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Abstract 
 

There are sex differences in susceptibility to psychostimulant addiction, 

supported by clinical evidence and pre-clinical research models. In rodent models, 

female rats acquire a preference for cocaine at lower doses, escalate self-administration 

behaviors more rapidly, and are more motivated to attain cocaine than males. These 

heightened addiction-like behaviors in females are modulated by the presence of the 

gonadal hormone estradiol. The role of estradiol in regulating male drug-seeking 

behaviors remains unexplored. 

In females, estradiol enhances the rewarding and motivating properties of 

psychostimulants by potentiating drug-induced dopamine release in the dorsolateral 

striatum (DLS), a brain region implicated in mediating habitual drug-seeking. While ERα, 

ERβ, and GPER1 are all localized in the dorsal striatum, the majority of research 

investigating how estradiol alters behavior, in either sex, has focused on ERα and ERβ 

and not GPER1. The goal of this dissertation is to fill this gap by investigating the role of 

GPER in the DLS in mediating addiction-like behaviors in both males and females.  

In chapter II, the effects of activation or blockade of GPER1 on preference for 

rewarding stimuli are investigated. In males, GPER1 bi-directionally modulates cocaine 

preference: activation of GPER1 attenuates cocaine conditioned place preference and 

inhibition of GPER1 enhances it. GPER1 activation also attenuates males’ preference 

for saccharin solution, suggesting that the effects of GPER1 on reward modulation are 

not constrained to drugs of abuse. Interestingly, there are no behavioral consequences 
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of GPER1 activation on cocaine or saccharin preference for females. Levels of ERα, 

ERβ, and GPER1 in the dorsal striatum are also explored in this chapter. While there 

are no sex differences in estradiol receptor expression, relative mRNA levels of GPER1 

are greater than both ERα and ERβ, for both sexes. 

In chapter III, the impact of DLS GPER1 activation on animals’ motivation for 

cocaine and drug-induced reinstatement are assessed. Activation of GPER1 potentiates 

females’ motivation for cocaine. GPER1 activation also causes females to show greater 

drug induced reinstatement. There is no effect of GPER1 activation on males’ 

propensity to self-administer cocaine, via measurement of motivation, extinction, or drug 

induced reinstatement.  

 In chapter IV, the impact of pharmacological activation of DLS-GPER1 on 

neuronal activation, with and without cocaine exposure, is measured. c-Fos 

immunoreactivity is used as a proxy for neuronal activation throughout different brain 

regions. Intra-DLS GPER1 activation attenuates cocaine induced c-Fos in the 

dorsomedial striatum. In subregions of the ventral striatum, DLS-GPER1 activation or 

cocaine alone causes increases in c-Fos immunoreactivity levels, but together, do not 

have compound effects on neuronal activation.  

 These are among the first studies to identify a novel role for estradiol receptors 

mediating reward in males. While estradiol increases females’ susceptibility towards 

addiction, activation of GPER1 may be protective against the rewarding effects of drugs 

of abuse for males. Together, these studies are yet another example of why sex should 

be considered as a biological variable in experimental research, as it will lead to the sex 

specific therapeutic targets for disorders, such as addiction. 
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Chapter I 
Introduction 

General Overview 

Sexual differentiation and organization of brain circuits are mediated by the 

presence of gonadal hormones during development. During adulthood, these hormones 

have activational effects on the sexually differentiated brain and mediate sexually 

dimorphic behaviors. Briefly, during fetal development, testosterone produced by the 

testes is converted to estradiol by the aromatase enzyme and thus, estradiol is the 

primary hormone which mediates masculinization of the brain (McCarthy, 2008; 

Schulster, Bernie, & Ramasamy, 2016). (McCarthy, 2008). In females, the absence of 

these gonadal steroids actively represses DNA methylation and masculinization, 

allowing for feminization of the brain to occur (Nugent et al., 2015). Through the actions 

of estradiol signaling, altered gene expression causes differential patterns of neuronal 

cell death, growth, and connectivity that have lasting effects on neural circuitry and 

behavior (Forger, 2006). Namely, estradiol-dependent sexual differentiation of striatal 

regions, which are implicated in regulating motivation and reward-processing (Cao, 

Willett, Dorris, & Meitzen, 2018; Meitzen, Meisel, & Mermelstein, 2018).  

In the adult brain, estradiol acts within the dopaminergic reward circuitry to alter 

motivation and goal directed behaviors that are important for reproductive success in 

females. While this system is adapted to enhance an individual’s propensity to perform 

evolutionarily advantageous behaviors, it is also altered by repeated exposure of drugs 

of abuse. Previous work has established that in the presence of estradiol increases 
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female’s vulnerability toward addiction by enhancing drug-induced dopamine levels in 

the brain and motivation for drugs of abuse (Becker & Rudick, 1999; Becker, 2009; 

Yoest, Cummings, & Becker, 2019a). The role of estradiol in male’s drug abuse liability 

remains unclear. 

As an introduction to this dissertation, I will begin by presenting the clinical 

evidence for female’s enhanced vulnerability for addiction and briefly outline the 

evidence for sex differences within the major theories of addiction. I will then explain the 

role of estradiol in enhancing drug-induced dopamine neurotransmission and the 

accompanying changes in drug-seeking behaviors seen in females. Next, I will provide 

a comprehensive review of estradiol receptor signaling as well as the localization of 

estradiol receptors throughout the male and female brain. Lastly, I will introduce how the 

chapters of this dissertation relate to the overall goal of understanding how estradiol, via 

activation of estradiol receptors, affects males’ and females’ propensity towards 

addiction.   

Sex differences in addiction 

Clinical evidence of sex differences in addiction 

Addiction has been categorized into different “stages” and there are sex 

differences in each stage (Becker & Koob, 2016). Initiation of drug use for women is 

often driven by psychological factors such as anxiety and depression, or after 

experiencing negative life events; whereas more men report initial drug use in social 

settings (Annis & Graham, 1995; Brady & Randall, 1999). Continued drug use causes 

neuroplastic changes in the reward system and in stress mechanisms in the brain of 

males and females, which contribute to sex differences in drug-seeking after initial use. 
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Women who have sought treatment for addiction report their drug consumption 

escalated more rapidly than do men in treatment, this phenomenon of rapid escalation 

of drug use in women is known as “telescoping” (Becker & Chartoff, 2019; Haas & 

Peters, 2000). After escalation of drug use, during maintenance, an individual is 

constantly thinking about obtaining the next drug dose (Becker & Chartoff, 2019). With 

continued use of a drug there is a transition to chronic substance use disorder which is 

characterized by repeated attempts at abstinence and relapse (American Psychiatric 

Association, 2013; Koob & Le Moal, 2006). During abstinence, women report greater 

craving than do men, which is modulated to some extent by their hormone cycles 

(Weinberger et al., 2015). Finally, women are more sensitive to environmental cues and 

report more spontaneous relapse (Janes et al., 2010). One aspect of the environment 

that is key to sex differences in addiction is activation of the stress axis. After we have 

discussed sex differences in the neural systems mediating addiction, we will return to 

how the stress system interacts with these systems differentially in males and females 

to put everything in context. 

Sex differences within different theories of addiction 

Dopaminergic neurons within the ascending mesotelencephalic pathway are 

activated in response to adaptive rewarding stimuli, such as food consumption, sexual 

behavior, and social interactions, all of which are necessary functions for health and 

reproductive success (Everitt et al., 1999; Robinson, Fischer, Ahuja, Lesser, & 

Maniates, 2016; W. Schultz, 1986; Wise & Rompre, 1989). Drugs of abuse also induce 

dopamine neurotransmission and sustained drug use causes numerous temporary and 

permanent physiological changes in the brain (Engel & Jerlhag, 2014; Koob & Le Moal, 
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2008; Kuczenski, Segal, & Todd, 1997; Robinson & Becker, 1986; Seiden, Sabol, & 

Ricaurte, 1993; Strakowski, Sax, Setters, & Keck, 1996). The various theories of how 

dopamine regulates motivated behaviors were developed in male animals however, 

there are implications for sex differences in vulnerability and propensity towards 

addiction within the context of these different theories.  

The incentive sensitization theory posits that repeated psychostimulant exposure 

results in sensitization of dopamine neurons which increases ‘wanting’ of the drug. 

(Robinson & Berridge, 1993). These neuroadaptations also increase the salience of 

drug cues which underlie the drive from casual drug use to compulsive drug taking 

(Berridge, 2007; Robinson & Becker, 1986; Robinson & Berridge, 1993). Females are 

more susceptible to incentive sensitization than are males, which may explain the 

enhanced vulnerability of females’ transition from intermittent drug use to chronic use 

(Kawa & Robinson, 2019). Repeated exposure to psychostimulants also causes 

behavioral sensitization (Robinson & Becker, 1986; Strakowski et al., 1996). Though 

both males and females show behavioral sensitization to psychostimulants, females 

exhibit greater enhancement in rotational movements and stereotyped behaviors (i.e. 

behavioral sensitization), than males do, after repeated amphetamine or cocaine 

administration (Camp & Robinson, 1988; Robinson, 1984; van Haaren & Meyer, 1991). 

Females also sensitize at lower doses of cocaine than males (Post, Lockfeld, Squillace, 

& Contel, 1981). Sensitization is regulated by circulating estradiol in females (Becker, 

Molenda, & Hummer, 2001; Hu & Becker, 2003; Souza et al., 2014). Intact female 

rodents show varying degrees of behavioral sensitization based on levels of gonadal 

hormones during their estrous cycle (Becker & Cha, 1989; Becker, Robinson, & Lorenz, 
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1982; Morissette & Di Paolo, 1993; Sell, Scalzitti, Thomas, & Cunningham, 2000). This 

effect of estradiol to enhance sensitization is not seen in males (Becker et al., 2001). 

Furthermore, testicular hormones do not regulate sensitization in males (Camp, Becker, 

& Robinson, 1986; Hu & Becker, 2003). Thus, sex differences in sensitization of the 

ascending dopamine system is a candidate to mediate sex differences in the neural 

mechanisms of addiction. 

An alternate theory is the opponent process theory of addiction which proposes 

that addiction emerges due to avoidance of withdrawal and the related anhedonia (Koob 

& Le Moal, 2008; Solomon & Corbit, 1974). In this theory, an initial pleasurable “high” 

accompanies drug use, which drives motivation for reuse. Over time sustained drug use 

results in tolerance to the pleasurable effects of the drug and a transition to increased 

unpleasant effects of withdrawal. Eventually, motivation for continued use is sustained 

to avoid the unpleasant effects of drug withdrawal (Koob, Caine, Parsons, Markou, & 

Weiss, 1997). Women report enhanced negative aspects of withdrawal effects from 

psychostimulants, along with most other classes of drugs (Becker, 2016; Becker, Perry, 

& Westenbroek, 2012; Brady & Randall, 1999). The severity of withdrawal is reported to 

be cyclic with gonadal hormones, suggesting that estradiol is mediating both the 

positive and negative effects of drug use for women (Ruda-Kucerova et al., 2015). 

Unexplained by this theory, however, is the fact that relapse occurs long after drug 

withdrawal symptoms subside (Kerstetter, Aguilar, Parrish, & Kippin, 2008; Ruda-

Kucerova et al., 2015). Spontaneous relapse also occurs disproportionally in females 

compared to males (Ruda-Kucerova et al., 2015). Thus, while sex differences in 

withdrawal likely contribute to sex differences in the pattern of drug taking behavior and 
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relapse, the opponent process theory alone is not sufficient to explain all of the sex 

differences reported in substance use disorders. 

Finally, risky decision making is associated with enhanced dopamine release 

dynamics in the nucleus accumbens shell (Freels, Gabriel, Lester, & Simon, 2020). 

Decision-making and risk-taking are related to the choice to consume drugs of abuse. 

Males are more likely to make “risky” choices in order to receive a higher value reward 

(Orsini, Willis, Gilbert, Bizon, & Setlow, 2016). Various studies have investigated the 

role of the ovarian cycle on decision-making in females and reported no effect 

(Georgiou et al., 2018; Orsini et al., 2016). The stability of females decision making, 

including their inability to enhance performance on risk-related tasks across training 

session compared to males, may be due to their hypersensitivity to punishment (Mohebi 

et al., 2019). On the other hand, ovariectomy increased risky decision making in 

females, and estradiol reversed this effect, demonstrating that ovarian hormones 

maintain this sex difference (Orsini et al., 2020). In women, the sex difference of 

reduced risk taking may be reflected in the pattern of drug use, where women are more 

likely to take drugs of abuse or relapse due to stress and lack of social support, 

compared to men (Becker, McClellan, & Reed, 2017). 

Behavioral paradigms to assess reward and motivation 

Cocaine enhances monoamine signaling by blocking dopamine, serotonin, and 

norepinephrine transporters, although the psychoactive effects of cocaine have been 

primarily attributed to the effects on dopamine transmission (Rothman & Baumann, 

2003). Decreasing striatal dopamine transmission in striatal regions attenuates cocaine-

seeking. For example, rodents show a robust preference for an environment which they 
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associate with cocaine, but this can be blocked by administration of dopamine receptor 

antagonists (Cervo & Samanin, 1995; Pruitt, Bolanos, & McDougall, 1995). Additionally, 

most rats will work hard to self-administer cocaine, but this behavior is attenuated by 

striatal dopamine lesions (Belin & Everitt, 2008; Pettit, Ettenberg, Bloom, & Koob, 

1984). The consistency of the aforementioned behavioral measures along with the 

involvement of dopamine in each mechanism makes conditioned place preference and 

self-administration paradigms commonly used pre-clinical models for assessing the 

reward. 

Conditioned place preference is a form of Pavlovian conditioning and is a 

commonly used behavioral paradigm for assessing drug reward in rodents. In this 

paradigm, one area of a chamber is paired with a rewarding drug, such as cocaine, 

while the others are vehicle-paired and/or neutral over multiple conditioning sessions. If 

the animal chooses to spend significantly more time in the drug-associated versus 

neutral chambers, it is determined that they have formed a conditioned place 

preference. This paradigm is also sensitive in assessing aversive stimuli and less time 

spent in a drug-associated chamber would suggest a conditioned place aversion. One 

of the most unique and beneficial characteristics of this paradigm is that it assesses 

preference during a drug-free state. Additionally, once a condition place preference has 

been established, it remains robust for weeks and is highly resistant to extinction (de 

Wit & Stewart, 1981; Mueller, Perdikaris, & Stewart, 2002; Voigt, Herrold, & Napier, 

2011). Arguably, this technique assesses the “liking” of a drug-paired chamber and 

includes the motivational component of “wanting”, because of the requirement of the 

animal to move into the preferred chamber. However, condition place preference is best 
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used in conjunction with other behavioral paradigms, such as self-administration, to 

elucidate the subjective effects of drugs.      

Many testing schedules have been created to assess the variable components of 

drug self-administration including acquisition of drug seeking, drug-cue association, and 

extinction and reinstatement of drug-seeking. Perhaps the most translational, however, 

is the assessment of motivation, as it is a hallmark of the transition from casual drug use 

to addiction (Köpetz, Lejuez, Wiers, & Kruglanski, 2013). The progressive ratio schedule 

of reinforcement progressively increases the “cost” of drug by requiring an animal to 

nose-poke progressively more times for each additional infusion of drug. Once the cost 

outweighs the reward, or the point at which an animal will no longer makes enough 

nose-pokes, is considered their “breaking point”. While all animals will eventually reach 

a “breaking point”, specific variables have been identified to enhance motivation for 

females in particular, as discussed below.  

Estradiol enhances female’s vulnerability to addiction 

Dopamine and estradiol  

In females, estradiol rapidly increases striatal dopamine release after 

amphetamine administration (Becker, 1990a, 1990b). Estradiol binds to ERα and 

enhances dopamine release by inhibiting K+-stimulated GABA release within the dorsal 

striatum, resulting in greater dopamine release due to a decrease of inhibition (Hu, 

Watson, Kennedy, & Becker, 2006; K. N. Schultz et al., 2009). In ventral stratum, ERβ 

enhances the effects of cocaine on electrically-stimulated dopamine release in 

gonadectomized females (Yoest et al., 2019a). Additionally, decreasing estradiol levels 

via ovariectomy in females reduces cocaine-induced dopamine levels but this can be 
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rescued with acute estradiol treatment (Cummings, Jagannathan, Jackson, & Becker, 

2014).  

Estradiol mediates drug-seeking in females 

In the laboratory, escalation of drug taking can be measured by the rate at which 

rodents acquire self-administration of a drug after initial drug exposure. Exogenous 

estradiol is sufficient to enhance cocaine acquisition in ovariectomized females (Hu & 

Becker, 2008; Hu, Crombag, Robinson, & Becker, 2004; Lynch, Roth, Mickelberg, & 

Carroll, 2001). Estradiol does not facilitate or enhance acquisition of cocaine taking in 

males (Jackson, Robinson, & Becker, 2006). Sex differences in self-administration 

models are more robust in extended access paradigms versus short or intermittent 

access paradigms. This suggests that acquisition may be accelerated in females under 

certain conditions of drug accessibility (Algallal, Allain, Ndiaye, & Samaha, 2018; Roth & 

Carroll, 2004). The escalation of drug use is more difficult to pinpoint in humans, in part, 

due to changing environmental factors such as drug availability (Becker et al., 2012). 

Historically, drug availability has largely influenced women’s use of opiates and 

psychostimulants as they were prescribed medications or marketing techniques to 

advance use of these drugs (Becker et al., 2012).  

Under progressive ratio self-administration paradigms, when the “cost” of cocaine 

is high, females are more motivated to work for cocaine than are males (Kawa & 

Robinson, 2019). In intact female rodents, motivation for cocaine is modulated by 

circulating gonadal hormones and motivation is greatest during periods of the estrous 

cycle when estradiol is elevated (Becker & Hu, 2008; Becker & Koob, 2016; Roberts, 

Bennett, & Vickers, 1989). This idea is further supported by studies showing 
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ovariectomized adult females without estradiol replacement have lower motivation than 

those with estradiol (Hu & Becker, 2008; Perry, Westenbroek, & Becker, 2013). 

Together, these findings suggest that after initial acquisition of drug taking, females are 

more susceptible to escalate their motivation to attain drug and that this behavioral 

response of drug-seeking is enhanced by the presence of estradiol.  

In rodent models, females in estrus also exhibited greater drug-primed 

reinstatement compared to females not in estrus and males (Kippin et al., 2005). 

Female rodents express signs of enhanced drug craving during estrus compared to 

non-estrus (Nicolas et al., 2019). In ovariectomized females, estradiol treatment 

potentiates reinstatement of drug-seeking (Becker & Hu, 2008; Doncheck et al., 2018; 

Larson & Carroll, 2007). Previous work also suggests that during drug-primed 

reinstatement, females who are in estrus display greater cocaine-seeking behavior than 

non-estrous females and males (Kerstetter et al., 2008). Further, females take longer to 

extinguish cocaine-seeking behaviors compared to males (Kerstetter et al., 2008). 

These studies suggest that estradiol plays a role in enhanced drug cravings in females, 

which may be contributing to the persistence of cocaine-seeking long into abstinence in 

females and related to the effects of estradiol on sensitization, as discussed above. 

Over time, intake of psychostimulants by males also increases, but to a lesser 

degree than females. Furthermore, males intake does not appear to be regulated by 

testicular hormones (Hu et al., 2004). Males take longer to acquire a condition place 

preference for cocaine than females and require a higher dose of cocaine to acquire a 

preference (Zakharova, Wade, & Izenwasser, 2009). However, G Protein-coupled 

estradiol receptor-1 (GPER-1) has been implicated in being protective against 
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development of a preference for cocaine or opioids (Quigley & Becker, 2019; Sun et al., 

2020). These findings indicate that estradiol is having different effects in males 

compared to females on neural processes related to addiction. In females, estradiol is 

enhancing vulnerability towards addiction-like behavioral while it is also possible that 

estradiol is acting in males to decrease vulnerability. The extent to which this is also true 

in humans needs to be investigated. 

Estradiol Receptors 

Estradiol mediates its effects through three receptors: ERα, ERβ, and GPER1. 

ERα was the first ER to be characterized (Jensen, 1962), and until the late 1990s many 

thought this single receptor mediated all of the functions of estradiol in an 

uncomplicated fashion. In 1996, researchers recognized ERβ as the second ER 

(Kuiper, Enmark, Pelto-Huikko, Nilsson, & Gustafsson, 1996). GPER-1, previously 

known as GPR30, was recognized as an ER in the early 2000’s (Thomas, Pang, 

Filardo, & Dong, 2005). Collectively these receptors mediate estradiol signaling using 

both rapid signaling and long-term transcription mediated responses. While rapid effects 

can occur anywhere between a few milliseconds to a few minutes, long-term effects 

take between a few hours and a few days (Farach-Carson & Davis, 2003).  

Signaling mechanisms of estradiol receptors  

The importance of understanding estradiol receptor-mediated signaling cannot 

be overstated. The outcome of treatment with estradiol will vary depending on the 

receptor's identity, location, function, and mechanism of action. ER signaling relies on 

four basic mechanisms: genomic, tethered, nongenomic (including caveolin-associated 

ERα and ERβ), and ligand-independent (Figure 1). Genomic and tethered mechanisms 
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occur within the nucleus, while non-genomic and ligand-independent mechanisms are 

extranuclear.  

To mediate direct genomic effects, both ERα and ERβ can act as ligand-

activated transcription factors, capable of directly affecting gene expression by 

interacting with regions of DNA called estrogen-response elements (ERE), as illustrated 

in Figure 1A (Marino, Galluzzo, & Ascenzi, 2006). As illustrated in Figure 1B, ERα and 

ERβ can also indirectly affect gene expression. In approximately 35% of the brain 

regions with ERs the EREs are not available for activation and the effect of estradiol is 

mediated by other intracellular signaling mechanisms (Marino et al., 2006; O’Lone, 

Frith, Karlsson, & Hansen, 2004; Vrtačnik, Ostanek, Mencej-Bedrač, & Marc, 2014). 

Additionally, through protein-protein interactions, ERα /ERβ signaling can enhance or 

suppress gene transcription independent of these EREs (Aranda & Pascual, 2001). 

Ligand-independent mechanisms that activate the ERE also work in the absence of ER 

agonists, as illustrated in Figure 1D.   

In addition to their actions as separate entities, ERα & ERβ can combine to form 

a heterodimer with its own distinct effects on transcription (Cowley, Hoare, Mosselman, 

& Parker, 1997; Pettersson, Grandien, Kuiper, & Gustafsson, 1997). ERα and ERβ can 

function cooperatively in some cells and antagonistically in others  (J Matthews & 

Gustafsson, 2003). For example, ERβ can directly modulate the activity of ERα by 

antagonizing ERα dependent transcription (Hall & McDonnell, 1999; Lindberg et al., 

2003; Jason Matthews et al., 2006; Pettersson, Delaunay, & Gustafsson, 2000). 

Extranuclear ERs can regulate the recruitment of nuclear ERs, plasma membrane 

bound ERα signaling can affect the activity of nuclear ERα by stimulating 
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phosphorylation as well as facilitating its degradation (Bhatt, Xiao, Meng, & 

Katzenellenbogen, 2012; Reid et al., 2003). This mechanism is believed to explain the 

cyclic changes in the levels of ER-target gene expression (Reid et al., 2003). Activation 

of membrane bound ERs initiates signaling cascades that integrate at the level of the 

nucleus.  

Rapid estradiol receptor signaling 

Estradiol signaling can lead to rapid signaling cascades, long-term transcription 

effects, or both. Either mode of ER signaling can impact the connectivity and function of 

the brain. ERs associated with the membrane were initially discounted, but it is now 

recognized that membrane associated ERα and ERβ, along with GPER1, mediate 

important rapid effects of estradiol and some of these effects are implicated in addiction 

as discussed below.  

Rapid ER signaling can be mediated by classical ERα and ERβ that are 

palmitoylated and bound to caveolin-1, a structural coat protein, and then trafficked to 

caveolae, which are invaginations of the plasma membrane that sequester many types 

of receptors and signaling molecules (Pedram, Razandi, Deschenes, & Levin, 2012; 

Razandi, Pedram, Merchenthaler, Greene, & Levin, 2004). Caveolin-1 facilitates 

anchoring these receptors to the caveolae, where estradiol can bind extracellularly and 

activate associated metabotropic glutamate receptors (mGluR) receptors (Luoma, 

Boulware, & Mermelstein, 2008; Revankar, Cimino, Sklar, Arterburn, & Prossnitz, 2005). 

Multiple mGluRs are associated with ERα and ERβ in the hippocampus and dorsal 

striatum (Boulware et al., 2005; Boulware, Kordasiewicz, & Mermelstein, 2007; Grove-

Strawser, Boulware, & Mermelstein, 2010). Rapid ER signaling via mGluRs is 
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implicated in the effects of estradiol on striatal dopamine release and cocaine self-

administration (Martinez et al., 2016; Song, Yang, Peckham, & Becker, 2019). 

Estradiol has been shown to rapidly enhance stimulated dopamine release and 

down-regulate D2 dopamine receptors in the dorsal striatum in vitro and in vivo (Bazzett 

& Becker, 1994; Becker, 1990b, 1990a; Becker & Ramirez, 1981; Cummings et al., 

2014; Shams, Cossette, Shizgal, & Brake, 2018; Shams, Sanio, Quinlan, & Brake, 

2016). Estradiol also rapidly regulates activity in the nucleus accumbens to affect post 

synaptic current in medium spiny neurons and stimulated dopamine release (Krentzel, 

Barrett, & Meitzen, 2019; Yoest et al., 2019a). These rapid effects of estradiol are 

implicated in acquisition of cocaine self-administration and motivation for cocaine in 

females, but not males as discussed above (Becker & Hu, 2008; Hu & Becker, 2008; Hu 

et al., 2004; Jackson et al., 2006). 

In the hippocampus and associated circuitry, rapid ER signaling enhances social 

recognition, episodic memory, as well as object recognition and placement. The 

mechanism underlying this effect is believed to be the result of estradiol dependent 

rapid increases in dendritic spines (Frankfurt, Salas-Ramirez, Friedman, & Luine, 2011; 

Kim et al., 2019; Woolley, Weiland, McEwen, & Schwartzkroin, 1997). Whether similar 

ER-dependent changes in spine density is related to vulnerability to addiction remains 

speculative, but sex differences in cocaine effects on spine density and evoked neural 

activity in the nucleus accumbens core have been reported (Wissman, McCollum, 

Huang, Nikrodhanond, & Woolley, 2011). 

Unlike, ERα and ERβ, GPER-1 is typically an extranuclear receptor embedded in 

several cell membranes, including the plasma membrane, endoplasmic reticulum, and 
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Golgi apparatus (Filardo et al., 2007; Funakoshi, Yanai, Shinoda, Kawano, & Mizukami, 

2006; Kelly & Levin, 2001; Revankar et al., 2005; Sakamoto et al., 2007; Thomas et al., 

2005; Waters et al., 2015). It can also translocate into the cytoplasm when activated 

(Funakoshi et al., 2006). GPER1 has been reported to enhance memory consolidation 

acting alone or in collaboration with ERα and ERβ (Hadjimarkou & Vasudevan, 2018; 

Kim et al., 2019). GPER1 may also attenuate vulnerability to addiction in male rodents 

(Quigley & Becker, 2019; Sun et al., 2020). 

Localization of estradiol Receptors   

Estradiol has been treated as though it acts uniformly throughout the brain on 

dopamine activity and addiction-related behaviors, but this is not the case (Cummings et 

al., 2014; Yoest, Cummings, & Becker, 2019b; Yoest et al., 2019a; Yoest, Quigley, & 

Becker, 2018). The types of estradiol receptors and where they are located in the brains 

of males and females provides potential pharmacological targets and neural locations 

for hormone-based treatments. Table 1 provides a comprehensive review of whole-

brain ER distribution studies normalized such that ER densities can be compared 

among brain regions (Shughrue, Lane, & Merchenthaler, 1997a). Figure 2 A-C provides 

a visual comparison of ER densities, according to ER subtype in the rodent brain. 

Together, these tools provide a way to assess the contribution of ER subtypes within 

each brain region to addiction vulnerability.  

Whole brain ER distribution studies have not found significant sex differences in 

ER expression, as can be seen in Table 1, however these findings are limited and 

insufficient to suggest no sex differences exist. For example, there are limited studies 

that include both males and females while looking ER expressions in the brain, and 
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fewer with the resolution to discern quantitative sex differences. Studies that examine 

individual brain areas do find some sex differences in ERs when assay conditions are 

enhanced to optimize expression or function for a particular brain region. In anatomical 

studies, it is not possible to discern mechanism of action of the receptors identified, so 

further research is needed to further determine the functional mechanisms mediating 

sex differences in many of the brain regions discussed below. Interestingly, while sex 

differences have not been investigated in all brain regions, there are sex differences in 

brain regions implicated in drug-taking and addiction.  

In the ventral tegmental area, the number of dopamine cells that contained ERβ 

receptors was small, but males exhibited greater ERβ immunoreactivity in these 

neurons than females (Creutz & Kritzer, 2002). Intriguingly there were virtually no ERβ 

immunoreactive cells in the substantia nigra (Creutz & Kritzer, 2002). In the region of 

the lateral ventral tegmental area known as the parabrachial pigmented nucleus, ERβ-

immunoreactivity is found in both dopamine and non-dopamine neurons and the 

proportion of dopamine neurons with ERβ was greater in males than in females, 

regardless of stage in estrous cycle, although females in diestrus had fewer ERβ 

positive neurons than those in proestrus (Creutz & Kritzer, 2002). The dopamine 

neurons in this brain region have been found to respond to low concentrations of 

ethanol and so the sex difference in ERβ dopamine neurons may be important for sex 

differences in addiction (Mrejeru, Martí-Prats, Avegno, Harrison, & Sulzer, 2015). 

When examining ER expression in midbrain neurons that project to prefrontal 

cortex in male and female rats, different patterns were found. For males, none of the 

dopamine neurons labelled as projecting to the prefrontal cortical region contained ERα 
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or ERβ, while in females, some of the dopamine neurons labeled contained ERα, but 

not ERβ. This proportion of dopamine cells labeled in females was significantly different 

from males (Kritzer & Creutz, 2008). Thus, ERα and ERβ are strategically located to 

regulate motivational circuits differentially in males and females. 

ERα receptor signaling plays a key role in the sexual differentiation of the 

mesolimbic reward pathway. ERα knockout animals show sex-specific differentiation 

patterns in the midbrain. ERα knockout female mice show increased levels of D1 

dopamine receptor expression and dopamine receptor-interacting protein 78 (Drip78) 

mRNA levels (Küppers, Krust, Chambon, & Beyer, 2008). In contrast, ERα knockout 

males only showed decreased Drip78 mRNA levels (Küppers et al., 2008). With ERα 

knockout, both sexes showed reductions in midbrain expression of tyrosine hydroxylase 

(the enzyme catalyzing the rate limiting step for dopamine synthesis) and brain-derived 

neurotrophic factor (Küppers et al., 2008). Overexpression of ERα in dorsal striatum of 

female rats results in enhanced estradiol-induced motor activity and enhancement of 

the effect of estradiol to attenuate depolarization induced GABA release (K. N. Schultz 

et al., 2009). Electron microscope analysis of dorsal striatum finds ERα localized 

outside the nucleus of GABAergic neurons in female rats (Almey, Milner, & Brake, 

2015). Thus, ERα is playing a role in striatal dopamine function indirectly mediated by 

rapid signaling through GABA neurons in females. 

ERβ is also expressed in striatal regions, consistent with reports that 

ERβactivation regulates both the neurochemical and behavioral effects of drugs of 

abuse. In the dorsal striatum, ERβ activation upregulates D2 dopamine receptors (Le 

Saux, Morissette, & Di Paolo, 2006). An ERβ agonist induces immediate-early gene c-



 18 

fos expression in the nucleus accumbens, while an ERα agonist does not (Satta, Certa, 

He, & Lasek, 2018). ERβ’s regions of action closely align with its alteration of the 

behavioral effects of a wide variety of drugs of abuse. Selective activation of ERβ 

enhances both amphetamine- and cocaine-induced CPP (Larson & Carroll, 2007; Satta 

et al., 2018; Silverman & Koenig, 2007). ERβ activation, but not ERα, results in 

enhanced stimulated dopamine release after cocaine in nucleus accumbens shell of 

females, but not males (Yoest et al., 2019a). Finally, ERβ receptor signaling, but not 

ERα, mediates estradiol’s effect on cocaine-induced reinstatement of extinguished 

cocaine-seeking behavior in OVX rats (Larson & Carroll, 2007).  

In the cortex, there is a greater expression of GPER1 than in ERα and ERβ, 

pointing to a role for GPER1 in higher order cognitive functions (Table 1). Importantly, 

while expression patterns differ, as can be seen in Figure 2, they are also strongly 

overlapping giving the potential for these receptor mechanisms to interact. Recently, 

GPER1 has been identified as the first estradiol receptor to modulate the preference for 

rewarding stimuli in males. A decrease of GPER1 in the CNS, via gene knockout, 

increases the acquisition of conditioned place preference for morphine in males (Sun et 

al., 2020). GPER1 has also been implicated in enhancing memory consolidation, via 

enhanced dendritic spine density in the CA1 region of the hippocampus, in female mice 

(Gabor, Lymer, Phan, & Choleris, 2015). Together, these findings suggest that GPER1 

activation could be enhancing memory for environmental stimuli/cues related to a drug-

induced state and causing a more rapid formation of conditioned place preference in 

females, while decreasing these associations in males.  
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Summary of Dissertation Experiments   

The presence of estradiol enhances the rewarding properties of drugs of abuse 

and drug-seeking for females but the effects of estradiol in males is understudied. 

Further, few studies have investigated the contribution of specific estradiol receptor 

subtypes, ERα, ERβ or GPER1, on drug seeking in either sex. This gap may be 

contributing to the lack of effect of estradiol reported in males, thus far.  

Chapter II: Activation of G-protein coupled receptor 1 in the dorsolateral striatum 

attenuates preference for cocaine and saccharin in male but not female rats 

The goal of chapter II was to investigate how manipulation of estradiol receptors 

alters the acquisition of cocaine conditioned place preference. After finding that 

pharmacological activation of GPER1 in the dorsolateral striatum (DLS) is sufficient to 

inhibit cocaine conditioned place preference in males, I investigated the effects of intra-

DLS GPER1 activation on acquisition of saccharin. Similar to the effects observed with 

cocaine, preference for saccharin was abolished in males. In the final experiment of this 

chapter, I determined that there are not sex differences in mRNA levels of ERα, ERβ or 

GPER1 in the dorsal striatum.  

Chapter III: Activation of G-protein coupled estradiol receptor 1 in the dorsolateral 

striatum enhances motivation for cocaine and drug-induced reinstatement in female rats 

In chapter III, I sought to determine how GPER1 activation intra-DLS might 

influence motivation for cocaine in males and female. First, I assessed how intra-DLS 

GPER1 activation alters males’ and females’ motivation to attain cocaine. Next, I 

extinguished drug-seeking in all animals prior to testing whether their drug-induced 

reinstatement of drug-seeking was altered by intra-DLS GPER1 activation. I reported 
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that activation of GPER1 not only enhances females’ motivation for cocaine, but 

significantly enhances their reinstatement of drug-seeking.  

Chapter IV: Alterations of striatal c-Fos immunoreactivity induced by G-protein coupled 

estradiol receptor 1 activation 

The goal of chapter IV was to gain insight on how GPER1 activation intra-DLS 

could be mitigating the rewarding properties of cocaine for males. To that end, I 

investigated patters of cocaine-induced neuronal activation in reward-regions of the 

brain in addition to patterns of activation that are altered by pharmacological 

manipulation of GPER1.
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ERα ERβ GPER1  
mRNA Protein mRNA Protein mRNA Protein 

Cerebral Cortex (PFC; 
F, P, T, O) 

F –(Laflamme, 
Nappi, Drolet, 
Labrie, & 
Rivest, 1998) 

+(Mitra et 
al., 2003) 

+(Laflamme et 
al., 1998) 

[x]; 
++,++,++,++(
Shughrue & 
Merchenthaler
, 2001) 

+++(Morissett
e et al., 2008) 

[x]; +++ 
(Hazell et al., 
2009) 

M –(Laflamme et 
al., 1998) 

 +(Laflamme et 
al., 1998) 

 +++(Morissett
e et al., 2008) 

[x]; +++ 
(Hazell et al., 
2009) 

Hippocampus (CA1, 
CA2, CA3, DG) 

F +, +, ++, 
[x](Laflamme 
et al., 1998) 

+,+,+,+(Mitr
a et al., 
2003) 

+,–,+, 
[x](Laflamme 
et al., 1998) 

–, +, +, 
++(Shughrue 
& 
Merchenthaler
, 2001) 

++(Morissette 
et al., 2008) 

++,++,++,+++
+ (Hazell et 
al., 2009) 

M +, +, ++, 
[x](Laflamme 
et al., 1998) 

 +,–,+, 
[x](Laflamme 
et al., 1998) 

 ++(Morissette 
et al., 2008) 

++,++,++,+++
+ (Hazell et 
al., 2009) 

Striatum F  +(Mitra et 
al., 2003) 

 ++++(Shughr
ue & 
Merchenthaler
, 2001) 

 +(f) (Hazell et 
al., 2009) 

M      +(f) (Hazell et 
al., 2009) 

BNST F ++++(Shughru
e, Lane, & 
Merchenthaler
, 1997b); 
++(Laflamme 
et al., 1998) 

+++(Mitra 
et al., 
2003) 

++++(Shughr
ue et al., 
1997b); 
+(Laflamme et 
al., 1998) 

++++(Shughr
ue & 
Merchenthaler
, 2001) 

 
+ (Hazell et 
al., 2009) 

M ++(Laflamme 
et al., 1998) 

 
+(Laflamme et 
al., 1998) 

  
+ (Hazell et 
al., 2009) 

Hy
po

tha
lam

us
 

PVN, SON F –, –(Shughrue 
et al., 1997b) 

+,+(Mitra et 
al., 2003) 

+, 
+++(Shughrue 
et al., 1997b) 

++++(Shughr
ue & 
Merchenthaler
, 2001) 

 ++++,++++ 
(Hazell et al., 
2009) 

M      ++++,++++ 
(Hazell et al., 
2009) 

Preoptic Area 
(Medial, Lateral, 
Periventricular) 

F ++++, ++, 
+++(Shughrue 
et al., 1997b); 
++++, ++, 
++(Laflamme 
et al., 1998) 

+++,+,++(
Mitra et al., 
2003) 

++++,++,+++(
Shughrue et 
al., 1997b); 
+++,–
,++(Laflamme 
et al., 1998) 

++, ++, 
+++(Shughrue 
& 
Merchenthaler
, 2001) 

 +++,+,+++ 
(Hazell et al., 
2009) 
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M ++++, ++, 
++(Laflamme 
et al., 1998) 

 +++,–
,++(Laflamme 
et al., 1998) 

  +++,+,+++ 
(Hazell et al., 
2009) 

Ventromedial 
Hypothalamus 
(Dorsomedial., 
Ventrolateral) 

F ++, 
++++(Laflamm
e et al., 1998) 

+, 
++++(Mitra 
et al., 
2003) 

–, 
++(Laflamme 
et al., 1998) 

++(Shughrue 
& 
Merchenthaler
, 2001) 

 ++++,++++ 
(Hazell et al., 
2009) 

M ++, 
++++(Laflamm
e et al., 1998) 

 –, 
++(Laflamme 
et al., 1998) 

  ++++,++++ 
(Hazell et al., 
2009) 

Medial Amygdala F ++++(Shughru
e et al., 
1997b); 
++(Laflamme 
et al., 1998) 

+++(Mitra 
et al., 
2003) 

+++(Shughrue 
et al., 1997b); 
++(Laflamme 
et al., 1998) 

++++(Shughr
ue & 
Merchenthaler
, 2001) 

 + (Hazell et 
al., 2009) 

M +++(Laflamme 
et al., 1998) 

 ++(Laflamme 
et al., 1998) 

  + (Hazell et 
al., 2009) 

VTA F +(Shughrue et 
al., 1997b) 

–(Mitra et 
al., 2003) 

++(Shughrue 
et al., 1997b) 

++(Shughrue 
& 
Merchenthaler
, 2001) 

 – (Hazell et 
al., 2009) 

M      – (Hazell et 
al., 2009) 

Periaqueductal Grey F +(Shughrue et 
al., 1997b), 
+++(Laflamme 
et al., 1998) 

+++(Mitra 
et al., 
2003) 

+(Shughrue et 
al., 1997b); 
+(Laflamme et 
al., 1998) 

++(Shughrue 
& 
Merchenthaler
, 2001) 

 
++ (Hazell et 
al., 2009) 

M +++(Laflamme 
et al., 1998) 

 
+(Laflamme et 
al., 1998) 

  
++ (Hazell et 
al., 2009) 

Substantia Nigra F ++(Laflamme 
et al., 1998) 

+(Mitra et 
al., 2003) 

+(Laflamme et 
al., 1998) 

+(Shughrue & 
Merchenthaler
, 2001) 

 +++ (Hazell et 
al., 2009) 

M ++(Laflamme 
et al., 1998) 

 +(Laflamme et 
al., 1998) 

  +++ (Hazell et 
al., 2009) 

Locus Coeruleus F +(Shughrue et 
al., 1997b); 
+++(Laflamme 
et al., 1998) 

+(Mitra et 
al., 2003) 

+(Shughrue et 
al., 1997b); –
(Laflamme et 
al., 1998) 

+(Shughrue & 
Merchenthaler
, 2001) 

 ++++ (Hazell 
et al., 2009) 

M +++(Laflamme 
et al., 1998) 

 –(Laflamme et 
al., 1998) 

  ++++ (Hazell 
et al., 2009) 

Parabrachial (Medial, 
Lateral) 

F –, +(Shughrue 
et al., 1997b) 

+,++(Mitra 
et al., 
2003) 

+,+(Shughrue 
et al., 1997b) 

++,++(Shughr
ue & 
Merchenthaler
, 2001) 

 –,+++ (Hazell 
et al., 2009) 

M      –,+++ (Hazell 
et al., 2009) 
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Cerebellum (purkinje 
cells, granulosa cells) 

F –(Laflamme et 
al., 1998) 

–(Mitra et 
al., 2003) 

++(Laflamme 
et al., 1998) 

+, 
+++(Shughrue 
& 
Merchenthaler
, 2001) 

 
++++ (Hazell 
et al., 2009) 

M –(Laflamme et 
al., 1998) 

 
++(Laflamme 
et al., 1998) 

  
++++ (Hazell 
et al., 2009) 

Pituitary Gland (Ante., 
Post., Int.) 

F  ++++, [x], 
+++(Mitchn
er, Garlick, 
& Ben-
Jonathan, 
1998) 

 ++++, [x], 
+++(Mitchner 
et al., 1998) 

+, –(Hazell et 
al., 2009) 

+, ++++(f), 
+++ (Hazell et 
al., 2009) 

M     +, –(Hazell et 
al., 2009) 

+, ++++(f), 
+++ (Hazell et 
al., 2009) 
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Table 1 Distribution of estradiol receptors and corresponding mRNA transcript in the 
CNS of mice and rats. 

For all brain regions, Mitra et al. (2003) and Hazell et al. (2009) refer to data from mice. 
All other references refer to data from rats, including Hazell et al. (2009) for the pituitary 
gland. Data have been normalized to fit the following scale (Shughrue et al., 1997): , no 
signal; +, low signal; ++, moderate signal; +++, intense signal; ++++, very intense 
signal. Comma separations correspond to respective subregions; when no commas are 
used, the whole region is implicated; [x] indicates a subregion not specifically noted by 
the source's data. 
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Figure 1 The four core pathways of estradiol receptor action include: genomic, tethered, 
non-genomic, and ligand-independent. 

 (A) The direct most direct mechanism of ER action mediates gene transcription at ERE 
(estradiol response element) sites. When estradiol encounters a cell, some will pass 
through the plasma membrane and into the nucleus. ERs exist as monomers in 
multiprotein inhibitory complexes until activated by estradiol (Klinge et al., 1997). This 
activation causes a conformational change that allows ERs to dimerize and migrate to 
the EREs (Ogawa et al., 1998). Interaction between this estradiol/ERs complex, steroid 
receptor coactivators (SRC), and RNA polymerase II enhances the transcription of 
downstream targets (Hall et al., 2001; Björnström and Sjöberg, 2005; Kininis and Kraus, 
2008). (B) Activated ERs do not always directly interact with EREs but rather "tether" to 
transcription factors such as specificity protein (Sp-1) or activating protein-1 (AP-1), to 
form protein-protein complexes that alter transcription (Safe and Kim, 2008; Paech et 
al., 1997). In the absence of an activated ER, Sp-1 and AP-1 do not influence 
transcription (Ahlbory-Dieker et al., 2009; Hewitt et al., 2014). (C) Non-genomic actions 
are responsible for rapid estradiol mediated signaling via extranuclear ERs bound to 
different membranes in the cell (Pietras and Szego, 1977). Caveolae are populated by 
g-protein subunits and upon activation, these proteins cause signaling cascades that 
ultimately produce cAMP, cGMP, calcium flux, and protein-kinase activation (Marino et 
al., 2006; Levin and Hammes, 2016; Lösel and Wehling, 2003). There are four major 
protein-kinase cascades: phospholipase C (PLC)/protein kinase C (PKCs), 
Ras/Raf/MAPK, phosphatidyl inositol 3 kinase (PI3K)/AKT, and cAMP/protein kinase A 
(PKA)(Marino et al., 2006). GPER-1 is a unique ER in the sense that it can initiate these 
signaling cascades on its own. (D) Ligand-independent mechanisms work in the 
absence of estradiol. Upon activation, growth factor receptors (GFRs) on the plasma 
membrane initiate signaling cascades, as described above (Bennesch and Picard, 
2015). This results in the activation of nuclear ERs by either phosphorylating the 
receptor itself or stimulating the recruitment of steroid receptor coactivators (SRCs). 
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Figure 2 Graphical representation ERα, ERβ, and GPER1 localization in the 
CNS. 
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Chapter II 
Activation of G-protein Coupled Estradiol Receptor 1 in the Dorsolateral Striatum 

Attenuates Preference for Cocaine and Saccharin in Male but Not Female Rats 
 

Abstract 

There are sex differences in the response to psychomotor stimulants, where 

females exhibit a greater response than males, due to the presence of the gonadal 

hormone estradiol. Extensive research has shown that estradiol enhances drug-seeking 

and the rewarding properties of cocaine for females. The role of estradiol in male drug-

seeking, however, is not well understood. The current study investigated 

pharmacological manipulation of estradiol receptors in the dorsolateral striatum (DLS) 

on preference for cocaine in gonad-intact male and female rats. In males, activation of 

G-protein coupled estradiol receptor 1 (GPER1), via administration of ICI 182,780 or 

G1, attenuated conditioned place preference for 10mg/kg cocaine, while inhibition of 

GPER1, via G15, enhanced preference at a 5mg/kg cocaine dose. Similarly, GPER1 

activation, via G1, prevented males from forming a preference for 0.1% saccharin 

(SACC) versus plain water. Surprisingly, activation of GPER1 did not alter preference 

for cocaine or SACC in females.  These studies also examined the quantity of estradiol 

receptor mRNA in the dorsal striatum, using qPCR. No sex differences in relative mRNA 

expression of ERα, ERβ, and GPER1 were observed. However, there was greater 

GPER1 mRNA, relative to ERα and ERβ, in both males and females. The results 

presented here indicate that estradiol, acting via GPER1, may be protective against 

drug preference in male rats.   
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Introduction 

More men report abusing cocaine and qualify for cocaine use disorder, however, 

cocaine use in women is gradually increasing and there is growing evidence to suggest 

that women are more vulnerable to addiction 1. The time of first drug use to admission 

for addiction treatment is typically shorter for women than men 2. When entering 

treatment, women also present with greater social, behavioral, and psychological 

symptoms related to substance use disorder, despite having abused drugs for a shorter 

period of time 3,4. These women are also taking greater amount of drug when entering 

treatment and report experiencing enhanced cravings compared to their male 

counterparts 5,6. Historically, we have attributed sex-specific behaviors related to 

addiction as being mediated by cultural influences combined with differences in 

neurobiological function between males and females, including a sex-specific role of the 

gonadal hormone estradiol that enhances drug-taking in females 7,8.  

Research into the biological bases for sex differences in cocaine addiction has 

focused on how estradiol alters the rewarding properties of cocaine in females. Clinical 

models have found that when estradiol levels are high, women report an enhanced 

euphoria or “high” when abusing smoked cocaine 9. Similarly, female rats show 

enhanced cocaine craving and motivation for cocaine when estradiol levels are highest 

10–13. While these data suggest that estradiol plays a major role in facilitating motivation 

and other behaviors in females, the role of estradiol in modulating males’ addiction-like 

behaviors should also be understood. Testosterone produced by the male testes is 

aromatized to estradiol in the brain and periphery to act on estradiol receptors in the 

male brain.   
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Estradiol acts by binding to receptors ERα, ERβ, and GPER1. The cellular 

location of traditional estradiol receptors α and β are either in the cell nucleus, or after 

palmitoylation, on the extracellular membrane in association with caveolin proteins 14–16. 

GPER1 activates intracellular signaling cascades mediated by cAMP, ERK, and PI3K 

and localized on the plasma membrane and in the endoplasmic reticulum 17. In females, 

ERα and GPER1 in the dorsal striatum are localized to GABAergic medium spiny 

neurons with recurrent collaterals onto dopamine terminals, as well as cholinergic 

interneurons and glia 18,19. The localization of ERα and GPER1 in the dorsal striatum of 

males remains unknown. 

For males and females alike, the rewarding effects of cocaine are attributed to 

the drug’s direct effects on dopamine reuptake in the striatum 20,21. However, there are 

sex differences in the effects of cocaine on increases in extracellular dopamine and 

receptor binding that are driven by estradiol in the dorsal striatum. In females, estradiol 

binding to GABAergic neurons decreases GABA release and this disinhibits dopamine 

terminals and ultimately increases stimulated dopamine release locally 16,22. This 

estradiol-induced increase in dopamine release is associated with an enhancement of 

the effects of cocaine and other psychostimulants on drug-induced behaviors, such as 

behavioral sensitization 23–26. Previous research has not found that estradiol has similar 

effects on cocaine-induced increases in dopamine in males 23.  Finally, the effects of 

estradiol in dorsolateral striatum (DLS) are mediated by mGluR signaling in females 24 

There is extensive support for estradiol in mediating drug abuse liability in 

females but a lack of attention to understanding the role of estradiol in males. There is 

recent evidence from gene knockout studies, however, that GPER1 could be playing a 
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modulatory role in the preference for morphine in males 27. Given that previous research 

has highly implicated the DLS as an important region for studying the effects of estradiol 

on addiction-like behaviors in females, the current set of studies were deigned to 

investigate how intra-DLS GPER1 modulates preference for rewarding stimuli in males 

as well as females.  A cocaine conditioned place preference (CPP) and saccharin 

(SACC) two-bottle choice behavioral paradigms were used to assess how GPER1 

activation or inhibition alters preference for rewarding stimuli. Finally, the current study 

also used qPCR to determine relative mRNA levels of ERs in the dorsal striatum of both 

males and females.  

Materials and Methods 

Animals 

A total of 62 male and 46 female gonad-intact Sprague-Dawley rats were used in 

the current set of experiments, as detailed in Figure 3 A. Animals were ordered from 

Charles River Breeding Laboratory (Portage, MI, USA) and were approximately 75 days 

old on arrival. Animals were maintained on a 14:10 light/dark cycle in a temperature-

controlled climate of 72°F ± 2°F, in ventilated laboratory cages. Rats had ad libitum 

access to water and phytoestrogen-free rat chow (2017 Teklad Global, 14% protein 

rodent maintenance diet, Harlan rat chow; Harlan Teklad, Madison, WI, USA). Animals 

were initially housed in same-sex pairs until undergoing surgery, after which they were 

subsequently housed individually. All animals were weighed daily to determine good 

health and at this time, females were also vaginally lavaged to determine stage of 

estrus.  All animal care and experimental procedures were carried out in accordance 

with the National Institutes of Health guidelines on laboratory animal use and care, 
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using a protocol approved by University of Michigan Institutional Use and Care of 

Animals Committee. 

Stereotaxic Surgery and Drug Preparation 

One week after arriving in the laboratory, rats underwent surgery for the 

implantation of bi-lateral guide cannula aimed at the DLS (AP: +0.4 ML: +/-3.6 DV: -4.0). 

On the day of surgery, rats were injected with carprofen (5mg/kg s.c.) and 30 minutes 

later were anesthetized with ketamine (50mg/kg i.p.) and dexmedetomidine (0.25mg/kg 

i.p.), then prepared in a stereotaxic frame. At the conclusion of the surgery, rats were 

given atipamezole hydrochloride (0.5mg/kg i.p.) and 3ml 0.9% saline (s.c.). Every 24 

hours for three days post-surgery, rats were given carprofen (5mg/kg s.c.) 

prophylactically for post-operative pain. No animal underwent behavioral testing for at 

least 7 days after surgery.  

During surgery, 33-gauge solid stylets were inserted into the 26-gauge hollow 

guide cannula that were fixed on animals’ skull. These stylets were flush with the bottom 

of the guide cannula and did not protrude into the brain. Treatment conditions were 

randomly assigned to animals prior to behavioral testing. Control animals received 

100% cholesterol (CHOL) and experimental animals received either 10% ICI (ERα/ERβ 

antagonist; GPER1 agonist), G1 (agonist targeting GPER1) or G15 (antagonist 

targeting GPER1) dissolved in Cholesterol (Control) via stylets, which protruded from 

the guide cannula by 1mm and delivered treatment directly into the DLS. Treatment 

stylets were prepared as previously described 28. In order to insert stylets, rats were 

briefly anesthetized with 5% isoflurane.   
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Hollow guides and interlocking treatment stylets were manufactured by and 

purchase from P1 Technologies. Drugs were obtained from the following sources: 

ICI182,780 (ICI) (Santa Cruz Biotechnology, purity ≥ 98%); G1 (Cayman Chemical, 

purity ≥ 98%); G15 (Cayman Chemical, purity ≥ 95%); Cholesterol (Santa Cruz 

Biotechnology, purity ≥ 92%) 

Conditioned Place Preference (CPP) 

Animals were tested on a CPP paradigm that took place over 10 consecutive 

days, as illustrated in Figure 4 A. The CPP apparatus consisted of two side chambers 

(15.5 inches x 12 inches) and a center neutral chamber (15.5 inches x 7.5 inches). On 

day 1 (pre-test), rats were placed in the novel chamber and were allowed to move freely 

between all compartments for 30 minutes. Immediately following pre-test session, 

treatment stylets were inserted. For eight days thereafter, animals were trained to 

associate each of the three chambers with another stimulus (drug paired; neutral; 

vehicle paired). Each conditioning session began with a 10-minute habituation in the 

center neutral chamber. Animals were then removed from the chamber and received an 

intra-peritoneal (i.p.) injection of either cocaine or vehicle and immediately placed in one 

of the side chambers (drug paired; vehicle paired) for 30 minutes. Animals were 

conditioned to each stimulus (drug or vehicle) 4 times each, every other day. Which 

treatment animals received first was counterbalanced. On day 10 (Test), rats were 

placed in the three-compartment chamber and were again allowed to move freely 

between all compartments for 30 minutes.  

The side in which animals spent the most time during pre-test was treated as 

their “preferred chamber”, which differed for each animal. A biased design was utilized, 
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so that each individual animal’s initially preferred chamber was paired with saline, and 

their initially un-preferred chamber was paired with cocaine for conditioning. ANYMAZE 

tracking software (Stoelting Co., Wood Dale, IL 60191) was utilized to track the amount 

of time spent in each chamber. 

Either a 5mg/kg or 10mg/kg cocaine dose was utilized during conditioning in 

order to be able to test both an increase and decrease in cocaine CPP after ER 

manipulation. For example, both males and females acquire cocaine CPP at a 10mg/kg 

conditioning dose therefore we utilized that dose when investigating a potential 

decrease in CPP (i.e., ICI and G1). When investigating whether there was an increase 

cocaine CPP in males, we used a dose that did not generally produce a CPP, 5mg/kg, 

which allowed us to identify a potential increase in CPP (i.e., G15) without a ceiling 

effect. This dose of cocaine did produce CPP for cocaine in females (data not shown), 

so we did not test the effects of G15 in females with 5mg/kg cocaine. 

Two Bottle Choice Experiment (SACC versus H2O) 

Animals were tested on a two-bottle choice paradigm that took place over 12 

consecutive days, as illustrated in Figure 3 B. Briefly, on days 1-4, two bottles both 

containing water were available on each animal’s home cage to determine that were 

was no significant difference between total liquid intake between animals. During days 

5-12, one bottle contained water and the second bottle contained 0.1% saccharin 

(Sigma-Aldrich; purity ≥ 92%) dissolved in water. Placement of the bottle (left versus 

right) was switched daily to account for a potential side of cage preference. On day 5, 

four hours before the SACC bottle was introduced, stylets containing either 10% G1 in 

cholesterol or cholesterol alone were inserted and remained in place for the duration of 
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the experiment. Once daily, one hour prior to the start of dark cycle, bottles were 

removed from home cages, weighed, and refilled.  

Euthanasia and Tissue Preparation 

Animals received 0.5 ml of Sodium Pentobarbital (i.p). Once the animal was fully 

sedated, it was perfused transcardially with 0.1M phosphate buffered saline followed by 

4% paraformaldehyde. The brain of each rat was also dissected and post-fixed in 4% 

paraformaldehyde for 24 hours and afterwards stored in 10% sucrose. Brains were 

sliced on either a microtome or cryostat in 60-micron sections then were mounted on 

slides, stained with cresyl violate and cover slipped. Sections were analyzed for 

accurate guide cannulae placements, depicted in Figure 3, by an observer blind to 

experimental conditions. Only animals that had accurate cannulae placements are 

shown and were included in the final analysis. For animals in the H2O versus SACC 

experiment, females’ ovaries and uterus and males’ testes and vas deferens were 

dissected and weighed after the animal was perfused as a proxy to determine if G1 

treatment in the brain affected peripheral gonadal tissues.  

Quantitative Polymerase Chain Reaction (qPCR) 

Naïve gonad-intact male and female rats were given 0.5 ml of FatalPlus (i.p.; 195 

mg sodium pentobarbital; Vortech Pharmaceuticals, Ltd; Dearborn, MI). Once the 

animal was fully anesthetized the brain was rapidly removed and placed into ice-cold 

saline. The dorsal striatum from both hemispheres was micro-dissected from each 

animal and stored at -80°C for later processing.  

Tissue was extracted using a phenol-chloroform reaction using Trizol (Cat. No. 

97064-950, Amresco) as the lysis reagent. Next, a QuantiTect® Reverse Transcription 
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Kit was used for genomic DNA wipeout and cDNA synthesis (Cat. No. 205314, Qiagen). 

Relative gene expression was measured using a RealMasterMix™ Fast SYBR Kit (Cat. 

No. A25742, Applied Biosystems). Primers (not designed to determine specific splice 

variants, but to detect all variants) were purchased from Qiagen for: ERα (Cat. No. 

QT00386925, Qiagen Primer; reference sequence NM_012689), ERβ (Cat. No. 

QT00190113, Qiagen Primer; reference sequence NM_012754), and GPER1 (Cat. No. 

QT00376943, Qiagen Primer; reference sequence NM_133573). These genes were 

compared against the housekeeping gene HPRT1 (Cat No. QT00199640, Qiagen 

Primer) and relative gene expression was quantified using the 2^ddCT method. 

Samples were run in triplicates at the Biomedical Research Core Facilities at the 

University of Michigan (https://brcf.medicine.umich.edu/cores/advanced-

genomics/technologies/real-time-pcr/).   

Statistical Analysis 

CPP data were analyzed using 2-way ANOVAs. In the case of a significant 

interaction, a Bonferroni correction was used for multiple comparisons. For males and 

females independently, CPP data were analyzed by time spent in the drug-paired 

chamber (pre-test versus test) between treatment conditions, within each sex. 

Behavioral testing for males and females was not done simultaneously therefore, we did 

not compare them statistically.  

Daily preference of 0.1% SACC versus water was calculated as a percentage: 

(0.1% SACC consumed/(0.1%SACC + Water consumed))*100. An unpaired t-test was 

performed to identify treatment group differences in preference score. Unpaired t-tests 
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were performed to determine if gonad weights were different between G1 or CHOL 

treated males or females.  

Relative mRNA expression of ERα, ERβ, and GPER1 was analyzed between 

sexes. Unpaired t tests were performed to identify sex differences in ERβ and GPER1 

expression within the dorsal striatum. Nonparametric testing was conducted for ERα 

because data were not normally distributed for males.  

All statistical analyses were performed using GraphPad Prism v8.0 and IBM 

SPSS Statistics v27.0. All data sets were tested for normality and equal variance 

between groups. Effect sizes are reported as partial eta (n2) or partial eta-squared (n2p) 

for F-tests and Cohen's d (d) for t-tests. The threshold for significance in all experiments 

was set to p<0.05 and sample sizes per experiment were determined based on pilot 

studies. Animals were excluded from statistical analyses if the placements of the guide 

cannula were off target in both the CPP and SACC versus H2O experiments (< 5% of 

total animals were excluded).  

Results 

Effects of ER manipulation on cocaine CPP in males  

The effects of ER manipulation on cocaine CPP in males, as measured by time 

spent in the drug-paired chamber, is shown in Figure 7 A-C. Administration of ICI, a 

nonselective ERα/β antagonist and GPER1 agonist, attenuated males’ preference for 

10mg/kg cocaine (Figure 5 A). A two-way repeated measures ANOVA revealed a 

treatment x test session interaction (F (1,15) = 5.758; p = 0.0299, n2p = 0.277). A 

Bonferroni multiple comparisons test revealed that CHOL treated animals increased 
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time spent in the cocaine-paired chamber (4.745 ± 0.974, p = 0.0004) but ICI treated 

males did not (0.482 ± 1.033, p > 0.9999).  

The goal of our follow up study was to differentiate between the effects of ICI on 

inhibition of ERα and ERβ versus activation of GPER1. We did this by using G1, a 

selective GPER1 agonist. Figure 5 B represents males treated with G1 compared to 

CHOL. A two-way repeated measures ANOVA revealed that G1 treatment replicated 

the behavioral effect of ICI treatment on cocaine CPP; there was a significant interaction 

between test session and treatment (F (1,15) = 7.429; p = 0.016, n2p = 0.331) and 

multiple comparisons revealed that at 10mg/kg cocaine, G1 treated males did not 

acquire a CPP for cocaine (1.272 ± 0.972, p = 0.3804), but CHOL animals did (4.745 ± 

0.8741, p = 0.0001).  

We further investigated whether administration of the GPER1 antagonist, G15, 

could cause enhanced preference for cocaine in males. Illustrated in Figure 5 C, at a 

5mg/kg conditioning dose, CHOL treated males did not show a CPP for cocaine 

however, G15 treated males did. A two-way repeated measures ANOVA revealed a 

significant interaction between test session and treatment (F (1,15) = 8.194; p = 0.0119, 

n2p = 0.353). A Bonferroni multiple comparisons test revealed that males treated with 

G15 spent more time in the drug-paired chamber after conditioning while CHOL treated 

males did not (1.591 ± 0.6143, p = 0.0406; 0.826 ± 0.579, p = 0.3182; respectively).  

Effects of ER manipulation on cocaine CPP in females 

The effects of ER manipulation on cocaine CPP in females are shown in Figure 5 

D-E. When cocaine CPP was determined in females treated with CHOL, ICI, or G1, all 

groups formed a preference for 10mg/kg cocaine. A two-way repeated measures 
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ANOVA was performed to compare test sessions by treatment. Figure 5 D represents 

CHOL and ICI treated females, where there was a main effect of test session (F (1,16) = 

13.99; p = 0.018, n2p = 0.467).  There was no main effect of treatment however, and no 

interaction between test session and treatment. Similar results are shown in Figure 5 E, 

which represents CHOL and G1 treated females, where there was only a main effect of 

test session (F (1,16) = 20.05; p = 0.0004, n2p = 0.556). 

Effects of intra DLS ER manipulation on saccharin preference in males and females 

The effects of the GPER1 agonist, G1, on preference for 0.1% SACC versus 

water is illustrated in Figure 5 D. An unpaired t-test comparing preference scores 

between CHOL and G1 treated males revealed significant group differences (t (10) = 

2.589; p = 0.0270, d = 1.495) in preference scores. There were no differences in total 

water intake on days 1-4, prior to treatment. There were also no significant differences 

in total liquid consumed on days 5-12 between treatment groups.  

Consistent with the effects of G1 on cocaine CPP, there was no effect of G1 on 

females’ preference for 0.1% SACC over water, shown in Figure 6 C. An unpaired t-test 

was used to reveal no significant group differences (t (10) = 0.7998; p = 0.4424, d = 

0.462). Both G1 and CHOL groups had equal variance and data were normally 

distributed. There were no differences in total liquid consumption on days 1-4, prior to 

treatment or during treatment on days 5-12.  

Effects of intra DLS ER manipulation on gonad weights in males and females 

There was no effect of G1 treatment intra-DLS on gonad weight in either males 

or females. In females, this included uterus weight (t (10) = 0.4571; p = 0.6574, d = 

0.263) and ovary weights (t (10) = 1.892; p = 0.0878. d = 1.09). For males, this included 
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testes (t (10) = 0.1270; p = 0.9014, d = 0.073) and vas deferens weights (t (10) = 1.625; p 

= 0.1352, d = 0.938). 

Relative mRNA expression of ERα, Erβ, and GPER1 in the dorsal striatum of males and 

females 

As shown in Figure 7 A-C, there were no sex differences in relative mRNA 

expression of ERs in the dorsal striatum. For ERα, male data points violated normality 

testing, therefore an unpaired nonparametric Mann-Whitney U test was performed to 

identify group differences. No sex differences in ERα expression were found (U = 19; p 

= 0.1949, n = 0.142). Unpaired t tests revealed no group differences for ERβ (t (14) = 

0.3334; p = 0.7438, d = 0.166), or GPER1(t (14) = 0.7504; p = 0.4654, d = 0.374).  

The expression of GPER1 mRNA was greater than ERα and Erβ mRNA relative 

to the HRPT housekeeping gene, as illustrated in Figure 7 D. A significant one-way 

ANOVA determined differences between ER subtypes (F (2,45) = 180.3; p < 0.0001, n2 = 

0.889). A Bonferroni multiple comparisons test determined a significant difference in 

relative expression of GPER1 versus ERα (p < 0.0001) and GPER1 versus ERβ (p < 

0.0001) but no difference between ERα and ERβ (p > 0.9999). 

Discussion 

Our study is the first to report that GPER1 activation in the DLS modulates 

preference formation for cocaine in male rats. We have shown that activation of GPER1 

in the DLS is sufficient to attenuate cocaine CPP, while inhibition of GPER1 receptors 

produces a significant preference for cocaine at a dose that does not usually induce 

CPP in males. We also identified the relative mRNA expression of ERs in the dorsal 

striatum and found no sex differences, indicating that the sex-specific effect of GPER1 
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activation/inhibition is not due to an overall sex difference in the expression of receptors 

within this brain region.  

Previous work in male rats found that animals that formed a strong taste aversion 

to amphetamine, relative to animals that formed a low taste aversion, also formed a 

stronger place preference for amphetamine, suggesting a common mechanism 

mediates both effects 29. Our findings that GPER1 activation inhibits preference for 

cocaine in males was replicable with an alternative reward, 0.1% SACC, which was 

preferred in control males as well as both experimental and control females. These 

animals still drank comparable amounts of liquid and consumed equitable amounts of 

chow compared to controls, which suggests that GPER1 activation does not cause an 

overall malaise in male animals. Instead, we hypothesize that GPER1 activation could 

be altering the learned rewarding effects of cocaine and SACC. In both experiments, the 

rewarding stimuli were introduced after G1 was administered into the DLS. Future 

experiments are needed to determine whether GPER1 activation would decrease the 

rewarding properties of cocaine or SACC after a preference has been established, or if 

the effect of GPER1 is limited to the initial establishment of a preference.   

We initially hypothesized that the pharmacological manipulation of ERs in the 

DLS of females would alter their cocaine CPP, based on previous findings that estradiol 

regulates the rewarding properties of cocaine in females 30. We predicted that 

administering ICI, an ERα and ERβ antagonist would inhibit CPP formation, but our 

results do not support this. Both ICI and G1 attenuated cocaine CPP in males, but not 

females. Since ICI is an ERα and ERβ antagonist, and a GPER1 agonist, this suggests 

that it was the GPER1 agonist action that attenuated CPP in males. We postulate that 
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the effects of ICI in females were seen because it is also an agonist for GPER1 and that 

we would have needed to give an antagonist all three receptors to inhibit cocaine 

preference formation in females. We also recognize that a significant limitation of this 

study is the lack of varied doses, as we only administered 10% drug:vehicle in both 

sexes. Although this was a sufficient dose in males, it could be that females need a 

higher or lower dose to cause a change in behavior. 

Females show enhanced rotational behavior and sensitization after cocaine 

exposure compared to males and this effect is mediated by ERα 25,31. Work in 

dissociated medium spiny neurons from dorsal striatum of females has shown estradiol 

decreases L-type calcium current, which implicates ERβ 32,33.  In neurons from males, 

the response to estradiol was significantly less 34.  Finally, estradiol treatment reduces 

GABA release, and overexpression of ERα in the dorsal striatum also enhances the 

inhibitory effects of estradiol on GABA release 31,35. Thus, ERα and ERβ are implicated 

in the effects of estradiol on striatal function in females. 

Our study used qPCR to explore relative RNA expression of ERα, ERβ, and 

GPER1 in the dorsal striatum and we did not find any sex differences. These findings 

are consistent with recent evidence supporting no sex differences in protein levels of 

ERα or GPER1 in the dorsal striatum of adult males and females 36.  Our study did 

determine that GPER1 mRNA levels are greater than ERα and ERβ, which do not differ 

from one another.  

We did not differentiate the medial versus lateral subsections of the dorsal 

striatum, and distribution of ERs within the dorsal striatum could differ by sex. It is 

known that in females, membrane receptors that are coupled to mGluR mediate the 
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rapid effects of estradiol in the DLS, but this mechanism has not been investigated in 

males 22,24. Whether there are sex differences in the signaling pathways mediating the 

effects of estradiol in the DLS needs to be explored. Together, these data suggest that 

the sex-specific behavioral outcomes of GPER1 manipulation are likely due to 

differences in the downstream effects of receptor activation, rather than sex differences 

in overall expression.  

In conclusion, we report that we have identified a novel role for GPER1 in males. 

To our knowledge, this is the first set of studies to show that activation or inhibition of 

GPER1 in the DLS is sufficient to alter cocaine conditioned place preference in males. 

Based on the role of estradiol seen in female drug-seeking, we historically hypothesized 

an increase in motivated behaviors after estradiol treatment, and therefore designed 

studies to detect an increase in drug-seeking or drug preference, rather than a 

decrease. This could be one reason that a role for estradiol in drug-seeking in males 

has been missed until now. Given these results, we postulate that GPER1 is a potential 

target for decreasing motivation to attain cocaine in males, which is currently under 

investigation in our laboratory.  
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Figure 3 Pharmacological manipulation of the DLS. 

(A) Number of male and female animals per treatment condition for each 
experiment. (B) Representative cannula placement into the DLS.  
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Figure 4 Behavioral paradigms to assess preference for cocaine and saccharin. 

(A) The apparatus used for conditioned place preference training and testing was a 
three-compartment chamber with three areas, differentiated by distinct tactile and visual 
cues. As described in the timeline, the pre-test took place on day 1, followed by 8 
conditioning sessions, ending with a final test session. Version 1 (V1) and version 2 (V2) 
refer to conditioning either beginning with saline or cocaine on day 2, which was 
counterbalanced across animals. Treatment stylets were inserted after pre-test on day 1 
and remained inserted for continuous treatment through the final test session. (B) A two-
bottle choice paradigm was utilized to determine preference for 0.1% SACC versus plain 
water. Two bottles were accessible to individually housed animals in their home cages. 
On days 1-4, both bottles contained H2O only. During days 5-12, one bottle contained 
H2O and the other contained 0.1% SACC dissolved in H2O. Treatment stylets were 
inserted before SACC introduction on day 5 and remained for the duration of the 
experiment.  
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Figure 5 GPER1 mediates cocaine CPP in males. 
  
GPER1 activation/inhibition intra-DLS alters cocaine CPP for males but not females. A 
cocaine CPP is inferred if animals spend more time in drug-paired chamber during test 
versus pre-test. (A) At a conditioning dose of 10mg/kg cocaine, CHOL (control) treated 
males form a CPP however, treatment of ICI (nonselective ERα/ERβ antagonist; 
GPER1 agonist) or (B) G1 (selective GPER1 agonist) attenuates males CPP for 
cocaine. (C) Treatment of G15 (selective GPER1 antagonist) causes a CPP for a 
5mg/kg dose of cocaine; CHOL treated males do not form a CPP. (D-E) Females 
treated with CHOL, ICI, and G1 form a CPP for 10mg/kg cocaine. CPP data are shown 
as mean +/- SEM and each point corresponds to an individual animal. *p < 0.05, **p < 
0.01, ***p < 0.001.
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Figure 6 GPER1 mediates saccharin preference in males.  

GPER1 activation intra-DLS attenuates preference for 0.1% SACC versus H2O for 
males but not females. (A) G1 treatment causes a conditioned avoidance of 0.1% 
SACC, as indicated by a preference score < 50%. G1 treated males have a significantly 
lower preference score, averaged across days, than CHOL (control) males. (B) Both G1 
and CHOL (control) treated females similarly formed a preference for 0.1% SACC over 
H2O, as indicated by group preference scores exceeding 50%.  
Preference score data are shown as mean +/- SEM with data points representing 
individual days. *p < 0.05, **p < 0.01.
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Figure 7 ERα, ERβ, and GPER1 mRNA expression in the dorsal striatum.  

(A-C) There are no significant differences in relative mRNA expression of estradiol 
receptors in the dorsal striatum between females and males. Data are shown as males 
relative to females. (D) Relative mRNA expression of GPER1 is greater than ERα and 
ERβ, which do not differ from one another. Data are shown as GPER1 and ERβ relative 
to ERα. Data are shown as mean +/- SEM with data points representing individual 
animals. ****p < 0.0001  
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Chapter III 
Activation of G-protein Coupled Estradiol Receptor 1 in the Dorsolateral Striatum 
Enhances Motivation for Cocaine and Drug-Induced Reinstatement in Female but 

Not Male Rats 
 

Abstract 

Estradiol potentiates drug-taking behaviors, including motivation to self-

administer cocaine and reinstatement of drug-seeking after extinction in females, but 

not males. The dorsolateral stratum (DLS) is a region of the brain implicated in 

mediating drug-seeking behaviors and more specifically, is a target brain area to study 

how estradiol regulates these behaviors. The estradiol receptors α, β, and G-protein 

coupled estradiol receptor 1 (GPER1) are all present in the DLS. In this study the 

effects of activating GPER1 in the DLS on drug-seeking are investigated.  

Gonad-intact male and female rats were trained to self-administer cocaine (0.4 

mg/kg/inf) on a fixed-ratio 1 schedule of reinforcement. For four weeks, animals 

underwent testing on a progressive ratio schedule of reinforcement to determine their 

motivation to attain cocaine. Halfway through progressive ratio testing, a selective 

agonist targeting GPER1 (G1) was administered intra-DLS to determine the contribution 

of GPER1 activation on motivation for cocaine. The effects of intra-DLS GPER1 

activation on drug-induced reinstatement after extinction was subsequently determined.  

Activation of GPER1, via G1 administration intra-DLS potentiated females’ 

motivation to self-administer cocaine. There was no effect of prior G1 treatment on 

extinction of cocaine-taking in females, however, G1 treatment resulted in greater drug-
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induced reinstatement (10 mg/kg cocaine, i.p.). There were no effects of intra-DLS 

GPER1 activation observed on motivation for cocaine or cocaine-induced reinstatement 

of responding in males.  

These results support the conclusion that activation of GPER1 in the DLS 

enhances cocaine seeking behaviors for female, but not male rats.  
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Introduction 

The prevalence of adults who will develop a substance use disorder (SUD) is 

approximately 10%, although a much greater percentage of individuals will have 

exposure to elicit drug use at some point in their lifetime (Grant et al., 2016). Many 

factors contribute to individual differences in escalation of drug taking behavior and the 

propensity towards addiction. Biological sex is one component that affects individual 

differences in vulnerability to develop a SUD to psychostimulants, in particular (Quigley 

et al., 2021). For example, women escalate cocaine use more rapidly, report greater 

craving for cocaine, and have shorter cocaine-free periods compared to men (Elman, 

Karlsgodt, & Gastfriend, 2001; Westermeyer, Kopka, & Nugent, 1997). Women also 

have greater incidence of relapse, possibly due to stress-induced drug seeking that 

occurs more in women than men (Back, Brady, Jackson, Salstrom, & Zinzow, 2005; 

McKay, Rutherford, Cacciola, Kabasakalian-McKay, & Alterman, 1996).  

There are sex differences in rodent models of addiction that are comparable to 

what is reported in the clinical literature (Becker & Koob, 2016). Female rats acquire 

cocaine self-administration more rapidly than males do, are more motivated to obtain 

cocaine, and take longer to extinguish cocaine-seeking behavior, compared to males 

(Kippin et al., 2005; W J Lynch & Carroll, 1999; Wendy J Lynch, 2008; Roth & Carroll, 

2004). In females, but not males, the presence of estradiol potentiates sensitization to 

cocaine, acquisition and maintenance levels of drug intake, and reinstatement of 

cocaine-taking after extinction (Doncheck et al., 2018; Jackson, Robinson, & Becker, 

2006; Martinez et al., 2016; Zhao & Becker, 2010). Together, these data support that 
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estradiol plays a role in increasing vulnerability to addiction-like behaviors in female 

rodents. 

Recent evidence supports a modulatory role of estradiol on males’ preference for 

cocaine. Specifically, activation of the estradiol receptor subtype, G-protein coupled 

estradiol receptor 1 (GPER1), decreases conditioned place preference for cocaine and 

morphine in male rodents (Quigley & Becker, 2021; Sun et al., 2020). As mentioned 

above, no studies thus far have determined an effect of estradiol treatment on males’ 

self-administration of cocaine, but this could be because prior studies have not 

investigated the contribution of individual estradiol receptor subtypes to drug self-

administration in either sex.  

Estradiol receptor subtypes including ERα, ERβ, and GPER1 are all expressed in 

the dorsal striatum of both males and females (Almey, Milner, & Brake, 2016; Krentzel, 

Willett, Johnson, & Meitzen, 2021; Quigley & Becker, 2021). Given the recent evidence 

implicating GPER1 as an important neuronal target for mediating the rewarding 

properties of cocaine in males, this study was designed to determine whether GPER1 

activation within the dorsolateral striatum (DLS) modulates motivation for cocaine in 

either sex. The current study used a progressive ratio self-administration paradigm to 

determine the contribution of GPER1 activation on motivation for cocaine, and also 

evaluated the impact of DLS-GPER1 activation on drug-induced reinstatement in both 

female and male rats.    

Materials and Methods 

Animals 
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A total of 25 male and 26 female gonad-intact Sprague-Dawley rats were used in 

this experiment. Animals were ordered from Charles River Breeding Laboratory 

(Portage, MI, USA) and were approximately 75 days old on arrival. Animals were 

maintained on a 14:10 light/dark cycle in a temperature-controlled climate of 72°F ± 2°F. 

Animals were housed individually in standard ventilated cages in the laboratory 

vivarium. In their home cages, rats had ad libitum access to water and phytoestrogen-

free rat chow (2017 Teklad Global, 14% protein rodent maintenance diet, Harlan rat 

chow; Harlan Teklad, Madison, WI, USA). All animals were weighed daily to determine 

good health and females were also vaginally lavaged daily to track and ensure that 

estrous cycle remained consistent. All animal care and experimental procedures were 

carried out in accordance with the National Institutes of Health guidelines on laboratory 

animal use and care, using a protocol approved by University of Michigan Institutional 

Use and Care of Animals Committee. 

Stereotaxic Surgery and Treatment Stylets 

One week after arriving in the laboratory, rats underwent surgery for the 

implantation of bi-lateral guide cannula (purchased from P1 Technologies) aimed at the 

DLS (AP: +0.4 ML: +/-3.6 DV: -4.0). During surgery, 33-gauge solid stylets were 

inserted into the 26-gauge hollow guide cannula that were fixed on the animal’s heads. 

These stylets were flush with the bottom of the guide cannula and did not protrude 

further into the brain. Hollow treatment stylets, however, protruded from the guide 

cannula by 1mm and delivered treatment directly into the DLS. Control animals received 

100% cholesterol (CHOL) and experimental animals received the selective GPER1 

agonist G1, in cholesterol (10% G1:90% CHOL). In order to insert stylets, rats were 
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briefly anesthetized with 5% isoflurane. Post-mortem analyses confirmed correct 

placement of guide cannula into the DLS; no animals’ were excluded from analyses due 

to incorrect placement.  

On the day of surgery, rats were injected with carprofen (5 mg/kg s.c.) and 30 

minutes later were anesthetized with ketamine (50 mg/kg i.p.) and dexmedetomidine 

(0.25 mg/kg i.p.), then prepared in a stereotaxic frame. At the conclusion of the surgery, 

animals received atipamezole hydrochloride (0.5 mg/kg i.p.) and 3 ml 0.9% saline (s.c.). 

Every 24 hours for three days post-surgery, animals were given carprofen (5 mg/kg s.c.) 

prophylactically for post-operative pain then monitored for an additional seven days. 

Stylets were prepared as previously described (Becker, Snyder, Miller, Westgate, 

& Jenuwine, 1987). Pharmacological drugs were obtained from the following sources:  

Cholesterol (Santa Cruz Biotechnology, purity ≥ 92%); G1 (Cayman Chemical, purity ≥ 

98%). Previous studies report that G1 has no binding affinity for ERα or ERβ (Albanito 

et al., 2007; Bologa et al., 2006). 

Catheter Surgery 

One week after undergoing stereotaxic surgery, animals were fitted with 

indwelling jugular catheters that connected to a dorsal external port (Cummings et al., 

2011). On the day of surgery, animals received carprofen (5 mg/kg s.c.) and 30 minutes 

later were anesthetized with 5% isoflurane in oxygen. Every 24 hours for three days 

post-surgery, animals were given carprofen (5 mg/kg s.c.) prophylactically for post-

operative pain. Animals were monitored for an additional seven days before beginning 

self-administration behavioral testing.   
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Beginning two days after surgery and continuing everyday thereafter, catheters 

were flushed with 0.2 ml of gentamicin (3 mg/ml) and heparin (20 U/ml) to prevent 

infection and clotting, respectively. Prior to the beginning of each cocaine self-

administration session, the catheters were also flushed with 0.1 ml of sterile saline. 

Once weekly, catheter patency was verified using 2.5 mg/kg methohexital sodium in 

sterile saline. Approximately 10% of animals were removed from the experiment due to 

catheter failure.   

Cocaine Self-Administration Procedures Chamber  

Cocaine self-administration was performed in standard operant chambers (Med 

Associates, Inc., Georgia, VT, USA) for a maximum of four hours per day, five days per 

week. As depicted in Figure 8, each rat was able to move freely in the operant chamber, 

while connected to an infusion syringe via their dorsal catheter port. A house light 

turned on inside the chamber to signify the start of each self-administration session. 

Each chamber was also equipped with two nose poke ports. The active port had an 

illuminated light, while the other port had no light and was therefore “inactive”. A nose 

poke response in the active port resulted in an intravenous 50-μl infusion of 0.4 

mg/kg/infusion cocaine HCl delivered over 2.8 seconds. There was no consequence of 

poking in the inactive port.  

Training 

 Animals were tested 5 days a week with 2 days off each week . During week 

one, rats were trained to nose poke in the active port to self-administer cocaine on a 

fixed-ratio 1 schedule of reinforcement. Under this schedule, a response into the active 

port resulted in one infusion of cocaine followed by a 5-second timeout period of drug 
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unavailability. If an animal nose poked during a timeout period, the nose poke was 

recorded but the animal did not receive an infusion of cocaine. Each training session 

was 3 hours long or until an animal received a maximum of 15 infusions of cocaine. If 

an animal did not meet the 15-infusion threshold, they were given the remaining 

infusions one minute apart. By day 5 of training, all animals were earning 15 infusions of 

cocaine.    

Progressive Ratio  

 For four consecutive weeks thereafter, animals underwent a progressive ratio 

schedule of reinforcement that escalated through an exponential series: 1, 3, 6, 9, 12, 

17, 24, 32, 42, 56, 73, 95, 124, 161, 208, … (Richardson & Roberts, 1996). On this 

schedule, the number of nose pokes required increased exponentially and the 

consequence remained at a single cocaine infusion (0.4mg/kg/infusion). The final 

completed response ratio represents the animals breaking point. All progressive ratio 

tests lasted 4 hours or until 1 hour elapsed without the animal having earned the next 

infusion.  

During weeks 3 and 4 of progressive ratio self-administration, animals received 

either G1 or CHOL intra-DLS (see Table 2 for treatment condition assignments) via their 

treatment stylets. Treatment conditions were assigned so that the average breaking 

point between each group did not differ for weeks 1 and 2 of progressive ratio testing. 

Treatment stylets were inserted after the final self-administration session of week 2 and 

remained through week 4, except for when they were briefly replaced with new stylets 

between weeks 3 and 4, in order to maintain a stable dose. Treatment stylets were 

removed at the conclusion of the last session of week 4.   
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Extinction and Reinstatement 

 During week 5, rats underwent 1-hour extinction training twice per day for a total 

of 10 extinction training sessions in five days. Chamber conditions (i.e., house light and 

nose port light) were the same as during progressive ratio testing, however rats did not 

receive an infusion of cocaine after nose poking. The rate of extinction was calculated 

as the difference between activate and inactive nose pokes per session.  

New treatment stylets were introduced after the final extinction session. Treatment 

assignments were counterbalanced with prior G1 or CHOL exposure, to control for 

confounding effects of prior pharmacological manipulation. On day one of week 6, 

animals were tested for drug-induced reinstatement. At the start of the self-

administration session, each animal received a 10 mg/kg i.p. injection of cocaine. 

Similar to during extinction, number of nose pokes were recorded, however no 

consequence resulted from nose poking in either port.  

Statistics  

All statistical analyses were performed using GraphPad Prism v8.0 and IBM 

SPSS Statistics v27.0. Data were analyzed for general normality using the Shapiro-Wilk 

test but no corrections were needed. Muuchly’s Test was used to determine sphericity 

and a Greenhouse-Geisser correction used where sphericity was violated. Effect sizes 

for these tests are reported as Cohen’s d (d) and partial eta squared (n2p). The 

threshold for significance for all statistical tests was set to p<0.05.  

Sex differences in motivation were assessed across time, using a two-way 

repeated measures ANOVA (sex x session) and as average group differences, by using 

an unpaired t-test (Figure 9 A-B). Two-way repeated measures ANOVAs were also 
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used to assess the effects of G1 versus CHOL on motivation within each sex (Figure 10 

A-B). Three-way repeated measures ANOVAs were used to analyze sex differences in 

the effects of G1 versus CHOL on motivation (Figure 11) and extinction (Figure 12). A 

two-way ANOVA was used to analyze sex differences in the effects of G1 or CHOL on 

reinstatement (Figure 13). In the case of a significant interaction, a Bonferroni multiple 

comparison test determined if there were significant group differences.  

Finally, the effects of estrous cycle on motivation were analyzed by grouping 

non-estrous (metestrus and diestrus) versus estrus (proestrus and estrous) and 

comparing them using paired non-parametric Wilcoxon tests for week 1 and week 2 

(Figure 14).  

Results 

During weeks 1 and 2 of progressive ratio testing, prior to any pharmacological 

manipulation, motivation for cocaine increases for both sexes (Figure 9 A). A two-way 

repeated measures ANOVA found a main effect of test session (F (1.456,72.79) = 8.197; p = 

0.0020; n2p = 0.141). An unpaired t-test was performed to compare the average 

breaking point values for males versus females across weeks 1 and 2 (t (18) = 2.412; p = 

0.0267; d = 1.078) (Figure 9 B). This outcome suggests that the average breaking point 

for females is greater than males in the first two weeks of self-administration.     

During weeks 3 and 4 of progressive ratio testing, DLS-GPER1 receptors were 

pharmacologically activated using G1 and motivation for cocaine was assessed within 

each sex (Figure 10 A-B). A two-way repeated measures ANOVA revealed a main 

effect of treatment for females (F (1,24) = 4.267; p = 0.0498; n2p = 0.1509) but no main 
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effect of day, and no treatment x day interaction. For males, there was no main effect of 

treatment or day, and no significant interaction.  

As illustrated in Figure 11, there are sex differences in the effects of G1 on 

breaking point for cocaine. A three-way repeated measures ANOVA revealed main 

effects of both sex (F (1,47) = 6.973; p = 0.0112; n2p = 0.129) and timepoint (F (1,47) = 

33.14; p < 0.0001; n2p = 0.414). Additionally, there was a significant 3-way interaction 

among sex x treatment condition x timepoint (F (1,47) = 5.654; p = 0.0215; n2p = 0.107). 

Bonferroni multiple comparisons discovered significant group differences between G1 

treated males and females’ post-treatment (p = 0.0039) as well as a significant 

difference in breaking point between timepoints in females treated with G1 (p < 0.0001).  

As illustrated in Figure 12, there was no effect of prior G1 exposure on rates of 

extinction. A three-way repeated measures ANOVA revealed a main effect of day (F 

(9,243) = 5.840; p < 0.0001; n2p = 0.178) and a main effect of treatment condition (F (1,27) 

= 4.317; p = 0.0474; n2p = 0.138). There were two significant interactions: sex x day (F 

(9,243) = 2.563; p = 0.0078; n2p = 0.087) and sex x treatment condition (F (9,243) = 2.982; p 

= 0.0022; n2p = 0.099). Bonferroni multiple comparisons indicated that the G1 females 

were significantly different from CHOL females (p < 0.0001) and both groups of males 

(p < 0.0001) on day 1 only. There were no group differences on any other day of 

extinction training between or within either sex.  

 Females treated with G1 also exhibited greater drug-induced reinstatement than 

did males (Figure 13) regardless of prior treatment. A two-way ANOVA revealed a main 

effects of treatment condition (F (1,24) = 5.189; p = 0.0319; n2p = 0.165) and sex (F (1,24) = 

4.745; p = 0.0394; n2p = 0.178). There was a significant sex x treatment condition 
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interaction (F (1,24) = 4.940; p = 0.0359; n2p = 0.171). Bonferroni multiple comparisons 

showed that G1 treated females were significantly different than CHOL females (p = 

0.0460), G1 males (p = 0.0241), and CHOL males (p = 0.0259).  

For females, phase of estrous cycle (metestrus/diestrus versus proestrus/estrus) 

had an effect on breaking point during week 1, but not during week 2 of progressive 

ratio (Figure 14). For each female animal, mean breaking points during 

metestrus/diestrus days were compared to the mean breaking points during 

proestrus/estrus days. A paired t-test was used to compare group means. During week 

1, breaking point during proestrus/estrus was significantly greater than during 

metestrus/diestrus (t (23) = 4.693; p < 0.0001; d = 0.782). There was no difference 

between estrous cycle timepoints during week 2 of progressive ratio (t (24) = 0.8255; p = 

0.172; d = 0.094). 

Discussion 

 We report here a sex difference in the effects of intra-DLS GPER1 activation on 

cocaine self-administration. For females, activation of GPER1 enhances females’ 

willingness to work for cocaine (i.e., breaking point), but this effect was not observed in 

males. Prior GPER1 activation did not alter females’ or males’ rates of extinction. 

However, females with intra-DLS GPER1 activation also show greater cocaine-induced 

reinstatement of drug-seeking behavior compared to control females. The effects of 

GPER1 activation on reinstatement in females were also not observed in males. 

Together, these findings indicate that estradiol may be enhancing vulnerability to 

addiction in females, at least in part, by acting on GPER1. 
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While this is the first study to show a role of GPER1 on cocaine self-

administration specifically, a growing literature supports the role of estradiol in 

regulating female behaviors related to addiction. For example, for female rodents, drug-

associated cues acquire a higher incentive value when they are initially presented 

during estrus versus non-estrus (Johnson et al., 2019). While the current study did not 

investigate the association of cue-learning, we similarly report an effect of estrous cycle 

during initial stages of cocaine self-administration in females. During week 1 of 

progressive ratio testing, females show greater motivation to attain cocaine during 

proestrus/estrus compared to metestrus/diestrus. The lack of effect of estrous cycle in 

the succeeding weeks is likely due to the enhanced propensity to take cocaine overall.  

We found that there were no differences in extinction rates between males and 

females or between prior treatment conditions beyond day 1 of extinction training. Prior 

studies have shown that estradiol is necessary for learning and extinction of cocaine-

seeking in females (Twining, Tuscher, Doncheck, Frick, & Mueller, 2013). Given that 

animals in the current study are gonad-intact and have circulating estradiol, it is not 

surprising that they extinguished at similar rates. It was important in the current study 

that animals extinguish similarly in order to compare rates of reinstatement. 

Estradiol enhances females’ reinstatement of cocaine self-administration 

(Doncheck et al., 2018). This effect had previously been shown to be regulated by ERβ, 

and not ERα, but this study was done via peripheral injections and did not investigate 

role of GPER1 on reinstatement (Larson & Carroll, 2007). Our study supports the idea 

that the DLS is a target region for estradiol’s effects on reinstatement in females.  
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Sex differences in drug-taking and cocaine reward are, in part, regulated by the 

interactions between estradiol and the dopamine system (Calipari et al., 2017; Kokane 

& Perrotti, 2020; Yoest, Quigley, & Becker, 2018). In vitro studies have shown that 

estradiol enhances stimulated dopamine release and amphetamine-induced dopamine 

release in dorsal striatal tissue from female but not male rats (Becker, 1990). In vivo 

studies showed that peripheral estradiol treatment in gonadectomized rats increases 

cocaine-induced dopamine levels in the dorsal striatum of ovariectomized females but 

not castrated males (Cummings, Jagannathan, Jackson, & Becker, 2014). Given the 

direct effect of intra-DLS GPER1 activation on cocaine-seeking in females seen in this 

study, we hypothesize that GPER1 could be, in part, modulating the effects of estradiol 

on drug-induced DA release. Future studies should investigate this mechanism in both 

sexes.   

In the current study, we did not see a protective effect of GPER1 activation on 

males’ motivation for cocaine, as both G1- and CHOL-treated males show increased 

motivation over time. However, we have previously reported that intra-DLS GPER1 

activation attenuates cocaine conditioned place preference in males (Quigley & Becker 

2021). Previous research that demonstrated that the DLS is necessary for stimulus-

response learning in males, along with the current results, suggest that the timing of 

pharmacological activation of intra-DLS GPER1-, relative to initial drug exposure, is 

important for GPER1’s effects on motivation for cocaine. (Yin, Knowlton, & Balleine, 

2005, 2006). In our earlier study, GPER1 receptors in the DLS were activated or 

inhibited prior to the initial cocaine treatment, whereas in the current study, animals 

begin taking cocaine three weeks prior to administration of the GPER1 agonist. 
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Additional studies are needed to determine whether activating GPER1 receptors intra-

DLS before rats are trained to self-administer cocaine would affect the subsequent 

motivation and propensity to self-administer in males and females. 

As discussed above, in our prior study we reported that intra-DLS GPER1 

attenuated males’ preference, or “liking”, of cocaine. In this study we have shown that 

there is no effect of intra-DLS GPER1 on “wanting” cocaine in males. The 

neurobiological mechanisms of “liking” a drug are discrete from “wanting”; that is, one 

may not necessarily like a drug but still crave and consume it. These dissociable 

mechanisms and are mediated by opioidergic and dopaminergic signaling, respectively 

(Berridge, 2007; Robinson & Berridge, 1993). We speculate that the interactions of 

GPER1 on opioid and dopamine signaling are different for females and males, and this 

could be contributing to sex dependent behavioral outcomes related to propensity to 

addiction.  

There is circumstantial evidence for sex differences in the circuitry for “wanting” 

and “liking”. In females, estradiol binds on GABAergic interneurons, which disinhibits 

dopaminergic neurons and increases dopamine levels in the striatum (Yoest, 

Cummings, & Becker, 2014). This enhanced neurotransmission of dopamine is 

presumably responsible for females’ more rapid escalation of self-administration and 

enhanced motivation to attain psychostimulants (Cummings et al., 2014; Song, Yang, 

Peckham, & Becker, 2019). Directly below the dorsal striatum is the nucleus accumbens 

shell which is an opioid hedonic hotspot that regulates “liking” (Castro & Berridge, 

2014). In males, pharmacological studies have implicated mu-opioid receptor 

functioning in the shell subregion to regulate responses for palatable food and cocaine 
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(Simmons & Self, 2009; Ward, Nicklous, Aloyo, & Simansky, 2006). The direct 

interactions of GPER1 on µ-opioid receptor function in the dorsal and ventral striatum 

are yet to be investigated. However, there is some evidence for crosstalk between these 

receptors including GPER1 activation rapidly downregulating µ-opioid receptors in the 

arcuate nucleus as well as eliciting phosphorylation of µ-opioid receptors in human 

neuroblastoma SH-SY5Y cells (Ding et al., 2019; Long, Serey, & Sinchak, 2014).  

In summary, the present study confirmed previous findings that there are sex 

differences related to motivation to attain drugs of abuse. As discussed above, a large 

body of work has supported that estradiol enhances females’ vulnerability towards 

addiction but has not necessarily unveiled which estradiol receptor subtypes are 

responsible for the behavioral effects seen in females. The results of this study support 

a novel role of GPER1 in females and provides a future target for preclinical research as 

well as clinical research targeted at therapeutics for addiction.  

Perspectives and Significance 

It is vital that we better understand the neurobiological mechanisms contributing 

to relapse in women, given that they are more sensitive to environmental cues and 

more susceptible to spontaneous relapse (Janes et al., 2010; Quigley et al., 2021). 

Increased drug-seeking induced by estradiol in females has been well established and 

the current study aids to this body of knowledge by identifying a role for GPER1 

specifically. In this study, activation of GPER1 in the DLS not only enhances motivation 

for cocaine in females, but also increases drug-induced reinstatement. The information 

gained here may be used to target treatment for addiction via selective estradiol 

receptor modulators.   
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 Progressive Ratio Extinction Reinstatement 

  Weeks 1 & 2: 

Pre-treatment  

Weeks 3 & 4: 

w/ Treatment 

Week 5: 

No Treatment 

Week 6 (1 Day):   

w/ Treatment 

Ma
les

 G1 n = 13 n = 13 (prior G1) n = 9 n = 8 

Cholesterol n = 12 n = 12 (prior CHOL) n = 8 n = 8 

Fe
ma

les
 G1 n = 12 n = 12 (prior G1) n = 6 n = 6 

Cholesterol n = 14 n = 13 (prior CHOL) n = 8 n = 6 
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Table 2 Treatment condition assignments for self-administration. 

This table presents subjects per treatment condition at each stage of the self-
administration paradigm.  
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Figure 8 Operant conditioning chamber and behavioral paradigm. 

Illustration of self-administration operant chamber and timeline for self-administration 
training, progressive ratio, extinction and reinstatement testing. 
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Figure 9 Baseline motivation for cocaine. 

During weeks 1 and 2 of progressive ratio testing, (A) breaking point increases across 
self-administrations session for both sexes (p < 0.0001).  (B) Females’ have a greater 
average breaking point across weeks compared to males (p = 0.0267). Data are 
presented as mean ± SEM. 
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Figure 10 Effects of DLS-GPER1 activation on motivation for cocaine in females and 
males. 

During weeks 3 and 4 of progressive ratio testing, G1 potentiates motivation for cocaine 
in (A) females (p =0.0498) but not (B) males. Data are presented as mean ± SEM.  
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Figure 11 Sex differences in the effects of DLS-GPER1 activation on motivation for 
cocaine. 

There are sex differences in the effects of GPER1 activation on motivation for cocaine. 
During weeks 3 and 4 of progressive ratio (PR), G1 treated females have significantly 
greater breaking point (than they did during weeks 1 and 2, prior to treatment (p < 
0.0001). G1 treated females also have a greater breaking point than G1 treated males, 
during weeks 3 and 4 of PR (p = 0.0039). Data are presented as mean ± SEM. 
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Figure 12 No sex differences in rates of extinction. 

There is no effect of prior G1 treatment and no sex difference in the rates of cocaine 
self-administration. During the first extinction session only, prior G1 treated females 
are greater than all other groups (p < 0.0001). Data are presented as mean ± SEM. 
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Figure 13 Sex differences in the effects of DLS-GPER1 activation on drug-induced 
reinstatement of cocaine-seeking.  

GPER1 activation enhances cocaine-induced reinstatement in females but not males. 
G1 treated females have a significantly greater number of active pokes than CHOL 
treated females (p = 0.0460), G1 males (p = 0.0241), and CHOL males (p = 0.0259). 
Data are presented as mean ± SEM. Individual data points presented as “X” indicate 
prior G1 treatment and individual data point presented as “+” indicate prior CHOL 
treatment, during weeks 3 and 4 of self-administration.  
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Figure 14 Effects of estrous cycle on motivation for cocaine. 

Females’ breaking point differs by phase of estrous cycle during (A) week 1 of 
progressive ratio self-administration (p = 0.0001) but not during (B) week 2. Data are 
presented as mean ± SEM. 
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Chapter IV 
Alterations of Striatal c-Fos Immunoreactivity induced by G-protein Coupled 

Estradiol Receptor 1 Activation  

Abstract 

Estradiol receptor activation has sex-specific effects on the neural mechanisms 

mediating reward. Prior work has suggested that, for males, activation of GPER1 in the 

dorsolateral striatum (DLS) decreases preference for drugs of abuse or naturally other 

rewarding stimuli. In this study, we investigated how intra-DLS GPER1 activation, via 

administration of G1, alters c-Fos immunoreactivity (IR) with and without exposure to 10 

mg/kg cocaine (i.p.). Additionally, we investigated whether intra-DLS GPER1 activation 

alters cocaine-induced locomotor activity. We found that G1 administration attenuates 

cocaine-induced neuronal activation, as measured by c-Fos IR, in the dorsomedial 

striatum (DMS). We also found that in both the nucleus accumbens core (NAcC) and 

shell (NAcSh), G1 administration alone enhances c-Fos IR levels to the same degree 

that cocaine exposure does. We did not find an effect of either G1 treatment or cocaine 

exposure on c-Fos IR in the prelimbic cortex or external globus pallidus. Finally, our 

findings suggest G1 potentiates cocaine-induced locomotor activity. In sum, the present 

study provides further evidence of G1 altering cocaine-induced neural adaptations in 

male rats and provides site-specific regions to explore next.   
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Introduction 

While the underlying neurocircuitry of addiction is complex, certain brain regions 

been identified as being important for regulating an individual’s behavior and propensity 

towards addiction. Rodents provide an exceptional model to study the neurobiology of 

addiction because areas of their brain which regulate motivation and reward are similar 

to those of humans. One way to measure the involvement of reward circuitry is to 

quantify levels of c-Fos immunoreactivity (IR), as a proxy neuronal activation. C-Fos is 

the protein product of the c-fos immediate early that is induced by a broad range of 

stimuli, some of which include consumption of palatable food or drugs of abuse, 

exposure to novel environments, or learning and memory consolidation.  

 Initial exposure to psychostimulants, or other rewarding-stimuli, results in feelings 

of pleasure or “liking”. These reactions are mediated by opioid hedonic hotspots within 

the limbic system, including areas within the nucleus accumbens (NAc). In particular, 

the shell subregion of the NAc has been shown to mediate “liking” and “disgust” 

reactions to sucrose as well as conditioned place preference (Castro & Berridge, 2014). 

Craving and continuous drug-seeking, however, occurs after the initial pleasurable 

effects of a drug have subsided (Robinson & Berridge, 1993). These effects are 

mediated by dopamine and induce “wanting”, rather than opioid mediated processes 

involved in “liking” (Berridge, 2007, 2009; Robinson & Berridge, 1993).  

 One of the major dopamine pathways of the brain is the nigrostriatal circuit, 

which influences cognition and reward, as well as regulates purposeful movement via 

dopaminergic- modulation of the basal ganglia motor loops.  Among facilitating motor 

control, motor learning, and emotional regulation, the basal ganglia is implicated in 
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regulating reward and drug-seeking, via the “direct” and “indirect” pathways. Briefly, the 

direct pathway is the projection of GABAergic medium spiny neurons (MSNs) from the 

dorsal striatum to the substantia nigra and the indirect pathway is the projection from 

the dorsal striatum to the subthalamic nucleus, via the globus pallidus (external), 

followed by glutamatergic transmission to the substantia nigra (Yager, Garcia, Wunsch, 

& Ferguson, 2015). Stimulation of direct pathway neurons ultimately dis-inhibits the 

thalamus and promotes behavior while stimulation of the indirect pathway suppresses 

thalamic activity and suppresses behavior. These direct/indirect pathways should work 

in unison in a “go” and “stop” fashion to balance behavior and decision making however, 

drugs of abuse cause adaptations within this system (Macpherson, Morita, & Hikida, 

2014). Such changes include alteration of gene expression of D1 and D2 receptors in 

the direct and indirect pathway, respectively, which ultimately results in dysfunction and 

habitual behaviors, such as compulsive drug-seeking (Calabresi, Picconi, Tozzi, 

Ghiglieri, & Di Filippo, 2014; Heiman et al., 2008; Lobo & Nestler, 2011; Lüscher & 

Malenka, 2011; Wright & Dong, 2017).   

There are direct effects of the gonadal hormone, estradiol, that enhance female’s 

behavioral responses and vulnerability towards addiction. For example, estradiol 

treatment enhances behavioral sensitization to cocaine in gonadectomized female, but 

not male rats (Hu & Becker, 2003). Estradiol treatment also causes rapid escalation of 

cocaine self-administration and greater motivation to attain cocaine in females (Hu & 

Becker, 2008; Lynch, 2008; Peris, Decambre, Coleman-Hardee, & Simpkins, 1991). 

Additionally, estradiol potentiates female’s reinstatement of cocaine-seeking after 
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extinction training, an effected which is mediated by the prefrontal prelimbic cortex 

(Doncheck et al., 2018; Kippin et al., 2005).  

Experiments which investigated the effects of estradiol on drug-seeking, 

described above, did not observe effects of estradiol on males’ propensity towards 

addiction-like behaviors. Recently, however, manipulation of one estradiol receptor 

subtype, GPER1, was found to have a behavioral effect in males, but not females. 

Activation of GPER1 in the dorsolateral striatum (DLS) decreased males’ conditioned 

place preference for cocaine while inhibition of the receptor enhanced preference 

(Quigley & Becker, 2021). Another recent study concluded that GPER1 knockout 

facilitates morphine conditioned place preference in males (Sun et al., 2020). Not only 

do the effects of GPER1 appear to be mediating the rewarding properties of drugs of 

abuse, but GPER1 activation intra-DLS is also reported to decrease preference for 

saccharin, suggesting that this mechanism is not confined to drug-related stimuli 

(Quigley & Becker, 2021).   

 It is unclear how estradiol is facilitating drug-seeking for females but having an 

opposite effect in males. Multiple studies have shown that there are not sex differences 

in estradiol receptor expression in the dorsal striatum of adult rats (Krentzel, Willett, 

Johnson, & Meitzen, 2020; Quigley & Becker, 2021). In females, GPER1 receptors are 

localized to GABAergic and cholinergic neurons in the dorsal striatum, but no studies 

have investigated their cellular location in the male brain (Almey, Milner, & Brake, 2016; 

Hammond, Nelson, & Gibbs, 2011).  

To gain insight on how GPER1 activation in intra-DLS could be mitigating the 

rewarding properties of cocaine for males, we investigated cocaine-induced neuronal 



 118 

activation in reward-regions of the brain and how these patterns of activation are altered 

by pharmacological manipulation of GPER1. To this end, we used c-Fos IR as an 

indirect measure of neuronal activation in the nucelus accumbens core (NAcC) and 

shell (NAcSh), dorsomedial striatum (DMS), prelimbic cortex (PRL), and external globus 

pallidus (GPe), and. We also determined the effects of intra-DLS GPER1 activation on 

cocaine-induced locomotor, as a measure of an acute behavioral response to cocaine in 

these animals. 

Methods 

Animals 

24 male Sprague-Dawley rats were obtained from Charles River Breeding 

Laboratory (Portage, MI, USA) and were approximately 75 days old on arrival. Animals 

were maintained on a 14:10 light/dark cycle in a temperature-controlled climate of 72°F 

± 2°F, in ventilated laboratory cages. Rats had ad libitum access to water and 

phytoestrogen-free rat chow (2017 Teklad Global, 14% protein rodent maintenance diet, 

Harlan rat chow; Harlan Teklad, Madison, WI, USA). Animals housed in pairs until 

undergoing surgery, after which they were housed individually. All animal care and 

experimental procedures were carried out in accordance with the National Institutes of 

Health guidelines on laboratory animal use and care, using a protocol approved by 

University of Michigan Institutional Use and Care of Animals Committee. 

Stereotaxic Surgery  

One week after arriving in the laboratory, rats underwent surgery for the 

implantation of bi-lateral guide cannulae aimed at the DLS (AP: +0.4 ML: +/-3.6 DV: -

4.0). On the day of surgery, rats were injected with carprofen (5 mg/kg s.c.) and 30 
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minutes later were anesthetized with ketamine (50 mg/kg i.p.) and dexmedetomidine 

(0.25 mg/kg i.p.), then prepared in a stereotaxic frame. During surgery, 33-gauge solid 

stylets were inserted into the 26-gauge hollow guide cannula that were fixed on animals’ 

skull. These stylets were flush with the bottom of the guide cannula and did not protrude 

into the brain. At the conclusion of the surgery, rats were given atipamezole 

hydrochloride (0.5 mg/kg i.p.) and 3ml 0.9% saline (s.c.). Every 24 hours for three days 

post-surgery, rats were given carprofen (5 mg/kg s.c.) prophylactically for post-operative 

pain.  

Drug Preparation  

Treatment conditions were randomly assigned to animals prior to behavioral 

testing. Control animals received 100% cholesterol and experimental animals received 

10% G1 (agonist targeting GPER1) dissolved in cholesterol, via stylets which protruded 

from the guide cannula by 1 mm and delivered treatment directly into the DLS. 

Treatment stylets were prepared as previously described (Becker, Snyder, Miller, 

Westgate, & Jenuwine, 1987). In order to insert stylets, rats were briefly anesthetized 

with 5% isoflurane.   

Hollow guides and interlocking treatment stylets were manufactured by and 

purchase from P1 Technologies (Roanoke VA). Drugs were obtained from the following 

sources: G1 (Cayman Chemical (Ann Arbor, MI), purity ≥ 98 and Cholesterol (Santa 

Cruz Biotechnology (Dallas, TX) purity ≥ 92%). 

Behavioral Testing  

 Animals’ locomotor behavior was tested over two consecutive days. On day 1, 

animals were placed in a novel context (15.5 in x 12 in chamber) for 30 minutes and 
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their total distance traveled was recorded. Immediately after, treatment stylets 

(cholesterol or G1) were inserted, and animals were returned to their home cages. On 

day 2, animals were placed in the same context however this time, animals received an 

i.p. injection of 10 mg/kg cocaine or saline prior to being placed in the chamber for 30 

minutes. Animals were returned to their home cage for roughly 60 minutes afterwards. 

ANYMAZE tracking software (Stoelting Co., Wood Dale, IL) was utilized to track 

distance traveled by each animal.  

c-Fos Immunohistochemical Analysis 

Exactly 60 minutes after receiving the injection of cocaine or saline, each animal 

received an injection of 0.5 ml of Sodium Pentobarbital (i.p). Once the animal was fully 

sedated, it received a transcardial perfusion of 0.1M phosphate buffered saline followed 

by 4% paraformaldehyde. Brains were removed and post-fixed in 4% paraformaldehyde 

for 48 hours, then transferred into 30% sucrose.  Brains were sliced on a microtome in 

40-micron sections, which were collected and store in cell culture wells in cryoprotectant 

solution at -20°C.  

Immunohistochemistry protocols, as described by (Tronson et al., 2009), were 

used. Briefly, sections were incubated in anti-c-Fos antibody (ABCAM; ab208942; 

1:500), Goat Anti-Mouse IgG antibody (Vector Laboratories; BA9200; 1:200), and DAB 

Chromogen (Sigma-Aldrich; D4293).  

One hemisphere from each animal was imaged quantified at 10x magnification 

(Figure 17). For each region, three (100mm x 100mm x 40ug) boxes were placed on the 

coronal brain image using Adobe Photoshop Software. ImageJ Software was then used 

to hand-count c-Fos IR+ cells and the average number between the three boxes for 
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each region was determined. These procedures were conducted by investigators blind 

to experimental condition.   

Results 

Intra-DLS GPER1 activation attenuates cocaine-induced c-Fos IR+ cells in the 

dorsomedial striatum 

 G1 treatment decreased cocaine-induced c-Fos IR in the DMS (Figure 15 A). 

Specifically, cocaine increased c-Fos IR+ cells by 210% in cholesterol animals, but only 

by 44% in G1 treated animals. A two-way ANOVA found a significant treatment x drug 

interaction (F1,20 = 4.391; p = 0.0491). Bonferroni’s multiple comparisons test 

determined that among animals that received cholesterol intra-DLS, there were a 

greater number of c-Fos IR+ cells in animals that were given cocaine than saline (p = 

0.0485). Among G1 treated animals, however, there were no significant differences 

between saline and cocaine animals (p > 0.9999). No main effects were observed in the 

two-way ANOVA.  

Intra-DLS GPER1 activation enhances c-Fos IR+ cells in the Nucleus Accumbens Core 

and Shell 

 G1 treated animals had 814% more c-Fos IR+ cells in the NAcC than cholesterol 

treated animals (Figure 15 B). A two-way ANOVA indicated a main effect of intra-DLS 

treatment (F1,20 = 14.91; p = 0.0010) but no main effect of drug condition and no 

significant interaction.  Similarly, c-Fos IR+ cells in the NAcSh were 156% greater in G1 

treated animals (Figure 15 C), as suggested by a main effect of intra-DLS treatment 

(F1,20 = 4.664; p = 0.0431).  
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In the NAcSh, the two-way ANOVA also indicated a significant treatment x drug 

interaction (F1,20 = 5.414; p = 0.0306). Bonferroni’s multiple comparisons test 

determined that among cholesterol treated animals, there were 151% more c-Fos IR+ 

cells in cocaine versus saline exposed animals (p = 0.0118). However, among G1 

treated animals, the quantity of c-Fos IR+ cells did not differ between cocaine and saline 

exposed groups (p > 0.9999).  

Prelimbic cortex and lateral globus pallidus are not affected by intra-DLS GPER1 

activation or cocaine exposure 

Levels of c-Fos IR+ cells in the PRL (Figure 15 D) and GPe (Figure 15 E) were 

not affected by intra-DLS treatment or drug condition. A two-way ANOVA investigated 

each of these regions independently and revealed no main effects or interactions.  

Intra-DLS GPER1 activation potentiates locomotor activity after cocaine administration 

 During the animal’s initial exposure to testing chamber, they were naïve to 

treatment conditions (Figure 16 A). A two-way ANOVA indicated that, at baseline, there 

were no significant differences in total distance traveled between group assignments 

and could therefore be compared after drug/treatment administration to determine the 

effects of saline versus cocaine, cholesterol versus G1, and any potential interactions. 

On day 2, there were four distinct treatment conditions: saline + cholesterol, cocaine + 

cholesterol, saline + G1, and cocaine + G1 (Figure 16 B). There was a main effect of 

drug (F1,20 = 36.30; p < 0.0001) but no main effect of intra-DLS treatment (F1,20 = 3.564; 

p = 0.0736). Additionally, there was a significant interaction between drug and treatment 

conditions (F1,20 = 4.783; p = 0.0408). Bonferroni’s multiple comparisons test 
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determined among animals that received cocaine, those treated with G1 had 

significantly greater locomotor behavior than those treated with cholesterol (p = 0.0185).  

Discussion 

Our results support that intra-DLS GPER1 activation attenuates cocaine-induced 

neuronal activity in the DMS, supported by the attenuation of c-Fos IR. We also report 

that in the NAcC and NAcSh, intra-DLS GPER1 activation alone is sufficient to increase 

quantity of c-Fos IR+ cells to a degree equal to or greater than that induced by cocaine 

alone, and the GPER1-induced increase in c-Fos was not raised any further by adding 

cocaine to GPER1. However, we did not find an effect of cocaine or GPER1 activation 

on c-Fos IR in the prelimbic cortex or external globus pallidus. Finally, our results 

indicate that there are compound effects of cocaine and intra-DLS GPER1 activation on 

enhancing locomotor activity.  

 In the dorsal striatum, cocaine-induced c-Fos is mediated by D1 receptors and 

other have used induction of c-Fos as an indicator of D1 receptor signal transduction 

(Kim, Froelick, & Palmiter, 2002; Young, Porrino, & Iadarola, 1991). Our findings that 

G1 treatment attenuates c-Fos in cocaine-treated animals suggests that GPER1 

activation is attenuating D1 receptor activation in the DMS (Figure 15 A). One possible 

mechanism that could be mediating this effect is that GPER1 activation may be is 

downregulating D1 receptor expression, accounting for the decreased neuronal 

activation after cocaine. Alternatively, GPER1 may be affecting the pre-synaptic 

dopamine transporter and causing an alteration in pre-synaptic dopamine reuptake, 

which would indirectly be affecting the amount of dopamine binding to D1 receptors.  As 

discussed in the introduction, intra-DLS G1 administration attenuates males’ cocaine 
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conditioned place preference. Given that the rewarding properties of cocaine are, in-

part, due to the drugs’ effects on enhancing synaptic dopamine transmission, we 

hypothesize that GPER1 activation is likely to be affecting dopamine neurotransmission 

and causing this attenuation in preference. 

 In both the NAcC and NAcSh, G1 treatment enhanced overall neuronal activation 

(Figure 15 B-C). The increase in the quantity of c-Fos+ cells were nearly identical in 

cocaine exposed cholesterol-treated animals and saline exposed G1-treated animals. 

Interestingly, G1 and cocaine together did not cause any greater c-Fos IR levels than 

either independent treatment suggesting that a ceiling effect may be occurring for the 

total amount c-Fos IR.  

From this, we hypothesize that same population of cells are being activated by either 

cocaine or G1. The localization of GPER1 in the ventral striatum remains unclear. 

Previous work has shown the localization of GPER1 to GABAergic and cholinergic 

neurons in the dorsal striatum of females however, these studies did not investigate 

males (Almey, Filardo, Milner, & Brake, 2012; Almey et al., 2016).  

We aimed to determine whether intra-DLS GPER1 alters patterns of c-Fos 

expression in distant brain regions that either project to or from the dorsal striatum. We 

determined that G1 treatment intra-DLS did not significantly alter neuronal activation in 

the PRL (Figure 15 D).This area was included because GPER1 receptors have been 

identified here and it is a region of striatal input to the DMS and NAcC (Hazell et al., 

2009; McGeorge & Faull, 1989; Takahashi, Schoenbaum, & Niv, 2008). However, it is 

probably unsurprising that pharmacological manipulation did not cause a retrograde 

effect in neuronal activation.   
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We also hypothesized that GPER1 activation intra-DLS would alter activation of 

the indirect pathway. However, we found relatively few c-Fos IR+ cells in both of these 

regions overall, and these levels did not change significantly from cocaine or G1 

treatment (Figure 15 E). This findings is in line with other’ reports of relatively low 

cocaine-induced c-Fos in the indirect pathway (Cenci, Campbell, Wictorin, & Björklund, 

1992). From this we cannot confidently determine whether GPER1 attenuates neuronal 

activation, due to the low number of c-Fos+ cells overall however, it appears that 

GPER1 activation does not increase activation within the GPe. Others have noted that 

amphetamine administration in a novel environment induces greater c-Fos in some 

regions of the indirect pathway (Uslaner et al., 2001). Animals in the current experiment 

were habituated to the chamber for one day prior to cocaine administration but perhaps 

future studies could repeat this in a novel context to better determine whether GPER1 

activation intra-DLS attenuates downstream neuronal activation. 

This is the first study to determine that estradiol may enhance acute sensitization 

to cocaine in males. Activation of D1 receptors in the NAc enhances behavioral activity 

in male rats (Dreher & Jackson, 1989). Above, we suggest that GPER1 activation intra-

DLS is activating the same population of cells that are activated by cocaine therefore, 

the potentiation of locomotor activity could be D1 receptor mediated. However, 

significantly more evidence is needed prior to suggesting a causal effect.  

While our results provide important and novel findings, there are significant 

limitations to the current study that should be addressed. To begin with, we have 

speculated the implications of intra-DLS GPER1 activation, but much more evidence is 

needed before any causal statement can be made. While the quantification of c-Fos 
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provides some information about which brain regions may be activated by treatment 

conditions, we do not know the mechanisms behind the changes in neuronal activation. 

Further, there are other immediate-early gene products that may also be involved in the 

neural response to GPER1 and cocaine that we did not capture by only looking at c-

Fos. Additionally, we administered treatment stylets into the DLS however, this route of 

administration damaged tissue beyond being able to image or quantify it. Finally, this 

study did not include females and is significantly limited for that reason.  

As shown in Figure 18, intra-DLS GPER1 activation caused the greatest changes 

in c-Fos expression in striatal regions, which were closest in proximity to stylet 

administration of G1. While this study has significant limitations, it does make clear that 

there are neural mechanisms being altered by the presence of intra-striatal G1 and 

more studies need to be conducted to investigate what these changes are, as these 

neural mechanisms are pertinent to understanding the recent findings that GPER1 may 

be neuroprotective in males’ reward-circuitry. 
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Figure 15 c-Fos immunoreactivity induced by intra-DLS GPER1 activation. 

(A) In the dorsomedial striatum (DMS), there were a greater number of c-Fos IR+ cells 
in cocaine versus than saline exposed (p = 0.0485) cholesterol treated animals, but no 
difference between G1 treated animals (p > 0.9999). (B-C) In the Nucleus Accumbens 
core (NAcC) and shell (NAcSh), G1 treatment enhanced the quantity of c-Fos IR+ cells 
(p = 0.0431; p = 0.0306). (E-F) Neither cocaine nor G1 treatment altered the quantity of 
c-Fos IR+ cells in the prelimbic cortex (PRL) or external globus pallidus (GPe). Data are 
presented as mean ± SEM; *p < 0.05, **p < 0.01, ***p < 0.0001. 
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Figure 16 Alterations in locomotor activity after cocaine or GPER1 activation. 

(A) At baseline, there are no significant differences in locomotor activity between 
groups, prior to cholesterol/G1 treatment or cocaine exposure. (B) Cocaine exposed 
animals have significantly greater locomotor activity than saline exposure animals. 
G1 treatment significantly enhanced locomotor activity compared to cholesterol 
treatment (p = 0.0185). Data are presented as mean ± SEM; *p < 0.05 
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Figure 17 Representative images of brain regions quantified for c-Fos 
immunoreactivity. 
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Figure 18 Schematic illustrating percent increase of c-Fos immunoreactivity.  
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Chapter V 
Discussion  

 

Sex differences in addiction are influenced by the presence and function of 

estradiol in the brain. Estradiol enhances the rewarding properties of drug of abuse for 

females, which contributes to their increased motivation for drug-seeking (Yoest, 

Cummings, & Becker, 2014). Although estradiol is thought of as being a female centric 

gonadal hormone, it has important functions in the male brain as well. For example, 

testosterone is converted to estradiol via the aromatase enzyme and this presence of 

estradiol during fetal development is responsible for masculinization of the brain 

(McCarthy, 2008). During adulthood, testosterone continues to be aromatized to 

estradiol in the brain and via estradiol receptor (ER) subtypes: ERα, ERβ, and GPER1. 

These estradiol receptor subtypes are all present in the male brain at similar quantities 

to the female brain (Quigley et al., 2021). Despite the well-understood role of estradiol 

modulating reward in females, the role of estradiol in relation to drug-abuse liability for 

males, if one exists, has not been identified.  

Synopsis 

GPER1 modulates expression of preference drug and non-drug rewards in males 

As discussed extensively in the introduction (Chapter I) of this dissertation, 

decades of clinical and pre-clinical research investigating the function of estradiol in 

substance abuse support that estradiol enhances drug abuse liability for females via 

classic estradiol receptors: ERα and ERβ. The extent to which estradiol influences the 
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propensity for drug seeking in males has been investigated to a lesser degree, primarily 

because initial studies which did include males did not find a behavioral or mechanistic 

role for estradiol in facilitating males’ motivated behaviors, such as drug-seeking.  

I began the research described in chapter II with the hypothesis that inhibition of 

estradiol receptors in the dorsolateral striatum (DLS) would decrease females’ 

preference for cocaine and that there would be no effect in males. However, I found the 

opposite: administration of ICI 182,780 (ICI) intra DLS attenuated cocaine condition 

place preference (CPP) in males and had no effect in females. Initial studies reported 

ICI as an estradiol receptor antagonist ERα and ERβ, however, this was before the 

discovery of the orphan estradiol receptor, GPER1, at which ICI also acts as an agonist. 

This information led to me to investigate whether pharmacological activation of GPER1 

would replicate the behavioral results of ICI.  

In support of my hypothesis, I found that activating GPER1 intra-DLS was 

sufficient to attenuate cocaine CPP in males but not females. I further investigated the 

extent to which GPER1 could play a modulatory role in preference behavior by 

determining that inhibition of GPER1 could also enhance cocaine CPP, at a dose which 

otherwise does not produce conditioning effects. Together, this information led me to 

hypothesize that GPER1 is regulating the rewarding effects of drugs of abuse in males, 

but I remained curious to determine if GPER1 was also able to inhibit the preference for 

non-drug rewards as well.  

 Using a two-bottle choice paradigm, I assessed how intra-DLS GPER1 

activation affects preference for 0.1% saccharin versus plain water. My results indicated 

that, similar to the effects of GPER1 on cocaine-preference, preference for 0.1% 
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saccharin solution was blocked for males but not females. After analyzing the amount of 

liquid consumed between groups and not findings any effect of the GPER1 agonist, I 

report that GPER1 activation was not causing an overall malaise in males. Instead, 

GPER1 is modulating reward by another mechanism for males and this effect is 

conserved across varying reward-inducing stimuli.  

Finally, in this chapter I explored whether there are sex differences in estradiol 

receptor expression in the dorsal striatum, as possible explanation as to why 

pharmacological activation of GPER1 was causing changes in behavior for males but 

not females. Similar to what others have reported, I did not find any sex differences in 

relative mRNA levels of ERα, ERβ, or GPER1. Interestingly, I did find significantly 

greater levels of GPER1 mRNA compared to ERα and ERβ, for both sexes. This could 

be one potential explanation for why the effects of ICI, a nonselective ERα/β antagonist 

and GPER1 agonist, resulted in robust effects that align with the selective GPER1 

agonist in males.  

GPER1 enhances females’ but not male’s motivation to attain drugs of abuse and drug-

induced reinstatement  

A progressive increase in the intensity and frequency of drug use, along with 

heightened motivation to take drugs, are behavioral characteristics of addiction. While 

pre-clinical models of addiction can be limited in translational relevance in some 

respects, such as measuring the subjective feelings of drugs of abuse, they also very 

consistently capture other aspects, such as the enhancement of motivation to attain 

drugs over time. For chapter III, I chose to use a self-administration model to determine 

whether intra-DLS GPER1 activation alters motivation to attain cocaine, post-
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acquisition, in either sex. I also investigate the extent to which GPER1 activation alters 

drug-induced reinstatement in these animals.  

Based on findings from chapter II, I expected to see that activation of intra-DLS 

GPER1 would inhibit motivation for cocaine in males. However, my results do not 

support this hypothesis. Instead, I found that males in both treatment groups showed 

similar increases in motivation for cocaine over time. Additionally, GPER1 activation did 

not appear to influence drug-induced reinstatement in males. The caveat in this study is 

that the GPER1 agonist was administered after animals had already acquired cocaine-

seeking behavior. It is possible that activation of the GPER1 receptor intra-DLS prior to 

exposure to cocaine would have been more effective in attenuating both acquisition and 

overall motivation.  

In chapter III, I report that GPER1 activation causes an increase in motivation for 

cocaine in females as well as enhance drug-induced reinstatement. This finding is 

consistent with prior work which has established that the presence of estradiol 

increases self-administration of psychostimulants for females. However, my data are the 

first study to identify that GPER1 receptors intra-DLS specifically, can cause enhanced 

motivation in females. It is worth noting that ERα and ERβ are also localized in the DLS 

and because the females in my study are intact, some circulating estradiol is likely 

binding and activating these receptors as well.     

Alterations in c-Fos immunoreactivity after pharmacological activation of GPER1  

 The goal of chapter IV was to explore how intra-DLS GPER1 activation alters 

neuronal activation in the brains of naïve and cocaine-exposed animals. I quantified 

levels of c-Fos immunoreactivity (IR) in subregions of the striatum including the 



 145 

dorsomedial striatum, nucelus accumbens core, and nucelus accumbens shell. I also 

quantified regions which project to and from the DLS: the prelimbic cortex and external 

globus pallidus, respectively. Because very little research has gone into identifying the 

neurobiological mechanisms of GPER1 activation in males, the goal of this exploratory 

experiment was to give insight on what brain regions or circuits might be implicated in 

regulating the drug-preference shifts and alterations in motivation reported in chapters 2 

and 3. The major limitation to this chapter is that only males were included, and future 

iterations of this study should explore females.  

 The effects of GPER1 activation alone, cocaine exposure alone, or GPER1 

activation in cocaine exposed animals all produced different effects on c-Fos IR that 

was dependent on subregions of the striatum. In the dorsomedial striatum, cocaine 

enhanced neuronal activation but GPER1 attenuated this effect. In the nucleus 

accumbens core and shell subregions, cocaine alone or intra-DLS GPER1 activation 

alone enhanced neuronal activation to a similar extent however, there were no 

compound effect of the two treatments on c-Fos IR levels. No effects were observed in 

the prelimbic cortex or external globus pallidus. We infer from these results that the 

dorsal and ventral regions of the striatum should be examined mechanistically for 

alterations caused by GPER1 activation. Hypotheses for these mechanisms as well as 

ways in which this can be explored are outlined below.   

Types of sex differences in animal models of addiction  

Sex differences observed from animal models of addiction can be categorized 

into qualitative differences, quantitative differences, population differences, as well as 

differences in underlying mechanisms between males and females (Becker & Koob, 



 146 

2016). Often, the underlying neurobiology of males and females cause mechanistic 

differences that perpetuate sexually dimorphic behaviors. Drugs of abuse also change 

neurocircuitry differently in males versus females, which contributes to further sex-

dependent changes in motivation and decision making.  

Quantitative sex differences are exemplified by magnitude of behavior response 

differing between males and females. In chapter II, the magnitude of preference of 

cocaine is greater for males than females and females’ motivation for cocaine is greater 

than males, as reported in chapter III. These studies were designed so that there were 

not sex differences at baseline response for drug. Manipulation of striatal GPER1 

altered response for cocaine in either sex in different directions, suggesting that the 

underlying mechanisms by which GPER1 regulates reward and behavior are different 

between males and females. Below are proposed sex-dependent mechanisms by which 

striatal GPER1 may be mediating reward.  

Proposed role of estradiol and GPER1 in females 

In females, estradiol enhances cocaine-induced dopamine release in the dorsal 

striatum (Becker, 1990; Yoest, Cummings, & Becker, 2019). Dopamine is important for 

attributing incentive salience to reward-related stimuli and mediating the pursuit of 

reward (Berridge, 2007). Therefore, dopamine transmission after estradiol treatment is 

linked to females’ enhanced propensity to self-administer cocaine (Martinez et al., 

2016). Previous behavioral studies were estradiol replacement studies and did not 

investigate the contribution of specific estradiol receptors in mediating motivation in 

females. The results from chapter III indicate activating GPER1 specifically is sufficient 
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to alter behavior. I hypothesize that this is likely due to an enhancement in cocaine-

induced dopamine, induced by GPER1 activation in the DLS.  

I did not find that GPER1 activation alters cocaine CPP for females, which I 

speculate could be for multiple reasons. First, these results may suggest that estradiol 

is important for facilitating motivation more so than reward-preference in females. 

However, others have shown that estradiol enhances cocaine conditioned place 

preference, but these were in ovariectomized female rats (Bobzean, Dennis, & Perrotti, 

2014; Russo et al., 2003). Secondly, there is evidence to suggest that, for females, the 

rewarding properties of cocaine are mediated by ERβ in the ventral striatum (Satta, 

Certa, He, & Lasek, 2018). It may be that activation of ERβ simultaneous to GPER1 is 

necessary to induce behavioral changes in females.   

Finally, the lack of significant effect of GPER1 activation on cocaine CPP or 

saccharin preference in females could be due to a ceiling effect in the behavioral 

paradigms used to assess reward preference. Both the cocaine conditioned place 

preference and saccharin two-bottle choice studies used doses which provoke a 

preference in females. If a lower dose, that does not provoke a place preference of 

cocaine were used, I hypothesize that intra-DLS GPER1 activation may have induced a 

greater effect and enhanced cocaine CPP in females.  

Future directions 

An important next step to understanding the role of GPER1 in females is to investigate 

the effects of GPER1 on striatal dopamine levels. In females, most ERα and GPER1 are 

localized to GABAergic medium spiny neurons in the striatum (Almey, Milner, & Brake, 

2016). Effects of ERα inhibition on GABAergic interneurons indirectly disinhibitions 
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dopaminergic neurons and increases stratal dopamine levels. I hypothesize that based 

on the location of GPER1 receptors, a similar mechanism is at play.   

Proposed role of estradiol and GPER1 in males 

In males, I report that GPER1 activation attenuates cocaine-induced c-Fos IR in 

the dorsomedial striatum. Generally, cocaine enhances striatal c-Fos levels via 

dopamine D1 receptor activation. Given this, I hypothesize that the attenuation of c-Fos 

immunoreactivity, after GPER1 activation, could be due to an attenuation of D1 receptor 

activation (Young, Porrino, & Iadarola, 1991). For a decrease in D1 receptor activity to 

occur, there is likely less dopamine transmission in this region, overall. Because 

dopamine is involved in the attribution of salience to reward-related stimuli, a reduction 

in striatal dopamine could be a cause for males not showing a preference for drug-

associated environment, such as shown in chapter II.  

 As to be expected, cocaine enhanced c-Fos IR in the nucleus accumbens. 

Interestingly, the GPER1 agonist also caused robust neuronal activation in the nucleus 

accumbens and to similar levels as cocaine did. However, the two treatment together, 

cocaine and GPER1 agonist, did not have any compound effects on c-Fos levels, 

suggesting that these different stimuli may be activating the same populations of 

neurons in the nucleus accumbens. Certain subpopulations of neurons, primarily 

distinguished by the rostral and caudal shell, regulate reward and activation of these 

populations causes intense liking or aversive responses. As shown in chapter II, males 

show a slight aversion to saccharin after intra-DLS GPER1 treatment. I hypothesize that 

GPER1 activation in the dorsal striatum may indirectly be acting subpopulations of 

neurons in the ventral striatum and contributing to the aversiveness of saccharin.  
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Future directions 

The robust effects of GPER1 on reward preference in males do not translate to 

altering motivation, in my studies. To rule out that GPER1 mediates motivation for 

males altogether, a reasonable next step is to give the GPER1 agonist prior to 

acquisition of cocaine self-administration. If there is still no effect on motivation, then the 

outcome from this study would educate future directions for studying liking versus 

wanting and the associated pathways of the brain. Alternatively, if GPER1 activation 

blocks acquisition of self-administration behavior this would suggest that GPER1 may 

be mediating learning and reward-associations.  

 Before we can theorize how GPER1 is acting to decrease the value of rewarding 

stimuli in males, it is pertinent that we understand how activation of GPER1 is altering 

dopamine transmission in the dorsal and ventral striatum. Future studies need to 

determine the effects of DLS GPER1 activation on basal and drug-induced dopamine 

levels. An equally important piece of this puzzle, and an important next step, is to 

investigate what neuron types GPER1 is localized to throughout the striatum because 

no studies have looked in males. 

Conditioned place preference encompasses multiple psychological aspects 

including incentive-driven behavior, conditioned treatment effects, and the learning 

reward-context association (Huston, Silva, Topic, & Müller, 2013). I showed that intra-

DLS GPER1 manipulation decreases or increases cocaine condition place preference in 

males however, the psychological construct that is affected to illicit these behavioral 

changes is not fully clear. Recent evidence implicates GPER1 in learning and memory 

function in females, but this has not been explored in males (Kim et al., 2019; Kim, 
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Szinte, Boulware, & Frick, 2016). Future studies investigating pharmacological 

activation of GPER1 at different timepoints of conditioned place preference conditioning 

would help to decipher if these are learning effects in males.  

Other considerations and future directions 

In the studies presented here, male and female rats remained gonadally intact 

and endogenous hormone levels were not measured or controlled. Therefore, at some 

level, ERα and ERβ are likely being activated by endogenous estradiol levels. Previous 

studies have mainly used methods of gonadectomy and hormone replacement to 

investigate the role of estradiol for males and females. One issue with these 

replacement studies is that estradiol receptors in the brain decrease in quantity in the 

absence of estradiol. Whether there are sex differences in the rate of estradiol receptor 

downregulation has not been investigated and is an avenue for future research.     

 At the cellular level, GPER1 are localized to the extracellular membrane and also 

on the membrane of endoplasmic reticulum (Otto et al., 2008; Zimmerman, Budish, 

Kashyap, & Lindsey, 2016). Cyclic-AMP and calcium are often the messengers 

associated with GPER1 signaling but there are many others suggested to play a role, 

and these are dependent on cell-type being studied (Nilsson, Olde, & Leeb-Lundberg, 

2011). While outside of the scope of this dissertation, understanding the effects of 

GPER1 on downstream signaling cascades is certainly an important goal for future 

research.  

Clinical relevance 

A fundamental next step for clinical scientists is to identify how estradiol may be 

playing a role in human’s propensity for addiction. As discussed extensively in chapter I, 
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estradiol is seen to enhance vulnerability for escalation of drug use, craving and relapse 

in women. However, there is little to no literature on the protective effects of estradiol in 

males. In this set of studies, I have shown that activating GPER1 decreases the value of 

cocaine for male rats. I hypothesize that estradiol, possibly via GPER1, may have 

similar effects in humans implying that not only does estradiol enhance vulnerability in 

females, but may be protective in males. I suggest that GPER1 and drugs that target 

this receptor be studies and treated as a potential neuronal target for the treatment of 

addiction in males. There are selective estradiol receptor modulators currently approved 

for use in clinical setting. One such drug is Raloxifene, a selective GPER1 agonist in the 

brain that does not cause estrogenic effects in the periphery.  

Conclusions 

Substance abuse and addiction to illicit drugs destroys lives. It is necessary that 

we continue to study the biological basis for addiction to get closer to effective and 

sustainable treatment outcomes. Pre-clinical models are an exceptional source to 

understanding what variables influence drug-seeking in specific populations, including 

sex differences. Here, I present a series of experiments investigating the contribution of 

a specific estradiol receptor subtype, GPER1, in mediating sex differences observed in 

addiction vulnerability and reward. While more research is needed to confirm this, it 

appears that GPER1 may be protective against drug-reward is males and may be a 

target for therapeutic treatment for addiction in males. This set of studies also highlights 

the importance of basic-science laboratories using the right behavioral measures to 

study males and females, which may not always be the same. Further, I show an effect 

of GPER1 in males but not females in chapter II, and the opposite in chapter III, 
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indicating that males and females cannot always be studied and compared as if their 

underlying neurobiology are the same. It is always necessary to include both sexes, 

which I urge future research to do.  
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