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Abstract 

 

The study of genetics is an integral part to understanding the biology behind our complex traits 

and can be approached in a variety of ways. Technological advancements in the field of 

genomics have enabled unprecedented large-scale studies which have identified numerous 

statistical associations between many diseases and our genes. Recently, studies involving gene 

expression have become an increasingly popular approach to understanding the biological 

pathways underlying statistical associations. In this dissertation, I address specific challenges 

related to the study of gene expression, including meta-imputation of expression across 

multiple datasets with only summary-level imputation models available, correcting for technical 

biases towards reference alleles in array-based expression assays, and identifying tissue-specific 

and population-specific regulatory variants and trait-associated loci in the context of systems 

genetics with whole genome sequencing, transcriptomics profiles, morphometric traits, and 

clinical endpoints. 

In Chapter 2, I develop a method which leverages multiple datasets to accurately impute tissue-

specific gene expression levels. Our method, Smartly Weighted Averaging across Multiple 

Tissues (SWAM) does not train directly from data, but rather performs a meta-imputation by 

combines extant imputation models by assigning weights based on their predictive 

performance and similarity to the tissue of interest. I demonstrate that when using the same 

set of resources, SWAM improves imputation accuracy compared to existing approaches that 

impute tissue-specific expression by training directly from raw data. The major benefit of using 

the SWAM meta-imputation framework is the flexibility to combine multiple pre-trained 

imputation models trained from privacy-protected raw datasets. Indeed, prediction accuracy is 

substantially improved when integrating multiple datasets, highlighting the importance of using 

multiple datasets. 
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In Chapter 3, I examine the benefits of using deep whole genome sequencing to empower and 

refine existing microarray-based eQTL studies. I revisited a well-known hybridization bias that 

arises in microarray studies caused by genetic polymorphisms within target probe sequences. In 

this chapter, I interrogated the impact of genetic variants from whole genome sequencing to 

accurately identify and characterize this bias at both the probe and probeset level. I evaluated 

several approaches to account for hybridization bias, including methods to remove variant-

overlapping probes, and a novel method to adjust hybridization bias for each probe. I 

demonstrate that accounting for variant-overlapping probes when quantifying expression levels 

reduces reference bias and false positives in cis-eQTL analyses. I also demonstrate that 

adjusting for hybridization bias with deeply sequenced genomes is ideal to avoid reference bias, 

although leveraging publicly available variant catalogues such as the 1000 Genomes data 

provides comparable benefits. 

In Chapter 4, I performed a systems genetic study of Pima Native Americans enrolled in a 

diabetic nephropathy study. I integrate whole genome sequences, transcriptomic profiles, and 

morphometric traits derived from two micro-dissected renal compartments – glomerular and 

tubulointerstitial – and clinical phenotypes to identify significant associations between these 

molecular and complex traits. I identified thousands of eQTLs, including kidney-specific and 

population-specific eQTLs. I also identified many transcriptional associations with 

morphometric and clinical phenotypes enriched for kidney-specific biological pathways. 

Moreover, through dimension reduction techniques, I identified genome-wide significant 

genetic associations with a morphometric trait (podocyte volume), and with a composite trait 

representing albumin-creatin ration and glomerular surface volume, which was obtained from 

dimensionality reduction techniques. Studying this unique and richly-phenotyped cohort 

resulted many population- and tissue-specific regulatory variants, genes, and pathways 

implicated for renal disease progression. 
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Chapter 1 Introduction 

 

1.1 Systems genetics: an overview 

Genetics is a subject of biology in which we seek to understand genes, which are basic physical 

units of inheritance and play a major role in the manifestation of traits in living organisms. One 

major focus in this field is to understand how differences in our genome (DNA variation) affect 

complex traits. The study of genetics has many important health and medical implications, such 

as determining genetic pre-disposition to various diseases, and characterizing response to drug 

treatment. Systems genetics is a study approach which seeks to holistically understand the 

causal biological pathways that connect our DNA to endpoint traits. By examining many 

molecular phenotypes such as gene expression, epigenomic marks, protein levels, and 

metabolite abundance, we gain a deeper understanding of the complicated biology underlying 

many diseases [1]. Although the study of genetics has long pre-dated our knowledge of the 

existence of DNA [2], recent rapid developments in technology have facilitated unprecedented 

research in this topic, providing a high resolution view of many molecular traits. For example, 

with advances in DNA sequencing technology, we have been able to conduct large-scale genetic 

studies for many diseases, detecting numerous genetic variants that could potentially influence 

the disease [3,4]. Advances in technology for gene expression assays have allowed us to study 

one of the very important intermediate phenotypes in systems genetics [5]. From these 

developments, thousands of trait-associated genetic loci are being mapped to regulation of 

gene expression, which in turn directly affect protein building and cell function [6,7]. 

In this thesis, I delve into some of the topics and challenges that arise in the study of systems 

genetics, particularly focusing statistical and computational aspects of gene expression studies. 

In this chapter, I provide a background on the history of related fields, technical developments 
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and challenges that have arisen in gene expression. We then provide an overview of some of 

the work we have contributed and how they address some the challenges faced in systems 

genetics studies. 

1.2 Genome-Wide Association Studies (GWAS) 

Genome-Wide Association Studies (GWAS) examine the statistical association between many 

genetic loci and traits. This approach became very popular starting in the early 2000s due to 

massive improvements in SNP array genotyping and whole-genome sequencing (WGS) 

technologies. In the past 15+ years, SNP-arrays have been widely used to study the effects of 

common genetic variants at a large scale. For example, multiple genetic susceptibility variants 

were identified in a study of type 2 diabetes for over 2,000 Finnish individuals, where SNP-

arrays were used to genotype over 300,000 markers [8]. In 2015, a meta-analysis study was 

performed on over 300,000 individuals, and identified 97 genetic loci associated with obesity 

[9]. One limitation of SNP-arrays is that it only prior known genomic locations can be 

genotyped, and rare and population-specific variants can be missed [10].  

Another approach to obtain genotypes is whole-genome sequencing, which seeks to 

characterize the genome of an individual down to a single base-pair resolution. This approach 

allows for detection of rare and population-specific variants. The history of WGS dates back to 

the 1990s, where many viruses [11] and bacteria were fully sequenced for the first time, along 

with a few animals. The Human Genomes project, completed in 2003, was the world’s largest 

collaborative biological project, with the goal of mapping every gene within the human 

genome. This project however, used Sanger sequencing, which is extremely labor-intensive and 

low throughput, which would not be viable to study high number of individuals [12]. The advent 

of short-read sequencing technologies has enabled re-sequencing human genomes in an 

affordable, massively parallel manner, allowing for population-scale genetic studies. For 

example, the 1000 Genomes project sought to provide a detailed catalogue of human variation 

across 2,504 human genomes in 26 populations [13,14].  Recently, the Genome Aggregation 

Database (gnomAD) has aggregated 125,748 exomes and 15,708 genomes from various human 

sequencing studies and have identified over 750 million variants, including >400,000 loss-of-
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function variants [15]. In addition to providing a high-resolution view in GWAS studies, WGS has 

also allowed for imputation of genotypes of individuals who were array genotyped. There are 

now freely available genotype imputation servers which can impute genotypes based on 

various populations from different reference panels [16]. 

Currently, the NHGRI-EBI GWAS catalog has publicly available information on >227,000 

significant associations across >4,800 (as of Dec 15, 2020) [3,4]. Despite the numerous 

association signals detected by GWAS, there are still many challenges and the biology behind 

these associations are still not clearly understood. For example, heritability (which can be 

calculated without genotypes) for many traits and complex diseases have not been fully 

accounted for from GWAS alone [17]. A very well-known example is human height, which has 

an estimated 80% heritability (proportion of variation explainable by genetic variation), yet only 

25%-50% of this heritability has been explained by genetic variants [18,19]. One plausible 

explanation is that many rare variants with high effect size have yet to be discovered from 

GWAS. Other hypotheses posit that there could be thousands or even millions of variants that 

all contribute a very small amount of heritability to each trait [20]. Another possible 

explanation could be attributed to trait heterogeneity, and that trait definitions could be 

subjective or inconsistent within the same study. In such scenarios, studying intermediate 

phenotypes such as objective biomarkers or gene expression could potentially provide better 

insight compared to using endpoint traits. There are other open-ended questions for GWAS 

that have also been discussed, including the notion that GWAS signals are often not easily 

interpretable in a biological setting. Some of the reasons for this include linkage-disequilibrium 

(LD) structures between associated variants, which confounds identification of causal variants. 

Other reasons include the lack of our understanding on the function of each individual genetic 

variants beyond the protein-coding regions of the genome, and the complex causal pathways 

that connect genetic variation to end-point phenotypes [21]. Despite the tremendous successes 

from GWAS, it is evident that the biological process that links our genotypes to traits is 

extremely complex. To fully understand the genetic architecture underlying complex traits, it is 

important to study the intermediate phenotypes that link these two endpoints together, such 

as gene expression. 
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1.3 Gene expression: an intermediate phenotype to understand GWAS signals 

The functional mechanisms behind trait-associations are very diverse and many avenues of 

research can be taken to understand their underlying biology. For example, some genetic 

variants have been shown to directly knockout a gene or disrupt protein function, such as 

nonsense mutations from the PCSK9 lowering plasma levels of LDL cholesterol [22]. There has 

also been mounting evidence that many GWAS risk variants are located outside of coding 

regions and either co-localize with, or directly regulate gene expression levels [23–26]. To 

understand the functional aspect of these variants, there are many different intermediate 

phenotypes that that can be studied, including gene expression (characterized by eQTLs), DNA 

methylation (meQTLs) [27,28], chromatic accessibility marks (caQTLs) [29,30], and protein 

levels (pQTLs)[31]. Among these, studies involving gene expression levels have been very 

popular and have played a central role in understanding biological pathways behind many traits 

[25,32,33].  

The genetic study of gene expression – originally coined as genetical genomics [34], and is a 

part systems genetics – has been important in unraveling the complex interaction between our 

genes, our environment, and many diseases [35]. While our genotypes provide the blueprint for 

protein coding which in turn affects our traits, these genes must be “expressed” before the 

phenotype becomes apparent [36,37]. Transcription is the process of copying DNA and 

converting it into RNA, is a fundamental unit for translation of DNA into proteins and enzymes, 

which eventually affects phenotypes and clinical endpoints [38]. While our DNA is the same in 

every cell, gene expression can be different based on cell function. Therefore, studying gene 

expression can provide insight into the differences between our tissues and cell types, allowing 

us to compare tissue-specific profiles, which may be more relevant to the trait of interest 

compared to studying genotypes alone.  

1.4 Expression Quantitative Trait Loci Studies (eQTLs): background 

Expression quantitative trait loci (eQTL) mapping is an approach which seeks to understand the 

regulatory function of genetic variants, and to determine regions of the genome that affect 

transcription. This is typically done by treating gene expression levels as a quantitative trait, and 
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calculating the statistical association between expression and genotypes [39,40]. A genetic 

variant can regulate expression levels both proximally (cis-) or distally (trans-). So far, most of 

the focus in eQTL studies have been for cis-acting variants due to the limited statistical power 

to detect trans-eQTLs with limited sample sizes [41,42]. Furthermore, cis-eQTLs have been 

shown to have higher effect sizes, and a substantial proportion of trans-eQTLs is found to be 

mediated by cis-eQTLs [43,44], For the work conducted in this thesis, we primarily focus on cis-

acting eQTLs due to higher power for detection, and the availability of cis-eQTL repositories.  

Over the years, many eQTL studies have been conducted and many of these studies have 

managed to provide interpretable insight into GWAS signals. The first genome-wide mapping of 

expression levels was performed in 2002 in a genetic linkage study for two strains of yeast [45]. 

Since then, eQTL studies have been carried out for various cell types in many organisms, 

including mice and humans [46,47].  In 2007, a study mapping genetic loci with expression 

levels of genes in EBV-transformed lymphoblastoid cell lines have been able to explain GWAS 

association signals in childhood asthma [48]. Another study found that variants associated with 

Crohn’s disease were likely to be regulatory variants for the PTGER4 gene [49]. 

Initially, many eQTL studies performed on humans were based on blood-derived cell types, due 

to the ease of collection [39]. However, it has been shown that studying the most relevant 

tissue to the trait in question would provide greater insight into clinical traits. For example, 

Emilsson et al. demonstrated that expression levels of genes for the adipose tissue were 

correlated with over 50% of obesity related traits, whereas only 10% of blood-derived gene 

expression levels were correlated with these same traits [23]. With the decreasing cost and 

increasing availability of obtaining expression data, eQTL databases have been generated for 

many different tissue types. For example, the GEUVADIS consortium has generated an eQTL 

repository on lymphoblastoid cell lines for 462 individuals from the 1000 Genomes project [47]. 

The Depression Genes and Networks (DGN) cohort has 922 participants with RNA sequencing 

for whole blood, and have discovered over 10,000 eGenes regulated by genetic variation [50]. 

The GTEx consortium is an on-going project which initially assayed 44 tissues spanning the 

blood, digestive, respiratory, reproductive, brain and many other tissue types. The list of tissues 
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has since expanded with more samples being included into the study, with 49 tissues currently 

having enough sample size to conduct eQTL analysis [51,52].  

 

1.5 Transcriptome-Wide Association Studies (TWAS) 

With the increasing availability of external eQTL and measured gene expression reference 

panels, transcriptome-wide association studies (TWAS) have become popular in recent years. 

The objective of TWAS is to leverage eQTL (or measured gene expression) information to 

elucidate the regulatory aspect for many GWAS risk variants [53]. Instead of using genotypes as 

explanatory variables, TWAS examines the association between trait and gene expression. This 

is typically done by imputing expression levels from individual-level genotypes and performing 

association analysis between imputed expression and traits. Because the imputed expression is 

a function of genotypes, TWAS essentially assigns scores to genetic loci based on their impact 

on gene regulation. As a result, the association signals found in TWAS are mostly driven by 

regulatory variants, providing biological insight for many of these GWAS signals [54]. In terms of 

power, TWAS has a much lower multiple testing burden as genes number in the tens of 

thousands, as opposed to the millions of SNPs often tested in GWAS. However, power can be 

lost for signals that are driven by non-regulatory associations.  

We do note that while TWAS can be conducted using measured expression, predicted 

expression is often preferred for several reasons. The first is that genotype data are typically 

easier and much more feasible to collect compared to tissue-specific expression data. It is 

overall much more cost effective and to obtain genotype data and use external eQTL databases 

to impute the expression. Secondly, predicted expression in theory should capture only the 

genetic regulated component of expression, and should be impervious to potential confounders 

such as environmental effects [55,56]. Finally, significant associations using predicted 

expression can be linked to specific genetic markers which can be cross-referenced with GWAS 

signals. This is particularly useful for determining potential causal candidate SNPs in cases of 

high linkage-disequilibrium between significant GWAS variants. 
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Since using imputed expression is the preferred method for conducting TWAS, accurate and 

powerful eQTL discovery is essential for these studies. A recently developed and widely used 

tool to impute expression is PrediXcan, which first uses an elastic net to detect cis-eQTLs from 

tissue-specific expression and genotypes. Next, a prediction database is generated and 

PrediXcan can automatically create a file with imputed expression levels using individual-level 

genotypes as an input [55]. Therefore, this tool can leverage many of the previously generated 

gene expression resources such as GTEx, DGN and GEUVADIS. For example, the authors used 

PrediXcan to create prediction databases for 44 GTEx tissues (now 49 from GTEx version 8) as 

well as the whole-blood tissue type from the DGN (depression gene network) cohort, for all 

tissue-specific “well-predicted” genes (cross-validated R-squared > 0.01). Using these prediction 

databases to impute expression levels, the authors performed TWAS on seven diseases from 

the Wellcome Trust Case Control Consortium (WTCCC) study [58], and identified 29 genes 

associated with type 1 diabetes, with numerous other genes being associated with autoimmune 

diseases. In 2016, SLINGER, an extension to PrediXcan was developed where the cis- 

requirement for eQTL discovery was removed. The authors demonstrated that prediction 

accuracy was improved, increasing the number of estimable genes by more than 2,000 for the 

DGN whole blood expression data. Furthermore, TWAS conducted on the 7 same WTCCC traits 

displayed significantly elevated r2 with many associations being highly reflective of actual 

variation in expression levels [58]. 

As the current pool of transcriptomic resources continues to expand and become higher 

quality, TWAS with predicted expression will become increasingly useful as a means to uncover 

the regulatory aspect of genetic association. 

 

1.6 The evolution of gene expression technologies 

1.6.1 Array-based expression profiling 

Traditionally, gene expression levels have been measured using microarrays. This technology 

was developed in the early 1990s where Fodor et al demonstrated that short DNA or RNA 
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molecules (oligonucleotides) could be synthesized onto a glass slide through photolithography 

[59]. This allowed for miniaturization of the chip, which Schena et al in 1994 demonstrated 

would accommodate high-capacity parallelization of multiple genes [60]. Modern day 

microarrays typically use short probe sequences known as features, which are designed to 

hybridize with specific known gene regions. The quantification of hybridization of probes 

compares the relative color intensity of a perfect match probe against a mismatch probe 

(serving as a baseline), which can then be converted into expression levels using various 

statistical approaches. This high-throughput method provides a snapshot of the overall gene 

expression profile of an isolated tissue sample that the researcher is studying.  

Since the focus of gene expression experiments are to capture meaningful biological variation 

between individuals, we ideally want to have a high signal-to-noise ratio. Unfortunately, the 

microarray technology is highly susceptible to systematic biases which may affect expression 

estimates. For example, lab conditions and protocols may contribute to systematic differences 

(known as batch effects) between microarray experiments [61]. Furthermore, microarrays may 

have high sensitivity of the experimental setup to variations in hybridization temperature [62]. 

In addition, the purity and degradation rate of genetic material [62], and the amplification 

process [63], may also impact the estimates of gene expression. There have been studies on the 

lab effects on the quality of gene expression data. For example, Beekman et al. demonstrated 

that to minimize variation, the experiments should be ideally performed in the same lab. 

However, they also showed that the interlaboratory findings were also generally consistent 

when the correct statistical methods were applied [64]. Dobbin et al. found high between-

laboratory concordance for individuals when the same protocols were followed for each lab 

[65]. In addition to standardization of lab protocols to minimize experimental variation, various 

statistical methods have been used to normalize microarray data. For example, Bolstad et al 

showed that a quantile-normalization approach for probe intensity values produced the low 

variance and bias between different arrays, while also being computationally fast [66]. Over the 

years, other gold standard approaches have been developed such as the Robust Multi-array 

Averaging (RMA) method which using a median polish approach to convert probe-level data 

into probeset (or gene) level expression [67]. In 2007, Johnson et al implemented both 
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parametric and non-parametric Bayesian frameworks to combine probeset-level data across 

multiple microarray platforms [68].  

In addition to systematic batch effects, microarrays are also susceptible to cross-hybridization, 

where unintended sequences hybridize to a probe, artificially inflating the probe intensity levels 

[69]. This also creates a non-independence between probes, as well as high background levels 

which limit the ability to detect a high range of difference between genes [70,71]. Indeed, the 

background noise and cross-hybridization makes it difficult for microarrays to differentiate 

between low-abundance versus non-expressed transcripts [72]. Another well-known limitation 

of microarrays is a reduced hybridization for certain probes when individuals have sequence 

variation within the probe boundaries. This commonly can lead to negatively biased estimates 

in expression levels, which also could create false positives in association analyses. 

1.6.2 RNA Sequencing 

A more recent approach to measure gene expression has been to use genome sequencing 

technology to identify the quantity of RNA in a biological sample. By directly sequencing 

transcripts, we bypass the requirement of using interrogating probes. This helps overcome 

many of the limitations of microarrays, avoiding the need for a priori knowledge of RNA target 

sequences, and reducing susceptibility to hybridization issues. Initially, expression sequencing 

was done using Sanger sequencing to quantify levels of complementary DNA (cDNA). While 

Sanger sequencing is still viable on a smaller scale, this approach is low-throughput and has 

given way to newer methods [73,74]. Tag-based methods such as SAGE (serial analysis of gene 

expression) and CAGE (cap analysis of gene expression) were developed as a high-throughput 

methods which also provided precise quantification of expression levels [75,76]. These methods 

however are unable to discover novel genes and many short tags are unable to be uniquely 

mapped to the genome. Furthermore, these approaches were unable to distinguish between 

splice isoforms [77,78]. 

The development of next generation sequencing (NGS) technologies has greatly enabled the 

study of transcriptomics. RNA sequencing (RNA-seq) is a high throughput method which refers 

to the deep sequencing and quantification of (cDNA). These sequence fragments can be 
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assembled either using a reference genome or done using de novo sequencing.  RNA-seq has 

been able to overcome many of the limitations from the older gene-expression technologies 

(both microarrary and older sequencing approaches) and revolutionizes the study of 

transcriptomics [77]. For example, RNA sequencing has been able to detect novel transcripts 

and isoforms, and reveal splice variants [72,79,80], giving it a distinct advantage over the 

Sanger, SAGE and CAGE sequencing approaches. 

Compared to microarrays which require a priori knowledge of the sequences, RNA-seq directly 

identifies the transcript sequences [78]. RNA sequencing also provides a higher sensitivity to 

low and high levels of expression, which microarrays often cannot. Since RNA sequencing does 

not have an upper limit for quantification of sequences, we observe a high dynamic range of 

expression levels. For example, a 9000-fold range was detected for genes within the yeast 

genome [81], and a range of five orders of magnitude was detected for 40 million reads within 

the mouse genome [82]. Because of its high resolution, RNA-seq can also reveal the precise (1 

base pair) location of transcript boundaries, give information on how exons are connected and 

reveal sequence variations [77,80].  

RNA-seq traditionally has been performed using bulk tissue, which averages the expression 

levels over many cell types. Recently there has been evidence that gene expression can be 

heterogeneous between cells within the same tissue, which lead to substantial functional 

consequences [83–85]. The first study to profile gene expression using NGS at the cellular level 

was performed in 2009, using only a single mouse blastomere to detect over 5000 more 

expressed genes than compared to microarrays [86]. Since then, there have been a plethora of 

studies that profile expression at the single cell resolution, providing insight that would not be 

detectable at the bulk-cell level. For example, Shaffer et al. characterized the variability in 

melanoma cells at the single-cell level which predicted resistance to drug treatment [87]. Over 

the years, single cell RNA-seq (scRNA-seq) has been used for many applications, including 

tracing cell lineage and classifying cell types, as well as genomic profiling of rare cell types [88]. 

However, current challenges include cost of sequencing, and high levels of noise compared to 

bulk RNA-seq, resulting in computational and statistical challenges. As computational methods 
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improve and sequencing costs continue to decrease, scRNA-seq will provide even greater 

insight into cell biology and genetics [89]. 

1.7 Challenges 

1.7.1 Accurate imputation of gene expression leveraging multiple datasets 

The primary purpose of gene expression imputation is to harness naturally occurring genetic 

variation to understand the relationships between gene expression and complex traits through 

TWAS [55,56]. However, expression studies tend to have much smaller sample sizes compared 

to GWAS datasets, due to many challenges of obtaining RNA samples. For example, extracting 

RNA from various tissue types requires a biopsy of the tissue sample, which is far more difficult 

to perform on living individuals compared to obtaining their saliva or blood. In addition, RNA-

seq experiments do not have the same level of automation compared to DNA sequencing or 

genotype-arrays, as lab protocols can differ in terms of extracting and storing many different 

tissue types. As a result, expression profiles can be heterogeneous across different batches or 

labs, which presents challenges in combining multiple datasets or performing meta-analysis. 

Indeed, RNA experiments are currently performed on a much smaller scale compared to those 

studying DNA. For example, GTEx has examined expression levels for 948 individuals with a 

tissue-maximum of 803 individuals (skeletal muscle tissue), while the UK Biobank phenome-

wide study of depression contained >400,000 subjects [90,91]. Given these sample size 

differences [92], eQTL detection and hence gene expression prediction accuracy can be limited 

by the availability of high quality tissue data. 

Given the current state of available gene expression data, there can be several ways to improve 

the power of TWAS based on imputed expression. One idea is to improve prediction accuracy 

by leveraging information from multiple tissues. This takes advantage of the idea that gene 

expression profiles can often be shared across different tissue types. This could make the 

downstream analysis (such as TWAS) much more powerful. Since the original PrediXcan paper 

[55], there have numerous publications extending the method to include multiple datasets or 

tissue types. For example, instead of training one tissue at a time, UTMOST jointly trains every 

tissue simultaneously, producing gene expression estimates for each tissue. While PrediXcan 
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performs a penalized regression across all genetic variants, UTMOST penalizes across both 

genetic variants and tissues. By doing so, this method captures the cross-tissue similarity for all 

genes, and improves imputation accuracy compared to using the single-tissue method [93]. 

Other methods use multiple single-tissue predictions to perform TWAS directly without further 

imputing multi-tissue gene expression. For example, MultiXcan (an extension of PrediXcan) 

improves power for TWAS by performing multivariate regression between predicted expression 

(derived from PrediXcan) and trait (using principal components to avoid multicollinearity 

between tissues). The extension of this approach, S-MultiXcan performs TWAS using summary-

level GWAS results, in a similar manner to MetaXcan, but across all tissues simultaneously [94].  

While these methods have enriched the original PrediXcan by ultimately providing higher 

power for TWAS, they are not without limitations. For example, UTMOST re-trains prediction 

models and requires full raw data of genotypes and gene expression measurements for every 

tissue and individual. While the prediction models derived from UTMOST are freely available for 

download, researchers are unable create tailored prediction models based selected tissue types 

unless they have full access to the data. In addition, there must be some overlap between 

samples for each tissue, and therefore disjoint resources cannot be integrated. MultiXcan 

integrates multiple imputed expression profiles to enhance power of discovery but does not 

provide aggregate or multi-tissue gene expression predictions. While the primary objective of 

imputing expression is to perform TWAS, there are also merits to generating imputations 

outside of this context. For example, imputed gene expression levels can be used as 

instrumental variables for Mendelian Randomization purposes.  

In Chapter 2, we propose a novel method which integrates information from multiple datasets 

and tissues using a meta-analysis style approach. This method does not require the full set of 

raw data, but only measured expression and genotypes for a single tissue of interest. As such, 

information from multiple disjoint reference panels can be integrated. We demonstrate using 

GTEx tissues that our method improves prediction accuracy over PrediXcan and UTMOST, using 

the GEUVADIS consortium measured expression as external validation. We also demonstrate 

that combining other reference panels (such as GTEx + DGN whole blood) can further improve 

imputation accuracy, highlighting the importance of using multiple external datasets. Finally, 
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we demonstrate that our approach increases signal detection in TWAS compared to other 

approaches that impute gene expression (PrediXcan and UTMOST).  

1.7.2 Revisiting array-based eQTL studies in whole genome sequencing era  

Moving forward, it is clear that RNA-seq and scRNA-seq are the next generation technologies 

for gene expression studies. Although microarrays are an aging technology, they are still a 

viable option and still used for modern day expression studies [95,96]. For example, the NCBI 

GEO archive as of January 29, 2020 has roughly twice as many microarray datasets (roughly 

24,000) compared to RNA-Seq (roughly 12,000) [97–99]. There are also studies in which 

transcriptomic profiles were already collected on microarrays and the RNA samples are no 

longer available for assaying with newer technologies. 

Despite the relevance of microarrays even in this current era, there are many shortcomings for 

this technology. One very well-known limitation is the negative bias in probe hybridization 

when the genetic sequences of the individuals being studied differ from the microarray probe 

sequences [100,101]. Array-based technologies use target probe sequences based on the 

reference genome sequences, not necessarily accounting for genetic variations. For individuals 

carrying non-reference alleles in the probe sequences, the RNA strands are less likely to bind to 

the oligonucleotides, which in turn results artifactual cis-eQTLs that does not reflect true 

associations between genetic variants and expression levels. A common characteristics of these 

artifactual cis-eQTLs is that non-reference alleles are almost always associated with negative 

effect sizes because the non-reference alleles reduces the hybridization affinity [102]. 

There have been some solutions proposed to remove or mitigate this bias. For example, 

Quigley uses common variants from the 1000 Genomes reference panel to identify probes that 

overlap with a genetic variant, and removes said probes from the expression calculation [103]. 

One potential shortcoming to this approach is that if the 1000 Genomes markers do not match 

the study population, problematic probes may be missed while other probes may be 

unnecessarily removed. While this may work well for European samples, populations 

underrepresented by the 1000 Genomes reference panel may have inaccurate expression 

estimates. Dannemann et al. developed a statistical approach to determine probes with 
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reduced binding affinity by comparing the hybridization levels for probes of interest to probes 

from a control group [104]. However, this requires assays of a control group that are not 

affected by negative binding affinity.  

The advent of next generation whole genome sequencing (WGS) technologies enables us to 

comprehensively catalogue all genetic variants. This affords us a new opportunity to 

comprehensively account for the negative hybridization effect across all genetic variations. As 

reported by Quigley, the negative hybridization bias in eQTL results appeared to be only 

partially resolved when using common variants only [103]. With the availability of WGS data for 

many study cohorts with transcriptomic profiles available through array-based technology, it is 

now possible to understand the full extent of the hybridization bias and to identify best practice 

to account for the bias in downstream analysis. 

Chapter 3 of this dissertation comprehensively assesses the hybridization bias by leveraging 

WGS to identify the exact list of variant-overlapping probes. Here, the magnitude and effect of 

negative hybridization is characterized at both the probe and probeset (gene) level. We then 

evaluate existing approaches to identify the best practice for probe-level correction and 

compare these approaches in downstream eQTL analysis. Finally, we explore possible 

alternative bias-correction methods that leverage whole genome sequence data. We 

demonstrate that not all variant-overlapping probes have a negative hybridization bias, and 

that removing them might unnecessarily alter expression estimates by adding noise. This in turn 

could potentially mask true positives in eQTL studies. We derive and implement a probe-level 

imputation method, which instead of removing probes, we adjust their expression based on the 

values from other probes within the probeset. This approach appears to resolve the negative-

hybridization bias while also preserving the overall correlation between genes. 

1.7.3 Analysis of eQTLs on understudied tissues and populations capitalizing on discovery of 

novel eQTLs 

With advances in high throughput technology, many resources are being generated for 

transcriptomic profiles of various tissues within the human body. For example, the GTEx 

consortium has now collected samples of 54 tissues across 948 donors. Some easily accessible 
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tissues, such as blood or cell lines, have been extensively studied with very large sample sizes. 

In another study, the eQTLgen consortium has meta-analyzed blood eQTLs of 31,684 samples 

across 37 studies across 11M common SNPs, identifying ~17,000 cis-eQTL genes [105]. 

However, while some tissues have been well-studied, not all have been examined equally. For 

example, kidney transcriptomics is still generally underrepresented and is still an emerging area 

of research [106]. The kidney is a vital human organ which is responsible for many tasks, 

including the control of body fluid volume, electrolyte balance, and removal of toxins through 

filtering processes. In addition, there are many kidney-related diseases that can arise that 

disrupt function, such as chronic kidney disease (CKD), nephrotic syndrome (NS), end stage 

renal disease (ESRD), and diabetic nephropathy (DN) [107]. In studying gene expression for the 

kidney, there are many challenges that include organ heterogeneity, low sample size, lack of 

healthy tissue samples, disease heterogeneity, as well as the underrepresentation of many 

populations. These challenges are highlighted below and are key points that Chapter 4 will 

address. 

Although there have been some kidney transcriptomes profiled, these studies have had 

limitations, such as low sample size, or expression being assayed using bulk tissue only. For 

example, in the GTEx consortium, the Kidney – Cortex tissue (bulk tissue) has only 73 RNA 

sequenced samples, while the Kidney – Medulla has only 4 RNA sequenced samples. (This is in 

part because most of the healthy kidneys of GTEx participants are donated and unavailable for 

expression studies. The remaining samples available for RNA-seq tend to be lower quality 

samples.) This is low compared to many other tissues in this cohort, (skeletal muscle, whole 

blood, subcutaneous adipose, thyroid, lung all have over 500 individuals) and the total number 

of kidney eGenes as well as ratio of detection (eGenes divided by total number of expressed 

genes) are near the bottom for all tissues. Another study published in 2017 identified 1,886 

candidate eGenes in 96 individuals with chronic kidney disease (CKD). However, the RNA 

sequencing was performed on bulk tissue [108], which would not differentiate between the 

heterogeneous compartments of the kidney. Clinical studies of kidney function are often 

interested in the filtration ability of the glomerulus (GFR) [109]. As such, there has been 

evidence that microdissection of the kidney into glomerular and tubulointerstitial 
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compartments would allow for increased specificity of kidney transcriptomic studies compared 

to studying the cortex [110,111]. Recently, the nephrotic syndrome study network (NEPTUNE) 

cohort performed such study, describing glomerular- and tubular- specific transcriptomic 

profiles for 187 individuals with nephrotic syndrome (NS) [106]. While this study provided a 

detailed compartment-specific eQTL landscape of individuals with NS, it is a rare disease 

characterized by damaged kidneys, and often progresses serious diseases such as CKD and end-

stage renal disease [112]. While this is an invaluable transcriptomic resource, there is also merit 

in studying relatively healthier kidneys, as it could provide more insight into common disease-

related traits. 

In addition to tissue heterogeneity, many renal diseases are also heterogeneous. If association 

studies are performed using heterogeneous traits, latent substructures among individuals could 

generate spurious results or mask signals in the analyses. To characterize various kidney 

diseases, clinical measurements such as glomerular filtration rate (GFR) or albumin-creatinine 

ratio (ACR) can be used. However, there are other fine-resolution phenotypes, such as 

morphometric measurements that can be obtained from renal biopsies that snapshot the 

physical state of the kidney at a given moment. Using these phenotypes could potentially be 

very important pieces of information to connect the dots between genetic variants and 

complex renal traits. 

Finally, there is also importance to studying population-specific expression data. Since most 

GWAS and transcriptomic studies are heavily biased towards individuals of European descent, 

this can lead to reduced accuracy in predicted gene expression for non-European individuals 

[113]. Performing genetic studies of diverse populations allow for trans-ethnic fine mapping, 

which can pinpoint potential causal variants that may be masked due to LD structures of a 

single population otherwise [114]. In addition, studying isolated populations have revealed 

novel population-specific variants that may be too rare for detection in other populations. For 

example, studying the isolated Sardinian population has detected novel GWAS loci for 

hemoglobin levels, and lipid and blood inflammatory markers [115,116]. Studies on the Finnish 

population for 64 quantitative traits have also identified 19 unique or enriched (20-fold more 

common compared to non-Finnish Europeans) genetic loci [117]. 
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In Chapter 4, we provide a transcriptomic landscape of the kidney on a cohort which addresses 

many of the challenges in tissue-specific systems genetic studies. In this work, we integrate 

multiple datasets to provide a genomic and transcriptomic profile for microdissected 

glomerular and tubulointerstitial tissues from 97 Pima Native American individuals from a 

diabetic nephropathy. This cohort gives the opportunity to study many high-resolution 

phenotypes from a population-specific group of individuals, with relatively healthy tissue 

samples. From this dataset, we use gene expression data assayed from both microarray and 

RNA-seq platforms, kidney morphometric traits, and whole genome sequencing to conduct 

various analyses. Although the sample size is relatively low, the abundance of high-quality data 

provides many insights into the regulatory aspects of the kidney for this population. Here, we 

discover both tissue-specific and population-specific regulatory variants which highlights the 

importance of studying diverse populations and accounting for tissue-specificity. 
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Chapter 2 Meta-imputation of Transcriptome from Genotypes 

Across Multiple Datasets Using Summary Statistics 

 

2.1 Abstract 

Transcriptome wide association studies (TWAS) can be used as a powerful method to identify 

and interpret the underlying biological mechanisms behind GWAS by mapping gene expression 

levels with phenotypes [53,54]. In TWAS, gene expression is often imputed from individual-level 

genotypes of regulatory variants identified from external resources, such as Genotype-Tissue 

Expression (GTEx) Project [55,56]. In this setting, a straightforward approach to impute 

expression levels of a specific tissue is to use the model trained from the same tissue type. 

When multiple tissues are available for the same subjects, it has been demonstrated that 

training imputation models from multiple tissues types improves the accuracy because of 

shared eQTLs between the tissues and increase in effective sample size. However, existing 

methods require access of genotype and expression data across all tissues for joint training 

[93]. Moreover, they cannot leverage the abundance of various expression datasets across 

various tissues for non-overlapping individuals. 

Here, we explore the optimal way to combine imputed levels across training models from 

multiple tissues and datasets in a flexible manner using summary-level data. Our proposed 

method (SWAM) combines arbitrary number of transcriptome imputation models to linearly 

optimize the prediction accuracy given a target tissue. By integrating models across tissues 

and/or individuals, SWAM can improve the accuracy of transcriptome imputation or to improve 

power to TWAS without having to access each individual-level dataset. To evaluate the accuracy 

of SWAM, we combined nearly 48 tissue-specific gene expression imputation models from the 

GTEx Project as well as imputation model trained from a large eQTL study of Depression 



19 
 

Susceptibility Genes and Networks (DGN) Project [50] to tested imputation accuracy in 

GEUVADIS lymphoblast cell lines (LCL) samples [47]. We also extend our meta-prediction 

method to meta-TWAS to leverage multiple tissues in TWAS analysis with summary-level 

statistics. Our results capitalize on the importance of integrating multiple tissues to unravel 

regulatory impacts of genetic variants on complex traits. 

 

2.2 Introduction 

Genome wide association studies (GWAS) have been able to identify numerous associations 

between genetic variants and complex traits. However, interpreting the biological mechanisms 

underlying the association signals remains a challenge [118]. Recently, studies involving gene 

expression have become increasingly popular as a means to provide biologically meaningful 

insight into statistical associations [55,56]. Transcriptome-wide association studies (TWAS) is a 

widely used method to translate GWAS association signals into more interpretable units by 

examining the association between phenotypes and gene expression levels imputed from 

genotypes. Associations identified from TWAS can be interpreted as potentially causal 

relationships between the traits and the genes through gene regulation [54,119,120]. While 

TWAS may not detect associations driven by functional mechanisms irrelevant to gene 

regulation, it increases the specificity and interpretability in identifying GWAS signals driven by 

gene regulation. Imputed gene expression can be utilized in various contexts of association 

analysis beyond TWAS, such as Mendelian randomization [121,122] or estimation of trait 

heritability attributable to cis-eQTLs [123]. Since genotype data from DNA is far easier and 

cheaper to obtain than expression data from tissues, TWAS based on imputed expression offers 

excellent augmentation to study the genetic component of gene regulation in addition to RNA-

seq-based studies. 

The first-generation methods to impute gene expression levels from genotypes train the model 

from a single-tissue dataset comprising of many individuals with both genotypes and expression 

profiles [55,56]. For example, a widely-used method PrediXcan [55] uses Elastic net 

regularization to identify cis-eQTLs (expression quantitative loci) to train the model to impute 
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gene expressions from genotypes. Other methods, such as TWAS [56], employ different 

regularization but typically produces a linear model to impute gene expressions as a weighted 

sum of cis-eQTL genotypes. Imputation models are trained using these methods from various 

population-scale transcriptomic datasets, such as the Genotype-Tissue Expression (GTEx) 

project [52,123], Depression Genes and Network (DGN) study [50], and The Cancer Genome 

Atlas (TCGA) [124], and these models are made available in public repository such as predictDB 

(http://predictdb.org/) or FUSION (http://gusevlab.org/projects/fusion/) so that expression 

imputation or TWAS can be performed from any genotyped individuals.  

Although these first-generation methods for transcriptome imputation have been quite useful, 

they have limited accuracy mostly due to limited sample size in the training datasets where 

both genome-wide genotypes and transcriptome-wide expression levels are available. While 

millions of individuals have been genotyped or sequenced to date [4,125–127], the sample-size 

of current population-scale transcriptome data are typically limited only to hundreds or 

thousands [128] (with the largest study cohort having around 30k participants [129]), primarily 

due to the difficulty in collecting high quality tissues (other than whole blood) from living 

donors. Moreover, transcriptomic datasets are prone to potential batch effects between 

studies [68,130–132], making it difficult to integrate across multiple datasets to build a large 

and harmonized resource to be trained from. Furthermore, there are hundreds or thousands of 

different types of tissues or cells, requiring orders of magnitude larger effort to 

comprehensively profiles transcriptomes in population-scale across tissues, as in GTEx Project.  

Recently, methods to address the shortcomings of the first-generation methods have been 

developed. When transcriptomic profiles are available across many tissues, such as in GTEx 

Project, transcriptome imputation can improve by leveraging the shared genetic components 

across tissues. Even though each tissue represents a unique transcriptomic profile, a large 

fraction of eQTLs are shared across tissues [133], and the availability of multiple expression 

measurements across tissues can help more precisely identify the shared eQTLs, which in turn 

can improve the imputation accuracy. For example, UTMOST trains a transcriptome imputation 

model a simultaneously across all tissues using a combination of L1 and L2 penalization across 

markers and tissues, respectively [93]. Another multi-tissue approach, MultiXcan, does not 
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impute transcriptomes, but performs a multi-tissue TWAS across all tissues by including each 

tissue-specific imputed expression as a predictor variable to improve power to identify 

association between a trait and a gene, in which the underlying mechanism potentially involves 

multiple tissues or cell types [94]. 

Even though UTMOST substantially improves the accuracy of transcriptome imputation, it 

assumes that expression measurements across multiple tissues are available for overlapping set 

of genotypes individuals for training imputation models. While this assumption can be met 

when training from the GTEx dataset (assuming granted access to the individual-level data), it 

may not be realistic in other circumstances where expression measurements are available for 

non-overlapping individuals (such as in TCGA), or it is infeasible to obtain individual-level 

genotypes and expression data due to limited access privilege. As population-scale 

transcriptomic resources are rapidly increasing, it should be possible in principle to integrate 

these resources to better impute transcriptomes. While there have been additional methods 

which have been developed to increase the accuracy of gene expression or TWAS [94,134–136], 

none of them – to the best of our knowledge – are able to perform “meta-imputation”, which 

systematically integrates multiple imputation models without the need to access to individual-

level data. 

Here we propose Smartly Weighted Averaging across Multiple tissues (SWAM), a multi-tissue 

transcriptome imputation method based on a flexible meta-analysis across multiple imputation 

models. Unlike UTMOST, SWAM does not require access to all genotypes and expression 

datasets for training its imputation model. Instead, it takes individual transcriptome imputation 

models trained from individual tissues while optimizing the expected imputation accuracy for a 

target tissue. Moreover, it can seamlessly integrate imputation models trained from multiple 

datasets comprising of different individuals and tissues. As a result, SWAM can integrate across 

hundreds of imputation models across GTEx, DGN, and TCGA projects without requiring all 

individual-level data to substantially improve the imputation accuracy over existing methods, as 

we demonstrate with GEUVADIS data. Moreover, we demonstrate that SWAM improves the 

power of TWAS over single-tissue methods and many alternative multi-tissue methods. 
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2.3 Results 

2.3.1 Smartly Weighted Averaging across Multiple Tissues (SWAM) 

We propose Smartly Weighted Averaging across Multiple tissues (SWAM), a method that 

provides a flexible framework to impute tissue-specific expression by integrating single-tissue 

imputation models across many tissues and datasets (Figure 2.1). The key principle behind 

SWAM is to improve the accuracy of transcriptomic imputation by determining the optimal 

linear combination of multiple imputation models in terms of expected imputation accuracy. To 

do this, SWAM requires a reference tissue (tissue of interest) to be defined as a basis to 

determine the relative contributions from multiple imputation models. Using the individual-

level genotypes and expression of only the reference tissue, SWAM integrates imputation 

models trained from different tissues and datasets (e.g. GTEx, DGN, and TCGA) without 

requiring individual-level data except for the reference tissue.    

The first step of SWAM is to apply each transcriptomic imputation model to the reference 

genotypes, which results in individual-level, tissue-specific imputed expression. The second step 

of SWAM compares each imputed expression with the measured expression of the reference 

tissue to calculate optimal weights by linearly combining multiple prediction models to 

maximize expected mean squared error (MSE) (see Methods for the details). The output of 

second step is an integrated transcriptomic imputation model compatible with the PrediXcan 

and MetaXcan software tools. Using this SWAM model, we can impute the transcriptome of any 

samples of interest with genotype information available (via PrediXcan), or to use the model 

and covariance matrix directly to perform TWAS (via MetaXcan) when GWAS summary statistics 

are available (Supplementary Figure 2.1).  

2.3.2 Simulation study demonstrates the robustness of SWAM across various scenarios 

We performed simulation studies to evaluate SWAM’s ability to robustly impute expression by 

leveraging tissue-specific and cross-tissue components across a wide spectrum of parameter 

settings. To do this, we independently simulated multi-tissue expression levels along with 

genotype data for both our training and validation sets (see section 2.5, Materials and Methods 
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for details). We compared SWAM with two heuristic approaches – naïve average, which equally 

weights individual tissue and best tissue, which only uses the tissue with the highest expected 

imputation accuracy – as well as with single-tissue imputation.  

As expected, we observed naïve average to be particularly powerful when the causal variants 

are shared across all relevant tissues (Figure 2.2A), identifying 94% of genes as significantly 

imputable at FDR < 0.05. When all causal variants were tissue-specific, the naïve average only 

identified 25% of genes to be imputable. On the other hand, best-tissue was more powerful 

(38%) than naïve-average when the all causal variants were tissue-specific, but worse when all 

causal variants are shared. When only single-tissue was used for imputation, the performance 

stayed similar regardless of the tissue-specificity. Encouragingly, SWAM outperformed all three 

methods across all ranges of tissue-specific and cross-tissue heritability settings. We believe this 

is because SWAM learns tissue-specific weights without pre-conceptions of tissue relatedness, 

and thus determines the weights for relevant tissues while ignoring unrelated ones. 

A similar trend is observed when we vary the number of relevant tissues that shares cross-

tissue heritability (Figure 2.2B). In the case where there are no relevant tissues other than the 

target tissue, naïve average is least powerful while SWAM performs as well as the single tissue 

approach. This suggests that in this scenario, SWAM is correctly giving non-zero weights to only 

the target tissue, making it similar to the single-tissue method. In the other scenario where 

every tissue is relevant, SWAM provides a similar power to the naïve average approach, 

suggesting that SWAM is robustly assigning weights to each relevant tissue. Similarly, when 

there are more tissues available in overall (assuming 50% are relevant tissue sharing cross-

tissue heritability), the power of SWAM and naïve average keep increasing while single-tissue 

and best-tissue remain similar (Figure 2.2C).      

Our simulation study also evaluated the impact of sample size of the reference tissue. We 

hypothesized that single-tissue would perform poorly when the sample size of the reference 

tissue was small, which was indeed observed in our results (Figure 2.2D). When the reference 

tissue has sample sizes of 50, 100, 200, we observed that single tissue method identified 36%, 

66%, and 92% of imputable genes. Because additional tissues are helpful especially when the 
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reference tissue has smaller sample size, the best tissue approach performed better at lower 

sample size (59% at n=50), but worse at higher sample size (88% at n=200). Similarly, naïve 

average also performed better at lower sample size (63% at n=50), but worse at higher sample 

size (78% at n=200). However, SWAM consistently outperformed single tissue across all cases 

(59%, 86%, 97% at n=50, 100, 200).  This implies that borrowing information from a relevant 

tissue (to the reference) is useful in these situations and SWAM robustly estimates the weights 

from each tissue accounting for the uncertainty from different sample sizes. 

2.3.3 SWAM outperforms other transcriptome imputation methods in evaluations with real 

data by considering the bias-variance tradeoff 

We applied SWAM to create multi-tissue imputation models from GTEx v6, using 

lymphoblastoid cell lines (LCL; the official tissue name in GTEx was “Cells – EBV-transformed 

lymphocytes”) as the reference tissue, to evaluate its imputation accuracy of LCL 

transcriptomes of 344 European samples from the GEUVADIS consortium [47]. We compared 

the accuracy of SWAM with various methods, including single tissue imputation models 

(generated by PrediXcan), naïve average, best tissue, and another multi-tissue method 

UTMOST.   

Among the single-tissue imputation models, we observed that the imputation from LCL 

identified 1,552 genes as significantly imputable at FDR < 0.05. Interestingly, we observed that 

another tissue, fibroblast cell lines (FCL; the official tissue name in GTEx was “Cells – Cultured 

fibroblasts”), identified even more genes (1,690 genes) as significantly imputable for GEUVADIS 

LCL expression levels. One of the outstanding differences between LCL (n=114) and FCL (n=272) 

models were the sample size used for training. We suspect that this is due to (1) the difference 

in sample size (i.e., FCL imputation has less variance) and (2) the similarity of transcriptomic 

profiles between LCL and FCL (i.e., FCL model tends not to introduce large bias). However, 

tissues with larger sample size did not always result in more accurate imputation. When we 

examined the results from Skeletal muscle model (n=361), which had the largest sample size in 

GTEx v6, we identified only 1,197 genes as significantly imputable. This is likely because the 

large differences of transcriptomic profiles between LCL and Skeletal muscle (i.e., Skeletal 
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muscle model tends to introduce large bias). These examples demonstrate that both sample 

size and tissue relevancy are important for maximizing the imputation accuracy. In statistical 

terms, our primary interest was to reduce the mean-squared error (MSE), which is the sum of 

Bias2 and Variance. We suspect that FCL model performed better than LCL models due to much 

smaller variance (because of larger sample size), and better than Skeletal muscle models due to 

much smaller bias (Supplementary Figure 2.2). We hypothesized that by combining imputations 

from multiple models, we can minimize MSE by substantially reducing variance without 

introducing excessive bias, which was our main motivation for developing SWAM. 

When evaluating the multi-tissue methods, our two heuristic approaches, best-tissue and naïve 

average identified 2,493 and 2,666 significantly imputable genes, respectively, which was >47% 

and >57% higher than any single tissue models. UTMOST (using LCL as the reference) also 

substantially increased the number of imputable genes (2,238 genes, >32% increase over any 

single tissue), but surprisingly, it had fewer than the imputable genes compared to the two 

heuristic approaches. Finally, when we applied SWAM specifying GTEx LCL as the reference 

tissue, the number of imputable genes further increased to 3,040, which is >79% larger than 

any other single tissue models (Supplementary Table 2.1, Figure 2.3A). Interestingly, SWAM 

improved the imputation accuracy over UTMOST even though it requires individual-level data 

only for one tissue (i.e., LCL) in GTEx while UTMOST requires simultaneous access to individual-

level data across all tissues. These results demonstrate that SWAM offers an accurate and 

flexible meta-imputation framework by optimally combining multiple imputation models across 

tissues. 

2.3.4 SWAM enables meta-imputation of expression levels across multiple heterogeneous 

datasets 

One of the important advantages of SWAM compared to other multi-tissue imputation 

methods is the ability to integrate imputation models across heterogeneous datasets where 

samples may not necessarily overlap. To evaluate the benefit of SWAM’s ability for multi-

dataset “meta-imputation”, we integrated imputation models trained from GTEx v7 and v8, as 

well as 922 whole blood transcriptomes from Depression Gene Network (DGN). The rationale to 
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include GTEx v7 and v8 models is that the datasets are slightly different from v6 (for example, 

v7 has more samples in all tissues except for LCL, FCL, and whole blood) and integrating 

multiple training models from slightly different versions of datasets may improve the accuracy. 

The reason to include DGN whole blood is that the sample size is much larger than any 

individual tissue GTEx, so it may help further reduce the variance and MSE of the imputation 

model.  

When applying SWAM to GTEx v6, v7, or v8 datasets individually, the number of significantly 

imputed genes at FDR < .05 were 3,040, 3,060, and 3,203, respectively (Figure 2.3B). However, 

when all datasets were combined, the number of imputable genes increased to 3,342. These 

results suggest that imputation across multiple datasets can help even when the datasets are 

highly overlapping. When we additionally integrated SWAM with the DGN whole blood model, 

which detected 2,390 imputable genes by itself, the number of imputable genes by the 

integrated SWAM model further increased to 3,413. Note that we needed individual-level data 

only for the reference tissue/data (GTEx v6 LCL in our experiment), so an arbitrary combination 

of imputation models, which consist of only summary-level data, can be seamlessly added to 

the meta-imputation framework of SWAM.  

Overall, using all 49 GTEx v8 tissues in combination with the DGN whole blood model provided 

the highest number of predictable genes, with a 112.9% improvement over the corresponding 

GTEx v8 PrediXcan-LCL model (single tissue), and a 13.5% improvement over the GTEx v6 

version of SWAM-LCL (multi-tissue) (Figure 2.3B). Regardless of the version of GTEx used, 

including the DGN whole blood model gives a substantial improvement in number of 

predictable genes compared to not including it in the model. Another interesting observation is 

that while PrediXcan-LCL (v6) appears to perform better than PrediXcan-LCL (v7), SWAM-LCL 

derived from v7 performs better than v6 SWAM-LCL. This may suggest that while GTEx v7 

PrediXcan-LCL may not have had a significant improvement in eQTL detection compared to its 

predecessor, other tissues may have improved in more substantial ways. This is because the 

sample size for LCL in v7 decreased by 18 samples, whereas other non-blood tissues had 

substantial sample size gains of up to 89 individuals. Here, SWAM leverages the increase in 
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quality from other tissues, which allows for better overall prediction regardless of the quality of 

the target tissue itself. 

2.3.5 SWAM robustly captures both tissue-specific and cross-tissue regulatory components 

The key component behind the robust performance of SWAM is that it learns how to distribute 

weights across multiple imputation models for each gene individually. If a gene shares eQTLs 

across many tissues, the SWAM’s weights will be distributed evenly across tissues and the 

model will behave similarly to the naïve average heuristic. For example, ERAP2 is a well-known 

gene with shared eQTLs profiles across most tissues. In the GTEx (v6), ERAP2 can be reliably 

imputed with any of the 44 single-tissue imputation models from PrediXcan with r2 > 0.77 or 

more eQTLs. As a result, the weights from SWAM is almost evenly distributed across the 

tissues, ranging from 0.018 to 0.027 (Supplementary Figure 2.2A), and the accuracy of SWAM 

(r2 = 0.795) is very similar to the accuracy of naïve average (r2 = 0.796).  

On the other hand, when the imputation model from the reference tissue is not particularly 

good due to smaller sample size or other technical issues, SWAM can substantially improve 

accuracy by leveraging eQTL sharing from other tissues. For example, the single-tissue 

imputation accuracy of GSTM1 is relatively low in LCL tissue (r2 = 0.368) compared to the 

accuracy of the 38 other tissues in which a PrediXcan imputation model is available (average r2 

= 0.61). Using SWAM, the predictive R-squared increases to r2 = 0.741 by assigning positive 

weights to 31 tissues (Supplementary Figure 2.2B).  

Finally, for genes that are highly tissue-specific, the SWAM’s weights will be distributed similarly 

to the best tissue heuristic. For example, CTSK is expressed in most tissues, but has eQTLs in 

only 16 tissues, (Supplementary Figure 2.2C). SWAM assigns weights to 7 of these tissues, and 

substantially improves the predictive accuracy from r2 = 0.111 to r2 = 0.447.  

2.3.6 Comparison of imputation models in the context of TWAS 

We conducted TWAS analysis using SWAM, UTMOST, and PrediXcan models via MetaXcan 

[137]. In addition, we also used S-MultiXcan [94] to simultaneously test all of the PrediXcan 

models using their PCA regression approach. We used a Bonferroni correction to establish p-
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value threshold for each analysis separately, based on the number of genes imputed. Overall, 

we found that among the methods that directly estimate expression levels (SWAM, UTMOST, 

PrediXcan), SWAM outperformed the other methods in terms of number of associations 

detected (see Supplementary Tables 2.4, 2.5, 2.6). For example, PrediXcan models on average 

detected 23.7, 23.2 and 4.0 transcriptome-trait associations for HDL, LDL and T2D respectively. 

For SWAM, we observed an average of 79.7, 77.8 and 8.4 associations per tissue, whereas 

UTMOST yielded an average of 69.3, 61.6 and 8.8 associations per tissue, for the three traits 

respectively. 

We plotted transcriptome-wide signals for the LDL trait using the GTEx v6 liver model for 

PrediXcan, UTMOST and SWAM (Figure 2.4). One interesting signal gained from the SWAM 

analysis is the APOC1 gene, which is primarily expressed in the liver and has been implicated in 

playing a role in HDL and LDL/VLDL (very low-density lipid) metabolism [138].  

One potential shortcoming for both multi-tissue approaches (SWAM and UTMOST) appear to 

be that the number of unique signals (across all tissues) is fewer than those generated by 

PrediXcan’s single tissue models. For example, SWAM produces 210 unique associations for the 

HDL trait, while we see 187 unique associations from UTMOST and 248 unique associations 

from PrediXcan. Similarly, MultiXcan detects 284 significant associations when scanning across 

all tissues (based off the PrediXcan models). It appears that while the multi-tissue methods can 

leverage information from other tissues to predict expression accurately, marginal association 

signals in TWAS are potentially lost using these approaches. However, we found that a high 

number of these unique signals from the PrediXcan TWAS appeared only in one or two tissues 

(92.5% for HDL, 98.2% for LDL and 100% for T2D).  

With all these various considerations, SWAM appears to improve TWAS power for a given 

tissue, although ultimately may yield fewer signals compared to comprehensive tissue scans 

using PrediXcan or MultiXcan. While SWAM outperforms other methods in terms of prediction 

accuracy, there may not be a clear-cut winner in terms of performance in TWAS. The best 

approach to use will likely depend on the needs of the researcher, and each approach may 
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provide different yet complementary insights into understanding the biological mechanisms 

from these association studies. 

 

2.4 Discussion 

The transcriptome serves as an intermediate phenotype linking genetic variants to complex 

traits. Association studies between traits and gene expression, when used in conjunction with 

GWAS, provide additional insight into the biological mechanisms of complex traits. Prediction of 

gene expression in the context of transcriptome wide association studies is a promising 

approach to understanding the connection between our genes and many traits. Yet, there are 

still many challenges that arise when performing association studies with predicted expression. 

Current tissue-specific prediction models are trained using data obtained from their respective 

tissues, which can vary greatly in data quality and sample size. As such, there is a great deal of 

variability among tissues in the prediction accuracy of tissue-specific gene expression levels. For 

example, PrediXcan was able to significantly predict only 2086 vagina-specific genes, while it 

discovered 8171 genes specific to the tibial nerve tissue. Furthermore, the prediction accuracy 

of significant genes within a tissue are also highly variable, with some genes such as ERAP2 

having very high (>80% of variation explained by eQTLs) predictability and other genes (~1% of 

variation explained by eQTLs) with low predictability.  

In this paper we developed SWAM, a method that determines the level of eQTL sharing 

between tissues and uses the shared information from other tissues to improve the prediction 

accuracy for the target tissue. By simultaneously examining the relatedness of multiple tissues, 

SWAM in essence increases the effective sample size of prediction models. Using GEUVADIS LCL 

data, we compared SWAM to single-tissue approaches. We found that our multi-tissue 

approach, in addition to increasing the number of significantly predictable genes for each 

tissue, also improved the overall prediction accuracy for genes that were already significantly 

predictable using PrediXcan. We improved the power of TWAS by running a SWAM-adapted 

version of MetaXcan for various traits, finding an increased number of significant 



30 
 

transcriptome-trait associations, even when correcting for the larger number of genes 

predicted.  

Although SWAM provides a substantial improvement for the number of significantly predictable 

genes for many tissues and generally increases power for TWAS, there are some shortcomings 

and caveats to consider with the approach. It is important to note that unlike PrediXcan, SWAM 

does not actually perform model training or eQTL discovery. Instead, it evaluates the efficacy of 

various single-tissue prediction models (in this case, the GTEx tissues) and assigns weights to 

the models based on their relatedness to the target tissue. Therefore, for SWAM to work, there 

must already be a database of prediction models that it can use to derive the multi-tissue 

weighting. Because we are utilizing existing prediction models, we acknowledge that there will 

be cases where the SWAM prediction accuracy could be similar or worse to the single-tissue 

prediction, especially if the gene has shared eQTLs across many tissues or if the single-tissue 

prediction model was already performing well. The improvement observed in our validations 

and TWAS are an overall trend, and as with any analysis, interpretation of any specific results 

should be approached with caution. Furthermore, the improvement for any given gene has an 

upper limit which is dependent on the pool of single tissue models available. There may be 

tissues that have very few relevant other tissues to draw information from. For any given gene 

within the target tissue, SWAM automatically assigns weights of non-relevant tissues to zero 

based on a threshold. However, for the purposes of our study, the threshold was tuned to be 

more lenient, allowing for more tissues to be included in the prediction of each gene’s 

expression levels. A more lenient threshold will yield more genes, but a lower sensitivity to the 

target tissue. A stricter threshold will provide predictions that are more specific to the target 

tissue but will provide predictions for fewer genes and may reduce prediction accuracy in some 

genes. Optimal tuning of this threshold may depend on the target tissue, and the goals of the 

analysis. Further work could help determine the ideal way to tune these thresholds, perhaps 

using a different threshold depending on the gene and tissue in question.  

Next, our empirical validation of prediction accuracy was tested on European individuals (344 

samples from GEUVADIS) and thus SWAM’s performance with other populations has not yet 

been determined. A future direction of research could be to examine whether a single model 
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derived from mixed populations would represent each of the populations accurately, or if a 

different model should be trained on each population separately. Currently, evidence suggests 

that training from the correct ancestry group is the ideal approach for population-specific 

prediction [139], which emphasizes the importance of reference panel resources derived from a 

wide array of ancestries. Alternative approaches could be to leverage trans-ancestry 

correlation, which has been shown to increase predictive R2 in the context of polygenic risk 

scores [140]. 

Finally, while SWAM improved the number of association signals for any given tissue in TWAS 

compared to UTMOST and single tissue PrediXcan, aggregation of signals (MultiXcan/combining 

PrediXcan signals) suggest that other approaches may yield more unique signals. It is unclear 

which approach is preferable in this scenario, and the answer may depend on unraveling the 

causality of association signals. Recently, there have been a number of publications which have 

addressed this issue, such as PTWAS which uses instrumental variables (IVs) to investigate the 

causal relationship between expression levels and complex traits [134], or phenomeXcan, which 

integrates GWAS and gene expression and regulation data to identify likely causal pathways 

[141]. Future directions could include using IVs or functional annotation to interpret TWAS 

signals. 

To conclude, we propose a novel method for gene expression prediction, which extends already 

established single-tissue prediction models into a multi-tissue setting. By combining 

information from multiple models, we were able to increase overall tissue-specific prediction 

accuracy for many genes and increase power for transcriptome-wide association studies. 

 

2.5 Materials and Methods 

2.5.1 SWAM Notation and Framework 

Our framework for SWAM is designed to find the optimal linear combination of imputed 

expression levels from multiple tissues and datasets. For simplicity, we will denote each (tissue, 

dataset) combination as a source. We assume there are 𝐾 imputation models from individual 
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sources, with each model indexed as 𝑗 ∈ (1, . . , 𝐾). We also denote 𝑟 ∈ {1, … , 𝐾} to represent 

the index of the reference source. The inputs for SWAM are: (1) 𝑓 (∙) – the single-source 

imputation models and (2) 𝒀𝒓 and 𝑿𝒓 – the individual-level gene expression measurements and 

genotypes for the reference source. For each gene 𝑔, let 𝒔 = 𝑓 (𝑿|𝑔) be imputed expression 

from a single source. Then we can represent any linearly combined multi-tissue imputed 

expression 𝒎  as 

𝒎 = 𝑤 𝒔  

where 𝑤  is the weight contributed by 𝑗-th source. SWAM learns 𝑤  by leveraging individual-

level data from the reference source as we describe later.  

2.5.2 Multi-tissue methods using naïve average or best-tissue 

There are two heuristic approaches to impute expressions from multiple sources - naïve 

average and best tissue. Naïve average defines weights uniformly as 𝑤 = … = 𝑤 = 1
𝐾 . For 

best tissue, the weights are defined as a dichotomous variable: 

𝑤 =
1     if 𝑗 = argmax(𝑐𝑜𝑟 𝒔 , 𝒚 )

0       otherwise                               
 

where 𝒚  represents the individual-level expression measurements of the reference source.  

2.5.3 Smartly Weighted Average across Multiple Tissues (SWAM) 

Here we describe how SWAM calculates optimal 𝑤 , whose derivation is shown in the 

Supplementary Text. It is important to note that SWAM works ideally when the tissue type 

intended to be imputed matches to the tissue types of the reference source. We define 𝒚  as 

the 𝑛 × 1 vector of individual-level expression measurements for the reference source, and as 

before, 𝑿𝒓 to be the corresponding 𝑛 × 𝑚 matrix of individual-level genotypes.  The first step is 

to impute expression using each of the 𝐾 models using the reference genotypes. Thus, we 

obtain 𝐾 sets of imputed expressions, 𝒔 = 𝑓 (𝑋 |𝑔), with each being a single-source 
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prediction for the samples in the reference data. The weights for SWAM are given by 

 

𝒘𝒈 = 𝑤 , 𝑤 , … , 𝑤 =
𝑐𝑜𝑟(𝒔 , 𝒔 ) ⋯ 𝑐𝑜𝑟(𝒔 , 𝒔 )

⋮ ⋱ ⋮
𝑐𝑜𝑟(𝒔 , 𝒔 ) ⋯ 𝑐𝑜𝑟(𝒔 , 𝒔 )

+ 𝜆𝐼
𝑐𝑜𝑟(𝒔 , 𝒚 )

⋮
𝑐𝑜𝑟(𝒔 , 𝒚 )

 

 

Here, the correlation matrix account for the similarity between the imputation models, and the 

vector containing the entries 𝑐𝑜𝑟 𝒔 , 𝒚  account for the empirical similarity of imputed 

expressions from each model to the measured expressions in the reference source. When 𝑗 =

𝑡, because 𝑐𝑜𝑟 𝒔 , 𝒚  will be prone to overfitting, we replace this value to a 5-fold cross-

validated correlation instead, which is available from PrediXcan output. Finally, 𝜆𝐼 acts to 

regularize the weights, providing numerical stability for the inversion of the covariance matrix. 

The calibration of  𝜆 is further discussed in the Supplementary Text. 

2.5.4 Simulations 

Our simulation study sought to examine SWAM’s ability to detect the correct shared 

components between related tissues across a wide spectrum of parameter settings. We 

compared SWAM with naïve average, best tissue and single tissue approaches. For each 

simulation, we independently generate individual-level genotypes and expression multiple 

tissues. For the reference set, we simulated 𝑋 , an 𝑛 × 𝑚 genotype where 𝑛  is the number of 

individuals and 𝑚 the number of SNPs. In our simple simulation, we assume that each SNP is 

independent, with non-reference allele frequency (AF) distributed with Beta(1,3). The 

genotypes were simulated using a binomial distribution based off the AF. To simulate multi-

tissue expressions, for each tissue 𝑗 ∈ (1, . . , 𝐾) we specific effect sizes 𝜷𝒋, to simulate 

expressions 𝒚𝒋 = 𝑋 𝜷𝒋 + 𝜀 . For reference tissue (i.e. 𝑗 = 𝑟), we assume two causal SNPs with 

nonzero elements in 𝜷𝒋, where one SNP is expected to explain tissue-specific heritability (ℎ ) 

for the reference tissue and the other SNP explains the cross-tissue heritability (ℎ ), summing 

up to total heritability (ℎ = ℎ + ℎ ). Other tissues (i.e. 𝑗 ≠ 𝑟) were divided into “related 
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tissues” and “independent tissues”. For related issues, 𝜷𝒋  had only one non-zero values 

corresponding to cross-tissue heritability (ℎ ). For independent tissues, all 𝜷𝒋 had zero values. 

Finally, we generated another set of validation genotypes matrix 𝑋  with size 𝑛 × 𝑚, and the 

validation expressions (𝒚𝒗 = 𝑋 𝜷𝒓 + 𝜀 ) of reference tissue using the same settings to use for 

evaluation. 

We then trained tissue-specific imputation models 𝑓 (. ), 𝑗 ∈ (1, … , 𝐾) by applying an elastic-net 

model (using glmnet R package [142]) for each pair of 𝑋  and 𝒚𝒋. The tuning parameters for 

elastic net were determined via a five-fold cross-validation technique. Using 𝒚𝒓, 𝑋  and 𝑓 (. ), 

we obtained naïve average, best tissue and SWAM models as detailed in the framework and 

weights section. To calculate the proportion of imputable genes, we performed linear 

regression between 𝒚𝒗 and the imputed expression from genotypes 𝑋  using the different 

methods to obtain a p-value.  

Each simulation was repeated for 1,000 times in each setting. We varied parameters to 

evaluate their impact on the performance of each method. We varied  ℎ ∈ {0, 0.1, ⋯ ,1} 

(default 0.1), ℎ /ℎ ∈ {0, 0.1, ⋯ ,1} (default 0.5), 𝐾 ∈ {2, 4, 6, 8, 10, 20, 30, 40, 50} (default 10), 

fraction of independent tissues ranging {0, 0.1, ⋯ ,0.8} (default 0.5), 𝑛 ∈ {50,100, ⋯ ,500} 

(default 200), and the p-value threshold ranging {10 , 10 , ⋯ , 0.01, 0.05, 0.1} (default 0.05). 

Throughout all simulations, 𝑚 = 35, 𝑛 = 200 were used. 

2.5.5 Input Datasets: Genotypes, Expressions, and Imputation Models 

In our experiments with real datasets, we leveraged multiple published datasets where 

genotypes, expressions, and imputation models are available to evaluate the performance of 

SWAM and other methods in various settings. Specifically, we used the GEUVADIS LCL [47] 

genotypes and expressions as a validation dataset. We used GTEx data [14] [24] and PredictDB 

[55] to build multi-tissue imputation models. To demonstrate the ability to SWAM to 

incorporate multiple datasets, we used DGN [50] dataset as well as multiple versions of GTEx 

datasets. 
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2.5.5.1 Multi-tissue transcriptomic profiles and imputation models from the GTEx project 

To build multi-tissue imputation models using SWAM, UTMOST, naïve average, and best tissue 

methods, we used single-tissue imputation models, individual-level genotypes, and expressions 

obtained from the GTEx consortium. Single-tissue imputation models were downloaded from 

the PredictDB (http://predictdb.org/) repository for GTEx versions 6, 7 and 8 (44, 48 and 49 

tissues respectively) [3] [14] [24], which were trained using PrediXcan’s elastic net methods. 

Individual-level genotypes and expression levels were only used for the reference tissue (e.g. 

EBV-transformed lymphocytes) which is deemed to be the closest to the validation data (e.g. 

GEUVADIS LCL), using GTEx version 6.  

When evaluating multi-tissue imputation models within a single dataset, we used GTEx version 

6. When evaluating imputation models across multiple tissues and multiple datasets, we used 

various combinations of GTEx versions to evaluate the benefit of multiple imputation models 

trained from overlapping datasets. When training across different datasets, genes were 

matched by ensemble ID, ignoring version numbers. In addition to training SWAM, we also used 

the single tissue PredictDB imputation models as a basis for comparison with our method. 

2.5.5.2 Validation dataset from the GEUVADIS study 

We used individual-level genotypes and expression levels from lymphoblastoid cell lines (LCL) 

from the GEUVADIS consortium only to evaluate various methods after imputing expression 

levels with models built from other datasets. Each imputation model was evaluated by applying 

the model to GEUVADIS genotypes to impute individual expression levels, and by calculating 

the correlation between the imputed and measured expressions. We focused on 344 European 

individuals where genotypes and normalized expressions (from RNA-seq) are available, with 

comparable linkage disequilibrium (LD) structure to GTEx and DGN datasets.  

2.5.5.3 Imputation models from Depression Genes Network 

We also downloaded the imputation model trained using the 922 whole blood transcriptomes 

from the Depression Genes Network (DGN) via PredictDB. DGN was evaluated as a single-tissue 
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imputation model. It was also used in the evaluation of multi-dataset imputation models when 

DGN is combined with various versions of GTEx imputation models.  

2.5.5.4 Imputation models from UTMOST 

We compared our methods to UTMOST, another multi-tissue approach for expression 

imputation[93]. The UTMOST imputation models were jointly trained across 44 tissues from 

GTEx version 6 and were downloaded from their published online repository 

(https://github.com/Joker-Jerome/UTMOST). We applied the imputation model targeted for 

EBV-transformed lymphocytes when evaluating the imputation accuracy with the GEUVADIS 

LCL expression.  

2.5.6 Experimental Evaluation with Real Datasets 

2.5.6.1 Evaluating imputation accuracy with GEUVADIS measured expression 

We evaluated the accuracy of various imputation models by comparing imputed expressions 

from individual-level genotypes with the measured expression from GEUVADIS LCLs. Individual-

level expression were imputed across 344 European GEUVADIS samples using various single-

tissue, multi-tissue/multi-dataset methods to calculate the correlation with the normalized 

measured expression from GEUVADIS LCL. The correlation between imputed and measured 

expressions were calculated using spearman correlation and a one-sided p-value was evaluated 

by converting the correlation coefficients into t-statistics. Genes were considered “significantly 

predictable” if the Benjamini-Hochberg false discovery rate (FDR) was less than 0.05. This 

procedure was applied across all genes within each method, with the counts being tabulated. 

2.5.6.2 Comparing single-tissue and multi-tissue imputation models within a single dataset. 

With these results, we first focused on comparing the imputation accuracy of SWAM with other 

methods using GTEx v6. We compared SWAM-LCL (SWAM using GTEx EBV-transformed 

lymphocytes as reference), every single tissue imputation model from PredictDB, UTMOST-LCL 

(UTMOST using GTEx EBV-transformed lymphocytes as reference), naïve average, and best 

tissue methods. We focused on evaluation using GTEx v6 models where UTMOST models were 
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available. We also focused on genes included in the Consensus Coding Sequence Project (CCDS) 

[143] to minimize the discrepancy between imputation models.  

To keep a fair comparison with UTMOST and the single tissue methods, we restricted the set of 

genes to those that have at least one eQTL in any single tissue models from PredictDB and also 

in any UTMOST models across all reference tissues.  

2.5.6.3 Evaluating multi-tissue imputation models across multiple datasets. 

Our second comparison was conducted to examine the effect of integrating multiple 

imputation models trained from heterogeneous datasets into SWAM. Here, we used various 

combinations of GTEx and DGN resources to derive multi-tissue/multi-dataset models, such as 

combining GTEx v6 with DGN data, or combining GTEx v6, v7 and v8 altogether. For this 

analysis, the gene list was restricted to genes that were included in all three of the v6, v7 and v8 

datasets in terms of Ensemble IDs. 

2.5.7 Evaluation of SWAM in transcriptome-wide association studies (TWAS) 

To evaluate our method in the context of TWAS, we used MetaXcan [137], which infers TWAS 

results from GWAS summary statistics. We focused on the HDL and LDL traits from Global Lipids 

Genetics Consortium (GLGC) [144] and Type-2 Diabetes (T2D) from the DIAGRAM consortium 

[145]. For this analysis, we generated SWAM imputation models targeting each of the 44 

tissues from GTEx version 6. We used MetaXcan to infer the TWAS results for each of these 

tissues and applied a Bonferroni correction with false-positive rate of 0.05 based on the 

number of genes tested. We repeated this with all 44 UTMOST models as well as all 44 

PrediXcan single tissue models.  

We also compared our method with S-MultiXcan [94], a recently published extension of 

MetaXcan which uses a principal components regression to conduct trait-expression association 

with multiple tissues.  
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2.6 Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2.1 – overview of SWAM method.  

This figure demonstrates the training of the imputation model using the reference data. The inputs required for 
SWAM are a set of reference genotypes with sample matched measured expression, and the multiple prediction 
models to be included. The list of multiple prediction models must also include a model derived from the 
reference data, which can be done via prediXcan. SWAM uses these models to impute tissue-specific expression 
levels from the reference genotypes. These imputed expression sets are then compared with the measured 
expression of the reference set. The weights are calculated based on the similarity between the measured and 
predicted expression and the covariance structure of tissues. For full details, see the methods section.  
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Figure 2.2– simulation study comparing SWAM with naïve average, best tissue and single tissue methods.  

We ran each simulation 10,000 times, with the following default settings: 10 total tissues (1 target, 4 relevant, 5 irrelevant), 100 SNPs (2 per tissue), 10% 
genetic heritability, 50% shared heritability between relevant tissues. In addition, the sample size of the target tissue was 100 individuals, and the 
remaining tissues had 200 individuals. This was done to emphasize the importance of integrating information from other tissues when the quality of the 
target tissue model is limited. In panel (A), we varied the number of relevant tissues, from 0 to 10. Panel (B) shows the improvement when the total 
number of tissues is increased, with the number of irrelevant tissues fixed at 50% of the total. Panel (C) shows the effects of changing the shared 
heritability for the relevant tissues. We note here, that each tissue has 2 causal SNPS – for the relevant tissues, 1 of these causal SNPS is shared with the 
target tissue while the other is independent of all simulated tissues. Panel (D) shows the performance of the approaches for different levels of genetic 
heritability. This simulation demonstrates the range of heritability that we would expect to see the most improvement. Empirically, we do notice the same 
trend seen here, as SWAM performs similarly the single tissue model when the cross-validated R-squared is high. Panel (E) shows the effects of target 
tissue sample size. The x-axis pertains to the sample size of the target tissue only, and all other tissues were fixed at 200 individuals. Finally, panel (F) 
shows the performance of the methods at different p-value thresholds, using the default simulation settings. 
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Figure 2.3 – Empirical validation of SWAM using lymphoblastoid-cell line data 
from GEUVADIS consortium.  

We used our LCL-targeted SWAM model to predict expression levels based on the 
genotypes of 344 European samples. We then calculated the concordance 
between imputed expression and measured LCL expression. We repeated this for 
all of the other methods mentioned here. (A) shows the performance of SWAM 
against the single-tissue models from 44 tissue-specific predictDB models derived 
from GTEx version 6. In (B), we derived various SWAM models using every 
combination of the following: 1) all GTEx v6 tissues, 2) all GTEx v7 tissues, 3) all 
GTEx v8 tissues, and 4) Depression Gene Network (DGN) single tissue whole blood 
model from predictDB. Here, we also included the UTMOST LCL model, naïve 
average and best tissue models, all derived from GTEx v6. 
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Figure 2.4 – TWAS on LDL trait targeting liver using SWAM, UTMOST and PrediXcan models 

TWAS was performed using metaXcan on the LDL trait from the Global Lipids Genetics Consortium 
(GLGC) GWA analysis. For a consistent comparison, the SWAM and UTMOST models were derived 
from GTEx version 6 tissues, and the prediXcan model used was GTEx v6 liver. The number of 
associations were: 74, 69 and 19 for SWAM, UTMOST and prediXcan respectively. P-values were 
truncated at 10-20 in these plots. 
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2.7 Supplementary Materials 

2.7.1 Derivation of weights for SWAM 

In this section we derive the equation for the weights in SWAM. We wish to impute expression 

for a reference sample of 𝑁 individuals with genotypes 𝑋  and measured tissue-specific 

expression 𝒚𝒓. Suppose we have single tissue prediction models for 𝐾 tissues, with 𝑟 ∈

{1, … , 𝐾}. For each gene 𝑔, we obtain a set of 𝐾 predicted expression levels 𝒔𝒋
𝒈

= 𝑋 𝛽 , with 

𝑗 ∈ (1, … , 𝐾). Dropping the superscript 𝑔 for convenience, we define 𝑤 = (𝑤 , 𝑤 , … , 𝑤 )′ be 

the set of weights corresponding to each of the tissues. The SWAM estimator is thus: 

𝒎𝑺𝑾𝑨𝑴 = 𝑤 𝒔𝒋 

For further convenience, we denote 𝒎  as 𝒎. Then, for each gene separately, the values 

for 𝑤 are determined by minimizing the expression:  

𝐸 ‖ 𝒎 − 𝑦 ‖ = 𝐸 (𝑤 𝒔 ) − 𝒚𝒓 = 𝐸 𝑤 (𝒔𝒊 − 𝒚𝒓)  

Without loss of generality, we set the constraint ∑ 𝑤 = 1. The objective function to be 

minimized is 

ℒ(𝒘, 𝜆) = 𝐸 ‖𝒎 − 𝒚𝒓‖ + 𝛾 𝑤 − 1

= 𝑤 𝐸[(𝒔𝒊 − 𝒚𝒓) ] + 2 𝑤 𝑤 𝐸 (𝒔𝒊 − 𝒚𝒓)′(𝒔𝒋 − 𝒚𝒓)

+ 𝛾 𝑤 − 1  

The gradient of ℒ(𝒘, 𝜆) is 
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𝛻ℒ(𝒘, 𝜆) =

⎣
⎢
⎢
⎢
⎢
⎡
𝑤 𝐸[(𝒔𝒊 − 𝒚𝒓) ] + 2 𝑤 𝐸 (𝒔𝒊 − 𝒚𝒓)′(𝒔𝒋 − 𝒚𝒓) + 𝛾

𝑤 − 1
⎦
⎥
⎥
⎥
⎥
⎤

, 𝑖 ∈ {1, ⋯ , 𝐾} 

Solving this system of equations, we obtain the optimal weighting minimizing the expected MSE 

across single tissue imputed expressions as  

𝑤 =
[𝑆 𝟏]

∑ [𝑆 𝟏]
 

Where 𝑆 =
𝐸[(𝒔𝟏 − 𝒚𝒓) ] ⋯ 𝐸[(𝒔𝟏 − 𝒚𝒓)′(𝒔𝑲 − 𝒚𝒓)]

⋮ ⋱ ⋮
𝐸[(𝒔𝑲 − 𝒚𝒓)′(𝒔𝟏 − 𝒚𝒓)] ⋯ 𝐸[(𝒔𝑲 − 𝒚𝒓) ]

 and 𝟏 = (1,…,1)’ 

 

2.7.2 Regularization of weights 

The weights derived in the previous section provide an optimal solution to the expression 

argmin 𝐸 𝑌 − 𝑌 . In the scenario in which the tissues are highly correlated with each 

other, the matrix 𝑐𝑜𝑣 𝑌 =

〈𝑌 , 𝑌 〉 ⋯ 〈𝑌 , 𝑌 〉

⋮ ⋱ ⋮
〈𝑌 , 𝑌 〉 ⋯ 〈𝑌 , 𝑌 〉

is numerically unstable as the 

columns of 𝑐𝑜𝑣 𝑌  are no longer linearly independent. This can lead to high weights assigned 

to irrelevant tissues and lower weights for relevant tissues. Furthermore, this may result in 

weights that are over-fitted to the noise of the data.  

To correct for this, we added a diagonal matrix, 𝜆𝐼 prior to inverting the matrix 𝑐𝑜𝑣 𝑌 , giving 

us the solution 𝑤 = 𝑐𝑜𝑣 𝑌 + 𝜆𝐼 𝑐𝑜𝑟(𝑌 , 𝑌 ). To choose the correct value of 𝜆, we 

tested the prediction accuracy of 𝑌  in our validation test set for a large range of 𝜆. We found 

that prediction accuracy was low when 𝜆 = 0, likely due to overfitted and the amplification of 

noise. Larger values of 𝜆 yielded better results but ignored the correlation structure between 
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tissues. We found empirically that 𝜆 = 3 provided the best results (this value depends highly on 

the scale and normalization of the data).  

 

2.7.3 Application of SWAM to other target tissues 

Throughout our work we primarily used the LCL tissue from GTEx version 6 as our target tissue 

for application of SWAM. In addition to producing SWAM-LCL models, we also generated 

models targeting each of the 44 GTEx v6 tissues. Supplementary Figure 2.3 displays the 

heatmap of weight contribution towards each of the tissues. The rows correspond to the 

SWAM model for each tissue type, and the color intensity of the columns show the contribution 

of each tissue towards the targeted tissue (number of times the tissue contributed the highest 

weight). Overall, we observe clustering that appears to separate the tissue types quite well. For 

example, brain tissues are primarily getting high weights from other brain tissues while 

receiving low weights from all other tissue types. This heatmap provides evidence of SWAM 

being able to capture tissue-specific signals. 
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2.8 Supplementary Figures and Tables 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Supplementary Figure 2.1 – Using SWAM to impute expression and conduct TWAS 

The first panel shows how SWAM can be used to predict expression levels via prediXcan, while 
the second panel shows the required inputs to conduct TWAS via metaXcan. 
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Supplementary Figure 2.2 – Bias-variance tradeoff for other tissues 

The principal behind SWAM is it considers the bias-variance tradeoff for each tissue, and assigns 
higher weights to tissues that reduce MSE. In this example, tissues such as Skeletal Muscle have 
a high sample size (and therefore lower variance) but may be biased as they are not the relevant 
tissue to the tissue of interest (in this case LCL). Other tissues such as Fibroblasts may have a 
lower sample size but compensate by having low bias (high relevance to tissue of interest) and 
will contribute more weight. 
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Supplementary Figure 2.3– The distribution of weights for SWAM for three selected genes.  

(2A) shows the ERAP 2 gene, which had a single tissue r2 = 0.801, while the SWAM model had r2 
= 0.795. (2B) depicts are scenario where SWAM is able to leverage information from other 
tissues to make up for the relatively lower quality of the target tissue – here the single tissue 
model gave r2 = 0.368 while SWAM increased the accuracy to r2 = 0.741. (2C) shows an example 
where the eQTLs are highly tissue specific. Here, SWAM improved the single tissue accuracy from 
r2 = 0.111 to r2 = 0.447. 
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Supplementary Figure 2.4 – distribution of SWAM weights 
in imputation models for all 44 GTEx v6 tissues. 

Here, we used SWAM to derive multi-tissue imputation 
models for all 44 GTEx v6 tissues. Each cell in this heatmap 
depict the number of times each tissue contributed the 
highest weight to the target tissue. Here, the rows 
correspond to the target tissue and the columns correspond 
to the weight contribution of each tissue. For the sake of 
clarity, the diagonal values were not included as they were 
consistently much higher than the remaining elements of 
the matrix. 

 



49 
 

Method 
Total # 
genes 

Genes 
with FDR 

< 0.05 

P-value 
threshold for 

FDR=0.05 

Genes with 
p-value < 0.05 

DGN Whole Blood 13213 2390 0.009018 3450 
Adipose Subcutaneous 13213 1500 0.005667 2203 
Adipose Visceral Omentum 13213 963 0.003619 1432 
Adrenal Gland 13213 735 0.002755 1151 
Artery Aorta 13213 1177 0.004426 1783 
Artery Coronary 13213 616 0.00231 926 
Artery Tibial 13213 1439 0.005399 2124 
Brain Anterior cingulate cortex BA24 13213 322 0.00117 580 
Brain Caudate basal ganglia 13213 528 0.001979 895 
Brain Cerebellar Hemisphere 13213 575 0.002172 1002 
Brain Cerebellum 13213 661 0.002498 1144 
Brain Cortex 13213 511 0.00193 878 
Brain Frontal Cortex BA9 13213 456 0.001699 770 
Brain Hippocampus 13213 336 0.001254 572 
Brain Hypothalamus 13213 339 0.001264 554 
Brain Nucleus accumbens basal ganglia 13213 454 0.001709 755 
Brain Putamen basal ganglia 13213 391 0.001461 655 
Breast Mammary Tissue 13213 933 0.003455 1430 
Cells EBV-transformed lymphocytes 13213 1552 0.005845 1943 
Cells Transformed fibroblasts 13213 1690 0.00635 2451 
Colon Sigmoid 13213 680 0.002391 1052 
Colon Transverse 13213 1013 0.003803 1536 
Esophagus Gastroesophageal Junction 13213 716 0.002689 1101 
Esophagus Mucosa 13213 1469 0.00553 2148 
Esophagus Muscularis 13213 1272 0.004808 1959 
Heart Atrial Appendage 13213 849 0.003167 1323 
Heart Left Ventricle 13213 942 0.003537 1451 
Liver 13213 427 0.001547 719 
Lung 13213 1355 0.005122 1985 
Muscle Skeletal 13213 1197 0.004454 1876 
Nerve Tibial 13213 1450 0.005483 2186 
Ovary 13213 417 0.001566 689 
Pancreas 13213 911 0.003426 1406 
Pituitary 13213 496 0.001875 808 
Prostate 13213 398 0.001421 629 
Skin Not Sun Exposed Suprapubic 13213 1063 0.003997 1619 
Skin Sun Exposed Lower leg 13213 1463 0.005489 2145 
Small Intestine Terminal Ileum 13213 450 0.001694 735 
Spleen 13213 759 0.002821 1166 
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Stomach 13213 878 0.003291 1350 
Testis 13213 956 0.003607 1563 
Thyroid 13213 1454 0.005469 2208 
Uterus 13213 297 0.001071 521 
Vagina 13213 307 0.001149 511 
Whole Blood 13213 1427 0.005343 2106 
SWAM-LCL v6 13213 3040 0.01145 4148 
NAIVE AVERAGE V6 13213 2666 0.010066 3830 
BEST TISSUE V6 13213 2493 0.009394 3663 
UTMOST-LCL v6 13213 2238 0.008466 3185 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Table 2.1  – GTEx version 6 comparisons of single-tissue and multi-tissue imputation 
models using GEUVADIS LCL RNA-Seq expression as validation.  

Counts (B-H counts) are based on Benjamini-Hochberg procedure false discovery rate of 0.05. The last 
column displays the number of counts at p-value threshold 0.05 (without any corrections) 
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Method 
Total # 
genes 

Genes with 
FDR < 0.05 

P-value 
threshold for 

FDR=0.05 

Genes with 
p-value < 0.05 

SWAM-LCL (GTEx v6) 13213 3040 0.01145 4148 
SWAM-LCL (GTEx v6 + DGN) 13213 3192 0.012077 4301 
SWAM-LCL (GTEx v7) 13213 3060 0.011463 4215 
SWAM-LCL (GTEx v7 + DGN) 13213 3411 0.012903 4469 
SWAM-LCL (GTEx v8) 13213 3203 0.01212 4236 
SWAM-LCL (GTEx v8 + DGN) 13213 3449 0.013046 4460 
SWAM-LCL (GTEx v6 + v7) 13213 3283 0.012383 4385 
SWAM-LCL (GTEx v6 + v7 + DGN) 13213 3361 0.012674 4480 
SWAM-LCL (GTEx v6 + v8) 13213 3134 0.01185 4274 
SWAM-LCL (GTEx v6 + v8 + DGN) 13213 3275 0.012389 4384 
SWAM-LCL (GTEx v7 + v8) 13213 3259 0.01227 4326 
SWAM-LCL (GTEx v7 + v8 + DGN) 13213 3368 0.012737 4478 
SWAM-LCL (GTEx v6 + v7 + v8) 13213 3342 0.012641 4448 
SWAM-LCL (GTEx v6 + v7 + v8 + 
DGN) 13213 3413 0.012878 4526 
UTMOST-LCL 13213 2238 0.008466 3185 
NAIVE AVERAGE 13213 2666 0.010066 3830 
BEST TISSUE 13213 2493 0.009394 3663 

 

 

 

 

 

 

 

 

 

 

Supplementary Table 2.2– Comparison of all multi-tissue methods  

We applied SWAM to all combinations of GTEx and DGN resources. For the GTEx resources, we always 
used every tissue available. In version 6, this comprised of 44 tissues. For version 7, there were 48 
tissues and version 8 contained 49 tissues. For the sake of consistency, our target tissue for each of 
these combinations was GTEx v6 LCL. 
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Tissue 

GTEx v7 GTEx v8 

sample 
size 

Total # 
genes 

Genes 
with FDR 

< 0.05 

sample 
size 

Total # 
genes 

Genes 
with FDR 

< 0.05 
Adipose Subcutaneous 328 6689 2259 581 6847 2114 
Adipose Visceral Omentum 273 5286 1905 469 5769 1957 
Adrenal Gland 146 3784 1322 233 3816 1279 
Artery Aorta 236 5488 1850 387 6090 1844 
Artery Coronary 128 2838 1040 213 3177 1119 
Artery Tibial 329 6836 2131 584 6955 2023 
Brain Amygdala 81 1876 581 129 2081 682 
Brain Anterior cingulate cortex BA24 102 2628 838 147 2662 840 
Brain Caudate basal ganglia 126 3272 1035 194 3795 1146 
Brain Cerebellar Hemisphere 113 3810 1050 175 4482 1127 
Brain Cerebellum 137 4899 1310 209 5254 1299 
Brain Cortex 119 3422 1073 205 4169 1203 
Brain Frontal Cortex BA9 104 2812 879 175 3424 1019 
Brain Hippocampus 99 2217 708 165 2806 886 
Brain Hypothalamus 98 2219 710 170 2742 911 
Brain Nucleus accumbens basal 
ganglia 

114 2820 921 202 3629 1076 

Brain Putamen basal ganglia 98 2542 806 170 3365 1035 
Brain Spinal cord cervical c-1 76 2003 600 126 2455 744 
Brain Substantia nigra 70 1609 496 114 1892 570 
Breast Mammary Tissue 211 4280 1622 396 5076 1756 
Cells EBV-transformed lymphocytes 96 2777 1731 147 2537 1620 
Cells Transformed fibroblasts 256 6297 2336 483 7421 2428 
Colon Sigmoid 185 4257 1556 318 4847 1633 
Colon Transverse 210 4457 1771 368 4923 1781 
Esophagus Gastroesophageal 
Junction 

185 4325 1603 330 4964 1675 

Esophagus Mucosa 307 6744 2305 497 6872 2167 
Esophagus Muscularis 287 6354 2119 465 6554 2030 
Heart Atrial Appendage 231 4866 1675 372 5262 1696 
Heart Left Ventricle 233 4449 1491 386 4902 1569 
Kidney Cortex NA NA NA 73 1205 344 
Liver 134 2746 883 208 2983 976 
Lung 333 6251 2190 515 6173 2071 
Minor Salivary Gland 74 1785 652 144 2161 842 
Muscle Skeletal 421 6323 1901 706 6261 1762 
Nerve Tibial 305 7512 2179 532 7764 2051 
Ovary 99 2406 818 167 2751 909 
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Pancreas 180 4369 1504 305 4710 1532 
Pituitary 143 3691 1228 237 4262 1381 
Prostate 114 2487 926 221 3205 1125 
Skin Not Sun Exposed Suprapubic 285 6092 1997 517 6802 2011 
Skin Sun Exposed Lower leg 359 7221 2201 605 7203 2071 
Small Intestine Terminal Ileum 103 2482 991 174 2844 1145 
Spleen 119 3753 1514 227 4527 1720 
Stomach 200 3899 1518 324 4064 1542 
Testis 191 5919 1451 322 6470 1518 
Thyroid 344 7556 2249 574 7468 2130 
Uterus 82 1957 681 129 1944 699 
Vagina 91 1889 690 141 1919 725 
Whole Blood 315 5432 1915 670 6195 2082 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Table 2.3 – comparison of GTEx v7/v8 single tissue models versus GEUVADIS LCL 

We also compared every prediXcan model derived from GTEx version 7 and version 8 tissues, and 
tested prediction accuracy against GEUVADIS LCL measured expression levels. Surprisingly, 
despite the increase in sample size, the LCL tissue from v8 performed worse than its version 7 
counterpart. The number of tissues outperforming LCL in both v7 and v8 highlight the opportunity 
to leverage information from other tissues to improve prediction accuracy for under-powered 
tissues. 
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Tissue 
HDL LDL T2D 

# sig 
genes 

p-value 
threshold 

total 
genes 

# sig 
genes 

p-value 
threshold 

total 
genes 

# sig 
genes 

p-value 
threshold 

total 
genes 

Adipose Subcutaneous 78 3.23E-06 15501 79 3.22E-06 15507 8 3.19E-06 15669 
Adipose Visceral Omentum 80 3.26E-06 15326 71 3.26E-06 15333 8 3.23E-06 15476 
Adrenal Gland 70 3.34E-06 14961 78 3.34E-06 14973 8 3.31E-06 15110 
Artery Aorta 74 3.34E-06 14990 78 3.33E-06 15000 10 3.31E-06 15125 
Artery Coronary 76 3.33E-06 15001 69 3.33E-06 15009 7 3.30E-06 15147 
Artery Tibial 84 3.33E-06 14994 81 3.33E-06 15001 11 3.30E-06 15145 
Brain Anterior cingulate cortex BA24 87 3.36E-06 14892 70 3.36E-06 14901 6 3.32E-06 15061 
Brain Caudate basal ganglia 88 3.29E-06 15216 75 3.28E-06 15221 11 3.25E-06 15372 
Brain Cerebellar Hemisphere 75 3.39E-06 14742 74 3.39E-06 14755 4 3.36E-06 14891 
Brain Cerebellum 71 3.34E-06 14991 81 3.33E-06 15006 5 3.30E-06 15150 
Brain Cortex 78 3.29E-06 15198 91 3.29E-06 15208 6 3.25E-06 15366 
Brain Frontal Cortex BA9 74 3.32E-06 15061 65 3.32E-06 15073 5 3.28E-06 15239 
Brain Hippocampus 79 3.31E-06 15098 71 3.31E-06 15106 9 3.27E-06 15269 
Brain Hypothalamus 67 3.28E-06 15265 72 3.27E-06 15274 7 3.24E-06 15419 
Brain Nucleus accumbens basal 
ganglia 73 3.30E-06 15152 83 3.30E-06 15166 7 3.27E-06 15313 
Brain Putamen basal ganglia 86 3.35E-06 14926 79 3.35E-06 14935 9 3.32E-06 15066 
Breast Mammary Tissue 77 3.19E-06 15682 79 3.19E-06 15687 11 3.16E-06 15838 
Cells EBV-transformed lymphocytes 75 3.75E-06 13344 76 3.75E-06 13347 9 3.70E-06 13504 
Cells Transformed fibroblasts 74 3.55E-06 14091 81 3.55E-06 14098 10 3.51E-06 14253 
Colon Sigmoid 73 3.31E-06 15124 79 3.30E-06 15138 11 3.27E-06 15291 
Colon Transverse 78 3.23E-06 15500 73 3.22E-06 15507 7 3.19E-06 15681 
Esophagus Gastroesophageal Junction 79 3.34E-06 14988 78 3.33E-06 14993 8 3.30E-06 15140 
Esophagus Mucosa 84 3.27E-06 15268 81 3.27E-06 15275 7 3.24E-06 15437 
Esophagus Muscularis 77 3.29E-06 15199 93 3.29E-06 15205 7 3.26E-06 15343 
Heart Atrial Appendage 88 3.36E-06 14879 90 3.36E-06 14890 12 3.33E-06 15030 
Heart Left Ventricle 73 3.43E-06 14558 82 3.43E-06 14569 8 3.40E-06 14696 



55 
 

Liver 84 3.49E-06 14325 74 3.49E-06 14337 10 3.45E-06 14497 
Lung 92 3.16E-06 15813 73 3.16E-06 15822 7 3.13E-06 15974 
Muscle Skeletal 84 3.43E-06 14560 71 3.43E-06 14564 6 3.40E-06 14696 
Nerve Tibial 88 3.22E-06 15548 87 3.21E-06 15559 9 3.18E-06 15706 
Ovary 94 3.39E-06 14754 91 3.39E-06 14760 12 3.36E-06 14898 
Pancreas 73 3.36E-06 14891 66 3.36E-06 14900 11 3.33E-06 15026 
Pituitary 82 3.22E-06 15517 87 3.22E-06 15530 7 3.19E-06 15694 
Prostate 84 3.24E-06 15420 79 3.24E-06 15429 12 3.21E-06 15588 
Skin Not Sun Exposed Suprapubic 83 3.22E-06 15545 81 3.21E-06 15555 6 3.18E-06 15735 
Skin Sun Exposed Lower leg 85 3.18E-06 15729 75 3.18E-06 15738 7 3.15E-06 15891 
Small Intestine Terminal Ileum 78 3.28E-06 15265 67 3.27E-06 15281 7 3.23E-06 15462 
Spleen 78 3.36E-06 14873 69 3.36E-06 14884 18 3.33E-06 15037 
Stomach 80 3.23E-06 15495 74 3.22E-06 15506 7 3.19E-06 15658 
Testis 80 3.03E-06 16520 83 3.03E-06 16528 9 2.98E-06 16764 
Thyroid 78 3.18E-06 15705 70 3.18E-06 15714 10 3.15E-06 15876 
Uterus 84 3.42E-06 14641 90 3.41E-06 14654 8 3.38E-06 14803 
Vagina 84 3.30E-06 15157 84 3.30E-06 15167 7 3.26E-06 15328 
Whole Blood 78 3.49E-06 14331 71 3.49E-06 14340 7 3.45E-06 14505 
Average 79.71   77.75   8.43   

Supplementary Table 2.4– TWAS association signals for SWAM 

We used SWAM to derive an tissue-specific model for every GTEx version 6 tissue, and used these models as inputs to 
metaXcan to infer TWAS results. As mentioned in the methods section, the HDL and LDL traits were from Global Lipids 
Genetics Consortium (GLGC) [130] and Type-2 Diabetes (T2D) from the DIAGRAM consortium [131]. 
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Tissue 
HDL LDL T2D 

# sig 
genes 

p-value 
threshold 

total 
genes 

# sig 
genes 

p-value 
threshold 

total 
genes 

# sig 
genes 

p-value 
threshold 

total 
genes 

Adipose Subcutaneous 82 4.18E-06 11964 61 4.18E-06 11969 11 3.94E-06 12688 
Adipose Visceral Omentum 69 4.26E-06 11741 68 4.26E-06 11743 10 4.01E-06 12475 
Adrenal Gland 72 4.55E-06 10998 66 4.54E-06 11004 7 4.26E-06 11737 
Artery Aorta 75 4.47E-06 11180 55 4.47E-06 11184 7 4.19E-06 11926 
Artery Coronary 61 4.39E-06 11391 58 4.39E-06 11397 7 4.13E-06 12114 
Artery Tibial 74 4.43E-06 11292 60 4.43E-06 11295 9 4.15E-06 12044 
Brain Anterior cingulate cortex BA24 53 5.00E-06 10002 62 5.00E-06 10003 8 4.64E-06 10779 
Brain Caudate basal ganglia 61 4.61E-06 10850 55 4.61E-06 10850 11 4.30E-06 11627 
Brain Cerebellar Hemisphere 65 4.94E-06 10113 64 4.94E-06 10115 11 4.60E-06 10864 
Brain Cerebellum 62 4.78E-06 10457 67 4.78E-06 10457 7 4.46E-06 11205 
Brain Cortex 61 4.69E-06 10650 57 4.70E-06 10647 8 4.37E-06 11445 
Brain Frontal Cortex BA9 66 4.67E-06 10717 57 4.66E-06 10719 11 4.34E-06 11519 
Brain Hippocampus 58 4.67E-06 10701 54 4.67E-06 10701 8 4.36E-06 11469 
Brain Hypothalamus 75 4.55E-06 10986 65 4.55E-06 10987 11 4.25E-06 11764 
Brain Nucleus accumbens basal ganglia 74 4.64E-06 10781 59 4.64E-06 10783 9 4.33E-06 11541 
Brain Putamen basal ganglia 71 4.84E-06 10323 55 4.84E-06 10327 11 4.49E-06 11129 
Breast Mammary Tissue 74 4.12E-06 12141 62 4.12E-06 12143 8 3.88E-06 12899 
Cells EBV-transformed lymphocytes 65 5.20E-06 9610 50 5.20E-06 9615 5 4.87E-06 10267 
Cells Transformed fibroblasts 61 4.80E-06 10406 60 4.80E-06 10409 10 4.51E-06 11089 
Colon Sigmoid 72 4.44E-06 11257 68 4.44E-06 11261 7 4.16E-06 12010 
Colon Transverse 74 4.25E-06 11759 61 4.25E-06 11765 10 3.99E-06 12545 
Esophagus Gastroesophageal Junction 58 4.50E-06 11117 52 4.50E-06 11119 8 4.23E-06 11823 
Esophagus Mucosa 77 4.31E-06 11595 71 4.31E-06 11603 7 4.06E-06 12316 
Esophagus Muscularis 67 4.43E-06 11285 67 4.43E-06 11289 7 4.16E-06 12029 
Heart Atrial Appendage 69 4.58E-06 10922 64 4.58E-06 10923 9 4.28E-06 11679 
Heart Left Ventricle 77 4.75E-06 10519 55 4.75E-06 10522 10 4.45E-06 11242 
Liver 63 4.97E-06 10062 69 4.97E-06 10068 7 4.63E-06 10808 
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Lung 81 4.02E-06 12428 62 4.02E-06 12433 8 3.80E-06 13152 
Muscle Skeletal 81 4.70E-06 10629 65 4.70E-06 10631 6 4.41E-06 11326 
Nerve Tibial 78 4.24E-06 11784 63 4.24E-06 11787 7 4.00E-06 12511 
Ovary 57 4.71E-06 10608 60 4.71E-06 10607 8 4.42E-06 11323 
Pancreas 60 4.71E-06 10619 63 4.71E-06 10625 7 4.38E-06 11410 
Pituitary 75 4.41E-06 11336 69 4.41E-06 11337 8 4.13E-06 12117 
Prostate 73 4.28E-06 11685 60 4.28E-06 11688 8 4.02E-06 12450 
Skin Not Sun Exposed Suprapubic 75 4.24E-06 11789 69 4.24E-06 11797 7 4.00E-06 12505 
Skin Sun Exposed Lower leg 72 4.12E-06 12144 62 4.12E-06 12149 8 3.87E-06 12904 
Small Intestine Terminal Ileum 68 4.48E-06 11150 64 4.48E-06 11151 10 4.19E-06 11938 
Spleen 70 4.66E-06 10736 55 4.66E-06 10739 13 4.36E-06 11474 
Stomach 78 4.23E-06 11833 68 4.22E-06 11838 14 3.97E-06 12580 
Testis 73 4.03E-06 12411 70 4.03E-06 12412 7 3.78E-06 13222 
Thyroid 82 4.13E-06 12106 68 4.13E-06 12113 17 3.88E-06 12873 
Uterus 60 4.93E-06 10148 61 4.93E-06 10151 8 4.62E-06 10813 
Vagina 70 4.43E-06 11285 59 4.43E-06 11288 7 4.16E-06 12018 
Whole Blood 59 4.76E-06 10511 52 4.75E-06 10518 12 4.48E-06 11168 
Average 69.27   61.64   8.84   

Supplementary Table 2.5 – TWAS association signals for UTMOST 

These models were also derived from GTEx version 6 tissues using the UTMOST method. Models were downloaded from 
https://github.com/Joker-Jerome/UTMOST 
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Tissue 
HDL LDL T2D 

# sig 
genes 

p-value 
threshold 

total 
genes 

# sig 
genes 

p-value 
threshold 

total 
genes 

# sig 
genes 

p-value 
threshold 

total 
genes 

TW Adipose Subcutaneous 46 7.54E-06 6634 28 7.54E-06 6628 10 6.91E-06 7234 
TW Adipose Visceral Omentum 32 1.20E-05 4174 21 1.20E-05 4173 6 1.10E-05 4542 
TW Adrenal Gland 23 1.33E-05 3760 20 1.33E-05 3758 3 1.24E-05 4048 
TW Artery Aorta 33 8.76E-06 5706 44 8.76E-06 5705 5 8.11E-06 6163 
TW Artery Coronary 13 1.65E-05 3025 21 1.65E-05 3024 3 1.54E-05 3242 
TW Artery Tibial 36 7.50E-06 6666 32 7.51E-06 6657 6 6.89E-06 7259 
TW Brain Anterior cingulate cortex BA24 6 2.03E-05 2466 14 2.03E-05 2466 2 1.88E-05 2654 
TW Brain Caudate basal ganglia 21 1.48E-05 3375 25 1.48E-05 3372 2 1.38E-05 3616 
TW Brain Cerebellar Hemisphere 12 1.26E-05 3955 18 1.26E-05 3954 3 1.18E-05 4228 
TW Brain Cerebellum 22 1.10E-05 4543 28 1.10E-05 4542 4 1.04E-05 4830 
TW Brain Cortex 19 1.49E-05 3351 33 1.49E-05 3347 3 1.40E-05 3583 
TW Brain Frontal Cortex BA9 12 1.66E-05 3013 16 1.66E-05 3013 1 1.56E-05 3211 
TW Brain Hippocampus 12 2.12E-05 2362 10 2.12E-05 2362 1 1.97E-05 2534 
TW Brain Hypothalamus 6 2.20E-05 2269 11 2.20E-05 2268 1 2.04E-05 2455 
TW Brain Nucleus accumbens basal ganglia 16 1.70E-05 2935 17 1.70E-05 2935 1 1.60E-05 3131 
TW Brain Putamen basal ganglia 14 1.91E-05 2620 17 1.91E-05 2620 5 1.78E-05 2807 
TW Breast Mammary Tissue 23 1.16E-05 4292 20 1.17E-05 4288 4 1.07E-05 4655 
TW Cells EBV-transformed lymphocytes 22 1.43E-05 3493 17 1.43E-05 3491 3 1.33E-05 3751 
TW Cells Transformed fibroblasts 52 7.02E-06 7120 35 7.03E-06 7114 7 6.50E-06 7692 
TW Colon Sigmoid 16 1.40E-05 3561 16 1.40E-05 3559 4 1.30E-05 3858 
TW Colon Transverse 24 1.11E-05 4485 24 1.12E-05 4480 4 1.03E-05 4874 
TW Esophagus Gastroesophageal Junction 14 1.45E-05 3456 17 1.45E-05 3454 3 1.34E-05 3727 
TW Esophagus Mucosa 38 7.78E-06 6425 32 7.78E-06 6423 3 7.18E-06 6961 
TW Esophagus Muscularis 31 8.37E-06 5971 33 8.38E-06 5966 4 7.70E-06 6493 
TW Heart Atrial Appendage 28 1.19E-05 4187 21 1.19E-05 4185 6 1.11E-05 4501 
TW Heart Left Ventricle 25 1.11E-05 4517 33 1.11E-05 4513 4 1.02E-05 4885 
TW Liver 16 1.86E-05 2695 19 1.86E-05 2692 4 1.72E-05 2909 
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TW Lung 42 8.32E-06 6008 16 8.33E-06 6002 5 7.56E-06 6611 
TW Muscle Skeletal 30 8.32E-06 6009 30 8.33E-06 6003 8 7.56E-06 6614 
TW Nerve Tibial 41 6.60E-06 7577 39 6.61E-06 7570 6 6.13E-06 8157 
TW Ovary 13 1.94E-05 2576 17 1.94E-05 2575 3 1.81E-05 2762 
TW Pancreas 26 1.12E-05 4449 26 1.12E-05 4447 4 1.05E-05 4771 
TW Pituitary 12 1.59E-05 3145 13 1.59E-05 3144 5 1.48E-05 3382 
TW Prostate 10 2.09E-05 2389 20 2.09E-05 2389 3 1.92E-05 2609 
TW Skin Not Sun Exposed Suprapubic 27 9.37E-06 5336 31 9.38E-06 5333 4 8.62E-06 5798 
TW Skin Sun Exposed Lower leg 42 7.10E-06 7041 35 7.11E-06 7037 6 6.55E-06 7628 
TW Small Intestine Terminal Ileum 15 1.97E-05 2538 16 1.97E-05 2536 3 1.83E-05 2729 
TW Spleen 19 1.45E-05 3456 18 1.45E-05 3456 5 1.35E-05 3698 
TW Stomach 16 1.27E-05 3945 23 1.27E-05 3943 4 1.17E-05 4271 
TW Testis 30 7.37E-06 6780 28 7.38E-06 6778 7 6.91E-06 7234 
TW Thyroid 39 6.69E-06 7478 40 6.69E-06 7469 7 6.14E-06 8140 
TW Uterus 11 2.51E-05 1991 8 2.51E-05 1991 1 2.34E-05 2139 
TW Vagina 15 2.57E-05 1946 10 2.57E-05 1944 1 2.40E-05 2082 
TW Whole Blood 42 8.23E-06 6077 30 8.23E-06 6073 3 7.42E-06 6743 
Average 23.68   23.23   4.02   

Supplementary Table 2.6 – TWAS association signals for prediXcan (single-tissue) 

TWAS results via metaXcan using prediXcan single tissue models derived from GTEx version 6 tissues 
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Chapter 3 Revisiting Microarray Hybridization Biases in the 

Whole Genome Sequencing Era 

 

3.1 Abstract 

Traditional expression quantitative trait loci (eQTL) studies based on microarrays have 

successfully identified tremendous numbers of cis-acting associations between genetic variants 

and expression levels. However, microarray probes that contain a genetic variant can have 

weakened hybridization to RNA molecules due to base-pair mismatches, which artificially 

reduces the gene expression levels for individuals with non-reference alleles. This bias can lead 

to significant statistical associations in eQTL studies that are technical false positives. While 

existing publications have developed methods to address this issue by inferring and removing 

problematic probes (via reference panels or contrasting between groups with and without 

affected probes), it is impossible to fully correct the bias completely without knowing all genetic 

polymorphisms within the samples. In this chapter, we demonstrate that the availability of 

deep genome sequence data can be used to empower and refine existing eQTL studies by 

allowing us to correct for the reference-bias in variant-overlapping probes.  

Here, we leveraged whole genome sequence data from the Pima diabetic nephropathy cohort 

to identify variant-overlapping probes from their corresponding microarray expression levels. 

Using all variants, we found 27,767 affected probes in the Affymetrix HuGene 2.1 ST array, 

corresponding to 13,219 genes. At the probe level, >99% of strong associations (p-value < 10 -3) 

between affected probe and corresponding variant were negative in effect size. At the probeset 

(gene) level, we found a 2.0-3.5x odds ratio of having negative effect sizes compared to RNA 

sequencing expression data as a baseline. We then corrected expression levels using three 

approaches: (1) by removing affected probes identified by WGS, (2) removing affected probes 
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identified by 1000 Genomes reference panel, and (3) by adjusting affected probe levels using 

unaffected probes as a baseline. We compared these expression datasets with uncorrected 

expression in a comprehensive eQTL scan. Before correction, effect size balance was skewed in 

a negative direction for two tissues tested – (53.8% and 54.7%). This was no longer the case 

after applying correction methods, with negative ratios ranging from 45%-50% after correction. 

However, probe removal using 1000G all variants showed a large reduction in power and is 

inadvisable. We found that probe removal using Pima common variants and probe adjustment 

using Pima variants performed consistently well in terms of effect size imbalance resolution, as 

well as identifying likely false positives and false negatives. When whole genome sequence data 

are not available, removing probes using common variants from reference panels such as 

1000G can be a reasonable approach to correct for hybridization bias. 

3.2 Introduction 

Expression Quantitative Trait Loci (eQTL) studies have identified a tremendous number of cis- 

and trans- associations between genetic variants and gene expression levels and have provided 

many biological insights into the regulatory aspect of complex traits [146]. These studies have 

become increasingly viable in the past twenty years due to advances in technologies that 

facilitate high throughput measurements of gene expression. Microarrays were one of the first 

technologies that allowed researchers to assay expression levels of genes in a massively parallel 

manner, allowing for large-scale analyses of the transcriptome. Microarray platforms typically 

measure transcript abundance by using synthetic complementary DNA (cDNA) probes to bind 

with RNA molecules, which are quantified via color-coded dyes [60]. There are then various 

post-processing statistical methods which are used to generate gene-level expression estimates 

from these color intensities. Unfortunately, there are limitations with this technology that arise 

from the fact that cDNA probe sequences must be known a priori when conducting 

experiments. One well known shortcoming is that sequence variation within the probe regions 

can result in weakened hybridization between said probe and corresponding RNA molecules 

(due to base-pair mismatches) [100,101]. This can artificially reduce the estimated expression 

levels, creating statistically significant, but technically false associations between genetic 
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variant and gene expression primarily in the direction of apparent downregulation of non-

reference alleles. Even though these biases typically affect a small proportion of microarray 

probes, it has been shown that a large proportion of eQTL signals can be affected, leading to 

many potential false positives and false negatives [102].  

Because of this limitation (as well as others), microarrays have given way to next generation 

technologies such as RNA sequencing, which overcome many shortcomings by sequencing RNA 

transcripts directly. However, microarrays still have been used in recent eQTL studies [6] [7], 

and can also arise in meta-analyses or aggregate cohort studies that examine older datasets in 

which microarrays were the cutting edge technology at the time [8]. As such, there is merit to 

addressing limitations from this aging platform in the modern day. 

Recent publications have sought to address the hybridization bias by identifying problem 

probes and removing them from the analysis. Dannemann and colleagues implemented the 

algorithm ‘maskBAD’ which uses a statistical model to estimate differential binding affinity of 

probes between two experimental groups, where one group has the SNP and the other does 

not [104]. While the approach was able to identify most problem probes, some probes 

overlapping with SNPs could potentially be missed, and probes that did not overlap with SNPs 

were removed. Furthermore, the two groups (with one not affected by differential binding) 

must be identified prior to the analysis, which is not always possible in an experimental setting. 

Quigley’s equalizer algorithm detects all probes that overlap with SNPs given from a Variant Call 

Format (VCF) file, allowing for exact identification and removal of affected probes [103]. The 

author mentions that many human eQTL studies are conducted without exome or whole 

genome sequences of the individuals. To demonstrate the probe removal algorithm, common 

polymorphisms obtained from European and African sequences in the 1000 Genomes Project 

were used to identify these probes. When reviewing the overall imbalance effect of eQTLs, the 

author noted that the downstream effect of removing these probes led to a much improved but 

still incomplete resolution of the negative hybridization bias. Furthermore, if the study 

population of interest is genetically distant from both the European and African reference 

genomes, 1000 Genomes polymorphisms may not accurately identify biased probes. Knowing 

the exact genomes corresponding to the study cohort could improve expression correction 



63 
 

methods by identifying all the correct probes when compared to using reference panels such as 

1000G. With next generation sequencing, the fine-resolution genotyping of individuals has 

become more accessible to many study cohorts, which presents the opportunity to re-visit the 

issue of negative hybridization with relevant genotype information. 

In this chapter, we examine the benefits of using whole genome sequencing to identify biased 

probes more accurately. We demonstrate that this could improve estimation of expression 

levels, which in turn empower and refine existing eQTL studies. To highlight the improvement, 

we apply this approach to a population-specific cohort of Pima Native Americans, whose 

genomes differ from known reference panels for many sites. With whole genome sequence 

data, we characterize the extent of the negative hybridization bias at both the probe level and 

probeset (gene) level. We further demonstrate that using the population-specific genetic loci to 

identify and remove biased probes can result in more accurate eQTL discovery and fewer false 

positives, compared to using the 1000 Genomes reference panel. However, we also found that 

removing all affected probes might negatively affect eQTL power and accuracy of measured 

expression levels. Therefore, we also present a probe-adjustment method where, instead of 

removing all affected probes, we impute their intensity levels using information from non-

affected probes within the same probeset. We demonstrate that this approach may – in some 

situations – resolve the negative-hybridization bias without paying the price of losing power 

from removing probes. 

 

3.3 Materials and Methods 

3.3.1 Data Source 

To empirically demonstrate the different bias-correction strategies, we use data from a Pima 

Native American diabetic nephropathy cohort. In this study, deep whole genome sequencing 

was performed on 97 individuals, and renal expression data were obtained from microdissected 

biopsies of glomerular and tubular tissue compartments within the kidney, using both 

microarray and RNA sequencing techniques on the same tissue samples. The microarray 
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platform used was the Affymetrix HuGene 2.1 array, which consisted of 25-mer probe 

sequences specifically designed to target individual exons.  To convert probe intensities into 

probeset-level expression estimates, we used a custom (customCDF) probe-to-probeset 

mapping provided by the Microarray Lab from the Molecular and Behavioral Neuroscience 

Institute at the University of Michigan [148], which maps probes to genes more accurately than 

the default method [149]. Under this mapping the HuGene 2.1 platform contained 25,583 

probesets over 466,204 probes.  

We also compared the microarray data with RNA sequencing data, which was performed on the 

same tissues and overlapping samples when we need evaluations with different technologies. 

RNA-seq reads were aligned with TopHat [150] software tool and the transcript counts were 

quantified with Cufflinks [151] and normalized via log-transformation of FPKM (fragments per 

kilobase of transcript per million mapped reads).  

Deep whole genome sequencing was done for all study individuals via HiSeq X at the Macrogen 

Lab. SNPs were detected using the GotCloud SNP caller [152] and SNPs/indels were detected 

using HaplotypeCaller [153]. Affymetrix SNP arrays were used to check for genotype 

concordance with our whole genome sequence variants, and concordance was found to be very 

high (>99.9% across all samples). For 1000 Genomes variants, we used variant sites and allele 

frequencies from the phase 3 release [14]. 

3.3.2 Identification and removal of Probes overlapping with variants 

To identify probes overlapping with variants, we first downloaded a Browser Extensible Data 

(BED) file from the Affymetrix website 

(http://www.affymetrix.com/support/technical/byproduct.affx?product=HuGene-1_1-st-v1 ) 

containing information on the start and end positions of each probe. Conveniently, the genomic 

coordinates in this BED file were based on the Genome Reference Consortium human genome 

build 37 [154], which matched with the sequence alignment for the Pima cohort. We developed 

an in-house software which uses BED and VCF files as input, and outputs the full list of probes 

that contain any sequence variation. We defined a variant-overlapping probe as any probe 

whose start and stop positions contained a genetic variant. In the case of SNPs, this would 
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mean the genomic coordinates of the SNP lies between the start and stop position of the 

probe. We also included insertions and deletions (indels) in the output, using the criteria that 

the indel must be completely contained within the boundaries of the probe. 

We repeated this using different VCF files, obtaining several lists of variant-overlapping probes. 

Here, we used the Pima VCF obtained from the deep whole-genome sequencing, and a VCF file 

obtained from the 1000 Genomes project. Because of the diverse populations within the 1000 

Genomes cohort, there were many genetic variants and thus for too many probes were 

identified as problem probes. To remedy this issue, we filtered out variants with minor allele 

frequency lower than 5%. 

With the list of affected probes identified, our in-house software then directly modifies the cel 

definition file (CDF), removing the affected probes from their corresponding probesets. Using 

the new corrected CDFs, we then created an R-package compatible with Bioconductor’s oligo 

library, which is used to calculate gene expression. 

3.3.3 Probe adjustment approach 

We also implemented a probe adjustment approach where instead of removing affected 

probes, we re-calculated their values based on other probes within the probeset. Suppose a 

probeset 𝑃 has 𝑘 probes, 𝑝 , 𝑝 , … , 𝑝  ∈  𝑃, and that probe 𝑝  overlaps with a genetic 

marker(s) with genotypes denoted as 𝑥  (in the case of multiple, we pick one since they are 

almost always in high or perfect LD with each other). Let the 𝑦 , 𝑦 , … , 𝑦  be vectors to denote 

the probe intensities for all samples, corresponding to each probe. For genetic variant 𝑥 , we 

use a linear regression model to estimate a regression coefficient for each probe within the 

probeset: 

log (𝑦 ) = 𝛽 + 𝛽 𝑥 + 𝜀̂ , 𝑖 ∈ 1, … , 𝑘 

We then average the coefficients for all the probes not overlapping the variant, that is: 

𝛽 =
∑ 𝛽

𝑘 − 1
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𝛽 =
∑ 𝛽

𝑘 − 1
 

The estimated expression is as follows: 

log(𝑦 ) = 𝛽 + 𝛽 𝑥 + 𝜀̂  

 

This approach uses the non-problem probes to estimate the “true” effect the genetic marker 

has on expression levels, averaging across all unaffected probes. Here, the residuals 𝜀̂  are from 

the regression between the variant and its corresponding affected probe. These residuals 

provide an estimate of the individual-level probe intensities correcting for the technical effect 

induced by the overlapping variant.  

3.3.4 Normalization of Expression Data 

We calculated gene expression using the Bioconductor’s oligo R package [155], with sample-

level CEL files containing probe intensity information as input and using the aforementioned 

custom CDF to map the probes to probesets. We then applied Bioconductor’s Robust Multi-

Array Average (RMA) normalization algorithm to the probe level expression [67,156]. This was 

applied to each tissue and biopsy separately. Finally, we applied an inverse-normalization 

transformation across subjects for each probeset. Probesets were mapped to genes using 

Ensembl GRCh37 genes [154]. 

3.3.5 Quantification of probe- and probeset-level biases 

The overall bias quantification of identified probes was done by comparing the estimated 

enrichment of probes with both positive and negative hybridizations. To do this, we performed 

a regression analysis between every variant-in-probe (VIP: a genetic variant that overlaps with a 

probe) and the probe intensity level for its corresponding affected probe (VIP probe). We then 

repeated this for all other probes within the same probeset (probes that do not overlap with 

the variant). We used these unaffected probes to establish a baseline for comparison with the 

VIP probes.  
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In addition to our probe-level regression analysis, we performed a regression analysis to 

quantify the negative hybridization effect at the gene (probeset) level. Here, we included the 

13,219 genes that were affected by at least one VIP. We regressed every VIP against the gene 

expression level of its corresponding affected gene. To serve as a baseline for comparison, we 

used two approaches. First, we leveraged the RNA sequencing data that was also assayed from 

the same tissue sample as the microarray experiment. Since the RNA sequencing platform 

should not be susceptible to the hybridization effect, this allowed us to establish a relatively 

accurate estimate of the true gene-level enrichment of negative effect sizes. Secondly, for each 

affected gene (probeset containing an affected probe), we performed association analysis with 

all variants within the exon region of that gene. In this analysis, we excluded VIPs corresponding 

to each gene. This second approach allowed us to perform a high number of tests, while also 

allowing us to examine the effects of linkage-disequilibrium with VIPs on the hybridization bias. 

3.3.6 cis-eQTL Analysis 

Expression quantitative trait locus (eQTL) analysis was performed using mixed model 

association via the EMMAX software package [157]. A separate analysis was performed for each 

tissue and each expression correction method (uncorrected, correction using probe removal via 

Pima WGS and 1000G, and correction using probe imputation via Pima WGS). For every SNP 

and indel identified from our whole genome sequencing, we tested for association against each 

of the genes with measured expression. To account for potential confounders, we adjusted for 

age and sex as covariates. In addition, we calculated pairwise-kinship coefficients for all 

samples, using it as the fixed-effects component of the mixed model. 

We defined an eQTL as cis-acting if it was located within 1 Mb of the transcription start site of 

the associated gene. Otherwise, the eQTL signal was defined as being trans-acting. To account 

for multiple testing, p-values were adjusted by the false-discovery rate (FDR) correction 

approach, using the trans-eQTL signals to determine the false discovery rates. The unadjusted 

p-values corresponding to an FDR of 0.05 was approximately α=10-5 for all our analyses, and 

thus we used this threshold as our significance cutoff. Because of linkage disequilibrium (LD) 
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between neighboring SNPs, only the SNP with the lowest p-value was taken as the true cis-eQTL 

signal for each gene. 

3.3.7 Identification of technical false positives and technical false negatives 

Using our new corrected eQTL analyses, we revisited the uncorrected analyses and determine 

which of its signals were potentially false positives and false negatives due to the hybridization 

bias. In essence, we sought to identify signals that were lost (or gained) due to expression 

correction and determine if they were lost (or gained) because of VIPs. To do this, we 

performed pairwise comparisons between all gene signals from our uncorrected and corrected 

analyses, examining the effect sizes of peak eQTL variants, correlation between peak variants 

and VIP variants, and the association between VIP variant and gene (and probe) expression 

levels.  

For each gene, we defined it to be a false positive using the following criteria:  

 Uncorrected expression p-value < 1x10-5 and corrected expression p-value > 1x10-5 AND; 

 Peak eQTL is in high-LD with VIP (r2 > 0.1) AND; 

o Peak eQTL effect size diminishes after correction OR; 

o VIP is negatively associated with affected probe (p-value < 0.1) OR; 

o VIP is negatively associated with affected gene expression 

We defined false negatives using a similar criteria: 

 Uncorrected expression p-value > 1x10-5 and corrected expression p-value < 1x10-5 AND; 

 Peak eQTL is in high-LD with VIP (r2 > 0.1) AND; 

o Peak eQTL effect size increases after correction OR; 

o VIP is negatively associated with affected probe (p-value < 0.1) OR; 

o VIP is negatively associated with affected gene expression 

Finally, we excluded all genes in which the genotypes of the VIP had minor allele frequency less 

than 5%.  
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3.4 Results 

3.4.1 Comprehensive scan of VIPs using deep whole genome sequencing (WGS).  

We comprehensively scanned for variant-in-probes (VIPs: any SNP or indel contained within a 

probe) by comparing deep whole genome sequence (WGS) data to the genomic coordinates of 

every microarray probe. We examined 55 Pima Native American individuals (50 with glomerular 

and 54 with tubular expression data) where both deep WGS and array-based transcriptomic 

profiles (based on the Affymetrix HuGene 2.1.ST platform) were available (ClinicalTrials.gov 

number, NCT00340678). Among the 8.8 million SNPs and 1.8 million indels identified across 

these Pima genomes, we found that 29,917 (0.0028%) variants overlapped with a probe (VIPs). 

Using Pima VCFs, we observed that 6% of all probes (27,767/466,204) were affected by a VIP 

(Table 3.1A). However, despite the relatively low percentage of affected probes, because each 

probeset contains 18.2 probes on average, more than half (51.1%) of the probesets (13,219 out 

of 25,583) contained at least one affected probe, suggesting that the majority of array-based 

expression levels can potentially be affected with a bias to some degree. Per individual sample, 

we flagged an average of 10,219 affected probes (2.2% of all probes), which in turn mapped to 

6,210 affected probesets (24.3% of all probesets) on average. 

Using all 1000 Genomes variants to identify VIP probes is overly sensitive.  

We repeated this evaluation using ~80 million variants from the 1000 Genomes Project (1000G) 

[14]. As mentioned by Quigley, this approach could potentially be a viable alternative when 

individual-level WGS are not available, and it could identify affected probes with a reasonable 

accuracy when the study cohort is represented by the ancestries included in this reference 

panel. Using 1000G variants, we identified 51.1% of all probes as affected (238,207/466,204), 

which mapped to 93.1% of all the probesets (23,827/25,583). We observe that among these 

238,207 flagged probes, 212,455 were not flagged when using Pima WGS variants and are 

unlikely to have hybridization bias since they do not overlap with any Pima polymorphisms 

(Table 3.1B). We found that attempting to unnecessarily account for this high volume of probes 

led to inaccuracy in calculating expression for many genes, without providing benefit towards 

bias reduction.  



70 
 

Using common variants only achieves more reasonable sensitivity to identify VIP probes 

A much more sensible approach was to limit our scan to common variants (minor allele 

frequency > 5%), which may have a higher impact on probes compared to rare variants. For the 

sake of completeness, we applied this approach to both Pima and 1000G, creating two 

additional list of probes that were flagged based on common variants only. For Pima, the 

fraction of flagged probes and corresponding probesets were reduced to 3.5% (16,423 probes) 

and 36.0% (9,202 probesets) respectively. For 1000 Genomes common variants, we flagged 

4.6% of all probes (21,537 probes), mapping to 49.2% of all probesets (12,592 probesets). From 

We see that the 1000 Genomes common variant approach only flags 3,384 probes not 

identified by the Pima WGS (all variants) method, which is substantially fewer than the 212,455 

extra probes flagged when using all variants (Table 3.1C). Correcting for these 3,384 extra 

probes will not likely affect the expression estimates to the same magnitude, and thus this 

method appears to be a much more reliable approach. For the rest of the comparison in this 

chapter, we focused primarily on the probes identified by Pima WGS all variants, and 1000G 

common variants. 

 

3.4.2 Quantifying the effects of negative hybridization using probes identified by Pima WGS 

The availability of Pima WGS data allows us to characterize the hybridization bias at a probe 

level. To do this, we performed a linear regression between every affected probe and the 

genotypes of their corresponding VIP(s). To serve as controls, we also regressed these (VIPs) 

genotypes against the unaffected probes within the same probeset of the affected probe. 

Overall, we observe that a large proportion of probes are biased due to VIPs, and that the bias 

becomes more apparent as the regression effect size increases (Figure 3.1, Supplementary 

Table 3.1). For example, when examining all VIP probes (α = 1), 62.9% and 64.0% have negative 

effect sizes for glomerular and tubular tissues, respectively (Figure 3.1A). Given an expected 

ratio of 50% (which is observed in the unaffected probes analysis), there are roughly 3,400 

more negative probes than expected (out of a total of 26,435 total probes). Starting from α = 

10-3 and onward, we observe >99% of effect sizes being in the negative direction. In contrast, 
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our unaffected probe analysis shows 45-60% negative effect sizes across the spectrum of p-

value thresholds. This high imbalance of negative effect sizes provides evidence that strong 

associations between VIPs and their corresponding probes are almost all due to artificial 

artifacts. We also see an absence of strong positive signals, with only 1 positive signal at α = 10-5 

for glomerular and 2 positive signals for tubular. This suggests that true associations with 

positive effect sizes may also be masked by this negative hybridization bias. This could 

potentially lead to a loss of power and false positives in downstream eQTL discovery.  

We compared the effect size densities for affected and unaffected probes (Figure 3.1B). From 

here, we confirm the enrichment of negative effect sizes (from the heavy tail), as well as a mild 

shift in the median (median: -0.392 for glomerular, -0.433 for tubular) in the negative direction. 

The heavy left tail for highly significant associations (especially when t-statistic is less than -2) 

suggests that there may be a small number of probes that are greatly affected by the VIPs. The 

shift in the overall median for affected probes indicates that there are many probes that are 

mildly skewed in the negative direction – that is to say, most probes appear to have a small 

negative hybridization effect.  

Finally, we found that the position in which the variant overlaps with the probe also affects the 

severity of hybridization reduction. To test this, we calculated the distance of each VIP variant 

from the center of the affected probe sequence and tested for association with effect size. We 

found that variants closer to the center of the affected probe had stronger negative effect sizes, 

while variants near the edge of the affected probe boundaries had milder negative affinity 

(p-value < 10-15).  

3.4.3 Quantifying the effects of negative hybridization at the gene level 

Despite VIPs creating a strong negative bias for many of their corresponding probes, the impact 

of VIPs on gene expression at the probeset level is far more modest. Much like our probe-level 

analysis however, we still observe an enrichment of negative effect sizes which increases as the 

p-value threshold becomes more stringent. Upon examining all regressions (α=1) for the 

uncorrected expression, we see a slight imbalance of effect sizes across 18,109 tests (19,249 for 

tubular), with a negative ratio of 53.1% and 54.0% (confidence intervals) in glomerular and 
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tubular tissues respectively (Figure 3.2A, Supplementary Table 3.2). With more significant 

p-value thresholds, the negative ratio increases to roughly 70%. This relatively milder imbalance 

of negative signals compared to our probe regressions (70% versus >99%) can be explained with 

the knowledge that each probeset has an average of ~20 probes. Therefore, even though 

probes can be highly biased, the unaffected probes within the same probeset help mitigate the 

bias when calculating expression levels. 

Because RNA sequencing is less susceptible to expression bias arising from sequence variation, 

we repeated our experiment using RNA sequencing expression data for the same set of genes 

as a baseline for comparison. Compared to RNA-seq, there is evidence of the microarray 

hybridization bias both enriching negative signals, while also suppressing positive direction 

signals (Figure 3.3). There appears to be a clear abundance of negative effect sizes within the 

microarray associations, whereas this does not appear from the RNA-seq analysis (Figure 3.3A). 

We calculated the odds-ratio of having a negative effect size using RNA-seq as a baseline – we 

divided the microarray relative-risk by the RNA-seq relative-risk (Figure 3.3B). For the 

glomerular tissue, we observe an OR of ~2 – 3.5, while the tubular tissue shows an OR of ~2.  

We found that even non-VIP variants can be affected with hybridization bias through LD with 

VIPs. Our non-VIP regression analysis (Figure 3.2B) serves to characterize the relationship 

between affected/unaffected probesets and genetic variants within the corresponding exon 

regions of the gene. We separated this analysis into two components: 1) exon associations with 

genes containing an affected probe, and 2) exon associations with genes not containing an 

affected probe. Despite VIPs being excluded from this analysis entirely, we still observe a 

greater negative enrichment for affected genes versus non-affected genes. For example, at 

α=10-3, the glomerular tissue shows a 62.3% negative ratio for affected genes and a 54.5% 

negative ratio for unaffected genes. Similarly for the tubular tissue, there are 60.1% and 46.8% 

negative ratios for affected and unaffected genes respectively. This provides evidence that cis-

variants that are not VIPs are still negatively skewed, and could potentially be technical false 

positives. This is likely due to the linkage-disequilibrium structure, where a VIP will cause other 

variants in high LD to also be associated with the gene expression levels. 
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3.4.4 Assessment of bias correction methods  

Using our expression-correction methods, we generated ten new sets of expression data (5 sets 

for each tissue). These new datasets were derived from five correction methods: (1) Probe 

removal using Pima WGS (all variants) to identify probes, (2) Probe removal using Pima WGS 

(common variants) to identify probes, (3) Probe removal using 1000G (all variants) to identify 

probes, (4) Probe removal using 1000G (common variants) to identify probes and (5) Probe 

adjustment (see section 3.3) using Pima WGS (all variants) to identify probes. 

We repeated the VIP-regression analysis performed in 3.4.3, where we calculated association 

effect sizes between every VIP and their corresponding affected (but now corrected) gene. 

Overall, the methods all appear to improve the effect size balance, with negative ratios close to 

50% across all p-value thresholds (Figure 3.4, Supplementary Table 3.3). One exception would 

be the 1000G (all variants) probe removal method, which appears to have a higher negative 

ratio in the glomerular tissue. Based on effect size directions alone, we believe that all the 

correction methods other than 1000G (all variants) probe removal are viable. This is not 

surprising as the 1000G (common variants) method identifies many of the same probes that the 

Pima WGS method, and thus most of the expression estimates will be quite similar. 

3.4.5 Impact of hybridization bias on eQTL analysis 

Finally, we compared our expression correction approaches by performing a comprehensive 

eQTL scan across the entire genome. In contrast to our previous methods that tested only VIPs 

or non-VIP variants within exonic regions, our eQTL analysis tested every variant regardless of 

classification. Because VIPs are only a small portion of the entire genome, it is very unlikely that 

VIPs will be the peak eQTL for most genes. However, it is possible for the peak signals to be in 

linkage-disequilibrium with VIPs. As such, we broke down our results into further categories 

based on magnitude of LD between the eQTL peak and any VIPs that may affected the gene.  

We observe that peak eQTLs from both tissues are biased in the negative direction, and that all 

methods can correct this (Figure 3.5, Supplementary Table 3.4). However, there may be a slight 

overcorrection as the effect sizes in general skew slightly in the positive direction. Overall, the 

correction methods based on common variants appear to perform better than those using all 
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variants. In the Glomerular tissue, both Pima and 1000G common variants probe removal have 

better balance in effect size directions compared to their counterparts, while also identifying 

more signals. The probe adjustment approach also performs quite well, particularly in the 

tubular tissue where we observe a 50% negative ratio as well as the highest number of 

significant signals. However, the 1000G common variants approach appears to overcorrect in 

the tubular tissue, leading to a 54.5% positive effect size ratio. The 1000G all variants method 

reduces power substantially, resulting in a 21.9% and 35.7% loss of significant eQTLs in the 

glomerular and tubular tissues respectively.  

We examined the pairwise t-statistics between corrected and uncorrected genes 

(Supplementary Figure 3.1). Here, we observe a correlation of 0.88, 0.93 and 0.68 for the Pima 

probe removal, Pima probe adjustment and 1000G probe removal methods, respectively. This 

provides evidence that removing probes generates noise for gene expression estimates, which 

is particularly noticeable in the 1000G method. This in turn dilutes the effect sizes in eQTL 

analysis which reduces the number of significant signals detected. 

3.4.6 Evaluation of technical false positives and false negative eQTLs. 

We compared the list of signals lost and gained between the uncorrected and corrected 

analyses and identified false positives and false negatives using the criteria described in our 

methods section (3.3.7). For example, the RPL9 gene was classified as a technical false-positive 

by both the probe removal and probe adjustment methods (Supplementary Figure 3.2). Here, 

we observe a strong correlation between uncorrected expression and VIP genotypes (t-statistic 

= -6.899) whereas the correlation between corrected expression and VIP genotypes is near 

zero. In this scenario, the peak eQTL was the VIP, with an association p-value of 2.94x10-8. After 

expression correction, the peak eQTL was no longer the VIP and had a p-value of 5.37x10-4.  

However, not all signals gained or lost fulfilled the criteria of false positives/negatives. For 

example, the Pima probe removal method resulted in 66 and 85 signals lost for glomerular and 

tubular tissues, respectively (Supplementary Table 3.5). However, only 19 (28.8%) and 27 

(31.7%) of those lost signals were classified as false positives. This indicates that many of the 

signals that were lost may have fallen beneath the significance threshold due to noise 
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generated in expression levels due to the removal of probes, rather than being true technical 

biases. We found that overall, using common variants (in both Pima and 1000G) performed 

better – with higher ratios of false positives/negatives among the list of genes lost/gained – 

supporting the notion that removing fewer probes is advantageous. Finally, we observe that the 

probe adjustment method has the highest concordance with the uncorrected results (fewest 

signals gained/lost), but also accounts for the highest proportion of false positives/negatives 

(relative to number of signals gained/lost) in both tissues. The 1000G all variants method on the 

other hand, flags the most potential false positives (20 in glomerular, 41 in tubular) but does so 

at the expense of too many lost signals (94 for glomerular, 137 for tubular). 

 

3.5 Discussion 

In this chapter we characterized the effects of weakened hybridization in microarrays at a 

probe and probeset level, while exploring the ramifications of this technical bias on 

downstream eQTL analysis. Although methods to account for this bias have been examined in 

previous publications, none to our knowledge have leveraged whole genome sequence data to 

refine and empower these studies. In our work we first used whole genome sequencing to 

accurately identify probes with weakened hybridization. Once we identified these probes, we 

were able to characterize the extent of the bias at both the probe and probeset level by directly 

calculating regression coefficients between the variant-in-probes (VIPs) and expression levels of 

their corresponding probes/probesets. Finally, we performed downstream eQTL analysis, 

examining the effect size direction of peak eQTLs as well as their correlation with VIPs.  

Throughout our analyses, we compared correction methods that removed potentially biased 

probes from the calculation of the gene expression levels. Our hypothesis was that more 

accurate identification of probes would lead to improved analysis in terms of power, effect size 

distribution, and reduction of technical false positives and technical false negatives. We found 

in our analysis that overall, all methods – aside from probe removal via 1000G all variants – 

performed quite well. In terms of direction of effect size, these methods produced overall 

negative ratios close to 50%, which indicates that at the very least, the negative enrichment 
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from weakened hybridization has been resolved. In terms of power to discover eQTLs, we 

found that using common variants to remove probes performed better than using all variants. 

This is not surprising, as common variants are more likely to have an impact and negatively bias 

probe expression levels compared to rare variants. Furthermore, we found that removing 

probes introduced noise into the expression level estimates, which would then dilute the 

signals in an eQTL scan. Thus, limiting the list of probes removed to the most impactful ones 

would provide beneficial to the quality of the analysis. Finally, we examined the list of signals 

that were gained or lost after correcting expression levels and determined which of these were 

due to technical biases. From this, we found that methods that more accurately identified 

probes had higher success in determining false positives/negatives, while remaining relatively 

faithful to the original (uncorrected) analysis otherwise. In particular, the probe adjustment and 

probe removal with Pima common variants appeared to perform best from this angle.  

From our various viewpoints, we believe that probe adjustment via Pima all variants is the best 

approach to use, as it resolves many of the shortcomings of weakened hybridization while 

retaining high power and fidelity towards the original analysis. For methods that remove 

probes, identification of affected probes using common variants from whole genome sequence 

data appears to be the next best solution. In the scenario in which whole genome sequence 

data is not available, using common variants from a reference panel would perform adequately, 

although noise may be introduced into expression levels for genetically distant populations, 

causing both spurious signals as well as unnecessary loss of signals in eQTL analysis. 

Despite this recommendation, there are several limitations to our study and as such these 

findings should be approached with caution. First, our study population was an isolated and 

relatively homogeneous population of Pima Native Americans, and it is uncertain if the results 

from this chapter can be applied to other populations, or populations with genetic admixture. 

Next, we tested these methods using the glomerular and tubulointerstitial compartments in the 

Kidney, and findings here may not generalize to other tissues. We already noticed a slight 

difference in performance between these two tissues, with probe removal via 1000G common 

variants seemingly overcorrect – with more positive effect sizes – for the tubular tissue, as well 

as observing better performance in the tubular tissue for the probe adjustment method. In 



77 
 

addition to different tissues, our results may not extend to microarray platforms different from 

the HuGene 2.1 ST platform that was used in this study. Finally, the gene expression levels 

obtained from RNA sequence data were generated from transcript reads that may differ from 

the array-based probe sequences. Thus, the RNA-seq genes used as our baseline for 

comparison potentially interrogated different regions within the same gene compared to the 

microarray expression levels. As such, the RNA sequence gene expression levels do not provide 

exact comparisons between biased and unbiased transcript sequences, but rather serve as a 

general comparison, outlining the overall impact of negative hybridization bias at the gene 

level. 

To conclude, we revisited a well-known limitation of microarrays in assaying gene expression 

levels, using whole genome sequence data – as opposed to reference panel data – to 

characterize the list of potentially biased probes. We found that overall, WGS can more 

accurately identify these probes and ultimately provides higher quality eQTL analysis. 
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3.6 Tables and Figures 

 

 

 

 

 

 

 

 

 

 
N 

individuals 
Total 

# Overlap 

with VIPs 

% Overlap 

with VIPs 

Probe 

Per Individual  466,204 10,219 2.2% 

Pima-all 97 466,204 27,767 6.0% 

Pima-

common 
97 466,204 16,423 3.5% 

1000G-all 2504 466,204 238,207 51.1% 

1000G-

common 
2504 466,204 21,537 4.6% 

Probeset 

Per Individual  25,583 6,210 24.3% 

Pima-all 97 25,583 13,219 51.1% 

Pima-

common 
97 25,583 9,202 36.0% 

1000G-all 2504 25,583 23,827 93.1% 

1000G-

common 
2504 25,583 12,592 49.2% 

Table 3.1A Counts of the number of probes and probesets affected by VIPs  

Information on the VIPs (SNPs and insertions/deletions) identified using the following VCFs: Pima 
WGS (all), Pima WGS (common), 1000G variants (all), 1000G variants (common). The per 
individual counts are the average number of affected probes/probesets per Pima individual.  
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1KG-all only 1KG-all & Pima-all Pima-all Only 

212,455 25,752 2,015 

1KG common only 1KG common & Pima-all Pima-all Only 

3,384 18,153 9,614 

1KG common only 1KG common & Pima common Pima common Only 

6,947 14,590 1,833 

1KG-all only 1KG-all & Pima-all Pima-all Only 

10,617 13,210 9 

1KG common only 1KG common & Pima-all Pima-all Only 

1,131 9,981 3,238 

1KG common only 1KG common & Pima common Pima common Only 

2,611 8,501 701 

Table 3.1B – Comparison between lists of affected probes as identified by Pima and 1000G 
variants.  

It is evident that most of the probes identified by Pima WGS are captured when using the 1000G-
all variants approach, although this method identifies far too many extra probes as being 
affected (212455). Using 1000G-common variants, this method does not capture all of the 
probes identified by Pima WGS (missing 9614 probes) but also does not flag an excessive number 
of extra probes (only 3384) 

Table 3.1C – Comparison between lists of affected probesets as identified by Pima and 1000G 
variants.  

Only 9 probesets from the Pima-all approach are not covered using the 1000G approach, 
although the 1000G approach likely removes the wrong probes within the correct probeset. 

 

 



80 
 

  

Figure 3.1 – regression between VIP and affected/unaffected probes 

(A) shows the negative/positive ratio of effect sizes for the VIP regression against affected and 
unaffected probes identified using the Pima WGS approach. (B) shows the distribution of effect 
sizes for the same regression analysis. Medians are: -0.392/-0.433 for Glom/Tub for affected 
probes, and 0.01/-0.01 for Glom/Tub for unaffected probes. 

 

A 

B 
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Figure 3.2 – regression between VIPs and probesets 

(A) in our probeset analysis, we regressed every VIP against the probeset (gene) expression levels 
corresponding to the affected probe. 2A shows the negative ratio of effect sizes for microarray and 
RNA-Sequencing expression levels of affected genes. (B) For our exon analysis, we regressed all 
variants (excluding VIPs) within the exonic region of each gene with the microarray expression levels 
of that gene. 2B shows the negative ratio of effect sizes for hybridization affected and unaffected 
genes. Here, we observe an enrichment in negative effect sizes for affected genes and whereas the 
unaffected genes are overall better balanced (Glomerular tissue shows an imbalance here, but the 
number of signals is very low). This indicates a presence of LD between exonic variants and VIPs, 
leading to non-VIP variants being susceptible to technical biases. 
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Figure 3.3 – Comparison between Microarray and RNA-Seq effect sizes when performing regression between VIP 
and affected gene (probesets) 

(A) shows the counts of effect size directions for various p-value thresholds, with microarray counts on the left 
and RNA-Seq counts on the right. Overall, the microarray negative ratio ranged from 52% to 70%, whereas the 
RNA-Seq negative ratios ranged from 45%-55%. (B) shows the odds-ratio of having negative effect sizes for in 
Microarray genes relative to RNA-Seq genes. For the Glomerular tissue, we see a strong enrichment in negative 
effect sizes (up to 3.5 odds). In the Tubular tissue, there is milder enrichment in negative signals with an odds-
ratio of 2.2. 
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 Figure 3.4 – Comparison of uncorrected and different corrected expression approaches at the probeset level.  

Here, we regressed each VIP against their corresponding affected probeset. These plots show the negative ratio of effect sizes at 
various p-value thresholds. Overall, all correction methods appear to improve the effect size balance compared to the uncorrected 
approach, although the 1000G all variants probe removal method still displays a negative enrichment amongst signals with 
strong effect sizes within the Glomerular tissue. 
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Figure 3.5 – Comparison of uncorrected and different corrected expression approaches in a 
full eQTL analysis.  

Here, performed a comprehensive eQTL scan with the uncorrected expression, and each of 
our correction strategies. We noted the effect size direction for peak eQTL variants for each 
gene. Judging from the effect size balance, it appears that probe removal using 1000G 
common variants and Pima common variants performs well in the glomerular tissue, while 
the probe adjustment method performs best in the tubular tissue. As expected, using 1000G 
all variants to remove probes likely creates heterogeneity in expression levels by introducing 
white noise, which greatly reduces power in the eQTL analysis. 
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3.7 Supplementary Tables and Figures 

Tissue 
P-value 

Threshold 
affected probes unaffected probes 

Positive Negative %Neg Positive Negative %Neg 

Glomerular 
 
  

1 9,815 16,620 62.9 236,975 232,790 49.6 
0.05 430 3,711 89.6 14,534 13,308 47.8 
0.01 78 2,323 96.8 3,390 2,877 45.9 
1e-3 6 1,528 99.6 832 656 44.1 
1e-4 2 1,096 99.8 295 303 50.7 
1e-5 1 790 99.9 123 183 59.8 

Tubular 
 
  

1 9,893 17,601 64.0 241,988 246,237 50.4 
0.05 446 4,140 90.3 15,027 15,954 51.5 
0.01 76 2,623 97.2 3,615 3,612 50.0 
1e-3 13 1,718 99.2 913 878 49.0 
1e-4 6 1,259 99.5 396 418 51.4 
1e-5 2 955 99.8 233 278 54.4 

 

Supplementary Table 3.1– Direction of regression effect sizes between VIPs and probe-level 
intensities.  

For affected probes, we regressed the expression levels against the genotypes of the 
corresponding VIP. For unaffected probes, we regressed every probe within the affected 
probeset corresponding to the VIP. 
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Tissue P-value 
VIP vs Microarray  

(affected probesets) 
VIP vs RNA Sequencing 

(affected genes) 
Non-VIP vs Microarray 

(affected genes) 
Non-VIP vs Microarray 

(unaffected genes) 
Positive Negative Ratio Positive Negative Ratio Positive Negative Ratio Positive Negative Ratio 

Glomerular 
 
  

1 9,177 10,284 0.528 8,982 9,636 0.518 73,001 76,929 0.513 37,775 37,486 0.498 
0.1 1,062 1,520 0.589 1,290 1,226 0.487 9,440 11,247 0.544 5,010 4,853 0.492 

0.05 546 917 0.627 701 694 0.497 4,875 6,096 0.556 2,601 2,600 0.500 
0.01 138 281 0.671 221 216 0.494 1,395 1,880 0.574 609 614 0.502 
1e-3 40 90 0.692 65 70 0.519 397 656 0.623 136 163 0.545 
1e-4 20 39 0.661 29 23 0.442 126 192 0.604 61 77 0.558 
1e-5 13 23 0.639 16 8 0.333 67 111 0.624 15 30 0.667 

Tubular 
 
  

1 9,584 11,087 0.536 9,641 10,335 0.517 75,981 79,436 0.511 38,918 39,103 0.501 
0.1 1,268 1,810 0.588 1,664 1,541 0.481 10,255 12,248 0.544 5,108 5,125 0.501 

0.05 673 1,086 0.617 996 933 0.484 5,705 7,128 0.555 2,784 2,743 0.496 
0.01 201 431 0.682 417 395 0.486 1,779 2,497 0.584 709 743 0.512 
1e-3 77 181 0.702 176 182 0.508 636 959 0.601 223 196 0.468 
1e-4 40 100 0.714 99 113 0.533 363 514 0.586 114 108 0.486 
1e-5 28 55 0.663 64 75 0.540 205 297 0.592 40 38 0.487 

 

 

 

 

 

 

Supplementary Table 3.2– Direction of regression effect sizes between VIPs (and non-VIPs) and probeset (gene) expression.  
 

Here, we performed regression analysis between: (1) every VIP vs. microarray gene expression levels for every affected gene, (2) every VIP 
vs. RNA-seq expression levels for each affected gene, (3) variants within the exome region (excluding VIPs) vs. microarray expression levels 
for every affected gene and (4) variants within the exome region vs. microarray expression levels for every non-affected gene 
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Tissue P-value 
Corrected (probe removal 

Pima) 
Corrected (probe removal 

1KG) 
Corrected (probe removal 

1KG MAF5) 
Corrected (probe 

adjustments Pima) 
Positive Negative Ratio Positive Negative Ratio Positive Negative Ratio Positive Negative Ratio 

Glomerular 
 
  

1 9,789 9,451 0.491 9,907 9,549 0.491 9,651 9,796 0.504 9,019 9,064 0.501 
0.1 1,192 1,230 0.508 1,136 1,099 0.492 1,173 1,232 0.512 1,027 1,151 0.528 

0.05 657 687 0.511 592 605 0.505 644 707 0.523 579 647 0.528 
0.01 167 170 0.504 135 144 0.516 160 189 0.542 151 159 0.513 
1e-3 58 51 0.468 36 45 0.556 55 53 0.491 45 48 0.516 
1e-4 27 24 0.471 17 30 0.638 28 22 0.440 21 23 0.523 
1e-5 17 17 0.500 14 20 0.588 21 17 0.447 17 16 0.485 

Tubular 
 
  

1 10,386 10,304 0.498 10,362 10,321 0.499 10,204 10,477 0.507 9,481 9,774 0.508 
0.1 1,456 1,433 0.496 1,374 1,344 0.494 1,428 1,498 0.512 1,334 1,341 0.501 

0.05 797 774 0.493 730 719 0.496 774 819 0.514 714 748 0.512 
0.01 272 247 0.476 221 218 0.497 275 268 0.494 226 248 0.523 
1e-3 100 104 0.510 72 80 0.526 97 108 0.527 94 89 0.486 
1e-4 55 57 0.509 40 49 0.551 54 61 0.530 47 47 0.500 
1e-5 38 31 0.449 28 25 0.472 37 33 0.471 29 28 0.491 

 

 
Supplementary Table 3.3– Regression between VIPs and probesets after various correction methods 
 

This table shows the regression between every VIP vs. corrected microarray expression levels for each correction method. The first three 
columns correspond to the probe removal correction methods, while the rightmost column is our probe adjustment method.  
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method P-value Total 
signals 

overall High LD Low LD 
No VIP negative positive negative positive negative positive 

Uncorrected 

1e-3 
 
  

5,521 2,914 2,607 105 65 2,809 2,542 5,362 
Probe Removal: Pima all 5,450 2,696 2,754 78 89 2,618 2,665 5,351 
Probe Removal: Pima common 5,470 2,702 2,768 76 93 2,626 2,675 5,360 
Probe Removal: 1000G common 5,468 2,739 2,729 80 85 2,659 2,644 5,359 
Probe Removal: 1000G all 5,281 2,671 2,610 51 62 2,620 2,548 5,267 
Probe Adjust: Pima 5,459 2,738 2,721 71 80 2,667 2,641 5,365 
Uncorrected 

1e-4 
 
  

940 488 452 40 30 448 422 911 
Probe Removal: Pima all 941 466 475 30 34 436 441 896 
Probe Removal: Pima common 936 456 480 32 38 424 442 894 
Probe Removal: 1000G common 912 451 461 27 33 424 428 898 
Probe Removal: 1000G all 893 455 438 22 19 433 419 836 
Probe Adjust: Pima 934 452 482 30 33 422 449 894 
Uncorrected 

1e-5 
 
  

169 91 78 22 13 69 65 150 
Probe Removal: Pima all 162 75 87 12 14 63 73 141 
Probe Removal: Pima common 163 79 84 12 16 67 68 145 
Probe Removal: 1000G common 169 83 86 15 15 68 71 145 
Probe Removal: 1000G all 132 67 65 19 11 48 54 137 
Probe Adjust: Pima 150 70 80 12 14 58 66 139 
 

 

 

 

 

Supplementary Table 3.4A – comparison of different correction methods in peak eQTL analysis (Glomerular tissue) 
 

This table shows the effect sizes at various thresholds for peak eQTLs (one per gene). The “overall” column includes all peak eQTLs, while 
the “high LD” column includes only variants with r2>0.3 with a VIP, while the “low LD” column includes variants with r2>0.1 with a VIP. 
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method P-value Total 
signals 

overall High LD Low LD 
No VIP 

negative positive negative positive negative positive 
Uncorrected 

1e-3 
 
  

5,660 2,984 2,676 178 87 2,806 2,589 5,427 
Probe Removal: Pima all 5,644 2,852 2,792 101 94 2,751 2,698 5,427 
Probe Removal: Pima common 5,631 2,839 2,792 104 100 2,735 2,692 5,431 
Probe Removal: 1000G common 5,660 2,888 2,772 110 100 2,778 2,672 5,399 
Probe Removal: 1000G all 5,565 2,773 2,792 82 72 2,691 2,720 5,433 
Probe Adjust: Pima 5,640 2,784 2,856 113 104 2,671 2,752 5,436 
Uncorrected 

1e-4 
 
  

1,161 606 555 92 46 514 509 1,029 
Probe Removal: Pima all 1,118 577 541 58 54 519 487 1,021 
Probe Removal: Pima common 1,130 544 586 57 57 487 529 1,020 
Probe Removal: 1000G common 1,101 545 556 60 56 485 500 1,018 
Probe Removal: 1000G all 1,004 499 505 45 37 454 468 943 
Probe Adjust: Pima 1,120 564 556 65 52 499 504 1,030 
Uncorrected 

1e-5 
 
  

258 141 117 50 22 91 95 195 
Probe Removal: Pima all 234 113 121 30 29 83 92 194 
Probe Removal: Pima common 243 116 127 30 30 86 97 197 
Probe Removal: 1000G common 242 110 132 30 30 80 102 195 
Probe Removal: 1000G all 166 81 85 25 22 56 63 162 
Probe Adjust: Pima 246 123 123 38 26 85 97 198 

Supplementary Table 3.4B – comparison of different correction methods in peak eQTL analysis (Tubular tissue) 



90 
 

 

 

 

Supplementary Figure 3.1 – correlation between uncorrected and corrected expression 
 
Here, we calculated the pairwise concordance between uncorrected and corrected expression levels for various correction methods. While some genes 
may be heavily biased if not corrected, many genes are only mildly affected by the hybridization bias. As such, we believe that it is important to avoid 
overcorrecting or unnecessarily removing probes for these mildly affected genes. From the 1000G probe removal approach, it is evident that removing 
too many probes adds noise to the expression levels, causing concordance to be low. Because our probe adjustment approach does not remove the 
probe, but rather estimates the value using other probes within the same probeset, we observe a higher concordance with the original uncorrected 
expression levels. 

r2=0.878 r2=0.934 r2=0.681 

r2=0.878 r2=0.930 r2=0.685 
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Supplementary Figure 3.2 – example of potential false positive gene (RPL9) 
 
Here, we see an example of a likely false positive gene – RPL9 had a significant association with 
a VIP (p-value = 2.94x10-8). After removing/adjusting the affected probe, we no longer observe a 
strong negative association, and the peak variant (which no longer was the VIP) was no longer 
statistically significant (p-value = 5.37x10-4) 
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Tissue Correction Method 

Likely 
False Positive 
eGenes when 
Uncorrected 

eGenes 
Lost 

when 
corrected 

Likely 
False 

Negative 
eGenes when 
Uncorrected 

eGenes 
Gained 
when 

corrected 

Glomerular 

Probe Removal: Pima (all) 19 (28.8%) 66 19 (30.6%) 62 

Probe Removal: Pima 
(common) 

18 (35.3%) 51 15 (34.1%) 44 

Probe Removal: 1000G (all) 20 (21.2%) 94 10 (15.6%) 64 

Probe Removal: 1000G 
(common) 

15 (31.3%) 48 9 (17.0%) 53 

Probe Adjust: Pima 16 (40.0%) 40 9 (39.1%) 23 

Tubular 

Probe Removal: Pima 27 (31.7%) 85 10 (14.3%) 70 

Probe Removal: Pima 
(common) 

27 (40.3%) 67 11 (19.3%) 57 

Probe Removal: 1000G (all) 41 (29.9%) 137 7 (10.4%) 67 

Probe Removal: 1000G 
(common) 

27 (37.5%) 72 9 (14.3%) 63 

Probe Adjust: Pima 20 (48.8%) 41 9 (30%) 30 

Supplementary Table 3.5 – False positive/negative candidates identified by each correction approach. 

We compared the list of genes that no longer had significant eQTLs after expression correction and 
determined if they were likely false positives based on the criteria described in section 3.3.7. We repeated 
this for genes gained significant eQTLs after expression correction and determined if they were likely false 
negatives based on the criteria outlined in 3.3.7. Overall, we found that probe removal with 1000G all 
variants caused the most number of signals to change, but a relatively low proportion of these were 
actually false positives/negatives. As expected, methods that removed fewer probes changed fewer signals, 
with the probe adjustment method changing the least compared to the original analysis. However, despite 
changing the lowest amount of signals, the probe adjustment method had a high concordance with “likely” 
false positives and negatives. 
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Chapter 4 Systems Genetics Study in Pima Diabetic 

Nephropathy Cohort 

 

4.1 Introduction 

Systems genetics is an approach that seeks to holistically understand the biological mechanisms 

that drive complex traits and diseases [1]. These studies have the potential to unravel causal 

genes and pathways between endpoint phenotypes and DNA variation by examining 

intermediate phenotypes such as transcript, protein, or metabolite abundance. Using molecular 

phenotypes that are most relevant to the trait of interest can provide deeper insight than solely 

examining sequence variation. For example, gene expression studies such as eQTL (expression 

quantitative trait loci) mapping can be integrated with genome-wide association studies 

(GWAS) to predict causal genes and their functions. The advancement of high-throughput 

technologies and the increasing availability of large-scale molecular data have facilitated 

unprecedented studies which have furthered our understanding on various facets of systems 

genetics. For example, the UK biobank (UKBB) has collected genotypes on approximately 

500,000 UK individuals with many phenotypes, including biological measurements, lifestyle 

indicators, blood and urine biomarkers, and brain/liver imaging [125]. The database of 

published associations discovered by UKBB is freely available online for researchers to query 

[158]. The TOPMed program has collected and sequenced 53,831 genomes with diverse 

ethnicities, including European, Asian, African, Latino/Hispanic, Native American and more 

[159]. In addition to genomes, the TOPMed program has also provided phenotypic 

measurements, such as transcriptomic profiles via RNA-seq from whole blood for hundreds of 

individuals [160]. Another example is the SCALLOP consortium, which has collected many 

phenotypes, proteomic measurements and genotypes to perform large-scale cardiovascular 
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pQTL (protein quantitative trait loci) mapping, which have identified potential drug therapy 

targets [161,162]. 

Despite the increasing availability of resources, not all tissues have been studied equally, and 

disease-relevant tissues can be difficult to obtain. Some easily accessible tissues, such as blood 

or cell lines have been well-studied with large sample sizes. For example, the eQTLgen 

consortium has meta-analyzed blood eQTLs of 31,684 samples and identified ~17,000 cis-eQTL 

genes [105]. The renal tissue on the other hand, is still largely underrepresented and is still an 

emerging area of research [106]. As of this date, only a handful of studies have assayed kidney 

expression and performed eQTL analysis. While the GTEx consortium (version 8) has assayed 

RNA-seq expression levels for many tissues (49 published), the sample size for the kidney tissue 

is the lowest among all tissues (n=73) and the number of discovered cis-eQTL genes (eGenes) is 

~2.8-fold fewer than the next lowest, due to lower tissue quality and limited sample size [52]. 

Another eQTL scan was performed on 96 normal kidney samples from The Cancer Genome 

Atlas (TCGA), in which 1,886 eGenes were found [108]. One major limitation to both studies 

was that the kidney tissues were obtained from cortex in bulk, which does not represent key 

renal cell types - such as podocyte, glomerulus, tubular epithelial – that are relevant to the 

function of kidney. Furthermore, both GTEx and TCGA individuals were heavily biased towards 

European ancestry and does not represent genetic diversity of global populations.  

Recently, the Nephrotic Syndrome Study Network (NEPTUNE) performed an eQTL mapping 

(nephQTL) with micro-dissected kidney compartments (glomeruluar and tubulointerstitial) on 

187 individuals with nephrotic syndrome [106]. This resource substantially expanded our 

understandings of genetic regulation in renal tissues, even though it is focused on kidneys 

carrying rare diseases. There are increasing needs to profile the transcriptomes of each renal 

tissue compartment across diverse ancestries. The paucity of underrepresented populations in 

genomics studies is an important issue that, unless addressed properly, could contribute to 

further inequities in healthcare outcomes between different demographic groups [163,164]. 

Increasing the diversity of populations included in genomic studies could bridge this healthcare 

disparity by enriching our knowledge of genetic variation within different ancestry groups [165], 
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which will ultimately lead to improved and more accurate clinical care in a precision medicine 

setting [166]. 

Despite recent advances of eQTL studies focusing on renal tissues, systems genetics approach 

to understand the landscape of molecular and clinical profiles of renal tissues have not been 

explored yet. Molecular changes within renal tissues are more meaningful when they are also 

associated with clinical phenotypes, such as glomerular filtration rate (GFR) or albumin-creatin 

ratio (ACR). Morphometric measurements from imaging analysis of biopsy samples are also 

very important phenotypes to precisely quantify the function of individual kidneys. Multi-omics 

profiling integrated with morphometric and clinical phenotypes would make ideal resource for 

systems genetics studies to holistically understand the molecular basis of renal diseases.     

In this chapter, we present a systems genetic study focusing on microdissected renal tissue 

compartments for an underrepresented indigenous population. In particular, we study the Pima 

diabetic nephropathy cohort, which followed 97 Pima Native Americans over 15 years 

(ClinicalTrials.gov number, NCT00340678). Among the many measurements taken include deep 

whole genome sequencing, transcriptomic profiles of microdissected kidney compartments at 

two timepoints, clinical measurements related to kidney function, and morphometric features 

obtained from biopsies. With these datasets, we performed eQTL mapping, as well as 

differential expression, genome-wide association on a number of traits, and transcriptome-

wide association. Here, we discovered 805 glomerular eGenes and 1,118 tubular eGenes, with 

129 novel tissue-specific and 64 novel population-specific eGenes not identified in previous 

studies. We also identified 4,605 genes differentially regulated by renal phenotypes, enriched in 

pathways specific to cytokine-cytokine receptor interactions, focal adhesion, cancer, and ECM-

receptor interactions. We also report genome-wide significant associations with the VPC 

(volume of podocyte cell) morphometric trait for variants within the C2CD4B gene region – 

which has been identified as a potential risk variant for type 2 diabetes [167,168] – and a 

composite trait aggregated from multiple phenotypes. Our resource will help further our 

understanding of the molecular basis of diabetic renal diseases specific to cell-specific renal 

compartments for an understudied population. 



96 
 

4.2 Results 

4.2.1 A Landscape of Native American Renal eQTLs with Deep Whole Genome Sequencing 

The Pima diabetic nephropathy study provides numerous longitudinal clinical and multi-omics 

resources which can be used to help further our understanding of the kidney tissue from a 

systems genetics perspective. The depth and quality of these datasets provides an excellent 

opportunity to identify novel genes associated with renal diseases [169], potentially enriching 

our knowledge of this relatively understudied tissue. Among the many measurements gathered 

in this cohort include whole genome sequence data, transcriptomic profiles, kidney-related 

clinical traits, and kidney morphometry (Figure 4.1A). Of 77 participants received a biopsy in the 

first timeframe, 40 individuals received a follow-up biopsy in the second timeframe, and 37 

dropped out of the study primarily due to poor disease progression or death. The second biopsy 

period introduced 20 new individuals to the study (Supplementary Table 4.1).  

With the availability of deep, high quality datasets, we performed several analyses including 

identifying genetic determinants of gene regulation (eQTL mapping), identifying transcripts 

associated with phenotypes, identifying genetic variants associated with phenotypes (GWAS), 

identifying genes associated with phenotypes through genetic regulation (TWAS) (Figure 4.1B). 

In our eQTL analysis, we examined the association between genotypes versus each biopsy (B1 

and B2) and tissue type - glomerulus (Glom) and tubulointerstitium (Tub) - across technologies 

(array and RNA-seq) separately, as well as jointly. Differential expression was performed using 

clinical and morphometric traits as explanatory variables under linear mixed model [170]. We 

also imputed gene expression levels using 44 tissues from Genotype-Tissue Expression (GTEx) 

Project, while applying a combined-tissue aggregate score to perform TWAS analysis on our 

morphometric and clinical traits (see Chapter 2). Finally, GWAS on morphometric, clinical, and 

composite phenotypes were performed using genotypes from whole genome sequencing 

(WGS).  

For the sake of convenience, throughout this chapter we may sometimes abbreviate each gene 

expression assay as follows: biopsy 1 glomerular array expression (B1G-Array or B1GA), biopsy 2 

glomerular array expression (B2G-Array or B2GA), biopsy 2 glomerular RNA-seq expression 
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(B2G-RNAseq or B2GR), biopsy 1 tubular array expression (B1T-Array or B1TA), biopsy 2 tubular 

array expression (B2-Array or B2TA), biopsy 2 tubular RNA-seq expression (B2T-RNAseq or 

B2TR). 

4.2.2 Discovery of Pima cis-eQTLs  

We sought to identify genetic determinants of gene regulation from the transcriptomic profiles 

of Pima Native Americans. Given the limited sample size, we focused on the cis-acting eQTLs 

identified within 1Mb of the transcription start site of each gene, from each of the 6 sets of 

transcriptomic profiles. We used linear mixed model eQTL analysis with EMMAX [157] and 

corrected for systematic variations after normalization to increase the power to detect cis-eQTL 

while correcting for false positives (see Methods). For more consistent and interpretable 

comparisons of cis-regulated genes, our results mainly focus on 19,612 protein-coding genes 

(GENCODE v27) unless indicated otherwise.  

We identified a total of 805 glomerular and 1,118 tubular significant cis-eGenes across all 

biopsies and platforms (Table 4.1). Interestingly, despite that the first biopsy was based on 

older array-based technologies, in glomerular tissue, we identified more cis-eGenes (n=435) in 

the first biopsy than the second biopsies (178 from array, 351 from RNA-seq). We suspect that 

progression of glomerular damage increased heterogeneity between samples in biopsy 2 and 

the proportion of genetic variance among the overall variance of each gene (i.e. heritability) is 

higher for biopsy 1 compared biopsy 2.  For tubulointerstitial compartment, array-based cis-

eGenes were slightly smaller for biopsy 2 (n=285) compared to biopsy 1 (n=315). However, 

RNA-seq in biopsy had much higher power to detect significant cis-eGenes (n=814). These 

results suggest that RNA-seq improves the power to detect eQTLs but heterogeneity between 

samples also substantially affect the power of eQTL studies. 

We also attempted joint eQTL analysis across three datasets using the APEX software tool 

[171], treating the overlapping sample between experiments as identical twins using linear 

mixed model. While this approach found more eQTLs compared to single array datasets, it did 

not always identify more eQTLs than our RNA-seq datasets, presumably due to large 

heterogeneity between platforms (Table 4.1, Supplementary Table 4.8). 
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4.2.2.1 Concordance of eQTLs between tissues and biopsies 

To understand the similarity and differences in transcriptomic regulation between the 

glomerular and tubular tissues, we examined the concordance cis-eQTLs between the tissue 

types, biopsies, and assays. It has been shown that eQTL overlaps can be severely 

underestimated due to limited power [172], so we considered a cis-eQTL as ‘replicated’ in one 

of other two experiments for the same tissue if the Bonferroni-adjusted p-value is nominally 

significant (i.e. adjusted p<0.05, point-wise p<0.025) at the same SNP. With these criteria, we 

observed that 28-47% of glomerular cis-eQTLs and 35-60% of tubular cis-eQTLs are replicated in 

another experiment within the same tissue (Table 4.2). When comparing within the same 

experiment but different tissues, we note that replication rates are higher overall within the 

same biopsy than between biopsies, and overlaps are higher within biopsy 1 compared to 

biopsy 2. For example, 47.1% of B1GLOM-Array eQTLs are replicated by B1TUB-Array, whereas 

only 25.2% of B2GLOM-Array eQTLs are replicated by B2TUB-Array. This trend is also observed 

in the tubular tissue, where 58.7% of B1TUB-Array eQTLs are replicated by B1GLOM-Array, but 

only 36.5% of B2TUB-Array signals are replicated by B2GLOM-Array. This lower replication rate 

in the second biopsy suggests that glomerular and tubular eGenes become more tissue specific 

as time passes on.  

4.2.2.2 Identification tissue-specific and population-specific cis-eQTLs novel to GTEx 

Next, we sought to identify potential novel cis-eQTLs discoveries from our dataset compared to 

published eQTLs from GTEx project. For each peak cis-eQTLs from our study, we classified it as 

“novel” if it was located outside of the 95% credible set of any of the finely-mapped cis-eQTLs 

for each of the 48 GTEx version 8 tissues (except for kidney) [52,173] in which the deterministic 

approach of posteriors (DAP) algorithm was used to detect eQTLs [174].  We also evaluated 

overlap with kidney cis-eQTLs from NephQTL [106], to identify kidney-specific eQTLs shared 

with European ancestry. Overall observed that ~45%-55% of Pima cis-eQTLs overlapped with at 

least one of the GTEx cis-eQTLs, with the same proportion of eQTLs overlapping with nephQTL 

signals (Table 4.3).  
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To potentially understand and identify the mechanisms behind our novel signals, we further 

classified the novel signals into three coarse categories. We hypothesized that Pima signals 

could have been novel due to the signals being (1) highly tissue-specific (expressed in kidney, 

not expressed in GTEx tissues), (2) population-specific (low non-reference allele frequency in 

non-Pima individuals) or (3) other reasons, which may include lack of power in the GTEx tissues. 

Among the genes novel to GTEx, we identified a total of 53 tissue-specific eQTL variants from 

the glomerular compartment and 83 tissue-specific eQTL variants from the tubular 

compartment, with a total of 129 tissue-specific eQTL variants between the two tissues (Figure 

4.2A, Supplementary Table 4.5). To determine tissue-specificity of each eGene, we calculated 

the median TPM for each gene across each of the 49 GTEx tissues and compared this to the 

median TPM of the RNA-seq expression levels for both tissue compartments in the Pima cohort. 

Each gene was designated as tissue-specific if the Pima median TPM was higher than the top 

5% of median TPMs among the GTEx tissues.  

Next, we found a total of 64 peak eQTLs in to be population specific, with 26 coming from the 

glomerular tissue and 45 from the tubular tissue (Figure 4.2B, Supplementary Table 4.6). To 

determine the population-specificity of novel variants, we compared the minor allele frequency 

of each peak cis-eQTL between the Pima and European populations. To do this, we examined 

specifically the European individuals from the 1000 Genomes reference panel. We defined a 

variant as being Pima-specific if the minor allele frequency difference between the two 

populations were greater than 20%, and less than 5% overall for the 1000 Genomes population.  

Finally, there were 23 genes that had both tissue-specific and population-specific eQTLs. These 

genes were involved in Acyl-CoA dehydrogenases (ACOX2, ACAD10), fatty acid metabolism 

(D2HGDH, BPHL), reactive oxygen process pathway (NDUFA6, TNXRD2), DNA binding (MSH3), 

and the glyoxylate metabolic process (AGXT2). 
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4.2.3 Association with Phenotypes and Measured Expression  

We conducted association analysis between expression levels of each gene and phenotypes to 

identify genes differentially regulated based on phenotypes. Specifically, for each tissue 

(glomerular and tubular) and biopsy, we examined the pairwise association between each of 

the 28 phenotypes (25 morphometric and 3 clinical) and individual genes using linear model 

and identified genes significantly associated at FDR 0.05 [175]. Association between these 

measured gene expressions and phenotypes may implicate their relationships in either 

direction: genes affecting phenotypes or phenotypes affecting the genes. A total of 4,605 genes 

(2,650 in glomerular and 2,579 in tubular) were identified as significant in at least one of 

analysis, and 2,157 genes were significant in two or more analyses (Figure 4.4, Supplementary 

Table 4.12)  

Gene set enrichment analysis using KEGG pathway [176–178] with Enrichr software [179] 

identified many significantly enriched biological pathways associated with morphometric and 

clinical phenotypes. For example, cytokine-cytokine receptor interactions, which was previously 

implicated for diabetic kidneys and renal carcinoma [180–182], were significantly enriched with 

Glomerular Filtration Rate (GFR), Urinary Albumin Creatin Ratio (uACR), and multiple 

morphometric traits (VVAT_NS, VVATTT_NS, VVMM) (See Table 4.4A, 4.4B). These results 

suggest that cytokine response to activating stimulus may be an important factor involved with 

the function of diabetic kidneys. Focal adhesion pathway was significantly enriched (adjusted 

p=2.2x10-4) with numerical density of podocyte cell per glomerulus (NVPC), which is consistent 

to the previous studies capitalizing on the importance of focal adhesion in podocyte attachment 

within glomerular structure [183,184]. We also identified pathways related to cancer and ECM-

receptor interaction, which had significantly enriched associations between glomerular gene 

expression and morphometric traits measuring glomerular basement membrane width (GBM) 

and mesangial fractional volume (VVMES), suggesting potentially shared factors between 

diabetic kidneys and renal carcinoma [185,186].  
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4.2.4 GWAS with Clinical and Morphometric Traits 

We performed GWAS across 28 first biopsy and 25 second biopsy clinical and morphometric 

traits, as well as with the 13 first biopsy and 10 second biopsy composite traits (derived by 

principal components, Supplementary Materials 4.6.1). To correct for multiple traits, we used a 

conservative Bonferroni significance threshold of 2.0x10-9 (5x10-8, corrected across 25 traits). 

With this p-value threshold, we did not find any statistically significant signals. However, we 

found some marginal signals that may be suggestive of true associations. For example, for the 

biopsy 2 VPC trait (Figure 4.3A), we identified an association with variant rs11637089 (p-value = 

2.01x10-8, minor allele frequency = 38.8%), lying within the C2CD4B region, which has been 

previously identified as a risk-variant for type 2 diabetes [167,168]. Using the composite traits, 

we identified variant rs1559274 to have suggestive association with the PC3 trait from biopsy 2 

(p-value = 9.42x10-9, minor allele frequency = 30.0%), which corresponds to SV, uACR, VVPC and 

NVPC (Figure 4.3B). This top locus lies within 500KB downstream of the AGXT2 gene, which has 

been implicated in regulation of blood pressure [187]. AGXT2 was also found to have tissue-

specific and population-specific eGenes in Pima eQTLs. Given that PC3 is driven by uACR, which 

has been shown to be correlated with blood pressure [188–190] there may be some suggestive 

evidence that this genetic marker play a part in regulation of blood pressure as well. 

 Although power to detect associations in GWAS can depend on various factors including allele 

frequency and effect size or trait heterogeneity, sample size is an important factor for these 

studies [191–193]. Given that sample sizes for many GWA studies can number in the thousands 

of even tens or hundreds of thousands [194], the relatively scarcity of signals here is not 

surprising given the sample sizes (n=77, n=60 for biopsy 1 and 2 respectively). Despite the 

marginal levels of association overall, it appears that some of the top signals may provide 

meaningful insight into the biology of diabetes and kidney function. 

4.2.5 TWAS Between Predicted Expression and Clinical and Morphometric Traits 

We performed TWAS by associating predicted gene expression levels with clinical and 

morphometric traits, as well as with composite traits. Here, the predicted gene expression was 

based on a SWAM model (Chapter 2) derived from the GTEx version 8 whole blood tissue, for 
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13,907 protein coding genes (see methods). To correct for multiple testing, we used a 

Bonferroni corrected p-value threshold of 1.5x10-7 for regular traits and 3.0x10-7 for composite 

traits. While we did not discover any significant associations for the regular or composite traits, 

we found some marginal associations that may be of biological relevance. The top association 

among biopsy 2 traits was between VVPT_NS and the TFDP2 gene (p-value = 7.85x10-7), which 

contains risk variants previously identified in chronic kidney disease [195].  

 

4.3 Discussion 

In this chapter, we presented a longitudinal systems genetics resource based on the diabetic 

nephropathy cohort of Pima Native Americans, encompassing deep whole genome sequencing, 

transcriptomic profiles of two microdissected renal compartments, clinical traits, and 

morphometric phenotypes. Given that there have been few kidney transcriptomic resources 

(GTEx, nephQTL) and fewer yet with microdissected tissue compartments to differentiate 

between cell types and function, our work on this underrepresented, population-specific cohort 

can potentially provide a unique perspective of biological mechanisms underlying kidney 

disease. 

With the various analyses performed in this study, we were able to replicate numerous 

established or hypothesized pathways relevant to diabetes and kidney disease, as well as 

uncover potentially new signals. For example, our eQTL analysis replicated many signals from 

GTEx tissues, while also discovering tissue- and population-specific novel signals that we believe 

to be authentic. Indeed, among the 805 glomerular and 1,118 tubular eGenes, roughly 50% of 

the genes were also eGenes in one of the 48 GTEx version 8 tissues. On the other hand, we 

discovered 129 genes are likely novel due to tissue-specificity (genes expressed in Pima Kidney 

tissue but not GTEx tissues) and 64 genes due to population-specificity (novel signals due to 

studying a population that is distant from the GTEx samples). While the sample size of the 

cohort was sufficient to discover many eQTLs, GWAS are usually conducted using much larger 

cohorts, and often even meta-analyzed across multiple studies [196]. As such, it is not 

surprising that our GWAS provided only marginal associations for very few traits. Yet, our GWAS 
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with the VPC trait (volume of podocyte cell) identified genetic variants located within the 

C2CD4B gene region, which has been previously linked to diabetes susceptibility [167,168]. In 

addition to eQTL and GWAS, we characterized our clinical and morphometric traits in the 

context of transcriptome variation, testing for differentially expressed genes as well as 

conducting TWAS. With our measured expression association tests, we discovered 4,605 genes 

associated with morphometric traits, highlighting various relevant biological pathways such as 

cytokine-cytokine receptor interactions, focal adhesion, cancer, and ECM-receptor interactions. 

Finally, our TWAS also may have found a relevant association between VVPT_NS and TFDP2, a 

gene implicated in chronic kidney disease. All of these findings highlighted above will serve as a 

valuable resource to both validate and augment our current transcriptomic and genomic 

knowledge base for kidney structure and kidney disease progression, particular for the Native 

American population. 

The study design and quality of this dataset yields several distinct benefits that make it an 

valuable kidney transcriptome resource. Firstly, studying microdissected compartments of renal 

tissues can be extremely important in understanding the cell-type-specific regulation of renal 

transcriptomes. Even though a large number of eQTLs are shared between glomerular and 

tubular compartments, it was clear that many eQTLs are shared within the same 

compartments, even at differing time periods. Differentiating cell-types within an organ has 

been shown to more accurately identify new disease pathways by capturing the signature of 

important cell types, such as podocytes [197,198]. We expect that single-cell transcriptomic 

profiling technologies will allow us to understand cell-type-specific nature of transcriptional 

regulation in renal tissues much more precisely [199]. Secondly, the longitudinal collection of 

data gives multiple snapshots of transcriptomic profiles, allowing us to observe change in 

potential biomarkers that may be associated with renal disease state. Overall, we observed that 

eQTLs were more highly detected in biopsy 1 microarrays compared to those from biopsy 2, 

which likely could be attributed to heterogeneity due to disease progression. However, 

identifying the exact biomarkers associated with this progression remains challenging, as the 

batch effect between the two biopsies are completely confounded with the time variable. A 

future direction of research could be to deconvolute this confounder by calibrating the biopsy 2 
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microarray expression with the RNA sequencing data, which could potentially be achieved with 

more sophisticated statistical or computational methods. Finally, while GTEx provides an 

excellent reference for transcriptomic profiles of many tissues, the Pima samples have the 

benefit of being biopsied from live individuals. Because many of the high quality GTEx tissues 

are donated as transplants, the condition of the remaining tissue samples may be subpar 

compared to those from the Pima cohort. As such, we believe that our study will serve as a 

valuable resource to complement the recently growing pool of information in the field of 

kidney transcriptomics, providing both tissue-specific and population-specific insights. 

4.4 Materials and Methods 

4.4.1 Data Source 

The Pima diabetic nephropathy cohort provides a deep longitudinal catalogue of genomic, 

transcriptomic, morphometric, and clinical resource focusing on renal traits in Pima Native 

Americans. In this study, 97 individuals with minimum of 5 years of type 2 diabetes (T2D) were 

followed over a time period of 15 or more years. Many samples (n=68) had early onset of 

diabetic nephropathy. In this chapter, we focus on four different types of genomic and clinical 

measurements (Fig 4.1A) that were collected from the study. First, we deeply sequenced 97 

Pima Native Americans to comprehensively identify genetic variation within the cohort. Second, 

we assayed transcriptomic profiles between two time points with multiple technologies 

(microarray and RNA-seq) across two micro-dissected kidney compartments (glomerulus and 

tubulointerstitial). The first biopsy was taken from 2003-2007 while the second biopsy was 

taken from 2014 onward. Individuals who remained healthy enough at the second time point 

underwent the second biopsy, while those whose disease progression prevented them from 

safely undergoing an additional biopsy were excluded. Third, clinical phenotypes relevant to 

kidney functions were collected several times a year, such as Glomerular Filtration Rate (GFR), 

Urinary Albumin-Creatine Ratio (uACR), and hemoglobin A1C (HbA1c). Finally, morphometric 

measurements including volume of podocyte (VPC) and messangial cells (VVMES) within the 

glomerulus as well as cortical interstitial fractional volume (VVint) (and many more) were taken 

with each biopsy.  
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 4.4.2 Whole Genome Sequencing 

Deep whole genome sequencing was performed on 97 individuals using Illumina HiSeq X-Ten at 

the MacrogenLab. A mean depth was 32x was achieved, with 99.3% coverage of the genome 

(98.77% covered with at least 10x depth). Overall, the quality metrics looked excellent after 2 

potentially contaminated samples were identified and re-sequenced. We used the GotCloud 

[152] pipeline to produce SNP calls, using 1000G genotypes as cues. We also detected novel 

SNPs, which were included if there was strong evidence of being a true positive. We then used 

HaplotypeCaller [200] to detect both SNPs, as well as insertions and deletions (indels). We then 

generated variant call files (VCFs) using the SNPs from GotCloud and indels from 

HaplotypeCaller.  

In addition to whole genome sequencing, a genotyping array was used for 54 of the samples. 

We checked the concordance for the overlapping variant calls between these two genotyping 

technologies. Excluding 5 samples, we found the concordance overall to be very high across 

shared sites (>99.3%). Of the 5 samples with low concordance, 4 of them appear due to be a 

quality issue with the genotyping array, and the other one a sample swap.  

4.4.3 Measurements of Expression 

The expression microarray platforms used for the first biopsy were the Affymetrix HGU-133A 

(glomerular n = 21, tubular n = 22) and HGU-133 Plus 2 arrays (glomerular n = 48, tubular n = 

24). In the second biopsy, the Affymetrix HuGene 2.1 array was used (glomerular n = 50, tubular 

n = 54). All three platforms consisted of 25-mer probe sequences specifically designed to target 

individual exons. To harmonize between platform differences, we used a custom probe-to-

probeset mapping provided by the Microarray Lab from the Molecular and Behavioral 

Neuroscience Institute at the University of Michigan [148,149]. Under this mapping, the HGU-

133A platform contained 12075 probesets over 174129 probes, the HGU-133 Plus 2 platform 

contained 19703 probesets over 333134 probes, and the HuGene 2.1 platform contained 25583 

probesets over 466204 probes.  

RNA sequence data was available for both glomerular and tubular tissues in biopsy 2. Here, 

reads were aligned with TopHat [150] software tool and the transcript counts were quantified 
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with Cufflinks [151] and normalized via log-transformation of FPKM (fragments per kilobase of 

transcript per million mapped reads). SVDiff was also applied to RNA-seq data for eQTL analysis. 

4.4.4 Clinical and Morphometric Measurements 

Clinical traits were taken every six months, measuring kidney function metrics such as urinary 

albumin-to-creatinine ratio (uACR), glomerular filtration rate (GFR) and hemoglobin A1c 

(HbA1c). Morphometric traits were taken from the sampled biopsies with 25 features 

measured in the first biopsy and 22 features in the second biopsy. The full list of morphometry 

features is shown in Supplementary Figure 4.11. 

4.4.5 Normalization of Microarray Gene Expression 

To normalize expression, we applied Bioconductor’s robust-multiarray averaging (RMA) to each 

microarray platform separately. This method also takes probe-level intensities and combines 

them into probeset-level expression, which are later converted to genes. To maintain a 

consistent set of genes across the different platforms, we used a custom probe-to-probeset 

mapping provided by the Microarray Lab from the Molecular and Behavioral Neuroscience 

Institute at the University of Michigan. Under this mapping, the HGU-133A platform contained 

12075 probesets over 175,294 probes, the HGU-133 Plus 2 platform contained 19703 probests 

over 333134 probes, and the HuGene 2.1 platform contained 25583 probesets over 466204 

probes.  

Because the microarray experiment for biopsy 1 was done in two separate batches (both with 

different platforms), we used ComBat, an empirical Bayes batch correction method [68] to 

combine across platforms into a unified dataset for the first biopsy. To further deal with latent 

systematic technical effects in the array data, we used a singular-value decomposition method 

(which is outlined in the supplementary materials) similar to PEERS [201] in which we factor the 

expression matrix, identifying components of variation. We called this method SVDiff and found 

this approach worked very well in terms of removing these systematic biases, and in increasing 

the power of our eQTL analysis (see Supplementary Materials 4.6.2). 
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4.4.6 Variant-Aware Correction of Microarray Expression 

It is well-known in microarray experiments that when target probe sequences contain a genetic 

variant for an individual, there can be a hybridization bias due to differential binding affinity 

caused by said variant [100,101]. Typically, this negative hybridization will result in 

systematically lower probe intensity levels and potentially create false association signals. To 

combat this, we used our in-house software to identify probes that overlapped with Pima 

variants and removed them from the analysis (See Chapter 3). For the HGU-133A platform, we 

identified 7,542 probes (4.3% of the total probes) affecting 4,375 probesets (36.0% of the total 

probesets). For the HGU-133 Plus platform, we identified 14,840 probes (4.4% of the total 

probes) affecting 7,992 probesets (40.4% of the total probesets). Finally, for the biopsy 2 

platform, HuGene 2.1 ST, we identified 27,767 probes (6.0% of the total probes) affecting 

13,219 probesets (51.1% of the total probesets). 

4.4.7 eQTL Mapping 

Expression quantitative trait locus (eQTL) analysis was performed using mixed model 

association via the EMMAX software package [157]. A separate analysis was performed for each 

tissue. For every SNP and indel identified from our whole genome sequencing, we tested for 

association against each of the genes with measured expression. To account for potential 

confounders, we adjusted for age and sex as covariates. In addition, to account for potential 

familial-relatedness, we calculated a pairwise kinship matrix for all samples, using it as the 

fixed-effects component of the mixed model. 

We defined an eQTL as cis-acting if it was located within 1 Mb of the transcription start site of 

the associated gene. Otherwise, the eQTL signal was defined as being trans-acting. To account 

for multiple testing, p-values were adjusted by the false-discovery rate (FDR) correction 

approach, using the trans-eQTL signals to determine the false discovery rates. Even though the 

p-value thresholds at FDR < 0.05 are different between datasets (Supplementary Table 4.3), 

they were reasonably close to each other, so we used a fixed pointwise p-value threshold of 

5x10-6 for straightforward comparisons between different eQTL datasets. Because of linkage 
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disequilibrium (LD) between neighboring SNPs, only the SNP with the lowest p-value was taken 

as the true cis-eQTL signal for each gene. 

4.4.8 Combined Biopsy eQTL Mapping  

In addition to eQTL mapping with each tissue/biopsy as a separate analysis, we performed a 

joint tissue analysis where we combined across biopsies for each tissue. To do this, we used 

APEX (All-in-one Package for Efficient Xqtl analysis) [171], inputting B1GA, B2GA, and B2GR 

simultaneously, as well as B1TA, B2TA, and B2TR simultaneously. To account for duplicate 

individuals, we specified kinship coefficients of 1 (monozygotic twins) for same individuals and 

0 (unrelated) for all other pairwise relationships. The results of this analysis are shown in Table 

4.1 and Supplementary Table 4.5 alongside our main eQTL analysis. 

4.4.9 GWAS with Morphometric and Clinical Traits 

We performed a GWAS analysis between the Pima genetic variants and the morphometry and 

clinical data. Here, we tested 3 clinical traits (uACR, GFR, and HBA1c) and 25 biopsy 1 

morphometric traits, and 22 biopsy 2 morphometric traits (Supplementary Table 4.9). Like our 

eQTL analysis, adjusted for age and sex as covariates, and used the pairwise kindship matrix to 

account for familial structure. Because many of the morphometric traits are highly correlated, 

we also performed a PCA analysis on the traits, using the top 10 PCs for the analysis, in addition 

to all the original traits. 

To determine the significance threshold, we used 5x10-8 for each trait, and applied a Bonferroni 

correction based on the number of traits analyzed. For the regular traits, we used a p-value 

threshold of 2x10-9 and for the composite traits, we used a threshold of 5x10-9.  

4.4.10 Association Analysis between Measured Gene Expressions and Phenotypes 

We performed association analysis between 28 phenotypes – 25 morphometric, 3 clinical – and 

the expression levels of each gene, per tissue, biopsy, and assay. For array-based expression, 

we used quantile-normalized expressions obtained from RMA. For expression levels from RNA-

seq, we used FPKM values. The association analysis was performed using a linear model, with 

gene expression levels as the response variable and the phenotypes as predictor variables, 
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accounting for sex and age as covariates. For each dataset, we identified significantly associated 

genes using FDR < 0.05 threshold [175] and the significant genes were merged across biopsies 

and assays for each tissue and each phenotypes when summarized into Figure 4.4 and 

Supplementary Table 4.9 To perform pathway enrichment analysis, we used EnrichR [179] using 

KEGG 2019 Human database [176–178]. We reported only the significant enrichment with 

adjusted p-value < 0.001 to account for multiple comparisons. When a certain 

phenotype/tissue has many significantly enriched pathways, we only listed top 5 pathways in 

terms of p-value. 

4.4.11 Transcriptome Wide Association Analysis 

We performed transcriptome-wide association mapping by first using SWAM (chapter 2) to 

derive a whole blood model using 49 tissues from GTEx version 8 [52] and DGN whole blood 

tissue [50]. We then used PrediXcan [55] to calculate predicted expression levels based on the 

WGS genotypes of the 97 Pima individuals. From this prediction model, we successfully 

imputed 15,319 genes. We filtered these genes further using gencode v27 protein coding 

genes, resulting in 13,907 genes for the analysis. Next, we used EMMA [202] to perform mixed-

model association using clinical and morphometric traits as the outcome variable, and 

predicted expression levels as explanatory variables, adjusting for age and sex. We repeated 

this using the composite traits derived from our PC analysis (Supplementary 4.6.2). To account 

for population substructure from predicted expression levels, we calculated a covariance matrix 

between individuals across all genes and modeled it as a random effect. We accounted for 

multiple testing by setting a Bonferroni-corrected p-value threshold of 1.5x10-7 (correcting 

across 13,219 genes and 28/25 traits) for original clinical/morphometric traits, and 3.5x10-7 for 

composite traits (correcting across 13,219 genes and 10 composite traits).  
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4.5 Figures and Tables 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1A – Overview of the Pima study 

The Pima diabetic nephropathy cohort is a longitudinal study focusing on microdissected renal tissue 
compartments – glomerular and tubulointerstitial. Among the many measurements taken from the 
study included deep whole genome sequencing, gene expression levels (microarray and RNA-seq), 
clinical phenotypes, and morphometry traits determined by biopsies performed at two time points. 
Second biopsies were only performed on individuals healthy enough to undergo the operation 8 years 
after the initial biopsy. Additional participants who were added to the study later on were classified in 
the 2nd biopsy groups. 
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Figure 4.1B – Overview of analyses performed in this chapter 

With the multitude of datasets available, we performed various analyses to provide a multi-
faceted perspective of this unique cohort, including eQTL analysis, GWAS, TWAS, and trait-
expression association with both measured expression levels and imputed expression levels.  
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Biopsy Platform N samples # eGenes 

B1 Glom  Microarray 69 435 

B1 Tub Microarray 46 315 

B2 Glom Microarray 50 178 

B2 Tub Microarray 54 285 

B2 Glom RNA-seq 52 351 

B2 Tub RNA-seq 55 814 

Apex-Glomerular Combined 93(171) 403 

Apex-Tubular Combined 77(155) 408 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.1 – eGene discovery from cis-eQTL analysis  

Our main cis-eQTL analyses were performed using mixed-model regression via EMMAX [156]. 
We normalized each dataset with our SVDiff method, which is outlined in section 4.6.2. We 
also performed a combined analysis, where we aggregated across biopsies and platforms for 
each tissue type. To do this, we used the APEX software [170] to meta-analyze the multiple 
datasets. We filtered genes to only include protein coding genes according to gencode 
version 27. 
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Platform # eGenes 
# Replicates 

B1GA B2GA B2GR B1TA B2TA B2TR 

B1GA 435 - 
144 

(33.1%) 
204 

(46.9%) 
205 

(47.1%) 
115 

(26.4%) 
182 

(41.2%) 

B2GA 178 
64 

(36.0%) 
- 

81 
(45.5%) 

38 
(21.3%) 

56 
(25.2%) 

60 
(33.7%) 

B2GR 351 
115 

(32.8%) 
98 

(27.9%) 
- 

65 
(18.5%) 

80 
(22.7%) 

170 
(48.4%) 

B1TA 315 
185 

(58.7%) 
73 

(22.5%) 
88 

(27.9%) 
- 

144 
(45.7%) 

177 
(56.2%) 

B2TA 285 
85 

(29.8%) 
104 

(36.5%) 
82 

(28.8%) 
116 

(40.7%) 
- 

172 
(60.4%) 

B2TR 814 
229 

(28.1%) 
168 

(20.6%) 
331 

(40.7%) 
283 

(34.8%) 
341 

(41.9%) 
- 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.2 – cis-eQTL replication across tissues and biopsies 

For every peak cis-eQTL (p-value = 5x10-6), we searched for replication for that variant with 
other tissues/platforms. We considered the eQTL to be successfully replicated in another 
experiment using a p-value threshold of 0.025.  
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Platform All 
eGenes Novel eGenes* Tissue-specific 

eGenes 

Population-
specific 
eGenes 

Tissue- & 
Population-

specific  
eGenes 

eQTL is 
Replicated in 

NephQTL 

B1G (Microarray) 435 199 33 13 3 206 

B1T (Microarray) 315 151 35 19 7 160 

B2G (Microarray) 178 96 20 9 3 86 

B2T (Microarray) 285 142 25 12 1 155 

B2G (RNA-seq) 351 173 22 20 2 164 

B2T (RNA-seq) 814 358 69 37 8 438 

Table 4.3 – eQTL breakdown compared to other datasets 

We compared Pima eQTLs to other resources, namely GTEx and nephQTL. Genes were 
considered novel if they were not in the 95% credible set for any GTEx tissue, excluding kidney. 
From the list of novel genes, we further classified them as being tissue- or population-specific 
based on the criteria outlined in 4.2.2.2. For nephQTL replication, we considered a cis-eQTL 
replicated using a p-value threshold of 0.05. 

 

(*) Novel eGenes compared to GTEx version 8 tissues, excluding GTEx-Kidney 
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Figure 4.2 – breakdown of pima cis-eQTL variants compared to GTEx version 8 

In these plots, each point is a novel gene(as defined by Table 4.3), color coded to show if they are tissue-specific, population-specific, or 
both. (A) shows the comparison of median TPM between Pima RNA-seq and GTEx tissues. Here, we approximated the TPM count in the 
Pima individuals by applying the formula: tpm = exp(log(fpkm)-log(sum(fpkm)) + log(10-6)). (B) shows the minor allele frequencies 
between the Pima population and European samples from the 1000 genomes reference panel.  
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Figure 4.3A – GWAS results for VPC trait 

Here we observe an association signal between the biopsy 2 VPC trait and a variant within the C2CD4B region (p-value = 
2.01x10-8), which has been previously implicated in diabetes risk. 
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Figure 4.3B – GWAS results for PC3 composite trait 

With our composite traits, we observe a significant association between biopsy 2 PC3, (which corresponds to SV, uACR,VVPC and 
NVPC) and a variant located nearby the AGXT2 gene, which may regulate blood pressure. 

 

 



118 
 

 

  

Figure 4.4 –genes associated with clinical/morphometric traits (exponential scale) 

Here, we present the number of genes associated with clinical and morphometric traits. We 
performed this analysis on B1G, B2G, B2GR, B1T, B2T, and B2TR. Counts were pooled across 
platforms, and ascertained using false discovery rate of 0.05. 
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Tissue Trait Name Trait Description # DE 
Genes Pathway Adjusted 

p-value 
Fold-

Enrichment 

Glomerular GBM glomerular basement membrane 
width 365 

Pathways in cancer 1.0x10-06 3.4 

ECM-recepter interaction 3.1x10-06 8.6 

Glomerular NVPC 
Numerical density of podocyte 
cell per glomerulus 245 Focal adhesion 2.2x10-04 5.9 

Glomerular uACR urine albumin creatinine ratio 778 Cytokine-cytokine receptor interaction 1.3x10-04 3.0 

Glomerular VVAT_NS 
fraction of cortex that is atrophic 
tubules 63 

T cell receptor signaling pathway 1.0x10-03 17.8 

Chemokine signaling pathway 1.0x10-03 11.3 

Cytokine-cytokine receptor interaction 1.0x10-03 8.6 

Glomerular VVATT_NS fraction of total tubules that are 
atrophic tubules 57 

T cell receptor signaling pathway 4.9x10-04 19.9 

Chemokine signaling pathway 4.9x10-04 12.6 

Cytokine-cytokine receptor interaction 4.9x10-04 9.6 

Glomerular VVMES mesangial fractional volume 395 
ECM-receptor interaction 8.7x10-04 7.1 

Pathways in cancer 8.7x10-04 2.8 

Glomerular VVMM volume fraction of mesangial 
matrix per glomerulus 552 Complement and coagulation cascades 9.1x10-07 8.5 

Glomerular VVPCN volume fraction of podocyte 
nuclei per podocyte cell 246 

Lysosome 8.8x10-07 10.0 

Protein processing in endoplasmic 
reticulum 1.9x10-06 7.8 

Ribosome 4.1x10-06 7.8 

Prion diseases 2.1x10-04 17.0 

Spliceosome 2.8x10-04 6.7 
 

Table 4.4A – pathway analysis of differentially expressed Glomerular genes  
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Tissue Trait Name Trait Description # DE 
Genes Pathway Adjusted 

p-value 
Fold-

Enrichment 

Tubular uACR urine albumin creatinine ratio 1,969 

Cytokine-cytokine receptor interaction 3.7x10-15 3.5 

Osteoclast differentiation 4.5x10-15 5.7 

Pertussis 4.2x10-09 5.7 

Hematopoietic cell lineage 2.6x10-08 4.6 

TNF signaling pathway 4.2x10-08 4.2 

Tubular GFR glomerular filtration rate 383 

Cytokine-cytokine receptor interaction 4.2x10-09 5.5 

Fc gamma R-mediated phagocytosis 1.5x10-04 7.2 

Leukocyte transendothelial migration 7.6x10-05 5.7 

Pertussis 8.0x10-04 7.0 

Chemokine signaling pathway 8.3x10-04 4.2 

Tubular VVMM volume fraction of mesangial cells 
per glomerulus 490 

Cytokine-cytokine receptor interaction 2.3x10-16 6.7 

Chemokine signaling pathway 5.3x10-06 4.8 

Pertussis 1.8x10-05 7.6 

Fc gamma R-mediated phagocytosis 1.8x10-05 6.7 

Pathogenic Escherichia coli infection 3.4x10-05 9.0 

Table 4.4B – pathway analysis of differentially expressed Tubular genes  
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4.6 Supplementary Materials 

4.6.1 PCA on Morphometric and Clinical Phenotypes 

We performed principal components analysis jointly on clinical traits and morphometric 

phenotypes. Here, we used the prcomp function in R, where we first inverse-normalized the 

data, centering around 0.  Supplementary Figure 4.2 shows the correlation structure between 

these phenotypes. The heatmap here suggests that performing GWAS on PCA composite traits 

may reduce some of the redundancy of the highly correlated traits. The PCA loadings are shown 

in Supplementary Figure 4.3. For our GWAS, we used the first 10 PCs as they accounted for 90% 

of the variation explained.  

4.6.2 SVDiff normalization of gene expression levels 

Our SVDiff procedure was designed to account for latent systematic technical effects in the 

array data. This approach was an extra normalization step applied to expression at the probeset 

level. Suppose 𝑌 is an 𝑛 × 𝑚 matrix with 𝑛 individuals and 𝑚 genes. We performed singular 

value decomposition on this matrix to factor it into the form, 

𝒀 = 𝑼𝚺𝑽∗ 

Where 𝑼 is an 𝑛 × 𝑛 unitary matrix, 𝚺 is an 𝑛 × 𝑚 rectangular diagonal matrix, and 𝑽 is a 

𝑚 × 𝑚 unitary matrix. Next, we subset each matrix, capturing the first four singular value 

components to re-estimate Y. We defined 𝑼𝑺𝑽 to be the first 4 columns of 𝑼, 𝑽𝑺𝑽
∗  to be the first 

4 rows of 𝑽∗, and 𝚺𝑺𝑽 to be a diagonal matrix with the first 4 elements of 𝚺. Using these matrix 

subsets, we defined 

𝒀𝑺𝑽 = 𝑼𝑺𝑽𝚺𝑺𝑽𝑽𝑺𝑽
∗  

Our SVDiff corrected expression was defined to be: 𝒀𝑺𝑽𝑫𝒊𝒇𝒇 = 𝒀 − 𝒀𝑺𝑽, which we used for our 

eQTL mapping.  
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4.7 Supplementary Figures and Tables 

 

  
Biopsy 1 Biopsy 2 Combined 

Number of 
Samples 

 77 60 97 

Age at time of 
biopsy (years) 

mean 45.94 54.19 - 

sd 10.04 9.37 - 

Sex 
males 22 13 24 

females 55 47 73 

BMI (kg/m^2) 
mean 35.78 35.62 - 

sd 8.34 8.06 - 

Diabetes Duration 
by time of 
enrolment (years) 

mean - - 10 

sd - - 6.21 

min - - 2.28 

max - - 31.45 

GFR (ml/min) 
mean 145.83 128.39 - 

sd 51.23 47.4 - 

HBA1C (%) 
mean 9.36 9.71 - 

sd 2.05 2.01 - 

uACR 

normal (<30mg/g) 35 32 - 

microalbuminuria (30-
299mg/g) 

30 17 - 

macroalbuminuria 
(>300mg/g) 

12 11 - 

  
Supplementary Table 4.1 – Demographic information for Pima cohort 
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Platform Biopsy Genome Build 
Total Number of 

Probes 
Total Number of 

Probesets 

HGU133A 1 GRCh36 175,294 12,142 

HGU133Plus2 1 GRCh36 334,233 19,764 

HuGene 2.1 ST 2 GRCh37 466,204 25,583 

 

 

 

Platform Biopsy Total Number of Genes 

RNA-seq 2 54,847 

  

Supplementary Table 4.2 – Microarray probe information for gene expression measurements 

Supplementary Table 4.3 – RNA-seq information for gene expression measurements 
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Supplementary Figure 4.1 – counts of genesets used for expression analysis 

We filtered genes using gencode version 27 protein coding genes for our main analysis. 
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Platform P-value threshold corresponding to FDR 0.05 

B1 Glomerular (microarray) 1.8x10-5 

B2 Glomerular (microarray) 1.0x10-5 

B2 Glomerular (RNA-Seq) 5.5x10-6 

B1 Tubular (microarray) 2.0x10-5 

B2 Tubular (microarray) 1.0x10-5 

B2 Tubular (RNA-Seq) 5.0x10-6 

 

 

 

  

Supplementary Table 4.4 – P-value thresholds corresponding to FDR of 0.05 for eQTL 
analyses 

 

For the sake of consistency and simplicity, we used p-value threshold of 5x10-6 for all of our 
eQTL analyses to declare significance. Thus, the numbers shown in the main sections for 
microarray platforms is slightly more conservative than compared to using FDR. 
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Assay Tissue-specific genes  
B1GLOM-Array AAMDC, ALG8, ARPC5, ATG12, ATP5S, BTD, C17orf75, CNN3, CPQ, CTBS, 

EFCAB2, FLT3LG, METTL22, MGST2, MIER2, NAAA, NAT8, NDUFA6, NUBP2, 
PPCDC, PRDX1, RAB8A, SKP1, SLC31A2, SLC9A3R2, SPAG7, TCF21, TEFM, 
TMEM50A, TMEM53, UBE2I, VPS51, WDR45B 

B2GLOM-Array C10orf107, DNAJC10, DNAJC15, GPRC5A, HEBP2, HPGD, LMBR1, LRP11, 
METTL5, NDUFA6, NQO2, ORMDL3, PAPOLA, PRPF40A, RABGEF1, RP1, 
ST6GALNAC3, TAPBP, VTI1A, ZNF880 

B2GLOM-
RNAseq 

BPHL, C10orf107, CCND3, CMTM8, DNAJC15, FBXO25, GNGT1, MRPL34, 
MRPL53, OR2T6, PCMTD1, RSRC1, SMIM19, TCF4, TCTN3, TMEM150C, 
TMEM230, TXNRD2, WISP3, YIPF3, ZNF250, ZSWIM7 

B1TUB-Array ABCC6, ACOX2, ALDH2, ATP6V1D, BCL2L13, BDH2, BPHL, BTD, COX11, 
CRYL1, CTSH, DECR2, DNAJC15, DYNC2LI1, DYNLT1, EFCAB2, ENTPD5, GGH, 
GUSB, HSPBP1, IL17RB, IMPA2, LACTB2, MRPL2, NDUFA6, NUBP2, PBLD, 
PCBD1, PDSS2, PIGF, RITA1, SKP1, SLC33A1, ST3GAL1, UCHL5 

B2TUB-Array ADI1, AGMAT, AGXT2, ASRGL1, CNTNAP3B, DNAJC15, DPYS, EIF4E2, FAH, 
IL17RB, KL, MMAA, MSH3, NAT8, PRELID1, PTGR2, RNF130, RNF212B, 
RNF5, SH3YL1, SLC25A26, SLC28A1, SLC6A18, TSPAN33, ZSWIM7 

B2TUB-RNAseq ACAD10, ACBD4, ACOT2, ACOX2, AGXT2, ATAD3C, ATP6V0E2, ATXN7L1, 
BPHL, BTD, C4orf19, CARHSP1, CBWD1, CDPF1, CEP104, CNTNAP3B, COA6, 
COX7A2L, D2HGDH, DHRS4, DHRS4L2, DNAJC15, DPYS, DTD1, EFCAB2, 
FAHD1, FOLR1, FUCA2, GSTA1, HIBADH, HSPBP1, IL17RB, KIAA1191, 
MCCC1, MRPL36, MRPL42, MSRA, MTFMT, MTG2, MUC20, MYL12B, NAT8, 
NDUFA6, NTPCR, OPA3, PBLD, PCTP, PHYH, PPP2R5C, PSMG4, PSPH, 
PXMP2, RAB3IP, RABGEF1, RNF212B, SLC22A18AS, SLC44A3, SLC6A18, 
SMIM19, SMIM7, ST3GAL1, TBCD, THOC3, TIMM10, TIMMDC1, TPRKB, 
TSTD1, WNT9B, ZSWIM7 

  
Supplementary Table 4.5 – Genes with novel tissue-specific eQTLs from Pima analysis 

 

Here, we see the list of tissue-specific genes that had Pima eQTLs novel to GTEx version 8. 
We checked if genes were tissue-specific by approximating their median TPM counts from 
Pima RNA-seq expression, and comparing it to GTEx median TPM counts. If the Pima median 
TPM was greater than the 95th percentile GTEx median TPM, then we defined the tissue as 
tissue-specific to the Pima population.  
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Assay Genes with population-specific peak eQTLs 
B1GLOM-Array ACOX2, BTD, DGCR8, IL17RB, LIPT1, MRPL39, NDUFA6, PGBD5, PPFIA4, 

SOWAHC, STAT6, VPS51, ZMYND10 
B2GLOM-Array ACOX2, CXCL12, DNAJC15, ESD, FXR2, GPATCH8, IL17RB, PPP6C, SLK 
B2GLOM-
RNAseq 

BPHL, CTNNB1, CXCL12, DNAJC15, GLCCI1, LAIR2, LILRA6, LIN7B, 
MIS18BP1, NT5DC4, OSTN, PPP1R3C, SFTPD, SLCO1B3, SLK, SNX15, 
TXNRD2, UBE2N, UNC5D, ZSWIM1 

B1TUB-Array ABCC6, ACOX2, BTD, CNN3, DGCR8, DNAJC15, DYNLT1, ERAP1, EXTL1, 
GLIPR1, GLP1R, GUF1, IL17RB, MRPL2, NTRK2, PALM, RAPGEF3, TNFSF12, 
TNFSF15  

B2TUB-Array DGKB, DNAJC15, FAH, GSTP1, GUF1, IL17RB, LOXHD1, MSH3, ODF3B, PBX3, 
TRIM24, TSPAN33 

B2TUB-RNAseq AC011479.1, ACAD10, AFMID, AGXT2, ATP6V0E2, ATXN7L1, BPHL, BTD, 
C17orf58, CFB, CIB2, CLIP4, CPT1A, CTNNB1, D2HGDH, DMAC1, ENPP4, 
FAHD2A, FAM212B, GNG10, IL17RB, KCNK10, MRPL42, MYL12B, NUDT12, 
PROB1, RUNX3, SEMA4D, SMN2, TBCD, TMEM163, TRIM24, UTS2, VHL, 
WDR31, ZNF587B, ZNF787 

  
Supplementary Table 4.6 – Genes with novel population-specific eQTLs from Pima analysis 

 

Here, we see the list of population-specific genes that had Pima eQTLs novel to GTEx version 8. 
These are genes corresponding to peak eQTL variants that had minor allele frequency > 20% in 
the Pima cohort, but minor allele frequency < 5% from Europeans within the 1000 genomes 
reference panel. 



128 
 

 

 

Platform # eGenes 
# Replicates 

B1GA B2GA B2GR B1TA B2TA B2TR 

B1GA 435 - 
28 

(6.4%) 
46 

(10.6%) 
69 

(15.9%) 
29 

(6.7%) 
68 

(15.6%) 

B2GA 178 
41 

(23.0%) 
- 

34 
(19.1%) 

14 
(7.9%) 

24 
(13.5%) 

21 
(11.8%) 

B2GR 351 
63 

(17.9%) 
32 

(9.1%) 
- 

27 
(7.7%) 

22 
(6.3%) 

99 
(28.2%) 

B1TA 315 
69 

(21.9%) 
7 

(2.2%) 
21 

(6.7%) 
- 

34 
(10.8%) 

90 
(28.6%) 

B2TA 285 
37 

(13.0%) 
12 

(4.2%) 
20 

(7.0%) 
42 

(14.7%) 
- 

95 
(33.3%) 

B2TR 814 
75 

(9.2%) 
15 

(1.8%) 
72 

(8.8%) 
95 

(11.7%) 
84 

(10.3%) 
- 

  

Supplementary Table 4.7 – cis-eQTL replicates using stringent p-value thresholds for both datasets 

(p-value < 5x10-6) 

This list includes gencode v27 protein coding genes only. 
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Biopsy Platform N samples # eGenes 

B1 Glom  Microarray 69 457 

B1 Tub Microarray 46 325 

B2 Glom Microarray 50 219 

B2 Tub Microarray 54 328 

B2 Glom RNA-Seq 52 583 

B2 Tub RNA-Seq 55 1275 

Apex-Glomerular Combined 93(171) 422 

Apex-Tubular Combined 77(155) 420 

 

 

 

 

  

Supplementary Table 4.8 – eQTL analysis with full list of genes 

This list includes all genes that were assayed. We used p-value threshold of 5x10-6. 
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Platform # eGenes 
# Replicates 

B1GA B2GA B2GR B1TA B2TA B2TR 

B1GA 457 - 
156 

(34.1%) 
211 

(46.2%) 
218 

(47.7%) 
122 

(26.7%) 
190 

(41.6%) 

B2GA 219 
67 

(30.6%) 
- 

88 
(40.2%) 

39 
(17.8%) 

69 
(31.5%) 

65 
(29.7%) 

B2GR 583 
123 

(21.1%) 
126 

(21.6%) 
- 

70 
(12.0%) 

103 
(17.7%) 

195 
(33.4%) 

B1TA 325 
191 

(58.8%) 
76 

(23.3%) 
92 

(28.3%) 
- 

150 
(46.2%) 

182 
(56.0%) 

B2TA 328 
90 

(27.4%) 
119 

(36.3%) 
87 

(26.5%) 
119 

(36.3%) 
- 

179 
(54.6%) 

B2TR 1275 
244 

(19.1%) 
207 

(16.2%) 
365 

(28.6%) 
300 

(23.5%) 
394 

(30.9%) 
- 

 

 

 

  

Supplementary Table 4.9 – cis-eQTL replication with full list of genes (p-value 0.025) 

This replication list includes all genes that were assayed. 
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Platform # eGenes 
# Replicates 

B1GA B2GA B2GR B1TA B2TA B2TR 

B1GA 457 - 
30 

(6.6%) 
49 

(10.7%) 
71 

(15.5%) 
30 

(6.6%) 
74 

(16.2%) 

B2GA 219 
43 

(19.6%) 
- 

39 
(17.8%) 

14 
(6.4%) 

31 
(14.2%) 

26 
(19.6%) 

B2GR 583 
68 

(11.7%) 
37 

(6.3%) 
- 

28 
(4.8%) 

28 
(4.8%) 

114 
(19.6%) 

B1TA 325 
72 

(22.2%) 
7 

(2.2%) 
22 

(6.8%) 
- 

35 
(10.8%) 

94 
(28.9%) 

B2TA 328 
39 

(11.9%) 
17 

(5.2%) 
23 

(7.0%) 
43 

(13.1%) 
- 

101 
(30.8%) 

B2TR 1275 
83 

(6.5%) 
21 

(1.6%) 
87 

(6.8%) 
100 

(7.8%) 
94 

(7.4%) 
- 

  
Supplementary Table 4.10 – cis-eQTL replication with full list of genes (p-value 5x10-6) 

This replication list includes all genes that were assayed. 
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Variable Name Definition Unit 
GBM glomerular basement membrane width nm 
VVMES mesangial fractional volume % 
VVMC volume fraction of mesangial cells per glomerulus % 
VVMM volume fraction of mesangial matrix per glomerulus % 

VVMGBM volume fraction of mesangial glomerular basement membrane per 
glomerulus % 

SV surface volume of peripheral glomerular basement membrane per 
glomerulus µm2/µm3 

FPW_UM foot process width per biopsy from UMinn nm 
VPCN volume of podocyte nuclei µm3 
VVPCN volume fraction of podocyte nuclei per podocyte cell % 
VPC volume of podocyte cell µm3 
VVPC volume fraction of podocyte cell per glomerulus % 
NVPC numerical density of podocyte cell per glomerulus N/glom 
GLOM_CAV number of glomeruli measured for GV_CAV N 
GV_CAV glomerular volume by Cavaleri method on paraffin sections  x106 µm3 
GLOM_WG number of glomeruli measured for GV_WG N 
GV_WG glomerular volume by Weibel-Gomez method on epon section x106 µm3 
P_FPW foot process width in peripheral glomerular basement membrane nm 

INTACT percent of intact foot processes on both the peripheral and 
mesangial glomerular basement membrane % 

P_FEN percent of endothelial fenestration falling on the peripheral 
glomerular basement membrane % 

VVINT cortical interstitial fractional volume  % 
VVINT_NS fraction of cortex that is interstitium % 
VVINT_S fraction of scar cortex that is interstitium % 
VVSCAR fraction of total cortex that is scar cortex % 
VVAT fraction of total cortex that is total atrophic tubules % 
VVAT_NS fraction of cortex that is atrophic tubules % 
VVATTT_NS fraction of total tubules that is atrophic tubules % 
VVPT_NS fraction of cortex that is proximal tubules % 
VVDT_NS fraction of cortex that is distal tubules  % 
VVTT_NS fraction of cortex that is total tubules (proximal, distal, atrophic)  % 

GV derived glomerular volume variable - using GV_CAV when present 
and GV_WG when GV_CAV is missing x106 µm3 

  

Supplementary Table 4.11 – description of all kidney morphometry traits 
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Trait Glomerular signals Tubular signals 

GBM 365 21 

GFR 2 383 

GV 105 49 

HbA1c 0 1 

INTACT 16 0 

NVPC 245 1 

P_FEN 41 0 

P_FPW 1 0 

SV 66 0 

uACR 778 1969 

VPC 64 19 

VPCN 2 4 

VVAT 1147 942 

VVAT_NS 63 6 

VVATTT_NS 57 3 

VVDT_NS 8 5 

VVINT 1 0 

VVMES 395 136 

VVMGBM 38 22 

VVMM 552 490 

VVPC 3 0 

VVPCN 246 10 

VVPT_NS 0 2 

VVTT_NS 0 1 
  

Supplementary Table 4.12 – counts of differentially expressed genes for each 
clinical/morphometric trait 
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Supplementary Figure 4.2A – Phenotype 
correlation structure between biopsy 1 
clinical and morphometric traits 

Supplementary Figure 4.2B – Phenotype 
correlation structure between biopsy 2 
clinical and morphometric traits 
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Supplementary Figure 4.3 – PCA loadings for clinical and morphometric traits 

(A) shows the PC loadings for biopsy 1 traits and (B) shows the PC loadings for biopsy 2 traits 
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Chapter 5 Conclusion 

 

5.1 Summary 

The study of genetics is an integral part to understanding the biology behind our complex traits 

and can be approached in a variety of ways. Systems genetics studies across many genomes, 

transcriptomes, epigenomes, and phenomes provide us opportunities to elucidate the 

functional mechanisms of trait-associated variants in terms of gene regulation or protein 

function. In this thesis, we addressed on specific challenges related to systems genetic studies, 

including meta-imputation of expression across multiple datasets with only summary-level 

imputation models available, correcting for technical biases towards reference alleles in array-

based expression assays, and identifying tissue-specific and population-specific regulatory 

variants and trait-associated loci in the context of systems genetics with whole genome 

sequencing, transcriptomics profiles, morphometric traits, and clinical endpoints. With 

increasing number of sequenced genomes and trait-associated variants identified, it will be 

increasingly important to interpret each association signal through systems genetics approach 

that leverages molecular traits as intermediate phenotypes.  In this chapter, I will summarize 

each chapter and describe the current limitations in the methods and results described in each 

chapter and discuss future directions to expand their scope of research. 

In Chapter 2, we developed a method which leverages multiple datasets to accurately impute 

tissue-specific gene expression levels. Our method, Smartly Weighted Averaging across Multiple 

Tissues (SWAM) does not train directly from data, but rather combines extant prediction 

models by assigning weights based on their predictive performance and similarity to the tissue 

of interest. We demonstrate that when using the same set of resources (GTEx version 6 

tissues), SWAM improves prediction accuracy compared to approaches which predict gene 
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expression by training directly from raw data (PrediXcan, UTMOST). However, the major benefit 

of using the SWAM meta-imputation framework is the flexibility to combine multiple external 

resources derived from disjoint sets of individuals. Indeed, prediction accuracy is substantially 

improved when integrating whole-blood information from DGN samples into the GTEx-only 

predictions, highlighting the importance of using multiple datasets. 

In Chapter 3, we revisit a well-known hybridization bias that arises in microarray studies caused 

by genetic polymorphisms within target probe sequences. In our work, we leverage the 

availability of whole genome sequencing data to accurately identify and characterize this bias at 

both the probe and probeset (gene) level. We adjust gene expression level calculations by 

removing probes which overlap with study-specific polymorphisms and demonstrate that this 

approach resolves the negative bias more effectively compared to when using a reference 

panel to identify probes. We then propose an imputation method in which probes are not 

removed, but rather intensity levels are imputed based on values of unaffected probes within 

their probeset. This method was proposed to address the issue of unnecessarily removing 

probes ultimately reducing accuracy of expression calculation. This approach results in higher 

concordance between pre- and post- correction for many genes where probes were only mildly 

affected, while also reducing the negative bias in eQTL analysis. 

In Chapter 4, we perform a systems genetic study of Pima Native Americans enrolled in a 

diabetic nephropathy study. We integrate whole genome sequence data, gene expression and 

morphometric features derived from two microdissected renal compartments – Glomerular 

and Tubular – and clinical measurements to provide a landscape of the transcriptomic and 

genomic profiles of this cohort. Because of the high dimensionality of these datasets, we used 

various dimension reduction techniques such as PCA and TWAS to reduce the multiple testing 

burden and increase the chances of signal discovery. Studying this unique population gave us 

the ability to identify many population-specific and tissue-specific regulatory variants, as well as 

link various expressed genes with downstream clinical and morphometric traits. 
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5.2 Meta-imputation of gene expression using summary-level eQTL databases 

In our second chapter, we developed a method to leverage multiple datasets to accurately 

impute gene expression levels. Previously, gene expression imputation models were derived by 

performing (penalized) regression between genetic markers and measured expression levels, 

requiring raw individual-level data. Our method, Smartly Weighted Averaging across Multiple 

Tissues (SWAM) combines these derived prediction models by assigning weights to each model 

based on their similarity to the tissue of interest. Because SWAM does not train directly from 

raw data, prediction models derived from disjoint sets of individuals can be combined. The 

ability to leverage multiple datasets effectively increases the sample size of prediction model 

building, compared to using only a single resource. We demonstrate that SWAM provides 

superior imputation accuracy when combining multiple tissues from the same cohort (GTEx) 

compared to methods that train directly from raw data. In addition, imputation accuracy can be 

improved further when integrating other external resources, such as adding whole-blood tissue 

from DGN with the GTEx tissues.  

We compared SWAM to other expression imputation methods in the context of TWAS, testing 

three traits (HDL, LDL and type-2 diabetes). In terms of power, SWAM discovered more trait-

associations than other methods that generate imputed expression levels. However, we are 

aware that there are other methods which do not impute expression, but directly conduct 

TWAS using summary-level aggregate information from multiple resources, such as MultiXcan 

and S-MultiXcan. These multi-dataset TWAS methods do outperform SWAM in terms of signal 

discovery for the traits we tested. However, expression predictions can be useful outside of the 

context of TWAS such as for mendelian randomization experiments. Overall, among methods 

that produce expression predictions, we found SWAM to have the highest accuracy when 

validating with an external resource, and to have the highest power for TWAS discovery. 

Because multiple resources can be integrated without the need for their raw data, SWAM will 

be able to take advantage of the increasing number of eQTL resources being generated. 

Because many current eQTL resources come from individuals with European ancestry, we 

validated our results with only the European samples from the GEUVADIS consortium. 
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However, there could be many population specific variants that regulate expression levels that 

may only be detected by studying the correct ethnic groups. In addition, identifying these 

variants could provide the opportunity to identify the true causal variant for other populations 

by disentangling associations caused by LD structures. When comparing to the African 

population from GEUVADIS, we found much lower concordance between measured and 

imputed expression. This trans-ethnic or multi-ethnic aspect of imputation is a challenging 

problem, particularly so given that we are not training using the full raw data. Our validation of 

SWAM therefore operates under the assumption that the population of interest matches the 

training population. One future direction could be to examine the ideal strategy to integrate 

resources for multi-population or population specific imputation.  

With the emerging availability of new gene expression resources, providing the tools for 

massive integration is very important. In the future I would like to eventually implement a web-

based version of SWAM, similar to imputation servers to facilitate this integration. This could 

simplify and streamline much of the imputation process at a large scale.  

Finally, as single-cell RNA-Seq is becoming the pre-eminent technology for gene expression 

studies, we are able to view transcriptomic profiles at a very high scale and resolution. There 

have already been many efforts to analyze this high dimensional data by distinguishing and 

calculating expression levels for different cell types [203–205]. However, technical noise and 

cell dropouts have also given rise to the need for imputation at the cellular level [206–208]. 

Since SWAM is already suited to integrate multiple datasets even with different tissue types, 

our method could be extended to scRNA-Seq, treating different cell types as separate “tissues”. 

This could potentially enrich imputations and also allow for TWAS conducted for scRNA-Seq. 

 

5.3 Revising array-based expression profiles to empower today’s systems 

genetics 

In the third chapter, we revisited the well-known negative hybridization bias in microarray 

studies while leveraging the availability of whole genome sequencing. Because microarray 
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probes are designed to target specific DNA sequences within gene regions, genetic 

polymorphisms within individuals can weaken the bond between the RNA molecules and probe. 

This in turn creates a false association between the genotypes and probe intensity, which leads 

to downstream false positives in eQTL studies, while also hiding true associations. In previous 

work, the strategy was to identify these probes by using polymorphic sites from reference 

panels (1000G), but this could incorrectly flag many probes if the population is different from 

the individuals in the panel.  In our work, we use individual-level whole genome sequence data 

to accurately identify the list of potential biased probes, removing them from the expression 

calculation. We demonstrate that this approach reduces bias more effectively compared to 

using 1000G common variants. However, our characterization of flagged probes also revealed 

that some probes are greatly affected (high technical bias) whereas others are only mildly 

affected by the SNP-in-probe effect. Because removing probes unnecessarily can potentially 

add noise to the expression estimates, we devised an imputation method where we use the 

unaffected probes within a probeset to help estimate the true unbiased intensity for the 

affected probe. We demonstrate that this imputation method provides similar levels of efficacy 

in terms of bias correction compared to removing biased probes, while also having higher 

concordance with original expression levels for genes with only mildly affected probes.  

Because of their design, microarrays will always be susceptible to hybridization biases as they 

require DNA sequences. However, with increasing knowledge of the human genome, modern 

microarrays can somewhat overcome these weakened hybridization biases by avoiding known 

polymorphic sites in their probe targets. The work done in this dissertation should be taken 

with caution as it was done using the HuGene 2.1 ST array, and may not be generalizable to the 

newer microarray platforms. Furthermore, the study population was also limited to Pima Native 

Americans, and different populations may be impacted to varying degrees depending on their 

population-specific variants. One possible future direction would be to characterize the list of 

probes as well as the extent of bias in said probes for different microarray platforms and 

different populations. Making publicly available resources such as these could aid future 

researchers in correcting biases without the need for reference panels. 
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5.4 Systems genetic study on Pima diabetic nephropathy cohort  

In chapter 4, we presented a systems genetics study of the Pima diabetic nephropathy cohort, 

where we analyzed whole genome sequence data, transcriptomic profiles, clinical phenotypes, 

and kidney morphometry. Compared the currently published kidney transcriptome resources, 

this study was unique in the sense that it was one of the few with microdissected renal tissue 

compartments (as opposed to bulk kidney cortex) and focuses on an underrepresented 

population. As such, studying this cohort provided the opportunity to both replicate, and 

discover novel tissue-specific and population-specific insights into biological pathways 

underlying kidney disease. For example, our eQTL mapping discovered 805 glomerular eGenes 

and 1,118 tubular eGenes, with roughly 50% replicated in GTEx, and with a plausible 129 novel 

tissue-specific and 64 novel population-specific genes not previously identified in GTEx. In 

addition to eQTL mapping, we discovered numerous renal disease-relevant biological pathways 

for genes significantly associated with clinical and morphometric traits, including cytokine-

cytokine receptor interactions, focal adhesion, cancer, and ECM-receptor interactions [180–

186]. Our GWAS – despite the small sample size – discovered variants associated with the 

important VPC trait (volume of podocyte counts) within the C2CD4B gene region, which has 

been previously implicated in diabetes risk [167,168]. 

Despite the many resources generated from this study, there are limitations and challenges 

that arose from this deep, complex dataset that could be addressed as future directions. For 

example, although the study conducted biopsies at two time points, the assaying of expression 

levels was done in separate batches, thereby confounding the time effect with the batch effect. 

As such, because it is highly improbable to disentangle these two effects, discovering 

differentially expressed genes related to disease progression is likely infeasible. One potential 

future direction could be to use the RNA-Sequencing data (which coincides with the microarray 

expression from biopsy 2) to assist in separating out the batch and time effects. However, this 

was not within the scope of the project. Another limitation of this study was that, in order to 

obtain high quality phenotypes and transcriptomic profiles, the sample size of the cohort was 

relatively low, particularly in the context of GWAS, which can often have orders of magnitude 
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higher sample sizes [194]. Moving forward, integration of the transcriptomic facets of this study 

into larger scale GWA studies could provide further insight into the biological pathways 

underlying renal disease. Finally, with the advent of single-cell sequencing resources, we may 

able to deconvolute our gene expression into cell-type-specific resolution [209] to interpret 

eQTLs in a more precise manner. 

 

5.5 Concluding remarks  

The rapid advancement of technology, particularly in computing in the 20th and early 21st 

century has ushered in an era of revolutionary accessibility to information. With these changes 

to how quickly we receive and process data, we have been able to delve into various scientific 

topics with both unprecedented breadth and depth. The field of genetics has been rapidly 

evolving as technology improves, and with these improvements come new challenges, in both 

wetlab settings, as well as statistical and computational. The work done in this thesis has 

addressed some of the challenges in the field of genomics, such as implementing an integrative 

framework to combine multiple external resources to predict gene expression, correcting for 

technical biases in older gene expression technologies, and generating resources for emerging 

population-specific and tissue-specific systems genetics studies. It has been wonderful and 

fulfilling to contribute but a small part to our already vast expanse of knowledge in the field of 

genetics. As our understanding of genetics, biology, and science continue to grow, I look 

forward to continuing to work towards the improvement of public health by helping push the 

boundaries of our understanding of genetics, biology, and medicine. 

 

 

 

 

 

 



143 
 

 

 

References 

1.  Civelek M, Lusis AJ. Systems genetics approaches to understand complex traits. Nat Rev 
Genet. 2014 Jan;15(1):34–48.  

2.  Abbott S, Fairbanks DJ. Experiments on Plant Hybrids by Gregor Mendel. Genetics. 2016 
Oct;204(2):407–22.  

3.  MacArthur J, Bowler E, Cerezo M, Gil L, Hall P, Hastings E, Junkins H, McMahon A, Milano 
A, Morales J, Pendlington ZM, Welter D, Burdett T, Hindorff L, Flicek P, Cunningham F, 
Parkinson H. The new NHGRI-EBI Catalog of published genome-wide association studies 
(GWAS Catalog). Nucleic Acids Res. 2017 04;45(D1):D896–901.  

4.  Buniello A, MacArthur JAL, Cerezo M, Harris LW, Hayhurst J, Malangone C, McMahon A, 
Morales J, Mountjoy E, Sollis E, Suveges D, Vrousgou O, Whetzel PL, Amode R, Guillen JA, 
Riat HS, Trevanion SJ, Hall P, Junkins H, Flicek P, Burdett T, Hindorff LA, Cunningham F, 
Parkinson H. The NHGRI-EBI GWAS Catalog of published genome-wide association 
studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 2019 
08;47(D1):D1005–12.  

5.  Zimmermann MT. The Importance of Biologic Knowledge and Gene Expression Context 
for Genomic Data Interpretation. Front Genet. 2018 Dec 18;9:670.  

6.  The Multiple Tissue Human Expression Resource (MuTHER) Consortium, Grundberg E, 
Small KS, Hedman ÅK, Nica AC, Buil A, Keildson S, Bell JT, Yang T-P, Meduri E, Barrett A, 
Nisbett J, Sekowska M, Wilk A, Shin S-Y, Glass D, Travers M, Min JL, Ring S, Ho K, 
Thorleifsson G, Kong A, Thorsteindottir U, Ainali C, Dimas AS, Hassanali N, Ingle C, 
Knowles D, Krestyaninova M, Lowe CE, Di Meglio P, Montgomery SB, Parts L, Potter S, 
Surdulescu G, Tsaprouni L, Tsoka S, Bataille V, Durbin R, Nestle FO, O’Rahilly S, Soranzo N, 
Lindgren CM, Zondervan KT, Ahmadi KR, Schadt EE, Stefansson K, Smith GD, McCarthy 
MI, Deloukas P, Dermitzakis ET, Spector TD. Mapping cis- and trans-regulatory effects 
across multiple tissues in twins. Nat Genet. 2012 Oct;44(10):1084–9.  

7.  Nica AC, Parts L, Glass D, Nisbet J, Barrett A, Sekowska M, Travers M, Potter S, Grundberg 
E, Small K, Hedman ÅK, Bataille V, Tzenova Bell J, Surdulescu G, Dimas AS, Ingle C, Nestle 
FO, di Meglio P, Min JL, Wilk A, Hammond CJ, Hassanali N, Yang T-P, Montgomery SB, 
O’Rahilly S, Lindgren CM, Zondervan KT, Soranzo N, Barroso I, Durbin R, Ahmadi K, 
Deloukas P, McCarthy MI, Dermitzakis ET, Spector TD, The MuTHER Consortium. The 
Architecture of Gene Regulatory Variation across Multiple Human Tissues: The MuTHER 
Study. Barsh G, editor. PLoS Genet. 2011 Feb 3;7(2):e1002003.  



144 
 

8.  Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, Erdos MR, Stringham HM, 
Chines PS, Jackson AU, Prokunina-Olsson L, Ding C-J, Swift AJ, Narisu N, Hu T, Pruim R, 
Xiao R, Li X-Y, Conneely KN, Riebow NL, Sprau AG, Tong M, White PP, Hetrick KN, 
Barnhart MW, Bark CW, Goldstein JL, Watkins L, Xiang F, Saramies J, Buchanan TA, 
Watanabe RM, Valle TT, Kinnunen L, Abecasis GR, Pugh EW, Doheny KF, Bergman RN, 
Tuomilehto J, Collins FS, Boehnke M. A Genome-Wide Association Study of Type 2 
Diabetes in Finns Detects Multiple Susceptibility Variants. Science. 2007 Jun 
1;316(5829):1341–5.  

9.  The LifeLines Cohort Study, The ADIPOGen Consortium, The AGEN-BMI Working Group, 
The CARDIOGRAMplusC4D Consortium, The CKDGen Consortium, The GLGC, The ICBP, 
The MAGIC Investigators, The MuTHER Consortium, The MIGen Consortium, The PAGE 
Consortium, The ReproGen Consortium, The GENIE Consortium, The International 
Endogene Consortium, Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, Powell 
C, Vedantam S, Buchkovich ML, Yang J, Croteau-Chonka DC, Esko T, Fall T, Ferreira T, 
Gustafsson S, Kutalik Z, Luan J, Mägi R, Randall JC, Winkler TW, Wood AR, Workalemahu 
T, Faul JD, Smith JA, Hua Zhao J, Zhao W, Chen J, Fehrmann R, Hedman ÅK, Karjalainen J, 
Schmidt EM, Absher D, Amin N, Anderson D, Beekman M, Bolton JL, Bragg-Gresham JL, 
Buyske S, Demirkan A, Deng G, Ehret GB, Feenstra B, Feitosa MF, Fischer K, Goel A, Gong 
J, Jackson AU, Kanoni S, Kleber ME, Kristiansson K, Lim U, Lotay V, Mangino M, Mateo 
Leach I, Medina-Gomez C, Medland SE, Nalls MA, Palmer CD, Pasko D, Pechlivanis S, 
Peters MJ, Prokopenko I, Shungin D, Stančáková A, Strawbridge RJ, Ju Sung Y, Tanaka T, 
Teumer A, Trompet S, van der Laan SW, van Setten J, Van Vliet-Ostaptchouk JV, Wang Z, 
Yengo L, Zhang W, Isaacs A, Albrecht E, Ärnlöv J, Arscott GM, Attwood AP, Bandinelli S, 
Barrett A, Bas IN, Bellis C, Bennett AJ, Berne C, Blagieva R, Blüher M, Böhringer S, 
Bonnycastle LL, Böttcher Y, Boyd HA, Bruinenberg M, Caspersen IH, Ida Chen Y-D, Clarke 
R, Warwick Daw E, de Craen AJM, Delgado G, Dimitriou M, Doney ASF, Eklund N, Estrada 
K, Eury E, Folkersen L, Fraser RM, Garcia ME, Geller F, Giedraitis V, Gigante B, Go AS, 
Golay A, Goodall AH, Gordon SD, Gorski M, Grabe H-J, Grallert H, Grammer TB, Gräßler J, 
Grönberg H, Groves CJ, Gusto G, Haessler J, Hall P, Haller T, Hallmans G, Hartman CA, 
Hassinen M, Hayward C, Heard-Costa NL, Helmer Q, Hengstenberg C, Holmen O, 
Hottenga J-J, James AL, Jeff JM, Johansson Å, Jolley J, Juliusdottir T, Kinnunen L, Koenig 
W, Koskenvuo M, Kratzer W, Laitinen J, Lamina C, Leander K, Lee NR, Lichtner P, Lind L, 
Lindström J, Sin Lo K, Lobbens S, Lorbeer R, Lu Y, Mach F, Magnusson PKE, Mahajan A, 
McArdle WL, McLachlan S, Menni C, Merger S, Mihailov E, Milani L, Moayyeri A, Monda 
KL, Morken MA, Mulas A, Müller G, Müller-Nurasyid M, Musk AW, Nagaraja R, Nöthen 
MM, Nolte IM, Pilz S, Rayner NW, Renstrom F, Rettig R, Ried JS, Ripke S, Robertson NR, 
Rose LM, Sanna S, Scharnagl H, Scholtens S, Schumacher FR, Scott WR, Seufferlein T, Shi 
J, Vernon Smith A, Smolonska J, Stanton AV, Steinthorsdottir V, Stirrups K, Stringham HM, 
Sundström J, Swertz MA, Swift AJ, Syvänen A-C, Tan S-T, Tayo BO, Thorand B, 
Thorleifsson G, Tyrer JP, Uh H-W, Vandenput L, Verhulst FC, Vermeulen SH, Verweij N, 
Vonk JM, Waite LL, Warren HR, Waterworth D, Weedon MN, Wilkens LR, Willenborg C, 
Wilsgaard T, Wojczynski MK, Wong A, Wright AF, Zhang Q, Brennan EP, Choi M, Dastani 
Z, Drong AW, Eriksson P, Franco-Cereceda A, Gådin JR, Gharavi AG, Goddard ME, 



145 
 

Handsaker RE, Huang J, Karpe F, Kathiresan S, Keildson S, Kiryluk K, Kubo M, Lee J-Y, Liang 
L, Lifton RP, Ma B, McCarroll SA, McKnight AJ, Min JL, Moffatt MF, Montgomery GW, 
Murabito JM, Nicholson G, Nyholt DR, Okada Y, Perry JRB, Dorajoo R, Reinmaa E, Salem 
RM, Sandholm N, Scott RA, Stolk L, Takahashi A, Tanaka T, van’t Hooft FM, Vinkhuyzen 
AAE, Westra H-J, Zheng W, Zondervan KT, Heath AC, Arveiler D, Bakker SJL, Beilby J, 
Bergman RN, Blangero J, Bovet P, Campbell H, Caulfield MJ, Cesana G, Chakravarti A, 
Chasman DI, Chines PS, Collins FS, Crawford DC, Adrienne Cupples L, Cusi D, Danesh J, de 
Faire U, den Ruijter HM, Dominiczak AF, Erbel R, Erdmann J, Eriksson JG, Farrall M, Felix 
SB, Ferrannini E, Ferrières J, Ford I, Forouhi NG, Forrester T, Franco OH, Gansevoort RT, 
Gejman PV, Gieger C, Gottesman O, Gudnason V, Gyllensten U, Hall AS, Harris TB, 
Hattersley AT, Hicks AA, Hindorff LA, Hingorani AD, Hofman A, Homuth G, Kees Hovingh 
G, Humphries SE, Hunt SC, Hyppönen E, Illig T, Jacobs KB, Jarvelin M-R, Jöckel K-H, 
Johansen B, Jousilahti P, Wouter Jukema J, Jula AM, Kaprio J, Kastelein JJP, Keinanen-
Kiukaanniemi SM, Kiemeney LA, Knekt P, Kooner JS, Kooperberg C, Kovacs P, Kraja AT, 
Kumari M, Kuusisto J, Lakka TA, Langenberg C, Le Marchand L, Lehtimäki T, Lyssenko V, 
Männistö S, Marette A, Matise TC, McKenzie CA, McKnight B, Moll FL, Morris AD, Morris 
AP, Murray JC, Nelis M, Ohlsson C, Oldehinkel AJ, Ong KK, Madden PAF, Pasterkamp G, 
Peden JF, Peters A, Postma DS, Pramstaller PP, Price JF, Qi L, Raitakari OT, Rankinen T, 
Rao DC, Rice TK, Ridker PM, Rioux JD, Ritchie MD, Rudan I, Salomaa V, Samani NJ, 
Saramies J, Sarzynski MA, Schunkert H, Schwarz PEH, Sever P, Shuldiner AR, Sinisalo J, 
Stolk RP, Strauch K, Tönjes A, Trégouët D-A, Tremblay A, Tremoli E, Virtamo J, Vohl M-C, 
Völker U, Waeber G, Willemsen G, Witteman JC, Carola Zillikens M, Adair LS, Amouyel P, 
Asselbergs FW, Assimes TL, Bochud M, Boehm BO, Boerwinkle E, Bornstein SR, Bottinger 
EP, Bouchard C, Cauchi S, Chambers JC, Chanock SJ, Cooper RS, de Bakker PIW, Dedoussis 
G, Ferrucci L, Franks PW, Froguel P, Groop LC, Haiman CA, Hamsten A, Hui J, Hunter DJ, 
Hveem K, Kaplan RC, Kivimaki M, Kuh D, Laakso M, Liu Y, Martin NG, März W, Melbye M, 
Metspalu A, Moebus S, Munroe PB, Njølstad I, Oostra BA, Palmer CNA, Pedersen NL, 
Perola M, Pérusse L, Peters U, Power C, Quertermous T, Rauramaa R, Rivadeneira F, 
Saaristo TE, Saleheen D, Sattar N, Schadt EE, Schlessinger D, Eline Slagboom P, Snieder H, 
Spector TD, Thorsteinsdottir U, Stumvoll M, Tuomilehto J, Uitterlinden AG, Uusitupa M, 
van der Harst P, Walker M, Wallaschofski H, Wareham NJ, Watkins H, Weir DR, 
Wichmann H-E, Wilson JF, Zanen P, Borecki IB, Deloukas P, Fox CS, Heid IM, O’Connell JR, 
Strachan DP, Stefansson K, van Duijn CM, Abecasis GR, Franke L, Frayling TM, McCarthy 
MI, Visscher PM, Scherag A, Willer CJ, Boehnke M, Mohlke KL, Lindgren CM, Beckmann 
JS, Barroso I, North KE, Ingelsson E, Hirschhorn JN, Loos RJF, Speliotes EK. Genetic studies 
of body mass index yield new insights for obesity biology. Nature. 2015 
Feb;518(7538):197–206.  

10.  You Q, Yang X, Peng Z, Xu L, Wang J. Development and Applications of a High Throughput 
Genotyping Tool for Polyploid Crops: Single Nucleotide Polymorphism (SNP) Array. Front 
Plant Sci. 2018 Feb 6;9:104.  



146 
 

11.  Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, 
Tomb JF, Dougherty BA, Merrick JM. Whole-genome random sequencing and assembly of 
Haemophilus influenzae Rd. Science. 1995 Jul 28;269(5223):496–512.  

12.  International Human Genome Sequencing Consortium. Initial sequencing and analysis of 
the human genome. Nature. 2001 Feb 15;409(6822):860–921.  

13.  The 1000 Genomes Project Consortium. An integrated map of genetic variation from 
1,092 human genomes. Nature. 2012 Nov;491(7422):56–65.  

14.  The 1000 Genomes Project Consortium. A global reference for human genetic variation. 
Nature. 2015 Oct 1;526(7571):68–74.  

15.  Genome Aggregation Database Consortium, Karczewski KJ, Francioli LC, Tiao G, 
Cummings BB, Alföldi J, Wang Q, Collins RL, Laricchia KM, Ganna A, Birnbaum DP, 
Gauthier LD, Brand H, Solomonson M, Watts NA, Rhodes D, Singer-Berk M, England EM, 
Seaby EG, Kosmicki JA, Walters RK, Tashman K, Farjoun Y, Banks E, Poterba T, Wang A, 
Seed C, Whiffin N, Chong JX, Samocha KE, Pierce-Hoffman E, Zappala Z, O’Donnell-Luria 
AH, Minikel EV, Weisburd B, Lek M, Ware JS, Vittal C, Armean IM, Bergelson L, Cibulskis K, 
Connolly KM, Covarrubias M, Donnelly S, Ferriera S, Gabriel S, Gentry J, Gupta N, Jeandet 
T, Kaplan D, Llanwarne C, Munshi R, Novod S, Petrillo N, Roazen D, Ruano-Rubio V, 
Saltzman A, Schleicher M, Soto J, Tibbetts K, Tolonen C, Wade G, Talkowski ME, Neale 
BM, Daly MJ, MacArthur DG. The mutational constraint spectrum quantified from 
variation in 141,456 humans. Nature. 2020 May;581(7809):434–43.  

16.  Das S, Forer L, Schönherr S, Sidore C, Locke AE, Kwong A, Vrieze SI, Chew EY, Levy S, 
McGue M, Schlessinger D, Stambolian D, Loh P-R, Iacono WG, Swaroop A, Scott LJ, Cucca 
F, Kronenberg F, Boehnke M, Abecasis GR, Fuchsberger C. Next-generation genotype 
imputation service and methods. Nat Genet. 2016 Oct;48(10):1284–7.  

17.  Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, 
Ramos EM, Cardon LR, Chakravarti A, Cho JH, Guttmacher AE, Kong A, Kruglyak L, Mardis 
E, Rotimi CN, Slatkin M, Valle D, Whittemore AS, Boehnke M, Clark AG, Eichler EE, Gibson 
G, Haines JL, Mackay TFC, McCarroll SA, Visscher PM. Finding the missing heritability of 
complex diseases. Nature. 2009 Oct 8;461(7265):747–53.  

18.  Yengo L, Sidorenko J, Kemper KE, Zheng Z, Wood AR, Weedon MN, Frayling TM, 
Hirschhorn J, Yang J, Visscher PM, the GIANT Consortium. Meta-analysis of genome-wide 
association studies for height and body mass index in ∼700000 individuals of European 
ancestry. Human Molecular Genetics. 2018 Oct 15;27(20):3641–9.  

19.  Wainschtein P, Jain DP, Yengo L, Zheng Z, TOPMed Anthropometry Working Group, 
Trans-Omics for Precision Medicine Consortium, Cupples LA, Shadyab AH, McKnight B, 
Shoemaker BM, Mitchell BD, Psaty BM, Kooperberg C, Roden D, Darbar D, Arnett DK, 
Regan EA, Boerwinkle E, Rotter JI, Allison MA, McDonald M-LN, Chung MK, Smith NL, 



147 
 

Ellinor PT, Vasan RS, Mathias RA, Rich SS, Heckbert SR, Redline S, Guo X, Chen Y-DI, Liu C-
T, de Andrade M, Yanek LR, Albert CM, Hernandez RD, McGarvey ST, North KE, Lange LA, 
Weir BS, Laurie CC, Yang J, Visscher PM. Recovery of trait heritability from whole genome 
sequence data [Internet]. Genetics; 2019 Mar [cited 2021 May 13]. Available from: 
http://biorxiv.org/lookup/doi/10.1101/588020 

20.  Geddes L. Genetic study homes in on height’s heritability mystery. Nature. 2019 
Apr;568(7753):444–5.  

21.  Pers TH, Karjalainen JM, Chan Y, Westra H-J, Wood AR, Yang J, Lui JC, Vedantam S, 
Gustafsson S, Esko T, Frayling T, Speliotes EK, Genetic Investigation of ANthropometric 
Traits (GIANT) Consortium, Boehnke M, Raychaudhuri S, Fehrmann RSN, Hirschhorn JN, 
Franke L. Biological interpretation of genome-wide association studies using predicted 
gene functions. Nat Commun. 2015 Jan 19;6:5890.  

22.  Cohen J, Pertsemlidis A, Kotowski IK, Graham R, Garcia CK, Hobbs HH. Low LDL 
cholesterol in individuals of African descent resulting from frequent nonsense mutations 
in PCSK9. Nat Genet. 2005 Feb;37(2):161–5.  

23.  Emilsson V, Thorleifsson G, Zhang B, Leonardson AS, Zink F, Zhu J, Carlson S, Helgason A, 
Walters GB, Gunnarsdottir S, Mouy M, Steinthorsdottir V, Eiriksdottir GH, Bjornsdottir G, 
Reynisdottir I, Gudbjartsson D, Helgadottir A, Jonasdottir A, Jonasdottir A, Styrkarsdottir 
U, Gretarsdottir S, Magnusson KP, Stefansson H, Fossdal R, Kristjansson K, Gislason HG, 
Stefansson T, Leifsson BG, Thorsteinsdottir U, Lamb JR, Gulcher JR, Reitman ML, Kong A, 
Schadt EE, Stefansson K. Genetics of gene expression and its effect on disease. Nature. 
2008 Mar;452(7186):423–8.  

24.  Nicolae DL, Gamazon E, Zhang W, Duan S, Dolan ME, Cox NJ. Trait-associated SNPs are 
more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet. 2010 
Apr 1;6(4):e1000888.  

25.  Nica AC, Montgomery SB, Dimas AS, Stranger BE, Beazley C, Barroso I, Dermitzakis ET. 
Candidate causal regulatory effects by integration of expression QTLs with complex trait 
genetic associations. PLoS Genet. 2010 Apr 1;6(4):e1000895.  

26.  Albert FW, Kruglyak L. The role of regulatory variation in complex traits and disease. Nat 
Rev Genet. 2015 Apr;16(4):197–212.  

27.  Smith AK, Kilaru V, Kocak M, Almli LM, Mercer KB, Ressler KJ, Tylavsky FA, Conneely KN. 
Methylation quantitative trait loci (meQTLs) are consistently detected across ancestry, 
developmental stage, and tissue type. BMC Genomics. 2014;15(1):145.  

28.  Suzuki M. An integrative analysis sheds light on methylation profiles. Sci Transl Med. 
2016 Jan 13;8(321):321ec8-321ec8.  



148 
 

29.  Liang D, Elwell AL, Aygün N, Lafferty MJ, Krupa O, Cheek KE, Courtney KP, Yusupova M, 
Garrett ME, Ashley-Koch A, Crawford GE, Love MI, de la Torre-Ubieta L, Geschwind DH, 
Stein JL. Cell-type specific effects of genetic variation on chromatin accessibility during 
human neuronal differentiation [Internet]. Genetics; 2020 Jan [cited 2021 Jan 2]. 
Available from: http://biorxiv.org/lookup/doi/10.1101/2020.01.13.904862 

30.  HIPSCI Consortium, Alasoo K, Rodrigues J, Mukhopadhyay S, Knights AJ, Mann AL, Kundu 
K, Hale C, Dougan G, Gaffney DJ. Shared genetic effects on chromatin and gene 
expression indicate a role for enhancer priming in immune response. Nat Genet. 2018 
Mar;50(3):424–31.  

31.  Holdt LM, von Delft A, Nicolaou A, Baumann S, Kostrzewa M, Thiery J, Teupser D. 
Quantitative Trait Loci Mapping of the Mouse Plasma Proteome (pQTL). Genetics. 2013 
Feb;193(2):601–8.  

32.  Veyrieras J-B, Kudaravalli S, Kim SY, Dermitzakis ET, Gilad Y, Stephens M, Pritchard JK. 
High-Resolution Mapping of Expression-QTLs Yields Insight into Human Gene Regulation. 
Gibson G, editor. PLoS Genet. 2008 Oct 10;4(10):e1000214.  

33.  Gusev A, Lee SH, Trynka G, Finucane H, Vilhjálmsson BJ, Xu H, Zang C, Ripke S, Bulik-
Sullivan B, Stahl E, Kähler AK, Hultman CM, Purcell SM, McCarroll SA, Daly M, Pasaniuc B, 
Sullivan PF, Neale BM, Wray NR, Raychaudhuri S, Price AL, Ripke S, Neale BM, Corvin A, 
Walters JTR, Farh K-H, Holmans PA, Lee P, Bulik-Sullivan B, Collier DA, Huang H, Pers TH, 
Agartz I, Agerbo E, Albus M, Alexander M, Amin F, Bacanu SA, Begemann M, Belliveau RA, 
Bene J, Bergen SE, Bevilacqua E, Bigdeli TB, Black DW, Børglum AD, Bruggeman R, Buccola 
NG, Buckner RL, Byerley W, Cahn W, Cai G, Campion D, Cantor RM, Carr VJ, Carrera N, 
Catts SV, Chambert KD, Chan RCK, Chen RYL, Chen EYH, Cheng W, Cheung EFC, Chong SA, 
Cloninger CR, Cohen D, Cohen N, Cormican P, Craddock N, Crowley JJ, Curtis D, Davidson 
M, Davis KL, Degenhardt F, Del Favero J, DeLisi LE, Demontis D, Dikeos D, Dinan T, 
Djurovic S, Donohoe G, Drapeau E, Duan J, Dudbridge F, Durmishi N, Eichhammer P, 
Eriksson J, Escott-Price V, Essioux L, Fanous AH, Farrell MS, Frank J, Franke L, Freedman R, 
Freimer NB, Friedl M, Friedman JI, Fromer M, Genovese G, Georgieva L, Gershon ES, 
Giegling I, Giusti-Rodrguez P, Godard S, Goldstein JI, Golimbet V, Gopal S, Gratten J, 
Grove J, de Haan L, Hammer C, Hamshere ML, Hansen M, Hansen T, Haroutunian V, 
Hartmann AM, Henskens FA, Herms S, Hirschhorn JN, Hoffmann P, Hofman A, Hollegaard 
MV, Hougaard DM, Ikeda M, Joa I, Julià A, Kahn RS, Kalaydjieva L, Karachanak-Yankova S, 
Karjalainen J, Kavanagh D, Keller MC, Kelly BJ, Kennedy JL, Khrunin A, Kim Y, Klovins J, 
Knowles JA, Konte B, Kucinskas V, Kucinskiene ZA, Kuzelova-Ptackova H, Kähler AK, 
Laurent C, Keong JLC, Lee SH, Legge SE, Lerer B, Li M, Li T, Liang K-Y, Lieberman J, 
Limborska S, Loughland CM, Lubinski J, Lnnqvist J, Macek M, Magnusson PKE, Maher BS, 
Maier W, Mallet J, Marsal S, Mattheisen M, Mattingsdal M, McCarley RW, McDonald C, 
McIntosh AM, Meier S, Meijer CJ, Melegh B, Melle I, Mesholam-Gately RI, Metspalu A, 
Michie PT, Milani L, Milanova V, Mokrab Y, Morris DW, Mors O, Mortensen PB, Murphy 
KC, Murray RM, Myin-Germeys I, Mller-Myhsok B, Nelis M, Nenadic I, Nertney DA, 



149 
 

Nestadt G, Nicodemus KK, Nikitina-Zake L, Nisenbaum L, Nordin A, O’Callaghan E, 
O’Dushlaine C, O’Neill FA, Oh S-Y, Olincy A, Olsen L, Van Os J, Pantelis C, Papadimitriou 
GN, Papiol S, Parkhomenko E, Pato MT, Paunio T, Pejovic-Milovancevic M, Perkins DO, 
Pietilinen O, Pimm J, Pocklington AJ, Powell J, Price A, Pulver AE, Purcell SM, Quested D, 
Rasmussen HB, Reichenberg A, Reimers MA, Richards AL, Roffman JL, Roussos P, 
Ruderfer DM, Salomaa V, Sanders AR, Schall U, Schubert CR, Schulze TG, Schwab SG, 
Scolnick EM, Scott RJ, Seidman LJ, Shi J, Sigurdsson E, Silagadze T, Silverman JM, Sim K, 
Slominsky P, Smoller JW, So H-C, Spencer CCA, Stahl EA, Stefansson H, Steinberg S, 
Stogmann E, Straub RE, Strengman E, Strohmaier J, Stroup TS, Subramaniam M, Suvisaari 
J, Svrakic DM, Szatkiewicz JP, Sderman E, Thirumalai S, Toncheva D, Tooney PA, Tosato S, 
Veijola J, Waddington J, Walsh D, Wang D, Wang Q, Webb BT, Weiser M, Wildenauer DB, 
Williams NM, Williams S, Witt SH, Wolen AR, Wong EHM, Wormley BK, Wu JQ, Xi HS, Zai 
CC, Zheng X, Zimprich F, Wray NR, Stefansson K, Visscher PM, Adolfsson R, Andreassen 
OA, Blackwood DHR, Bramon E, Buxbaum JD, Brglum AD, Cichon S, Darvasi A, Domenici E, 
Ehrenreich H, Esko T, Gejman PV, Gill M, Gurling H, Hultman CM, Iwata N, Jablensky AV, 
Jönsson EG, Kendler KS, Kirov G, Knight J, Lencz T, Levinson DF, Li QS, Liu J, Malhotra AK, 
McCarroll SA, McQuillin A, Moran JL, Mortensen PB, Mowry BJ, Nthen MM, Ophoff RA, 
Owen MJ, Palotie A, Pato CN, Petryshen TL, Posthuma D, Rietschel M, Riley BP, Rujescu 
D, Sham PC, Sklar P, St. Clair D, Weinberger DR, Wendland JR, Werge T, Daly MJ, Sullivan 
PF, O’Donovan MC, Ripke S, O’Dushlaine C, Chambert K, Moran JL, Kähler AK, Akterin S, 
Bergen S, Magnusson PKE, Neale BM, Ruderfer D, Scolnick E, Purcell S, McCarroll S, Sklar 
P, Hultman CM, Sullivan PF. Partitioning Heritability of Regulatory and Cell-Type-Specific 
Variants across 11 Common Diseases. The American Journal of Human Genetics. 2014 
Nov;95(5):535–52.  

34.  Jansen RC, Nap JP. Genetical genomics: the added value from segregation. Trends Genet. 
2001 Jul;17(7):388–91.  

35.  Li J, Burmeister M. Genetical genomics: combining genetics with gene expression 
analysis. Human Molecular Genetics. 2005 Oct 15;14(suppl_2):R163–9.  

36.  Jacob F, Monod J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol. 
1961 Jun;3:318–56.  

37.  Gann A. Jacob and Monod: from operons to EvoDevo. Curr Biol. 2010 Sep 
14;20(17):R718-723.  

38.  Volgin DV. Gene Expression. In: Animal Biotechnology [Internet]. Elsevier; 2014 [cited 
2021 Jan 3]. p. 307–25. Available from: 
https://linkinghub.elsevier.com/retrieve/pii/B9780124160026000171 

39.  Nica AC, Dermitzakis ET. Expression quantitative trait loci: present and future. Phil Trans 
R Soc B. 2013 Jun 19;368(1620):20120362.  



150 
 

40.  Gilad Y, Rifkin SA, Pritchard JK. Revealing the architecture of gene regulation: the promise 
of eQTL studies. Trends in Genetics. 2008 Aug;24(8):408–15.  

41.  Clyde D. Transitioning from association to causation with eQTLs. Nat Rev Genet. 2017 
May;18(5):271–271.  

42.  Göring HHH, Curran JE, Johnson MP, Dyer TD, Charlesworth J, Cole SA, Jowett JBM, 
Abraham LJ, Rainwater DL, Comuzzie AG, Mahaney MC, Almasy L, MacCluer JW, Kissebah 
AH, Collier GR, Moses EK, Blangero J. Discovery of expression QTLs using large-scale 
transcriptional profiling in human lymphocytes. Nat Genet. 2007 Oct;39(10):1208–16.  

43.  Shan N, Wang Z, Hou L. Identification of trans-eQTLs using mediation analysis with 
multiple mediators. BMC Bioinformatics. 2019 Mar;20(S3):126.  

44.  Yao C, Joehanes R, Johnson AD, Huan T, Liu C, Freedman JE, Munson PJ, Hill DE, Vidal M, 
Levy D. Dynamic Role of trans Regulation of Gene Expression in Relation to Complex 
Traits. The American Journal of Human Genetics. 2017 Apr;100(4):571–80.  

45.  Brem RB, Yvert G, Clinton R, Kruglyak L. Genetic dissection of transcriptional regulation in 
budding yeast. Science. 2002 Apr 26;296(5568):752–5.  

46.  van Nas A, Ingram-Drake L, Sinsheimer JS, Wang SS, Schadt EE, Drake T, Lusis AJ. 
Expression quantitative trait loci: replication, tissue- and sex-specificity in mice. Genetics. 
2010 Jul;185(3):1059–68.  

47.  The Geuvadis Consortium, Lappalainen T, Sammeth M, Friedländer MR, ‘t Hoen PAC, 
Monlong J, Rivas MA, Gonzàlez-Porta M, Kurbatova N, Griebel T, Ferreira PG, Barann M, 
Wieland T, Greger L, van Iterson M, Almlöf J, Ribeca P, Pulyakhina I, Esser D, Giger T, 
Tikhonov A, Sultan M, Bertier G, MacArthur DG, Lek M, Lizano E, Buermans HPJ, 
Padioleau I, Schwarzmayr T, Karlberg O, Ongen H, Kilpinen H, Beltran S, Gut M, Kahlem K, 
Amstislavskiy V, Stegle O, Pirinen M, Montgomery SB, Donnelly P, McCarthy MI, Flicek P, 
Strom TM, Lehrach H, Schreiber S, Sudbrak R, Carracedo Á, Antonarakis SE, Häsler R, 
Syvänen A-C, van Ommen G-J, Brazma A, Meitinger T, Rosenstiel P, Guigó R, Gut IG, 
Estivill X, Dermitzakis ET. Transcriptome and genome sequencing uncovers functional 
variation in humans. Nature. 2013 Sep;501(7468):506–11.  

48.  Moffatt MF, Kabesch M, Liang L, Dixon AL, Strachan D, Heath S, Depner M, von Berg A, 
Bufe A, Rietschel E, Heinzmann A, Simma B, Frischer T, Willis-Owen SAG, Wong KCC, Illig 
T, Vogelberg C, Weiland SK, von Mutius E, Abecasis GR, Farrall M, Gut IG, Lathrop GM, 
Cookson WOC. Genetic variants regulating ORMDL3 expression contribute to the risk of 
childhood asthma. Nature. 2007 Jul 26;448(7152):470–3.  

49.  Libioulle C, Louis E, Hansoul S, Sandor C, Farnir F, Franchimont D, Vermeire S, Dewit O, de 
Vos M, Dixon A, Demarche B, Gut I, Heath S, Foglio M, Liang L, Laukens D, Mni M, 
Zelenika D, Van Gossum A, Rutgeerts P, Belaiche J, Lathrop M, Georges M. Novel Crohn 



151 
 

disease locus identified by genome-wide association maps to a gene desert on 5p13.1 
and modulates expression of PTGER4. PLoS Genet. 2007 Apr 20;3(4):e58.  

50.  Battle A, Mostafavi S, Zhu X, Potash JB, Weissman MM, McCormick C, Haudenschild CD, 
Beckman KB, Shi J, Mei R, Urban AE, Montgomery SB, Levinson DF, Koller D. 
Characterizing the genetic basis of transcriptome diversity through RNA-sequencing of 
922 individuals. Genome Res. 2014 Jan;24(1):14–24.  

51.  The GTEx Consortium, Ardlie KG, Deluca DS, Segre AV, Sullivan TJ, Young TR, Gelfand ET, 
Trowbridge CA, Maller JB, Tukiainen T, Lek M, Ward LD, Kheradpour P, Iriarte B, Meng Y, 
Palmer CD, Esko T, Winckler W, Hirschhorn JN, Kellis M, MacArthur DG, Getz G, Shabalin 
AA, Li G, Zhou Y-H, Nobel AB, Rusyn I, Wright FA, Lappalainen T, Ferreira PG, Ongen H, 
Rivas MA, Battle A, Mostafavi S, Monlong J, Sammeth M, Mele M, Reverter F, Goldmann 
JM, Koller D, Guigo R, McCarthy MI, Dermitzakis ET, Gamazon ER, Im HK, Konkashbaev A, 
Nicolae DL, Cox NJ, Flutre T, Wen X, Stephens M, Pritchard JK, Tu Z, Zhang B, Huang T, 
Long Q, Lin L, Yang J, Zhu J, Liu J, Brown A, Mestichelli B, Tidwell D, Lo E, Salvatore M, 
Shad S, Thomas JA, Lonsdale JT, Moser MT, Gillard BM, Karasik E, Ramsey K, Choi C, 
Foster BA, Syron J, Fleming J, Magazine H, Hasz R, Walters GD, Bridge JP, Miklos M, 
Sullivan S, Barker LK, Traino HM, Mosavel M, Siminoff LA, Valley DR, Rohrer DC, Jewell 
SD, Branton PA, Sobin LH, Barcus M, Qi L, McLean J, Hariharan P, Um KS, Wu S, Tabor D, 
Shive C, Smith AM, Buia SA, Undale AH, Robinson KL, Roche N, Valentino KM, Britton A, 
Burges R, Bradbury D, Hambright KW, Seleski J, Korzeniewski GE, Erickson K, Marcus Y, 
Tejada J, Taherian M, Lu C, Basile M, Mash DC, Volpi S, Struewing JP, Temple GF, Boyer J, 
Colantuoni D, Little R, Koester S, Carithers LJ, Moore HM, Guan P, Compton C, Sawyer SJ, 
Demchok JP, Vaught JB, Rabiner CA, Lockhart NC, Ardlie KG, Getz G, Wright FA, Kellis M, 
Volpi S, Dermitzakis ET. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue 
gene regulation in humans. Science. 2015 May 8;348(6235):648–60.  

52.  The GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across 
human tissues. Science. 2020 Sep 11;369(6509):1318–30.  

53.  Wainberg M, Sinnott-Armstrong N, Mancuso N, Barbeira AN, Knowles DA, Golan D, Ermel 
R, Ruusalepp A, Quertermous T, Hao K, Björkegren JLM, Im HK, Pasaniuc B, Rivas MA, 
Kundaje A. Opportunities and challenges for transcriptome-wide association studies. Nat 
Genet. 2019 Apr;51(4):592–9.  

54.  Mancuso N, Shi H, Goddard P, Kichaev G, Gusev A, Pasaniuc B. Integrating Gene 
Expression with Summary Association Statistics to Identify Genes Associated with 30 
Complex Traits. The American Journal of Human Genetics. 2017 Mar;100(3):473–87.  

55.  GTEx Consortium, Gamazon ER, Wheeler HE, Shah KP, Mozaffari SV, Aquino-Michaels K, 
Carroll RJ, Eyler AE, Denny JC, Nicolae DL, Cox NJ, Im HK. A gene-based association 
method for mapping traits using reference transcriptome data. Nat Genet. 2015 
Sep;47(9):1091–8.  



152 
 

56.  Gusev A, Ko A, Shi H, Bhatia G, Chung W, Penninx BWJH, Jansen R, de Geus EJC, 
Boomsma DI, Wright FA, Sullivan PF, Nikkola E, Alvarez M, Civelek M, Lusis AJ, Lehtimäki 
T, Raitoharju E, Kähönen M, Seppälä I, Raitakari OT, Kuusisto J, Laakso M, Price AL, 
Pajukanta P, Pasaniuc B. Integrative approaches for large-scale transcriptome-wide 
association studies. Nat Genet. 2016 Mar;48(3):245–52.  

57.  The Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 
cases of seven common diseases and 3,000 shared controls. Nature. 2007 
Jun;447(7145):661–78.  

58.  Vervier K, Michaelson JJ. SLINGER: large-scale learning for predicting gene expression. Sci 
Rep. 2016 Dec;6(1):39360.  

59.  Fodor SP, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D. Light-directed, spatially 
addressable parallel chemical synthesis. Science. 1991 Feb 15;251(4995):767–73.  

60.  Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression 
patterns with a complementary DNA microarray. Science. 1995 Oct 20;270(5235):467–
70.  

61.  Luo J, Schumacher M, Scherer A, Sanoudou D, Megherbi D, Davison T, Shi T, Tong W, Shi 
L, Hong H, Zhao C, Elloumi F, Shi W, Thomas R, Lin S, Tillinghast G, Liu G, Zhou Y, Herman 
D, Li Y, Deng Y, Fang H, Bushel P, Woods M, Zhang J. A comparison of batch effect 
removal methods for enhancement of prediction performance using MAQC-II microarray 
gene expression data. Pharmacogenomics J. 2010 Aug;10(4):278–91.  

62.  Blair S, Williams L, Bishop J, Chagovetz A. Microarray temperature optimization using 
hybridization kinetics. Methods Mol Biol. 2009;529:171–96.  

63.  Croner RS, Lausen B, Schellerer V, Zeittraeger I, Wein A, Schildberg C, Papadopoulos T, 
Dimmler A, Hahn EG, Hohenberger W, Brueckl WM. Comparability of microarray data 
between amplified and non amplified RNA in colorectal carcinoma. J Biomed Biotechnol. 
2009;2009:837170.  

64.  Beekman JM, Boess F, Hildebrand H, Kalkuhl A, Suter L. Gene Expression Analysis of the 
Hepatotoxicant Methapyrilene in Primary Rat Hepatocytes: An Interlaboratory Study. 
Environ Health Perspect. 2006 Jan;114(1):92–9.  

65.  Dobbin KK, Beer DG, Meyerson M, Yeatman TJ, Gerald WL, Jacobson JW, Conley B, 
Buetow KH, Heiskanen M, Simon RM, Minna JD, Girard L, Misek DE, Taylor JMG, Hanash 
S, Naoki K, Hayes DN, Ladd-Acosta C, Enkemann SA, Viale A, Giordano TJ. Interlaboratory 
comparability study of cancer gene expression analysis using oligonucleotide 
microarrays. Clin Cancer Res. 2005 Jan 15;11(2 Pt 1):565–72.  



153 
 

66.  Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods 
for high density oligonucleotide array data based on variance and bias. Bioinformatics. 
2003 Jan 22;19(2):185–93.  

67.  Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP. 
Exploration, normalization, and summaries of high density oligonucleotide array probe 
level data. Biostatistics. 2003 Apr;4(2):249–64.  

68.  Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data 
using empirical Bayes methods. Biostatistics. 2007 Jan 1;8(1):118–27.  

69.  Okoniewski MJ, Miller CJ. Hybridization interactions between probesets in short oligo 
microarrays lead to spurious correlations. BMC Bioinformatics. 2006 Dec;7(1):276.  

70.  Casneuf T, Van de Peer Y, Huber W. In situ analysis of cross-hybridisation on microarrays 
and the inference of expression correlation. BMC Bioinformatics. 2007;8(1):461.  

71.  Shendure J. The beginning of the end for microarrays? Nat Methods. 2008 Jul;5(7):585–7.  

72.  Zhao S, Fung-Leung W-P, Bittner A, Ngo K, Liu X. Comparison of RNA-Seq and Microarray 
in Transcriptome Profiling of Activated T Cells. Zhang S-D, editor. PLoS ONE. 2014 Jan 
16;9(1):e78644.  

73.  Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, Xiao H, Merril CR, 
Wu A, Olde B, Moreno RF. Complementary DNA sequencing: expressed sequence tags 
and human genome project. Science. 1991 Jun 21;252(5013):1651–6.  

74.  Adams MD, Kerlavage AR, Fleischmann RD, Fuldner RA, Bult CJ, Lee NH, Kirkness EF, 
Weinstock KG, Gocayne JD, White O. Initial assessment of human gene diversity and 
expression patterns based upon 83 million nucleotides of cDNA sequence. Nature. 1995 
Sep 28;377(6547 Suppl):3–174.  

75.  Velculescu VE, Zhang L, Vogelstein B, Kinzler KW. Serial analysis of gene expression. 
Science. 1995 Oct 20;270(5235):484–7.  

76.  Shiraki T, Kondo S, Katayama S, Waki K, Kasukawa T, Kawaji H, Kodzius R, Watahiki A, 
Nakamura M, Arakawa T, Fukuda S, Sasaki D, Podhajska A, Harbers M, Kawai J, Carninci P, 
Hayashizaki Y. Cap analysis gene expression for high-throughput analysis of 
transcriptional starting point and identification of promoter usage. Proc Natl Acad Sci U S 
A. 2003 Dec 23;100(26):15776–81.  

77.  Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat 
Rev Genet. 2009 Jan;10(1):57–63.  

78.  Kukurba KR, Montgomery SB. RNA Sequencing and Analysis. Cold Spring Harb Protoc. 
2015 Apr 13;2015(11):951–69.  



154 
 

79.  Morin RD, Bainbridge M, Fejes A, Hirst M, Krzywinski M, Pugh TJ, McDonald H, Varhol R, 
Jones SJM, Marra MA. Profiling the HeLa S3 transcriptome using randomly primed cDNA 
and massively parallel short-read sequencing. BioTechniques. 2008 Jul;45(1):81–94.  

80.  Cloonan N, Forrest ARR, Kolle G, Gardiner BBA, Faulkner GJ, Brown MK, Taylor DF, 
Steptoe AL, Wani S, Bethel G, Robertson AJ, Perkins AC, Bruce SJ, Lee CC, Ranade SS, 
Peckham HE, Manning JM, McKernan KJ, Grimmond SM. Stem cell transcriptome 
profiling via massive-scale mRNA sequencing. Nat Methods. 2008 Jul;5(7):613–9.  

81.  Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M. The 
transcriptional landscape of the yeast genome defined by RNA sequencing. Science. 2008 
Jun 6;320(5881):1344–9.  

82.  Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying 
mammalian transcriptomes by RNA-Seq. Nat Methods. 2008 Jul;5(7):621–8.  

83.  Li L, Clevers H. Coexistence of quiescent and active adult stem cells in mammals. Science. 
2010 Jan 29;327(5965):542–5.  

84.  Huang S. Non-genetic heterogeneity of cells in development: more than just noise. 
Development. 2009 Dec;136(23):3853–62.  

85.  Shalek AK, Satija R, Shuga J, Trombetta JJ, Gennert D, Lu D, Chen P, Gertner RS, 
Gaublomme JT, Yosef N, Schwartz S, Fowler B, Weaver S, Wang J, Wang X, Ding R, 
Raychowdhury R, Friedman N, Hacohen N, Park H, May AP, Regev A. Single-cell RNA-seq 
reveals dynamic paracrine control of cellular variation. Nature. 2014 Jun;510(7505):363–
9.  

86.  Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, Wang X, Bodeau J, Tuch BB, 
Siddiqui A, Lao K, Surani MA. mRNA-Seq whole-transcriptome analysis of a single cell. Nat 
Methods. 2009 May;6(5):377–82.  

87.  Shaffer SM, Dunagin MC, Torborg SR, Torre EA, Emert B, Krepler C, Beqiri M, Sproesser K, 
Brafford PA, Xiao M, Eggan E, Anastopoulos IN, Vargas-Garcia CA, Singh A, Nathanson KL, 
Herlyn M, Raj A. Rare cell variability and drug-induced reprogramming as a mode of 
cancer drug resistance. Nature. 2017 Jun 15;546(7658):431–5.  

88.  Wang Y, Navin NE. Advances and Applications of Single-Cell Sequencing Technologies. 
Molecular Cell. 2015 May;58(4):598–609.  

89.  Chen G, Ning B, Shi T. Single-Cell RNA-Seq Technologies and Related Computational Data 
Analysis. Front Genet. 2019 Apr 5;10:317.  

90.  Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium, Shen 
X, Howard DM, Adams MJ, Hill WD, Clarke T-K, Deary IJ, Whalley HC, McIntosh AM. A 



155 
 

phenome-wide association and Mendelian Randomisation study of polygenic risk for 
depression in UK Biobank. Nat Commun. 2020 Dec;11(1):2301.  

91.  Zhou W, Zhao Z, Nielsen JB, Fritsche LG, LeFaive J, Gagliano Taliun SA, Bi W, Gabrielsen 
ME, Daly MJ, Neale BM, Hveem K, Abecasis GR, Willer CJ, Lee S. Scalable generalized 
linear mixed model for region-based association tests in large biobanks and cohorts. Nat 
Genet. 2020 Jun;52(6):634–9.  

92.  Westra H-J, Franke L. From genome to function by studying eQTLs. Biochimica et 
Biophysica Acta (BBA) - Molecular Basis of Disease. 2014 Oct;1842(10):1896–902.  

93.  Alzheimer’s Disease Genetics Consortium, Hu Y, Li M, Lu Q, Weng H, Wang J, Zekavat SM, 
Yu Z, Li B, Gu J, Muchnik S, Shi Y, Kunkle BW, Mukherjee S, Natarajan P, Naj A, Kuzma A, 
Zhao Y, Crane PK, Lu H, Zhao H. A statistical framework for cross-tissue transcriptome-
wide association analysis. Nat Genet. 2019 Mar;51(3):568–76.  

94.  Barbeira AN, Pividori M, Zheng J, Wheeler HE, Nicolae DL, Im HK. Integrating predicted 
transcriptome from multiple tissues improves association detection. Plagnol V, editor. 
PLoS Genet. 2019 Jan 22;15(1):e1007889.  

95.  Schleinitz D, Krause K, Wohland T, Gebhardt C, Linder N, Stumvoll M, Blüher M, 
Bechmann I, Kovacs P, Gericke M, Tönjes A. Identification of distinct transcriptome 
signatures of human adipose tissue from fifteen depots. Eur J Hum Genet. 2020 
Dec;28(12):1714–25.  

96.  Shen K, Zeppillo T, Limon A. Regional transcriptome analysis of AMPA and GABAA 
receptor subunit expression generates E/I signatures of the human brain. Sci Rep. 2020 
Dec;10(1):11352.  

97.  Mancuso CA, Canfield JL, Singla D, Krishnan A. A flexible, interpretable, and accurate 
approach for imputing the expression of unmeasured genes. Nucleic Acids Research. 
2020 Dec 2;48(21):e125–e125.  

98.  Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and 
hybridization array data repository. Nucleic Acids Res. 2002 Jan 1;30(1):207–10.  

99.  Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, 
Phillippy KH, Sherman PM, Holko M, Yefanov A, Lee H, Zhang N, Robertson CL, Serova N, 
Davis S, Soboleva A. NCBI GEO: archive for functional genomics data sets--update. 
Nucleic Acids Res. 2013 Jan;41(Database issue):D991-995.  

100.  Alberts R, Terpstra P, Li Y, Breitling R, Nap J-P, Jansen RC. Sequence Polymorphisms Cause 
Many False cis eQTLs. Storey J, editor. PLoS ONE. 2007 Jul 18;2(7):e622.  



156 
 

101.  Ciobanu DC, Lu L, Mozhui K, Wang X, Jagalur M, Morris JA, Taylor WL, Dietz K, Simon P, 
Williams RW. Detection, Validation, and Downstream Analysis of Allelic Variation in Gene 
Expression. Genetics. 2010 Jan;184(1):119–28.  

102.  Ramasamy A, Trabzuni D, Gibbs JR, Dillman A, Hernandez DG, Arepalli S, Walker R, Smith 
C, Ilori GP, Shabalin AA, Li Y, Singleton AB, Cookson MR, NABEC, Hardy J, UKBEC, Ryten 
M, Weale ME. Resolving the polymorphism-in-probe problem is critical for correct 
interpretation of expression QTL studies. Nucleic Acids Res. 2013 Apr;41(7):e88.  

103.  Quigley D. Equalizer reduces SNP bias in Affymetrix microarrays. BMC Bioinformatics. 
2015 Jul 30;16:238.  

104.  Dannemann M, Lachmann M, Lorenc A. ’maskBAD’--a package to detect and remove 
Affymetrix probes with binding affinity differences. BMC Bioinformatics. 2012 Apr 
16;13:56.  

105.  Võsa U, Claringbould A, Westra H-J, Bonder MJ, Deelen P, Zeng B, Kirsten H, Saha A, 
Kreuzhuber R, Kasela S, Pervjakova N, Alvaes I, Fave M-J, Agbessi M, Christiansen M, 
Jansen R, Seppälä I, Tong L, Teumer A, Schramm K, Hemani G, Verlouw J, Yaghootkar H, 
Sönmez R, Brown A, Kukushkina V, Kalnapenkis A, Rüeger S, Porcu E, Kronberg-Guzman J, 
Kettunen J, Powell J, Lee B, Zhang F, Arindrarto W, Beutner F, BIOS Consortium, Brugge H, 
i2QTL Consortium, Dmitreva J, Elansary M, Fairfax BP, Georges M, Heijmans BT, Kähönen 
M, Kim Y, Knight JC, Kovacs P, Krohn K, Li S, Loeffler M, Marigorta UM, Mei H, Momozawa 
Y, Müller-Nurasyid M, Nauck M, Nivard M, Penninx B, Pritchard J, Raitakari O, Rotzchke 
O, Slagboom EP, Stehouwer CDA, Stumvoll M, Sullivan P, Hoen PAC ‘t, Thiery J, Tönjes A, 
van Dongen J, van Iterson M, Veldink J, Völker U, Wijmenga C, Swertz M, Andiappan A, 
Montgomery GW, Ripatti S, Perola M, Kutalik Z, Dermitzakis E, Bergmann S, Frayling T, 
van Meurs J, Prokisch H, Ahsan H, Pierce B, Lehtimäki T, Boomsma D, Psaty BM, Gharib 
SA, Awadalla P, Milani L, Ouwehand W, Downes K, Stegle O, Battle A, Yang J, Visscher 
PM, Scholz M, Gibson G, Esko T, Franke L. Unraveling the polygenic architecture of 
complex traits using blood eQTL metaanalysis [Internet]. Genomics; 2018 Oct [cited 2021 
Jan 7]. Available from: http://biorxiv.org/lookup/doi/10.1101/447367 

106.  Gillies CE, Putler R, Menon R, Otto E, Yasutake K, Nair V, Hoover P, Lieb D, Li S, Eddy S, 
Fermin D, McNulty MT, Hacohen N, Kiryluk K, Kretzler M, Wen X, Sampson MG, Sedor J, 
Dell K, Schachere M, Lemley K, Whitted L, Srivastava T, Haney C, Sethna C, 
Grammatikopoulos K, Appel G, Toledo M, Greenbaum L, Wang C, Lee B, Adler S, Nast C, 
LaPage J, Athavale A, Neu A, Boynton S, Fervenza F, Hogan M, Lieske JC, Chernitskiy V, 
Kaskel F, Kumar N, Flynn P, Kopp J, Castro-Rubio E, Blake J, Trachtman H, Zhdanova O, 
Modersitzki F, Vento S, Lafayette R, Mehta K, Gadegbeku C, Johnstone D, Cattran D, 
Hladunewich M, Reich H, Ling P, Romano M, Fornoni A, Barisoni L, Bidot C, Kretzler M, 
Gipson D, Williams A, Pitter R, Nachman P, Gibson K, Grubbs S, Froment A, Holzman L, 
Meyers K, Kallem K, Cerecino F, Sambandam K, Brown E, Johnson N, Jefferson A, 
Hingorani S, Tuttle K, Curtin L, Dismuke S, Cooper A, Freedman B, Lin JJ, Gray S, Kretzler 
M, Barisoni L, Gadegbeku C, Gillespie B, Gipson D, Holzman L, Mariani L, Sampson MG, 



157 
 

Song P, Troost J, Zee J, Herreshoff E, Kincaid C, Lienczewski C, Mainieri T, Williams A, 
Abbott K, Roy C, Urv T, Brooks J. An eQTL Landscape of Kidney Tissue in Human Nephrotic 
Syndrome. The American Journal of Human Genetics. 2018 Aug;103(2):232–44.  

107.  Kumar V, Abbas AK, Fausto N, Robbins SL, Cotran RS, editors. Robbins and Cotran 
pathologic basis of disease. 7th ed. Philadelphia: Elsevier Saunders; 2005. 1525 p.  

108.  Ko Y-A, Yi H, Qiu C, Huang S, Park J, Ledo N, Köttgen A, Li H, Rader DJ, Pack MA, Brown 
CD, Susztak K. Genetic-Variation-Driven Gene-Expression Changes Highlight Genes with 
Important Functions for Kidney Disease. The American Journal of Human Genetics. 2017 
Jun;100(6):940–53.  

109.  Porrini E, Ruggenenti P, Luis-Lima S, Carrara F, Jiménez A, de Vries APJ, Torres A, Gaspari 
F, Remuzzi G. Estimated GFR: time for a critical appraisal. Nat Rev Nephrol. 2019 
Mar;15(3):177–90.  

110.  Sandholm N, Salem RM, McKnight AJ, Brennan EP, Forsblom C, Isakova T, McKay GJ, 
Williams WW, Sadlier DM, Mäkinen V-P, Swan EJ, Palmer C, Boright AP, Ahlqvist E, 
Deshmukh HA, Keller BJ, Huang H, Ahola AJ, Fagerholm E, Gordin D, Harjutsalo V, He B, 
Heikkilä O, Hietala K, Kytö J, Lahermo P, Lehto M, Lithovius R, Österholm A-M, Parkkonen 
M, Pitkäniemi J, Rosengård-Bärlund M, Saraheimo M, Sarti C, Söderlund J, Soro-Paavonen 
A, Syreeni A, Thorn LM, Tikkanen H, Tolonen N, Tryggvason K, Tuomilehto J, Wadén J, Gill 
GV, Prior S, Guiducci C, Mirel DB, Taylor A, Hosseini SM, DCCT/EDIC Research Group, 
Parving H-H, Rossing P, Tarnow L, Ladenvall C, Alhenc-Gelas F, Lefebvre P, Rigalleau V, 
Roussel R, Tregouet D-A, Maestroni A, Maestroni S, Falhammar H, Gu T, Möllsten A, 
Cimponeriu D, Ioana M, Mota M, Mota E, Serafinceanu C, Stavarachi M, Hanson RL, 
Nelson RG, Kretzler M, Colhoun HM, Panduru NM, Gu HF, Brismar K, Zerbini G, Hadjadj S, 
Marre M, Groop L, Lajer M, Bull SB, Waggott D, Paterson AD, Savage DA, Bain SC, Martin 
F, Hirschhorn JN, Godson C, Florez JC, Groop P-H, Maxwell AP. New Susceptibility Loci 
Associated with Kidney Disease in Type 1 Diabetes. Böger CA, editor. PLoS Genet. 2012 
Sep 20;8(9):e1002921.  

111.  Muller YL, Piaggi P, Hanson RL, Kobes S, Bhutta S, Abdussamad M, Leak-Johnson T, 
Kretzler M, Huang K, Weil EJ, Nelson RG, Knowler WC, Bogardus C, Baier LJ. A cis-eQTL in 
PFKFB2 is associated with diabetic nephropathy, adiposity and insulin secretion in 
American Indians. Human Molecular Genetics. 2015 May 15;24(10):2985–96.  

112.  Kerlin BA, Blatt NB, Fuh B, Zhao S, Lehman A, Blanchong C, Mahan JD, Smoyer WE. 
Epidemiology and Risk Factors for Thromboembolic Complications of Childhood 
Nephrotic Syndrome: A Midwest Pediatric Nephrology Consortium (MWPNC) Study. The 
Journal of Pediatrics. 2009 Jul;155(1):105-110.e1.  

113.  Mikhaylova AV, Thornton TA. Accuracy of Gene Expression Prediction From Genotype 
Data With PrediXcan Varies Across and Within Continental Populations. Front Genet. 
2019 Apr 3;10:261.  



158 
 

114.  Asimit JL, Hatzikotoulas K, McCarthy M, Morris AP, Zeggini E. Trans-ethnic study design 
approaches for fine-mapping. Eur J Hum Genet. 2016 Sep;24(9):1330–6.  

115.  Danjou F, Zoledziewska M, Sidore C, Steri M, Busonero F, Maschio A, Mulas A, Perseu L, 
Barella S, Porcu E, Pistis G, Pitzalis M, Pala M, Menzel S, Metrustry S, Spector TD, Leoni L, 
Angius A, Uda M, Moi P, Thein SL, Galanello R, Abecasis GR, Schlessinger D, Sanna S, 
Cucca F. Genome-wide association analyses based on whole-genome sequencing in 
Sardinia provide insights into regulation of hemoglobin levels. Nat Genet. 2015 
Nov;47(11):1264–71.  

116.  Sidore C, Busonero F, Maschio A, Porcu E, Naitza S, Zoledziewska M, Mulas A, Pistis G, 
Steri M, Danjou F, Kwong A, Ortega del Vecchyo VD, Chiang CWK, Bragg-Gresham J, 
Pitzalis M, Nagaraja R, Tarrier B, Brennan C, Uzzau S, Fuchsberger C, Atzeni R, Reinier F, 
Berutti R, Huang J, Timpson NJ, Toniolo D, Gasparini P, Malerba G, Dedoussis G, Zeggini E, 
Soranzo N, Jones C, Lyons R, Angius A, Kang HM, Novembre J, Sanna S, Schlessinger D, 
Cucca F, Abecasis GR. Genome sequencing elucidates Sardinian genetic architecture and 
augments association analyses for lipid and blood inflammatory markers. Nat Genet. 
2015 Nov;47(11):1272–81.  

117.  FinnGen Project, Locke AE, Steinberg KM, Chiang CWK, Service SK, Havulinna AS, Stell L, 
Pirinen M, Abel HJ, Chiang CC, Fulton RS, Jackson AU, Kang CJ, Kanchi KL, Koboldt DC, 
Larson DE, Nelson J, Nicholas TJ, Pietilä A, Ramensky V, Ray D, Scott LJ, Stringham HM, 
Vangipurapu J, Welch R, Yajnik P, Yin X, Eriksson JG, Ala-Korpela M, Järvelin M-R, 
Männikkö M, Laivuori H, Dutcher SK, Stitziel NO, Wilson RK, Hall IM, Sabatti C, Palotie A, 
Salomaa V, Laakso M, Ripatti S, Boehnke M, Freimer NB. Exome sequencing of Finnish 
isolates enhances rare-variant association power. Nature. 2019 Aug;572(7769):323–8.  

118.  Tam V, Patel N, Turcotte M, Bossé Y, Paré G, Meyre D. Benefits and limitations of 
genome-wide association studies. Nat Rev Genet. 2019 Aug;20(8):467–84.  

119.  Pingault J-B, O’Reilly PF, Schoeler T, Ploubidis GB, Rijsdijk F, Dudbridge F. Using genetic 
data to strengthen causal inference in observational research. Nat Rev Genet. 2018 
Sep;19(9):566–80.  

120.  Zhang W, Voloudakis G, Rajagopal VM, Readhead B, Dudley JT, Schadt EE, Björkegren 
JLM, Kim Y, Fullard JF, Hoffman GE, Roussos P. Integrative transcriptome imputation 
reveals tissue-specific and shared biological mechanisms mediating susceptibility to 
complex traits. Nat Commun. 2019 Dec;10(1):3834.  

121.  Barfield R, Feng H, Gusev A, Wu L, Zheng W, Pasaniuc B, Kraft P. Transcriptome-wide 
association studies accounting for colocalization using Egger regression. Genet Epidemiol. 
2018 Jul;42(5):418–33.  



159 
 

122.  Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: 
effect estimation and bias detection through Egger regression. International Journal of 
Epidemiology. 2015 Apr 1;44(2):512–25.  

123.  GTEx Consortium, Gamazon ER, Segrè AV, van de Bunt M, Wen X, Xi HS, Hormozdiari F, 
Ongen H, Konkashbaev A, Derks EM, Aguet F, Quan J, Nicolae DL, Eskin E, Kellis M, Getz 
G, McCarthy MI, Dermitzakis ET, Cox NJ, Ardlie KG. Using an atlas of gene regulation 
across 44 human tissues to inform complex disease- and trait-associated variation. Nat 
Genet. 2018 Jul;50(7):956–67.  

124.  Uhlen M, Zhang C, Lee S, Sjöstedt E, Fagerberg L, Bidkhori G, Benfeitas R, Arif M, Liu Z, 
Edfors F, Sanli K, von Feilitzen K, Oksvold P, Lundberg E, Hober S, Nilsson P, Mattsson J, 
Schwenk JM, Brunnström H, Glimelius B, Sjöblom T, Edqvist P-H, Djureinovic D, Micke P, 
Lindskog C, Mardinoglu A, Ponten F. A pathology atlas of the human cancer 
transcriptome. Science. 2017 Aug 18;357(6352):eaan2507.  

125.  Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, Motyer A, Vukcevic D, 
Delaneau O, O’Connell J, Cortes A, Welsh S, Young A, Effingham M, McVean G, Leslie S, 
Allen N, Donnelly P, Marchini J. The UK Biobank resource with deep phenotyping and 
genomic data. Nature. 2018 Oct;562(7726):203–9.  

126.  The 100 000 Genomes Project: bringing whole genome sequencing to the NHS. BMJ. 
2018 May 2;k1952.  

127.  Collins FS, Varmus H. A New Initiative on Precision Medicine. N Engl J Med. 2015 Feb 
26;372(9):793–5.  

128.  Sieberts SK, Perumal TM, Carrasquillo MM, Allen M, Reddy JS, Hoffman GE, Dang KK, 
Calley J, Ebert PJ, Eddy J, Wang X, Greenwood AK, Mostafavi S, CommonMind Consortium 
(CMC), The AMP-AD Consortium, Omberg L, Peters MA, Logsdon BA, De Jager PL, Ertekin-
Taner N, Mangravite LM. Large eQTL meta-analysis reveals differing patterns between 
cerebral cortical and cerebellar brain regions. Sci Data. 2020 Oct 12;7(1):340.  

129.  Zeng B, Lloyd-Jones LR, Montgomery GW, Metspalu A, Esko T, Franke L, Vosa U, 
Claringbould A, Brigham KL, Quyyumi AA, Idaghdour Y, Yang J, Visscher PM, Powell JE, 
Gibson G. Comprehensive Multiple eQTL Detection and Its Application to GWAS 
Interpretation. Genetics. 2019 Jul;212(3):905–18.  

130.  Tran HTN, Ang KS, Chevrier M, Zhang X, Lee NYS, Goh M, Chen J. A benchmark of batch-
effect correction methods for single-cell RNA sequencing data. Genome Biol. 2020 
Dec;21(1):12.  

131.  Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, Geman D, Baggerly K, 
Irizarry RA. Tackling the widespread and critical impact of batch effects in high-
throughput data. Nat Rev Genet. 2010 Oct;11(10):733–9.  



160 
 

132.  Zhang Y, Parmigiani G, Johnson WE. ComBat-seq: batch effect adjustment for RNA-seq 
count data. NAR Genomics and Bioinformatics. 2020 Sep 1;2(3):lqaa078.  

133.  GTEx Consortium. Genetic effects on gene expression across human tissues. Nature. 2017 
Oct 12;550(7675):204–13.  

134.  The GTEx Consortium, Zhang Y, Quick C, Yu K, Barbeira A, Luca F, Pique-Regi R, Kyung Im 
H, Wen X. PTWAS: investigating tissue-relevant causal molecular mechanisms of complex 
traits using probabilistic TWAS analysis. Genome Biol. 2020 Dec;21(1):232.  

135.  Bhattacharya A, García-Closas M, Olshan AF, Perou CM, Troester MA, Love MI. A 
framework for transcriptome-wide association studies in breast cancer in diverse study 
populations. Genome Biol. 2020 Dec;21(1):42.  

136.  Zhou D, Jiang Y, Zhong X, Cox NJ, Liu C, Gamazon ER. A unified framework for joint-tissue 
transcriptome-wide association and Mendelian randomization analysis. Nat Genet. 2020 
Nov;52(11):1239–46.  

137.  GTEx Consortium, Barbeira AN, Dickinson SP, Bonazzola R, Zheng J, Wheeler HE, Torres 
JM, Torstenson ES, Shah KP, Garcia T, Edwards TL, Stahl EA, Huckins LM, Nicolae DL, Cox 
NJ, Im HK. Exploring the phenotypic consequences of tissue specific gene expression 
variation inferred from GWAS summary statistics. Nat Commun. 2018 Dec;9(1):1825.  

138.  Fuior EV, Gafencu AV. Apolipoprotein C1: Its Pleiotropic Effects in Lipid Metabolism and 
Beyond. IJMS. 2019 Nov 26;20(23):5939.  

139.  Okoro PC, Schubert R, Guo X, Johnson WC, Rotter JI, Hoeschele I, Liu Y, Im HK, Luke A, 
Dugas LR, Wheeler HE. Transcriptome prediction performance across machine learning 
models and diverse ancestries. Human Genetics and Genomics Advances. 2021 
Apr;2(2):100019.  

140.  Cai M, Xiao J, Zhang S, Wan X, Zhao H, Chen G, Yang C. A unified framework for cross-
population trait prediction by leveraging the genetic correlation of polygenic traits. The 
American Journal of Human Genetics. 2021 Apr;108(4):632–55.  

141.  Pividori M, Rajagopal PS, Barbeira A, Liang Y, Melia O, Bastarache L, Park Y, Consortium 
Gte, Wen X, Im HK. PhenomeXcan: Mapping the genome to the phenome through the 
transcriptome. Sci Adv. 2020 Sep;6(37):eaba2083.  

142.  Friedman J, Hastie T, Tibshirani R. Regularization Paths for Generalized Linear Models via 
Coordinate Descent. J Stat Softw. 2010;33(1):1–22.  

143.  Pruitt KD, Harrow J, Harte RA, Wallin C, Diekhans M, Maglott DR, Searle S, Farrell CM, 
Loveland JE, Ruef BJ, Hart E, Suner M-M, Landrum MJ, Aken B, Ayling S, Baertsch R, 
Fernandez-Banet J, Cherry JL, Curwen V, DiCuccio M, Kellis M, Lee J, Lin MF, Schuster M, 
Shkeda A, Amid C, Brown G, Dukhanina O, Frankish A, Hart J, Maidak BL, Mudge J, 



161 
 

Murphy MR, Murphy T, Rajan J, Rajput B, Riddick LD, Snow C, Steward C, Webb D, Weber 
JA, Wilming L, Wu W, Birney E, Haussler D, Hubbard T, Ostell J, Durbin R, Lipman D. The 
consensus coding sequence (CCDS) project: Identifying a common protein-coding gene 
set for the human and mouse genomes. Genome Research. 2009 Jul 1;19(7):1316–23.  

144.  Global Lipids Genetics Consortium. Discovery and refinement of loci associated with lipid 
levels. Nat Genet. 2013 Nov;45(11):1274–83.  

145.  the DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium. Large-
scale association analysis provides insights into the genetic architecture and 
pathophysiology of type 2 diabetes. Nat Genet. 2012 Sep;44(9):981–90.  

146.  Kerimov N, Hayhurst JD, Peikova K, Manning JR, Walter P, Kolberg L, Samoviča M, 
Sakthivel MP, Kuzmin I, Trevanion SJ, Burdett T, Jupp S, Parkinson H, Papatheodorou I, 
Yates A, Zerbino DR, Alasoo K. eQTL Catalogue: a compendium of uniformly processed 
human gene expression and splicing QTLs [Internet]. Genomics; 2020 Jan [cited 2021 Mar 
23]. Available from: http://biorxiv.org/lookup/doi/10.1101/2020.01.29.924266 

147.  Joehanes R, Zhang X, Huan T, Yao C, Ying S, Nguyen QT, Demirkale CY, Feolo ML, 
Sharopova NR, Sturcke A, Schäffer AA, Heard-Costa N, Chen H, Liu P, Wang R, 
Woodhouse KA, Tanriverdi K, Freedman JE, Raghavachari N, Dupuis J, Johnson AD, 
O’Donnell CJ, Levy D, Munson PJ. Integrated genome-wide analysis of expression 
quantitative trait loci aids interpretation of genomic association studies. Genome Biol. 
2017 Dec;18(1):16.  

148.  Dai M. Evolving gene/transcript definitions significantly alter the interpretation of 
GeneChip data. Nucleic Acids Research. 2005 Nov 27;33(20):e175–e175.  

149.  Sandberg R, Larsson O. Improved precision and accuracy for microarrays using updated 
probe set definitions. BMC Bioinformatics. 2007 Dec;8(1):48.  

150.  Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate 
alignment of transcriptomes in the presence of insertions, deletions and gene fusions. 
Genome Biol. 2013;14(4):R36.  

151.  Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold 
BJ, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated 
transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010 
May;28(5):511–5.  

152.  Jun G, Wing MK, Abecasis GR, Kang HM. An efficient and scalable analysis framework for 
variant extraction and refinement from population-scale DNA sequence data. Genome 
Res. 2015 Jun;25(6):918–25.  

153.  DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del 
Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ, Kernytsky AM, Sivachenko AY, 



162 
 

Cibulskis K, Gabriel SB, Altshuler D, Daly MJ. A framework for variation discovery and 
genotyping using next-generation DNA sequencing data. Nat Genet. 2011 
May;43(5):491–8.  

154.  Church DM, Schneider VA, Graves T, Auger K, Cunningham F, Bouk N, Chen H-C, Agarwala 
R, McLaren WM, Ritchie GRS, Albracht D, Kremitzki M, Rock S, Kotkiewicz H, Kremitzki C, 
Wollam A, Trani L, Fulton L, Fulton R, Matthews L, Whitehead S, Chow W, Torrance J, 
Dunn M, Harden G, Threadgold G, Wood J, Collins J, Heath P, Griffiths G, Pelan S, 
Grafham D, Eichler EE, Weinstock G, Mardis ER, Wilson RK, Howe K, Flicek P, Hubbard T. 
Modernizing reference genome assemblies. PLoS Biol. 2011 Jul;9(7):e1001091.  

155.  Carvalho BS, Irizarry RA. A framework for oligonucleotide microarray preprocessing. 
Bioinformatics. 2010 Oct 1;26(19):2363–7.  

156.  Irizarry RA. Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Research. 
2003 Feb 15;31(4):15e–15.  

157.  Kang HM, Sul JH, Service SK, Zaitlen NA, Kong S, Freimer NB, Sabatti C, Eskin E. Variance 
component model to account for sample structure in genome-wide association studies. 
Nat Genet. 2010 Apr;42(4):348–54.  

158.  Canela-Xandri O, Rawlik K, Tenesa A. An atlas of genetic associations in UK Biobank. Nat 
Genet. 2018 Nov;50(11):1593–9.  

159.  NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium, Taliun D, Harris DN, 
Kessler MD, Carlson J, Szpiech ZA, Torres R, Taliun SAG, Corvelo A, Gogarten SM, Kang 
HM, Pitsillides AN, LeFaive J, Lee S, Tian X, Browning BL, Das S, Emde A-K, Clarke WE, 
Loesch DP, Shetty AC, Blackwell TW, Smith AV, Wong Q, Liu X, Conomos MP, Bobo DM, 
Aguet F, Albert C, Alonso A, Ardlie KG, Arking DE, Aslibekyan S, Auer PL, Barnard J, Barr 
RG, Barwick L, Becker LC, Beer RL, Benjamin EJ, Bielak LF, Blangero J, Boehnke M, 
Bowden DW, Brody JA, Burchard EG, Cade BE, Casella JF, Chalazan B, Chasman DI, Chen 
Y-DI, Cho MH, Choi SH, Chung MK, Clish CB, Correa A, Curran JE, Custer B, Darbar D, Daya 
M, de Andrade M, DeMeo DL, Dutcher SK, Ellinor PT, Emery LS, Eng C, Fatkin D, Fingerlin 
T, Forer L, Fornage M, Franceschini N, Fuchsberger C, Fullerton SM, Germer S, Gladwin 
MT, Gottlieb DJ, Guo X, Hall ME, He J, Heard-Costa NL, Heckbert SR, Irvin MR, Johnsen 
JM, Johnson AD, Kaplan R, Kardia SLR, Kelly T, Kelly S, Kenny EE, Kiel DP, Klemmer R, 
Konkle BA, Kooperberg C, Köttgen A, Lange LA, Lasky-Su J, Levy D, Lin X, Lin K-H, Liu C, 
Loos RJF, Garman L, Gerszten R, Lubitz SA, Lunetta KL, Mak ACY, Manichaikul A, Manning 
AK, Mathias RA, McManus DD, McGarvey ST, Meigs JB, Meyers DA, Mikulla JL, Minear 
MA, Mitchell BD, Mohanty S, Montasser ME, Montgomery C, Morrison AC, Murabito JM, 
Natale A, Natarajan P, Nelson SC, North KE, O’Connell JR, Palmer ND, Pankratz N, Peloso 
GM, Peyser PA, Pleiness J, Post WS, Psaty BM, Rao DC, Redline S, Reiner AP, Roden D, 
Rotter JI, Ruczinski I, Sarnowski C, Schoenherr S, Schwartz DA, Seo J-S, Seshadri S, 
Sheehan VA, Sheu WH, Shoemaker MB, Smith NL, Smith JA, Sotoodehnia N, Stilp AM, 
Tang W, Taylor KD, Telen M, Thornton TA, Tracy RP, Van Den Berg DJ, Vasan RS, Viaud-



163 
 

Martinez KA, Vrieze S, Weeks DE, Weir BS, Weiss ST, Weng L-C, Willer CJ, Zhang Y, Zhao X, 
Arnett DK, Ashley-Koch AE, Barnes KC, Boerwinkle E, Gabriel S, Gibbs R, Rice KM, Rich SS, 
Silverman EK, Qasba P, Gan W, Papanicolaou GJ, Nickerson DA, Browning SR, Zody MC, 
Zöllner S, Wilson JG, Cupples LA, Laurie CC, Jaquish CE, Hernandez RD, O’Connor TD, 
Abecasis GR. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. 
Nature. 2021 Feb 11;590(7845):290–9.  

160.  Sofer T, Kurniansyah N, Aguet F, Ardlie K, Durda P, Nickerson DA, Smith JD, Liu Y, Gharib 
SA, Redline S, Rich SS, Rotter JI, Taylor KD. Benchmarking Association Analyses of 
Continuous Exposures with RNA-seq in Observational Studies [Internet]. Bioinformatics; 
2021 Feb [cited 2021 Apr 8]. Available from: 
http://biorxiv.org/lookup/doi/10.1101/2021.02.12.430989 

161.  Folkersen L, Gustafsson S, Wang Q, Hansen DH, Hedman ÅK, Schork A, Page K, 
Zhernakova DV, Wu Y, Peters J, Ericsson N, Bergen SE, Boutin T, Bretherick AD, Enroth S, 
Kalnapenkis A, Gådin JR, Suur B, Chen Y, Matic L, Gale JD, Lee J, Zhang W, Quazi A, Ala-
Korpela M, Choi SH, Claringbould A, Danesh J, Davey-Smith G, de Masi F, Elmståhl S, 
Engström G, Fauman E, Fernandez C, Franke L, Franks P, Giedraitis V, Haley C, Hamsten A, 
Ingason A, Johansson Å, Joshi PK, Lind L, Lindgren CM, Lubitz S, Palmer T, Macdonald-
Dunlop E, Magnusson M, Melander O, Michaelsson K, Morris AP, Mägi R, Nagle M, 
Nilsson PM, Nilsson J, Orho-Melander M, Polasek O, Prins B, Pålsson E, Qi T, Sjögren M, 
Sundström J, Surendran P, Võsa U, Werge T, Wernersson R, Westra H-J, Yang J, 
Zhernakova A, Ärnlöv J, Fu J, Smith G, Esko T, Hayward C, Gyllensten U, Landen M, 
Siegbahn A, Wilson JF, Wallentin L, Butterworth AS, Holmes MV, Ingelsson E, Mälarstig A. 
Genomic evaluation of circulating proteins for drug target characterisation and precision 
medicine [Internet]. Genetics; 2020 Apr [cited 2021 Apr 8]. Available from: 
http://biorxiv.org/lookup/doi/10.1101/2020.04.03.023804 

162.  Folkersen L, Gustafsson S, Wang Q, Hansen DH, Hedman ÅK, Schork A, Page K, 
Zhernakova DV, Wu Y, Peters J, Eriksson N, Bergen SE, Boutin TS, Bretherick AD, Enroth S, 
Kalnapenkis A, Gådin JR, Suur BE, Chen Y, Matic L, Gale JD, Lee J, Zhang W, Quazi A, Ala-
Korpela M, Choi SH, Claringbould A, Danesh J, Davey Smith G, de Masi F, Elmståhl S, 
Engström G, Fauman E, Fernandez C, Franke L, Franks PW, Giedraitis V, Haley C, Hamsten 
A, Ingason A, Johansson Å, Joshi PK, Lind L, Lindgren CM, Lubitz S, Palmer T, Macdonald-
Dunlop E, Magnusson M, Melander O, Michaelsson K, Morris AP, Mägi R, Nagle MW, 
Nilsson PM, Nilsson J, Orho-Melander M, Polasek O, Prins B, Pålsson E, Qi T, Sjögren M, 
Sundström J, Surendran P, Võsa U, Werge T, Wernersson R, Westra H-J, Yang J, 
Zhernakova A, Ärnlöv J, Fu J, Smith JG, Esko T, Hayward C, Gyllensten U, Landen M, 
Siegbahn A, Wilson JF, Wallentin L, Butterworth AS, Holmes MV, Ingelsson E, Mälarstig A. 
Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals. 
Nat Metab. 2020 Oct;2(10):1135–48.  

163.  West KM, Blacksher E, Burke W. Genomics, Health Disparities, and Missed Opportunities 
for the Nation’s Research Agenda. JAMA. 2017 May 9;317(18):1831.  



164 
 

164.  Need AC, Goldstein DB. Next generation disparities in human genomics: concerns and 
remedies. Trends in Genetics. 2009 Nov;25(11):489–94.  

165.  Petrovski S, Goldstein DB. Unequal representation of genetic variation across ancestry 
groups creates healthcare inequality in the application of precision medicine. Genome 
Biol. 2016 Dec;17(1):157.  

166.  Hindorff LA, Bonham VL, Brody LC, Ginoza MEC, Hutter CM, Manolio TA, Green ED. 
Prioritizing diversity in human genomics research. Nat Rev Genet. 2018 Mar;19(3):175–
85.  

167.  Yamauchi T, Hara K, Maeda S, Yasuda K, Takahashi A, Horikoshi M, Nakamura M, Fujita H, 
Grarup N, Cauchi S, Ng DPK, Ma RCW, Tsunoda T, Kubo M, Watada H, Maegawa H, 
Okada-Iwabu M, Iwabu M, Shojima N, Shin HD, Andersen G, Witte DR, Jørgensen T, 
Lauritzen T, Sandbæk A, Hansen T, Ohshige T, Omori S, Saito I, Kaku K, Hirose H, So W-Y, 
Beury D, Chan JCN, Park KS, Tai ES, Ito C, Tanaka Y, Kashiwagi A, Kawamori R, Kasuga M, 
Froguel P, Pedersen O, Kamatani N, Nakamura Y, Kadowaki T. A genome-wide association 
study in the Japanese population identifies susceptibility loci for type 2 diabetes at 
UBE2E2 and C2CD4A-C2CD4B. Nat Genet. 2010 Oct;42(10):864–8.  

168.  Strawbridge RJ, Dupuis J, Prokopenko I, Barker A, Ahlqvist E, Rybin D, Petrie JR, Travers 
ME, Bouatia-Naji N, Dimas AS, Nica A, Wheeler E, Chen H, Voight BF, Taneera J, Kanoni S, 
Peden JF, Turrini F, Gustafsson S, Zabena C, Almgren P, Barker DJP, Barnes D, Dennison 
EM, Eriksson JG, Eriksson P, Eury E, Folkersen L, Fox CS, Frayling TM, Goel A, Gu HF, 
Horikoshi M, Isomaa B, Jackson AU, Jameson KA, Kajantie E, Kerr-Conte J, Kuulasmaa T, 
Kuusisto J, Loos RJF, Luan J, Makrilakis K, Manning AK, Martinez-Larrad MT, Narisu N, 
Nastase Mannila M, Ohrvik J, Osmond C, Pascoe L, Payne F, Sayer AA, Sennblad B, Silveira 
A, Stancakova A, Stirrups K, Swift AJ, Syvanen A-C, Tuomi T, van ’t Hooft FM, Walker M, 
Weedon MN, Xie W, Zethelius B, the DIAGRAM Consortium, the GIANT Consortium, the 
MuTHER Consortium, the CARDIoGRAM Consortium, the C4D Consortium, Ongen H, 
Malarstig A, Hopewell JC, Saleheen D, Chambers J, Parish S, Danesh J, Kooner J, Ostenson 
C-G, Lind L, Cooper CC, Serrano-Rios M, Ferrannini E, Forsen TJ, Clarke R, Franzosi MG, 
Seedorf U, Watkins H, Froguel P, Johnson P, Deloukas P, Collins FS, Laakso M, Dermitzakis 
ET, Boehnke M, McCarthy MI, Wareham NJ, Groop L, Pattou F, Gloyn AL, Dedoussis GV, 
Lyssenko V, Meigs JB, Barroso I, Watanabe RM, Ingelsson E, Langenberg C, Hamsten A, 
Florez JC. Genome-Wide Association Identifies Nine Common Variants Associated With 
Fasting Proinsulin Levels and Provides New Insights Into the Pathophysiology of Type 2 
Diabetes. Diabetes. 2011 Oct 1;60(10):2624–34.  

169.  Nair V, Komorowsky CV, Weil EJ, Yee B, Hodgin J, Harder JL, Godfrey B, Ju W, Boustany-
Kari CM, Schwarz M, Lemley KV, Nelson PJ, Nelson RG, Kretzler M. A molecular 
morphometric approach to diabetic kidney disease can link structure to function and 
outcome. Kidney International. 2018 Feb;93(2):439–49.  



165 
 

170.  Kang HM, Ye C, Eskin E. Accurate Discovery of Expression Quantitative Trait Loci Under 
Confounding From Spurious and Genuine Regulatory Hotspots. Genetics. 2008 
Dec;180(4):1909–25.  

171.  Quick C, Guan L, Li Z, Li X, Dey R, Liu Y, Scott L, Lin X. A versatile toolkit for molecular QTL 
mapping and meta-analysis at scale [Internet]. Genetics; 2020 Dec [cited 2021 Apr 14]. 
Available from: http://biorxiv.org/lookup/doi/10.1101/2020.12.18.423490 

172.  Ding J, Gudjonsson JE, Liang L, Stuart PE, Li Y, Chen W, Weichenthal M, Ellinghaus E, 
Franke A, Cookson W, Nair RP, Elder JT, Abecasis GR. Gene expression in skin and 
lymphoblastoid cells: Refined statistical method reveals extensive overlap in cis-eQTL 
signals. Am J Hum Genet. 2010 Dec 10;87(6):779–89.  

173.  Wen X, Pique-Regi R, Luca F. Integrating molecular QTL data into genome-wide genetic 
association analysis: Probabilistic assessment of enrichment and colocalization. Li B, 
editor. PLoS Genet. 2017 Mar 9;13(3):e1006646.  

174.  Wen X, Lee Y, Luca F, Pique-Regi R. Efficient Integrative Multi-SNP Association Analysis 
via Deterministic Approximation of Posteriors. The American Journal of Human Genetics. 
2016 Jun;98(6):1114–29.  

175.  Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful 
Approach to Multiple Testing. JSTOR. 1995;57(1):289–300.  

176.  Kanehisa M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research. 
2000 Jan 1;28(1):27–30.  

177.  Kanehisa M. Toward understanding the origin and evolution of cellular organisms. 
Protein Science. 2019 Nov;28(11):1947–51.  

178.  Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. KEGG: integrating 
viruses and cellular organisms. Nucleic Acids Research. 2021 Jan 8;49(D1):D545–51.  

179.  Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins 
SL, Jagodnik KM, Lachmann A, McDermott MG, Monteiro CD, Gundersen GW, Ma’ayan A. 
Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic 
Acids Res. 2016 Jul 8;44(W1):W90–7.  

180.  Donate-Correa J, Ferri CM, Sánchez-Quintana F, Pérez-Castro A, González-Luis A, Martín-
Núñez E, Mora-Fernández C, Navarro-González JF. Inflammatory Cytokines in Diabetic 
Kidney Disease: Pathophysiologic and Therapeutic Implications. Front Med. 2021 Jan 
22;7:628289.  

181.  Magno A, Herat L, Carnagarin R, Schlaich M, Matthews V. Current Knowledge of IL-6 
Cytokine Family Members in Acute and Chronic Kidney Disease. Biomedicines. 2019 Mar 
13;7(1):19.  



166 
 

182.  Navarro-González JF, Mora-Fernández C. The Role of Inflammatory Cytokines in Diabetic 
Nephropathy. JASN. 2008 Mar;19(3):433–42.  

183.  Lennon R, Randles MJ, Humphries MJ. The Importance of Podocyte Adhesion for a 
Healthy Glomerulus. Front Endocrinol [Internet]. 2014 Oct 14 [cited 2021 Apr 14];5. 
Available from: http://journal.frontiersin.org/article/10.3389/fendo.2014.00160/abstract 

184.  Lausecker F, Tian X, Inoue K, Wang Z, Pedigo CE, Hassan H, Liu C, Zimmer M, Jinno S, 
Huckle AL, Hamidi H, Ross RS, Zent R, Ballestrem C, Lennon R, Ishibe S. Vinculin is 
required to maintain glomerular barrier integrity. Kidney International. 2018 
Mar;93(3):643–55.  

185.  Majo S, Courtois S, Souleyreau W, Bikfalvi A, Auguste P. Impact of Extracellular Matrix 
Components to Renal Cell Carcinoma Behavior. Front Oncol. 2020 Apr 28;10:625.  

186.  Simon EE, McDonald JA. Extracellular matrix receptors in the kidney cortex. American 
Journal of Physiology-Renal Physiology. 1990 Nov 1;259(5):F783–92.  

187.  Caplin B, Wang Z, Slaviero A, Tomlinson J, Dowsett L, Delahaye M, Salama A, The 
International Consortium for Blood Pressure Genome-Wide Association Studies, Wheeler 
DC, Leiper J. Alanine-Glyoxylate Aminotransferase-2 Metabolizes Endogenous 
Methylarginines, Regulates NO, and Controls Blood Pressure. Arterioscler Thromb Vasc 
Biol. 2012 Dec;32(12):2892–900.  

188.  Parving H-H. Microalbuminuria in essential hypertension and diabetes mellitus: Journal of 
Hypertension. 1996 Sep;14(Supplement 2):S89–94.  

189.  Palatini P. +Microalbuminuria in hypertension. Current Science Inc. 2003 May;5(3):208–
14.  

190.  Takase H, Sugiura T, Ohte N, Dohi Y. Urinary Albumin as a Marker of Future Blood 
Pressure and Hypertension in the General Population. Medicine. 2015 Feb;94(6):e511.  

191.  Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, Yang J. 10 Years of 
GWAS Discovery: Biology, Function, and Translation. The American Journal of Human 
Genetics. 2017 Jul;101(1):5–22.  

192.  Comeron JM, Kreitman M, De La Vega FM. On the power to detect SNP/phenotype 
association in candidate quantitative trait loci genomic regions: a simulation study. Pac 
Symp Biocomput. 2003;478–89.  

193.  Nishino J, Ochi H, Kochi Y, Tsunoda T, Matsui S. Sample Size for Successful Genome-Wide 
Association Study of Major Depressive Disorder. Front Genet. 2018 Jun 28;9:227.  

194.  Mills MC, Rahal C. A scientometric review of genome-wide association studies. Commun 
Biol. 2019 Dec;2(1):9.  



167 
 

195.  Köttgen A, Pattaro C, Böger CA, Fuchsberger C, Olden M, Glazer NL, Parsa A, Gao X, Yang 
Q, Smith AV, O’Connell JR, Li M, Schmidt H, Tanaka T, Isaacs A, Ketkar S, Hwang S-J, 
Johnson AD, Dehghan A, Teumer A, Paré G, Atkinson EJ, Zeller T, Lohman K, Cornelis MC, 
Probst-Hensch NM, Kronenberg F, Tönjes A, Hayward C, Aspelund T, Eiriksdottir G, 
Launer LJ, Harris TB, Rampersaud E, Mitchell BD, Arking DE, Boerwinkle E, Struchalin M, 
Cavalieri M, Singleton A, Giallauria F, Metter J, de Boer IH, Haritunians T, Lumley T, 
Siscovick D, Psaty BM, Zillikens MC, Oostra BA, Feitosa M, Province M, de Andrade M, 
Turner ST, Schillert A, Ziegler A, Wild PS, Schnabel RB, Wilde S, Munzel TF, Leak TS, Illig T, 
Klopp N, Meisinger C, Wichmann H-E, Koenig W, Zgaga L, Zemunik T, Kolcic I, Minelli C, 
Hu FB, Johansson Å, Igl W, Zaboli G, Wild SH, Wright AF, Campbell H, Ellinghaus D, 
Schreiber S, Aulchenko YS, Felix JF, Rivadeneira F, Uitterlinden AG, Hofman A, Imboden 
M, Nitsch D, Brandstätter A, Kollerits B, Kedenko L, Mägi R, Stumvoll M, Kovacs P, Boban 
M, Campbell S, Endlich K, Völzke H, Kroemer HK, Nauck M, Völker U, Polasek O, Vitart V, 
Badola S, Parker AN, Ridker PM, Kardia SLR, Blankenberg S, Liu Y, Curhan GC, Franke A, 
Rochat T, Paulweber B, Prokopenko I, Wang W, Gudnason V, Shuldiner AR, Coresh J, 
Schmidt R, Ferrucci L, Shlipak MG, van Duijn CM, Borecki I, Krämer BK, Rudan I, 
Gyllensten U, Wilson JF, Witteman JC, Pramstaller PP, Rettig R, Hastie N, Chasman DI, Kao 
WH, Heid IM, Fox CS. New loci associated with kidney function and chronic kidney 
disease. Nat Genet. 2010 May;42(5):376–84.  

196.  Zeggini E, Ioannidis JP. Meta-analysis in genome-wide association studies. 
Pharmacogenomics. 2009 Feb;10(2):191–201.  

197.  Qiu C, Huang S, Park J, Park Y, Ko Y-A, Seasock MJ, Bryer JS, Xu X-X, Song W-C, Palmer M, 
Hill J, Guarnieri P, Hawkins J, Boustany-Kari CM, Pullen SS, Brown CD, Susztak K. Renal 
compartment–specific genetic variation analyses identify new pathways in chronic kidney 
disease. Nat Med. 2018 Nov;24(11):1721–31.  

198.  Ju W, Greene CS, Eichinger F, Nair V, Hodgin JB, Bitzer M, Lee Y, Zhu Q, Kehata M, Li M, 
Jiang S, Rastaldi MP, Cohen CD, Troyanskaya OG, Kretzler M. Defining cell-type specificity 
at the transcriptional level in human disease. Genome Res. 2013 Nov;23(11):1862–73.  

199.  Trapnell C. Defining cell types and states with single-cell genomics. Genome Res. 2015 
Oct;25(10):1491–8.  

200.  Poplin R, Ruano-Rubio V, DePristo MA, Fennell TJ, Carneiro MO, Van der Auwera GA, 
Kling DE, Gauthier LD, Levy-Moonshine A, Roazen D, Shakir K, Thibault J, Chandran S, 
Whelan C, Lek M, Gabriel S, Daly MJ, Neale B, MacArthur DG, Banks E. Scaling accurate 
genetic variant discovery to tens of thousands of samples [Internet]. Genomics; 2017 Nov 
[cited 2021 Apr 14]. Available from: http://biorxiv.org/lookup/doi/10.1101/201178 

201.  Stegle O, Parts L, Piipari M, Winn J, Durbin R. Using probabilistic estimation of expression 
residuals (PEER) to obtain increased power and interpretability of gene expression 
analyses. Nat Protoc. 2012 Mar;7(3):500–7.  



168 
 

202.  Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E. Efficient Control 
of Population Structure in Model Organism Association Mapping. Genetics. 2008 
Mar;178(3):1709–23.  

203.  Alquicira-Hernandez J, Sathe A, Ji HP, Nguyen Q, Powell JE. scPred: accurate supervised 
method for cell-type classification from single-cell RNA-seq data. Genome Biol. 2019 
Dec;20(1):264.  

204.  Kobak D, Berens P. The art of using t-SNE for single-cell transcriptomics. Nat Commun. 
2019 Dec;10(1):5416.  

205.  Poulin J-F, Tasic B, Hjerling-Leffler J, Trimarchi JM, Awatramani R. Disentangling neural 
cell diversity using single-cell transcriptomics. Nat Neurosci. 2016 Sep;19(9):1131–41.  

206.  Xu J, Cai L, Liao B, Zhu W, Yang J. CMF-Impute: an accurate imputation tool for single-cell 
RNA-seq data. Mathelier A, editor. Bioinformatics. 2020 May 1;36(10):3139–47.  

207.  Li WV, Li JJ. An accurate and robust imputation method scImpute for single-cell RNA-seq 
data. Nat Commun. 2018 Dec;9(1):997.  

208.  Xu Y, Zhang Z, You L, Liu J, Fan Z, Zhou X. scIGANs: single-cell RNA-seq imputation using 
generative adversarial networks. Nucleic Acids Research. 2020 Sep 4;48(15):e85–e85.  

209.  Wang X, Park J, Susztak K, Zhang NR, Li M. Bulk tissue cell type deconvolution with multi-
subject single-cell expression reference. Nat Commun. 2019 Dec;10(1):380.  

 

 


