topro3 signal), followed by mean filtering (1.5-pixel radius for Iba1 signal, and 2.0 for 

Topro3). Filtered images were then processed in Imaris software (Bitplane) to perform 3D surface 

rendering, and extraction of morphological characteristics (e.g number of structures, cell, and 

processes volume).  Iba1 immunoreactive cells were categorized based on morphological 

parameters: somal shape, branch number, and branch extension. Amoeboid cells were defined as 

having rounded somata of variable size with occasional short ramifications. Elongated cells 

exhibited an extended and regular rod shaped or arced somal morphology with only rare short 
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branches. Stellate cells were clearly distinguished from the other cell types by having three or more 

elongated and curved branches. 

 

2.5.7.3 Density analysis 

 For estimation of total Iba1 density, whole cleared DRGs were imaged using 3D tile 

scanning at 20X on a Leica Sp8 confocal microscope. Alignment and stitching were performed 

with the Leica Application Suite X (LAS X). Images were pre-processed using LAS X Lightning 

detection package, and subsequently processed using Imaris software. To estimate the total density 

of Iba1 labeling within DRGs, 3D surface rendering of Iba1 was used, and the volume of 

reconstructions was normalized against the total volume of the corresponding whole DRG. Group 

size was based on previously published work (Hollis et al., 2015). 

 

2.5.8 Western blot analysis 
 Sciatic nerves and L3-L5 DRGs were dissected and lysed separately in 

radioimmunoprecipitation assay (RIPA) buffer (150 mM NaCl, 50 mM Tris, 1% NP-40, 3.5 mM 

sodium dodecyl sulfate, 12 mM sodium deoxycholate, pH 8.0) supplemented with 50 mM β-

glycerophosphate (Sigma-Aldrich, G9422-100G), 1 mM Na3VO4 (Sigma-Aldrich, S6508-10G), 

and protease inhibitor cocktail (1:100, Sigma-Aldrich, P8340-5ML). Tissues were kept on ice, 

briefly homogenized with a motorized tissue homogenizer (RPI, 299200), and subjected to 

sonication (Fisher Scientific Sonic Dismembrator, Model 500) at 70% amplitude for 3 seconds. 

Tissue lysates were centrifuged at 15,000 rpm at 4°C for 10 minutes (Eppendorf, 5424R). The 

supernatant was transferred to a new tube and protein concentration was measured with a DC 

Protein Assay Kit (Bio-Rad, 5000111) using a photospectrometer at 750 nm (Molecular Devices, 

SpectraMax M5e). Samples were diluted with 2x Laemmli sample buffer (Bio-Rad, 1610737) 

containing 5% β-mercaptoethanol (EMD Millipore, 6010), boiled for 10 minutes at 100°C, and 

stored at -80°C for analysis. For SDS-PAGE, equal amounts of total protein (5-10 µg) were loaded 

per lane of a 15% gel. Separated proteins were transferred onto PVDF membrane (EMD Millipore, 

IPVH00010) for 2.5 hours at 200 mA in cold transfer buffer (25 mM TrisHCl, 192 mM Glycine, 

10% Methanol). Membranes were blocked in 5% blotting-grade blocker (BioRad, 1706404) 

prepared in 1x TBS-T (TBS pH 7.4, containing 0.1% Tween- 20) for 1 hour at room temperature, 

and probed overnight at 4°C with the following primary antibodies diluted in 1x TBS-T with 3% 
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BSA (Fisher Scientific, BP1600): α-CD11b (1:1000, Abcam, ab133357), α-ERK1/2 (1:5000, Cell 

Signaling Technologies, 9102). Horseradish peroxide (HRP)-conjugated α-rabbit secondary IgG 

(EMD Millipore, AP182P) were used. All HRP-conjugated secondary antibodies were diluted at 

half the dilution of the corresponding primary antibody in 3% BSA in 1x TBS-T, and the HRP 

signal was developed with various strengths of chemiluminescent substrates from Thermo Fisher 

Scientific (Pico Plus, 34580 or Femto, 34095) or from Li-COR Biosciences (926-95000). Protein 

band intensity was visualized and quantified in the linear range using LI-COR C-Digit (CDG-

001313) and Image Studio Software (Version 5.2.5).  

 

2.5.9 Cell isolation for flow cytometry 
 Adult mice, naïve and at d1, d3, and d7 post-SNC were deeply anesthetized with a mixture 

of Xylazine and Ketamine and perfused transcardially with ice-cold phosphate-buffered saline 

(PBS) for 5 minutes. DRGs at lumbar levels L3-L5 were harvested and pooled in ice-cold PBS. 

Injured and uninjured sciatic nerves were dissected. From injured nerves, the proximal stump and 

the distal stump (including the injury site) were harvested and pooled separately. Similar sized 

segments from uninjured nerves were collected for comparison. In addition, spleen was harvested. 

 

2.5.9.1 Flow cytometry 

 To analyze immune cell profiles in dorsal root ganglia (DRG), sciatic nerves (SN), and 

spleen, mice were transcardially perfused for 5 min with ice-cold PBS to flush out all blood cells 

in circulation. The spleen was dissected, and splenocytes were passed through a 70 µm Falcon cell 

strainer (Corning, 352350). Red blood cells were lysed with Ammonium-Chloride-Potassium 

(ACK) lysing buffer. DRG and SN were harvested bilaterally. For analysis of DRGs (6 DRGs per 

mouse X 3-4 mice= 18-24 DRGs) and SN from 2-3 mice (2 SN per mouse x 2-3 mice = 4-6 SN) 

were pooled separately and used for one run. The collected nerve segments were cut into small 

pieces with microscissors and incubated in 1 ml collagenase (4mg/ml Worthington Biochemical, 

LS004176) and dispase (2mg/ml, Sigma-Aldrich, D4693) in PBS for 30-45 min at 37°C degrees 

in a 15mL conical tube. Tissues were gently triturated with a P1000 pipette every 10 min. Next, 

samples were rinsed in DMEM with 10% FBS and spun down at 650 g for 5 min. This step was 

repeated three times and the resulting pellet gently re-suspended in 1 mL of 27% Percoll (Sigma 
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Aldrich, P4937) in PBS. Then 3 ml of 27% Percoll were added to bring the final volume to 4 ml. 

Samples were spun at 900g for 20 min in a clinical centrifuge (Beckman Coulter Allegra 6R). The 

top layers (with myelin and other debris) were carefully aspirated. The final 100 µl were 

resuspended in 1 ml of PBS with 2% FBS and filtered through a pre-washed 40 µm Falcon filter 

(Corning, 352340). Cells were pelleted at 650 g for 5 min at 4°C. Cells were labeled with fixable 

viability dye (Thermo Fisher Scientific, 65086614), blocked with αCD16/32 (BD Pharmingen, 

553141), and stained with fluorescent antibodies and isotype controls. Immune cells (CD45+) were 

further classified as myeloid (CD45+CD11b+), cDC (CD45+CD11b-CD11c+Ly6G-), MoDC 

(CD45+CD11b+Ly6G-CD11c+), GC (CD45+CD11b+Ly6G+CD11c-), and Mo/Mac 

(CD45+CD11b+Ly6G-CD11c-). Data were acquired using a FACSCanto II (BD Biosciences) flow 

cytometer and analyzed with FlowJo software (Treestar) as described previously (Baldwin et al., 

2015).  

 

2.5.9.2 Antibodies 

 CD11b-PE-Cy7 (Thermo Fisher Scientific, 25-0112-82), Rat IgGk Isotype Control-PE-

Cy7 (Thermo Fisher Scientific, 25-4031-82) CD45-e450 (Thermo Fisher Scientific, 48-0451-82), 

Rat IgG2b Isotype Control-e450 (Thermo Fisher Scientific, 48-4031-82), CD45.1-e450 

(Biolegend, 110721), Mouse IgG2ak Isotype Control-e450 (Biolegend, 400235), CD45.2-APC 

(Biolegend, 109813), Mouse IgG2ak Isotype Control-APC (Biolegend, 400221), Ly6G-APC-Cy7 

(BD Biosciences, 560600), Rat IgG2a Isotype Control-APC-Cy7 (BD Biosciences, 552770), 

CD11c-PerCP-Cy5.5 (Thermo Fisher Scientific, 45-0114-82), Arm Ham IgG Isotype Control-

PerCP-Cy5.5 (Thermo Fisher Scientific, 45-4888-80), Ly6C-FITC (BD Biosciences, 561085), Rat 

IgM Isotype Control-FITC (BD Biosciences, 553942). All antibodies were used at a working 

concentration of 1:100 except for CD11b (1:200). 

 

2.5.9.3 Statistics 

 Statistical analysis was performed in GraphPad Prism (v7) using paired or un-paired 2-

tailed Student’s t test, or 1-way or 2-way ANOVA with correction for multiple comparisons with 

Tukey’s post-hoc test, as indicated in the figure legends. A p value < 0.05 (*) was considered 

significant. p < 0.01 (**), p < 0.001 (***), and p < 0.0001 (****). 
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2.5.10 Transcriptomics analysis, bulk RNA-seq of DRGs, and scRNA-seq of 

sciatic nerves 
 For gene expression analysis of naïve and axotomized DRGs, we carried out bulk RNA 

sequencing of L3-L5 ganglia harvested from naïve mice (n=3), d1 (n=3), d3 (n=3), and d7 (n=3) 

following bilateral SNC. For each data point, 18 ganglia were collected form 3 mice, pooled, flash 

frozen and lysed in Trizol solution for RNA extraction (Chandran et al., 2016).  RNA-sequencing 

was carried out using TrueSeq RiboZero gold (stranded) kit (Illumina). Libraries were indexed 

and sequenced over 2 lanes using HiSeq4000 (Illumina) with 75-bp paired end reads.  Quality 

control (QC) was performed on base qualities and nucleotide composition of sequences, to identify 

potential problems in library preparation or sequencing. Sequence quality for the dataset described 

here was sufficient that no reads were trimmed or filtered before input to the alignment stage. 

Reads were aligned to the latest Mouse mm10 reference genome (GRCm38.75) using the STAR 

spliced read aligner (version 2.4.0).  Average input read counts were 58.8M per sample (range 

53.4M to 66.2M) and average percentage of uniquely aligned reads was 86.3% (range 83.8% to 

88.0%). Raw reads were filtered for low expressed genes and normalized by variance stabilization 

transformation method. Unwanted variation was removed by RUVSeq (1.20.0) with k=1. 

Differentially expressed genes were identified using the bioconductor package limma (3.42.2) with 

FDR<0.1 and the resulting gene lists were used as input for Ingenuity pathway analysis (Qiagen). 

Weighted gene co-expression network analysis was conducted using WGCNA R-package (ver 

1.69). Soft thresholding power of 18 was used to calculate network adjacency. CutHeight of 0.3 

was used to merge similar co-expression modules. Enrichment analysis for gene set was performed 

with GSEA (ver 2.2.2) using MsigDB (ver 7.0). Normalized enrichment score (NES) was used to 

assess enrichment of gene sets. 

  

2.5.11 Preparation of cells for scRNA-seq 
 Mice were transcardially perfused with ice-cold PBS for 5 min to flush out all blood cells 

in circulation. The sciatic nerve trunk was harvested and a segment that contains the injury site 

and the distal nerve stump, up to the branch point of the tibial nerve, used for further processing. 

A minimum of 3 mice (6 nerves) was used to obtain sufficient cells for analysis using the 10x 

Genomics platform. The collected nerve segments were cut into small pieces with microscissers 
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and incubated in 1 ml PBS supplemented with collagenase (4mg/ml Worthington Biochemical, 

LS004176), dispase (2mg/ml, Sigma-Aldrich, D4693), and actinomycin D (45 µM, Sigma Aldrich, 

A1410) for 30-45 min at 37°C degrees in a 15mL conical tube. Tissues were gently triturated with 

a P1000 pipette every 10 min. Next, samples were rinsed in DMEM with 10% FBS and spun down 

at 650 g for 5 min before removing supernatant. The resulting pellet was gently re-suspended in 1 

mL of 27% Percoll (Sigma Aldrich, P4937) in PBS. Then 3 ml of 27% Percoll were added to bring 

the final volume to 4 ml. Samples were spun at 900g for 20 min with no brake in a clinical 

centrifuge (Beckman Coulter Allegra 6R). The top layers (with myelin and other debris) were 

carefully aspirated. The final 100 µl were resuspended in 1 ml of PBS with 2% FBS and filtered 

through a pre-washed 40 µm Falcon filter (Corning, 352340) with an additional 5 ml of PBS with 

2% FBS. Cells were pelleted at 650 g for 5 min at 4°C. The supernatant was removed and the cell 

pellet resuspended in 180 µl of MACS buffer (Miltenyi, 130-091-376) diluted 1:20 in PBS (final 

bovine serum albumin [BSA] was 0.5%) and 10 µl of myelin removal beads were added (Miltenyi, 

30-096-731). To remove all myelin debris, cells were incubated with myelin depletion beads for 

15 min at 4°C with intermitted tapping. Cells were rinsed in 5 ml of MACS buffer, gently inverted 

several times and spun at 300g for 10 min. Cells were separated from myelin beads using the 

MidiMACS separator (Miltenyi, 130-042-302) and LS columns (Miltenyi, 130-042-401). The 

flow through solution with the cells was centrifuged and the cells resuspended in 50 µl of Hanks 

balanced salt solution (Gibco, 14025092) supplemented with 0.04% BSA (Fisher Scientific, 

BP1600). The cell number and live/dead ratio was determined using propidium iodine labeling 

and a hemocytometer.  

 

2.5.12 10x Genomics single cell RNA-seq library preparation 
 For encapsulation of single cells with microbeads into nanodroplets, the Chromium Next 

GEM Single Cell 3’ GEM Library & Gel Bead Kit v3.1 and Chromium Next GEM Chip G Single 

Cell Kit were used. Approximately 12,000 cells in a final volume of 43 µl were used for barcoding, 

using the 10X Genomics Chromium Controller. The library preparation of barcoded cDNAs was 

carried out in a bulk reaction, following instructions provided by the manufacturer. A small aliquot 

of the library was used for quality control with a bioanalyzer followed by library sequencing at the 

Advanced Genomics Core of the University of Michigan. The NovaSeq Illumina 6000 was used 
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with an S4 flowcell, yielding 1.05 Billion reads (7-11% of the flowcell) (Individual samples 

ranging from 290 to 424 million reads). NovaSeq control software version 1.6 and Real Time 

Analysis (RTA) software version 3.4.4 were used to generate binary base call (BCL) formatted 

files.  

 

2.5.13 Data analysis and availability 
 Raw scRNAseq data were processed using the 10x Genomics CellRanger softeware 

version 3.1.0. The CellRanger “mkfastq” function was used for de-multiplexing and generating 

FASTQ files from raw BCLs. The CellRanger ”count” function, with default settings was used 

with the mm10 reference supplied by 10x Genomics, to align reads and generate single cell feature 

counts.  Per sample, approx. 5,800 cells with median genes per cell of 2,507 were obtained. 

CellRanger filtered cells and counts were used for downstream analysis in Seurat version 3.1.2 

implemented in R version 3.6.2. Cells were excluded if they had fewer than 200 features, more 

than 7500, or the mitochondrial content was more than 25%. Reads from multiple samples were 

merged and normalized following a standard Seurat SCTransform integration pipeline 

(Hafemeister and Satija, 2019); mitochondrial mapping percentage was regressed out during the 

SCTransform normalization step. Principal component analysis was performed on the top 3000 

variable genes and the top 30 principle components were used for downstream analysis.  A K-

nearest neighbor graph was produced using Euclidean distances. The Louvain algorithm was used 

with resolution set to .5 to group cells together. Non-linear dimensional reduction was done using 

UMAP. The top 100 genes for each cluster, determined by Seurat’s FindAllMarkers function and 

the Wilcoxon Rank Sum test, were submitted to version 11 of the string-db.org to determine 

functional enrichment; referred to as STRING analysis. 

 To model developmental trajectories of cells that comprise the mononuclear phagocyte 

system (MPS), the Bioconductor package, slingshot version 1.4.0 was used. The integrated Seurat 

object was subset to include only MPS cells and slingshot was instructed to start from monocytes. 

The pseudo-time from the three slingshot constructed lineages were used in random regression 

forest to reveal the most influential genes, on pseudo-time. Random forests were implemented 

with the Ranger package of R from 1400 trees, 200 genes at each node, and the Gini index, 
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“impurity”, measure for gene importance.  The bulk RNA-seq and scRNA-seq data is available 

online in the Gene Expression Omnibus (GEO) database (GSE153762). 

 Cell identities, as defined above, were saved for the 3d injured nerve. Single-cell 

transcriptomes from YFP.pos and YFP.neg macrophage populations identified in naïve peripheral 

nerve tissue (Wang et al., 2020), were downloaded and given the label Mac_Naive. The log2 

transformed raw counts of the 3d injured Mac1-5 and Mo as well as the Mac_Naive cells were 

subjected to batch correction using the ComBat function from the Bioconductor “sva” package 

(Leek et al., 2012). Injured nerve Mo/Mac and naïve Mac made up the two batches and the 

following arguments were passed to ComBat: mod=NULL, par.prior=TRUE, mean.only=FALSE, 

prior.plots=FALSE. After batch correction each cell type and gene had a highly repeated minimum 

number near 0. To aid in plotting and determining “percent expressed” this value was replaced 

with 0. The average expression for each gene and each cell type was calculated for the purpose of 

making dotplots. Any cell type with more than 85% zeros was not given a dot. The dots represent 

percent expressed by radius and average expression, scaled across cell type, by color. 
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2.8 Tables 
 
Table 2-1. List of top five cluster enriched genes for immune cell clusters identified in the 
3d post-SNC nerve. 
First column (P_val), probability of getting the "elevated" expression values in these cells under the null 
hypothesis that all cells have the same expression of the gene. Second column (avg_logFC), average log2 
Fold-Change between cells in this cluster relative to cells in all other clusters.  Third column (pct.1), percent 
of the cluster's cells which express the gene. Fourth column (pct.2), percent of non-cluster cells which 
express the gene.  Fifth column (p_val_adj), p_val adjusted so that 5% of the list is expected to have false 
positives. Sixth column (cluster), associated cell cluster. Sixth column, enriched gene. The full sheet of the 
top 100 genes for each cell cluster including immune cells can be found at 
https://cdn.elifesciences.org/articles/60223/elife-60223-fig5-data1-v3.xlsx 

p_val avg_logFC pct.1 pct.2 p_val_adj cluster gene 
0 1.924008117 0.781 0.163 0 Mo Chil3 
0 1.415313464 0.65 0.043 0 Mo Ly6c2 
0 1.153372957 0.826 0.176 0 Mo Ifitm6 
0 1.106439147 0.765 0.105 0 Mo Hp 
0 0.78868658 0.589 0.079 0 Mo Itgal 
0 1.426942886 0.98 0.799 0 Mac1 Fn1 
0 1.384737266 0.665 0.204 0 Mac1 Lpl 
0 1.38230321 0.663 0.212 0 Mac1 Tppp3 
0 1.348837008 0.712 0.115 0 Mac1 Ltc4s 
0 1.319261319 1 0.65 0 Mac1 Lyz2 
0 1.625349821 1 0.513 0 Mac2 Cd74 
0 1.595721667 0.994 0.401 0 Mac2 H2-Aa 
0 1.449877797 0.997 0.401 0 Mac2 H2-Ab1 
0 1.426145592 0.985 0.323 0 Mac2 H2-Eb1 
0 1.249222779 0.993 0.597 0 Mac2 Ccr2 
0 1.474636321 1 0.688 0 Mac3 Lgmn 
0 1.370771892 0.862 0.342 0 Mac3 Mrc1 
0 1.273570576 1 0.662 0 Mac3 Ctsc 
0 1.246990162 0.955 0.541 0 Mac3 Dab2 
0 1.207764266 0.898 0.36 0 Mac3 F13a1 
0 2.148740377 1 0.867 0 Mac4 Ctsd 
0 1.841925501 0.923 0.206 0 Mac4 Pf4 
0 1.828630466 0.994 0.544 0 Mac4 Plin2 
0 1.770593779 0.683 0.084 0 Mac4 Gpnmb 
0 1.713387024 0.878 0.213 0 Mac4 Arg1 
0 1.783862084 0.987 0.143 0 Mac5 Mki67 
0 1.572105286 0.883 0.101 0 Mac5 Ube2c 
0 1.527519926 0.95 0.127 0 Mac5 Pclaf 
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p_val avg_logFC pct.1 pct.2 p_val_adj cluster gene 
0 1.488688587 0.979 0.119 0 Mac5 Birc5 
0 1.199634233 0.841 0.061 0 Mac5 Nusap1 
0 2.523326685 0.971 0.341 0 MoDC H2-Eb1 
0 2.519169438 0.992 0.527 0 MoDC Cd74 
0 2.448597919 0.976 0.418 0 MoDC H2-Ab1 
0 2.419285305 0.976 0.418 0 MoDC H2-Aa 
0 1.800974778 0.608 0.09 0 MoDC Ifitm1 
0 1.940823494 0.977 0.135 0 cDC Wdfy4 
0 1.70903806 0.954 0.055 0 cDC Ifi205 
0 1.503330336 0.87 0.026 0 cDC Sept3 
0 1.317664948 0.949 0.053 0 cDC Flt3 
0 1.27754791 0.852 0.006 0 cDC Clec9a 
0 3.958020268 0.838 0.019 0 GC S100a8 
0 3.928895789 0.812 0.007 0 GC S100a9 
0 2.730951696 0.882 0.096 0 GC Mmp9 
0 2.28273958 0.78 0.059 0 GC Il1b 
0 2.17383976 0.557 0.023 0 GC Cxcl2 
0 3.163420231 0.742 0.01 0 T/NK Ccl5 
0 2.647859172 0.554 0.001 0 T/NK Gzma 
0 2.206176013 0.852 0.128 0 T/NK AW112010 
0 2.059157123 0.738 0.001 0 T/NK Nkg7 
0 1.808445286 0.797 0.001 0 T/NK Il2rb 
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2.9 Figures 
	

 
 
Figure 2-1 Immune cell profiles in the injured murine sciatic nerve. 
A. Anatomy of lumbar spinal cord and DRGs connected to the sciatic nerve. The location of the crush site 
within the nerve trunk and the tissue segment collected for flow cytometry (red bracket) are shown. B. 
Quantification of live, CD45+ leukocytes, normalized per sciatic nerve trunk. Flow cytometry of nerve 
tissue collected from naïve mice (n= 10 biological replicates, with 6 nerves per replicate), day 1 (d1) post-
SNC (n= 7), d3 (n= 12), and d7 (n= 12). C. Quantification of granulocytes (CD45+, CD11b+, Ly6G+) per 
nerve trunk. D. Quantification of Mo/Mac (CD45+, CD11b+, CD11c-, Ly6G-) per nerve trunk. E. 
Quantification of MoDC (CD45+, CD11b+, CD11c+, Ly6G-) per nerve trunk. F. Quantification of cDC 
(CD45+, CD11b-, CD11c+, Ly6G-) per nerve trunk. G. Quantification of lymphocytes (CD45+, CD11b-) 
per nerve trunk. H. Composition of CD45+ leukocytes in the nerve trunk at different post-injury time 
points. Flow data are represented as mean cell number ± SEM. Statistical analysis was performed in 
GraphPad Prism (v7) using 1-way or 2-way ANOVA with correction for multiple comparisons with 
Tukey’s post-hoc test. For B-G, unpaired two-tailed t-test with Welch’s correction. A p value < 0.05 (*) 
was considered significant. p < 0.01 (**), p < 0.001 (***), and p < 0.0001 (****).  
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Figure 2-2 Gating scheme for flow cytometry. 
Cells were first gated with forward scatter (FSC-A) and side scatter (SSC-A) to exclude debris. Cells were 
then gated with forward scatter height (FSC-H) and FSC-A to find single cells and to exclude doublets. 
Live cells were isolated by negative staining for fixed viability dye (Fix Via). In nerves, DRGs, spinal cord, 
and spleen, leukocytes were analyzed as follows: lymphocytes were isolated as CD45+, CD11b- cell and 
then further separated based on CD11c positivity as cDC or as CD45+, CD11b-, CD11c- lymphocytes. 
Myeloid cells (CD45+, CD11b+) were further separated into Ly6G+ granulocytes. The remaining cells 
(CD45+, CD11b+, Ly6G-) were characterized as MoDC (CD45+, CD11b+, CD11c+, Ly6G-), Mo/Mac 
(CD45+, CD11b+, CD11c-, Ly6G-), and Microglia (CD45int, CD11bint, CX3CR1+). 
  



 

 178 

 



 

 179 

Figure 2-33 Immune cell profiles in the sciatic nerve proximal to the injury site. 
A. Anatomy of lumbar spinal cord and DRGs connected to the sciatic nerve. The location of the crush site 
within the nerve trunk and the tissue segment collected for flow cytometry (red bracket) are shown. B. 
Quantification of live, CD45+ cell in the proximal nerve, per ~ 5mm segment. Flow cytometry of nerve 
tissue collected from naïve mice (n= 3), d3 (n= 3), and d7 (n= 3) following SNC. C. Quantification of 
granulocytes (CD45+, CD11b+, Ly6G+) per nerve segment. D. Quantification of Mo/Mac (CD45+, CD11b+, 
CD11c-, Ly6G-) per nerve segment. E. Quantification of MoDC (CD45+, CD11b+, CD11c+, Ly6G-) per 
nerve segment F. Quantification of cDC (CD45+, CD11b-, CD11c+, Ly6G-) per nerve segment. G. 
Quantification of lymphocytes (CD45+, CD11b-) per nerve segment. H. Composition of CD45+ leukocytes 
in the proximal nerve stump at different post-SNC time points. I-K. Percentile of each cell type at different 
post-injury time points. For flow cytometry, data are represented as mean cell number ± SEM. Statistical 
analysis was performed in GraphPad Prism (v7) using 1-way or 2-way ANOVA with correction for multiple 
comparisons with Tukey’s post-hoc test. For B-G, unpaired two-tailed t-test with Welch’s correction. A p 
value < 0.05 (*) was considered significant. p < 0.01 (**), p < 0.001 (***), and p < 0.0001 (****). L. 
Longitudinal sections of sciatic nerve trunk at d3 following SNC, stained with anti-F4/80 (red) to label 
macrophages and anti-GFAP (green) to label repair Schwann cells. The proximal (Prox) and distal (Dist) 
sides of the nerve, relative to the crush site (dashed line), are indicated. Consistent with flow cytometry, 
nerve inflammation is not significantly elevated proximal to the nerve crush site. Scale bar, 1000 µm.  
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Figure 2-44 Immune cell profiles in axotomized DRGs. 
A. Representative images of L4 DRG cross sections from naïve mice, d1, d3, and d7 post-SNC. 
Macrophages were stained with anti-Iba1 and anti-F4/80. Neurons were stained with anti-NFH. Scale bar, 
50 µm. B. Quantification of granulocytes per DRG detected by flow cytometry. For flow cytometry of 
DRGs, naïve mice (n= 14 biological replicates), d1 (n= 3), d3 (n= 5), and d7 (n= 12) post-SNC mice were 
used. Granulocytes (CD45+, CD11b+, Ly6G+) per DRG are shown. C. Quantification of Mo/Mac (CD45+, 
CD11b+, CD11c-, Ly6G-) per DRG. D. Quantification of MoDC (CD45+, CD11b+, CD11c+, Ly6G-) per 
DRG. E. Quantification of cDC (CD45+, CD11b-, CD11c+, Ly6G-) per DRG. F. Quantification of 
lymphocytes (CD45+, CD11b-) per DRG. G. Composition of CD45+ leukocytes in lumbar DRGs identified 
by flow cytometry. Flow data are represented as mean cell number ± SEM. Each data point represents L3-
L5 DRGs pooled from 3-4 animals (18-24 DRGs), biological replicates, n= 3-14. Statistical analysis was 
performed in GraphPad Prism (v7) using 1-way or 2-way ANOVA with correction for multiple 
comparisons with Tukey’s post-hoc test. For B-F, unpaired two-tailed t-test with Welch’s correction. A p 
value < 0.05 (*) was considered significant. p < 0.01 (**), p < 0.001 (***), and p < 0.0001 (****). H. 
Western blots analysis of DRGs and sciatic nerves (SNs) prepared from sham operated mice and mice at 
different post-SNC time points (d1-d21), probed with anti-CD11b and anti-ERK1/2 as loading control. I. 
Quantification of CD11b signal in DRGs and SNs. Unpaired two-tailed Student’s t-test compared to sham 
operated. n.s. not significant, *p<0.05, biological replicates n= 4 (with 4 mice for each time point).  
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Figure 2-55 T cells in naïve and axotomized DRGs. 
Representative images of L4 DRG cross sections from naïve mice, d1, d3, and d7 post-SNC. T cells were 
labeled with anti-CD3 (red), neurons with anti-NF200 (white). DAPI (blue) was used for nuclear staining 
(blue). Scale bar, 50 µm.  
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Figure 2-66 Sciatic nerve injury triggers massive accumulation of hematogenous 
leukocytes in the injured nerve but not axotomized DRGs. 
A. Parbiosis complex of a wildtype (WT) and a tdTomato (tdTom) mouse. Mice were surgically paired at 
postnatal day 56. The timeline of the experiment is shown. B. Flow cytometric analysis of sciatic nerve 
trunks collected from non-parabiotic (single) tdTom mice, WT parabionts, and tdTom parabionts. Dotplot 
of live (CD11b+, tdTom+) cells in the d3 post-SNC nerve. C. Quantification of tdTom+ myeloid cells in the 
3d injured nerve of WT single mice (WT-S), WT parabiont (WT-para), tdTom parabiont (tdTom-para), and 
tdTom single (tdTom-S) mice. The fraction of tdTom+ myeloid cells (CD45+, CD11b+), MoDC (CD45+, 
CD11b+, CD11c+, Ly6G-), and Mo/Mac (CD45+, CD11b+, CD11c-, Ly6G-) is shown. For quantification of 
tdTom+ immune cells, nerves from the WT parabiont and the tdTom parabiont were harvested separately 
(3 mice per data point) with n= 2-3 biological replicates. Flow data are represented as fraction of tdTom+ 
cells ± SEM. Statistical analysis was performed in GraphPad Prism (v8) using 1-way ANOVA with 
correction for multiple comparisons with Tukey’s post-hoc test. p value of < 0.001 (***) and p < 0.0001 
(****). D. Longitudinal sciatic nerves sections of the WT parabiont at d7 post-SNC. The nerve crush site 
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is marked with a white dotted line, proximal is to the left, distal to the right. Anti-F4/80 (green) and tdTom+ 
cells (red) staining is shown. Scale bar, 500 µm, for insets, 20 µm. E. Lumbar DRG cross sections of WT 
parabionts harvested from sham operated mice, at d3, and d7 post-SNC. Sections were stained with anti-
F4/80 (green) and anti-NF200 (white). Hematogenous (tdTom+) leukocytes are marked with white arrows.  
Scale bar, 50 µm. F. Quantification of tdTom+ cells per field of view (FOV = 4000 µm2) in DRG sections 
of the WT parabiont. Data are shown as number of tdTom+ cells ± SEM, n= 3-5 mice per time point. 
Student’s t test with p < 0.5 (*) considered statistically significant, p < 0.01 (**). G. Whole mount anti-Iba1 
immunofluorescence staining of L4 DRGs from intact, d3, and d7 post-SNC time points. Scale bar, 200 
µm. H. Morphological reconstruction of Iba1+ cells in DRGs with Imaris. Analysis of DRG-resident 
macrophages revealed amoeboid (cyan) and elongated (orange) morphologies if the nerve was not injured.  
At d3 and d7 post-SNC, a subpopulation of Iba1+ cells with stellate (yellow) morphology was observed in 
DRGs. Scale bar, 50 µm. I. Quantification of total volume of Iba1+ structures in DRGs, rendered by Imaris. 
The total volume of Iba1+ structures per DRG was quantified on the intact side and the injured side of the 
same mouse at d3 post-SNC (n= 3 mice). Paired Students t test, p value < 0.05 (*), was considered 
significant. J. Quantification of Iba1+ cells with amoeboid, elongated, and stellate morphologies. K. 
Quantification of cell volume of individual Iba1+ cells with amoeboid, elongated, and stellate morphologies. 
At d3 post-SNC, a total of 416 cells were reconstructed on the intact side and a total of 234 cells on the 
injured side.  At d7 post-SNC, a total of 136 cells were reconstructed on the intact side and a total of 93 
cells on the injured side.  The distribution of morphological categories ± SEM (J) and cell volumes ± SEM 
(K) are shown. Paired, two-tailed Student’s t test, a p value < 0.05 (*) was considered significant. p < 0.01 
(**). 
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Figure 2-77 Flow cytometry gating scheme to assess chimerism of parabiotic mice. 
A. Cells were first gated with forward scatter (FSC-A) and side scatter (SSC-A) to exclude debris. Cells 
were then gated with forward scatter height (FSC-H) and FSC-A to find single cells and to exclude doublets. 
Live cells were isolated by negative staining for fixed viability dye (Fix Via). After live cell gating, myeloid 
cells were isolated by CD11b positivity and assessed for the percentage of tdTom+ cells. Following gating 
for granulocytes (CD11b+, Ly6G+), MoDC (CD11b+, CD11c+, Ly6G-), and Mo/Mac (CD11b+, Ly6G-, 
CD11c-) were identified. Mo/Mac were further subdivided into Ly6Chi, Ly6Cint and Ly6C- cells. The 
fraction of tdTom+ cells for each cell type was determined. B. Representative flow cytometry dot plots of 
splenic myeloid cells (CD11b+, tdTom+) in WT (CD45.1) parabiont and non-parabiotic (tdTom single) and 
parabiotic mice. C. Quantification of chimerism in the spleen. The percentile of tdTom+ myeloid cells, 
MoDC, Mo/Mac that are (Ly6Chi), (Ly6Cint), and Mac (Ly6C-) is shown (n= 3-7 biological replicates). 
Flow data are represented as mean ± SEM. Statistical analysis was performed in GraphPad Prism (v8) using 
1-way ANOVA with correction for multiple comparisons with Tukey’s post-hoc test. A p value < 0.05 (*) 
was considered significant. p < 0.01 (**), and p < 0.0001 (****).  
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Figure 2-88 Stable up-regulation of immune function associated gene co-expression networks 
in axotomized DRGs. 
Analysis of bulk RNAseq data from naïve and axotomized DRGs. DRGs were harvested from sham 
operated mice, d1, d3, and d7 post-SNC. A. Network analysis of whole transcriptomes from naïve and 
axotomized DRGs. Gene dendrogram identifies several co-expression modules. B. Gene ontology (GO) 
analysis revealed significant and stable upregulation of the pink and turquoise modules. C. Gene set 
enrichment analysis. Shown is the enrichment plot for GO terms of the turquoise module with 
overrepresentation of immune system processes. D-F. Quantification of SNC-induced upregulation of 
commonly used macrophage markers Itgam (CD11b), Adgre1 (F4/80), and Aif1 (Iba1) in axotomized 
DRGs. G-I. Quantification of SNC-induced upregulation of the RAGs Atf3, Jun, and Stat3 in DRGs. J-L. 
Quantification of SNC-induced upregulation of the chemokine receptor Ccr2, and the GM-CSF receptor 
subunits Csf2ra and Csf2rb in DRGs. Gene expression levels are shown as Fpkm (fragments per kilobase 
of transcript per million mapped reads). 
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Figure 2-99 Module – The trait relationships in axotomized DRGs and analysis of the 
immune turquoise module. 
A. Heatmap of the correlation of WGCNA modules with indicated experimental conditions (sham operated 
mice and following nerve injury). The values in each cell are Pearson's correlation co-efficient and Student 
asymptotic p-values (parenthesis). The green to red color represents strong negative to positive-correlation 
of experimental condition and Module Eigen (ME) gene expression. B. Induction of turquoise gene co-
expression module in axotomized DRGs of wildtype (WT) mice following SNC at d1, d3 and d7 (ME gene 
expression). C. GO terms enriched in the turquoise module. Normalized enrichment scores (NES) are 
shown. D. Ingenuity pathway analysis (IPA) predicted upstream regulators of injury-induced immune 
pathways in axotomized DRGs. GSEA’s core enrichment genes in immune pathways obtained from 
differentially expressed genes comparing d1 to sham DRGs; FDR<0.1 were used as input for IPA. 
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Figure 2-10 The cellular landscape of injured peripheral nerve. 
A. Singe-cell transcriptome of injured mouse sciatic nerve at d3 post-SNC, n= 3 biological replicates. 
Unsupervised Seurat-based clustering identifies 24 cell clusters. Cell type identity for each cluster was 
determined by expression analysis of established markers. B. List of all cell types identified by scRNA-
sequencing. The size (percentile) of cell clusters and lineage relationships are shown. Abbreviations for cell 
cluster identities are indicated and used throughout the manuscript. C-J. Feature plots of established cell 
markers used for identification of major cell types in the injured nerve. Shown are UMAP plots with 
markers for myeloid cells (Itgam/CD11b), fibroblast-like/mesenchymal cells (Pdgfra, Sox9), repair 
Schwann cells (Ncam1, Ngfr/p75), endothelial cells (Pecam/CD31), pericytes /smooth muscle vascular 
cells (Pdgfrb), and mitotically active cells (Mki67/Ki67). Expression levels are color coded and calibrated 
to average gene expression. K. Dotplot shows cell type-specific expression of the most abundant 
transcription regulators (TRs) in Fb, dMES, eMES, pMES, CL, SC1-3, EC1-3, PC1, and PC2 clusters 
identified by scRNA-seq of 3d injured sciatic nerve. Dotplot analysis shows the average gene expression 
(color coded) and percent of cells (dot size) that express the listed TRs in each cluster. 
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Figure 2-11 Cell cluster specific expression of ECM components and molecules that regulate 
axon growth in the injured sciatic nerve. 
A. Dotplot analysis of extracellular matrix molecules prominently expressed in the d3 post-SNC nerve. B. 
Dotplot analysis of gene products implicated in axon growth, guidance, and regeneration in the d3 post-
SNC nerve. Expression levels, normalized to average gene expression (color coded) are shown. For each 
cell cluster the percentile of cells expressing a specific gene is indicated by the dot size. 
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Figure 2-12 Analysis of single cell gene expression in mesenchymal cell and fibroblast 
clusters in the injured sciatic nerve. 
Heatmap of top genes enriched in perineural mesenchymal cells (pMES), endoneurial mesenchymal cells 
(eMES), differentiating mesenchymal cells (dMES), and epineural fibroblasts (Fb) in the d3 post-SNC 
nerve. Expression levels are calibrated to median gene expression. STRING REACTOME Pathways are 
listed. FDRs (false discovery rates) are shown. 
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Figure 2-13 Single cell gene expression in Schwann cell clusters in injured sciatic nerve. 
Heatmap of top genes enriched in repair Schwann cell clusters (SC1, SC2, and SC3) in the d3 post-SNC 
nerve. Expression levels are calibrated to median gene expression. STRING REACTOME Pathways are 
listed. FDRs (false discovery rates) are shown. 
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Figure 2-14 Single cell gene expression in endothelial cell clusters in injured sciatic nerve. 
Heatmap of top genes enriched in endothelial cell clusters (EC1, EC2, and EC3) in the d3 post-SNC nerve. 
Expression levels are calibrated to median gene expression. STRING KEGG Pathway analysis and FDRs 
(false discovery rates) are shown. 
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Figure 2-15 Single cell gene expression in pericyte cell clusters in injured sciatic nerve. 
Heatmap of top genes enriched in pericyte clusters (PC1 and PC2) in the d3 post-SNC nerve. Expression 
levels are calibrated to median gene expression. STRING REACTOME Pathways are listed. FDRs (false 
discovery rates) are shown. 
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Figure 2-16 Single cell gene expression of immune modulatory molecules in the injured 
peripheral nervous system tissue. 
Dotplot analysis of gene products with immune modulatory function in the d3 post-SNC nerve. Expression 
levels, normalized to average gene expression (color coded). For each cell cluster the percentile of cells that 
express the listed gene (dot size) is shown. 
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Figure 2-17 Macrophage subpopulation in the injured nerve are functionally distinct and 
localize to specific sites. 
A–E. Feature plots of Adgre1 (F4/80), Aif1 (Iba1), Cd68 (Scavenger receptor class D), Cx3cr1 (Fractalkine 
receptor), and CD209a (DC-SIGN) expression in the d3 post-SNC nerve. F. scRNAseq dot plot analysis of 
transcription regulators (TRs) enriched in leukocytes. Average gene expression and percentage of cells 
expressing the TR are shown. G. Violin plot of Ly6c2 (Ly6C) expression in immune cells of the d3 post-
SNC nerve. H-K. Flow cytometric analysis of sciatic nerve Mo/Mac (CD45+, CD11b+, Ly6G-, CD11c-) in 
naïve mice, d1, d3, and d7 post-SNC mice. Mo/Mac maturation was assessed by Ly6C surface staining. L, 
M. Quantification of Ly6C distribution on Mo/Mac in naïve nerves and at different post-SNC time points 
(n= 11 biological replicates per time point); (L) Percentile of Ly6C-, Ly6Cint, and Ly6Chi Mo/Mac and (M) 
number of Ly6C-, Ly6Cint, and Ly6Chi Mo/Mac. Flow data are represented as mean ± SEM. Statistical 
analysis was performed in GraphPad Prism (v7) using 1-way or 2-way ANOVA with correction for multiple 
comparisons with Tukey’s post-hoc test. A p value < 0.05 (*) was considered significant. p < 0.01 (**), p 
< 0.001 (***), and p < 0.0001 (****). N. Feature plot showing Arg1 (Arginase-1) expression in the 3d post-
SNC nerve.  O-Q. Longitudinal sciatic nerve sections of Arg1-YFP reporter mice, from naïve mice (O), d3 
(P) and d7 (Q) post-SNC mice. YFP+ cells (green) are localized to the injury site (underlined with a dashed 
line), proximal is to the left. Representative example of n= 4 biological replicates. Scale bar, 200 µm. 
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Figure 2-18 Single cell gene expression in myeloid cell clusters of injured sciatic nerve. 
Heatmap of top genes enriched in monocytes (Mo), macrophage clusters 1-5 (Mac1-5), MoDC, and cDC 
in the d3 post-SNC nerve. Expression levels are calibrated to median gene expression. STRING KEGG 
Pathway analysis and FDRs (false discovery rates) are shown. 
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Figure 2-19 Identification of blood-borne, stem-like myeloid cells in the sciatic nerve 
following crush injury. 
A.  Feature plots of Stmn1 (Stathmin-1) and B. Top2a (DNA topoisomerase II alpha) highlight proliferating 
cells, including Mac5 cells and a small group of myeloid cells located between clusters Mac2 and MoDC. 
C. Longitudinal sciatic nerve section of 3d WT parabiont, the dotted line marks the injury site, proximal is 
to the left. TdTom+ cells are blood-borne immune cells originating from the tdTom parabiont. Macrophages 
are stained with anti-F4/80 (green), scale bar, 100 µm. Higher magnification images of the injury site. Some 
tdTom+F4/80+ macrophages are stained with anti-Ki67 (white). Scale bar, 50 µm.  D. Feature plots of 
Siglech, a marker for pDC and E. Clec9a, a marker for cDC, in the 3d injured nerve. 
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Figure 2-20 Infiltrating monocyte to macrophage differentiation pathway based on single 
cell expression modeling. 
Pseudo time trajectory analysis of cell differentiation in the d3 post-SNC nerve A. Predicted cell 
differentiation in the myeloid cell compartment. Slingshot analysis was used to predict how Mo 
(monocytes) differentiate into specific Mac subpopulations and MoDC. Feature plots for Cd9 (Tetraspanin), 
Ctsd, and Cd74 are shown as representative examples. B. Pseudo time gene expression changes of top genes 
used for trajectory analysis.  
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Figure 2-21 Monocye and macrophage maturation in axotomized DRGs, assessed by the 
surface expression of the marker Ly6C. 
Flow cytometric analysis of Mo/Mac in naive and axotomized DRGs. The surface distribution of Ly6C on 
Mo/Mac (CD45+, CD11b+, Ly6G-, CD11c-) is shown.  A. The percentile of Ly6C cells and B. the number 
of Ly6C cells in naive DRGs, d1, d3, and d7 post-SNC. Mo/Mac were binned into Ly6Chi, Ly6Cint, and 
Ly6C- cells. Flow data are represented as mean ± SEM. Each data point represents L3-L5 DRGs pooled 
from 3-4 animals (18-24 DRGs), biological replicates, n= 3-9. Statistical analysis was performed in 
GraphPad Prism (v7) using 1-way or 2-way ANOVA with correction for multiple comparisons with 
Tukey’s post-hoc test. A p value < 0.05 (*) was considered significant. p < 0.01 (**), p < 0.001 (***), and 
p < 0.0001 (****).  
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Figure 2-22 Evidence for distinct immune compartments in the injured sciatic nerve. 
A. Longitudinal sections of naïve and injured (3d and 7d) sciatic nerves from Arg1-YFP reporter mice. The 
injury site is underlined with a dotted line. Proximal is to the left. Distribution of F4/80+, Arg1-YFP+, and 
CD68+ macrophages is shown. Scale bar, 200 µm. B. Longitudinal sciatic nerve sections of adult mice at 
d1 and d3 post-SNC. The crush site is marked with a dotted line, proximal is to the left. Nerves were stained 
with anti-SCG10 to visualize regenerating sensory axons and anti-F4/80 to stain for a subpopulation of 
macrophages. At d1, F4/80+ macrophages are found near the crush site. At d3, F4/80+ macrophages are 
abundantly present throughout the distal nerve stump, adjacent to SCG10+ regenerating sensory axons. 
Scale bar, 500 µm. 
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Figure 2-23 Expression of gene products that regulate cholesterol transport and 
metabolism in macrophages of injured and naïve nerve. 
Feature plots of gene products implicated in cholesterol transport and lowering of cellular cholesterol levels. 
A. Abca1/CERP (ATP-binding cassette subfamily A1). B. Abcg1 (ATP-binding cassette subfamily G1). C. 
Apoe (Apolipoprotein E). D. Ctsd (Cathepsin-D). E. Lipa (Lipase A). F. Nceh1 (Neutral cholesterol ester 
hydrolase 1). G. Plin2 (Perilipin 2). H. Soat1 (Sterol O-acyltransferase 1), I. Scarb2 (Scavenger receptor 
class B 2). Calibration of gene expression for feature each plot is shown. J-R. Violin plots for cholesterol 
regulatory gene products in naïve Mac, Mo, and Mac1-5 subpopulations. S. Dot plot showing expression 
of cholesterol transporters and metabolic enzymes in naïve nerve Mac in comparison to Mo and Mac1-5 in 
injured nerve.  Expression levels are normalized to average gene expression (color coded). For each cell 
cluster the percentile of cells that express the listed gene (dot size) is shown. 
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Figure 2-24 Macrophages “eat” dying leukocytes in the injured nerve. 
A. Cartoon of phagocyte with actin rich phagocytic cup eating a tdTom+ apoptotic cell (AC). “Eat me” 
signals displayed on the surface of AC allow direct or indirect recognition via engulfment receptors.  
Following engulfment by phagocytes, AC are digested in the phagolysosome. Cellular cholesterol levels 
are controlled by upregulation of specific efflux mechanisms. B. scRNAseq dotplot analysis of “don’t eat 
me” molecules (Cd47, Sirpa) and bridging molecules prominently expressed across cell types in the d3 
post-SNC nerve. Average gene expression and percentage of cells expressing the gene are shown. C. 
scRNAseq dotplot analysis of engulfment receptors in the d3 post-SNC nerve. Average gene expression 
and percentage of cells expressing the gene are shown. D. Flow cytometric analysis of dead cells 
accumulating in the d3 and d7 nerve (n= 3 biological replicas per time point). Data are represented as mean 
± SEM. E. Parabiosis complex of WT (CD45.1) mouse with a (CD45.2) tdTom reporter mouse. F. Flow 
cytometry dot plot showing tdTom+ myeloid cells (CD45.2+, CD11b+) in the sciatic nerve of non-parabiotic 
(tdTom single) mice. G. Flow cytometry dot plot showing tdTom+ myeloid cells (CD11b+) in the sciatic 
nerve of the WT CD45.1 parabiont. H. Flow cytometry dot plot of CD11b+, tdTom+ gated cells from non-
parabiotic (tdTom+ single) mice, analyzed for CD45.1 and CD45.2 surface staining. I. Flow cytometry dot 
plot of CD11b+, tdTom+ gated cells from the CD45.1 parabiont, analyzed for CD45.1 and CD45.2 surface 
staining. Quadrant 3 (Q3) identifies CD45.1+, tdTom+, CD45.2- myeloid cells, indicative of ongoing 
efferocytosis. J. Flow cytometry dot plots of Mo/Mac in the injured nerve of non-parabiotic (tdTom single) 
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mice. Mo/Mac maturation was assessed by Ly6C surface staining. Shown are monocytes (Ly6Chi), Mo/Mac 
(Ly6Cint), and Mac (Ly6C-). K. Flow cytometry dot plots of Mo/Mac in the injured nerve of the CD45.1 
parabiont. Shown are monocytes (Ly6Chi), Mo/Mac (Ly6Cint), and Mac (Ly6C-). The quadrant with 
CD45.1+, tdTom+, CD45.2- cells (Q3) is highlighted. Biological replicates n= 3, with 3 parabiotic pairs per 
replica. L, M. Quantification of CD45.1+, tdTom+, CD45.2- cells in quadrant Q3 and CD45.2+, tdTom+, 
CD45.1- cells in Q1. (L) In the injured nerve of (tdTom single) mice, no CD45.1+ cells are detected. (M) In 
the injured nerve of the WT CD45.1 parabiont, CD45.1+, tdTom+, CD45.2- Mo (Ly6Chi), Mo/Mac (Ly6Cint), 
and Mac (Ly6C-) are found; n= 3 biological replicates, with 3 parabiosis pairs pooled per replicate. 
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Figure 2-25 Expression of gene products implicated in myelin binding and phagocytosis. 
A-F. Feature plots and G-L. Violin plots of Axl (TAM receptor tyrosine kinase AXL), Mertk (TAM receptor 
tyrosine kinase MER), Lrp1 (Low density lipoprotein receptor-related protein 1), Pirb (Paired Ig-like 
receptor B), Cd300lf (CD300 molecule like family member F), and Msr1 (Macrophage scavenger receptor 
1) expression in the d3 post-SNC nerve. Violin plots in G-L show relative expression in Mac from naïve 
nerve and 3d injured Mo and Mac1-5 subpopulations. 
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Figure 2-26 Expression analysis of bridging molecules and engulfment receptors in 
macrophages of naïve nerve and injured nerve. 
A. Dotplot showing expression of engulfment receptors in in naïve Mac in comparison to Mo and Mac1-5 
in injured nerve.  B. Dotplot showing expression of “don’t eat me” (Cd47 and Sirpa) signals, as well as 
bridging molecules, in in naïve Mac in comparison to Mo and Mac1-5 in injured nerve.  Expression levels 
are normalized to average gene expression (color coded). For each cell cluster the percentile of cells that 
express the listed gene (dot size) is shown. 
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Figure 2-27 Contribution of MoDC to efferocytosis in the injured sciatic nerve. 
A. Flow cytometric analysis of 3d sciatic nerve from non-parabiotic (tdTom single) mice. Dot plot shows 
that 96.8% of MoDC (CD11b+, CD11c+, Ly6G-) are tdTom+ B. Flow cytometric analysis of 3d sciatic 
nerves from CD45.1 parabionts. Dot plot shows that 27.6% of MoDC are tdTom+ C. In the 3d sciatic nerves 
of non-parabiotic (tdTom single) mice, no tdTom+, CD45.1+ MoDC are present. D. In the 3d sciatic nerve 
of the CD45.1 parabiont, CD45.1+ and CD45.2+ MoDC are found. E. Quantification of CD45.1 and CD45.2 
myeloid cells (CD11b+) and MoDC in the 3d sciatic nerve of non-parabiotic (single) tdTom mice. As 
expected, CD45.1+ cells are not detected. F. Quantification of CD45.1 and CD45.2 myeloid cells (CD11b+) 
and MoDC in the 3d sciatic nerve of the CD45.1 parabiont. The presence of tdTom+, CD45.1+, CD45.2-, 
CD11b+, CD11c+, Ly6G- cells, indicates that MoDC participate in efferocytosis.   
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Figure 2-28 The factor GM-CSF is required for conditioning injury-induced dorsal 
column axon regeneration after lesioning injury. 
A. Schematic showing conditioning lesion to the sciatic nerve (1) followed by dorsal column lesion (2) and 
tracer injection in the nerve (3). Experimental time line of conditioning lesion (CL), dorsal column lesion 
(DCL), cholera-toxin B (CTB) injection, and time of tissue harvest are shown. B, C. Violin plots of Csf2ra 
and Csf2rb expression in the d3 post-SNC sciatic nerve, as assessed by whole nerve tissue scRNAseq 
analysis. D-G. Flow cytometry dot plots of WT and Csf2-/- nerves from naive mice and 3d following 
conditioning lesion (CL) to the sciatic nerve. Ly6C surface staining was used to assess maturation of the 
Mo/Mac population.  Ly6Chi (immature), Ly6Cint, and Ly6C- (mature) cells are shown. H. Quantification 
of percentage of Mo/Mac (CD45+ CD11b+ CD11c- Ly6G-) that are Ly6C-, Ly6Cint and Ly6Chi in WT and 
Csf2-/- mice without (naïve) and with CL.  I. Quantification of surface Ly6C on MoDC (CD45+ CD11b+ 
CD11c+) in WT and Csf2-/- mice without (naïve) and with CL. Unpaired t-test with correction for multiple 
comparisons using Holm-Sidak method, * p < 0.05; **** p < 0.0001. J. Sagittal sections through cervical 
spinal cords of wild-type (WT) and Csf2-/- mice, five weeks following bilateral DCL at cervical level 4 (C4). 
The spinal cord lesion site is labeled with a star (*), rostral is to the left and caudal is to the right. To enhance 
dorsal column axon regeneration, a CL to the sciatic nerve was performed 7d prior to DCL (CL + DCL). 
Dorsal column axons were visualized by CTB injection in the sciatic nerve. The brackets indicated the 
distance between the lesion center and the rostral tip of CTB labeled axons. K. Quantification of axon 
regeneration. The distance between CTB labeled axon tips and the center of the spinal lesion was measured; 
0 µm marks the injury site, the gap between the lesion center and traced axons (= retraction) is shown for 
WT and Csf2-/- without CL. For each genotype and experimental condition n ≥ 8 biological replicates. One-
way ANOVA with Tukey posthoc correction. ** p<0.01. Scale bar, 200 µm. L. Representative images 
primary DRG neurons isolated from WT and Csf2-/- mice, with and without a d3 CL. Cultures were stained 
with of anti-neurofilament H (NF-H) M. Quantification of neurite length. Neuromath was used to quantify 
neurite length, neurites less than 30 µm in length were excluded from the analysis. n ≥ 114 neurons, n= 2 
biological replicates. Two-tailed Student’s t-Test with Tukey posthoc correction was used. *p<0.05; ** 
p<0.01. Scale bar, 500 µm.   
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Figure 2-29 Locus and PCR genotyping of Csf2-/- mice. 
A. Schematic of Csf2 gene locus of WT and germline Csf2-/- mice. Primer sets were designed both inside 
(set 2) and outside (set 2) of the deleted region. B. Agarose gel shows PCR genotyping results from naïve 
brains of WT and Csf2-/- (KO) animals against primer set 2 (left) or against the neomycin cassette (right). 
In the absence of genomic DNA (water (H2O) control), no PCR product is observed. 
  



 

 217 

2.10  References 
Abe, N., and Cavalli, V. (2008). Nerve injury signaling. Curr Opin Neurobiol 18, 276-283. 
Accolla, R.S., Ramia, E., Tedeschi, A., and Forlani, G. (2019). CIITA-Driven MHC Class II 

Expressing Tumor Cells as Antigen Presenting Cell Performers: Toward the Construction 
of an Optimal Anti-tumor Vaccine. Front Immunol 10, 1806. 

Altmann, C., Vasic, V., Hardt, S., Heidler, J., Haussler, A., Wittig, I., Schmidt, M.H.H., and 
Tegeder, I. (2016). Progranulin promotes peripheral nerve regeneration and reinnervation: 
role of notch signaling. Mol Neurodegener 11, 69. 

Arthur-Farraj, P.J., Latouche, M., Wilton, D.K., Quintes, S., Chabrol, E., Banerjee, A., Woodhoo, 
A., Jenkins, B., Rahman, M., Turmaine, M., et al. (2012). c-Jun reprograms Schwann cells 
of injured nerves to generate a repair cell essential for regeneration. Neuron 75, 633-647. 

Atwal, J.K., Pinkston-Gosse, J., Syken, J., Stawicki, S., Wu, Y., Shatz, C., and Tessier-Lavigne, 
M. (2008). PirB is a functional receptor for myelin inhibitors of axonal regeneration. 
Science 322, 967-970. 

Baldwin, K.T., Carbajal, K.S., Segal, B.M., and Giger, R.J. (2015). Neuroinflammation triggered 
by beta-glucan/dectin-1 signaling enables CNS axon regeneration. Proc Natl Acad Sci U S 
A 112, 2581-2586. 

Bandala-Sanchez, E., N, G.B., Goddard-Borger, E.D., Ngui, K., Naselli, G., Stone, N.L., Neale, 
A.M., Pearce, L.A., Wardak, A., Czabotar, P., et al. (2018). CD52 glycan binds the 
proinflammatory B box of HMGB1 to engage the Siglec-10 receptor and suppress human 
T cell function. Proc Natl Acad Sci U S A 115, 7783-7788. 

Barrette, B., Hebert, M.A., Filali, M., Lafortune, K., Vallieres, N., Gowing, G., Julien, J.P., and 
Lacroix, S. (2008). Requirement of myeloid cells for axon regeneration. J Neurosci 28, 
9363-9376. 

Be'eri, H., Reichert, F., Saada, A., and Rotshenker, S. (1998). The cytokine network of wallerian 
degeneration: IL-10 and GM-CSF. Eur J Neurosci 10, 2707-2713. 

Blesch, A., Lu, P., Tsukada, S., Alto, L.T., Roet, K., Coppola, G., Geschwind, D., and Tuszynski, 
M.H. (2012). Conditioning lesions before or after spinal cord injury recruit broad genetic 
mechanisms that sustain axonal regeneration: superiority to camp-mediated effects. Exp 
Neurol 235, 162-173. 

Boada-Romero, E., Martinez, J., Heckmann, B.L., and Green, D.R. (2020). The clearance of dead 
cells by efferocytosis. Nat Rev Mol Cell Biol. 

Bombeiro, A.L., Pereira, B.T.N., and de Oliveira, A.L.R. (2018). Granulocyte-macrophage 
colony-stimulating factor improves mouse peripheral nerve regeneration following sciatic 
nerve crush. Eur J Neurosci 48, 2152-2164. 

Bortolotti, P., Faure, E., and Kipnis, E. (2018). Inflammasomes in Tissue Damages and Immune 
Disorders After Trauma. Front Immunol 9, 1900. 

Bray, E.R., Noga, M., Thakor, K., Wang, Y., Lemmon, V.P., Park, K.K., and Tsoulfas, P. (2017). 
3D Visualization of Individual Regenerating Retinal Ganglion Cell Axons Reveals 
Surprisingly Complex Growth Paths. eNeuro 4. 

Brosius Lutz, A., Chung, W.S., Sloan, S.A., Carson, G.A., Zhou, L., Lovelett, E., Posada, S., 
Zuchero, J.B., and Barres, B.A. (2017). Schwann cells use TAM receptor-mediated 
phagocytosis in addition to autophagy to clear myelin in a mouse model of nerve injury. 
Proc Natl Acad Sci U S A 114, E8072-E8080. 



 

 218 

Cafferty, W.B., Gardiner, N.J., Das, P., Qiu, J., McMahon, S.B., and Thompson, S.W. (2004). 
Conditioning injury-induced spinal axon regeneration fails in interleukin-6 knock-out 
mice. J Neurosci 24, 4432-4443. 

Cane, S., Ugel, S., Trovato, R., Marigo, I., De Sanctis, F., Sartoris, S., and Bronte, V. (2019). The 
Endless Saga of Monocyte Diversity. Front Immunol 10, 1786. 

Carr, M.J., Toma, J.S., Johnston, A.P.W., Steadman, P.E., Yuzwa, S.A., Mahmud, N., Frankland, 
P.W., Kaplan, D.R., and Miller, F.D. (2019). Mesenchymal Precursor Cells in Adult 
Nerves Contribute to Mammalian Tissue Repair and Regeneration. Cell Stem Cell 24, 240-
256 e249. 

Chandran, V., Coppola, G., Nawabi, H., Omura, T., Versano, R., Huebner, E.A., Zhang, A., 
Costigan, M., Yekkirala, A., Barrett, L., et al. (2016). A Systems-Level Analysis of the 
Peripheral Nerve Intrinsic Axonal Growth Program. Neuron 89, 956-970. 

Choi, J.K., Park, S.Y., Kim, K.H., Park, S.R., Lee, S.G., and Choi, B.H. (2014). GM-CSF reduces 
expression of chondroitin sulfate proteoglycan (CSPG) core proteins in TGF-beta-treated 
primary astrocytes. BMB Rep 47, 679-684. 

Clements, M.P., Byrne, E., Camarillo Guerrero, L.F., Cattin, A.L., Zakka, L., Ashraf, A., Burden, 
J.J., Khadayate, S., Lloyd, A.C., Marguerat, S., et al. (2017). The Wound 
Microenvironment Reprograms Schwann Cells to Invasive Mesenchymal-like Cells to 
Drive Peripheral Nerve Regeneration. Neuron 96, 98-114 e117. 

DeFrancesco-Lisowitz, A., Lindborg, J.A., Niemi, J.P., and Zigmond, R.E. (2015). The 
neuroimmunology of degeneration and regeneration in the peripheral nervous system. 
Neuroscience 302, 174-203. 

Donatien, P., Anand, U., Yiangou, Y., Sinisi, M., Fox, M., MacQuillan, A., Quick, T., Korchev, 
Y.E., and Anand, P. (2018). Granulocyte-macrophage colony-stimulating factor receptor 
expression in clinical pain disorder tissues and role in neuronal sensitization. Pain Rep 3, 
e676. 

Doran, A.C., Yurdagul, A., Jr., and Tabas, I. (2020). Efferocytosis in health and disease. Nat Rev 
Immunol 20, 254-267. 

Eming, S.A., Wynn, T.A., and Martin, P. (2017). Inflammation and metabolism in tissue repair 
and regeneration. Science 356, 1026-1030. 

Erriah, M., Pabreja, K., Fricker, M., Baines, K.J., Donnelly, L.E., Bylund, J., Karlsson, A., and 
Simpson, J.L. (2019). Galectin-3 enhances monocyte-derived macrophage efferocytosis of 
apoptotic granulocytes in asthma. Respir Res 20, 1. 

Foldi, J., Shang, Y., Zhao, B., Ivashkiv, L.B., and Hu, X. (2016). RBP-J is required for M2 
macrophage polarization in response to chitin and mediates expression of a subset of M2 
genes. Protein Cell 7, 201-209. 

Frank, D., and Vince, J.E. (2019). Pyroptosis versus necroptosis: similarities, differences, and 
crosstalk. Cell Death Differ 26, 99-114. 

Franzen, R., Bouhy, D., and Schoenen, J. (2004). Nervous system injury: focus on the 
inflammatory cytokine 'granulocyte-macrophage colony stimulating factor'. Neurosci Lett 
361, 76-78. 

Geschwind, D.H., and Konopka, G. (2009). Neuroscience in the era of functional genomics and 
systems biology. Nature 461, 908-915. 

Grajchen, E., Hendriks, J.J.A., and Bogie, J.F.J. (2018). The physiology of foamy phagocytes in 
multiple sclerosis. Acta Neuropathol Commun 6, 124. 



 

 219 

Greenlee-Wacker, M.C. (2016). Clearance of apoptotic neutrophils and resolution of 
inflammation. Immunol Rev 273, 357-370. 

Guan, Z., Kuhn, J.A., Wang, X., Colquitt, B., Solorzano, C., Vaman, S., Guan, A.K., Evans-
Reinsch, Z., Braz, J., Devor, M., et al. (2016). Injured sensory neuron-derived CSF1 
induces microglial proliferation and DAP12-dependent pain. Nat Neurosci 19, 94-101. 

Gugala, Z., Olmsted-Davis, E.A., Xiong, Y., Davis, E.L., and Davis, A.R. (2018). Trauma-Induced 
Heterotopic Ossification Regulates the Blood-Nerve Barrier. Front Neurol 9, 408. 

Guimaraes, R.M., Davoli-Ferreira, M., Fonseca, M.M., Damasceno, L.E.A., Santa-Cecilia, F.V., 
Kusuda, R., Menezes, G.B., Cunha, F.Q., Alves-Filho, J.C., and Cunha, T.M. (2019). 
Frontline Science: Blood-circulating leukocytes fail to infiltrate the spinal cord 
parenchyma after spared nerve injury. J Leukoc Biol 106, 541-551. 

Hafemeister, C., and Satija, R. (2019). Normalization and variance stabilization of single-cell 
RNA-seq data using regularized negative binomial regression. Genome Biol 20, 296. 

Haidar, B., Kiss, R.S., Sarov-Blat, L., Brunet, R., Harder, C., McPherson, R., and Marcel, Y.L. 
(2006). Cathepsin-D, a lysosomal protease, regulates ABCA1-mediated lipid efflux. J Biol 
Chem 281, 39971-39981. 

Hamilton, J.A. (2019). GM-CSF-Dependent Inflammatory Pathways. Front Immunol 10, 2055. 
Hansen, G., Hercus, T.R., McClure, B.J., Stomski, F.C., Dottore, M., Powell, J., Ramshaw, H., 

Woodcock, J.M., Xu, Y., Guthridge, M., et al. (2008). The structure of the GM-CSF 
receptor complex reveals a distinct mode of cytokine receptor activation. Cell 134, 496-
507. 

Henson, P.M. (2017). Cell Removal: Efferocytosis. Annu Rev Cell Dev Biol 33, 127-144. 
Hoke, A., Cheng, C., and Zochodne, D.W. (2000). Expression of glial cell line-derived 

neurotrophic factor family of growth factors in peripheral nerve injury in rats. Neuroreport 
11, 1651-1654. 

Hollis, E.R., 2nd, Ishiko, N., Tolentino, K., Doherty, E., Rodriguez, M.J., Calcutt, N.A., and Zou, 
Y. (2015). A novel and robust conditioning-lesion-induced by ethidium bromide. Exp 
Neurol 265, 30-39. 

Horn, K.P., Busch, S.A., Hawthorne, A.L., van Rooijen, N., and Silver, J. (2008). Another barrier 
to regeneration in the CNS: activated macrophages induce extensive retraction of 
dystrophic axons through direct physical interactions. J Neurosci 28, 9330-9341. 

Hu, P., Bembrick, A.L., Keay, K.A., and McLachlan, E.M. (2007). Immune cell involvement in 
dorsal root ganglia and spinal cord after chronic constriction or transection of the rat sciatic 
nerve. Brain Behav Immun 21, 599-616. 

Hu, P., and McLachlan, E.M. (2003). Distinct functional types of macrophage in dorsal root 
ganglia and spinal nerves proximal to sciatic and spinal nerve transections in the rat. Exp 
Neurol 184, 590-605. 

Huang, X., Kim, J.M., Kong, T.H., Park, S.R., Ha, Y., Kim, M.H., Park, H., Yoon, S.H., Park, 
H.C., Park, J.O., et al. (2009). GM-CSF inhibits glial scar formation and shows long-term 
protective effect after spinal cord injury. J Neurol Sci 277, 87-97. 

Ijaz, T., Tilton, R.G., and Brasier, A.R. (2016). Cytokine amplification and macrophage effector 
functions in aortic inflammation and abdominal aortic aneurysm formation. J Thorac Dis 
8, E746-754. 

Ippolito, G.C., Dekker, J.D., Wang, Y.H., Lee, B.K., Shaffer, A.L., 3rd, Lin, J., Wall, J.K., Lee, 
B.S., Staudt, L.M., Liu, Y.J., et al. (2014). Dendritic cell fate is determined by BCL11A. 
Proc Natl Acad Sci U S A 111, E998-1006. 



 

 220 

Izawa, K., Isobe, M., Matsukawa, T., Ito, S., Maehara, A., Takahashi, M., Yamanishi, Y., Kaitani, 
A., Oki, T., Okumura, K., et al. (2014). Sphingomyelin and ceramide are physiological 
ligands for human LMIR3/CD300f, inhibiting FcepsilonRI-mediated mast cell activation. 
J Allergy Clin Immunol 133, 270-273 e271-277. 

Kalinski, A.L., Kar, A.N., Craver, J., Tosolini, A.P., Sleigh, J.N., Lee, S.J., Hawthorne, A., Brito-
Vargas, P., Miller-Randolph, S., Passino, R., et al. (2019). Deacetylation of Miro1 by 
HDAC6 blocks mitochondrial transport and mediates axon growth inhibition. J Cell Biol 
218, 1871-1890. 

Katzenelenbogen, Y., Sheban, F., Yalin, A., Yofe, I., Svetlichnyy, D., Jaitin, D.A., Bornstein, C., 
Moshe, A., Keren-Shaul, H., Cohen, M., et al. (2020). Coupled scRNA-Seq and 
Intracellular Protein Activity Reveal an Immunosuppressive Role of TREM2 in Cancer. 
Cell 182, 872-885 e819. 

Kawano, M., and Nagata, S. (2018). Efferocytosis and autoimmune disease. Int Immunol 30, 551-
558. 

Kim, C.F., and Moalem-Taylor, G. (2011). Detailed characterization of neuro-immune responses 
following neuropathic injury in mice. Brain Res 1405, 95-108. 

Kim, H. (2017). The transcription factor MafB promotes anti-inflammatory M2 polarization and 
cholesterol efflux in macrophages. Sci Rep 7, 7591. 

King, I.L., Dickendesher, T.L., and Segal, B.M. (2009). Circulating Ly-6C+ myeloid precursors 
migrate to the CNS and play a pathogenic role during autoimmune demyelinating disease. 
Blood 113, 3190-3197. 

Klein, D., and Martini, R. (2016). Myelin and macrophages in the PNS: An intimate relationship 
in trauma and disease. Brain Res 1641, 130-138. 

Korns, D., Frasch, S.C., Fernandez-Boyanapalli, R., Henson, P.M., and Bratton, D.L. (2011). 
Modulation of macrophage efferocytosis in inflammation. Front Immunol 2, 57. 

Kourtzelis, I., Hajishengallis, G., and Chavakis, T. (2020). Phagocytosis of Apoptotic Cells in 
Resolution of Inflammation. Front Immunol 11, 553. 

Kuhlmann, T., Wendling, U., Nolte, C., Zipp, F., Maruschak, B., Stadelmann, C., Siebert, H., and 
Bruck, W. (2002). Differential regulation of myelin phagocytosis by 
macrophages/microglia, involvement of target myelin, Fc receptors and activation by 
intravenous immunoglobulins. J Neurosci Res 67, 185-190. 

Kumamaru, H., Lu, P., Rosenzweig, E.S., and Tuszynski, M.H. (2018). Activation of Intrinsic 
Growth State Enhances Host Axonal Regeneration into Neural Progenitor Cell Grafts. 
Stem Cell Reports 11, 861-868. 

Kwon, M.J., Shin, H.Y., Cui, Y., Kim, H., Thi, A.H., Choi, J.Y., Kim, E.Y., Hwang, D.H., and 
Kim, B.G. (2015). CCL2 Mediates Neuron-Macrophage Interactions to Drive 
Proregenerative Macrophage Activation Following Preconditioning Injury. J Neurosci 35, 
15934-15947. 

Leek, J.T., Johnson, W.E., Parker, H.S., Jaffe, A.E., and Storey, J.D. (2012). The sva package for 
removing batch effects and other unwanted variation in high-throughput experiments. 
Bioinformatics 28, 882-883. 

Legacy, J., Hanea, S., Theoret, J., and Smith, P.D. (2013). Granulocyte macrophage colony-
stimulating factor promotes regeneration of retinal ganglion cells in vitro through a 
mammalian target of rapamycin-dependent mechanism. J Neurosci Res 91, 771-779. 



 

 221 

Leonhard, C., Muller, M., Hickey, W.F., Ringelstein, E.B., and Kiefer, R. (2002). Lesion response 
of long-term and recently immigrated resident endoneurial macrophages in peripheral 
nerve explant cultures from bone marrow chimeric mice. Eur J Neurosci 16, 1654-1660. 

Lindborg, J.A., Mack, M., and Zigmond, R.E. (2017). Neutrophils Are Critical for Myelin 
Removal in a Peripheral Nerve Injury Model of Wallerian Degeneration. J Neurosci 37, 
10258-10277. 

Liu, M., Tong, Z., Ding, C., Luo, F., Wu, S., Wu, C., Albeituni, S., He, L., Hu, X., Tieri, D., et al. 
(2020). Transcription factor c-Maf is a checkpoint that programs macrophages in lung 
cancer. J Clin Invest 130, 2081-2096. 

Lu, X., and Richardson, P.M. (1991). Inflammation near the nerve cell body enhances axonal 
regeneration. J Neurosci 11, 972-978. 

Martini, R., Fischer, S., Lopez-Vales, R., and David, S. (2008). Interactions between Schwann 
cells and macrophages in injury and inherited demyelinating disease. Glia 56, 1566-1577. 

McLachlan, E.M., and Hu, P. (2014). Inflammation in dorsal root ganglia after peripheral nerve 
injury: effects of the sympathetic innervation. Auton Neurosci 182, 108-117. 

McQuarrie, I.G., Grafstein, B., and Gershon, M.D. (1977). Axonal regeneration in the rat sciatic 
nerve: effect of a conditioning lesion and of dbcAMP. Brain Res 132, 443-453. 

Meyer, I.S., Jungmann, A., Dieterich, C., Zhang, M., Lasitschka, F., Werkmeister, S., Haas, J., 
Muller, O.J., Boutros, M., Nahrendorf, M., et al. (2017). The cardiac microenvironment 
uses non-canonical WNT signaling to activate monocytes after myocardial infarction. 
EMBO Mol Med 9, 1279-1293. 

Mirski, R., Reichert, F., Klar, A., and Rotshenker, S. (2003). Granulocyte macrophage colony 
stimulating factor (GM-CSF) activity is regulated by a GM-CSF binding molecule in 
Wallerian degeneration following injury to peripheral nerve axons. J Neuroimmunol 140, 
88-96. 

Muller, M., Leonhard, C., Krauthausen, M., Wacker, K., and Kiefer, R. (2010). On the longevity 
of resident endoneurial macrophages in the peripheral nervous system: a study of 
physiological macrophage turnover in bone marrow chimeric mice. J Peripher Nerv Syst 
15, 357-365. 

Neumann, S., and Woolf, C.J. (1999). Regeneration of dorsal column fibers into and beyond the 
lesion site following adult spinal cord injury. Neuron 23, 83-91. 

Niemi, J.P., DeFrancesco-Lisowitz, A., Cregg, J.M., Howarth, M., and Zigmond, R.E. (2016). 
Overexpression of the monocyte chemokine CCL2 in dorsal root ganglion neurons causes 
a conditioning-like increase in neurite outgrowth and does so via a STAT3 dependent 
mechanism. Exp Neurol 275 Pt 1, 25-37. 

Niemi, J.P., DeFrancesco-Lisowitz, A., Roldan-Hernandez, L., Lindborg, J.A., Mandell, D., and 
Zigmond, R.E. (2013). A critical role for macrophages near axotomized neuronal cell 
bodies in stimulating nerve regeneration. J Neurosci 33, 16236-16248. 

Ortega-Gomez, A., Perretti, M., and Soehnlein, O. (2013). Resolution of inflammation: an 
integrated view. EMBO Mol Med 5, 661-674. 

Perry, V.H., Brown, M.C., and Gordon, S. (1987). The macrophage response to central and 
peripheral nerve injury. A possible role for macrophages in regeneration. J Exp Med 165, 
1218-1223. 

Poplawski, G.H.D., Kawaguchi, R., Van Niekerk, E., Lu, P., Mehta, N., Canete, P., Lie, R., 
Dragatsis, I., Meves, J.M., Zheng, B., et al. (2020). Injured adult neurons regress to an 
embryonic transcriptional growth state. Nature 581, 77-82. 



 

 222 

Quenum Zangbede, F.O., Chauhan, A., Sharma, J., and Mishra, B.B. (2018). Galectin-3 in M2 
Macrophages Plays a Protective Role in Resolution of Neuropathology in Brain Parasitic 
Infection by Regulating Neutrophil Turnover. J Neurosci 38, 6737-6750. 

Rashidi, M., Bandala-Sanchez, E., Lawlor, K.E., Zhang, Y., Neale, A.M., Vijayaraj, S.L., 
O'Donoghue, R., Wentworth, J.M., Adams, T.E., Vince, J.E., et al. (2018). CD52 inhibits 
Toll-like receptor activation of NF-kappaB and triggers apoptosis to suppress 
inflammation. Cell Death Differ 25, 392-405. 

Renier, N., Wu, Z., Simon, D.J., Yang, J., Ariel, P., and Tessier-Lavigne, M. (2014). iDISCO: a 
simple, rapid method to immunolabel large tissue samples for volume imaging. Cell 159, 
896-910. 

Richard, L., Topilko, P., Magy, L., Decouvelaere, A.V., Charnay, P., Funalot, B., and Vallat, J.M. 
(2012). Endoneurial fibroblast-like cells. J Neuropathol Exp Neurol 71, 938-947. 

Richardson, P.M., and Issa, V.M. (1984). Peripheral injury enhances central regeneration of 
primary sensory neurones. Nature 309, 791-793. 

Richardson, P.M., and Lu, X. (1994). Inflammation and axonal regeneration. J Neurol 242, S57-
60. 

Richardson, P.M., Miao, T., Wu, D., Zhang, Y., Yeh, J., and Bo, X. (2009). Responses of the nerve 
cell body to axotomy. Neurosurgery 65, A74-79. 

Robak, L.A., Venkatesh, K., Lee, H., Raiker, S.J., Duan, Y., Lee-Osbourne, J., Hofer, T., Mage, 
R.G., Rader, C., and Giger, R.J. (2009). Molecular basis of the interactions of the Nogo-66 
receptor and its homolog NgR2 with myelin-associated glycoprotein: development of 
NgROMNI-Fc, a novel antagonist of CNS myelin inhibition. J Neurosci 29, 5768-5783. 

Rotshenker, S. (2009). The role of Galectin-3/MAC-2 in the activation of the innate-immune 
function of phagocytosis in microglia in injury and disease. J Mol Neurosci 39, 99-103. 

Rozenberg, P., Reichman, H., Moshkovits, I., and Munitz, A. (2018). CD300 family receptors 
regulate eosinophil survival, chemotaxis, and effector functions. J Leukoc Biol 104, 21-29. 

Saada, A., Reichert, F., and Rotshenker, S. (1996). Granulocyte macrophage colony stimulating 
factor produced in lesioned peripheral nerves induces the up-regulation of cell surface 
expression of MAC-2 by macrophages and Schwann cells. J Cell Biol 133, 159-167. 

Salegio, E.A., Pollard, A.N., Smith, M., and Zhou, X.F. (2011). Macrophage presence is essential 
for the regeneration of ascending afferent fibres following a conditioning sciatic nerve 
lesion in adult rats. BMC Neurosci 12, 11. 

Sleigh, J.N., Weir, G.A., and Schiavo, G. (2016). A simple, step-by-step dissection protocol for 
the rapid isolation of mouse dorsal root ganglia. BMC Res Notes 9, 82. 

Stiles, T.L., Dickendesher, T.L., Gaultier, A., Fernandez-Castaneda, A., Mantuano, E., Giger, R.J., 
and Gonias, S.L. (2013). LDL receptor-related protein-1 is a sialic-acid-independent 
receptor for myelin-associated glycoprotein that functions in neurite outgrowth inhibition 
by MAG and CNS myelin. J Cell Sci 126, 209-220. 

Street, K., Risso, D., Fletcher, R.B., Das, D., Ngai, J., Yosef, N., Purdom, E., and Dudoit, S. (2018). 
Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC 
Genomics 19, 477. 

van der Touw, W., Chen, H.M., Pan, P.Y., and Chen, S.H. (2017). LILRB receptor-mediated 
regulation of myeloid cell maturation and function. Cancer Immunol Immunother 66, 
1079-1087. 

Vannella, K.M., and Wynn, T.A. (2017). Mechanisms of Organ Injury and Repair by 
Macrophages. Annu Rev Physiol 79, 593-617. 



 

 223 

Viaud, M., Ivanov, S., Vujic, N., Duta-Mare, M., Aira, L.E., Barouillet, T., Garcia, E., Orange, F., 
Dugail, I., Hainault, I., et al. (2018). Lysosomal Cholesterol Hydrolysis Couples 
Efferocytosis to Anti-Inflammatory Oxysterol Production. Circ Res 122, 1369-1384. 

Vogel, D.Y., Kooij, G., Heijnen, P.D., Breur, M., Peferoen, L.A., van der Valk, P., de Vries, H.E., 
Amor, S., and Dijkstra, C.D. (2015). GM-CSF promotes migration of human monocytes 
across the blood brain barrier. Eur J Immunol 45, 1808-1819. 

Voss, O.H., Tian, L., Murakami, Y., Coligan, J.E., and Krzewski, K. (2015). Emerging role of 
CD300 receptors in regulating myeloid cell efferocytosis. Mol Cell Oncol 2, e964625. 

Wang, P.L., Yim, A.K.Y., Kim, K.W., Avey, D., Czepielewski, R.S., Colonna, M., Milbrandt, J., 
and Randolph, G.J. (2020). Peripheral nerve resident macrophages share tissue-specific 
programming and features of activated microglia. Nat Commun 11, 2552. 

Wang, Q., Zhang, S., Liu, T., Wang, H., Liu, K., Wang, Q., and Zeng, W. (2018). Sarm1/Myd88-
5 Regulates Neuronal Intrinsic Immune Response to Traumatic Axonal Injuries. Cell Rep 
23, 716-724. 

Wicks, I.P., and Roberts, A.W. (2016). Targeting GM-CSF in inflammatory diseases. Nat Rev 
Rheumatol 12, 37-48. 

Wolbert, J., Li, X., Heming, M., Mausberg, A.K., Akkermann, D., Frydrychowicz, C., Fledrich, 
R., Groeneweg, L., Schulz, C., Stettner, M., et al. (2020). Redefining the heterogeneity of 
peripheral nerve cells in health and autoimmunity. Proc Natl Acad Sci U S A 117, 9466-
9476. 

Wright, M.C., Mi, R., Connor, E., Reed, N., Vyas, A., Alspalter, M., Coppola, G., Geschwind, 
D.H., Brushart, T.M., and Hoke, A. (2014). Novel roles for osteopontin and clusterin in 
peripheral motor and sensory axon regeneration. J Neurosci 34, 1689-1700. 

Wright, R.D., Souza, P.R., Flak, M.B., Thedchanamoorthy, P., Norling, L.V., and Cooper, D. 
(2017). Galectin-3-null mice display defective neutrophil clearance during acute 
inflammation. J Leukoc Biol 101, 717-726. 

Wu, N., Li, R.Q., and Li, L. (2018). SOAT1 deficiency attenuates atherosclerosis by regulating 
inflammation and cholesterol transportation via HO-1 pathway. Biochem Biophys Res 
Commun 501, 343-350. 

Ydens, E., Amann, L., Asselbergh, B., Scott, C.L., Martens, L., Sichien, D., Mossad, O., Blank, 
T., De Prijck, S., Low, D., et al. (2020). Profiling peripheral nerve macrophages reveals 
two macrophage subsets with distinct localization, transcriptome and response to injury. 
Nat Neurosci. 

Yoon, C., Van Niekerk, E.A., Henry, K., Ishikawa, T., Orita, S., Tuszynski, M.H., and Campana, 
W.M. (2013). Low-density lipoprotein receptor-related protein 1 (LRP1)-dependent cell 
signaling promotes axonal regeneration. J Biol Chem 288, 26557-26568. 

Yoon, Y.S., Kim, S.Y., Kim, M.J., Lim, J.H., Cho, M.S., and Kang, J.L. (2015). PPARgamma 
activation following apoptotic cell instillation promotes resolution of lung inflammation 
and fibrosis via regulation of efferocytosis and proresolving cytokines. Mucosal Immunol 
8, 1031-1046. 

Yu, X., Liu, H., Hamel, K.A., Morvan, M.G., Yu, S., Leff, J., Guan, Z., Braz, J.M., and Basbaum, 
A.I. (2020). Dorsal root ganglion macrophages contribute to both the initiation and 
persistence of neuropathic pain. Nat Commun 11, 264. 

Yurdagul, A., Jr., Subramanian, M., Wang, X., Crown, S.B., Ilkayeva, O.R., Darville, L., Kolluru, 
G.K., Rymond, C.C., Gerlach, B.D., Zheng, Z., et al. (2020). Macrophage Metabolism of 



 

 224 

Apoptotic Cell-Derived Arginine Promotes Continual Efferocytosis and Resolution of 
Injury. Cell Metab 31, 518-533 e510. 

Yvan-Charvet, L., Pagler, T.A., Seimon, T.A., Thorp, E., Welch, C.L., Witztum, J.L., Tabas, I., 
and Tall, A.R. (2010). ABCA1 and ABCG1 protect against oxidative stress-induced 
macrophage apoptosis during efferocytosis. Circ Res 106, 1861-1869. 

Zhang, B., and Horvath, S. (2005). Ridge regression based hybrid genetic algorithms for multi-
locus quantitative trait mapping. Int J Bioinform Res Appl 1, 261-272. 

Zhang, J., Shi, X.Q., Echeverry, S., Mogil, J.S., De Koninck, Y., and Rivest, S. (2007). Expression 
of CCR2 in both resident and bone marrow-derived microglia plays a critical role in 
neuropathic pain. J Neurosci 27, 12396-12406. 

Zhou, L., Zhuo, H., Ouyang, H., Liu, Y., Yuan, F., Sun, L., Liu, F., and Liu, H. (2017). 
Glycoprotein non-metastatic melanoma protein b (Gpnmb) is highly expressed in 
macrophages of acute injured kidney and promotes M2 macrophages polarization. Cell 
Immunol 316, 53-60. 

Zigmond, R.E., and Echevarria, F.D. (2019). Macrophage biology in the peripheral nervous system 
after injury. Prog Neurobiol 173, 102-121.  



 

 225 

 
 
 
 

CHAPTER 3: 
The Immune Response to Wallerian Degeneration  
Identifies Compartment Specific Reprogramming  

of Macrophages 
 



 

 226 

3 Immune Response to Wallerian Degeneration Identifies 

Compartment Specific Reprogramming of Macrophages 

3.1 Abstract 
The nervous system and immune system stand in constant dialogue and this interaction is 

particularly strong following nervous system injury or disease. In the mouse, a sciatic nerve crush 

injury (SNC) causes a rapid inflammatory response comprised of a highly heterogeneous 

population of myeloid cells, T cells, and Natural killer cells.   Micro-dissection of the nerve injury 

site and distal nerve stump followed by flow cytometry and single cell RNA-sequencing, identified 

distinct immune compartments comprised of overlapping, yet distinct, macrophage 

subpopulations.  To disentangle the immune response to nerve tissue compression from 

inflammation associated with WD, Sarm1-/- mice were subjected to SNC. In both WT and Sarm1-

/- mice, a robust and comparable immune response is observed at the nerve injury site. 

Inflammation in the distal nerve stump of Sarm1-/- mice is reduced compared to WT mice, however 

monocytes are elevated. We used parabiosis of Sarm1-/- and tdTomato mice and found that blood-

borne Mo enter the distal nerve in Sarm1-/- mice prior to WD. In the distal nerve stump of Sarm1-

/- mice, endoneurial mesenchymal cells upregulate the chemokine Ccl2 prior to WD. Flow 

cytometric analysis of injured Ccr2-/- mice revealed a significant reduction of Mo, both at the injury 

site and the distal nerve.  Together our studies identify different immune compartments within the 

injured sciatic nerve, show that inflammation occurs prior to WD, and identify CCL2-CCR2 

signaling as an important mechanism of Mo chemotaxis and nerve inflammation. 

 

3.2 Introduction 
 Axonal injury caused by trauma or metabolic imbalances can trigger a biochemical 

program that results in axon self-destruction, a process known as Wallerian degeneration (WD) 

(Coleman and Hoke, 2020).  In the peripheral nervous system (PNS) WD is associated with nerve 

fiber disintegration, accumulation of myelin debris, and nerve inflammation (Rotshenker, 2011). 

Denervated Schwann cells (SC) undergo reprogramming into repair (r)SC.  Fragmented axons and 

myelin debris are rapidly cleared by rSC and professional phagocytes of the innate immune system 

(Jang et al., 2016; Klein and Martini, 2016). The timely clearance of degenerated fibers in the PNS 
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stands in contrast to the injured central nervous system (CNS), where clearance of degenerated 

axons and myelin debris is protracted and accompanied by prolonged inflammation (Bastien and 

Lacroix, 2014; Vargas and Barres, 2007).  

The molecular mechanisms that underlie WD are evolutionarily conserved. Nerve injury 

results in a rapid loss of axonal NMNAT2, an enzyme in the nicotinamide adenosine dinucleotide 

(NAD+) biosynthetic pathway (Coleman and Hoke, 2020). The drop in axonal NAD+ and 

fragmentation of the distal axon is delayed in Wallerian degeneration slow (Wlds) mice, 

overexpressing a more stable protein with NAD+ biosynthetic activity (Coleman and Freeman, 

2010). In wild-type mice, the injury induced drop in axonal NAD and simultaneous increase in 

nicotinamide mononucleotide (NMN) triggers activation of the metabolic sensor Sarm1.  

Activated Sarm1 has NADase catabolic function, leading to a further drop in axonal NAD+ and 

rapid fiber disintegration (Essuman et al., 2017; Figley et al., 2021; Jiang et al., 2020; Osterloh et 

al., 2012). The importance of Sarm1 for WD was originally demonstrated by loss-of-function 

studies and protection of severed axons from WD (Osterloh et al., 2012). Similar to Wlds mice, 

severed axons in Sarm1-/- mice are protected from WD and remain intact for weeks (Coleman and 

Hoke, 2020). 

Large peripheral nerves, such as the sciatic nerve, are protected by the epineurium, a tough 

collagen-rich structure that harbors fibroblasts and epineurial macrophages (Macepi), forming a 

first line of defense. A distinct population of macrophages, called endoneurial macrophages 

(Macendo) resides within nerve fascicles and stands in close contact with myelinated and non-

myelinated fibers (Ydens et al., 2020). Scatted between nerve fibers lay endoneurial mesenchymal 

cells (eMES), fibroblast-like cells with a neural crest origin (Carr et al., 2019; Chen et al., 2021; 

Joseph et al., 2004; Richard et al., 2014).  A peripheral nerve compression injury triggers a highly 

orchestrated immune response, composed of Macendo and infiltrating, blood-derived leukocytes. 

Nerve trauma not only results in fiber transection and WD of severed axons, but also causes 

necrotic cell death at the injury site and release of damage associated molecular patterns (DAMPs). 

Nerve trauma can disrupt the nerve vasculature, resulting in endoneurial bleeding, hypoxia, and 

breakdown of the blood-nerve-barrier.  Thus, the micromilieu near the nerve injury site is expected 

to be different than in the distal nerve, where physical trauma is not directly experienced.  Nerve 

compression results in the release of chemotactic factors that promote extravasation and nerve 

infiltration of circulating leukocytes.  Neutrophils arrive within hours, followed by monocytes 
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(Mo) that, upon nerve entry, differentiate into macrophages (Mac) and monocyte-derived dendritic 

cells (MoDC) (Kalinski et al., 2020; Lindborg et al., 2017; Ydens et al., 2020).  Immune cells in 

the injured nerve exert a plethora of functions; the complement system (Ramaglia et al., 2007) and 

Natural killer cells (NK) promote WD of damaged axons (Davies et al., 2019). Macrophages, and 

possibly neutrophils, phagocytose nerve debris, including degenerating myelin and axon remnants 

(Kuhlmann et al., 2002). Macrophages protect the injured nerve from secondary necrosis by eating 

apoptotic leukocytes and thereby contribute to inflammation resolution (Kalinski et al., 2020). In 

addition to nerve debridement, macrophages promote angiogenesis, release factors that stimulate 

axon regeneration and wound healing (Cattin et al., 2015; Pan et al., 2020). Importantly, 

inflammation may play a central role in nerve injury inflicted pain syndromes. Recent work shows 

that sensory neuron-associated macrophages regulate neuropathic pain (Silva et al., 2021).  

Despite the well-established role of the immune system in the nerve injury response and 

tissue repair, a comparative analysis of the immune milieu at the nerve compression site, versus 

the immune response associated with WD, has not yet been carried out.  To address this void, we 

subjected mice to mid-thigh sciatic nerve crush injury, micro-dissected the injury site and distal 

nerve segment for a comparative analysis by flow cytometry, single cell transcriptomics, 

immunofluorescence staining, immunoblotting blotting, and cytokine ELISA at different post-

SNC time points.  Our studies identified highly dynamic and distinct immune compartments in the 

injured PNS.  Specific macrophage subpopulations preferentially localize to the injury site versus 

the distal nerve stump. Where they participate in nerve debridement by eating apoptotic leukocytes 

and myelin ovoids. Experiments with chimeric mice show that monocytes enter the distal nerve in 

Sarm1-/- parabionts prior to WD. This shows that physical disintegration of axons is not required 

to trigger entry of blood-borne leukocytes. Single cell transcriptomics identified upregulation of 

Ccl2 in the distal nerve and in Ccl2 mice, monocyte entry into the nerve is significantly reduced. 

 

3.3 Results 
 Non-hematopoietic cells in injure nerve tissue, including vascular cells, SC, and structural 

cells such as MES, show immune gene activity, indicating they play major roles in shaping the 

inflammatory milieu. To resolve the cellular complexity of injured PNS tissue in an unbiased 

manner, we applied scRNA-seq to capture the transcriptional landscape at single cell resolution. 

Seven days (d7) following SNC, the sciatic nerve trunk, including the nerve crush site and the 
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distal nerve up to the trifurcation, was harvested (Figure 3.1A). A total of 36,508 cells were 

sequenced with 32,967 cells used for downstream analysis after removing cells with fewer than 

500 genes, more than 7500, or mitochondrial content greater than 15%. The median unique genes 

per cell was 2,568. Nearest neighbor clustering algorithm identified a total of 30 cell clusters using 

the first 30 principle components and a resolution parameter of 0.5. The 30 principle components 

are visualized using Uniform Manifold Approximation and Projection (UMAP) (Figure 3.1B). 

The top 100 genes enriched in each cluster were analyzed and used to assign cluster-specific cell 

identities (Kalinski et al., 2020).  Immune cells, identified by their strong expression of Ptprc 

(encoding CD45), form the largest cell population in the d7 nerve. Consistent with flow cytometric 

studies (Kalinski et al., 2020), the myeloid cell population (Itgam/CD11b) is large and dominated 

by macrophages (Mac 22.7% of cells in the injured nerve), monocytes (Mo 2%), and monocyte-

derived dendritic cells (MoDC 9.1%). In addition, conventional dendritic cells (cDC, Clec9a, 

Cd24a, Wdfy4, 1.7%), plasmocytoid dendritic cells (pDC, Siglech/sialic acid binding Ig-lectin h, 

Itgae/CD103, 0.8%), Mast cells (MC, Ms4a2, Cpa3, Mcpt4, 0.4%), and few granulocytes (GC, 

S1009a, S1008a, Mmp9, Cxcr2 <0.1%) are present. The lymphocyte population is comprised of T 

cells (TC, Cd3g, Cd8b, 4.6%), natural killer cells (NK, Ncr1, Il2rb, Gzma, 3.2%), and T/NK 

(0.8%). Only few B cells are detected <0.1%. Additional cell types include Schwann cells (SC 

17.7%), fibroblast-like (FB) and mesenchymal cells (MES) that form the epineurium, perineurium 

and endoneurium (FB and MES, 25.4%), and several cell types associated with the nerve 

vasculature, including endothelial cells (EC, 3%), pericytes (PC, 5.9%), and vascular smooth 

muscle cells (vSMC, 2%). 

 In the UMAP plot macrophages form a connected continuum of multiple clusters, 

indicating a high degree of heterogeneity. All macrophages strongly express complement C1q 

(C1qa, C1qb, C1qc), the C3a anaphylaxtoxin chemotactic receptor (C3ar1), the lysosomal 

protease legumain (Lgmn), the membrane spanning 4-domain protein Ms4a7, and the 

selenoprotein P (Selenop) (data not shown). Macrophages in Cluster 8 express high levels of 

Retnla/FIZZ1, Mgl2, Cd163, gene products previously shown to be enriched in epineurial Mac 

(Wang et al., 2020; Ydens et al., 2020). Additional Mac subpopulations include clusters 4, 5, 9, 23 

and 28 (Figure 3.1B). Cluster 5, and to a lesser extent cells in cluster 4, express high levels of 

Cd68, Trem2, Tyrobp, Spp1, Apoe, and cathespins (Ctsb, Ctsd, Ctsz) that function as lysosomal 

proteases. Mac in cluster 4, but not cluster 5, express high levels of MHCII genes (H2-Aa, H2-
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Ab1, H2-Eb1, M2-DM) and the CD74 invariant chain of MHCII (Cd74), typically associated with 

antigen presentation to CD4+ T cells. Expression of MHCII gene products in cluster 4 is shared 

with cells in clusters 3 and 19, including MoDC (Itgax/CD11c, Cd209a/DC-SIGN, Napsa/Napsin-

A), cDC in cluster 22 (Clec9a, Cd24a, Wdfy4), and pDC in cluster 26 (Siglech/sialic acid binding 

Ig-lectin h, Itgae/CD103). Mo in cluster 20 express high levels of Ly6C2, Chil3, Gsr, Plac8, 

Hp. To infer the most probable differentiation trajectories from Mo toward their descendants, we 

used Slingshot, a method for pseudo-time trajectory analysis (Street et al., 2018). The analysis 

revealed a bifurcated trajectory and provides independent evidence that blood-borne Mo entering 

the nerve give rise to Mac in cluster 4 and subsequently Mac in clusters 9 and 5. A second predicted 

line of differentiation indicates that Mo are precursors for MoDC (cluster 3) (Figure 3.1). 

 

3.3.1 Comparative analysis of cellular composition between 3d and 7d 

injured sciatic nerve 
 Flow cytometric analysis of naïve and injured sciatic nerve tissue identified a rapid 

expansion in the immune compartment (Kalinski et al., 2020; Lindborg et al., 2017). Neutrophils 

enter the injured nerve within hours, followed by blood-borne Mo that upon nerve entry 

differentiate into their respective derivatives. For a comparative analysis of the cellular make-up 

of 3d and 7d injured nerve, we generated a 3d nerve scRNA-seq dataset of the injury site and distal 

nerve up to the trifurcation. The 3d injured nerve dataset included previously reported scRNA-seq 

datasets (Kalinski et al., 2020) and newly sequenced 3d injured nerve tissue. Altogether, a total of 

28,370 cells were sequenced from 3d injured nerve, and after applying the same exclusion criteria 

as described above, 24,672 cells with a median unique feature count of 2,364 were used for 

downstream analysis. Nearest neighbor clustering algorithm identified 24 cell clusters using the 

first 30 principle components and a resolution parameter of 0.5. The 30 principle components of 

the 3d injured nerve are visualized using UMAP (Figure 3.2). Similar to the 7d injured nerve 

(Figure 3.1), the myeloid cell compartment in the 3d injured nerve forms a connected continuum 

comprised of multiple clusters, indicating a high degree of heterogeneity (Figure 3.2). In addition 

to Mo (Ly6C2, Chli3) 3%, five subpopulations of Mac (clusters 0, 2, 4, 10, and 16) 33.2%, MoDC 

(cluster 6) 5.7%, pDC (cluster 17) 0.3%, cDCs (cluster 18) 1.5%, and GC (cluster 19) 1.5% are 

identified.  Few lymphocytes are detected in the 3d injured nerve. Cluster 15 (2.4%) harbors TC 

and NK cells.  Similar to the 7d injured nerve, non-immune cell types in the 3d injured nerve 
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include SC (clusters 3 and 8) 12.7%, Fb/MES (clusters 1, 5, 9, 11 and 13) 28%, and several cell 

types associated with the nerve vasculature, EC (clusters 7 and 21) 5.8%, and PC (clusters 12 and 

20) 4.7%. Obvious differences in immune cell composition between the 3d and 7d injured nerve 

are the rapid drop in neutrophils, expansion of lymphocytes and the separation of the TC/NK 

population (cluster 15) in the 3d nerve (Figure 3.2) into distinct clusters harboring TC (cluster 6), 

NK cells (cluster 12), and T/NK (cluster 27) in the 7d nerve (Figure 3.1). While cells in the 

mononuclear phagocyte system (MPS), including Mo, Mac, and MoDC, are readily identified in 

the 3d and 7d injured nerve, scRNA-seq provides a unique opportunity to assess gene expression 

changes at different post-injury time points, offering insights into “cellular plasticity,” and by 

inference immune cell phenotype and function. 

To track how different cell clusters change in size and gene expression as a function of 

time, we used the 3d dataset as a “reference” and projected its PCA structure onto “query” 

datasets from different time points as defined by (Stuart et al., 2019) and implemented through 

Seurat v3. This technique finds anchor cells between the reference and query datasets, then uses 

a weighted vote classifier based on the known reference cell labels to yield a quantitative score 

for each cell’s predicted label in the query dataset. A prediction score of 1 means max 

confidence, all votes, for the predicted label and a score of 0 means no votes for that label. To 

assess the similarity between 3d and 7d cells we focused on two statistics: the median prediction 

score for the 7d cells and the squared Pearson correlation between the overlapping, top 3,000 

variable, genes in each dataset (2,284 genes). For most of the non-immune cell types, expression 

of the top variable genes did not change globally between 3d and 7d post-SNC. For example, the 

cells predicted as Fb in the 7d nerve had a median prediction score (PS) of 0.99 and an R-

squared of 0.82.  In a similar vein, the fibroblast-related eMES (PS = 1.00, R2 = 0.89), dMES 

(PS = 0.90, R2 = 0.91) and pMES (PS = 0.94, R2 = 0.89) exhibit a high degree of similarity 

between 3d and 7d. Cells associated with the nerve vasculature in the 3d and 7d nerve, including 

EC show very similar scores (PS = 1.00, R2 = 0.93) and PC (PS = 1.00, R2 = 0.92), indicating 

that in the injured nerve these cells show a limited degree of plasticity and can readily be 

identified. This stands in marked contrast to cells in the MPS and Schwann cells. In the 3d nerve, 

Mac in cluster 0 form the largest subpopulation (Figure 2), when assigned to cells in the 7d 

injured nerve, they had a median prediction score of 0.77 (R2=0.86) and no 7d cluster had more 

than 48% of cells given this label (cluster 87d - 48%, cluster 97d - 47%, cluster 237d - 24%, cluster 
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287d - 25%). This suggests that the Mac subpopulation in cluster 03d is highly plastic and marks a 

transient cell state that is no longer exists in the 7d injured nerve. Noteworthy, not all cells in the 

MPC show a similarly high degree of plasticity. For example, 7d cells assigned Mac from cluster 

23d had a median prediction score of 0.91 (R2=0.94) and made up 70% of cluster 47d. Similarly, 

7d cells assigned as Mac cluster 103d had a median prediction score of 0.91 (R2=0.86) and show 

highest similarity to cells in cluster 57d (80%).  Mo are very similar between the 3d and 7d nerve, 

presumably because they recently entered the injured nerve and did not yet adapt their gene 

expression to the micro-environment (PS=0.99, R2=0.95). Dendritic cells (DC) are present in the 

3d nerve, however many more MoDC, cDC and pDC are found in the 7d nerve. MoDC at 7d had 

a prediction score of 0.98 (R2=0.95) relative to MoDC at cluster 63d and make up 92% of cluster 

37d. In a similar vein, cDC at cluster 183d and 7d cells had a median prediction score of 1 

(R2=0.97) and made up 92% of cells in Cluster 227d and all cells in cluster 317d. pDC had 

prediction score of 0.90 (R2=0.94) and made up 97% of cluster 267d and 89% of cluster 297d. 

Comparative analysis of DC, reveals that gene expression for specific DC subpopulations is 

more stable between 3d and 7d post-injury when compared to Mac subpopulations.  

 

3.3.2 Identification of different immune compartments within the injured 

sciatic nerve 
 For a comparative analysis of the cellular composition around the sciatic nerve injury site, 

where trauma is experienced, versus the distal nerve stump, where axons undergo WD, we micro-

dissected nerve segments that contain the injury site (~ 5 mm in length) or the distal nerve stump 

(~ 5 mm in length) from the same animals (Figure 1.1). To assess immune cell composition, 

tissues were analyzed by flow cytometry (Kalinski et al., 2020). Compared to sham operated mice, 

the number of myeloid cells in the nerve segment that contains the injury site and the distal nerve 

segment, were significantly increased. The injury site of the 3d nerve contained 2,437 (± 973) 

myeloid cells per nerve segment while the 3d distal segment contained 953 (± 215) cells per nerve 

(Figure 3.3F). In a similar vein, macrophages 242 (± 43) cells in sham operated mice, 1,778 (± 

792) cells per nerve in the 3d injury site, and 700 (± 171) cells per nerve in the 3d distal segment 

(Figure 3.3E-F). A comparison of single cell transcriptomes in the 7d injury site to 7d whole nerve 

single cell transcriptomics shown in Figure 3.1, revealed that all major cell types are present at 

the injury site, yet their relative abundance appears to be cell type dependent (Figure 3.4). This 
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stands in contrast to 7d distal nerve tissue, where Mac in clusters 5 are missing and Mac in cluster 

9 are greatly reduced (Figure 3.5 and 3.1). This suggests that these two Mac subpopulations are 

preferentially localized to the injury site and largely absent from the distal nerve. Gene products 

strongly expressed by Mac enriched at the injury site (clusters 5 and 9), include Gpnmb, Fabp5, 

Syngr1. Conversely, Mac in clusters 5 and 9 are devoid of Ccr2 and the MHCII components H2-

Aa, H2-Ab and Cd74, while other Mac subpopulations (clusters 4, 23, and 28) express these gene 

products (data not shown). Mo are more abundant in the 7d distal nerve than the injury site, while 

MoDC are abundantly found in both compartments. Notably, injury associated TC and NK appear 

to be homogenously distributed between the injury site and distal nerve, as no significant 

differences in cell numbers were detected (Figure 3.6). Together these studies identify distinct 

immune compartments within the injured sciatic nerve and show that select Mac subpopulations 

are strong enriched at the injury site, while others are more uniformly distributed. 

 

3.3.3 Immune response to sciatic nerve crush injury in Sarm1-/- mice 
 The immune response to sciatic nerve compression is composed of cells that respond to the 

tissue wound inflicted by trauma and cells that respond to WD of severed nerve fibers in the distal 

nerve stump. Because Sarm1 deficiency delays to onset of WD by approximately 2 weeks 

following SNC, we subjected cohorts of WT and Sarm1-/- mice to SNC to distinguish between the 

immune response triggered by nerve trauma in the presence or absence of WD. Consistent with 

previous studies, in WT mice severed nerve fibers in the distal stump are fully disintegrated 7d 

post-SNC and myelin ovoids abundantly present. In parallel processed Sarm1-/- nerves, fibers in 

the distal nerve remain intact and myelin ovoids are not detected (data not shown). Nerves from 

WT and Sarm1-/- were dissected (including the injury site and distal stump up to the nerve 

trifurcation), and subjected to flow cytometry to identify the main immune cell types. In sham-

operated WT and Sarm1-/- mice, Mac (CD45+CD11b+CD11c-Ly6G-) are present at comparable 

numbers (Figure 3.3A-B). This was independently verified by anti-F4/80 immunostaining of 

longitudinal sciatic nerve sections (Figure 3.7). In 3d and 7d whole nerves, total counts of myeloid 

immune cells were significantly elevated in WT and KO mice (Figure 3.3B and 3.7). However, 

compared to WT 3d—3130 (± 466) cells per nerve—and WT 7d—2476 (± 486) cells per nerve—

the total number of myeloid cells per nerve was significantly reduced in KO mice at 3d—1585 (± 

375) cells per nerve—but not at 7d—1546 (± 233) cells per nerve (Figure 3.3B). Significantly 
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fewer Mac are found in the injured Sarm1-/- nerve at 3d—933 (± 223.6) than in WT nerve 2476 

(± 353). Mac in the 7d Sarm1-/- nerve 1223 (± 185) are reduced to WT nerves 1990 (± 341) 

(Figure 3.3A-B). A significant difference in neutrophil accumulation was found between 

genotypes with 64 (± 15) found per WT nerve and 16 (±4) per KO nerve. Though neurtrophil 

numbers are quite low in the 7d injured nerve and are likely not contributing significantly at this 

timepoint.  Other immune cell types were comparable and did not significantly differ between WT 

and KO nerves with 261 (± 103) DCs, and 668 (± 17) lymphocytes found per WT nerve and 158 

(± 20) DCs, and 515 (± 25) lymphocytes found per KO nerve.    

 To specifically assess inflammation in nerve tissue distal to the injury site, the 3d nerve 

trunk from WT and Sarm1-/- mice was harvested and micro-dissected into “injury site” and “distal 

nerve” and analyzed by flow cytometry. In WT distal nerve, significantly more myeloid cells are 

present—953 (± 215) per segment—than in KO distal nerve—479 (± 212) per segment (Figure 

3.3F). More Mac are detected 700 (± 171) per distal nerve segment in WT mice compared to 

Sarm1-/- mice 344 (± 158) (Figure 3.3E-F). High magnification imaging of the proximal stump, 

injury site and distal stump, confirmed that there is a reduction in F4/80+ Mac in the distal nerve, 

but there is no difference at the injury site (Figure 3.3G). While the Mac population is reduced in 

Sarm1-/- mice compared to WT, it is clearly elevated compared to sham-operated mice (Figure 

3.3B).  This suggests that WD independent mechanisms contribute to nerve inflammation, 

however WD is required for full blown nerve inflammation. For a time course analysis, sciatic 

nerves and DRGs at 1d, 3d, 7d, 14d, and 21d post-SNC were harvested and analyzed by Western 

blotting (Figure 3.3H-I). Additionally, nerves from 3d and 7d SNC were divided into proximal, 

injury and distal segments and analyzed separately by Western blotting. In the injury region, where 

mechanical nerve compression leads to necrotic cell death, inflammation in WT and Sarm1-/- 

nerves is elevated when compared to proximal nerve (Figure 3.3J-K). In WT mice, the distal 

nerve showed an increase in CD11b at 3d that peaked around 7d. This increase was not observed 

in the distal nerve of Sarm1 mice. As an independent verification of the flow cytometry and 

Western blotting data, longitudinal nerve sections were stained for F4/80+ macrophages at 3d and 

7d after SNC (Figure 3.3C-D). In nerves of sham-operated mice, morphology and number of 

macrophages is similar between WT and Sarm1-/- mice (Figure 3.7). At 3d, accumulation of large 

numbers of Mac was observed at the injury site in both, WT and Sarm1-/- mice (Figure 3.3C). 
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However, at 7d, Mac in WT nerves fill the injury site and distal stump, and in Sarm1-/- nerves the 

number of Mac in the distal nerve is reduced (Figure 3.3D).  

 Next, we subjected 7d Sarm1-/- nerves (whole nerves) to scRNA-seq and in addition split 

injured nerves into “injury site” and “distal nerve” as described above for WT nerves (Figure 1.1). 

For cell type identification the top 200 cell type enriched genes were used and compared to cell 

types identified in the 7d injured WT nerve. Analysis of the 7d injury site of WT and Sarm1-/- 

nerves, revealed that all major cell types are present. Importantly, cells in the immune compartment 

of WT and Sarm1-/- show a high degree of similarly (Figure 3.8). Mo are 99% identical, Mac in 

clusters 5 (97%), cluster 9 (93%), cluster 4 (91%), epiMac (96%), and MoDC (99%). In addition, 

lymphocytes including TC (98%) and NK (99%) near the injury site are very similar in WT and 

Sarm1-/- mice. This shows, the in Sarm1-/- mice, the immune response to nerve tissue compression 

is very similar at the cellular and molecular level to WT mice. Consistent with flow cytometry, the 

“distal nerve” of Sarm1-/- mice is inflamed and harbors Mo and a smaller population of Mac and 

MoDC (Figure 3.9). These findings indicate that Mo enter the distal nerve stump of Sarm1-/- long 

before axons undergo WD and suggests that Mo chemotactic compounds are released either from 

severed axons, denervated SC, nerve resident Mac, or MES long before axon fragmentation occurs. 

 

3.3.4 In injured Sarm1-/- mice, blood-borne leukocytes enter the distal nerve 

stump prior to WD 
 Flow cytometry and scRNA-seq indicate that immune cells enter the distal nerve of Sarm1-

/- mice before severed nerve fibers start to disintegrate. This shows that WD is not required to 

trigger nerve inflammation in the distal nerve stump. Because our studies were carried out with 

Sarm1 global knock-out mice, potential confounding effects due to Sarm1 deficiency in immune 

cells that influence cell phenotype or trafficking cannot be ruled out. To assess whether WT 

leukocytes enter the distal nerve stump of Sarm1-/- mice prior to WD, we used parabiosis. Age-

matched adult Sarm1-/- and tdTom reporter mice were parabiotically fused and one month later 

the Sarm1-/- parabiont was subjected to bilateral sciatic nerve crush. Parallel processed WT/tdTom 

parabionts were used for comparison. Histological staining of the 7d injured nerve in the Sarm1-

/- parabiont revealed tdTom+ leukocytes readily enter the injury site, comparable to WT mice 

(Kalinski et al., 2020). In the distal nerve stump of Sarm1-/-, tdTom+ leukocytes were present, 

however they were fewer than in parallel processed WT parabionts and they were F4/80 negative 
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(data not shown). Thus, parabiosis experiments independently show that WD is not necessary for 

immune cell entry into the distal nerve, however nerve fiber disintegration is necessary for the full-

blown immune response associated with WD. 

 

3.3.5 Monocytes enter the distal nerve prior to WD 
 Analysis of scRNA-seq data generated from Sarm1-/- 7d distal nerve tissue, identified Mo 

as the main immune cell type (Figure 3.9). They comprise 30% of the immune cells in the distal 

nerve, but only 6% of the immune cells at the injury site. In comparison, the contribution of Macepi 

to the immune cell population is 13% in the distal nerve and 9% for the injury site, further 

underscoring the expansion of Mo in the distal nerve stump of Sarm1-/- mice (Figure 3.10). In 

Sarm1-/- nerves, the two most abundant Mac populations at the injury site (clusters 4 and clusters 

9) make up 23% and 24%, respectively, while the corresponding Mac in the distal nerve cluster 4 

(0.3%) and cluster 9 (4%) are greatly reduced. Mac in cluster 23 make up 11% in the distal nerve 

and 6% of the injury site. Lymphocytes, TC (5%) and NK (4%) are found at the injury site and the 

distal nerve, TC (7%) and NK (7%) (Figure 3.10).  

 Strong chemotactic CCR2-CCL2 signaling is a well-known mechanism used to recruit 

circulating monocytes that express CCR2 to tissue sites that release CCL2 upon injury (Pan et al., 

2020). When we examined our Sarm1-/- 7d distal nerve scRNA-seq data for CCL2 expression, we 

found the highest transcript levels in eMES and to a lesser but still significant extent throughout 

the Mo population (Figure 3.11). Circulating monocytes express high levels of the protein Ly6C, 

levels of which remain high for a short time following extravasation. However, upon nerve entry 

Mo receive signals from the nerve micro-environment and begin to differentiate and reduce 

expression of Ly6C to become a Mo/Mac Ly6C “intermediate” population and later a Ly6C- 

population once they become mature Mac (Kalinski et al., 2020). We employed flow cytometry to 

assess differences in infiltration or maturation of Mo to Mac in the sciatic nerve following SNC in 

WT and Ccr2 KO mice. Nerves from these mice were crushed and 3d post-injury harvested and 

divided into injury site and distal nerve segments for further analysis. As previously observed, 

Ly6Chi Mo were recruited to the WT nerve and at 3d post-injury began to shift toward a Ly6Cint 

population (Kalinski et al., 2020). Similar to WT and Sarm1-/- mice, we found more Mac in Ccr2-

/- injury site than in the distal nerve (Figure 3.12). Though strikingly, in both injury site and distal 

nerve of the Ccr2-/- nerve we found a distinct lack of Ly6Chi Mo at 3d post-injury. Mo in the WT 
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injury site numbered 924 per segment compared to 148 per segment in the Ccr2-/- nerve. This was 

recapitulated in the distal stump with 851 Mo per segment found in WT samples and 47 Mo per 

segment in Ccr2-/- samples. These data indicate that Ccr2-/- mice lack recruitment of circulating 

Mo into the injured nerve. Intriguingly in the injury site of the Ccr2-/- nerve, there are more Ly6Cint 

cells—6,076 per segment—than in the WT injury site—4,079 per segment (Figure 3.12). 

Suggesting that a compensatory reaction from tissue-resident Mac substitutes for Ly6Cint cells that 

would be sourced from CCL2-CCR2-recruited Ly6Chi Mo. 

 

3.3.6 In the injured sciatic nerve macrophages “eat” apoptotic neutrophils 
 We previously showed that blood-borne leukocytes that enter the injured sciatic nerve are 

eaten by Mo/Mac and to a lesser extent by MoDC in a process termed efferocytosis. Efferocytosis 

is a key mechanism for inflammation resolution, as apoptotic cell corpses are eaten before they 

burst and release DAMPs into the environment. Because different immune cell types accumulate 

in large numbers in the injured nerve, it is not clear what cells form the “prey” eaten my 

macrophages. In order to identify the apoptotic cell types that are “food” for efferocytic 

macrophages, we employed genetic labeling of immune cells. We previously used parabiosis to 

label all blood-borne immune cells that enter the injured nerve (Kalinski et al., 2020). We 

generated R26LSL-Tomato reporter mice that express tdTom under the transcriptional control of the 

Ly6g promoter to selectively label granulocytes. The most abundant granulocyte population that 

infiltrates the injured sciatic nerve are neutrophils. They peak around 1d post SNC and are 

preferentially found at the injury site. Neutrophils have a short half-live time and are a well-known 

prey for efferocytic macrophages in non-neural tissues (Horckmans et al., 2017). We first validated 

the effectiveness of the neutrophil reporter with preliminary studies identify many tdTom+ cells at 

the injury site in the 1d injured nerve (Figure 3.13A). Next, we analyzed a cohort of 3 reporter 

mice by flow cytometry. Whole sciatic nerves at 1d and 3d post-SNC were dissected and examined 

for the presence of F4/80+ macrophages that are also tdTom+ cells. Because neutrophils do not 

express F4/80, cells that are F4/80+tdTom+ mark macrophages that have eaten apoptotic (tdTom+) 

neutrophils. At 1d post-injury, 184 F4/80+tdTom+ cells per nerve are detected and 128 

F4/80+tdTom+ cells per nerve at the 3d timepoint (Figure 3.13B). Taken together, these data 

indicate that neutrophils are eaten in the injured nerve by macrophages, whereby they will promote 

inflammation resolution. 
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3.4 Discussion 
 Common causes of PNS injury are physical trauma, diabetes, and chemotherapy, all of 

which can trigger nerve fiber damage, functional deficits, and pain syndromes.  Focusing on sciatic 

nerve compression injury, we carried out a detailed analysis of injury induced nerve inflammation 

at the nerve compression site and within the distal nerve stump. The study identified two distinct 

immune compartments comprised of overlapping, yet distinct immune cell populations.  The injury 

site harbors two prominent macrophage subpopulations that are largely absent from the distal nerve 

stump where axons undergo WD.  We propose that Mac subpopulations specific to the injury site 

respond to physical trauma induced necrotic cell death and release of DAMPs that trigger a pro-

inflammatory immune response.  In the distal nerve stump, severed axons undergo WD in the 

absence of necrotic cell death, thus creating a micromilieu distinct from the nerve injury site.  The 

immune compartment in the 3d and 7d injured nerve is dominated by cells in the MPS, including 

5 Mac subpopulations in the 3d nerve and 7 Mac subpopulations at 7d, as identified by scRNA-

seq.  Compared to other immune cell types, Mac are highly plastic and show global changes in 

gene expression, suggesting they change their phenotype, and by extension their function. The 

wide-ranging changes in Mac gene expression make it difficult to assign subcluster identifies in 

the 3d injury nerve to the corresponding Mac subclusters in the 7d nerve.  Compared to Mac, other 

cell populations in the MPS are less plastic and show similar gene expression profiles in the 3d 

and 7d injured nerve, these include Mo, MoDC, cDC and pDC. In a similar vein, gene expression 

profiles of lymphocytes, including T cells and NK are more stable at 3d and 7d. 

 The immune response to nerve trauma and WD overlap and are difficult to untangle.  To 

temporally separate the immune response to nerve trauma from WD, we subjected Sarm1-/- mice 

to SNC and micro-dissected nerve tissue the contains the injury site or distal nerve tissue. Flow 

cytometry and scRNA-seq revealed that the immune response to SNC is remarkably similar 

between WT and Sarm1-/- mice. The same immune cell types are present at the injury site at 

comparable numbers. Moreover, scRNA-seq identified the same Mac subpopulations and they 

exhibit highly similar gene expression profiles as in the injured WT nerve.  This further underscore 

that immune cells at the injury site respond to tissue wounding and not to WD. Surprisingly, the 

distal nerve in Sarm1-/- is inflamed 7d post-SNC, a time point long before any physical signs of 

axon degeneration are observed. This shows that axonal transection causes a stress response within 

the distal axon that leads to the release of chemotactic molecules long before axon fragmentation 
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and myelin disintegration.  Upon closer examination we identified Mo as the main cell population 

in the distal nerve of Sarm1 KO mice, while macrophages are reduced compared to injured WT 

nerves.  To demonstrated that blood-borne leukocytes enter the distal nerve of injured Sarm1-/- 

mice, we employed Sarm1/tdTomato parabiosis and detected Tdtom+/F4/80- immune cells. This 

suggests that Mo chemotactic signal are released from the distal nerve in Sarm1-/- mice.  Analysis 

of scRNA-seq datasets generated fromSarm1-/- distal nerve identified high levels of Ccl2 

expression by eMES, suggesting that CCL2 via CCR2 expressed by Mo, promotes entry of 

circulating Mo into the distal nerve stump.  While CCL2-CCR2 is known to function in Mo 

chemotaxis, the role of this ligand-receptor pair in Mo entry into the injury site and the distal nerve 

stump has not yet been examined.  Experiments with Ccr2-/- mice show that entry of 

CD11b+Ly6C+ Mo into the nerve injury site as well as the distal nerve stump is significantly 

reduced in Ccr2 mice. However, in Ccr2-/- mice the injured nerve is still inflamed and harbors 

many CD11b+Ly6Cint cells, indicating that additional chemotactic mechanisms are at play, 

including proliferation of endoneurial macrophages. 

 

3.5 Materials and Methods 
3.5.1 Animals 
 All procedures involving mice were approved by the Institutional Animal Care and Use 

Committee at the University of Michigan and Weill Cornell Medicine, and performed in 

accordance with guidelines developed by the National Institutes of Health. Adult (8–16 week-old) 

male and female mice on a C57BL/6 background were used throughout the study. Mice were 

housed under a 12 hr light/dark cycle with standard chow and water ad libitum. 

 
3.5.2 Surgical procedures 
 All surgeries were carried out under aseptic conditions. Mice were deeply anesthetized 

with a mixture of ketamine (100 mg/kg) and xylazine (10 mg/kg) or with isoflurane (5% induction, 

2–3% maintenance, SomnoSuite Kent Scientific). Buprenorphine (0.1 mg/kg) was given pre-

emptively and post-operatively. 

 



 

 240 

3.5.2.1  Sciatic nerve crush injury 

 For sciatic nerve surgery, thighs were shaved and disinfected with 70% ethanol (Covidien, 

6818) and iodine (PDI Healthcare, B40600). A small incision, at mid-thigh, was made on the skin, 

underlying muscles separated, and the sciatic nerve exposed. For sham operated mice, the nerve 

was exposed but not touched. For SNC, the nerve was crushed for 15 s, using fine forceps (Dumont 

#55, Roboz Surgical Instruments, RS-5063). Skin was closed with 7 mm reflex wound clips (Cell 

Point Scientific, 203–1000). 

 

3.5.3 Immunofluorescence staining 
 For immunofluorescence staining of neural tissues, mice were killed and perfused 

transcardially with ice-cold PBS for 2 min followed by ice-cold, freshly prepared 4% 

paraformaldehyde for 10 min. Spinal cord, sciatic nerves, and L4-L5 DRGs were collected and 

post-fixed in perfusion solution overnight. After that the solution was switched to 30% sucrose in 

PBS and tissues were kept at 4°C for at least 12 hr. Tissues were covered with tissue Tek (Electron 

Microscopy Sciences, 62550–01) and stored at −80°C. Longitudinal sciatic nerve sections were 

cut at 12 µm thickness using a cryostat (Leica Biosystems, CM3050S). Sciatic nerve sections were 

mounted on Superfrost+ microscope slides (Fisher Scientific, 12-550-15) and air dried for at least 

12 hr before staining. Anti-F4/80 was the only antibody used (1:500; Thermo Fisher Scientific, 

MA1-91124). 

 

3.5.4 Western blot analysis 
 Sciatic nerves were dissected and lysed in radioimmunoprecipitation assay (RIPA) buffer 

(150 mM NaCl, 50 mM Tris, 1% NP-40, 3.5 mM sodium dodecyl sulfate, 12 mM sodium 

deoxycholate, pH 8.0) supplemented with 50 mM β-glycerophosphate (Sigma-Aldrich, G9422-

100G), 1 mM Na3VO4 (Sigma-Aldrich, S6508-10G), and protease inhibitor cocktail (1:100, 

Sigma-Aldrich, P8340-5ML). Tissues were kept on ice, briefly homogenized with a motorized 

tissue homogenizer (RPI, 299200), and subjected to sonication (Fisher Scientific Sonic 

Dismembrator, Model 500) at 70% amplitude for 3 s. Tissue lysates were centrifuged at 15,000 

rpm at 4°C for 10 min (Eppendorf, 5424R). The supernatant was transferred to a new tube and 

protein concentration was measured with a DC Protein Assay Kit (Bio-Rad, 5000111) using a 

photospectrometer at 750 nm (Molecular Devices, SpectraMax M5e). Samples were diluted with 
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2x Laemmli sample buffer (Bio-Rad, 1610737) containing 5% β-mercaptoethanol (EMD 

Millipore, 6010), boiled for 10 min at 100°C, and stored at −80°C for analysis. For SDS-PAGE, 

equal amounts of total protein (5–10 µg) were loaded per lane of a 15% gel. Separated proteins 

were transferred onto PVDF membrane (EMD Millipore, IPVH00010) for 2.5 hr at 200 mA in 

cold transfer buffer (25 mM TrisHCl, 192 mM Glycine, 10% Methanol). Membranes were blocked 

in 5% blotting-grade blocker (BioRad, 1706404) prepared in 1x TBS-T (TBS pH 7.4, containing 

0.1% Tween- 20) for 1 hr at room temperature, and probed overnight at 4°C with the following 

primary antibodies diluted in 1x TBS-T with 3% BSA (Fisher Scientific, BP1600): α-CD11b 

(1:1000, Abcam, ab133357), α-ERK1/2 (1:5000, Cell Signaling Technologies, 9102). Horseradish 

peroxide (HRP)-conjugated α-rabbit secondary IgG (EMD Millipore, AP182P) were used. All 

HRP-conjugated secondary antibodies were diluted at half the dilution of the corresponding 

primary antibody in 3% BSA in 1x TBS-T, and the HRP signal was developed with various 

strengths of chemiluminescent substrates from Thermo Fisher Scientific (Pico Plus, 34580 or 

Femto, 34095) or from Li-COR Biosciences (926-95000). Protein band intensity was visualized 

and quantified in the linear range using LI-COR C-Digit (CDG-001313) and Image Studio 

Software (Version 5.2.5). 

 

3.5.5 Flow cytometry 

3.5.5.1 Tissue harvest and isolation 
 
 Adult mice, naïve and at d3 and d7 post-SNC were deeply anesthetized with a mixture of 

Xylazine and Ketamine and perfused transcardially with ice-cold phosphate-buffered saline (PBS) 

for 5 min. Injured and uninjured sciatic nerves were dissected. In some cases from injured nerves, 

the proximal stump, distal stump, and injury site were separately harvested and multiple samples 

pooled. Similar sized segments from uninjured nerves were collected for comparison. 

 

3.5.5.2 Tissue processing and flow cytometry 

 To analyze immune cell profiles in sciatic nerves (SN), mice were transcardially perfused 

for 5 min with ice-cold PBS to flush out all blood cells in circulation. SN were harvested 

bilaterally. For analysis of SN from 2 to 3 mice (2 SN per mouse x 2–3 mice = 4–6 SN) were 

pooled separately and used for one run. The collected nerve segments were cut into small pieces 
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with microscissors and incubated in 1 ml collagenase (4 mg/ml Worthington Biochemical, 

LS004176) and dispase (2 mg/ml, Sigma-Aldrich, D4693) in PBS for 30–45 min at 37°C degrees 

in a 15 mL conical tube. Tissues were gently triturated with a P1000 pipette every 10 min. Next, 

samples were rinsed in DMEM with 10% FBS and spun down at 650 g for 5 min. This resulting 

pellet gently re-suspended in 1 mL of 27% Percoll (Sigma Aldrich, P4937) in PBS. Then 3 ml of 

27% Percoll were added to bring the final volume to 4 ml. Samples were spun at 900 g for 20 min 

in a clinical centrifuge (Beckman Coulter Allegra 6R). The top layers (with myelin and other 

debris) were carefully aspirated. The final 100 µl were resuspended in 1 ml of PBS with 2% FBS 

and filtered through a pre-washed 40 µm Falcon filter (Corning, 352340). Cells were pelleted at 

650 g for 5 min at 4°C. Cells were labeled with fixable viability dye (Thermo Fisher Scientific, 

65086614), blocked with αCD16/32 (BD Pharmingen, 553141), and stained with fluorescent 

antibodies and isotype controls. Immune cells (CD45+) were further classified as myeloid 

(CD45+CD11b+), classic dendritic cells (CD45+CD11b-CD11c+Ly6G-), monocyte-derived 

dendritic cells (CD45+CD11b+Ly6G-CD11c+), granulocytes (CD45+CD11b+Ly6G+CD11c-), 

and monocyte/macrophages (CD45+CD11b+Ly6G-CD11c-). Data were acquired using a 

FACSCanto II (BD Biosciences) flow cytometer and analyzed with FlowJo software (Treestar) as 

described previously (Baldwin et al., 2015). 

 

3.5.5.3 Antibodies 

 CD11b-PE-Cy7 (Thermo Fisher Scientific, 25-0112-82), Rat IgGk Isotype Control-PE-

Cy7 (Thermo Fisher Scientific, 25-4031-82) CD45-e450 (Thermo Fisher Scientific, 48-0451-82), 

Rat IgG2b Isotype Control-e450 (Thermo Fisher Scientific, 48-4031-82), Ly6G-APC-Cy7 (BD 

Biosciences, 560600), Rat IgG2a Isotype Control-APC-Cy7 (BD Biosciences, 552770), CD11c-

PerCP-Cy5.5 (Thermo Fisher Scientific, 45-0114-82), Arm Ham IgG Isotype Control-PerCP-

Cy5.5 (Thermo Fisher Scientific, 45-4888-80), Ly6C-FITC (BD Biosciences, 561085), Rat IgM 

Isotype Control-FITC (BD Biosciences, 553942). All antibodies were used at a working 

concentration of 1:100 except for CD11b (1:200). 

 

3.5.5.4 Statistics 

 Statistical analysis was performed in GraphPad Prism (v7) using paired or un-paired 2-

tailed Student’s t test, or 1-way or 2-way ANOVA with correction for multiple comparisons with 
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Tukey’s post-hoc test, as indicated in the figure legends. A p value < 0.05 (*) was considered 

significant. p<0.01 (**), p<0.001 (***), and p<0.0001 (****). 

 

3.5.6 Preparation of sciatic nerve samples for scRNA-seq 
 Mice were transcardially perfused with ice-cold PBS for 5 min to flush out all blood cells 

in circulation. The sciatic nerve trunk was harvested and a segment that contains the injury site 

and the distal nerve stump, up to the branch point of the tibial nerve, used for further processing. 

A minimum of three mice (six nerves) was used to obtain sufficient cells for analysis using the 

10x Genomics platform. The collected nerve segments were cut into small pieces with 

microscissers and incubated in 1 ml PBS supplemented with collagenase (4 mg/ml Worthington 

Biochemical, LS004176), dispase (2 mg/ml, Sigma-Aldrich, D4693), and actinomycin D (45 µM, 

Sigma Aldrich, A1410) for 30–45 min at 37°C in a 15-mL conical tube. Tissues were gently 

triturated with a P1000 pipette every 10 min. Next, samples were rinsed in DMEM with 10% FBS 

and spun down at 650 g for 5 min before removing supernatant. The resulting pellet was gently re-

suspended in 1 mL of 27% Percoll (Sigma Aldrich, P4937) in PBS. Then 3 ml of 27% Percoll 

were added to bring the final volume to 4 ml. Samples were spun at 900 g for 20 min with no brake 

in a clinical centrifuge (Beckman Coulter Allegra 6R). The top layers (with myelin and other 

debris) were carefully aspirated. The final 100 µl were resuspended in 1 ml of PBS with 2% FBS 

and filtered through a pre-washed 40 µm Falcon filter (Corning, 352340) with an additional 5 ml 

of PBS with 2% FBS. Cells were pelleted at 650 g for 5 min at 4°C. The supernatant was removed 

and the cell pellet resuspended in 180 µl of MACS buffer (Miltenyi, 130-091-376) diluted 1:20 in 

PBS (final bovine serum albumin [BSA] was 0.5%) and 10 µl of myelin removal beads were added 

(Miltenyi, 30-096-731). To remove all myelin debris, cells were incubated with myelin depletion 

beads for 15 min at 4°C with intermitted tapping. Cells were rinsed in 5 ml of MACS buffer, gently 

inverted several times and spun at 300 g for 10 min. Cells were separated from myelin beads using 

the MidiMACS separator (Miltenyi, 130-042-302) and LS columns (Miltenyi, 130-042-401). The 

flow through solution with the cells was centrifuged and the cells resuspended in 50 µl of Hanks 

balanced salt solution (Gibco, 14025092) supplemented with 0.04% BSA (Fisher Scientific, 

BP1600). The cell number and live/dead ratio was determined using propidium iodine labeling 

and a hemocytometer. 
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3.5.7 10x genomics scRNA-seq library preparation 
 For encapsulation of single cells with microbeads into nanodroplets, the Chromium Next 

GEM Single Cell 3’ GEM Library and Gel Bead Kit v3.1 and Chromium Next GEM Chip G Single 

Cell Kit were used. Approximately 12,000 cells in a final volume of 43 µl were used for barcoding, 

using the 10X Genomics Chromium Controller. The library preparation of barcoded cDNAs was 

carried out in a bulk reaction, following instructions provided by the manufacturer. A small aliquot 

of the library was used for quality control with a bioanalyzer followed by library sequencing at the 

Advanced Genomics Core of the University of Michigan. The NovaSeq Illumina 6000 was used 

with an S4 flowcell, yielding 1.05 Billion reads (7–11% of the flowcell) (Individual samples 

ranging from 290 to 424 million reads). NovaSeq control software version 1.6 and Real Time 

Analysis (RTA) software version 3.4.4 were used to generate binary base call (BCL) formatted 

files. 

 

3.5.8 Sequencing data analysis 
 Raw scRNAseq data were processed using the 10x Genomics CellRanger softeware 

version 3.1.0. The CellRanger ‘mkfastq’ function was used for de-multiplexing and generating 

FASTQ files from raw BCLs. The CellRanger 'count’ function, with default settings was used with 

the mm10 reference supplied by 10x Genomics, to align reads and generate single cell feature 

counts. Per sample, approximately 5800 cells with a median of 2507 genes per cell were obtained. 

CellRanger filtered cells and counts were used for downstream analysis in Seurat version 3.1.2 

implemented in R version 3.6.2. Cells were excluded if they had fewer than 200 features, more 

than 7500, or the mitochondrial content was more than 25%. Reads from multiple samples were 

merged and normalized following a standard Seurat SCTransform integration pipeline 

(Hafemeister and Satija, 2019); mitochondrial mapping percentage was regressed out during the 

SCTransform normalization step. Principal component analysis was performed on the top 3000 

variable genes and the top 30 principle components were used for downstream analysis. A K-

nearest neighbor graph was produced using Euclidean distances. The Louvain algorithm was used 

with resolution set to. five to group cells together. Non-linear dimensional reduction was done 

using UMAP. The top 100 genes for each cluster, determined by Seurat’s FindAllMarkers function 

and the Wilcoxon Rank Sum test, were submitted to version 11 of the string-db.org to determine 

functional enrichment; referred to as STRING analysis. 
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 To model developmental trajectories of cells that comprise the mononuclear phagocyte 

system (MPS), the Bioconductor package, slingshot version 1.4.0 was used. The integrated Seurat 

object was subset to include only MPS cells and slingshot was instructed to start from monocytes. 

The pseudo-time from the three slingshot constructed lineages were used in random regression 

forest to reveal the most influential genes, on pseudo-time. Random forests were implemented 

with the Ranger package of R from 1400 trees, 200 genes at each node, and the Gini index, 

‘impurity’, measure for gene importance. The bulk RNA-seq and scRNA-seq data is available 

online in the Gene Expression Omnibus (GEO) database (GSE153762). 

 Cell identities, as defined above, were saved for the 3d injured nerve. Single-cell 

transcriptomes from YFP.pos and YFP.neg macrophage populations identified in naïve peripheral 

nerve tissue (Wang et al., 2020), were downloaded and given the label Mac_Naive. The log2 

transformed raw counts of the 3d injured Mac1-5 and Mo as well as the Mac_Naive cells were 

subjected to batch correction using the ComBat function from the Bioconductor ‘sva’ package 

(Leek et al., 2012). Injured nerve Mo/Mac and naïve Mac made up the two batches and the 

following arguments were passed to ComBat: mod = NULL, par.prior = TRUE, mean.only = 

FALSE, prior.plots = FALSE. After batch correction each cell type and gene had a highly repeated 

minimum number near 0. To aid in plotting and determining ‘percent expressed’ this value was 

replaced with 0. The average expression for each gene and each cell type was calculated for the 

purpose of making dotplots. Any cell type with more than 85% zeros was not given a dot. The dots 

represent percent expressed by radius and average expression, scaled across cell type, by color. 
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3.8 Figures 
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Figure 3-1 Distribution of cell clusters in the whole 7d post-injury sciatic nerve. 
Singe-cell transcriptome of injured mouse sciatic nerve at d7 post-SNC, n = 5 biological replicates. A. 
Unsupervised Seurat-based clustering identifies 30 cell clusters. B. Cell clusters are labeled by numbers 
and cell type identity for each cluster, as determined by expression analysis of established markers.  
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Cluster Cell Identity Cluster Cell Identity 
0 Mac 1 11 Fb 
1 eMES 12 PC1 
2 Mac2 13 pMES 
3 SC1 14 Mo 
4 Mac3 15 T/NK 
5 Mitotic MES 16 Mac5 
6 MoDC 17 pDC 
7 EC1 18 cDC 
8 SC2 19 GC 
9 dMES 20 PC2 
10 Mac4 21 EC2 

 
Figure 3-22 Distribution of cell clusters in the whole 3d post-injury sciatic nerve. 
Singe-cell transcriptome of injured mouse sciatic nerve at d3 post-SNC, n = 6 biological replicates. 
Unsupervised Seurat-based clustering identifies 21 cell clusters (top). Cell clusters are labeled by numbers 
(bottom) and cell type identity for each cluster, as determined by expression analysis of established markers, 
is shown on the right..  
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Figure 3-33   Crush-induced inflammation and accumulation of immune cell profiles. 
A. Flow cytometry dot plots showing monocyte/macrophage populations. Macrophages were categorized 
as CD45+CD11b+Ly6G-CD11c-Ly6C-. B. Quantification of myeloid (CD45+CD11b+) and macrophage 
populations in WT and SARM1 KO whole nerves from 3d sham-operated and 3d or 7d post-injury mice 
following sciatic nerve crush. C-D. Whole sciatic nerve sections from 3d and 7d post-injury mice stained 
with the macrophage marker F4/80. E. Flow cytometry dot plots of monocyte/macrophage populations in 
WT and SARM1 KO sciatic nerves 3d post-injury. The injury site and distal segment were micro-dissected 
and analyze separately. F. Quantification of myeloid cells and macrophages from WT and SARM1 KO 
nerves separated by injury site and distal segment. G. Magnified immunofluorescent images of 3d and 7d 
post-injury sciatic nerve segments. Images in purple boxes taken from the proximal stump; images in red 
boxes taken from the injury site; images in blue boxes taken from the distal stump. H-K. Western blot 
membranes and analyses of whole nerves across multiple injury timepoints or micro-dissected nerves 3d 
and 7d post-injury assessing SARM1 and CD11b expression. Two-tailed t-test, *p<0.05, **p<0.01, 
***p<0.001.  
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Figure 3-44 Cell cluster similarity between WT 7d injury site and whole nerve. 
Single cell RNA-seq data of whole nerve, 7d post-SNC, was used as a reference and compared to cells 
identified by scRNA-seq of the microdissected injury site. The top 200 cell cluster defining genes were 
used for comparison in a violin plot and the percentile of similarity is shown on the y-axis. Cell cluster 
identity is shown on the x-axis. The number of cells assigned to each cell type is shown on top of the violin 
plot.  
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Figure 3-55 Cell cluster similarity between WT 7d distal segment and whole nerve. 
Single cell RNA-seq data of whole nerve, 7d post-SNC, was used as a reference and compared to cells 
identified by scRNA-seq of the microdissected distal nerve. The top 200 cell cluster defining genes were 
used for comparison in a violin plot and the percentile of similarity is shown on the y-axis. Cell cluster 
identity is shown on the x-axis. The number of cells assigned to each cell type is shown on top of the violin 
plot.  



 

 256 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 257 

Figure 3-66 Comparison between WT 7d injury and distal segments to whole nerve. 
Immune cells identified by scRNA-seq of the micro-dissected injury site (top) and immune cells identified 
by scRNA-seq of the micro-dissected distal nerve (bottom) aligned to the whole nerve 7d reference data 
set. Note the immune cell number and composition is different between the injury site and the distal nerve.  
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Figure 3-77   Assessment of changes in immune cells in sham and injury conditions. 
A. Sciatic nerves taken from 3d sham-operated animals stained with macrophage marker F4/80. B Isotype 
control flow cytometry dot plots for Ly6C expression. C. Flow cytometry dot plots assessing CD45 and 
CD11b expression in whole sciatic nerves across multiple timepoints and between WT and KO mice.  
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Figure 3-881   Cell cluster similarity between Sarm1-/- 7d injury site and whole nerve. 
Single cell RNA-seq data of whole nerve, 7d post-SNC, was used as a reference and compared to cells 
identified by scRNA-seq of the micro-dissected injury site from 7d injured Sarm1-/- mice. The top 200 cell 
cluster defining genes were used for comparison in a violin plot and the percentile of similarity is shown 
on the y-axis. Cell cluster identity is shown on the x-axis. The number of cells assigned to each cell type is 
shown on top of the violin plot.  
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Figure 3-991   Cell cluster similarity between Sarm1-/- 7d distal segment and whole nerve. 
Single cell RNA-seq data of whole nerve, 7d post-SNC, was used as a reference and compared to cells 
identified by scRNA-seq of the micro-dissected distal nerve from 7d injured Sarm1-/- mice. The top 200 
cell cluster defining genes were used for comparison in a violin plot and the percentile of similarity is shown 
on the y-axis. Cell cluster identity is shown on the x-axis. The number of cells assigned to each cell type is 
shown on top of the violin plot.  
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Figure 3-1010   Comparison of Sarm1-/- 7d injury and distal segments to whole nerve. 
Immune cells identified by scRNA-seq of the micro-dissected injury site of Sarm1-/- mice (top) and 
immune cells identified by scRNA-seq of the micro-dissected distal nerve of Sarm1-/- mice (bottom), 
aligned to the whole nerve 7d WT nerve reference data set. Not the immune cell number and composition 
are different between the injury site and the distal nerve.  
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Figure 3-1111   CCL2 expression in Sarm1-/- sciatic nerve 7d post-injury. 
A. Feature plot for Ccl2 of 7d distal nerve stump of Sarm1-/- mice shows strong expression in eMES 
(endoneurial mesenchymal cells) and to a lesser extent in Mo (monocytes). B. UMAP plot with cluster 
identities. C. Violin plot showing Ccl2 expression in different cell populations identified in the 7d distal 
nerve stump of Sarm1-/- mice. D. Seurat clusters with numbered cell clusters.  
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Figure 3-12 Lack of Ly6Chi monocytes in crushed sciatic nerves from Ccr2-/- mice. 
Flow cytometry dot plots and quantitative histograms of Ly6C expression in 3d post-injury sciatic nerves 
separated into injury site and distal segments from WT and CCR2 KO mice (n=5 bilateral-crushed mice 
pooled per genotype). The top-right histogram shows all CD45+CD11b+Ly6G-CD11c- monocytes and 
macrophages. The bottom-right histogram displays the Ly6Cint mono/mac and Ly6Chi monocyte 
populations for comparison of absolute numbers.  



 

 267 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3-13 tdTom+ neutrophils are efferocytosed by F4/80+ macrophages after SNI. 
A. Representative immunofluorescent image of a naïve 1d post-injury whole sciatic nerve from a R26LSL-
Tomato fluorescent mouse with tdTom+ neutrophils. The asterisk marks the injury site. B. Flow cytometry 
dot plots and quantitative histograms of of F4/80+ sciatic nerve macrophages that have ingested tdTom+ 
neutrophils at 1d and 3d post-injury. Cells represented here are CD45+CD11b+tdTom+. The bottom-right 
histogram is a magnified inset of the tdTom+F4/80+ population from the histogram above.  
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4 Discussion and Future Directions 

4.1 Abstract 
 Comprehensively, the work presented in this dissertation provides key insights into the 

multicellular and spatial complexity of the immune and non-immune response to peripheral nerve 

injury. Most impactful to the fields of neuroinflammation and neuro-regeneration is our (1) descriptive 

analysis of the time-course and spatial differences in reaction to peripheral nerve injury, (2) 

identification of unique subsets of macrophage, Schwann cell, endothelial cell, and other cell clusters 

with distinct transcriptomic and functional significances, (3) contribution to the understanding of the 

differences in inflammatory and pro-regenerative response in the DRG and local nerve environments, 

and (4) robust evidence for the role of efferocytosis and clearance of apoptotic cells in promoting 

resolution of inflammation and pro-regenerative signaling in the injured peripheral nerve. These 

findings, thoughts on critical next steps, and implications for therapeutic potential are discussed below. 

 

4.2 Comprehensive Depiction of the Injured Nerve Environment 
 Others have characterized portions of the response to sciatic nerve injury, usually focusing 

on certain subsets of cells or systems. Immunologically, Kigerl et al., identified distinct subsets of 

macrophages that dichotomously promote either neuronal death or regeneration in the injured 

spinal cord (Kigerl et al., 2009). Neuronally, therapeutic potential for removing PTEN inhibition 

of mTOR in DRGs to promote sciatic nerve regeneration was suggested by Steward & Gallaher 

(Gallaher & Steward, 2018). Through implantation of a synthetic oxygen carrier, Luo et al., 

improved Schwann cells survival and enhanced sciatic nerve regeneration (Ma et al., 2018). 

Phillips et al., recently found implantation of a scaffold containing pre-aligned endothelial cells 

allowed for improved axon regrowth across a transected nerve (Muangsanit et al., 2021). Though, 

few groups have formally collected and demonstrated the complex response described in one 

narrative. 

 We are one of the first groups to fully sequence and characterize the cellular response to 

sciatic nerve injury. Other groups have employed bulk RNA-seq to investigate transcriptional 

changes in DRGs and sciatic nerve after injury (Hinder et al., 2017), in pain conditions (Sun et al., 

2017), and after various therapies like acupuncture (Lv et al., 2020) and spinal cord stimulation 

(Stephens et al., 2018). More recent analyses have shifted preference toward scRNA-seq as it 
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allows for more powerful conclusions about the roles of specific cell types in the injured nerve and 

associated DRGs (Chen et al., 2021; Hu et al., 2016; Renthal et al., 2020). Though we believe our 

extended and in-depth analysis of data collected from single cell sequencing, flow cytometry, 

protein quantification, immunofluorescent labeling, mouse genetics, and novel surgical paradigms 

contributes a unique and holistic perspective of an organism’s response to peripheral nerve injury. 

 Through flow cytometry and protein analysis we have identified the stereotyped time 

course of immune infiltration into the sciatic nerve, importantly we found key differences between 

infiltration into the proximal nerve stump and that of the injury and distal segment. In the former, 

our data show there is nearly no change in immune cell composition at 3dpi or 7dpi compared to 

naïve conditions. Contrastingly, at 1dpi the distal stump and injury site experience a significant 

influx of granulocytes—primarily neutrophils—which taper off at 3dpi. These cells likely respond 

within hours of injury and begin to release chemoattractants to promote infiltration of circulating 

monocytes (Niemi et al., 2020). Congruently there is an increase in the number of monocytes and 

macrophages at 1dpi that peak at 3dpi and wane at 7dpi. While many of these macrophages may 

be tissue-resident, our utilization of parabiotic mice allowed us to show that a significant portion 

of these are entering from the blood. There is also a modest increase in the number of myeloid-

derived dendritic cells, peaking at 7dpi. 

 Though, immune infiltration into the nerve is only a small snapshot of the story. Our 

employment of scRNA-seq allowed us to identify the complex milieu of cells responding to injury. 

Through this method we identified 12 different populations of cells, many comprised of multiple 

subtypes with distinct transcriptional profiles. Speaking specifically to this variety, we identified 

five unique macrophage clusters, three Schwann cell clusters, three mesenchymal stem cell 

populations, three endothelial cell clusters, and two pericyte populations in addition to other 

singular cell types (myeloid-derived/conventional dendritic cells, granulocytes, T/natural killer 

cells, fibroblasts, chondrocytes, and a hybrid immune/endothelial cell population). This data not 

only shows the many cell types involved in an injury response, but underscores the magnitude of 

diversity within each population that points to distinct properties and functions. 

 To dive deeper into this theme, we performed an in-depth analysis of the five macrophage 

subpopulations (Mac1-5). Here we discovered that each group was functionally distinct, 

exemplified their developmental trajectory, and also their localization to specific sites of the 

injured nerve. Circulating monocytes infiltrate the blood-nerve barrier and, depending on their 
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microenvironment, take on a specific phenotype (Canè et al., 2019; Ydens et al., 2020). We showed 

that monocytes mature into the Mac3 population which gives rise to the Mac1/2/4 populations. 

Further, we found that Mac2/3 localize preferentially to the distal segment of the nerve and likely 

participate in Wallerian degeneration, while the Mac1/4 populations were found preferentially at 

the injury site and have roles in opsonization and efferocytosis of apoptotic cells. In addition to 

this variety we exemplified that mesenchymal progenitor cells of three clusters (perineural, 

endoneurial, and differentiating) are rich sources of neurotrophic factors essential for regeneration 

as well as several chemokines that can contribute to immune chemotaxis. 

 

4.3 Differences in Sciatic Nerve and DRG Inflammation 
 For decades there has existed a battle between two camps: those that believe dorsal root 

ganglia (DRG) inflammation drives sciatic nerve regeneration and those that believe inflammation 

of the sciatic nerve predominantly drives regeneration. A classic paper by Richardson and Lu 

showed that heightened inflammation in DRGs through local injection of Corynebacteerium 

parvum or isogenous macrophages prompted increased sciatic nerve regeneration after crush injury 

(X. Lu & Richardson, 1991). Niemi et al., suggested that loss of global CCR2 expression—the 

major chemoattractant for circulating monocytes—impaired macrophage accumulation in DRGs 

and impaired conditioning-injury-induced regeneration (Niemi et al., 2013). Similarly, the 

overexpression of the CCR2 ligand, CCL2, in DRGs produced a conditioning-injury-like effect 

through increased STAT3 signaling (Niemi et al., 2016). Contrastingly inflammation and signaling 

from immune cells in the nerve have also shown to promote regeneration. Enhancing GM-CSF 

signaling, endogenously produced by macrophages, potentiated early axonal growth after sciatic 

nerve crush (Bombeiro et al., 2018). Polarization of nerve macrophages toward an anti-

inflammatory phenotype with thrombomodulin altered their protein production and improved 

regeneration (Huang et al., 2020). Interestingly, increased levels of NP-1, normally released by 

neutrophils, increased pro-growth signals in the nerve (Yu et al., 2020). Further, macrophage-

derived vascular endothelial growth factor is required for axonal reinnervation of the NMJ 

following injury (C. Y. Lu et al., 2020). In terms of placement within this field, our work  primarily 

supports the thought that signals originating from the sciatic nerve drive its post-injury 

regeneration. 
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 As stated earlier, our experiments show a significant influx of immune cells including 

granulocytes, monocyte/macrophages, and dendritic cells into the sciatic nerve following crush 

injury. However, immune infiltration into the DRG was shown to be quite minimal. Via flow 

cytometry, there are very modest increases in monocyte/macrophages and dendritic cells in the 

DRG. There is an increase in CD11b and Iba1 protein following sciatic nerve crush, though this 

could be from up-regulation of DRG-resident immune cells which are known to upregulate the 

protein following activation (Donninelli et al., 2020; Pei et al., 2019). Increases observed in Iba1 

and F4/80 immunoreactivity could also be due to local proliferation of DRG-resident 

macrophages. Further, with our parabiont paradigm composed of a tdTom- mouse and tdTom+ 

mouse, we found very modest numbers of tdTom+ cells in the DRGs of tdTom- mice after nerve 

crush, suggesting minimal amounts of immune infiltration from circulation. Contrastingly within 

this same paradigm, we show the injury site and distal stump of the sciatic nerve harbor significant 

immune infiltrates. We did however find significant morphological changes of DRG macrophages 

following injury, which by immunofluorescence alone can appear to indicate increased numbers 

of infiltrating macrophages. An additional intriguing difference observed between DRG and sciatic 

nerve is that of Ly6C expression. It is known that circulating monocytes express high levels of 

Ly6C while differentiated macrophages are often Ly6C- (Epelman et al., 2014; Kimball et al., 

2018). The naïve nerve is composed of predominately Ly6C- nerve-resident macrophages, but 

following crush injury we found the sciatic nerve has an influx of Ly6Chi monocytes 1dpi that 

differentiate into Ly6C- macrophages over the course of several days. Contrastingly in the DRG 

following crush injury, there is an increase in Ly6C- macrophages while numbers of potential 

infiltrating Ly6Chi monocytes remain relatively low. Overall, our evidence suggests that 

infiltration of immune cells in the sciatic nerve rather than that of the DRG play a larger role in 

the degenerative and regenerative response to injury. 

 While we show there is only a small contribution of circulating immune cells to DRG 

inflammation, we also demonstrate the presence of diverse transcriptional changes. Through DRG 

bulk RNA-seq we found upregulation of a previously identified module of gene expression 

networks following injury (Chandran et al., 2016) composed of many regeneration-associated 

genes like Jun, Stat3, and Atf3. Our analysis also identified a turquoise module that progressively 

increased each day after injury. Gene ontology analysis showed a role for immune cell activation 

and regulation with inflammatory factors like IFNγ and TNFα as well as pro-resolution factors like 
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IL-10 and IL-4. Importantly increased expression of these modules may originate from DRG-

resident immune cells or non-immune cells including the DRGs themselves or surrounding support 

cells. Our transcriptional analysis also showed low expression levels of DRG GM-CSF and CCL2 

receptors Csf2r, and Ccr2. Signaling through these receptors promotes monocyte migration and 

macrophage polarization, further suggesting a less involved role for infiltrating monocytes in the 

DRG. Finally, data collected from Csf2 (GM-CSF) knock-out mice in our conditioning-lesion 

paradigm showed that signaling through CSF2R is important for the transition of inflammatory 

Ly6Chi monocytes to pro-resolution Ly6C- macrophages in the sciatic nerve. Impedance of this 

transition negated the effects of conditioning-lesion-induced dorsal column axon regeneration. Our 

Csf2 knock-out in vitro neurite outgrowth experiment showed that the intrinsic growth programs 

of the DRGs was unaffected, suggesting the extrinsic pro-regenerative signaling from pro-

resolving Ly6C- macrophages is imperative for promoting repair. 

 

4.4 Evidence of Efferocytosis in the Injured Sciatic Nerve 
 As mentioned previously, the role of efferocytosis has been shown in several systems 

including atherosclerosis in blood vessels, immune cell development in the thymus and spleen, 

and across the whole body in systemic lupus erythematosus (Chapter I). Immune cell 

development is an example where efferocytosis maintains a constant state of balance and 

homeostasis, with defective immune cells (like B cells) becoming apoptotic to be cleared by 

patrolling efferocytes. Though in cases like atherosclerosis and lupus, efferocytosis has gone awry 

either due to efferocytes becoming overwhelmed by too many lipids or the overall efferocytic 

machinery breaking down, impeding efferocytes’ ability to maintain systemic tolerance. Very 

recently a handful of studies have investigated the contribution of this process in the central 

nervous system, primarily following stroke and ischemia (Damisah et al., 2020; Mazaheri et al., 

2014; Mike & Ferriero, 2021). However, evidence for the involvement of efferocytosis following 

peripheral nerve injury has never been published—until now. 

 We showed, as one would expect, there is an increase in the number of dying cells in the 

nerve following sciatic nerve crush. We also found that there is a significant increase in 

transcription of efferocytic machinery including specific bridging molecules and cognate 

engulfment receptors in the injury condition compared to the naïve. Many of these receptors are 

predominately expressed by the Mac4 population and significantly less so on others, suggesting 
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this is the macrophage subset that carries out efferocytosis in the injured nerve. Interestingly, we 

found immune cells tended to express lower transcript levels compared to other cells of classic 

efferocytic receptors Axl and MerTK, and rather preferred to employ LRP1, CD300, scavenger 

receptors, and opsonic receptors. This finding points to a possible preference for specific cells for 

certain receptors. As discussed earlier, efferocytic macrophages must also intake and digest a 

massive quantity of apoptotic cell components including carbohydrates, lipids, and cholesterol 

(Chapter I). Macrophages upregulate many export molecules like ABCA1 and ApoE to 

effectively process and export these molecules (Linton et al., 2019; Yvan-Charvet et al., 2010). 

Intriguingly, we found that our Mac4 population was the highest expresser for many of these 

transcripts. Further, some of the highest gene sets designating this population include general 

lysosome and phagosome machinery and promotion of an anti-inflammatory environment—a 

known role for efferocytic macrophage as discussed previously—solidifying the population’s role 

in carrying out efferocytosis.  

 While the transcriptional data collected from scRNA-seq strongly suggests the presence of 

this efferocytic macrophage population in the nerve, we wanted to demonstrate in vivo the activity 

of these cells. To accomplish this, we employed the surgical paradigm of parabiosis, a novel 

technique in this area of research. This allowed us to establish a shared circulatory system between 

two mice of different genotypes while tissue-resident immune cells remain unaffected. Here we 

found a significant population of CD45.1+ tdTom+ monocytes/macrophages in the CD45.1+ 

tdTom- mouse partner, suggesting circulating immune cells from the tdTom animal entered the 

injured sciatic nerve of this mouse and were efferocytosed by CD45.1+ tdTom- cells. While we 

cannot yet verify that these are the Mac4 population we see in the wild-type scRNA-seq data, this 

is likely the case. Most studies of efferocytosis have focused on the actions of macrophages, though 

we also found that dendritic cells participate in this process, though to a much lesser extent than 

monocytes/macrophages. Overall we believe the evidence presented here strongly supports the 

presence of a specific macrophage population following nerve crush that actively engages in 

efferocytosis and promotes and environment of immune resolution and neuroregeneration. 

 

4.5 Future Directions 
 While our description of the DRG and nerve transcriptional and inflammatory response to 

crush injury is extensive, there remain a wealth of additional questions to be answered in this 
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paradigm. One intriguing insight is the differential expression of various efferocytic receptors 

across the differenct cell types of the injured nerve. As mentioned previously, many efferocytic 

receptors that bind to apoptotic cell phosphatidylserine are also used in myelin debris clearance 

after injury (Chapter I). Our data show Schwann cell clusters 1 and 3 express different transcript 

levels of Axl and MerTK, two of the most classic efferocytic receptors. While most likely utilized 

in myelin phagocytosis, different Schwann cell populations may employ these receptors to 

contribute to efferocytosis, an area of interest lacking sufficient study. Surprisingly the Mac4 

population expressed relatively low levels of these receptors in favor of higher expression of 

transcripts for the receptors LRP1, CD300, CD36, and Fcgr1/3/4. Macrophages in other tissues 

strongly employ MER and Axl (Nagata, 2018), positing potential tissue-to-tissue variation in 

receptor expression. Further study of these differences is warranted to assess if this results in 

differential downstream signaling or efferocytosis efficacy.  

 An additional area to follow-up upon is deeper analysis of the immune response in our Csf2 

knock-out mice. Ly6Chi monocytes in these mice have a delayed or impaired transition toward 

pro-resolution Ly6C- macrophages and reduced conditioning-lesion-induced regeneration. I 

suspect the nerves and DRGs of these mice would also have prolonged inflammatory and reduced 

pro-regenerative signaling following crush. This could be assessed by bulk nerve RNA-seq and/or 

analysis of released cytokines through ELISA or western blotting. Further studies should also 

assess which of the five macrophage populations identified by scRNA-seq in wild-type mice are 

reduced or lacking in Csf2-/- mice. As the nerve likely remains in a prolonged inflammatory state, 

I would posit a reduction in the efferocytic Mac4 population that promotes inflammation resolution 

through efferocytosis. An additional future direction would be to embrace recent advances in 

sequencing technology to perform special transcriptomics on the injured nerve. While our 

separation of the nerve segments proved effective, this technique would allow for a unique 

combination of visual, special, and transcriptomic information. Further, if this technique could be 

combined with expansion microscopy to expand the nerve within a polymer matrix, it could offer 

an unparalleled and extremely high-resolution look at the cellular and molecular events following 

peripheral nerve injury. 

 One of the most exciting avenues for future inquiry is the manipulation of efferocytosis 

following injury. To further verify the role of efferocytosis in promoting immune resolution and 

nerve regeneration one could impair efferocytic machinery following crush injury and assess the 
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resulting inflammatory milieu and regeneration. As mentioned earlier, while it may seem there is 

significant redundancy in efferocytic ligands and receptors, the deletion of a single receptor in 

many cases is sufficient to cause break-down in the efferocytic process (Doran et al., 2020). In the 

case of the sciatic nerve, as the Mac4 population preferentially expresses LRP1, Trem2, and 

CD300, one could conditionally ablate one or multiple of these receptors in macrophages and 

assess accumulation of apoptotic cells, prolonging of injury-induced inflammation, and axon 

regeneration. Interestingly, thinking about common methods used for macrophage depletion like 

clodronate liposomes, these techniques generally ablate nearly all macrophage populations. With 

our data showing the existence of five different macrophage populations with such diverse 

transcriptomic profiles, one wonders the many different functions of each of these macrophages 

that are missing upon their depletion. One is not only ablating pro-inflammatory macrophages but 

also those that specifically aid in Wallerian degeneration (Mac2/3) as well as efferocytic 

populations (Mac4). While indeed some macrophage populations can be harmful to regeneration, 

it would be ideal to have the capability to alter each of these populations individually in order to 

reduce unwanted damaging signals while reinforcing those that are pro-regenerative. To our 

knowledge this technology does not exist, but with techniques of the future this may become a 

reality. On the opposing side of ablation, and of even more interest for therapeutic potential, would 

be to drive efferocytosis to promote resolution and regeneration more effectively. Several groups 

have utilized this technique, primarily to promote resolution in chronic inflammatory states like 

diabetes, arthritis, and GvHD, some in human clinical trisl (Bonnefoy et al., 2016; Mevorach et 

al., 2014; Xia, Chang-Qing, 2007). In the context of the sciatic nerve, apoptotic cells could be 

injected either locally or systemically to kick-start resolution and moderate harmful inflammation 

following injury. 

  

4.6 Concluding Remarks 
 Billions of cells die in the body every day, hundreds of millions per second. Though the 

astounding frequency of this process progresses with us remaining unawares, thanks to the 

remarkable efficiency of the efferocytic process. Great strides in understanding this phenomenon 

have been made over the last several decades, though the role of efferocytosis in the nervous 

system is only recently coming to light and many unanswered questions remain. The work herein 

contributes significantly to the field by being the first to show evidence of this process in an injured 
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peripheral nerve. We also provide one of the most comprehensive and in-depth analyses of the 

multicellular complexity of the injury response by employing multiple sequencing techniques, 

flow cytometry, protein analysis, immunofluorescent imaging, in vitro cultures, and novel surgical 

paradigms. Additional studies are necessary to ascertain the specific molecular machinery at play 

and therapeutic potential of peripheral nerve efferocytosis. Improved understanding of these 

mechanisms will help identify new therapies for the many patients afflicted with nervous system 

disorders including chronic neuropathic pain, diabetic and chemotherapy-induced neuropathy, 

Guillain-Barré syndrome, and others. 
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