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DEDICATION 

 

 And then in the end, it’s family and friends. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 iii 

 

 

 

ACKNOWLEDGEMENTS 

 

I would like to thank Carolyn Yoon for supporting and believing in me from the day that 

my application arrived at Michigan, for allowing me to take risks, and for giving me the platform 

and resources needed to trek through the unknowns of my doctoral journey. You have taught me 

to keep my eye on the big picture, and the value of perseverance in research endeavors.  

I also want to thank Vinod Venkatraman, for your continued research support and 

valuable feedback that has helped shape my dissertation. Vinod’s support, along with help from 

his team at Temple University, namely, Nicole Henninger and Liz Beard, were invaluable to me, 

particularly when neuroimaging data collection was halted due to the pandemic. 

I am grateful to dissertation committee for the structure you brought to my dissertation, 

your valuable feedback, and your encouragement. Special thanks to Rick Bagozzi for always 

bestowing tidbits of wisdom and Fred Feinberg for your positivity and wit throughout the years. 

I have appreciated the kindness and support from all of the Faculty throughout my time at Ross. 

Thank you to Rajeev Batra for always keeping me sharp and on my toes. Thank you to Scott 

Rick for letting me explore wild research ideas and always sharing a laugh. I would also like to 

thank the Natural Sciences and Engineering Research Council of Canada and the Social Science 

and Humanities Council of Canada for continually supporting me during my academic career. 

I am also grateful for my grad school colleagues and friends at UM. At times, a PhD can 

be a rather isolating experience; it was always helpful knowing there were others in the same 



 

 iv 

boat and having good people close by to talk to. Thank you, especially, to Giacomo, Tim, 

Longxiu, Dana, George, Hedieh, Gwen, Prashant, Ye Fan, Petra, Kate, Rufina, Ada, Brian, Pat, 

Blake, Guy, Dave, David, Diane, Joey, and Arlene for your comradery, mentorship, and 

friendship. To the many friends that I have made in Ann Arbor, thank you for the escape from 

stress and worries, and for listening to me grumble.  

To my Canadian friends who have visited me in Ann Arbor for countless football games, 

rounds of golf, river rides, and nights at 8 Ball, thank you for lifting my spirits by bringing a part 

of home. Mid, Pete, Trav, Wyatt, Evan, Paul, Tucker, Mike, Russ… keep on given’er and 

livin’er! 

Most importantly, I want to thank my family. Dad, thank you for your patience as I 

navigated my PhD and for your constant and thoughtful advice. I’ve admired your work as a 

professor, and you have inspired my path immensely. Mom, thank you for your encouragement 

and understanding. Seeing your commitment to teaching has made me a better student and 

teacher, and helped me throughout my work and service in the program.  

Finally, thank you to my one and only partner, Parisa. There are no words that can 

describe the gratitude I have for your presence in my life. 

 

 

 

 

 

 

 



 

 v 

 

 

 

TABLE OF CONTENTS 

 

DEDICATION  ............................................................................................................................  ii 

 

ACKNOWLEDGEMENTS  .......................................................................................................  iii 

 

LIST OF FIGURES  ..................................................................................................................  vii 

 

LIST OF TABLES  ......................................................................................................................  x 

 

ABSTRACT  .............................................................................................................................  xiii 

 

CHAPTER I Introduction  ...........................................................................................................  1 

 

CHAPTER II Neuroforecasting Aggregate Choice in Online Dating: Forecasting Aggregate 

Choices From Small Samples Using Neural and Behavioral Measures  .....................................  3 

 

Methods ...........................................................................................................................  9 

Dating Profile Stimuli Generation  ......................................................................  9 

Task  ...................................................................................................................  11 

Samples  .............................................................................................................  12 

In-lab (Behavioral) Sample  ...................................................................  12 

fMRI Sample  .........................................................................................  12 

Simulated Market-level Sample  ............................................................  13 

Classification Analysis  ......................................................................................  14 

fMRI Acquisition and Data Analysis  ................................................................  15 

Preprocessing Pipeline  ..........................................................................  15 

Region of Interest Extraction  ................................................................  17 

Results  ...........................................................................................................................  17 

Market-level Descriptive Statistics and Modeling  ............................................  17 

Prediction Individual Choice  ............................................................................  19 

Behavioral Correlates of Individual Online Dating Choices  ................  19 

Neural Correlates of Individual Online Dating Choices  .......................  20 

Regression Analyses of Individual Dating Profile Decisions  ...............  20 

Whole Brain and ROI Predictors of Individual Dating Profile Liking  .  22 

Classification of Individual Dating Profile Liking  ...............................  22 

Forecasting Aggregate Choice  ..........................................................................  23 

Behavioral Correlates of Aggregate Online Dating Choices  ................  23 



 

 vi 

Neural Correlates of Aggregate Online Dating Choices  .......................  24 

Regression Analyses of Aggregate Dating Profile Choices  .................  25 

Classification of Aggregate Online Dating Outcomes  ..........................  27 

Discussion  .....................................................................................................................  28 

Hypothesis Testing  ............................................................................................  30 

Forecasting Aggregate Online Dating Outcomes  .............................................  31 

Predicting Individual Online Dating Outcomes  ................................................  32 

Behavioral Variables as Proxies for Neural Processes  .....................................  34 

Conclusion  ....................................................................................................................  35 

References  .....................................................................................................................  37 

Figures ...........................................................................................................................  42 

Tables  ............................................................................................................................  49 

 

CHAPTER III Gene-Level Approaches to Genome-Wide Association: Developing Python-Based 

Tools for Gene-Level Association Testing  ...............................................................................  66 

 

Python Tools and Statistical Approach  .........................................................................  71 

Empirical Demonstration and Testing  ..........................................................................  74 

Dataset  ...............................................................................................................  74 

Variable Selection/ Phenotypes of Interest  .......................................................  75 

Gene-level Association Descriptive Statistics and Comparisons  .....................  76 

BMI  .......................................................................................................  76 

CESD  ....................................................................................................  77 

EDYRS  .................................................................................................  77 

Discussion  .....................................................................................................................  77 

Limitations and Future Directions  ....................................................................  79 

References  .....................................................................................................................  81 

Figures ...........................................................................................................................  84 

  



 

 vii 

 

 

 

LIST OF FIGURES 

 

Figure 2.1. Three example online dating profile stimuli ............................................................. 42  

Figure 2.2. Task design and timing of stimuli presentation inside of the fMRI scanner ............ 43  

Figure 2.3. Bar graphs illustrating descriptive statistics of interest for each dependent variable in 

the simulated market sample ............................................................................................ 44  

Figure 2.4. Brain activity in the NAcc when contrasting liked minus passed dating 

profiles ............................................................................................................................. 45   

Figure 2.5. Brain activity in the vmPFC when contrasting liked minus passed dating 

profiles ............................................................................................................................. 46   

Figure 2.6. Mean NAcc BOLD activity brain activity time course following stimuli presentation 

onset for online dating profiles that were liked versus those that were 

passed ............................................................................................................................... 47   

Figure 2.7. Mean vmPFC BOLD activity brain activity time course following stimuli 

presentation onset for online dating profiles that were liked versus those that were 

passed ............................................................................................................................... 48   

Figure 3.1. Manhattan plot for SNP associations with BMI resulting from GWAS using HRS 

data ................................................................................................................................... 84   

Figure 3.2. Manhattan plot for gene associations with BMI resulting from gene-level analysis 



 

 viii 

using all SNPs within each gene observed in the HRS data ............................................ 85   

Figure 3.3. Manhattan plot for gene-level associations with BMI resulting from PCA analysis 

using SNPs within each gene observed in the HRS data ................................................. 86   

Figure 3.4. Manhattan plot for gene-level associations with BMI resulting from factor analysis 

using SNPs within each gene observed in the HRS data …………………..................... 87    

Figure 3.5. QQ plots showing genomic inflation for genetic associations with BMI using various 

association methods using data from the HRS. ............................................................... 88    

Figure 3.6. Manhattan plot for SNP associations with CESD resulting from GWAS using HRS 

data ................................................................................................................................... 89    

Figure 3.7. Manhattan plot for gene associations with CESD resulting from gene-level analysis 

using all SNPs within each gene observed in the HRS data ............................................ 90    

Figure 3.8. Manhattan plot for gene-level associations with CESD resulting from PCA analysis 

using SNPs within each gene observed in the HRS data ................................................. 91    

Figure 3.9. Manhattan plot for gene-level associations with CESD resulting from factor analysis 

using SNPs within each gene observed in the HRS data …………………..................... 92    

Figure 3.10. QQ plots showing genomic inflation for genetic associations with CESD using 

various association methods using data from the HRS .................................................... 93    

Figure 3.11. Manhattan plot for SNP associations with EDYRS resulting from GWAS using 

HRS data .......................................................................................................................... 94    

Figure 3.12. Manhattan plot for gene associations with EDYRS resulting from gene-level 

analysis using all SNPs within each gene observed in the HRS data. ............................. 95    

Figure 3.13. Manhattan plot for gene-level associations with EDYRS resulting from PCA 



 

 ix 

analysis using SNPs within each gene observed in the HRS data ................................... 96    

Figure 3.14. Manhattan plot for gene-level associations with EDYRS resulting from factor 

analysis using SNPs within each gene observed in the HRS data ................................... 97  

Figure 3.15. QQ plots showing genomic inflation for genetic associations with EDYRS using 

various association methods using data from the HRS .................................................... 98    

 

 

  



 

 x 

 

 

 

LIST OF TABLES 

 

Table 2.1. Logistic and OLS regression results showing the effect of profile design factorial 

elements on overall choice and choice decomposition variables in the simulated market 

data ................................................................................................................................... 49  

Table 2.2. Logistic regression results with robustness checks, showing the effect of choice 

decomposition variables on choice in the simulated market data .................................... 50  

Table 2.3. Individual-level correlations between choice decomposition variables and factorial 

design elements in the in-lab sample ............................................................................... 51   

Table 2.4. Individual-level correlations between choice decomposition variables and factorial 

design elements in the fMRI sample ……….................................................................... 52   

Table 2.5. Individual-level correlations between choice decomposition variables and factorial 

design elements in the simulated market sample ............................................................. 53   

Table 2.6. In-lab sample individual level logistic regression results for binary choice 

regressed on choice decomposition variables (1) and profile factorial elements (2), as 

separately and combined (3) ............................................................................................ 54   

Table 2.7. Individual-level logistic regression results showing the effect of vmPFC and 

NAcc on binary choice in the fMRI sample..................................................................... 55  

Table 2.8. Individual-level OLS regression results showing the effect of NAcc and  



 

 xi 

vmPFC activity on likeback ratings (from 1 to 7, with 7 being most likeable) in the fMRI 

sample ............................................................................................................................. 56   

Table 2.9. Comparing prediction accuracy between logistic regression models at the individual- 

level (binary choice) and OLS regression models at the aggregate-level (choice  

likelihood) using choice decomposition variables separately and combined for training in  

the in-lab sample .............................................................................................................. 57   

Table 2.10. Comparing choice prediction accuracy between logistic regression models at the 

individual-level within the fMRI sample and in the simulated market data using choice 

decomposition variables and neural ROI separately and combined for training ............. 58   

Table 2.11. Aggregate-level correlations between choice decomposition variables and factorial 

design elements in the in-lab sample ............................................................................... 59   

Table 2.12. Aggregate-level correlations between choice decomposition variables and factorial 

design elements in the fMRI sample ................................................................................ 60   

Table 2.13. Aggregate-level correlations between choice decomposition variables and factorial  

design elements in the simulated market sample ............................................................. 61   

Table 2.14. In-lab sample OLS regression results showing the effect of aggregate choice  

decomposition variables on in-lab sample aggregate choice likelihood and simulated 

market level aggregate choice likelihood (36 profiles) .................................................... 62   

Table 2.15. OLS regression results showing the effect of aggregate fMRI sample choice 

decomposition variables and neural ROIs on fMRI sample aggregate choice likelihood 

and simulated market level aggregate choice likelihood (36 profiles) ............................ 63   

Table 2.16. OLS regression results showing the effect of aggregate fMRI sample choice  



 

 xii 

decomposition variables and neural ROIs on fMRI sample aggregate likeback ratings and  

simulated market level aggregate likeback ratings (36 profiles) ......................... 64   

Table 2.17. Comparing choice prediction accuracy between OLS regression models at the 

aggregate-level (like rate) within the fMRI sample and in the in-lab sample and simulated 

market data using fMRI sample choice decomposition variables and neural ROI 

separately and combined for training  .............................................................................. 65   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 xiii 

 

 

 

ABSTRACT 

 

The broad focus of this dissertation is on consumer neuroscience, aiming to understand 

how biological factors, such as neural activity, genetic makeup, and other physiological factors, 

influence consumers’ thoughts, attitudes, and decisions. Specifically, this dissertation consists of 

two essays spanning different biological influences on consumer behavior. In the first essay of 

my dissertation, I aim to investigate how and under what circumstances neural activity can be 

used to forecast choices. I provide support for the affective-integration-motivation framework as 

a foundation for understanding neuroforecasting, and neuroforecast aggregate online dating 

choices using affective neuroactivity data from the nucleus accumbens. In my second 

dissertation essay, I discuss the development of a set of Python based tools for gene-level 

genome-wide association methodology, and demonstrate these tools using single nucleotide 

polymorph genetic data from ~20,000 individuals from the University of Michigan’s Health and 

Retirement Study. The public availability of these tools will allow researchers to more easily 

conduct gene-level association methods, empirically test the statistical properties of gene-level 

approaches, and further develop gene-level association methodologies.  
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CHAPTER I 

Introduction 

 

 I am often asked by friends, colleagues, and even strangers, “what does biology have to 

do with marketing!?”. The evolutionary biologist Theodosius Dobzhansky wrote: “nothing in 

biology makes sense except in the light of evolution”. Well, despite the orders of magnitude of 

difference in timescale and seemingly distal influences of biological influences on our everyday 

judgments and decisions, our non-human animal foundations do none-the-less influence every 

aspect of our day-to-day actions. By extension then, nothing in marketing makes sense except in 

the light of our biology. This is how I approach understanding consumer behavior in the 

marketplace, and this is why I have chosen to study consumers through a biological level of 

analysis, using tools and techniques from cognitive neuroscience and genomics.  

 What follows are two chapters describing the culmination of my research efforts 

conducted during my time at the Ross School of Business, University of Michigan, Ann Arbor. 

In the first chapter, I use neuroimaging to develop theory around the fascinating phenomenon of 

neuroforecasting. Here, by scanning the brain activity of a small group of individuals, I am able 

to effectively forecast aggregate outcomes for online dating profiles by using affective brain 

activity in the nucleus accumbens. After providing support for the affective-integration-

motivation framework as a foundation for understanding the usefulness of neuroforecasting, I 

argue that while neuroforecasting can be highly valuable in some contexts, my research findings 
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could provide a means for marketers to use insights from neuroforecasting to create behavioral 

variable proxies of neural processes, and use these proxies for making forecasts instead of 

needing to collect expensive neuroimaging data. Second, I discuss the development of a set of 

Python-based tools for genome-wide gene-level association. Marketers and economists have 

only recently garnered access to genetic datasets that may prove useful for understanding genetic 

influences on consumers in the marketplace. That said, with the rise of massive public (e.g., the 

UK BioBank) and private (e.g., 23andMe) genetic databases, we have much yet to discover 

about how our genetic makeup influences complex human behaviors. Here, making a 

methodological contribution, I describe how these Python tools can be used by researchers to 

facilitate genetic analysis at the fundamental level of genetic inheritance, the gene.    

I hope you enjoy the many pages that follow. And if you don’t, that’s okay too… 
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CHAPTER II 

Neuroforecasting Aggregate Choice in Online Dating: Forecasting Aggregate Choices 

From Small Samples Using Neural and Behavioral Measures 

 

The ability to predict the future behavior of individuals or future events (e.g., product success) is 

of extreme value to society. Although traditional models of choice prediction, which often use 

past behavior as the basis for prediction, such as revealed preferences (i.e., economic 

approaches) and behaviorism (i.e., psychological approaches), have proven useful, researchers 

have now begun to investigate the neural underpinnings of decision-making and choice, and 

explore the utility of using neural activity data in understanding, predicting, and forecasting 

choices. Indeed, neural data is evidenced to improve on behavioral forecasts of choice 

(Bernheim, 2008; Tusche et al., 2010), provides a biological foundation for understanding the 

judgments and decisions that underlay choices, and, more broadly, may shed light on why 

individuals make the choices that they do (Plassmann, Ambler, and Braeutigam, 2007). Further, 

neural data has proven useful (albeit, differentially) in choice prediction and forecasting both at 

the individual (Knutson et al., 2007) and aggregate levels (e.g., Tong et al., 2020).  

In the past, traditional economic (e.g., revealed preferences) and psychological theories 

(e.g., behaviorism) have consistently shown that past choices are the best indicator of future 

choices (Bernheim, 2008). Initial neuroimaging evidence suggests that neural activity data can 

complement past choice data and may provide unique insights into forecasts of future choices. 
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So called, ‘neuroforecasting’ is the use of brain activity from a sample group of individuals to 

forecast aggregate choices or preferences of a separate, independent group of individuals 

(Knutson & Genevsky, 2018). That said, neuroimaging data can be used to 1) predict individual 

choices, or 2) forecast aggregate choices. For definitional clarity, ‘predict’ will subsequently 

refer to individual-level choices, whereas ‘forecast’ will subsequently refer at the aggregate-

level. One of the key hopes and promises of neuroforecasting is that it will be able to reveal 

information about consumer preferences that cannot be obtained using conventional market 

research techniques (e.g., conjoint analysis). Such ‘hidden information’ may reveal individual’s 

true preferences, particularly in situations when individuals are constrained or cannot/do not 

want to reveal their true preferences. Additionally, such information revealed through 

neuroimaging may hold value for scaling to the aggregate. However, at this time, theory 

underlying how and when neuroforecasting works is in its infancy, and researchers are in the 

process of attempting to discover its usefulness under different contexts and conditions.  

Past research on the neural circuits underpinning anticipated gains and losses serves as a 

foundation for understanding decision-making and choice (Bechara et al., 1996; Bechara et al., 

1999; Kuhnen and Knutson, 2005). More specifically, Knutson et al. (2001) suggest that nucleus 

accumbens (NAcc) activation correlates with individual gain prediction, while ventromedial 

prefrontal cortex (vmPFC) activation correlates with gain prediction error. This is evidenced by 

the NAcc having been correlated with self-reported positive arousal, and the anticipation and 

outcome of potential financial gains being correlated with activity in the NAcc and vmPFC, 

respectively (Knutson et al., 2001). Anticipated losses, on the other hand, are believed to be 

driven by insula activity (Paulus and Stein, 2006). This is evidenced by insula activity having 

been correlated with self-reported negative arousal and observed in anticipation of physical pain 
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(Büchel and Dolan, 2000; Paulus et al., 2003). In the context of purchase decisions, Knutson et 

al. (2007) show that NAcc activity correlates with product preference (i.e., anticipated gain 

prediction), while excessive price correlates with insula activity and deactivation in the vmPFC 

(i.e., gain prediction error/anticipated loss). While such research provides a foundation for 

understanding the neural foundations of individual choice, research on neuroforecasting of 

aggregate choice is scant. In particular, it is unclear how useful neural regions associated with 

individual choice are for aggregate choice prediction. 

At present, a small number of studies have provided a proof of concept for 

neuroforecasting aggregate choice. In these experiments, a small group of participants (n = ~20-

40) are shown unfamiliar, novel, (often) real-world stimuli, and their neural activity data is used 

to forecast the real-world outcomes of the stimuli once the market has matured (several months 

or years later). Such neuroforecasts have been reported for music album sales (Berns & Moore, 

2012), call-back rates (Falk, Berkman, and Lieberman, 2012), various ad metrics (Venkatraman 

et al., 2015; Kühn, Strelow, and Gallinat, 2016), health communications (Falk et al., 2016), 

loan/funding appeals (Genevsky and Knutson, 2015; Genevsky, Yoon, and Knutson, 2017), and 

online attention markets such as Youtube.com (Tong et al., 2020). In nearly all of these studies, 

the NAcc and vmPFC (separately or together) contributed to aggregate choice prediction. 

However, exactly how these two brain areas contribute to aggregate choice prediction, their 

prediction weights, or the conditions in which each/either is effective, is not yet clear. 

Knutson and Genevsky (2018) propose that the affective-integration-motivation 

framework could provide a theoretical foundation for understanding the differences between 

neural mechanisms (and regions) most useful for predicting individual choices, and, importantly, 

how these choices may scale to aggregate choice forecasting. The goal of the present research is 
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to advance our understanding of decision-making and choice by attempting to forecast aggregate 

choices in an online dating context using neural activity data (i.e., neuroforecasting). In 

accordance with the affective-integration-motivation framework, we investigate the notion that 

affective neural components of individual choice may be most useful for aggregate forecasting, 

whereas informational/integrative neural components of individual choice will play an additional 

key role in understanding and predicting individual-level choices. Additionally, by mapping 

behavioral measures to AIM framework components, we attempt to illustrate the usefulness of 

neuroimaging data relative to behavioral measures within the context of AIM, choice prediction, 

and forecasting. 

 At first glance, and given past neuroimaging research on individual choice, 

neuroforecasting aggregate choice may seem relatively elementary; to forecast at the aggregate 

level, simply scale the neural components that have proven fruitful for individual-level choice 

prediction. However, it is not as simple to forecast aggregate choices in the future/out of sample 

as it may seem. Rather, it is not yet clear how individual-level choice prediction indicators scale 

to the aggregate when forecasting choices. Previous theorizing has given rise to a spectrum of 

theory on scaling to the aggregate. On one end of the spectrum, the no-scaling account proposes 

that individual-level choice data do not provide any useful information about aggregate market 

outcomes (Fama, 1970). On the other end of the spectrum, the total-scaling account proposes that 

given the right model of individual choice, one can simply scale this model to obtain accurate 

aggregate-level choice forecasts (Von Neumann & Morgenstern, 1944). Finally, partial scaling 

assumes that some aspects of individual choice may generalize to aggregate, market-level choice 

better than others. Based on the relatively small sample of research examples, neuroforecasting 
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of aggregate choice seems to be in accordance with a partial scaling account of forecasting 

aggregate choice (Knutson and Genevsky, 2018). 

Under partial scaling, Knutson & Genevsky (2018) propose that the affect-integration-

motivation (AIM) model (Samanez-Larkin & Knutson, 2014) could provide a useful framework 

for understanding which brain regions may forecast aggregate choice. Specifically, affective 

components of individual choice, captured by brain activity in the ventral striatum (namely, the 

NAcc) may be most useful for aggregate forecasting, whereas neural regions associated with 

integrating affective (and other) information into one’s individual goals and context, captured by 

brain activity in the vmPFC, may prove useful for prediction of individual choices (in addition to 

affective information). That said, disentangling the contribution of affective and informational 

components of stimuli, as applied to the decision-making process, requires that researchers have 

choice decomposition information at both the sample and market level. One of the key appeals of 

previous neuroforecasting studies has been their use of real-world market-level outcomes serving 

as a basis for prediction/ forecasting analyses, which makes them highly externally valid. 

However, given the use of real-world market level stimuli, obtaining individual level information 

deconstructing choices (i.e., choice decomposition variables), particularly at the market level 

(indeed, even at the sample level), has not been feasible. For example, researchers may observe 

whether a crowdfunding campaign was funded (which is based on an aggregation of individual 

donation choices) and use this variable as the aggregate market-level outcome to be forecast, but 

the crowdfunding outcome may be the only observed data point at the market level. Stated 

differently, in such a study the researchers likely do not observe the preferences of users who 

viewed the crowdfunding profiles and therefore cannot decompose the contribution of various 

stimuli components on choices, or how such preferences/choices scale to the aggregate outcome. 
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Such choice decomposition variables are necessary for disentangling the contribution of 

behavioral variables and neural areas (and their interaction) to overall choice prediction/ 

forecasting and are unobserved in previous neuroforecasting studies. For these reasons, in this 

research we have created a simulated market-level dataset, where both market-level choices and 

choice decomposition variables are observed in the context of online dating.  

Online dating profiles provide a suitable and interesting context for our research question 

for the following reasons: 1) online dating profiles consist of components that are both affective 

(primarily, a facial image) and informational (e.g., age, location, profile description), 2) mate 

selection/ preference is a fundamental, evolutionarily relevant behavior, and 3) online dating is a 

novel market for neuroforecasting.  

To test whether the AIM model is suitable for explaining the partial scaling account of 

neuroforecasting aggregate choice, in this study we have attempted to forecast the success of 

online dating profiles using independently sampled behavioral and neuroimaging data, and were 

guided by the following hypotheses: 

 

H1: Affective neural components, captured by activity in the NAcc, will be most 

highly correlated with perceived attractiveness and personality, and generalize 

more broadly across individuals than vmPFC activity, thus proving useful in 

forecasting aggregate out of sample choices. 

 

H2: Neural activity associated with integration, captured by activity in the 

vmPFC, will be most highly correlated with perceptions of career prospects and 

perceptions of being liked back by the individual in the profile, and, by 
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incorporating more individual-specific multidimensional considerations, will add 

value for predicting choices within sample and at the individual-level. 

Methods 

Dating Profile Stimuli Generation 

Using faces from the Chicago Face Database (CFD; Ma, Correll, & Wittenbrink, 2015), 

we created 36 standardized dating profiles (see Figure 2.1 for example profiles). Profiles were 

orthogonalized using a 3 x 2 x 2 x 3 factorial design with the following factors and levels: 

attractiveness (high, medium, low), age (19-23, 24-28), facial expression (neutral, smiling), and 

profile description (hobbies/likes, socioeconomic status/occupation, and personality traits). 

 To create standardized dating profiles, we first retained only Caucasian female faces that 

had both neutral and smiling facial images available in the CFD. The CFD contains metadata for 

all facial images; these data include summary information on perceptions of the facial images, as 

rated by an independent sample, with data ranging from average ratings of attractiveness to 

ratings of facial expressions (e.g., degree of sadness, anger, happiness, etc.). Selected facial 

images were restricted to those whose perceived age was between 18 and 28, and the CFD 

attractiveness ratings metadata was used to split faces by attractiveness for the factorial design. 

Additionally, attractiveness was controlled for between facial expression factor levels; mean 

attractiveness of the selected neutral (M = 4.3, SD = 0.15) and smiling (M = 4.0, SD = 0.41) faces 

did not differ significantly (t(34) = 1.61, p = .11). Perceived age of the individual across 

attractiveness factor levels was also controlled for; mean perceived age among the high 

attractiveness (M = 24.42, SD = 6.87), medium attractiveness (M = 24.81, SD = 1.88), and low 

attractiveness (M = 25.25, SD = 1.19) faces did not differ significantly (F(2, 33) = 0.57, p =  

0.57). Names on profiles were randomly selected, without replacement, from a list of the top 54 
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names from the birth year 1995 created using the ‘Popular Names by Birth Year’ feature on the 

USA Social Security website (Popular Baby Names, 2020). Age displayed on each profile was 

randomly determined within the high (24-28) and low (19-23) age ranges, based on the factorial 

design (e.g., if a profile is in the younger age category based on the factorial design, a number 

between 19 and 23 was randomly assigned to the profile). Location displayed on the profile 

(miles away from participant) was randomly determined between 1 and 50 miles. Profile 

description factor levels consisted of a list of 3 pieces of information drawn from different 

sources (based on the desired manipulation). For the hobbies/ likes factor level, which acts as the 

control profile description condition, the goal was to represent the idiosyncratic likes, interests, 

and hobbies often found in dating profile descriptions, which should not influence profile 

perceptions in any systematic way. These hobbies/ likes descriptions were created by randomly 

combining information from internet lists of the most popular musicians/ artists (e.g., Ariana 

Grande, Post Malone, Queen), foods (e.g., nachos, peanut butter, steak), and activities (e.g., 

talking to friends, basketball, picnics, etc.). For the socioeconomic status/occupation factor level, 

we combined two hobbies/ likes from the same lists as the hobbies/ likes profile description 

condition with a piece of information about the individual’s career path or prospects (e.g., 

Aspiring surgeon, Law student, Econ Major). Lists of high socioeconomic status/ high earning 

potential careers were generated from combined information from Georgetown University’s 

Economic Value of College Majors report (Carnevale, Cheah, & Hanson, 2015) and the U.S. 

Bureau of Labor Statistics list of highest paying occupations (Highest Paying Occupations, 

2020). For the personality factor level, we selected words from Chandler’s (2018) list of person 

descriptive words shown to increase likableness (e.g., honest, kind). To reduce demand artifacts 

resulting from participants making clear distinctions between profile description factor levels, 
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personality factor level profiles were randomly determined to display two or three personality 

words – in the case when two personality words were displayed, a hobby/ like word was 

randomly included to maintain consistency of three pieces of information displayed in all profile 

descriptions, regardless of factor level. Two additional profiles were created as attention checks, 

using faces that were not part of the main profile set, with information on how participants 

should respond presented in the description area (e.g., ‘like this profile’). All profiles were 

generated in R. 

Task 

In all versions of the task, participants were instructed that they would “make judgments 

about online dating profiles” and were given the opportunity to view two supplementary profiles 

(not included as part of the main trials) to become comfortable with the protocol. During the 

task, participants were shown all 36 profiles and 2 attention checks (within-subjects), in random 

order, and made a binary ‘like’ or ‘pass’ choice for each profile, followed by rating each profile 

on four choice decomposition items using a 7-point Likert scale (note: for all analyses, choice 

decomposition variable data were ipsatized). For each profile, participants made a binary ‘like’ 

or ‘pass’ choice while viewing the profile. The profile then disappeared, and participants 

completed the four choice decomposition items, which read: “This individual…” 1) "is 

physically attractive”, 2) “has good career prospects”, 3) “has a likable personality”, and 4) “is 

likely to like me back and respond to my messages”. After completing the binary like/pass 

portion of the task, participants also completed a supplementary rank order task, in which they 

were asked to rank order their preferences for seven randomly selected profiles. For brevity, 

analyses from the rank order task are not presented or discussed in this chapter. Lastly, 

participants completed two 7-point Likert items on perceptions of their own attractiveness: “I am 
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physically attractive” and “Other people find me physically attractive”, which were averaged to 

create a self-rated attractiveness variable. 

Participants completed informed consent prior to the task, were debriefed following the 

task, and all procedures were approved by the University of Michigan’s Health Sciences and 

Behavioral Sciences institutional review board and the Temple University Ethics and 

Compliance Office. 

Samples 

Participant samples consisted of heterosexual cisgender Caucasian males between the 

ages of 18 and 35 who were not in a committed relationship at the time of the task. Although 

racial effects in mate preferences are interesting in their own right, previous research has 

consistently documented racial homophily (i.e., strong same race preferences) in human 

sexual/romantic relationships (McClintock et al., 2010; Fisman et al., 2008). Further, the 

Chicago Face Database has more facial expression images available for Caucasians and African-

Americans than other races. Given that the present research question does not involve racial 

effects of mate preference, and previous research has shown that race can dramatically influence 

mate preferences, we chose to restrict the participant sample and profiles to the most readily 

accessible race and sexual orientation in the populations that we would be recruiting from.  

In-lab (Behavioral) Sample. For independent behavioral modeling, an in-lab sample (N 

= 45; M = 20.18, SD = 1.35) was collected at the University of Michigan, Ann Arbor, and 

Temple University using the fMRI scanner-ready E-Prime 3.0 (Psychology Software Tools, Inc., 

2020) version of the task.  

fMRI Sample. The neuroimaging sample consisted of 29 healthy right-handed 

participants (M= 26.41, SD = 4.35), who completed a scanner-compatible version of the task in 
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E-Prime 3.0 at the Temple University Brain Research & Imaging Center (TUBRIC). During the 

scanner version of the task, profiles were presented as follows: a 2, 4, or 6 second presentation of 

a fixation cross jitter (randomly selected for each trial), followed by a 2 second viewing of the 

left side of the profile only (which shows the facial image), followed by 4 seconds of viewing the 

entire profile (including the facial image and profile description). After this 6 second trial/ 

viewing period, ‘Like’ and ‘Pass’ options appeared on the screen and participants had 4 seconds 

to make a response. The ‘Like’ and ‘Pass’ buttons appeared in green and red boxes, respectively, 

and left/ right orientation was randomized between trials. Upon making a selection, participants 

immediately received confirmation of their selection (e.g., ‘Like’) via a 1 second feedback 

screen, and any additional time between the response and timed response period (4 seconds) was 

added to the intertrial interval jitter fixation period (see Figure 2.2 for a visual representation of 

the fMRI scanner trial time course). To reduce participant time in the scanner, only binary like/ 

pass judgements were conducted in the scanner. Participants in the fMRI sample completed 

profile judgements of the four choice decomposition variables and the ranking task in a 

behavioral lab space immediately following the neuroimaging session (outside of the scanner). 

Simulated Market-level Sample. Market-level data was collected using a Qualtrics 

version of the task via two online participant panels (ROI Rocket and Cint; N = 654; M = 26.62, 

SD = 5.22). Given online data collection quality concerns, only data from participant who passed 

all attention checks was included in the analysis. To determine the sample size necessary to 

adequately power the simulated market-level dataset, we ran a 41-participant pilot test and used 

data from the pilot to conduct a-priori power calculations, which suggested that a sample size of 

greater than 385 was necessary to achieve statistical power greater than 99% for the task. Post-
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hoc power analysis of the market-level sample revealed that a power >97% within the market 

level sample was achieved. 

A principal components analysis was performed on the four choice decomposition 

variables (attractiveness, career prospects, likeable personality, and likelihood of likeback) 

confirming that each choice decomposition variable was capturing unique information about the 

stimuli (>10% unique variance per item). 

Classification Analysis 

 For classification analysis, data were randomly divided into training (70%) and testing 

(30%) sets, at the profile level. All classification analysis was conducted using the caret package 

in R (Kuhn, 2008) using logistic regression models for individual choice and ordinary least 

squares (OLS) regression at the aggregate level of analysis. Model selection and parameter 

optimization were conducted using the in-lab sample and fMRI sample training sets (i.e., models 

were not trained using any simulated market level data, since these data would not be observed 

to a marketer in a real-world setting), using 10-fold cross-validation. Model accuracy was tested 

on the remaining 30% of independent test set profiles, such that model accuracy always 

represents prediction/forecasts on profiles unobserved in the training set. All 

prediction/forecasting accuracy results represent the average of 50 iterations for each 

classification analysis. 

 At the individual level, prediction accuracy represents the percentage of correct like 

versus pass binary choices. Therefore, chance prediction at the individual level is 50% for the 

binary choice task. At the aggregate level, outcome variables are the averaged across participants 

at the profile level, and thus forecasting accuracy represents the percentage of forecasts that 

estimate the choice likelihood (the probability that a given profile will be liked) for a profile 
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within a +/- 5% interval, as choice likelihood varies continuously from 0 (nobody ‘likes the 

profile) to 1 (all participants ‘like’ the profile). Therefore, chance forecasting accuracy at the 

aggregate level for the binary choice task is 10%.  

fMRI Acquisition and Data Analysis 

Neuroimaging data was acquired using a Siemens Magnetom Prisma 3T MRI system 

with a 64-channel head coil at the Temple University Brain Research & Imaging Center 

(TUBRIC). First, we acquired high resolution whole-brain T1-weighted anatomical scans 

(repetition time (TR): 2400ms; echo time (TE): 2.28ms; inversion time (TI): 1150ms; acquisition 

matrix: 256 x 256; flip angle: 8 degrees). During the task, functional images were acquired using 

a T2*-weighted gradient-echo echo-planar imaging (EPI) sequence sensitive to blood-

oxygenation-level dependent (BOLD) contrast. Functional volumes contained 36 slices parallel 

to the axial plane connecting the anterior and posterior commissures (TR: 2080ms; TE: 28ms; 

matrix: 68 x 68; flip angle: 80 degrees). To make responses during the task, participants used 

their right hand to press buttons on a five-button Celeritas Button Response Unit (Psychology 

Software Tools, Inc., 2020). Imaging data were organized in accordance with the brain imaging 

data structure (BIDS) standard (Gorgolewski, 2016). Neuroimaging quality control checks were 

conducted via MRIQC (Esteban et al., 2017) and primary imaging analysis was conducted using 

Statistical Parametric Mapping in MATLAB (SPM, 2021; MathWorks, 2021).  

Preprocessing Pipeline. Neuroimaging analyses in this chapter come from preprocessing 

performed using FMRIPREP (Esteban et al., 2020), a Nipype (Gorgolewski et al., 2011) based 

tool. Each T1w (T1-weighted) volume was corrected for INU (intensity non-uniformity) using 

N4BiasFieldCorrection v2.1.0 (Tustison et al., 2010) and skull-stripped using 

antsBrainExtraction.sh v2.1.0 (using the OASIS template). Spatial normalization to the ICBM 
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152 Nonlinear Asymmetrical template version 2009c (Fonov et al., 2009) was performed through 

nonlinear registration with the antsRegistration tool of ANTs v2.1.0 (Jenkinson et al., 2002) 

using brain-extracted versions of both T1w volume and template. Brain tissue segmentation of 

cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was performed on the 

brain-extracted T1w using fast (Zhang, Brady, & Smith, 2001; Jenkinson et al., 2012; FSL 

v5.0.9). 

Functional data were slice time corrected using 3dTshift from AFNI v16.2.07 (Cox, 

1996) and motion corrected using mcflirt (FSL v5.0.9). This was followed by co-registration to 

the corresponding T1w using boundary-based registration (Greve & Fischl, 2009) with six 

degrees of freedom, using flirt (FSL). Motion correcting transformations, BOLD-to-T1w 

transformation and T1w-to-template (MNI) warp were concatenated and applied in a single step 

using antsApplyTransforms (ANTs v2.1.0) using Lanczos interpolation. 

Physiological noise regressors were extracted applying CompCor (Behzadi et al., 2007). 

Principal components were estimated for the two CompCor variants: temporal (tCompCor) and 

anatomical (aCompCor). A mask to exclude signal with cortical origin was obtained by eroding 

the brain mask, ensuring it only contained subcortical structures. Six tCompCor components 

were then calculated including only the top 5% variable voxels within that subcortical mask. For 

aCompCor, six components were calculated within the intersection of the subcortical mask and 

the union of CSF and WM masks calculated in T1w space, after their projection to the native 

space of each functional run. Frame-wise displacement (Power et al., 2013) was calculated for 

each functional run using the implementation of Nipype. 
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Many internal operations of FMRIPREP use Nilearn (Abraham et al., 2014), principally 

within the BOLD-processing workflow. Finally, imaging data was smoothed in SPM using a 

4mm smoothing kernel. 

Region of Interest Extraction. Blood-oxygen-level-dependent signal (Ogawa et al., 

1990) was extracted from regions of interest (ROIs) using the REX (NITRC: REX, 2021) and 

MarsBaR (Brett et al., 2002) SPM toolboxes for regionally targeted analysis in the NAcc and 

vmPFC. Within MATLAB, raw BOLD activity was extracted from functional images using REX 

with weighted means, scaled within each ROI. For BOLD activity extracted using MarsBaR, 

data were extracted from first level individual stimuli SPM contrasts, generated from models that 

included a regressor for each trial (4s duration), hand motion, 8 standard motion regressors 

("trans_x", "trans_y", "trans_z", "rot_x", "rot_y", "rot_z", "csf", "white_matter"), and scaling the 

grand mean to 0. Additionally, for BOLD extraction in the vmPFC, 2s was added to trial onset 

times since the first 2s in the trial presentation sequence consisted of only face viewing. Montreal 

Neurological Institute (MNI) coordinates for ROI were converted from Talairach coordinates in 

Genevsky, Yoon, and Knutson (2017) using BioImage Suite (Yale BioImage Suite, 2020): NAcc 

[-10, 14, -6] (left) and [11, 15, -6] (right) and vmPFC [-4, 50, 1] (left) and [5, 50, 1] (right). 

Results 

Market-level Descriptive Statistics and Modeling 

To validate that elements of the factorial design were influencing participants’ 

judgements and decisions about profiles as expected, we first present individual level trends from 

the fully powered market sample. Table 2.1 shows regression results for binary choice, and each 

choice decomposition variable, using only factorial elements as predictors. Overall, factorial 

elements were highly predictive of both choice and all choice decomposition variables, with 
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estimates directionally consistent with expectations based on the factorial design: factorial 

attractiveness bins should increase ratings of attractiveness, smiling facial images should 

increase personality and like back ratings, SES/ occupation indicators should increase ratings of 

career prospects, etc. Factorial design attractiveness levels were consistent with participants’ 

attractiveness ratings of profiles, with the highest attractiveness bin factorial element having the 

highest ratings of attractiveness (M = 5.09, SD = 1.46), followed by profiles in the medium 

attractiveness bin (M = 4.31, SD = 1.65) and low attractiveness bin (M = 3.88, SD = 1.62; F(2, 

23541) = 1172, p < 0.001). Factorial design based SES/occupation indicators in a profile 

description led to participants rating the profiles as having better career prospects (M = 5.30, SD 

= 1.48), than profiles with positive personality indicators in the profile description (M = 4.41, SD 

= 1.27), or control profiles with hobbies listed in the profiles description (M = 4.20, SD = 1.24, 

F(2, 23541) = 1506, p < 0.001). Participants rated profiles with a smiling face higher on positive 

personality characteristics (M = 4.73, SD = 1.43) than profiles with a neutral face (M = 4.52, SD 

=1.43; t(23542) = -11.49, p < 0.001) and participants rated profiles with a smiling face as more 

likely that the individual in the profile will be more willing to ‘like’ them back (M = 4.31, SD = 

1.46) than profiles with a neutral face (M = 4.08, SD = 1.45; t(23542) = -12.01, p < 0.001). 

Figure 2.3 illustrates key trends in the market data. 

 Additionally, since a primary goal of this research was to break down choice prediction 

using choice decomposition variables, a series of robustness checks were run to ensure that each 

of the choice decomposition variables uniquely contributes to choice. Table 2.2 contains logistic 

regressions with binary choice regressed on choice decomposition variables and factorial 

elements. Within the simulated market sample, estimates for choice decomposition variables are 

robust across models that include or exclude: 1) factorial design elements, 2) participant-level 
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age and self-rated attractiveness control variables, and 3) participant and profile level random 

effects. Importantly, all of the choice decomposition variables had a significant positive 

contribution on binary choice in the fully powered simulated market level sample, with 

attractiveness having the largest effect (attractiveness: z = 51.62, p < 0.001; career: z = 9.68, p < 

0.001, personality: z = 25.92, p < 0.001, likeback: z = 19.55, p < 0.001). 

Predicting Individual Choice 

Behavioral Correlates of Individual Online Dating Choices. Participants liked profiles 

an average of 12.58 times in the lab sample (SD = 7.40; range = 1–35), 14.76 times in the fMRI 

sample (SD = 5.93; range = 1–26), and 17.49 times in the simulated market data (SD = 8.68; 

Range = 0–36), out of 36 profiles.  

Within the in-lab sample, individual binary like versus pass choices were correlated with 

ratings of attractiveness (r = 0.61, t(1618) = 31.26, 95% CI [0.58, 0.64], p < 0.001), career 

prospects (r = 0.19, t(1618)  = 7.87, 95% CI [0.15, 0.24], p < 0.001), personality (r = 0.37, 

t(1618) = 16.18, 95% CI [0.33, 0.41], p < 0.001), and likeback (r = 0.26, t(1618)  = 10.84, 95% 

CI [0.21, 0.31], p < 0.001) choice decomposition variables. Within the fMRI sample, individual 

binary like versus pass choices were correlated with individual ratings of attractiveness (r = 0.48, 

t(1039) = 17.81, 95% CI [0.44, 0.53], p < 0.001), personality (r = 0.38, t(1039) = 13.10, 95% CI 

[0.32, 0.43], p < 0.001), and likeback (r = 0.16, t(1039) = 5.26, 95% CI [0.10, 0.22], p < 0.001), 

but not career prospects (r = 0.02, t(1039) = 0.81, 95% CI [-0.04, 0.09], p = 0.42). Finally, within 

the simulated market sample, individual binary like versus pass choices were correlated with all 

choice decomposition variables (attractiveness: r = 0.54, t(23542) = 98.96, 95% CI [0.53, 0.55], 

p < 0.001; career prospects: r = 0.19, t(23542) = 30.49, 95% CI [0.18, 0.21], p < 0.001; 

personality ratings: r = 0.40, t(23542) = 66.39, 95% CI [0.39, 0.41], p < 0.001; likeback: r = 
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0.29, t(23542) = 46.78, 95% CI [0.28, 0.30], p < 0.001). Correlation coefficients between choice 

decomposition variables and profile factorial elements can be found in Table 2.3 for in-lab 

sample data, Table 2.4 for fMRI sample data, and Table 2.5 for simulated market data.  

Neural Correlates of Individual Online Dating Choices. In the fMRI sample, 

individual NAcc activity was significantly correlated with binary choice (r = 0.16, t(1039) = 

5.12, 95% CI [0.10, 0.22], p < 0.001), and choice decomposition variables attractiveness (r = 

0.15, t(1039) = 4.92, 95% CI [0.09, 0.21], p < 0.001), personality (r = 0.09, t(1039) = 2.84, 95% 

CI [0.03, 0.15], p < 0.01), and likeback (r = 0.10, t(1039) = 3.28, 95% CI [0.04, 0.16], p < 0.01), 

but not with ratings of career prospects (r = -0.02, t(1039) = -0.65, 95% CI [-0.08, 0.04], p = 

0.52). Conversely, individual vmPFC activity was only correlated with binary choice (r = 0.13, 

t(1039) = 4.13, 95% CI [0.07, 0.19], p < 0.001) and likeback (r = 0.11, t(1039) = 3.44, 95% CI 

[0.05, 0.17], p < 0.001) among choice decomposition variables, but not correlated with choice 

decomposition variables attractiveness (r = 0.04, t(1039) = 1.18, 95% CI [-0.02, 0.10], p = 0.24), 

career prospects (r = 0.02, t(1039) = 0.51, 95% CI [-0.04, 0.08], p = 0.61), or personality (r = 

0.06, t(1039) = 1.81, 95% CI [0.00, 0.12], p = 0.07). Activity in the NAcc and vmPFC was 

significantly correlated during the task (r = 0.42, t(1039) = 14.92, 95% CI [0.37, 0.47], p < 

0.001). Correlation coefficients between NAcc and vmPFC, choice decomposition variables, and 

profile factorial elements can be found in Table 2.4. 

Regression Analyses of Individual Dating Profile Decisions. To understand the 

contribution of individual choice breakdown variables to choice, we ran logistic regressions 

using in-lab sample level, fMRI sample level, and simulated market-level individual choices 

regressed on choice decomposition variables, factorial elements, and neural ROI data (separately 

and together). Within the in-lab sample, among choice decomposition variables, individual 
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ratings of attractiveness (z = 16.66, p < 0.001), personality (z = 5.74, p < 0.001), and likeback (z 

=7.59, p < 0.001) choice decomposition variables were significantly associated with binary 

choice (see Model 1, Table 2.6), while individual ratings of career prospects were not (z = 1.92, p 

= 0.06). In the fMRI sample, among choice decomposition variables, individual ratings of 

attractiveness (z = 12.17, p < 0.001) and personality (z = 7.20, p < 0.001) choice decomposition 

variables were significantly associated with binary choice, while ratings of career prospects (z = -

1.48, p = 0.14) and likeback were not (z = 1.84, p = 0.07; see Model 1, Table 2.7). Additionally, 

a regression model including only brain activity data (see Model 3, Table 2.7) illustrates that 

NAcc activity was significantly associated with individual binary choice (z = 3.96, p < 0.001), 

while vmPFC activity was not (z = 1.53, p = 0.13). The association between NAcc activity and 

binary choice was partially attenuated when brain activity data was combined in a regression 

with profile factorial information (Model 5, Table 2.7; z = 3.11, p < 0.01), and fully eliminated 

when brain activity data was combined in a regression with choice decomposition variable 

ratings (Model 4, Table 2.7; z = 1.69, p = 0.09) as well as in a model with both choice 

decomposition variable ratings and profile factorial information (Model 6, Table 2.7; z = 1.61, p 

= 0.11). Multiple partial F-test comparisons revealed that neural activity data in the NAcc and 

vmPFC significantly contributed to choice model fit over and above nested models with choice 

decomposition variables (c2(2) = 8.27, p < 0.05) and factorial elements (c2(2) = 22.28, p < 

0.001). 

As likeback serves as the primary behavioral measure of the integrative phase of AIM, 

we additionally conducted similar regression analyses using individual likeback ratings as the 

dependent variable in the fMRI sample. Crucially, while only personality (t = 10.03, p < 0.001) 

was associated with likeback ratings among choice decomposition variables (see Model 1, Table 
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2.8), NAcc activity (t = 2.02, p = 0.04) and vmPFC activity (t = 2.28, p = 0.03; see Model 3, 

Table 2.8) were significantly associated with individual likeback ratings. Additionally, as choice 

decomposition variables or factorial elements were added to models with brain data, the 

association between NAcc and likeback ratings was eliminated (t = 1.42, p = 0.16; t = 1.93, p = 

0.05) while the association between vmPFC and likeback ratings was not (t = 2.14, p = 0.03; t = 

2.34, p = 0.02; see Models 4 and 5, Table 2.8).  

Whole Brain and ROI Predictors of Individual Dating Profile Liking. Whole-brain 

analyses in SPM contrasted brain activity (BOLD signal) during dating profile presentation (i.e., 

initial 6s after stimuli onset) in trials in which participants liked profiles versus trials in which 

participants passed on profiles. Averaged group brain activity (n = 29) revealed a single 

significant cluster of brain activity at SPM coordinates [-6, 38, -7], which was predictive of 

individual liking but not consistent with NAcc or vmPFC ROIs. However, investigating brain 

activity within pre-specified regions of interest (ROI) revealed that NAcc (t(27) = 3.44, 95% CI 

[0.06, 0.25], p < 0.01) and vmPFC (t(27) = 4.74, 95% CI [0.24, 0.61],  p < 0.001) activity were 

greater during presentations of liked versus passed dating profiles (in-text t-statistics calculated 

according to spherical ROI analysis protocol in Andy's Brain Book, 2019; see Figure 2.4 and 

2.5). Figures 2.6 and 2.7 show the brain activity time course plots for the NAcc and vmPFC 

ROIs, respectively. As expected under the AIM framework, significant increases in BOLD 

activity for liked profiles occurred earlier for NAcc (~TRs 3-4, with maximum differential 

between liked and passed BOLD activity occurring at TR 3) than for vmPFC (~TRs 3-7, with 

maximum differential between liked and passed BOLD activity occurring at TR 4).  

Classification of Individual Dating Profile Liking. In-lab and fMRI sample choice 

decomposition variables were used to train logistic regression models to predict individual-level 
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binary choices. At the individual-level of prediction, within the in-lab sample the model trained 

with all choice decomposition variables together resulted in the highest binary choice prediction 

accuracy in the hold out data, at 75% accuracy (see Table 2.9), followed by models with trained 

using attractiveness ratings (73% accuracy) and only personality ratings (61% accuracy), while 

models trained exclusively on career prospects ratings (52% accuracy) and likeback ratings (55% 

accuracy) predicted binary choice at levels close to chance. In the fMRI sample, the highest 

prediction accuracy within-sample came from models trained using all choice decomposition 

variables (77% accuracy) and combining all choice decomposition variables with neural activity 

in the vmPFC (78% accuracy). While adding NAcc activity along with choice decomposition 

variables as a classifier (76% accuracy) did not increase prediction accuracy over and above a 

model with choice decomposition variables on their own (77% accuracy), adding vmPFC 

activity did increase prediction accuracy (78% accuracy). In models trained using fMRI sample 

choice decomposition variables, but tested on out-of-sample hold out simulated market choices, 

the models that were trained using all choice decomposition variables again performed the best 

(76%), followed by models trained individually with attractiveness (75%) and personality (66%), 

while models using career prospects (51%) and likeback (57%) performed marginally better than 

chance (see Table 2.10).  

Forecasting Aggregate Choice 

Behavioral Correlates of Aggregate Online Dating Choices. Overall average aggregate 

choice likelihood rates were 35.94% in the in-lab sample (SD = 22.54%; Range = 2.22–86.67%), 

41.10% in the fMRI sample (SD = 22.40%; Range = 6.90-86.20%), and 45.60% in the simulated 

market data (SD = 18.30%; Range = 13.60-86.54%).  
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Within the in-lab sample, aggregate choice likelihood was correlated with aggregate 

ratings of attractiveness (r = 0.96, t(34) = 19.68, 95% CI [0.92, 0.98], p < 0.001) and personality 

(r = 0.73, t(34) = 6.31, 95% CI [0.53, 0.86], p < 0.001) among choice decomposition variables, 

but not aggregate ratings of career prospects (r = 0.29, t(34) = 1.79, 95% CI [-0.04, 0.57], p = 

0.08) or likeback (r = 0.30, t(34) = 1.84, 95% CI [-0.03, 0.57], p = 0.07). Similarly, within the 

fMRI sample aggregate choice likelihood was significantly correlated with aggregate ratings of 

attractiveness (r = 0.90, t(34) = 12.07, 95% CI [0.81, 0.95], p < 0.001) and personality (r = 0.60, 

t(34) = 4.34, 95% CI [0.33, 0.77], p < 0.001) among choice decomposition variables, but not 

aggregate ratings of career prospects (r = -0.08, t(34) = -0.49, 95% CI [-0.40, 0.25], p = 0.63) or 

likeback (r = 0.17, t(34) = 1.02, 95% CI [-0.17, 0.47], p = 0.31). Finally, within the simulated 

market sample, aggregate choice likelihood was significantly correlated with aggregate ratings of 

attractiveness (r = 0.97, t(34) = 23.86, 95% CI [0.94, 0.99], p < 0.001), personality (r = 0.81, 

t(34) = 8.17, 95% CI [0.66, 0.90], p < 0.001), and likeback (r = 0.56, t(34) = 3.96, 95% CI [0.29, 

0.75], p < 0.001) among choice decomposition variables, but not career prospects (r = 0.13, t(34) 

= 0.79, 95% CI [-0.20, 0.44], p = 0.44). Correlation coefficients between aggregate ratings of 

choice decomposition variables and profile factorial elements can be found in Table 2.11 for in-

lab sample data, Table 2.12 for fMRI sample data, and Table 2.13 for simulated market data.  

Neural Correlates of Aggregate Online Dating Choices. In the fMRI sample, 

aggregate NAcc activity was significantly correlated with aggregate choice likelihood (r = 0.76, 

t(34) = 6.82, 95% CI [0.57, 0.87], p < 0.001), and choice decomposition variables attractiveness 

(r = 0.67, t(34) = 5.30, 95% CI [0.44, 0.82], p < 0.001) and personality (r = 0.36, t(34) = 2.28, 

95% CI [0.04, 0.62], p < 0.05). Conversely, aggregate vmPFC activity was not significantly 

correlated with aggregate binary choices (r = 0.04, t(34) = 0.25, 95% CI [-0.29, 0.37], p = 0.80) 
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and was only significantly correlated with aggregate ratings of the likeback among choice 

decomposition variable (r = 0.38, t(34) = 2.36, 95% CI [0.05, 0.63], p < 0.05).  

Using fMRI sample aggregate means, NAcc activity was also correlated with simulated 

market level aggregate binary choice (r = 0.67, t(34) = 5.22, 95% CI [0.43, 0.81], p < 0.001) and 

aggregate attractiveness (r = 0.68, t(34) = 5.48, 95% CI [0.46, 0.83], p < 0.001) and personality 

(r = 0.47, t(34) = 3.07, 95% CI [0.16, 0.69], p < 0.01) among choice decomposition variables. 

Aggregate vmPFC activity in the fMRI sample was not significantly correlated with simulated 

market level aggregate choice or any choice decomposition variables.  

 Aggregate activity in the NAcc and vmPFC was not significantly correlated at the profile 

presentation level during the task (r = 0.09, t(34) = 0.55, 95% CI [-0.24, 0.41], p = 0.59). 

Correlation coefficients between aggregate NAcc and vmPFC activity, choice decomposition 

variables, and profile factorial elements can be found in Table 2.12. 

Regression Analyses of Aggregate Dating Profile Choices. To understand the 

contribution of aggregate choice breakdown variables on aggregate choice, we ran OLS 

regressions using aggregate choice likelihood regressed on aggregate choice decomposition 

variables in the in-lab sample, fMRI sample, and simulated market-level sample. Within the in-

lab sample, aggregate attractiveness (t = 14.78, p < 0.001) and likeback (t = 3.00, p < 0.01) 

choice decomposition variables were associated with greater choice likelihood, while aggregate 

career prospects (t = 1.83, p = 0.07) and personality ratings (t = -0.81, p = 42) were not. Using 

the same in-lab sample aggregate choice decomposition variable means, only aggregate 

attractiveness was significantly associated (t = 6.63, p < 0.001) with choice likelihood at the 

simulated market sample-level (see Table 2.14).  
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In the fMRI sample, only aggregate attractiveness (t = 10.47, p < 0.001) was associated 

with aggregate choice among aggregations of choice decomposition variables and was associated 

with greater choice likelihood, while aggregate career prospects (t = -1.22, p = 0.23), personality 

ratings (t = 0.64, p = 0.52), and likeback ratings (t = 2.03, p = 0.05) were not. Aggregate fMRI 

sample NAcc activity was significantly associated with aggregate choice both within the fMRI 

sample (t = 6.72, p < 0.001) and at the simulated market level (t = 5.14, p < 0.001), while 

aggregate vmPFC activity was not (fMRI sample: t = -0.25, p = 0.80; simulated market level: t = 

-0.18, p = 0.86; see Table 2.15). Within the fMRI sample, the association between NAcc activity 

and choice was partially attenuated when aggregate ratings of choice decomposition variables 

were added to the model (t = -2.67, p < 0.05), and fully eliminated when aggregate ratings of 

choice decomposition variables were added to the simulated market level models (t = 0.48, p = 

0.63). Multiple partial F-test comparisons indicated that aggregate neural activity in the NAcc 

and vmPFC significantly increased forecasting of aggregate choice likelihood within the fMRI 

sample (F(2, 29) = 3.58,  p < 0.05), but not in the simulated market sample (F(2, 29) = 0.15,  p = 

0.87). 

Finally, to understand the integrative aspects of AIM, we conducted similar regression 

analyses using aggregate likeback ratings as the dependent variable in the fMRI sample. Within 

the fMRI sample, aggregate attractiveness (t = -2.75, p < 0.01) and aggregate personality (t = -

4.92, p < 0.001) were associated with aggregate likeback ratings, while aggregate career 

prospects were not (t = -0.14, p = 0.89). When regressing aggregate simulated market sample 

likeback ratings on these same choice decomposition variables, only aggregate personality was 

significantly associated (t = -5.39, p < 0.001). Crucially, among neural predictors, aggregate 

vmPFC activity was associated with aggregate likeback ratings within the fMRI sample (t = 
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2.28, p < 0.05), but not when forecasting aggregate likeback ratings in the simulated market 

sample (t = 0.62, p = 0.54), and aggregate NAcc activity was not associated with aggregate 

likeback rates within the fMRI sample (t = 0.56, p = 0.58) or in the simulated market sample (t = 

1.63, p = 0.11; see Table 2.16). 

Classification of Aggregate Online Dating Outcomes. Aggregate fMRI sample choice 

decomposition variables were used to train OLS regression models, uniquely and in combination, 

to predict aggregate-level choice likelihoods. Training models using aggregate levels of choice 

decomposition variables (attractiveness, career prospects, personality, and likelihood of ‘like’ 

back of profiles) to predict the aggregate choice likelihood of randomly selected holdout profiles 

(70/30 train/test; 50 iterations) resulted in correct aggregate choice likelihood prediction (+/- 5% 

of actual choice likelihood) 26.4% of the time in the in-lab sample, 40.2% of the time in the 

fMRI sample, and 34.0% of the time for the market level choice. In comparison, using only 

aggregate NAcc from the fMRI sample as a classifier resulted in correct aggregate choice 

likelihood prediction 17.6% of the time in the in-lab sample, 21.3% of the time in the fMRI 

sample, and 32.5% of the time for the market level choice. 

Within the fMRI sample, the model trained using a combination of all choice 

decomposition variables produced the best forecasts, at 40.2% accuracy, followed by models 

trained individually with attractiveness (32%) and personality (18%), while models trained with 

career prospects ratings (9%) and likeback ratings (7%) performed below chance. Among 

neuroforecasting models, aggregate NAcc activity predicted aggregate choices within the fMRI 

sample well above chance at 21% accuracy, while vmPFC activity did not (10%). Using these 

same classifiers, but forecasting aggregate choices in a hold out from the simulated market 

sample, the model using aggregate attractiveness produced the highest prediction accuracy at 
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36%, followed by classifiers with all choice decomposition variables (34%), career prospects 

(19%), personality (17%), and likeback (13%). Neuroforecasting aggregate choice in the 

simulated market sample was most effective using only aggregate NAcc activity, at 33% 

accuracy, while a classifier using only vmPFC activity had an accuracy of 16%. Using both 

NAcc and vmPFC activity together to forecast aggregate choice results in correct forecasts 28% 

of the time (see Table 2.17). 

Discussion 

 The promise of neuroscientific data in helping to understand consumer decisions and 

potential for neural data to aid in forecasting market choices are key topics of exciting novel 

streams of research in consumer neuroscience, consumer behavior, and marketing. In marketing, 

brain activity data have revealed profound truths about consumer decision making that otherwise 

(without fMRI data) would have been largely unattainable, including developments in our 

understanding of the representation and importance of brand preference (Koenigs and Tranel, 

2008), the influential role of expectations, based on price, in evaluations of product quality 

(Plassmann et al., 2008), and that evaluative judgements of ‘brand personalities’ are not the same 

as personality judgements of humans (Yoon et al., 2006). That is, using tools and techniques 

from the field of neuroscience, consumer neuroscientists have developed and carved out 

significant insights in the field of marketing. The phenomenon of neuroforecasting, in which the 

brain activity from a small group of consumers is used to forecast aggregate market level 

outcomes, stems from a powerful idea previously held to the realm of science fiction. With a 

number of recent research studies illustrating that neural data can in fact forecast aggregate 

market choices, a key question remains: how and when does brain beat behavior? 
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 The present research aimed to test the affective-integration-motivation (AIM) framework 

as a theoretical foundation for understanding how and when brain may in fact beat behavior. The 

AIM framework posits that while key neural regions in the brains value integration circuit 

(namely, the vmPFC) can be useful for understanding individual choices, early activity in the 

affective regions of the brain (namely, the NAcc) may be most powerful for forecasting 

aggregate choices (Samanez-Larkin and Knutson, 2015). In the context of online dating choices, 

we created a simulated market-level dataset for forecasting aggregate choices, and forecasted 

choices by training data from both a small in-lab sample and a sample who completed the task 

inside of an fMRI scanner. Our design afforded us the opportunity to observe choice 

decomposition data at all levels of analysis (i.e., asking all participants to rate aspects of profiles 

that would be considered when making decisions), as well as correlate neural activity with 

choice decomposition components to understand how different choice decomposition 

components contributed to prediction and forecasting. In addition to asking participants to make 

a binary choice (like versus pass) for all online dating profiles, participants were asked to rate all 

profiles on the following 4 choice decomposition variables: how physically attractive they 

believe the individual in the profile is (attractiveness), the individuals career potential (career 

prospects), how likeable they believe that their personality is (personality), and the probability 

that the individual in the profile will ‘like’ them back (since most online dating sites require 

mutual liking for any further interactions; likeback). Overall, the findings from this study are 

consistent with AIM as a framework for understanding how and when neuroforecasting may be 

effective, and suggest that researchers and marketers may be able to use neural data to better 

understand and categorize choice components collected through behavioral/ survey measures. 

Further, in certain contexts, if behavioral measures can effectively isolate affective and 



 

 30 

integrative choice components, marketers may be able to produce excellent forecasting results 

without the significant investments necessary to obtain neuroimaging data. 

Hypothesis Testing. Consistent with the AIM framework, neural activity time courses 

showed that activity in the NAcc, representing affective evaluation, peaked earlier during the 

decision processing phase (and before actually indicating a decision) than activity in the vmPFC, 

which is associated with the value integration phase of AIM (Levy and Glimcher, 2012). 

Additionally, consistent with H1 the primary affective neural component under investigation, the 

NAcc, was correlated with choice decomposition variables attractiveness and personality at both 

the individual and aggregate-levels of analysis. In terms of forecasting using behavioral 

variables, forecasts made by classifiers trained using only attractiveness produced the highest 

prediction accuracy among choice decomposition variables (including in comparison to 

classifiers using all choice decomposition variables together). Finally, while classifiers trained 

using aggregate vmPFC activity performed relatively poorly at neuroforecasting aggregate 

market choices (15.8% accuracy), classifiers trained using aggregate NAcc activity did 

effectively neuroforecast aggregate market choices exceptionally well (32.5% accuracy). Indeed, 

classifiers trained using both aggregate NAcc and vmPFC activity performed more poorly than 

classifiers trained using aggregate NAcc activity alone (28.0% accuracy versus 32.5% accuracy).  

Partially consistent with H2 the primary integrative neural component under 

investigation, the vmPFC, was correlated with the likeback choice decomposition variable at 

both the individual and aggregate-levels, but the career prospects variable was not. In terms of 

individual choice prediction, classifiers trained using all behavioral choice decomposition 

variables produced the highest prediction accuracy (versus classifiers trained using each choice 

decomposition variable separately). Using neural data, neither NAcc activity (58.7% accuracy) 
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nor vmPFC activity (58.3% accuracy) alone performed particularly well at individual choice 

prediction. However, in accordance with H2, when introducing neural data to classifiers of 

binary choice in addition to choice decomposition variables, the highest prediction accuracy 

resulted from classifiers trained combining choice decomposition variables and vmPFC activity 

(77.7% accuracy), over classifiers trained combining choice decomposition and NAcc activity 

(76.5 accuracy), or choice decomposition variables and both NAcc and vmPFC activity (77.5% 

accuracy). 

Forecasting Aggregate Online Dating Outcomes. Consistent with the AIM framework 

for understanding neuroforecasting, aggregate NAcc activity was highly correlated with 

aggregate ratings of attractiveness, while aggregate vmPFC activity was most highly correlated 

with aggregate likeback ratings. Only aggregate NAcc activity was significantly associated with 

aggregate online dating decision outcomes, both for forecasting within the fMRI sample and in 

the simulated market sample. Further, when sequentially assessing the impact of choice 

decomposition variables and neural ROIs on choice, the association between NAcc activity and 

online dating outcomes was partially attenuated when choice decomposition variables were 

added to models within the fMRI sample, and fully eliminated when choice decomposition 

variables were added to simulated market-level sample models. Additionally, forecasting 

accuracy was much higher when using an aggregate NAcc activity classifier than using an 

aggregate vmPFC activity classifier, and this difference was particularly exacerbated when 

forecasting aggregate out-of-sample market level choices. In fact, despite attractiveness ratings 

playing a key role in explaining online dating choices at all levels of analysis, aggregate NAcc 

activity forecasts rivaled forecasting accuracy of aggregate attractiveness alone (33% accuracy 

for aggregate NAcc activity and 36% accuracy for aggregate attractiveness), but only when 
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neuroforecasting aggregate market-level choices. This illustrates the partial scaling value of 

aggregate NAcc activity, as an affective neural component, on forecasting aggregate out-of-

sample choices (i.e., neuroforecasting). These results provide evidence for the argument that 

affective components of choice best scale to the aggregate, and in this context, self-reported 

ratings of attractiveness are in fact a highly effective behavioral indicator of the affective 

response to viewing online dating profiles. 

One of the key arguments for the partial scaling account of NAcc activity scaling to the 

aggregate is that NAcc activity captures aspects of homogenous affective response to stimuli that 

prevail in markets. Researchers can subvert the natural variability of small samples and capture 

this homogeneity through observing NAcc activity and use these data to effectively forecast 

market outcomes. The forecasting results presented here provide support for this idea; 

forecasting accuracies for classifiers trained using fMRI sample aggregate NAcc activity were 

highest when forecasting market outcomes (32.5% accuracy), following by forecasting within 

fMRI sample outcomes (21.3% accuracy), and lowest when forecasting outcomes in the 

independent in-lab sample (17.6% accuracy). When neuroforecasting aggregate market choices, 

NAcc activity was highly useful, as per AIM and the partial scaling account of neuroforecasting, 

capturing the homogeneity in online dating choices observed in the large market sample, whereas 

when forecasting aggregate outcomes in the small in-lab sample (an independent behavioral 

sample), accuracies were quite poor as aggregate NAcc activity may not reflect the heterogeneity 

in small out of sample choice outcomes.  

Predicting Individual Online Dating Outcomes. While NAcc activity at the individual 

level was most highly correlated with ratings of attractiveness, vmPFC activity was most highly 

correlated with perceptions of being liked back by the individual in the profile, an integrative 
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choice decomposition variable that takes into account a wide variety of choice related signals. 

Overall, the choice decomposition variables used in this study did an exceptional job of breaking 

down and predicting individual online dating choices. Although activity in the vmPFC was not 

independently predictive of individual-level binary online dating choices in regression models, 

vmPFC activity, but not NAcc activity, was consistently associated with increased likeback 

ratings, indicating the role of vmPFC activity in overall integrating measures of online dating 

decisions. This may indicate that developing isolated measures of integrative choice 

decomposition components is more challenging (at least in the context of online dating) than 

developing isolated measures of affective choice components (which attractiveness and 

personality do quite effectively in the context of online dating). That said, results indicated that 

activity in the NAcc and vmPFC did in fact significantly contribute to prediction of individual-

level choice over and above the choice decomposition variables within-sample. This finding, in 

combination with the result that adding vmPFC activity alone produced the greatest increase in 

individual choice prediction accuracy over and above classifiers with choice decomposition 

variables, suggests that vmPFC activity indeed is useful for understanding individual choices in 

the context of online dating.  

Finally, observing the relationship between the likeback variable and vmPFC activity can 

help us understand the relationship between the role of integrative components in this study. 

Interestingly, vmPFC activity was robustly associated with individual likeback ratings regardless 

of the inclusion or exclusion of choice decomposition or factorial variables, but when looking at 

the relationship between these two variables at the aggregate level, the association persists within 

sample but not when using market likeback rates. That is, we observe the association between 

integrative components vmPFC activity and likeback at the individual level and within sample, 
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but not at the aggregate market level, which is further evidence that vmPFC activity is most 

useful for ether individual level prediction or within sample forecasting, but not neuroforecasting 

per se (in this context). 

Behavioral Variables as Proxies for Neural Processes. Given the cost and labor 

associated with collecting neuroimaging data, a key consideration when attempting to forecast is 

whether neural data is worth collecting in a given context. Several pieces of evidence in the 

present study suggest that if behavioral variables are adequately prespecified to map to 

components in the AIM framework, highly accurate out-of-sample market forecasts can be 

achieved without the use of neural data. Supplementarily, it may be cost effective to use 

neuroimaging to confirm, via correlation and/ or association, the type of information that 

behavioral variables are collecting in a given set of contexts, based on pre-specified hypotheses. 

Marketers can then proceed to use these variables, along with the tenets of AIM, for prediction 

and forecasting, rather than needing to collect neural data in each context and/ or needing neural 

data to produce the highest accuracy forecasts. This was the case with the attractiveness variable 

in the present study – attractiveness served as an accurate proxy of affective neural activity in the 

NAcc, and could be used to effectively forecast aggregate choices. That said, other prior studies 

have shown that vmPFC activity can be more effective at neuroforecasting aggregate outcomes 

in some contexts (Falk et al., 2016), and further research is needed to elucidate the contexts and 

outcome types that may rely more heavily on the contribution of the value integration component 

of the AIM framework to prediction and forecasting.  

In the context of online dating, we observed that although several choice decomposition 

variables, which served as proxies for affective and value integrative components of the AIM 

framework, were valuable in understanding and predicting individual choices, the primary 
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affective component of choice, attractiveness, was essential to understanding and forecasting 

market outcomes. By deconstructing the choice process and using the AIM framework as a 

foundation for our theorizing, we were able to pre-specify that attractiveness would be a key 

element to forecasting aggregate market choices. This account is consistent with a partial scaling 

account of aggregate forecasting, as only some, but not all components of individual choice 

(namely, the affective components of attractiveness and personality) improved aggregate 

forecasting accuracies, while others did not. With this knowledge, marketers may in fact choose 

to train classifiers and make forecasts using only aggregation of variables that represent affective 

processes when attempting to forecast aggregate market choices, as (at least in the present 

context) these components alone produced better forecasting accuracy than models including all 

choice decomposition variables combined. Without evidence from the neuroforecasting 

literature, the AIM framework as a foundation, and support for a partial scaling account of 

forecasting aggregate choices across a number of contexts, such a recommendation or course of 

action would be unlikely, as it would be typical to include all variables used to understand 

choices in forecasting models. 

Conclusion 

The findings of the present study provide initial support for the AIM framework as a 

foundation for understanding the applications of neuroforecasting. First, we were able to 

neuroforecast aggregate online dating choices using activity from the NAcc, providing evidence 

in a novel context that while both affective and value integration components of the decision-

making process can be powerful tools for understanding and predicting individual choice, 

affective components seem to translate through most effectively when attempting to understand 

or forecast aggregate outcomes (in particular, at the market level). Second, we provide support 
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for the idea that, in certain contexts, if choice decomposition variables can be effectively mapped 

to the components of the AIM framework (namely, choice decomposition variables that 

represent affective and value integration phases of AIM), behavioral data can produce excellent 

predictions of individual choice and forecasts of aggregate choice. With that said, an important 

implication of this research is that marketing researchers and practitioners alike who do not have 

access to neuroscientific tools or have limited budgeting constraints can still take advantage of 

findings from consumer neuroscience.  
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Figure 2.1. Three example online dating profile stimuli. Top profile characteristics: high 

attractiveness, 18-23 age bin, neutral facial expression, and hobbies/interests profile description. 

Middle profile characteristics: medium attractiveness, 18-23 age bin, smiling facial expression, 

and SES/ career indicator profile description. Bottom profile characteristics: low attractiveness, 

18-23 age bin, neutral facial expression, and personality traits profile description. 
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Figure 2.2. Task design and timing of stimuli presentation inside of the fMRI scanner. Profiles 

were presented in random order and like and pass button locations were switched randomly 

between trials. Feedback was given immediately upon button press during the choice phase, and 

any remaining time in the choice phase was added to the fixation stage. 
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Figure 2.3. Bar graphs illustrating descriptive statistics of interest for each dependent variable in 

the simulated market sample. Top left panel: participants’ attractiveness ratings are mainly 

determined by attractiveness of the facial image on each profile, however, profile description 

clearly influences attractiveness ratings within each level of profile facial attractiveness. Top 

right panel: the SES/career indicator in a profile description clearly increases participant’s 

perceptions of the career prospects of the individual in a profile. Bottom left panel: age on the 

profile does not influence participant’s ratings of personality for profiles, but if the individual in 

the profile is smiling, participant’s rate that individual as having a more likeable personality. 

Bottom right panel: if the individual in a profile is smiling, participants are more likely to believe 

that the individual in the profile would ‘like’ them back. 
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Figure 2.4. Brain activity in the NAcc when contrasting liked minus passed dating profiles. 
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Figure 2.5. Brain activity in the vmPFC when contrasting liked minus passed dating profiles. 
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Figure 2.6. Mean NAcc BOLD brain activity time course following stimuli presentation onset 

for online dating profiles that were liked versus those that were passed. Activity in the NAcc was 

significantly higher for liked profiles at TR 3 and 4 (* indicated significance at a threshold of p < 

0.05). 

*
*

99.90

99.95

100.00

100.05

1 2 3 4 5 6 7 8
TR After Stimuli Presentation

M
ea

n 
N

A
cc

 B
O

LD
 A

ct
iv

ity

Choice

Like

Pass



 

 48 

 
 

Figure 2.7. Mean vmPFC BOLD brain activity time course following stimuli presentation onset 

for online dating profiles that were liked versus those that were passed. Activity in the NAcc was 

significantly higher for liked profiles at TR 3 through 7 (* indicated significance at a threshold of 

p < 0.05). 
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Table 2.1. Logistic and OLS regression results showing the effect of profile design factorial 

elements on overall choice and choice decomposition variables in the simulated market data. 

Individual-level simulated market data.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dependent variable:

Choice Attractive Career Personality Likeback

logistic OLS OLS OLS OLS

(1) (2) (3) (4) (5)

Attractiveness bin (Medium) �0.841
⇤⇤⇤ �0.593

⇤⇤⇤ �0.232
⇤⇤⇤ �0.140

⇤⇤⇤ �0.021

(0.033) (0.014) (0.014) (0.015) (0.015)

Attractiveness bin (Low) �1.417
⇤⇤⇤ �0.922

⇤⇤⇤ �0.301
⇤⇤⇤ �0.458

⇤⇤⇤ �0.208
⇤⇤⇤

(0.034) (0.014) (0.014) (0.015) (0.015)

Facial Expression (Smiling) �0.210
⇤⇤⇤ �0.196

⇤⇤⇤
0.042

⇤⇤⇤
0.195

⇤⇤⇤
0.210

⇤⇤⇤

(0.027) (0.012) (0.012) (0.013) (0.012)

Age (24-28) 0.078
⇤⇤⇤

0.004 �0.006 0.061
⇤⇤⇤

0.057
⇤⇤⇤

(0.027) (0.012) (0.012) (0.013) (0.012)

Profile Description (SES/Career) �0.239
⇤⇤⇤ �0.209

⇤⇤⇤
0.981

⇤⇤⇤ �0.106
⇤⇤⇤ �0.078

⇤⇤⇤

(0.033) (0.014) (0.014) (0.015) (0.015)

Profile Description (Personality) 0.285
⇤⇤⇤

0.124
⇤⇤⇤

0.171
⇤⇤⇤

0.111
⇤⇤⇤

0.080
⇤⇤⇤

(0.033) (0.014) (0.014) (0.015) (0.015)

Constant 0.744
⇤⇤⇤

0.629
⇤⇤⇤ �0.224

⇤⇤⇤
0.070

⇤⇤⇤ �0.058
⇤⇤⇤

(0.036) (0.016) (0.015) (0.017) (0.016)

Observations 23,544 23,544 23,544 23,544 23,544

R
2

0.176 0.202 0.056 0.026

Adjusted R
2

0.175 0.202 0.056 0.026

Log Likelihood �15,239.020

Akaike Inf. Crit. 30,492.030

Residual Std. Error (df = 23537) 0.904 0.889 0.961 0.955

F Statistic (df = 6; 23537) 835.692
⇤⇤⇤

993.172
⇤⇤⇤

233.654
⇤⇤⇤

106.392
⇤⇤⇤

Note: n = 654, 36 profiles per participant
⇤
p<0.1;

⇤⇤
p<0.05;

⇤⇤⇤
p<0.01

1
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Table 2.2. Logistic regression results with robustness checks, showing the effect of choice 

decomposition variables on choice in the simulated market data. Model 6 is the full model, 

including all control variables and random effects. Individual-level simulated market data. 

 

 

 

 

 

 

Dependent variable:

Binary Choice (’Like’ vs. ’Pass’)

(1) (2) (3) (4) (5) (6)

Attractiveness Ratings 1.867
⇤⇤⇤

1.865
⇤⇤⇤

1.704
⇤⇤⇤

1.702
⇤⇤⇤

1.658
⇤⇤⇤

1.655
⇤⇤⇤

(0.030) (0.030) (0.031) (0.031) (0.032) (0.032)

Career Prospect Ratings 0.195
⇤⇤⇤

0.195
⇤⇤⇤

0.284
⇤⇤⇤

0.284
⇤⇤⇤

0.275
⇤⇤⇤

0.276
⇤⇤⇤

(0.023) (0.023) (0.028) (0.028) (0.028) (0.029)

Personality Ratings 0.730
⇤⇤⇤

0.729
⇤⇤⇤

0.740
⇤⇤⇤

0.740
⇤⇤⇤

0.725
⇤⇤⇤

0.725
⇤⇤⇤

(0.027) (0.027) (0.028) (0.028) (0.028) (0.028)

Likeback Ratings 0.491
⇤⇤⇤

0.490
⇤⇤⇤

0.527
⇤⇤⇤

0.527
⇤⇤⇤

0.528
⇤⇤⇤

0.528
⇤⇤⇤

(0.026) (0.026) (0.027) (0.027) (0.027) (0.027)

Self-rated Attractiveness 0.058 0.061 0.060

(0.098) (0.101) (0.102)

Participant Age 0.042
⇤⇤

0.043
⇤⇤

0.043
⇤⇤

(0.019) (0.019) (0.019)

Attractiveness bin (Medium) �0.576
⇤⇤⇤ �0.579

⇤⇤⇤ �0.653
⇤⇤⇤ �0.655

⇤⇤⇤

(0.054) (0.054) (0.151) (0.152)

Attractiveness bin (Low) �0.887
⇤⇤⇤ �0.886

⇤⇤⇤ �1.005
⇤⇤⇤ �1.003

⇤⇤⇤

(0.057) (0.057) (0.152) (0.153)

Facial Expression (Smiling) �0.385
⇤⇤⇤ �0.386

⇤⇤⇤ �0.389
⇤⇤⇤ �0.390

⇤⇤⇤

(0.045) (0.045) (0.124) (0.124)

Age (24-28) 0.162
⇤⇤⇤

0.160
⇤⇤⇤

0.178 0.177

(0.043) (0.043) (0.123) (0.123)

Profile Description (SES/Career) �0.293
⇤⇤⇤ �0.295

⇤⇤⇤ �0.324
⇤⇤ �0.325

⇤⇤

(0.061) (0.061) (0.154) (0.154)

Profile Description (Personality) 0.250
⇤⇤⇤

0.248
⇤⇤⇤

0.279
⇤

0.276
⇤

(0.053) (0.053) (0.151) (0.151)

Constant �0.183
⇤ �1.287

⇤⇤
0.425

⇤⇤⇤ �0.703 0.484
⇤⇤ �0.661

(0.098) (0.505) (0.114) (0.519) (0.191) (0.548)

Observations 23,544 23,508 23,544 23,508 23,544 23,508

Log Likelihood �8,147.459 �8,133.167 �7,950.208 �7,936.311 �7,876.417 �7,862.408

Akaike Inf. Crit. 16,306.920 16,282.330 15,924.420 15,900.620 15,778.830 15,754.820

Bayesian Inf. Crit. 16,355.320 16,346.860 16,021.220 16,013.530 15,883.700 15,875.790

Note: n = 654 Random e↵ects, m1-m4 ResponseId; m5/m6 RId + stim;
⇤
p<0.1;

⇤⇤
p<0.05;

⇤⇤⇤
p<0.01

1
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Table 2.3. Individual-level correlations between choice decomposition variables and factorial design elements in the in-lab sample. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Attractiveness Career Prospects Personality Likeback Attractiveness bin Facial Expression Age bin
Attractiveness
Career Prospects 0.212****
Personality 0.398**** 0.268****
Likeback 0.165**** 0.129**** 0.394****
Attractiveness bin -0.468**** -0.138**** -0.231**** -0.060*
Facial Expression -0.124**** 0.042 0.131**** 0.123**** 0
Age bin 0.035 -0.037 0.020 -0.042 0 0
Profile Description 0.043 0.084*** 0.053* 0.062* 0 0 0
Note: n = 45 ⇤p<0.05; ⇤⇤p<0.01; ⇤⇤⇤p<0.001; ⇤⇤⇤⇤p<0.0001

1
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Table 2.4. Individual-level correlations between choice decomposition variables and factorial design elements in the fMRI sample. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Attractiveness Career Prospects Personality Likeback Attractiveness bin Facial Expression Age bin Profile Description NAcc
Attractiveness
Career Prospects 0.067*
Personality 0.355**** 0.109***
Likeback 0.113*** 0.052 0.319****
Attractiveness bin -0.498**** -0.139**** -0.197**** -0.023
Facial Expression -0.141**** 0.054 0.124**** 0.102*** 0
Age bin -0.034 -0.018 0.093** -0.036 0 0
Profile Description 0.051 0.085** -0.018 0.012 0 0 0
NAcc 0.151**** -0.020 0.088** 0.101** -0.073* -0.027 -0.024 -0.003
vmPFC 0.037 0.016 0.056 0.106*** -0.022 0.025 0.007 -0.042 0.420****
Note: n = 29 ⇤p<0.05; ⇤⇤p<0.01; ⇤⇤⇤p<0.001; ⇤⇤⇤⇤p<0.0001

1
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Table 2.5. Individual-level correlations between choice decomposition variables and factorial design elements in the simulated market 
sample.

Attractiveness Career Prospects Personality Likeback Attractiveness bin Facial Expression Age bin
Attractiveness
Career Prospects 0.228****
Personality 0.432**** 0.285****
Likeback 0.283**** 0.212**** 0.443****
Attractiveness bin -0.378**** -0.123**** -0.189**** -0.088****
Facial Expression -0.099**** 0.021** 0.098**** 0.108**** 0
Age bin 0.002 -0.003 0.031**** 0.030**** 0 0
Profile Description 0.051**** 0.070**** 0.046**** 0.034**** 0 0 0
Note: n = 654 ⇤p<0.05; ⇤⇤p<0.01; ⇤⇤⇤p<0.001; ⇤⇤⇤⇤p<0.0001

1
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Table 2.6. In-lab sample individual level logistic regression results for binary choice regressed 
on choice decomposition variables (1) and profile factorial elements (2), as separately and 
combined (3). All models contain participant ID random effects. 

 
 
 

 

Dependent variable:

Binary Choice (’Like’ vs. ’Pass’)

(1) (2) (3)

Attractiveness Ratings 2.845⇤⇤ 2.696⇤⇤

(0.171) (0.174)

Career Prospects Ratings 0.196 0.152
(0.102) (0.122)

Personality Ratings 0.691⇤⇤ 0.705⇤⇤

(0.120) (0.125)

Likeback Ratings 0.918⇤⇤ 0.923⇤⇤

(0.121) (0.123)

Attractiveness bin (Medium) �1.698⇤⇤ �0.723⇤⇤

(0.153) (0.244)

Attractiveness bin (Low) �2.322⇤⇤ �0.979⇤⇤

(0.167) (0.260)

Facial Expression (Smiling) �0.254⇤ �0.245
(0.126) (0.204)

Age (24-28) �0.159 �0.426⇤

(0.126) (0.199)

Profile Description (SES/Career) �0.086 0.097
(0.156) (0.277)

Profile Description (Personality) 0.420⇤⇤ 0.200
(0.153) (0.239)

Self-rated Attractiveness �0.957⇤ �0.423⇤ �0.970⇤

(0.411) (0.187) (0.408)

Participant Age 0.329 0.131 0.333⇤⇤

(0.168) (0.077) (0.008)

Constant �8.821⇤ �2.145 �8.140⇤⇤

(3.496) (1.594) (0.505)

Log Likelihood �424.309 �816.293 �413.147
Akaike Inf. Crit. 864.618 1,652.587 854.294
Bayesian Inf. Crit. 907.740 1,706.489 929.757

Note: n = 45, observations = 1,620 ⇤p<0.05; ⇤⇤p<0.01

1
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Table 2.7. Individual-level logistic regression results showing the effect of vmPFC and NAcc on 
binary choice in the fMRI sample. All models include participant age and self-rated 
attractiveness control variables and participant ID random effects. 

 
 
 
 

 
 

Dependent variable:

Binary Choice (’Like’ vs. ’Pass’)

(1) (2) (3) (4) (5) (6)

Attractiveness Ratings 1.217⇤⇤ 1.196⇤⇤ 1.015⇤⇤

(0.100) (0.100) (0.112)

Career Prospects Ratings �0.129 �0.129 0.030
(0.088) (0.088) (0.123)

Personality Ratings 0.678⇤⇤ 0.683⇤⇤ 0.698⇤⇤

(0.094) (0.095) (0.102)

Likeback Ratings 0.168 0.138 0.156
(0.091) (0.092) (0.094)

Attractiveness bin (Medium) �1.066⇤⇤ �1.064⇤⇤ �0.403
(0.171) (0.174) (0.208)

Attractiveness bin (Low) �1.795⇤⇤ �1.782⇤⇤ �0.578⇤

(0.184) (0.186) (0.229)

Facial Expression (Smiling) �0.472⇤⇤ �0.474⇤⇤ �0.531⇤⇤

(0.143) (0.145) (0.172)

Age (24-28) �0.133 �0.125 �0.229
(0.142) (0.144) (0.168)

Profile Description (SES/Career) �0.969⇤⇤ �0.968⇤⇤ �0.692⇤

(0.179) (0.181) (0.275)

Profile Description (Personality) �0.163 �0.149 �0.312
(0.170) (0.172) (0.200)

NAcc 0.404⇤⇤ 0.212 0.343⇤⇤ 0.208
(0.102) (0.126) (0.111) (0.129)

vmPFC 0.052 0.061 0.072 0.065
(0.034) (0.041) (0.037) (0.043)

Log Likelihood �494.36 �605.60 �666.68 �490.22 �594.46 �478.25
Akaike Inf. Crit. 1,004.71 1,231.21 1,345.36 1,000.44 1,212.92 988.50
Bayesian Inf. Crit. 1,044.30 1,280.69 1,375.05 1,049.92 1,272.30 1,067.67

Note: n = 29, observations = 1,042 ⇤p<0.05; ⇤⇤p<0.01

1
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Table 2.8. Individual-level (n = 29) OLS regression results showing the effect of NAcc and 
vmPFC activity on likeback ratings (from 1 to 7, with 7 being most likeable) in the fMRI sample. 
All models include participant age and self-rated attractiveness control variables. 

 
 
 
 

 

Dependent variable:

Likeback (7-point Likert)

(1) (2) (3) (4) (5) (6)

Attractiveness Ratings �0.001 �0.008 0.024
(0.030) (0.030) (0.035)

Career Prospects Ratings 0.017 0.018 0.037
(0.029) (0.028) (0.038)

Personality Ratings 0.300⇤⇤ 0.295⇤⇤ 0.286⇤⇤

(0.030) (0.030) (0.031)

Attractiveness bin (Medium) �0.014 �0.006 0.091
(0.071) (0.071) (0.073)

Attractiveness bin (Low) �0.054 �0.039 0.138
(0.072) (0.071) (0.079)

Facial Expression (Smiling) 0.193⇤⇤ 0.193⇤⇤ 0.125⇤

(0.058) (0.058) (0.057)

Age (24-28) �0.069 �0.067 �0.117⇤

(0.058) (0.058) (0.056)

Profile Description (SES/Career) �0.104 �0.100 �0.041
(0.071) (0.071) (0.089)

Profile Description (Personality) 0.028 0.036 0.036
(0.071) (0.071) (0.068)

NAcc 0.084⇤ 0.057 0.080 0.055
(0.041) (0.040) (0.041) (0.040)

vmPFC 0.032⇤ 0.028⇤ 0.032⇤ 0.029⇤

(0.014) (0.013) (0.014) (0.013)

Log Likelihood �1,379.245 �1,429.840 �1,424.936 �1,379.511 �1,427.685 �1,383.616
Akaike Inf. Crit. 2,774.490 2,881.680 2,863.871 2,779.023 2,881.369 2,799.232
Bayesian Inf. Crit. 2,814.073 2,936.107 2,898.507 2,828.502 2,945.692 2,878.399

Note: n = 29, observations = 1,041 ⇤p<0.05; ⇤⇤p<0.01

1
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Table 2.9. Comparing prediction accuracy between logistic regression models at the individual-
level (binary choice) and OLS regression models at the aggregate-level (choice likelihood) using 
choice decomposition variables separately and combined for training in the in-lab sample. All 
models trained in 70% in-lab sample data and tested on 30% hold-out market data. Estimates are 
the average of 50 iterations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Accuracy
Trained on: Individual Aggregate
Attractive 0.73 0.44
Career 0.52 0.23
Personality 0.61 0.18
Likeback 0.55 0.14
All 0.75 0.40
Chance: 0.50 0.10

Training variables:
Attractive Career Personality Likeback All

Individual 0.73 0.52 0.61 0.55 0.75
Aggregate 0.44 0.23 0.19 0.13 0.40

1
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Table 2.10. Comparing choice prediction accuracy between logistic regression models at the 
individual-level within the fMRI sample and in the simulated market data using choice 
decomposition variables and neural ROI separately and combined for training. All models 
trained in 70% fMRI sample data (i.e., market predictions trained on fMRI sample binary choice 
DV) and tested on 30% hold-out data. Classifiers were trained with 10-fold cross validation and 
accuracy estimates are the average of 50 iterations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Individual-level
Prediction Accuracy

Trained on: Within fMRI Sample Market
Attractiveness 72.3 74.5
Career Prospects 57.1 51.1
Personality 69.1 65.6
Likeback 58.9 56.6
All Behavioral 76.7 75.7
NAcc 58.7 NA
vmPFC 58.3 NA
NAcc + vmPFC 58.7 NA
All Behavioral + NAcc 76.5 NA
All Behavioral + vmPFC 77.7 NA
All Behavioral + NAcc + vmPFC 77.5 NA
Chance: 50.0 50.0

1
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Table 2.11. Aggregate-level correlations between choice decomposition variables and factorial design elements in the in-lab sample. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Attractiveness Career Prospects Personality Likeback Attractiveness bin Facial Expression Age bin
Attractiveness
Career Prospects 0.161
Personality 0.552*** 0.164
Likeback 0.045 0.005 0.560***
Attractiveness bin -0.707**** -0.230 -0.528*** -0.165
Facial Expression -0.188 0.139 0.392* 0.486** 0
Age bin 0.052 -0.148 -0.127 -0.107 0 0
Profile Description 0.065 0.060 0.185 0.096 0 0 0
Note: n = 45 ⇤p<0.05; ⇤⇤p<0.01; ⇤⇤⇤p<0.001; ⇤⇤⇤⇤p<0.0001

1
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Table 2.12. Aggregate-level correlations between choice decomposition variables and factorial design elements in the fMRI sample. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Attractiveness Career Prospects Personality Likeback Attractiveness bin Facial Expression Age bin Profile Description NAcc
Attractiveness
Career Prospects 0.009
Personality 0.493** -0.041
Likeback -0.050 -0.053 0.546***
Attractiveness bin -0.739**** -0.201 -0.439** -0.081
Facial Expression -0.208 0.080 0.274 0.364* 0
Age bin -0.051 -0.029 0.206 -0.129 0 0
Profile Description 0.077 0.123 -0.037 0.044 0 0 0
NAcc 0.673**** -0.103 0.364* 0.124 -0.410* -0.150 -0.134 -0.018
vmPFC -0.024 0.191 0.105 0.375* -0.132 0.145 0.040 -0.248 0.094
Note: n = 29 ⇤p<0.05; ⇤⇤p<0.01; ⇤⇤⇤p<0.001; ⇤⇤⇤⇤p<0.0001

1
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Table 2.13. Aggregate-level correlations between choice decomposition variables and factorial design elements in the simulated 
market sample. 
 
 

Attractiveness Career Prospects Personality Likeback Attractiveness bin Facial Expression Age bin
Attractiveness
Career Prospects 0.081
Personality 0.707**** 0.092
Likeback 0.409* -0.025 0.893****
Attractiveness bin -0.747**** -0.258 -0.611**** -0.414*
Facial Expression -0.194 0.044 0.318 0.510** 0
Age bin 0.004 -0.006 0.100 0.140 0 0
Profile Description 0.100 0.146 0.148 0.158 0 0 0
Note: n = 654 ⇤p<0.05; ⇤⇤p<0.01; ⇤⇤⇤p<0.001; ⇤⇤⇤⇤p<0.0001

1
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Table 2.14. In-lab sample OLS regression results showing the effect of aggregate choice 
decomposition variables on in-lab sample aggregate choice likelihood and simulated market 
level aggregate choice likelihood (36 profiles). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Dependent variable:

Choice

Sample Market

Predictor (Aggregate Sample Means) (1) (2) (3) (4) (5) (6)

Attractiveness Ratings 0.331⇤⇤ 0.314⇤⇤ 0.255⇤⇤ 0.240⇤⇤

(0.022) (0.036) (0.038) (0.058)

Career Prospects Ratings 0.030 0.064 �0.033 �0.032
(0.016) (0.050) (0.028) (0.081)

Personality Ratings �0.041 �0.038 �0.025 �0.092
(0.050) (0.064) (0.086) (0.104)

Likeback Ratings 0.173⇤⇤ 0.118 0.100 0.086
(0.057) (0.066) (0.098) (0.107)

Attractiveness bin (Medium) �0.309⇤⇤ �0.020 �0.191⇤⇤ �0.013
(0.062) (0.031) (0.048) (0.050)

Attractiveness bin (Low) �0.398⇤⇤ �0.021 �0.333⇤⇤ �0.108
(0.062) (0.035) (0.048) (0.058)

Facial Expression (Smiling) �0.040 0.014 �0.037 0.028
(0.051) (0.026) (0.039) (0.042)

Age (24-28) �0.025 �0.031 0.016 0.008
(0.051) (0.020) (0.039) (0.032)

Profile Description (SES/Career) �0.013 �0.044 �0.052 0.014
(0.062) (0.062) (0.048) (0.101)

Profile Description (Personality) 0.067 0.007 0.066 0.046
(0.062) (0.024) (0.048) (0.040)

R2 0.951 0.625 0.959 0.782 0.654 0.834
Adjusted R2 0.945 0.547 0.942 0.753 0.583 0.767
Residual Std. Error 0.053 (df = 31) 0.152 (df = 29) 0.054 (df = 25) 0.091 (df = 31) 0.118 (df = 29) 0.088 (df = 25)
F Statistic 149.981⇤⇤ (df = 4; 31) 8.058⇤⇤ (df = 6; 29) 57.835⇤⇤ (df = 10; 25) 27.735⇤⇤ (df = 4; 31) 9.146⇤⇤ (df = 6; 29) 12.534⇤⇤ (df = 10; 25)

Note: Market n = 654, Sample n = 45 ⇤p<0.05; ⇤⇤p<0.01

1
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Table 2.15. OLS regression results showing the effect of aggregate fMRI sample choice 
decomposition variables and neural ROIs on fMRI sample aggregate choice likelihood and 
simulated market level aggregate choice likelihood (n = 36 profiles). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Dependent variable:

Choice

Predictor (Aggregate Sample Means) Sample Market

Atttractiveness 0.286⇤⇤ 0.230⇤⇤ 0.239⇤⇤ 0.232⇤⇤

(0.027) (0.033) (0.018) (0.024)

Career Prospects �0.026 �0.018 0.010 0.012
(0.021) (0.021) (0.014) (0.015)

Personality 0.032 0.046 0.033 0.034
(0.049) (0.046) (0.033) (0.034)

Likeback 0.147 0.107 0.103⇤ 0.104
(0.073) (0.074) (0.048) (0.055)

NAcc 1.220⇤⇤ 0.368⇤ 0.875⇤⇤ 0.049
(0.182) (0.137) (0.170) (0.102)

vmPFC �0.016 �0.005 �0.011 �0.008
(0.064) (0.039) (0.060) (0.029)

R2 0.87 0.58 0.89 0.91 0.45 0.91
Adjusted R2 0.85 0.55 0.87 0.90 0.41 0.89
Residual Std. Error 0.09 (df = 31) 0.15 (df = 33) 0.08 (df = 29) 0.06 (df = 31) 0.14 (df = 33) 0.06 (df = 29)
F Statistic 50.34⇤⇤ (df = 4; 31) 22.63⇤⇤ (df = 2; 33) 40.34⇤⇤ (df = 6; 29) 79.07⇤⇤ (df = 4; 31) 13.26⇤⇤ (df = 2; 33) 49.86⇤⇤ (df = 6; 29)

Note: Market n = 654, Sample n = 29 ⇤p<0.05; ⇤⇤p<0.01

1
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Table 2.16. OLS regression results showing the effect of aggregate fMRI sample choice 
decomposition variables and neural ROIs on fMRI sample aggregate likeback ratings and 
simulated market level aggregate likeback ratings (36 profiles). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Dependent variable:

Likeback Ratings

Predictor (Aggregate Sample Means) Sample Market

Atttractiveness �0.165⇤⇤ �0.199⇤⇤ �0.005 �0.008
(0.060) (0.072) (0.042) (0.055)

Career Prospects �0.007 �0.022 �0.011 �0.013
(0.052) (0.050) (0.036) (0.039)

Personality 0.445⇤⇤ 0.413⇤⇤ 0.340⇤⇤ 0.335⇤⇤

(0.090) (0.085) (0.063) (0.066)

NAcc 0.172 0.343 0.406 0.033
(0.310) (0.331) (0.248) (0.255)

vmPFC 0.250⇤ 0.193⇤ 0.055 0.031
(0.110) (0.088) (0.088) (0.068)

R2 0.433 0.149 0.539 0.542 0.090 0.546
Adjusted R2 0.380 0.097 0.462 0.499 0.035 0.470
Residual Std. Error 0.212 (df = 32) 0.256 (df = 33) 0.197 (df = 30) 0.148 (df = 32) 0.205 (df = 33) 0.152 (df = 30)
F Statistic 8.151⇤⇤ (df = 3; 32) 2.885 (df = 2; 33) 7.013⇤⇤ (df = 5; 30) 12.635⇤⇤ (df = 3; 32) 1.637 (df = 2; 33) 7.219⇤⇤ (df = 5; 30)

Note: Market n = 654, Sample n = 29 ⇤p<0.05; ⇤⇤p<0.01

1
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Table 2.17. Comparing choice prediction accuracy between OLS regression models at the  
aggregate-level (like rate) within the fMRI sample and in the in-lab sample and simulated market 
data using fMRI sample choice decomposition variables and neural ROI separately and 
combined for training. All models trained in 70% fMRI sample data (i.e., market predictions 
trained on fMRI sample aggregate choice likelihood DV) and tested on 30% hold-out data. 
Classifiers were trained with 10-fold cross validation and accuracy estimates are the average of 
50 iterations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Aggregate-level Choice
Prediction Accuracy

Trained on: In-lab Sample Within fMRI Sample Market
Attractiveness 36.5 32.2 35.8
Career Prospects 15.1 9.3 19.1
Personality 10.0 18.2 17.3
Likeback 14.4 7.3 13.4
All Behavioral 26.4 40.2 34.0
NAcc 17.6 21.3 32.5
vmPFC 14.7 10.0 15.8
NAcc + vmPFC 20.9 19.6 28.0
All Behavioral + NAcc 29.1 37.6 33.3
All Behavioral + vmPFC 25.6 36.9 31.8
All Behavioral + NAcc + vmPFC 30.9 36.0 30.7
Chance: 10.0 10.0 10.0

1
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CHAPTER III 

Gene-Level Approaches to Genome-Wide Association: Developing Python-Based Tools for 

Gene-Level Association Testing 

 

Genetic association studies have the potential to deepen our understanding of behavioral traits 

and tendencies studied in the social sciences (e.g., psychology, economics, consumer behavior). 

Advances in genetic sequencing technologies have allowed researchers to investigate genetic 

influences on a wide array of human behaviors. Indeed, research findings in social science 

genomics have reshaped how we think about risk taking (Aydogan et al., 2019), economic and 

political preferences (Benjamin et al., 2012), and even coffee consumption (Cornelis et al., 

2015). At present, there are two primary methodologies that are used in genetic association 

studies: 1) the candidate gene approach, and 2) genome-wide association studies (GWAS).  

Research using candidate genes has produced interesting insights across many domains. 

For example, in the dopamine receptor D4 variable number tandem repeat (DRD4 VNTR) is a 

well-studied candidate gene that has produced associations related to religiosity and prosociality 

(Sasaki et al., 2011), cultural value orientation (Kitayama et al., 2014), and postgame 

testosterone levels in salespeople following team-based games (Verbeke et al., 2015). In 

candidate gene studies, researchers restrict their analyses to a small number of genetic loci/ 

alleles, or a set of single nucleotide polymorphisms (SNPs) in a very small number of genes (i.e., 

often a single gene), and use sample sizes consistent with behavioral/ experimental research 
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studies (typically in the range of 200-500 per experiment). However, by limiting sample sizes 

and restricting analyses to a single variant, candidate gene studies limit their external validity and 

statistical power (Ioannidis, 2005, 2007; Chabris et al., 2012). Indeed, given that the true effect 

sizes for genetic aspects of complex social behaviors relevant to marketing are likely small, the 

sample sizes necessary to adequately power such studies are quite large.  

On the other hand, GWAS occupy the opposite end of the methodological spectrum as a 

‘gold standard’ for genetic association studies and have gained much traction among behavioral 

geneticists, psychiatrists, and genoeconomists (Benjamin et al., 2012). In GWAS, all of the SNPs 

from a SNP array (typically, in the order of millions of SNPs) are included in the analysis and 

alleles are tested to see if they occur more frequently at a certain level of the behavioral trait that 

is under investigation. However, given the single genetic variant level of analysis and massive 

number of variants being tests, performing a robust GWAS requires massive sample sizes 

(greater than 300,000), which is cost prohibitive in many settings (including, but not limited to 

business schools). For this reason, GWAS studies are largely only performed by large genetic 

consortia or labs with significant research grants. Additionally, the phenotypic or behavioral data 

that accompany large genetic databases feasible for use in a GWAS (e.g., the UK BioBank) are 

typically restricted to or primarily consist of medical and physiological characteristics. So, 

although GWAS is the gold standard for genetic association studies, conducting a proper, fully 

powered exploratory GWAS requires extensive resources and data. For these reasons, many 

researchers in marketing, psychology, and behavioral economics still use candidate gene 

approaches when studying the genetic underpinnings of complex psychological phenomenon 

(e.g., prosocial behavior or the endowment effect), even though such studies may be significantly 

underpowered and are known to produce false positives; it can be challenging to find dependent 
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variables that are interesting to marketers, psychologists, and behavioral economists in genetic 

datasets large enough to perform GWAS.  

Researchers interested in genetic association studies who are well versed in experimental 

methods and who have primarily used candidate gene methods in the past, but are aware of their 

shortcomings and do not have the resources to run a proper GWAS, face many technical 

challenges when deciding to forego the candidate gene approach but continue studying genetic 

associations in their area of research. Consider the DRD4 VNTR, which has been showed to be 

involved in influencing the levels of dopamine uptake and transmission in the brain and/ or 

dopamine sensitivity in the brain (Wang et al., 2004). In candidate gene studies, DRD4 VNTR 

acts as a proxy measurement for variation in a larger number of genes that play a role in the 

dopaminergic signaling pathway. A candidate gene researcher may (reasonably) consider more 

precisely and directly measuring dopamine sensitivity by using genetic information from all 

genes involved in the dopaminergic pathway, rather than using the DRD4 VNTR as a proxy. 

Associations between this set of dopaminergic genes and the construct of interest could then be 

compared with associations between other genes and the construct of interest, with the 

expectation that the associations between dopaminergic genes would be significantly greater than 

other genes. However, from an individual researcher perspective the statistical tools necessary 

for implementing such a research design - a theory driven gene-level association comparison – 

are not publicly available, which makes this a very challenging design to implement for many 

researchers because of the sheer size of the genetic data and statistical problem (relative to the 

statistical tools necessary for candidate gene studies). That is, the statistical tools and expertise 

needed for such an approach are no longer similar to those necessary for candidate gene 

approaches, and, as such, the startup costs for such research are high (a similar argument can be 
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made for other approaches that are in middle of the candidate gene/ GWAS methodological 

spectrum as well). 

The present research aims to develop a set of Python-based tools that researchers can use 

for gene-level hybrid approaches to genetic association methodologies, and provides initial 

demonstrations of these tools using data from the University of Michigan’s Health and 

Retirement Study (HRS). Whereas the majority of exploratory genetic association studies are 

conducted at the SNP level of analysis, gene-level approaches have the ability to take advantage 

of two biological facts: 1) the known structure of genes/ mapping of genes in the genome, and 2) 

the likelihood of correlation based on the relative location of neighboring SNPs in the genome 

(i.e., SNPs that are closer together in the genome are more highly correlated). Rather than test the 

significance of individual SNPs (as in GWAS), or test several prespecified genetic variants (as in 

candidate gene studies), gene-level approaches utilize all of the observed information within a 

gene to test the association between this gene and the behavior/ trait of interest. The tools 

discussed in this chapter include three primary methods of genome-wide gene-level association 

analysis (i.e., three ways of representing a gene statistically): 1) unedited SNP data within a 

gene, 2) the creation of eigenSNPs using principal components analysis, and 3) representing a 

gene using factors from factor analysis. In the first approach, all of the observed SNPs within a 

gene are included in regression models to represent the gene. In the second approach, principal 

components are used to create eigenSNPs, from the SNPs observed within a gene, and these 

eigenSNPs are then used to represent the gene. After conducting a principal component analysis, 

the resulting orthogonal components (eigenvectors; or eigenSNPs) that explain >90% of the 

variance within a gene are then used in the model to represent higher order gene-level variation 

that exists between individuals. Similar to the eigenSNP approach, in the third approach, factor 
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analysis is conducted and the resulting factors are then used to represent the gene. In the 

eigenSNP and factor analysis approaches, these dimension reduction techniques are used to 

account for multicollinearity between SNPs within a gene, as well as create components/ factors 

that may represent higher order gene variants. Additionally, power analysis simulations of such 

dimension reduction techniques on genetic data have suggested that researchers can achieve 

higher statistical power in association studies by conducting analysis at the gene-level (Wang & 

Abbott, 2008; Shen & Zhu, 2009). That said, empirical tests of power analysis for gene-level 

association approaches are not yet present in the literature. As such, a primary contribution of 

this work is to provide Python-based tools for future research and testing of gene-level 

approaches. 

Formally, the gene-level approaches discussed here can be modeled as separate 

regressions for each gene that are conducted using the model, 

 

(1) yi  = μ +βj xij+ εi 

 

where yi denotes the value of the outcome variable for individual i, μ is the mean of the outcome 

variable in the population, xij denotes the minor allele/ pseudo-minor allele frequency of SNP/ 

eigenSNP/ factor j for individual i (under a minor allele dosage model), and εi is the residual or 

effect of exogenous factors on yi. The slope coefficient for xij, βj, is the unique effect of SNP/ 

eigenSNP/ factor j on yi.  

Of the gene-level approaches, the eigenSNP procedure has only been developed recently 

and is typically implemented in a manner more similar to the candidate gene approach (Set et al., 

2014; Wang & Abbott, 2008; Shen & Zhu, 2009); researchers pick a handful of genes (less than 



 

 71 

25) that they have theoretical reasoning to support their involvement in a given psychological or 

behavioral trait, and statistically test the effect of the entire gene on the given behavior. 

However, research funding/ investments into moderately sized genetic datasets such as the 

Health and Retirement Study (Health and Retirement Study, 2021) or Wisconsin Longitudinal 

Study (Herd, Doborah, and Roan, 2014), which have genetic samples (> 10,000) that are not 

large enough for GWAS, but have rich phenotypic data, may provide researchers with an 

opportunity to capitalize on the advantages of gene-level approaches, yet statistical tools for 

doing so are sparce or non-existent. 

Whereas a traditional GWAS can be conducted relatively simply using genetic software 

packages such as PLINK (Purcell et al., 2007), to the best knowledge of this author (at the time 

of conducting this research), there is no software available for the creation of genome-wide gene-

level associations and therefore no simple way for researchers to implement such procedures or 

similar gene-level approaches. Indeed, given the widespread availability and development of 

SNP-level association approaches (e.g., PLINK) it is possible that many researchers choose a 

SNP level of analysis despite an interest in gene-level associations, as technical and 

computations requirements for gene-level associations provide an additional barrier for such 

analyses. 

Python Tools and Statistical Approach 

This section describes the approach and functionality of the accompanied Python-based 

tools for gene-level genome-wide association analyses, which can be viewed and downloaded 

from GitHub at https://git.io/JRr5c. 

The minimum data requirements for using the gene-level Python tools described in this 

chapter are: 1) a publicly available human genome reference build (such as hg19; NCBI, 2021) 
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and 2) a dataset that includes your dependent variable of interest, age and sex demographic 

information, and SNP-chip genetic data for all participants (such as the HRS or Wisconsin 

Longitudinal Study). All SNP-level quality control and preprocessing should be conducted prior 

to using these gene-level association tools, following standard SNP data quality control measures 

(e.g., SNPs with minor allele frequency greater than 5%, genotyping rate of greater than 1% per 

SNP, missingness of less than 5% for each individual, and a sample specific heterozygosity rate 

filter); this can be conducted in PLINK (Purcell et al., 2007). In Python, lazy loading of genetic 

data is conducted via the pandas-PLINK package (pandas-plink, 2021; a Python package that 

interfaces with PLINK). Lazy loading is necessary given the significant size of many genetic 

datasets, and, as such, allows SNP data to be loaded into memory for each gene, and gene-level 

association statistics to be computed, without the need to hold an entire genetic dataset in 

memory (and thus reducing the computation requirements for conducting gene-level association 

analyses). In short, the statistical process proceeds as follows: for each gene, SNP data is loaded, 

eigenSNPs/ factors are created using PCA/ factor analysis, and these SNP data/ eigenSNPs/ 

factors are subsequently used to represent each gene in regressions to determine association with 

the dependent variable of interest.  

Given a SNP-level genomic dataset, the first task necessary for gene-level association is 

to identify and subset SNPs that are observed within a given gene, for all genes in the genome. 

This is accomplished by traversing genetic location information from a human genome reference 

build map of the human genome. For each gene, base pair start and end locations are given, 

which, along with SNP positioning data are used to tag genes that SNPs are located within. Once 

all observed genic SNPs are associated with a gene, these data and can be used to create gene 

representations with from SNP data. For PCA, eigenSNPs are created by running a PCA on the 
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SNP data within a given gene and extracting only the eigenvectors that explain 90% of the 

variance in the genetic data. Similarly, when representing a gene using factor analysis for 

dimension reduction, an exploratory factor analysis is run, without rotation, setting the number of 

dimensions equal to the number of SNPs observed within a given gene and recording the 

resulting number of factors that have an eigenvalue greater than 1. Then, a second factor analysis 

is performed, using promax rotation, and setting the number of factors equal to those with an 

eigenvalue greater than 1 from the initial exploratory factor analysis. For each gene, the resulting 

factors are used to represent this gene in subsequent association analysis. 

Once data are loaded and processed at the gene-level, association analysis can proceed. 

Ordinary least squares (OLS) regression models are conducted in a similar manner to GWAS. 

Critically, rather than looking at a single SNP estimate in a regression model, treatment and 

control models need to be run and compared to isolate the effect of gene data while controlling 

for standard genome-wide study control variables. Using the minor allele dosage model 

described in Equation 1, the treatment model includes the SNP/ eigenSNP/ factor representation 

of the gene and control variables age, sex, and population stratification genetic controls, while 

the control model contains the same regressors but excludes the SNP/ eigenSNP/ factor 

representation of the gene. After running OLS on the treatment and control models, these models 

are then compared using a multiple partial F-test to extract the unique association of each gene 

with the dependent variable of interest (i.e., the overall effect of genetic variation within the gene 

on the dependent variable over and above the effect of control variables). As genes vary in the 

number of SNPs, and resulting eigenSNPs or factor representations, one cannot retrieve the 

associative contribution statistically with a single regression coefficient (as is the case with 

GWAS when retrieving test statistics from the SNP of interest).  
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For all genes across the genome, relevant association statistics can be extracted for each 

gene or a subset of genes (based on a list of gene names, chromosomes, and genomic positions). 

Additionally, the OLS function within the main association loop that is used to create association 

statistics can be easily be modified for use with different types of models and dependent 

variables (e.g., logistic regression/ binary dependent variables). Thus, summarizing the set of 

Python tools and statistical approach, each loop of the association function takes a gene, finds, 

subsets, and lazy loads the SNP data within that gene, creates eigenSNPs using PCA and factors 

using factor analysis as alternative representations of the gene, merges gene representation data 

back with the survey data, runs treatment and control regression models, compares regression 

results using a multiple partial F-test, and appends relevant gene-level association statistics to a 

results table prior to continuing on to the next gene in the genome mapping dataset (and this 

process is repeated for all ~20,000 genes in the human genome).  

Empirical Demonstration and Testing 

 In this section, I provide a demonstration of how the Python tools discussed in this 

chapter can be used for gene-level association using data from the HRS.  

Dataset 

The HRS is a nationally representative longitudinal study that surveys approximately 

20,000 individuals in the United States of America every two years. Data include rich individual 

and household-level information on health (e.g., cognitive functioning) and economic (e.g., 

income, assets) variables from individuals over 50 years of age. The HRS is a public dataset 

hosted by the Institute for Social Research (Survey Research Center) at the University of 

Michigan and sponsored by the National Institute on Aging and the Social Security 

Administration. 
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Between the years of 2006 and 2012, HRS collected genetic data from a significant 

subset (83% in 2006, and 84% in 2008) of the sample. Genetic data from HRS is stored by the 

National Center for Biotechnology Information’s database of Genotypes and Phenotypes 

(dbGaP). The 2006 samples were collected using a mouthwash collection method, while the 

2008 samples were collected using the Oragene DNA collection kit (OGR-250). All genotyping 

was conducted using the Illumina Human Omni-2.5 Quad beadchip (with 2.5 million SNP 

coverage) and performed by the National Institutes of Health (NIH) Center for Inherited Disease 

Research. Quality control of SNP genotyping was performed by the Genetics Coordinating 

Center at the University of Washington, Seattle, WA. A principal components analysis of the 

entire HRS genomic sample was conducted in PLINK, and the top four components are included 

in all association analyses to control for population stratification (Price et al., 2006). 

For gene location and mapping, the International Human Genome Sequencing 

Consortium’s hg19 homo sapiens genomic structural information was used. These data are 

publicly available and contain human genomic information including gene names, chromosome 

location, and start and end base pairs resulting from the Human Genome Project (NCBI36, 

2021). 

Variable Selection/ Phenotypes of Interest 

Given that genetic associations with human behavior are of broad appeal across a wide 

variety of fields (from medicine to marketing), genetic association studies vary widely in the 

type of constructs that have been investigated. A key aspect of these variables is the extent that 

the variable is physiological (e.g., systolic blood pressure, diastolic blood pressure, waist-to-hip 

ratio), behavioral (e.g., smoking initiation, coffee consumption), or social-psychological (e.g., 

educational attainment, intelligence). Given the spectrum of variables that have been previously 
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studied in genetic association studies, it is important to determine how gene-level association 

techniques may vary in performance across phenotypes (such as the aforementioned 

physiological to social-psychological spectrum). As such, I have chosen to sample variables 

across the physiological to social-psychological spectrum for the following demonstration 

(Ebstein et al., 2010). Constructs identified for inclusion in this empirical demonstration of gene-

level genome-wide association include: 1) body-mass-index (BMI), 2) depression (CESD), and 

3) educational attainment (EDYRS; i.e., years of education). Being based on a combination of 

body measurements, BMI is the most physical/ biological of these constructs, whereas CESD, a 

key mental health disorder, is more psychological, and EDYRS more social-psychological. 

Gene-level Association Descriptive Statistics and Comparisons 

 To illustrate preliminary characteristics of the associations produced by the genome-wide 

gene-level associations that may be conducted using the Python tools described in this chapter, 

output of these tools will be compared to an internal GWAS using HRS data for BMI, CESD, 

and EDYRS. Significance is tested using both a family-wide genome-wide significance threshold 

(i.e., 0.05/ number of statistical tests) and a static nominal significance threshold of 1 x 10-5. The 

main association output provides similar test statistic results as a standard GWAS output, but at 

the gene-level. As such, many standard GWAS visualization tools can readily be used at the 

gene-level (e.g., Manhattan plotting tools). 

BMI. An internal GWAS of BMI conducted 1,566,738 SNP associations and produced 0 

genome-wide association and 29 nominal SNP associations (see Figure 3.1). Gene-level 

approaches, on the other hand, conducted 18,999 tests, and produced far fewer associations, with 

1 genome-wide association using the SNPs within a gene method ("XIRP2") and nominal 

associations as follows: 4 genes when using all SNPs within a gene ("XIRP2", "EDIL3", 
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"HOXA2", "INA"; see Figure 3.2), 1 gene when using PCA and factor analysis ("HOXA2"; see 

Figure 3.3 and 3.4). Lambda values indicate that genomic inflation was lowest at the SNP-level 

of analysis (λ = 1.06), followed by gene-level approaches factor analysis (λ = 1.18), PCA (λ = 

1.28), and SNPs within a gene (λ = 1.58; see Figure 3.5 for QQ plots).  

CESD. An internal GWAS of CESD conducted 1,566,738 SNP associations and 

produced 1 genome-wide association (“rs77640966”) and 34 nominal SNP associations (see 

Figure 3.6). Gene-level approaches, on the other hand, conducted 18,999 tests, and produced a 

single nominal association using the PCA approach (“DIS3L2”; see Figure 3.7 through 3.9 for 

Manhattan plots). Lambda values indicate that genomic inflation was lowest at the SNP-level of 

analysis (λ = 1.06), followed by gene-level approaches factor analysis (λ = 1.24), PCA (λ = 

1.25), and SNPs within a gene (λ = 1.59; see Figure 3.10 for QQ plots). 

 EDYRS. An internal GWAS of EDYRS conducted 1,566,738 SNP associations and 

produced 1 genome-wide association (“rs2035444”) and 68 nominal SNP associations (see 

Figure 3.11). Gene-level approaches, on the other hand, conducted 18,999 tests, and produced far 

fewer associations, with no genome wide association and nominal associations as follows: 0 

genes when using all SNPs within a gene (see Figure 3.12), 1 gene when using PCA 

("FTCDNL1"; see Figure 3.13) and 1 genes when using factor analysis (“FTCDNL1”; see Figure 

3.14). Lambda values indicate that genomic inflation was lowest at the SNP-level of analysis (λ 

= 1.04), followed by gene-level approaches PCA (λ = 1.15), factor analysis (λ = 1.16), and SNPs 

within a gene (λ = 1.33; see Figure 3.15 for QQ plots). 

Discussion 

Datasets such as the Health and Retirement Study (HRS) have genetic samples that are 

significantly larger than typical candidate gene studies, are accessible to researchers around the 
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globe, and include a diverse range of rich phenotypic data of interest to social scientists across 

many fields, but are not large enough for traditional GWAS. Such genomic datasets may provide 

researchers with an opportunity to use statistical tools that capitalize on the advantages of gene-

level association techniques (vs. SNP-level association techniques) but at this time gene-level 

association methods are understudied and the lack of publicly available tools to perform gene-

level analyses may act as a barrier of entry to many researchers.  

In this chapter, I discuss the development of a Python-based set of tools that can be used 

to implement genome-wide gene-level associations, and may subsequently be used to understand 

a variety of gene-level association techniques. These genome-wide gene-level association 

procedures combine a GWAS style whole-genome exploratory approach, but at the gene-level of 

analysis, rather than the SNP-level of analysis, and can be used to test the usefulness of gene-

level approaches across research contexts and phenotypes.  

By approaching genetic association from the gene-level, all available genic data is used to 

perform a whole-genome GWAS style statistical procedure, except with SNPs/ eigenSNPs/ 

factors within a gene, rather than individual SNPs. Across the genome in an exploratory analysis, 

such an approach thus reduces the total number of association tests from the number of SNPs 

(typically in the order of several million associations; ~2.5 million in the case of HRS) to the 

number of observed genes (typically in the order of tens of thousands of observed genes; humans 

have ~25,000 genes) and may hold the potential to reduce the sample size requirements 

necessary for adequate statistical power in a genetic association study of complex human 

behaviors. A preliminary demonstration of these genome-wide gene-level tools illustrates that 

gene-level associations tend to be more conservative and may reduce spurious associations, with 

fewer nominal gene association than SNP associations observed across three varied dependent 
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variables in the HRS. Additionally, after quality controlling data at the SNP level, some genomic 

inflation was observed in gene-level associations. That said, initial findings suggest that 

dimension reduction representations of a gene (such as PCA and factor analysis approaches) 

produce less genomic inflation than using all SNPs within a gene without any dimension 

reduction to represent the gene. Such tools could indeed be an initial step opening the door for 

social scientists to study gene-level associations in moderately sized, publicly available datasets, 

making genetic association research more accessible to a variety of researchers. 

 Limitations and Future Directions 

 Like all methodologies, gene-level association techniques are not without limitations. 

One of the most prominent current limitations of gene-level approaches is the issue of genic 

versus non-genic data. Gene-level approaches ignore non-genic data (i.e., SNPs that are not 

located within a gene). Although non-genic data was long thought to be ‘junk DNA’, not 

valuable for protein function and subsequent phenotypic variation, it is now clear that non-genic 

SNPs play a significant role in a wide variety of biological functions (Palazzo & Gregory, 2014; 

Gloss & Dinger, 2018). For example, the cleaned HRS data in this chapter contains ~ 1,604,118 

SNPs, but when restricting data to genic SNPs, only ~ 714,886 SNPs are observed and used for 

analyses. Gene-level association approaches will need to develop parallel methodologies and 

statistical tools for incorporating non-genic genetic data. 

 Greater access to publicly available statistical tools for gene-level association will allow 

the development of further gene-level association methodologies. The tools presented in this 

chapter allow researchers to obtain gene-level association statistics for all genes across the 

genome, which can in turn be used to gain a further understanding of the statistical properties of 

gene-level tests (versus SNP-level tests) or test a wide variety of hypotheses. For example, a 
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researcher interested in dopaminergic genes may conduct empirical test either comparing the 

association strength between dopaminergic genes and a construct of interest with 1) associations 

between all other observed genes and the construct of interest, or 2) ‘similar’ genes that have 

similar length and number of SNP observations (among many other empirical testing 

possibilities). Having access to gene-level genome-wide association tools will also allow 

researchers to better understand the statistical properties of gene-level associations, beyond 

previous simulation work. Understanding the typical range of effect sizes garnered by gene-level 

approaches will allow researchers to conduct power calculations and develop scientifically 

robust standards for sample sizes necessary to study categories of behavioral traits and 

tendencies across fields. Finally, access to gene-level association tools may open the door for 

researchers to use existing genetic datasets to study a broad range of phenomena. 
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Figure 3.1. Manhattan plot for SNP associations with BMI resulting from GWAS using HRS data. 
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Figure 3.2. Manhattan plot for gene associations with BMI resulting from gene-level analysis using all SNPs within each gene 
observed in the HRS data. 
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Figure 3.3. Manhattan plot for gene-level associations with BMI resulting from PCA analysis using SNPs within each gene observed 
in the HRS data. 
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Figure 3.4. Manhattan plot for gene-level associations with BMI resulting from factor analysis using SNPs within each gene observed 
in the HRS data. 
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Figure 3.5. QQ plots showing genomic inflation for genetic associations with BMI using various 
association methods using data from the HRS.
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Figure 3.6. Manhattan plot for SNP associations with CESD resulting from GWAS using HRS data. 
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Figure 3.7. Manhattan plot for gene associations with CESD resulting from gene-level analysis using all SNPs within each gene 
observed in the HRS data. 
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Figure 3.8. Manhattan plot for gene-level associations with CESD resulting from PCA analysis using SNPs within each gene 
observed in the HRS data. 
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Figure 3.9. Manhattan plot for gene-level associations with CESD resulting from factor analysis using SNPs within each gene 
observed in the HRS data. 
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Figure 3.10. QQ plots showing genomic inflation for genetic associations with CESD using 
various association methods using data from the HRS. 
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Figure 3.11. Manhattan plot for SNP associations with EDYRS resulting from GWAS using HRS data. 
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Figure 3.12. Manhattan plot for gene associations with EDYRS resulting from gene-level analysis using all SNPs within each gene  
observed in the HRS data. 
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Figure 3.13. Manhattan plot for gene-level associations with EDYRS resulting from PCA analysis using SNPs within each gene 
observed in the HRS data. 
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Figure 3.14. Manhattan plot for gene-level associations with EDYRS resulting from factor analysis using SNPs within each gene 
observed in the HRS data. Note: due to computational resource limitations, only chromosome 1 and 2 are displayed at this time.  
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Figure 3.15. QQ plots showing genomic inflation for genetic associations with EDYRS using 
various association methods using data from the HRS. 
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