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Abstract 
 

Emerging technologies in transportation, including vehicle automation, electrification, and 

shared mobility, are poised to transform the mobility paradigm, transportation markets, and 

travelers’ behavior in the coming decades. While improvement in safety, mobility, and energy 

efficiency yields large benefits to the society, the sustainability outcomes and the net effect of 

these technologies on energy usage and the environment are unclear. With the transition still in 

its infancy, there is an opportunity to work proactively to ensure that these emerging 

technologies develop sustainably. This research broadly focuses on leveraging the synergies of 

these emerging technologies to improve transportation system efficiency and sustainability. It is 

intended to shed light on how they impact travel pattern, energy use, and economics of mobility.  

This dissertation begins by examining the interactions between connected and automated 

vehicle (CAV) technology and the environment. Net positive environmental impacts are 

expected at the vehicle, transportation system, and urban system levels, but a greater vehicle 

utilization and shifts in travel patterns could cause an energy “rebound effect.” Using an 

econometric model of vehicle miles traveled (VMT) choice under income and time constraints; I 

estimate elasticities of VMT demand with respect to fuel and time costs. The estimated 

elasticities are then used to simulate VMT and energy use impacts of full, private CAV adoption 

under a range of possible changes to the fuel and time costs of travel. I forecast a 2-47% increase 

in travel demand for an average household. This presents a stiff challenge to policy goals for 
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reductions in energy use, traffic congestion, and local and global air pollution, as CAV use 

increases. 

Next, I investigate the nexus of electrification and shared mobility by determining range 

suitability and cost competitiveness of battery electric vehicles (BEVs) for ride-hailing drivers 

using the 2019 driving data on the Lyft platform. I estimate that, for more than 86% of drivers, 

their daily travel needs can be met by a fully charged BEV with listed range of 250 miles on at 

least 95% of days. The results suggest that range and lifetime cost should not be significant 

barriers to widespread BEV take-up in the ride-hailing business.  

Machine learning techniques are utilized to understand the sharing behavior in ride-hailing 

trips, using a novel dataset from all ride-hailing trips in Chicago in 2019. I find that the travel 

impedance variables (trip cost, distance, and duration) collectively contribute to 95% and 91% of 

predictive power in predicting the propensity to share and successful matching, respectively. 

This implies that pricing signals are more effective to encourage ride sharing. Building on these 

findings, I provide empirical evidence on the short-run effects of incentives for shared travel in 

ride-hailing. Using data on all ride-hailing trips in Chicago for eight months from 2019-2020, the 

effect of a new congestion fee policy change on ridership is estimated. I show that a $1.15 rise in 

the relative price of a private ride is associated with a 22% relative rise in willingness to share. I 

find no evidence of a drop in TNC person-trips overall, which indicates that the policy effect is 

mainly to induce substitution from private to shared rides. The insights from this research can 

provide guidance to steer the development of these emerging technologies towards desired 

societal and environmental outcomes and inform short- and long-term policymaking for their 

sustainable adoption. 
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 Introduction 
 

 Background 

The transportation sector is a vital element of the U.S. economy, comprising roughly 9% of 

its gross domestic product (GDP) or 1.9 trillion USD annually [1]. It is also currently the largest 

contributor to greenhouse gas (GHG) emissions among the U.S. economic sectors [2] and the 

fastest-growing source of GHG emissions and energy consumption globally. Transportation 

directly generated over 7 gigatons of carbon-dioxide equivalent (GtCO2 eq) GHG emissions 

worldwide in 2010, or 23% of total global energy-related GHG emissions [3]. In 2019, the 

transportation sector accounted for 28.5% of total national energy-related GHG emissions in the 

U.S., according to the U.S. Environmental Protection Agency (EPA) [2]. Recent data from the 

U.S. Energy Information Administration (EIA) also shows that carbon dioxide (CO2) emissions 

from the U.S. transportation sector (1,893 million metric tons or MMt) surpassed CO2 emissions 

from the electric-power sector (1,803 MMt) from October 2015 through September 2016 [4]. 

This is the first time that transportation-sector CO2 emissions have regularly exceeded CO2 

emissions from the electric power sector since the late 1970s on a 12-month rolling basis. The 

most recent data from the U.S. EPA confirms that the transportation sector remained as the 

largest source of emissions since then [5]. In absence of transportation decarbonization, this 

trend is likely to continue if growth in renewable energy lowers fossil fuel-based electricity 

generation, leading to continued reduction of power sector emissions. 
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Within the transportation sector, road-based travel is responsible for the largest share of CO2 

emissions, GHG emissions, and energy use compared to other modes of transportation such as 

aviation, rail, and marine. Passenger cars, light-duty trucks (including sport utility vehicles, 

pickup trucks, and minivans), and freight trucks emitted 41.6%, 18.0%, and 22.9%, respectively, 

of total U.S. transportation-sector GHG emissions in 2018 [2]. Given that emissions from the 

transportation sector increased more in absolute terms than emissions from any other sector from 

1990–2018, transportation emissions must be a key focus of mitigation efforts. Strategic 

development and deployment of new technologies to curb the environmental impacts of road-

based travel can therefore go a long way towards alleviating the environmental impacts and 

enhancing sustainability and social equity of the transportation sector overall.  

 

 Emerging Technologies in Transportation Sector 

Emerging technologies, including vehicle automation, connectivity, electrification, and 

shared mobility are poised to reshape the transportation sector. Some researchers went as far as 

describing these technologies as “revolutions” and “disruptions” [6–8]. These transformations 

have a potential to help or hinder the environmental, economic, and equity implications of future 

road-based travel, depending on the direction of development, consumer attitudes, and policies 

[9,10]. A rapidly growing body of research has investigated the potential implications on 

deploying vehicle automation, connectivity, electrification, and shared mobility. The consensus 

among recent studies is that only a converging deployment of vehicle automation, connectivity, 

electrification and shared mobility can radically improve the sustainability of transportation 

sector (Figure 1-1). In the following, I explain these transformative technologies and elaborate 



   
 

 3 

on their potential trade-offs in improving transportation system efficiency, sustainability, and 

social equity. 

 
Figure 1-1. The emerging technologies in the transportation sector and the drivers to sustainable adoption. 

 

1.2.1. Vehicle Connectivity and Automation 

Vehicle connectivity and automation are separate technologies that could exist independent 

of each other but have strong complementary attributes. Connectivity refers to a vehicle’s 

capacity to exchange information with other vehicles and infrastructure. This capacity can be 

realized through Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I), and other 

cooperative communications networks. Vehicle connectivity is a key enabler of vehicle 

automation. Vehicle automation refers to any instance in which control of a vehicle capability 

normally overseen by a human driver is ceded to a computer. Examples of automation 

commonly seen in vehicles on the market today include cruise control, adaptive cruise control, 
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active lane-keep assist, and automatic emergency braking. A fully automated vehicle can 

navigate itself by sensing and interacting with the driving environment to reach its destination 

without human intervention [11–13]. The terms “autonomous” and “automated” are often used 

interchangeably in the literature, but merit distinction. The former (a subset of the latter) refers to 

a vehicle capable of navigating without direct input from a human driver, with limited or no 

communication with other vehicles or infrastructure, while the latter indicates broader classes of 

vehicle automation. Here, the term “CAV technology” refers to vehicle technology with high 

levels of automation as well as connectivity capabilities. These two facets of CAV technology 

are expected to develop in concert.  

The Society of Automotive Engineers (SAE) International’s J3016 taxonomy classifies 

vehicle automation by level of driver intervention and/or attentiveness required for operation 

[14]. To avoid redundancy and confusion, the U.S. National Highway Traffic Safety 

Administration (NHTSA) agreed to adopt the SAE’s categorization, instead of relying on vehicle 

capabilities [15]. In 2016, the NHTSA proposed mandating V2V connectivity capability on all 

new cars and light-duty trucks, citing significant potential safety benefits [16]. On September 12, 

2017, the U.S. Department of Transportation released updated federal guidelines for the 

deployment of highly automated vehicle technologies [17]. These guidelines focus on road safety 

performance and mobility services, without addressing environmental impacts. 

The primary purpose of CAV technology is to increase transportation safety and provide 

better mobility services [17]. However, vehicle connectivity and automation will also inevitably 

and significantly change the environmental profile of the transportation sector. A growing body 

of literature has examined the possible environmental implications of CAVs, and has found large 

uncertainty based in part on the shortage of real-world data for CAV operations [10,18–24]. 
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CAV technology could facilitate either dramatic decarbonization of transportation or equally 

dramatic increases in transportation-sector emissions. The net environmental impacts of CAV 

technology depend on lawmaking and decisions at the international, federal, state, and local 

levels. CAV technology is at the early stage of development. Thus, a forward-looking 

perspective is needed to properly design, plan, and develop a CAV system that provides both 

better mobility service as well as desired societal and environmental outcomes. 

 

1.2.2. Vehicle Electrification 

Electrification is an indispensable (yet not entirely sufficient) approach towards 

decarbonizing future mobility. The Intergovernmental Panel on Climate Change declares that 

electric modes of transportation would “need to displace fossil-fuel powered passenger vehicles 

by 2035−2050 to remain in line” with pathways to hold global warming to 1.5°C [25]. Electric 

vehicles (EVs) not only entail higher energy efficiency compared to internal combustion engine 

vehicle (ICEVs), but also can concentrate emissions from point sources of tailpipes to power 

plants for more efficient and effective emission control and most importantly to help increase 

renewable energy integration [26]. If coupled with clean energy, EVs can dramatically cut 

transportation emissions. Many studies examining the environmental externalities of vehicle 

electrification have found that EVs usually improve environmental outcomes and remove local 

pollution from urban cores [27,28]. The specific environmental impacts of EVs are largely 

determined by when cars are charged and where and how chargers are integrated into the electric 

grid [29,30]. Emissions from power generation for EVs might in some cases be higher than 

tailpipes emissions from ICEVs. However, moving emissions from a large number of individual 
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vehicle tailpipes to a few centralized power plants is likely to reduce emission mitigation costs, 

improve energy efficiency, and help integrate renewable energy in power generation [26,27]. 

On the other hand, the transportation sector is among the most difficult sectors for 

electrification and decarbonization, due to decentralized operation, policy conflicts, 

infrastructure insufficiency, and consumers’ lack of awareness, interest, and confidence among 

other factors. Recent studies have shown even aggressive adoption of EVs cannot alone meet the 

net zero emission economy targets [31,32]. The market penetration of BEVs is currently 

hindered by their high cost, arguably short driving ranges, long charging times, and limited 

charging infrastructure [33,34]. The extent to which BEVs can be accepted by consumers 

depends on individual travel patterns (travel times, trip length, parking duration), BEV 

characteristics (driving range, charging rates), charging infrastructure access, economics, and a 

host of psychological factors [35]. Despite potential benefits, the actual environmental impacts of 

EVs are affected by many factors, such as unregulated charging, Vehicle-to-Grid (V2G) 

communications, charge speed, and the degree to which users overcome range anxiety.  

There is considerable uncertainty surrounding the rate at which EV technology will continue 

to advance as well as the rate at which consumer demand for EVs will grow. As such, 

projections of expected EV deployment over the next two decades vary considerably. While 

experts disagree about how rapidly EV fleets will expand, there is general consensus that EVs 

have the potential to interact positively with new transportation technologies and mobility 

business models [36]. 
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1.2.3. Shared Mobility 

Substitution from private to shared mobility reduces congestion, energy use, local air 

pollution, and global greenhouse gas emissions [6,37,38]. Shared mobility is an effective way to 

reduce VMT by combining trips that are temporally and spatially similar, generating many 

benefits including efficiency improvements, fleet downsizing, congestion reduction, energy 

conservation, and emissions alleviation. On-demand shared mobility services, commonly known 

as “Transportation as a Service” (TaaS) [39,40] offered by Transportation Network Companies 

(TNCs) offer flexible, efficient, and convenient mobility, promoted as a remedy for private 

vehicle dependency, traffic congestion, high parking costs, and environmental pollution. Ride-

hailing or ridesourcing is a “prearranged and on-demand (are not allowed to street hail) 

transportation services for compensation in which drivers and passengers connect via digital 

applications” [41]. The explosive increase in the adoption of ride-hailing (or ridesourcing) 

services such as Lyft, Uber, and DiDi can be attributed to the ease of access using a smartphone 

application along with a higher availability compared to regulated, traditional taxi services [42–

45]. TNCs account for a small yet rapidly growing share of transportation miles [46]. Some 

analysts predict a rapid move from private car ownership to TaaS in the next decade, via on-

demand ride-hailing platforms [47] (Figure 1-2).  
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Figure 1-2. The expected rapid growth of Transportation-as-a-Service (TaaS).  

Source: Bureau of Labor Statistics and Morgan Stanley Research [47].  
 

Recent empirical evidence reveals that the unintended consequences of ride-hailing services 

may outweigh some benefits by undermining public transportation [48,49], drawing mode share 

from other more sustainable transportation means [38,50], increasing vehicle ownership [51,52], 

VMT and  deadheading miles [43,53], and leading to aggravated congestion in urban areas [54]. 

In large U.S. ride-hailing markets it is estimated that 7-13% of total traffic in core counties is 

attributed to TNCs, while they serve only 2-3% of regional trips [46]. Ride sharing or pooling, in 

which a rider shares all or some portion of the trip with other passengers, has the potential to 

mitigate negative impacts of solo ride-hailing by consolidating VMT from multiple 

spatiotemporally matching trips. The rate of sharing is a key factor in determining the 

sustainability of ride-hailing compared to other transportation alternatives, especially for future 

autonomous on-demand mobility services [9,39,55].  

 



   
 

 9 

 Synergy of Emerging Technologies for Sustainable Transportation  

The emerging mobility technologies have significant potentials to enhance smart and 

sustainable transportation if their development and deployment are converging. Shared mobility, 

vehicle automation, and electrification have complementary features; they collectively address 

each other’s practical barriers. The economic and environmental impacts of each individual 

technology are examined in various studies. The synergetic environmental effects and mutual 

economic benefits, however, have received less attention. Thus, those impacts for smart and 

sustainable mobility are still relatively nascent. The research presented in this dissertation 

reflects my contributions to a better understanding of the sustainability implications and 

synergetic effects of these technologies. Readers are referred to Taiebat & Xu (2019) [33] for a 

more detailed discussion on synergies of vehicle electrification, automation and shared mobility. 

 

 Structure of the Dissertation and Contributions 

My dissertation broadly focuses on system-level analyses of vehicle automation, 

electrification, and shared mobility, by understanding how they impact travel pattern, energy use, 

and economics of mobility. The goal of this research is to provide guidance for technology and 

policy development by leveraging emerging mobility modes to improve transportation system 

efficiency, sustainability, and social equity. With the transition still in its infancy, there is an 

opportunity to work proactively to ensure that vehicle automation, electrification and shared 

mobility technologies develop sustainably and avoid unintended energy, environmental, and 

equity consequences.  

The research presented in this dissertation has been published, or is currently under 

consideration at the following journals with these co-authors: 
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• Chapter 2: Taiebat, M., Brown, A.L., Safford, H.R., Qu, S. and Xu, M., 2018. A review 

on energy, environmental, and sustainability implications of connected and automated 

vehicles. Environmental Science & Technology, 52(20), pp.11449-11465. (Among top 

10 most downloaded articles in ES&T for 12 consecutive months) 

• Chapter 3: Taiebat, M., Stolper, S. and Xu, M., 2019. Forecasting the impact of 

connected and automated vehicles on energy use: a microeconomic study of induced 

travel and energy rebound. Applied Energy, 247, 297-308. 

• Chapter 4: Taiebat, M., Stolper, S. and Xu, M., 2021. Widespread range suitability and 

cost competitiveness of electric vehicles for ride-hailing drivers. Under Review. 

• Chapter 5: Taiebat, M., Amini, E. and Xu, M., 2021. Sharing Behavior in Ride-hailing 

Trips: A Machine Learning Inference Approach. Transportation Research Part D: 

Transport and Environment. 

• Chapter 6: Stolper, S., Taiebat, M., and Xu, M., 2021. Ridesharing incentives to reduce 

externalities from energy use. Manuscript in Preparation. 

 

The remainder of the dissertation is organized as follows. Chapter 2 is intended to foster 

understanding and discussion of the likely and potential environmental implications of CAV 

technologies by reviewing existing studies and identifying key research needs. I define 

environmental impacts broadly in this chapter, including not only downstream emissions and 

wastes, but also upstream resource and energy demands. I also discuss some socioeconomic 

aspects of CAV adoption that are associated with energy and the environment. The review 

includes some environmental impacts that could be realized through vehicle automation alone, 

but most impacts require automation in conjunction with connectivity. I begin by developing a 

holistic framework for analyzing different levels of interactions between CAVs and the 

environment (Section 2.1). I then survey the quantitative results of relevant studies and critically 

evaluate the key assumptions and conclusions of each (Section 2.2).  
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In Chapter 3, I use an econometric model to forecast the induced travel and rebound from 

CAVs using data on existing travel behavior. I develop a microeconomic model of VMT choice 

under income and time constraints; it is then used it to estimate elasticities of VMT demand with 

respect to fuel and time costs, with fuel cost data from the 2017 United States National 

Household Travel Survey (NHTS) and wage-derived predictions of travel time cost. I find 

evidence that wealthier households have more elastic demand, and that households at all income 

levels are more sensitive to time cost than to fuel cost. I use the estimated elasticities to simulate 

VMT and energy use impacts of full, private CAV adoption under a range of possible changes to 

the fuel and time costs of travel. I forecast a 2–47% increase in travel demand for an average 

household.  

Chapter 4 investigates the range suitability and cost competitiveness of BEVs for ride-

hailing drivers using 2019 driving data on the Lyft platform. I estimate that, for more than 86% 

of drivers, their daily travel can be met by a fully charged BEV with listed range of 250 miles for 

at least 95% of days. New and pre-owned BEVs both appear to be cost-saving for many drivers. 

I estimate that a $5,700 BEV purchase subsidy would make new BEVs cheaper than gas-

powered vehicles for all Lyft drivers, holding annual mileage and vehicle prices constant. The 

results suggest that range and lifetime cost should not be significant barriers to widespread EV 

take-up in the ride-hailing business. 

In Chapter 5, I use machine learning techniques to under the sharing behavior in ride-

hailing trips, using a novel dataset from all ride-hailing trips in Chicago in 2019. I find that the 

travel impedance variables (trip cost, distance, and duration) collectively contribute to 95% and 

91% of the predictive power in determining whether a trip is requested to share and whether it is 
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successfully shared, respectively. This implies that pricing signals are most effective to 

encourage riders to share their rides.  

Building on these findings, in Chapter 6, I provide empirical evidence on the effects of 

incentives for shared travel in ride-hailing. The city of Chicago has implemented a congestion 

pricing policy in the ride-hailing sector, incentivizing shared ridership. I use data on all ride-

hailing trips in Chicago for eight months from 2019-2020 to estimate the effect of this policy 

change on ridership. I find that willingness-to-share (WTS) in Chicago’s ride-hailing trips has 

been on a downward trend but rose suddenly and precipitously after the introduction of the 

congestion pricing policy. I show that a $1.15 rise in the relative price of a private ride is 

associated with a 2.4 percentage points rise in WTS without a statistically significant reduction 

in ridership. The results suggest that governments may be able to drive reductions in energy use 

and its externalities through strengthening the incentive to share ride-hailing trips.  

Finally, in Chapter 7, I identify knowledge gaps, draw conclusions on the findings and 

offer recommendations for future research in the nexus of sustainability and emerging mobility 

technologies.  
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 Energy, Environmental, and Sustainability Implications of 
Connected and Automated Vehicles 

 

 

 Levels of Interactions between CAVs and the Environment 

CAV technology interacts with the environment at different scales and levels of complexity. I 

define four levels of interactions between CAVs and the environment―the vehicle level, 

transportation system level, urban system level, and society level―as illustrated in Figure 2-1. 

Interactions generally increase in complexity from the vehicle level to society level and may stem 

from CAV technology directly or CAV-facilitated effects.  

The most direct and well-studied interactions occur at the vehicle level. At this level, 

connectivity and automation physically alter vehicle design and operation. At the transportation 

system level, CAV technology can drastically change how vehicles interact with each other in the 

driving environment. At the urban system level, CAV-based transportation interacts with a wide 

range of infrastructure in the urban environment such as roads, power grids, and buildings, thereby 

altering how urban systems utilize resources and energy and generate emissions and waste. 

Finally, how the public perceives and how the government regulates CAVs can have profound 

effects at the society level.  

Generally, higher-level interactions will have farther-reaching implications despite often 

receiving less attention (Table 2-1). Higher-level interactions are also more difficult to quantify 

and are associated with greater uncertainty. Many important questions at high levels are beyond 
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the scope of quantitative or predictive modeling and must instead be addressed qualitatively. 

Because research focusing on CAV environmental implications is just emerging in recent years, a 

large body of literature is in the form of reports and white papers. In order to make this review as 

comprehensive as possible, this analysis is based on not only peer-reviewed studies but also 

reputable reports and documents containing consensus quantitative results. Key sources are 

classified based on scope in Table 2-2.  

 

 
Figure 2-1. Levels of interactions between CAVs and the environment and corresponding major influence 

mechanisms. 
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Table 2-1. Summary of key environmental impacts at each level of CAV-environment interaction.  

 
Major Influencing 
Mechanisms Positive Impacts Negative Impacts Sources 

V
eh

ic
le

 

• Vehicle operation 
• Vehicle design 
• Electrification 
• Platooning  

• Higher energy efficiency  
- Optimal driving cycle 
- Eco-routing 
- Reduce cold starts 
- Less idling 
- Less speed fluctuations 
- Powertrain downsizing 
- Self-parking 

• Safety enabled vehicle light-weighting 
• Vehicle right-sizing 
• Complementary electrification benefits 
• Platooning 

• Faster highway speeds 
• Additional ICT equipment needs for 

navigation and communication  
• Aerodynamic shape alteration 
• Higher auxiliary power requirement  

[10,11,19,20,22,56–
61] 

T
ra

ns
po

rt
at

io
n 

Sy
st

em
 • Travel-cost implications 

• Changed mobility services 
• Vehicle utilization 
• Congestion and road capacity 

• Greatly reduced human labor costs  
• Promotion of shared mobility 
• Integration with mass transit 
• Fleet downsizing 
• Increased effective roadway capacity 
• Decongestion 
• Fewer crashes and less accident-related 

traffic 
• Syncing with traffic lights 

• Higher vehicle utilization rate 
• More frequent and longer trips result 

in greater vehicle-miles traveled 
• More unoccupied travel (for 

parking, between trips, etc.) 
• Congestion increases due to induced 

travel 
• Competition with mass transit 

[10,19,20,22,37,56,58
,62–70] 

U
rb

an
 sy

st
em

 • Infrastructure implications 
• Integration of CAVs with 

power systems 
• Land use 

• Changes in land-use patterns  
• Reduced need for parking infrastructure 
• Integration with power systems through 

vehicle electrification 
• Reduced need for highway lighting and 

traffic signals 

• Increased urban sprawl 
• Need for large, energy-intensive 

data centers [20,63,71–74] 

So
ci

et
y 

• Behavior response and travel 
pattern shift 

• Shared consumption 
• Transformation of other 

sectors 
• Workforce impacts 

• Promotion of shared consumption 
• Spillover effects to other sectors 

• Induced travel demand and rebound 
effect 

• Transportation modal shift (e.g., 
rail/aviation to road travel) 

• Gradual unemployment and job 
displacement  

[22,56,64,75–80] 
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Table 2-2. Classification of relevant CAV studies by scope. 
 

Study 

V
eh

ic
le

 

T
ra

ns
p.

 S
ys

. 

U
rb

an
 sy

s. 

So
ci

et
y 

* Alonso-Mora et al. [63]     
 Anderson et al. [13]     
* Auld et al. [64]     
* Bansal and Kockelman [76]     
 Barth et al. [58]     
* Bauer et al. [81]     
 Brown et al. [20]     
* Chen et al. [70]     
* Chen et al. [82]     
* Childress et al. [56]     
* Crayton and Meier [83]     
* Fagnant and Kockelman [68]     
* Fox-Penner et al. [84]     
 Fulton et al. [85]     
* Gawron et al. [23]     
* Gonder et al. [86]     
 Greenblat & Shaheen [37]     
* Greenblatt and Saxena [19]     
* Harper et al. [78]     
* Heard et al. [87]     
* Kang et al. [62]     
* Kolosz and Grant-Muller [73]     
* König and Neumayr [88]     
* Kyriakidis et al. [79]     
* Lavrenz and Gkritza [89]     
* Li et al. [74]     
 Liu et al. [90]     
* Lu et al. [65]     
* Malikopoulos et al. [91]     
* Mersky and Samaras [57]     
* Moorthy et al. [92]     
 Prakash et al. [93]     
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Asterisk (*) indicates publication in a peer-reviewed journal. Sorted alphabetically based on first author. 
 

 

 Environmental Impacts of CAV at Each System Level 

2.2.1. Vehicle Level 

At this level, the direct environmental effects of CAV technology on a per vehicle basis are 

considered. These effects can also manifest in fleets. Many studies have focused on the vehicle-

level and show that individual CAVs are generally more energy efficient and generate less 

emissions than conventional vehicles [10,19,22]. These benefits at the vehicle-level can be 

attributed to four major factors: operation, electrification, design, and platooning. 

 

Vehicle operation: A number of references discuss the potential for vehicle automation to 

improve car-centric energy efficiency by optimizing vehicle operation: i.e., by maximizing the 

operation of vehicles at the most efficient mode [13,20,58,69]. Efficient driving broadly 

translates into improved fuel economy, reduced energy consumption, and abated tailpipe 

emissions. Higher driving efficiency can be achieved in CAVs through a variety of mechanisms, 

 Rios-Torres and Malikopoulos [59]     
 Stephens et al. [22]     
* Stern et al. [67]     
* Wadud [94]     
* Wadud et al. [10]     
* Wang et al. [95]     
* Wu et al. [96]     
* Zakharenko [97]     
* Zhang et al. [98]     
* Zhang et al. [99]      
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including optimal driving cycle, dynamic eco-routing, less idling, reducing cold starts, trip 

smoothing, and speed harmonization [10,20,67,68,96]. These mechanisms are discussed below. 

Different human drivers in identical situations make different real-time decisions, often 

leading to sub-optimal results [12]. In CAVs, eliminating heterogeneity between drivers and 

improving driving decision-making helps optimize the driving cycle. Barth and Boriboonsomsin 

reported that, even when drivers remain “in the loop” of vehicle operation (i.e., at a level of 

involvement less than conventional driving but one that falls short of full automation), providing 

dynamic feedback to drivers results in up to 20% fuel savings and decreased CO2 emissions 

without a significant increase in travel time [69]. The information gathered from vehicle 

connectivity also enables optimal route selecting, widely known as dynamic eco-routing 

[58,69,100]. Gonder et al. estimated the potential energy savings of eco-routing in a Chevy Bolt 

at around 5% [86]. Trip smoothing and speed harmonization are other practices that aim to 

minimize repeated braking-acceleration cycles through intelligent speed adaption, smooth starts, 

fewer speed fluctuations, and eliminating unnecessary full stops.  

CAV technology substantially facilitates and amplifies these practices. Wu et al. estimated 

that partial automation in conjunction with connectivity can reduce fuel use by 5-7% compared 

to human driving when automation enables vehicles to closely follow recommended speed 

profiles [96]. At the fleet level, cooperative communications between vehicles can further reduce 

energy use, with up to 13% fuel savings and 12% reductions in CO2 emissions reported in 

experiments [58]. Prakash et al. suggested that 12-17% reduction in fuel use can be achieved 

when a CAV is trailing a lead vehicle with the specific objective of minimizing accelerations and 

decelerations [93]. Based on experiments, Stern et al. found that introducing even a single CAV 

into traffic dampens stop-and-go patterns, resulting in up to 40% reductions in total traffic fuel 
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consumption [67]. Rios-Torres and Malikopoulos developed a simulation framework for mixed 

traffic (CAVs interacting with human-driven vehicles) and reported that the fuel-consumption 

benefits of CAVs increase with higher CAV penetration [59]. Chen at al. suggested a wider 

range of changes in fuel consumption (between -45% to +30%) that would result from 

transitioning from conventional to CAV fleets at the U.S. national level [82]. 

Less idling and fewer cold starts can help reduce energy waste and mitigate emissions. Cold 

starts are a major contributor to a number of criteria air pollutants from the transportation sector, 

including volatile organic compounds (VOCs), NOx, and CO [58,101]. Simulations demonstrated 

fewer cold starts for shared automated taxis [68]. In such vehicles, since no aggressive 

acceleration is needed, powertrains can also be downsized. This is especially relevant for 

automated shared mobility services in urban areas where more energy use is due to acceleration 

rather than from high-speed wind resistance [10]. Self-parking features also save time and limit 

braking-acceleration cycles, reducing energy intensity by approximately 4% [20]. 

On the other hand, some attributes of CAVs may result in more energy consumption. Radar, 

sensors, network communications, and high-speed internet connectivity require higher auxiliary 

power from vehicles, which manifests as greater power draw and consequently higher energy 

consumption [102]. Energy demands for connectivity components, sensing, and computing 

equipment can significantly alter the overall energy efficiency of CAVs [23]. Additionally, 

improved safety in CAVs may induce higher highway speeds. Since aerodynamic drag forces 

increase quadratically with speed, higher highway speeds result in higher fuel consumption 

above a certain threshold [58]. For instance, a speed increase from 70 to 80 mile per hour (MPH) 

is reported to increase average energy use by 13.9% per mile [103]. Wadud et al. and Brown et 

al.  suggested that typical driving at above-optimal speeds tends to decrease overall fuel 
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economy by 5%-22% [10,20]. This decrease may offset—and indeed, overwhelm—increases in 

engine efficiency. It is conceivable that improved safety in CAVs could enable relaxation of 

speed limits for roadways where vehicles are currently restricted to below-optimal speeds, 

resulting in some energy savings. This point received less attention in the literature.     

The extent to which CAV-related increases in vehicle energy consumption will offset gains 

in energy efficiency is unclear. CAV technology could lead to substantial net improvements in 

fuel economy and emissions reduction if the negative effects are minimized and the positive 

realized. Mersky and Samaras raised the question of how to test and measure fuel efficiency of 

CAVs by updating EPA rating tests [57]. They developed a method for testing fuel economy of 

CAVs using the existing EPA test procedure and showed that fuel economy differences for the 

CAV tests range from -3% to +5% compared to the current EPA testing procedure.  

 

Electrification: Many studies examining the environmental externalities of vehicle 

electrification have found that electric vehicles (EVs) usually improve environmental outcomes 

and remove local pollution from urban cores [27,28]. The specific environmental impacts of EVs 

are largely determined by when cars are charged and where and how chargers are integrated into 

the electric grid. Emissions from power generation for EVs might in some cases be higher than 

tailpipes emissions from vehicles with internal combustion engines. However, moving emissions 

from a large number of individual vehicle tailpipes to a few centralized power plants is likely to 

reduce emission mitigation costs, improve energy efficiency, and help integrate renewable 

energy in power generation [27]. Offer et al. demonstrated that plug-in hybrid electric vehicles 

(PHEVs) and battery electric vehicles (BEVs) have much lower life-cycle costs and emissions 

compared to fuel cells or internal combustion engines vehicles [104]. Despite potential benefits, 
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the actual environmental impacts of EVs are affected by many factors, such as unregulated 

charging, Vehicle-to-Grid (V2G) communications, charge speed, and the degree to which users 

overcome range anxiety. The effects of these factors remain uncertain and require more research. 

CAV technology can provide a strong complement to EV technology, potentially solving 

some of the challenges of EV development [20]. In electric CAVs, on-board energy management 

strategies can be explicitly designed and implemented to take advantage of synergies between 

electrification and automation. For instance, an electric CAV could optimize route selection and 

driving cycle to reduce battery draining, maximize energy recovery via regenerative braking, and 

extend the battery life.  

CAVs can also mitigate the range restriction of EVs by matching appropriately ranged 

vehicles to individual trips,[70] and take advantage of the energy and environmental benefits 

brought by vehicle electrification. Offer argued that even if electric CAVs substantially increase 

vehicle utilization, they will have a large positive impact on transport decarbonization and will 

curb global GHG emissions by improving the economics of electrification [60]. Shared 

automated electric vehicles (SAEVs) magnify benefits by orders of magnitude [84]. Greenblatt 

and Saxena suggested that electric automated taxis can reduce per-mile GHG emissions by more 

than 90% compared to using conventional vehicles for daily travel [19]. Bauer et al. simulated 

the operation of SAEVs in NYC, and found that under the current power-grid mix, SAEV fleet 

would generate 73% fewer GHG emissions and consume 58% less energy than a non-electrified 

automated fleet [81]. 

 

Vehicle design: The size and weight of a vehicle have direct impacts on the vehicle’s fuel 

economy, and consequently on its overall environmental performance. The composition of the 
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vehicle body indirectly influences the life-cycle environmental impacts of the vehicle via 

resource and energy requirements associated with the supply chain. CAV engineering is 

expected to enable a number of efficiency-improving design practices, such as vehicle right-

sizing and safety-enabled vehicle light-weighting. On the other hand, more carbon-intensive 

materials are needed in CAVs, which could increase overall per-vehicle weight as well. 

Differences in CAV design strategies among automakers and the evolution of CAV design over 

time add uncertainties to analysis of CAV-related environmental impacts.  

 

(a) Vehicle light-weighting: A number of recent studies have addressed the life-cycle 

environmental impacts of vehicle light-weighting using alternative materials. Several report that 

each 10% reduction in vehicle weight yields on average a direct fuel economy improvement of 

6-8% [20,105]. In a highly connected and automated vehicle system, transportation safety can be 

significantly improved by eliminating human errors in driving. As a result, once CAVs make up 

the vast majority of on-road active vehicles, crashworthiness of vehicles becomes less crucial, 

and vehicles can become smaller with less safety equipment. Safety features contributed to 7.7% 

of total vehicle weight in an average new U.S. vehicle in 2011 [10]. If these features could be 

safely removed, an estimated 4.6-6.2% improvement in fuel economy could be realized [20]. 

Moreover, environmental impacts associated with the life-cycle of the eliminated vehicle safety 

features could also be avoided.  

Reduced safety equipment in CAVs also leads to more optimal and smaller powertrains, 

further improving fuel economy. Wadud et al. suggested “de-emphasized performance” as 

another potential option that would further downsize the powertrain of CAVs and save up to 5% 

of fuel consumption [10]. Conventional vehicles typically have power capabilities far in excess 
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of their average power requirements to satisfy occasional high-performance demands such as 

freeway merging. The ability of CAVs to smooth speed profiles, coupled with the high potential 

of CAVs to serve in shared mobility services, means that peak power demand could be 

significantly reduced.  

 

(b) Vehicle right-sizing: Another opportunity that could be realized from widespread use of 

CAVs is vehicle “right-sizing”. According to 2017 National Household Travel Survey, single 

and double-occupant vehicle trips respectively accounted for 58% and 25% of total annual 

vehicle-miles-traveled (VMT) in passenger trips made in the U.S., and the average occupancy of 

light-duty vehicles was just 1.67 passengers [106]. There is significant potential for vehicle size 

optimization by matching specific vehicles to specific trips to avoid wasted capacity and thus 

associated environmental impacts. In the case of automated taxis or shared automated vehicles 

(SAVs), a vehicle could be dispatched based on a passenger’s needs (e.g., a smaller vehicle for a 

solo traveler). Greenblatt and Saxena studied trip-specific (i.e., right-sized) automated taxis 

based on the average proportion of occupants and total VMT. They concluded that trip-specific 

automated taxis could improve the fuel efficiency of fleets by 30-35% [19]. Wadud et al. 

investigated an extreme scenario in which all trips occur in optimally sized vehicles. In this 

scenario, solo travelers travel in single-occupant CAVs with the energy efficiency of 

motorcycles (half the fuel economy of a compact car), two-person groups travel in compact cars, 

groups of 3–4 travel in mid-size vehicles, and groups of 5 or more travel in minivans. They 

reported that such a scenario would yield fuel savings of 45% [10]. While right-sizing 100% of 

vehicle trips may be an unrealistic goal, this demonstrates the high potential of CAV right-sizing 

for improving fuel economy and consequently reducing environmental impacts. 
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(c) ICT equipment and aerodynamic shape alteration: Figure 2-2 shows a schematic view of 

information and communications technology (ICT) devices that could be added onto a generic 

CAV. Manufacturing ICT devices is highly carbon-intensive [107], which increases GHG 

emissions associated with vehicle manufacturing. Moreover, additional ICT devices in CAVs are 

expected to consume more auxiliary power, which implies more operational energy use [102]. 

Although highly uncertain, Gawron et al. suggested that CAV subsystems and ICT equipment 

could increase a vehicle’s life-cycle primary energy use and GHG emissions by 3-20% due to 

increases in power consumption, weight, and data transmission [23]. 

Furthermore, adding ICT devices such as GPS antennae and LIDAR (Light Detection and 

Ranging) could alter vehicle aerodynamics. ICT devices can create sharp edges and increase 

frontal projected area, both generate turbulence around the vehicle at high speeds and force the 

vehicle to consume more energy to maintain its performance. This could dramatically reduce 

CAV fuel efficiency at high speeds. There is no empirical data to evaluate how significantly add-

on ICT devices affect aerodynamics and efficiency, but the magnitude of impacts can be roughly 

approximated using effects of roof racks on conventional vehicles. Chen and Meier reported that 

a roof rack can increase a passenger car’s fuel consumption by up to 25% [108]. Future CAV 

designs could integrate ICT equipment into the vehicle body better than the example shown in 

Figure 2-2, potentially improving aerodynamics. 
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Figure 2-2. Key technologies and additional ICT devices in a generic CAV for navigation and communication.   
This figure is a generalized model based on components and subsystems described in the literature [13,109] Actual 

engineering designs will vary among automakers and vehicle models, and future designs are likely to change as 
CAV engineering advances.  

 

Platooning: is synchronized movement of two or more vehicles trailing each other closely. 

Platooning reduces aerodynamic drag for following vehicles, making the whole platoon more 

efficient. Aerodynamic drag forces are proportional to the second power of speed, meaning that 

platooning is most effective in high speeds. Since platooning is practically viable for highways, 

adoption of this technique could yield significant fuel savings and emissions reductions. The 

magnitude of benefits depends on a number of platoon-specific characteristics, including cruising 

speed, speed variations, vehicle trailing space, vehicle shape (baseline aerodynamics), platoon 

size, the fraction of time spent on the highway, and the control algorithms used by the vehicles 

[58,110]. Vehicles in the middle of a platoon realize the largest energy-efficiency gains, while 

gains are smaller for vehicles at the front and rear of a platoon. Longitudinal controls, sensing, 

and V2V communications make it possible for CAVs to safely trail each other at close distances, 

enabling platooning [11]. Due to the relatively slow reaction time of humans, platooning is not 

safe when the driver is in the loop (i.e., when driving is not fully automated).  
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A number of studies have experimentally shown the energy and emission effects of drag 

minimization by vehicle platooning [95,111,112]. Many of these experiments have focused on 

trucks. Given the large frontal area and high percentage of highway cruising mileages in 

commercial heavy-duty trucks, truck platooning would yield substantial energy savings [113]. 

Tsugawa reported that a 3-truck platoon traveling at 80 km/h achieves a 10% drop in energy 

consumption (relative to three trucks traveling conventionally) when there is a 20-meter gap 

between trucks, and a 15% drop when the gap narrows to 5 meters [114]. 

For platoons containing mixed vehicle types separated by half- to full-vehicle lengths, the 

drag reduction is reported between 20 and 60% [115]. Wang et al. showed that a higher 

penetration rate of intelligent vehicles (similar to CAVs) in a tight platoon (i.e., a platoon with a 

very small gap between vehicles) could result in lower nitrogen oxide emissions [95]. Barth et al. 

projected 10-15% energy savings for platoons operating at separations of less than 4 meters [58].  

Platooning in dedicated lanes results in the highest environmental benefits. However, there 

are still beneficial opportunities for groups of two or more CAVs to platoon on mixed-use roads 

or lanes [20]. Platooning can also mitigate congestion and expand roadway capacity (discussed 

in Section 3.2.4). Although the environmental benefits of platooning have been proven, research 

is needed to quantify expected benefits at various CAV penetration scenarios. Realizing benefits 

also requires new engineering design for safe platoon maneuvers—including exiting a platoon 

and merging—for various vehicle types. 

 

2.2.2. Transportation System Level 

Large-scale penetration of CAVs will change transportation network loads [116] and 

consequently environmental impacts associated with the transportation system. The net result is 
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difficult to predict, particularly for different levels of CAV market penetration. Major 

mechanisms by which CAVs affect environmental impacts of the transportation system include 

changing travel cost, changing mobility services, and influencing congestion and roadway 

effective capacity.  

 

Travel-cost implications: CAVs allow passengers who would normally be driving to instead 

occupy travel time with a variety of activities such as working, reading, watching movies, or 

eating. By substituting driving for productive or leisurely activities, the perceived cost of in-

vehicle time (often called “value-of-travel time” (VOTT) or “willingness to pay” to save travel 

time) could be diminished. Moreover, eliminating the labor cost of human drivers in 

transportation services reduces direct travel cost and hence expands access to transportation 

services for lower-income individuals and households. This socioeconomic benefit could have 

accompanying environmental benefits if transportation services become cheap enough that 

lower-incomes substitute transportation services for private vehicles and if transportation 

services employ energy-efficient CAVs, since lower-income households tend to drive less 

efficient vehicles [38]. However, lowered travel cost is expected to increase travel demand, a key 

effect that could yield undesired consequences. 

Many studies have attempted to analyze the general cost of travel in CAVs. It is found that 

SAEVs could profitably reduce fees charged to passengers by up to 80% compared with a ride-

on-demand trip today, a drop that would make SAEVs price-competitive with mass transit [117]. 

Chen and Kockelman suggested that the total cost of charging infrastructure, fleet ownership, 

and energy for SAEVs ranges from $0.42 to $0.49 per occupied mile of travel [71], which is 

substantially lower than current costs of traveling in taxis or ride-hailing services. Greenblatt and 
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Saxena showed per-mile operation cost of high-VMT SAEVs are about one fifth of typical per-

mile taxi fares [19]. Lu et al. found that automated taxis (electric and conventional) could reduce 

daily commute costs by over 40% but increase total transportation-related energy consumption 

and emissions in Ann Arbor, MI [65]. 

Bosch et al. provided a more conservative estimate, indicating that shared and pooled CAV 

travel is likely to be only slightly less expensive than personal vehicle travel in terms of per-

passenger-kilometer cost. This is due to the higher capital cost and cleaning and maintenance 

needs of shared fleets. They also asserted that private ownership of CAVs might be cost-

competitive, despite the general assumption that SAV-based travel is cheaper than private CAV-

based travel [118]. Wadud analyzed the total cost of ownership for CAVs and implications for 

different levels of income. The study concludes that full automation in personal vehicles offers 

substantial benefits for the wealthy who have a higher value of time and drive more frequently. 

In contrast, full automation in commercial taxis is beneficial to all income levels [94]. 

The upshot is that while reducing travel costs is a positive externality likely to improve 

access to affordable travel options, transit equity, and consumer welfare, it may result in higher 

levels of energy consumption and environmental impacts at the transportation system level due 

to rebound effects (discussed further in Section 3.4). This may offset some efficiency benefits of 

CAVs at the vehicle-level. Moreover, the lower cost of CAV travel may discourage travelers 

from ride-sharing, since the cost savings associated with SAVs over private CAVs may not be 

substantial enough to be worth the extra hassle and reduced privacy [118].  

 

Changed mobility services: CAVs could reshape mobility services by promoting shared mobility 

and interacting with mass transit, as discussed below. 
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(a) Shared mobility: Large-scale penetration of CAVs has the potential to shift the 

transportation system from relying on privately-owned vehicles to a new system relying 

primarily on on-demand shared mobility services, [37], commonly known as “Mobility as a 

Service” (MaaS) [38]. Shared mobility is an effective way to reduce VMT by combining trips 

that are temporally and spatially similar, generating many benefits including efficiency 

improvements, fleet downsizing, congestion reduction, energy conservation, and emissions 

alleviation. These benefits are maximized by combining shared mobility and vehicle automation. 

CAVs can help boost car-sharing by improving user experience, avoiding vehicle 

unavailability and inaccessibility [119]. Kang et al. proposed a system-optimization framework 

for automated EV sharing, and suggested higher profitability and lower emissions per passenger-

mile of operation compared to conventional car-sharing services [62]. CAVs can also help 

improve ride-sharing efficiency. Ride-sharing is intended to improve vehicle occupancy by 

filling empty seats in vehicles with riders on similar routes. Compared to car-sharing, ride-

sharing is more dynamic and reliant on real-time matching [120]. Ride-sharing is particularly 

suited to CAV fleets that can continuously re-route based on real-time ride requests. Since SAVs 

have not yet been tested in the real world, most studies examining the topic have attempted to 

simulate the impact of implementing a SAV fleet in a specified area using agent-based models 

rather than empirical data [68,70,121].  

There are several ways in which combining shared mobility with CAVs can reduce travel 

costs. First, shared mobility systems spread ownership costs (i.e., depreciation, financing, 

insurance, registration, and taxes) and operational costs across a large user base [38]. Second, the 

shift from personally owned vehicles to on-demand SAVs could maximize capacity utilization 
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and improve vehicle utilization rate. For instance, the average daily parking time of current 

private vehicles is more than 90%,with the average daily driving of approximately 30 miles [20]. 

However, a SAV could travel more than 200 miles and complete around 20 trips per day on 

average, which translates into a more efficient vehicle utilization [65,70,122]. Third, high vehicle 

occupancy decreases energy use per passenger-mile-traveled, which reduces the fuel cost for 

each passenger. Finally, a transportation system that integrates SAVs can benefit from the 

efficiency of centralized planning. Decisions made at fleet management businesses are more 

likely to consider fuel costs and prioritize efficiency compared to individual vehicle owners, who 

are likely to prioritize the utility of their vehicles [75]. 

A number of studies find similar or lower costs for SAVs compared to current taxi services 

which on average cost approximately $0.80 to $5.75 per passenger-mile [37,65,75,81]. Fagnant 

and Kockelman conducted various simulations and found that the per-mile cost of a SAV fleet is 

around $1.00 [68]. Chen at al. estimated that the per-mile cost of a SAEV fleet ranges from 

$0.75 to $1.00 [70]. Bauer et al. reported the range of $0.29 to $0.61 per revenue mile of SAEV 

operation as a replacement for NYC taxis, which is an order of magnitude lower than the cost of 

present-day service [81]. 

SAVs also make it possible to decrease total fleet size and/or number of vehicles operating 

at a given time. This yields traffic and environmental benefits by reducing congestion, increasing 

highway capacity, and lowering emissions (further discussed in Section 3.2.3). Alonso-Mora et 

al. showed that introducing high-capacity CAVs with dynamic ride-sharing could substantially 

downsize the NYC taxi fleet. They demonstrated that using ten-passenger-capacity CAVs could 

serve 98% of the travel demand with a mean waiting time of 2.8 minutes while shrinking the taxi 

fleet to 15% of its present size. SAVs also make it possible to decrease the size of the private 
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vehicle fleet while meeting current travel demand. Studies showed that one SAV could feasibly 

replace anywhere from 5 to 14 private vehicles [65,68,70,123,124]. The replacement rate of 

SAEVs depends on battery capacity and charger availability [71,122]. SAEVs have lower 

replacement rates than SAVs because SAEVs need to be charged, a process that takes longer 

than conventional refueling. Hence more SAEVs than SAVs are needed to meet the same travel 

demand, since there must be sufficient SAEVs available to provide service while other SAEVs 

are charging [122].  

 

(b) Interaction with mass transit: Besides providing door-to-door mobility service, CAVs 

could interact with other transportation modes such as public transit. CAVs offer a convenient 

option for short, frequent trips, such as traveling from subway stops and bus stations to work or 

home. Integrating CAVs with mass transit therefore provide a promising solution to the 

“first/last-mile” problem, making mass transit more convenient which can in turn reduce 

vehicular travel [125]. Moorthy et al. found that traveling via public transit with CAV last-mile 

service could reduce energy consumption by up to 37% compared to traveling with personal 

vehicle [92]. If automation could be expanded to buses and rail, labor cost savings could be 

passed onto passengers via lower trip fares, thereby improving the competitiveness of mass 

transit. CAV services could also be used by transit agencies in public-private partnerships to 

supplement or replace costly services such as low-ridership bus lines or paratransit [13]. 

In contrast, CAV adoption could decrease the number of mass transit users since 

inexpensive CAVs could compete with transit systems. Similarly, low-cost, CAV-enabled shared 

mobility may result in less ridership for mass transit. Less revenue for mass transit has a 

disproportionate impact on low-income population, since low-income population tends to rely on 



 

32 
 

transit more heavily than higher-income population [38]. Further studies are needed to quantify 

the likely impact of CAVs in this regard. 

 

Vehicle utilization: In a CAV-enabled transportation system, more people would likely be 

willing to travel extended routes by car [80,126]. since the burden of driving is eliminated. Given 

that CAVs, unlike human drivers, do not need to rest, their deployment is likely to increase 

vehicle utilization and/or vehicle-hours-traveled. This translates to increased total VMT, energy 

use, and emission. 

Some studies have also found that replacing personal vehicles with SAVs will generate 

unoccupied VMT (e.g., as a vehicle returns to its origin after dropping off passengers), leading to 

higher total VMT at the transportation system level. The extent to which total system-wide VMT 

will change largely depends on how frequently trips are shared [65]. Fagnant and Kockelman 

found that if rides are never shared, a SAV-only fleet will generate 8.7% more VMT compared 

to a private-vehicle-only fleet, but allowing dynamic ride-sharing in a SAV fleet reduces this 

figure to 4.5% [123]. Similarly, Zhang et al. showed that a pooling SAV fleet generates 4.7% 

less VMT than a non-pooling SAV fleet [124]. Taking realistic traffic flows into account, Levin 

et al. reported that empty repositioning trips made by SAVs without dynamic ride-sharing 

increase congestion and travel time by 3-20% [127]. SAEVs could also drive to remote locations 

for charging, resulting in higher VMT. Loeb et al. estimated that travel to charging stations 

accounts for about 32% of unoccupied VMT in SAEV fleets [122]. Zhang et al. suggested that 

private CAVs can also generate unoccupied VMT if they reduce the number of household 

vehicles while maintaining the current travel patterns. For instance, a privately-owned CAV 

could take one member of household to work, return home unoccupied, and then take another 
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member to school. This study estimated that such relocation could increase total VMT for 

privately-owned vehicles by around 30% [99].   

It is possible that the adverse environmental effects of CAV-related VMT increase at the 

transportation system level could be offset by CAV-related efficiency gains at the vehicle-level 

[56,80]. It is important to note that most studies on CAV utilization assume a low SAV adoption 

rate (around 10%) [122–124]. Increasing SAV penetration is likely to save system-wide VMT 

compared to a private-vehicle-only fleet, since more opportunity is available to consolidate 

sharable VMT and reduce unoccupied travel of SAVs due to the reduced need of vehicle 

relocation between trips. Moreover, some argue that CAVs could help avoid unnecessary 

“cruising for parking” VMT through automated navigation and parking [20]. Increasing the 

waiting time deemed tolerable for automated taxis would further reduce total VMT and required 

fleet size [65,81]. 

 

Congestion and road capacity: Traffic congestion and idling contribute to additional energy use 

and emissions. Every new vehicle on the road uses capacity and increases congestion. 

Constructing new roads and lanes is one way to alleviate congestion. However, research has 

demonstrated that induced vehicle travel (shifts from other modes, longer trips and new vehicle 

trips) often consumes a significant portion of new capacity added to congested roads [128]. 

Alternative, arguably more sustainable options are to encourage mixed-land use and promote 

ridesharing. Since SAVs can replace conventional cars at a higher rate and increase vehicle 

utilization efficiency (both leading to fleet downsizing), they can reduce congestion without 

adding road capacity. CAVs can expand effective road capacity by not only decreasing the 

number of vehicles on road, but also right-sizing vehicles [10]. Vehicle right-sizing will 
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substantially reduce the fraction of fleets composed of large vehicles traveling frequently with 

few passengers [19,75]. While the impacts of vehicle right-sizing and fleet downsizing on 

improving road capacity are intuitive and frequently mentioned, quantitative estimates are 

missing from the literature.  

Traffic jams resulting from collisions can cause congestion too. The safety improvements of 

CAVs is estimated to reduce congestion by 4.5% through decreasing crash frequency [80]. CAV 

technology can also alleviate congestion and improve effective roadway capacity by allowing 

vehicles to safely reduce following distance (headway), use existing lanes and intersections more 

efficiently by maintaining shorter distances between vehicles [116,129], travel in coordinated 

platoons, take routes that avoid traffic jams and low speed zones [20], and also dampen stop-and-

go traffic waves [67]. Another benefit is that CAVs can operate on a flat speed range 30-70 MPH 

on arterial roadways, which helps reduce traffic congestion [69]. Finally, CAV technology 

enables vehicles to synchronize movement with traffic signals, which reduces frequent 

acceleration and deceleration at intersections. Some studies have suggested that it may be 

ultimately possible to achieve “signal-free” transportation systems under high CAV penetration 

[91,116]. Realizing such systems require major infrastructure overhauls as well as technical 

solutions to address pedestrian movement. 

Multiple studies consider the aforementioned points in their simulations. Auld et al. applied 

an integrated model to analyze the impact of different market penetrations of CAVs on 

performance of the transportation network and changes in mobility patterns for the Chicago 

region. They presented a scenario in which CAVs could yield an 80% increase in road capacity 

with only 4% induced additional VMT [64]. Li et al. found high-CAV-penetration scenarios can 
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reduce carbon monoxide, PM2.5, and energy consumption in urban areas by up to 15% due to 

reduced congestion or increased road capacity [74].  

It is possible that vehicle automation could increase travel demand, thereby offsetting 

decongestion benefits. Zakharenko held that the impact of induced travel is unlikely to be very 

large, since CAVs and SAVs are expected to operate far more efficiently even if their utilization 

increases [97]. Additional research is needed to estimate the expected effects of increased travel 

demand on road congestion and capacity at various CAV penetration levels. 

 

2.2.3. Urban System Level 

Today’s urban systems have largely been designed to accommodate privately-owned and 

driven cars. CAVs can reshape urban systems and infrastructure in several ways. Due to 

improved communications, CAVs may require less infrastructure such as traffic lights, parking 

lots, and road lanes. CAVs can also resolve charging-infrastructure challenges, thereby 

supporting vehicle electrification. However, CAVs will require additional ICT supports, though 

such supports could potentially be integrated into existing streetlights, signs, and other 

transportation infrastructure. There are also concerns that CAVs could encourage sub-urbanism 

and urban sprawl [97]. 

  

Infrastructure implications: Deployment of CAVs will revolutionize the conventional urban 

infrastructure. V2I and higher safety capabilities of CAVs may render much existing 

infrastructure obsolete, while requiring new types to be installed. The net environmental impacts 

of CAV-related changes in infrastructure are largely unknown. The following sections 

summarize what is known and highlight priority research areas.  
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(a) Existing infrastructure (lighting and traffic signals): Because CAVs may not need lighting 

for navigation or signaling, it may be possible to save energy by reducing the number and/or 

utilization of road lights and traffic lights. There is no direct data on the energy demand of road 

lighting and traffic signals in the U.S. The EIA estimates that in 2015, about 404 TWh of 

electricity was used for residential and commercial lighting [130]. This was about 15% of the 

total electricity consumed by both of these sectors and about 10% of total U.S. electricity 

consumption. Based on the Department of Energy’s report on U.S. Lighting Market 

Characterization [131], I estimate that highway lighting (excluding traffic signals) consumes 

around 1% of electricity generated in the U.S. Thus, reducing road lighting by 30% would save 

16.5 TWh of energy, 11 MMTs of CO2eq, and around $1.65 billion annually. As a comparison, in 

the UK, road lighting and traffic signals consume 2.5 TWh of electricity annually, representing 

0.73% of total annual electricity consumption [132].  

Nevertheless, navigation is not the sole purpose of road lighting. Many passengers may not 

feel safe on dark roads even if CAVs can drive without risk. Some studies proposed replacing 

conventional road lights with intelligent and adaptive systems [133,134]. These systems could 

turn lights on when a CAV approaches and dim or turn lights off when the roadway is empty. 

V2I capabilities of CAVs facilitates such technology. Future research should examine the 

potential for reducing road lighting at various levels of CAV penetration from cost, maintenance, 

and passenger-comfort standpoints. Research should also consider different technical scenarios. 

For instance, the ongoing transition to light-emitting diode (LED) street lighting is increasing 

efficiency and so lessens the impact of eliminating lighting altogether. 
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(b) New infrastructure requirements: Communication and data transmission are essential to 

CAV operations. CAVs depend on high frequency of information exchange for finding pick-up 

locations, efficient routing, and arriving safely at the final destination. All this communication 

and data processing requires significant computational resources and large-scale infrastructure 

(e.g., datacenters). The life-cycle of ICT infrastructure is energy intensive and generates a variety 

of environmental impacts [107,135,136]. Kolosz and Grant-Muller considered embodied 

emissions of roadside infrastructure and datacenters for the Automated Highway System (AHS), 

a system that accommodates vehicles with intelligent speed adaptation features. They reported 

that, despite these emissions, AHS would save an expected 280 kilotons of CO2eq over 15 years 

of operational usage in the M42 corridor, the UK’s busiest highway. This is because AHS-

enabled optimization of vehicles on highways reduces emissions to an extent that offsets 

infrastructure-related emissions [73]. More research is needed to quantify the expected net 

energy use and life-cycle environmental impacts of a typical datacenter for management and 

communications of CAV fleets. 

 

Integration of CAVs with power systems: Vehicle automation and electrification are mutually 

reinforcing. Integrating CAVs with urban power systems can offer multiple environmental 

benefits [137]. Fleets of CAVs can help promote vehicle electrification by resolving challenges 

such as range anxiety, access to charging infrastructure, and charging time management, since 

connected vehicles are always aware of the availability and location of charging options [71,84].  

Automated charging infrastructure enables more efficient energy management and 

facilitates vehicle-grid integration and uptake of renewable electricity in transportation sector 

[138]. Some prototypes of charging robotic arms and mechanisms have recently been introduced 
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to automatically plug into EVs and control the charging process. Wireless Power Transfer (WPT) 

is a nascent technology that can complement CAVs [139]. When wireless charging is combined 

with CAVs, it becomes possible to automatically rotate vehicles on charge transmitter pads 

without human intervention. Removing this labor cost for service would make SAEVs cheaper. 

In addition, CAVs could navigate themselves to wireless charging spots to top up at reduced 

energy rates during off-peak hours. Chen et al. investigated the charging-infrastructure 

requirements of SAEVs and concluded that by replacing attendant-serviced charging with 

automated wireless charging, the operational cost of SAEV fleets drops by 20-35% [70].  

A step beyond stationary WPT is in-motion dynamic charging, in which embedded 

transmitters in roadways wirelessly charge vehicles as they are moving, extending maximum 

range and/or reducing the required size and cost of batteries [139]. Lavrenz and Gkritza studied 

the automated electric highway systems (AEHS) powered by inductive charging loops embedded 

in the roadway and estimated that AEHS would decrease fossil-fuel energy use by more than 

25% and emissions by up to 27% [89].  

An interesting potential use of electric CAVs is as mobile energy storage units for excess 

electricity generated by utility-scale power plants. Under such a scheme, CAVs would 

automatically charge (take up power) at off-peak hours when rates and demand are low and 

discharge (release power) back to the grid during peak hours or in case of an electricity storage. 

Such bidirectional power transfer could be managed by CAV communications with the power 

grid and would be particularly useful in facilitating increased penetration of intermittent 

renewable energy like wind and solar. One caveat is that frequent charging and discharging of 

vehicle batteries might result in accelerated battery degradation [139]. Another is that some 
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consumers might be reluctant to allow their privately-owned vehicles to be leveraged in such a 

manner, even if financial incentives were provided [140].  

It is also important to note that the charging patterns of SAEVs and privately-owned CAVs 

might be very different from charging patterns of human-driven EVs including privately-owned 

EVs as well as EVs owned by transportation network companies [62,81]. SAEVs might need 

more frequent charging given their higher utilization rate. The impacts of different charging 

patterns on the grid and associated environmental consequences are uncertain and require further 

investigation.   

 

Land use: Because CAVs can navigate themselves to and from dedicated parking areas, 

increased CAV penetration reduces the need for parking located close to all destinations and 

hence the total amount of space needed for parking overall [98]. Nourinejad et al. noted that 

CAVs can park in much tighter spaces, reducing needed parking space by what they found to be 

an average of 67% [141]. Similarly, Zhang and Guhathakurta suggested that SAVs could reduce 

parking land by 4.5% in Atlanta at penetration as low as 5% [72]. Avoiding the construction of 

new parking could also have substantial environmental benefits. Chester et al. reported that 

parking construction can add 6-23 g CO2eq per passenger-kilometer-traveled to the total life-

cycle emissions of a vehicle (typically about 230 to 380 g CO2eq) and increase sulfur dioxide and 

PM10 emissions by 24-89% [142]. 

Eliminating obsolete transportation infrastructure could enable denser development in urban 

areas [20]. However, there are concerns that CAVs could encourage sub-urbanism and urban 

sprawl, especially for people with lower perceived values of travel time. According to Bansal et 

al., deployment of CAVs will likely result in long-term shifts in which people choose to relocate 
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their homes [76]. Large families or those who tend to take advantage of lower land prices in 

suburbs may use CAVs to reside further from urban cores [143]. Zakharenko provided a 

comprehensive overview of how urban areas could be altered by CAV deployment [97]. Such 

qualitative discussion is common in the literature, but more quantitative analyses are needed to 

inform land-use policies and urban planning. 

 

2.2.4. Society Level 

The potential environmental implications of vehicle automation are the largest at the society 

level, but the magnitude and direction of influences are highly uncertain. One key factor is the 

effect that CAVs will have on public perception of mobility. For many decades, cars have been 

used to make a statement about individual personalities and values, and often to flaunt wealth. 

Moreover, automakers are strongly motivated to maintain the current emotional connection of 

consumers to their cars [40,118], unless they adopt new business models. Public perception of 

shared and automated driving versus private, human driving will affect the extent to which 

people are willing to give up private vehicles in favor of CAVs, how car manufacturers develop 

and market CAVs, tax and insurance policies, and infrastructure investments. Given that CAVs 

are not yet commercially available, assessing public opinion and consumer choice on market 

penetration is challenging [77,110].  

A number of surveys and questionnaires have quantified early public perception of various 

CAV technologies. Bansal et al. surveyed Texas families and found that more than 80% of 

respondents would increase vehicle utilization under a CAV paradigm [143]. König and 

Neumayr provided empirical evidence on mental barriers and resistance towards CAVs, and 

suggested that people are ready and interested in riding with CAVs but not willing to buy one 
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[88]. Kyriakidis et al. surveyed 5,000 people on their acceptance of, concerns about, and 

willingness to buy partially, highly, and fully automated vehicles. Results indicate that 

respondents who are willing to pay more for fully automated vehicles are likely to have higher 

annual VMT and utilization rates [79]. Wadud et al. and Anderson et al. stated that the utilization 

of privately-owned CAVs and induced travel demand are expected to have game-changing 

influence on their energy consumption and environmental impacts [10,13]. 

A significant negative externality of CAVs will be reduction in demand for human labor in 

services such as taxis, trucking, and delivery, thus potentially unemployment for many service 

drivers. But CAVs are expected to generate new and high-quality jobs in hardware/software 

technologies, and in fleet management and services.  

 

Behavioral response and travel pattern shift: The convenience, accessibility, and lower travel 

cost of CAVs may shift travel patterns and induce higher travel demand, mainly due to travel 

behavior changes. Automated driving would allow people to participate in other pursuits during 

their trips, lowering the perceived cost of travel and increasing acceptable commute distance and 

time [56,76,80]. People may prefer SAVs and SAEVs to public transit if costs are comparable, 

since the former options provide door-to-door service. Similarly, for short trips, people may 

substitute CAVs for other—often more sustainable and active—modes such as walking or 

cycling. It is also possible that travelers consider re-chaining their trip needs (shopping, 

recreational, commute, errands, etc.) once they have access to CAV technology. Overall, CAVs 

have the potential to replace not only private vehicles but many other types of transportation. 

CAVs could also unlock additional travel demand from people who have unmet travel needs 

and previously cannot or choose not to drive (e.g., the elderly, the young, unlicensed individuals, 
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and people with driving-restrictive medical conditions or disabilities). CAVs can provide door-

to-door mobility service for these populations that is cheaper and more convenient than current 

options like paratransit or taxis. Expanded mobility for currently underserved population is 

highly desired from an equity and ethical standpoint, but is likely to increase trip frequency—

especially in suburban, vehicle-dependent areas [56]. Harper et al. estimated that the increase in 

travel demand from travel-restricted population could be as much as an additional 14% VMT 

(equivalent to 295 billion miles) per year in the U.S. [78].  

Increased travel demand associated with CAVs represents a type of “rebound effect.” In the 

energy economics, rebound effects describe the percentage of energy savings from a new, 

energy-efficient technology that are offset by increased use of that technology [144]. Similarly, 

efficiency gains from CAV technology at the vehicle-level may induce additional travel demand 

and consequently offset environmental benefits at the society level. Such rebound effects can 

cause discrepancies between predicted and realized net impacts of CAVs and other transportation 

innovations [145].  

For CAVs, the rebound effect is one of the mechanisms connecting different system levels. 

Milakis et al. presented a ripple model to conceptualize rebound effects in societal aspects of 

automated driving [66]. Wadud et al. used a simple approach to employ rebound effects from 

generalized cost of travel as a multiplier of CAV travel activity by simulating a range of 

literature-driven travel elasticities [10]. In short, it is widely accepted that rebound effects could 

offset environmental benefits of CAVs, but there is significant uncertainty about the extent. 

Considering the importance of this issue for the environment as well as for transportation and 

infrastructure planning, additional effort to model and quantify CAV-related rebound effects is 

urgently needed. 
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Shared consumption: Public opinion on private vehicle use and social norms over vehicle 

ownership may change along with the introduction of shared mobility in the transportation sector 

[37,146]. CAVs can help change public perception of shared consumption by facilitating and 

promoting shared mobility [147]. The millennial generation has already shown different 

transportation preferences and opinions compared to prior generations [143,146,147]. This shift 

might be extended to other types of goods and services. In a society where shared consumption is 

mainstream, desire for product ownership will be reduced, which will reduce environmental 

impacts associated with product life cycles. CAV-facilitated shared mobility can support this 

change from a technological perspective, but questions remain as to adoption behaviors and 

public acceptance. The literature does not yet show what future travelers will want from their 

transportation systems.  

 

Transformation of other sectors: Widespread deployment of CAVs may also influence other 

transportation industries such as aviation and rail. Given the lower cost of CAV travel, certain 

groups of users may choose to take longer trips using road transportation rather than aviation or 

rail. This is environmentally significant, as aviation and rail tend to have lower marginal energy 

use and emissions on a per-passenger-mile-traveled basis compared to low- or single-occupancy 

vehicles [22]. Both intercity rail (56.1 passenger-miles per gasoline-gallon equivalent (GGE)) 

and airlines (50.0 passenger-miles per GGE) have higher energy efficiency compared to 

passenger vehicles (38.9 passenger-miles per GGE) [148]. LaMondia et al. studied the impact of 

CAVs on long-distance travel choices by analyzing travel surveys, and concluded that CAVs 

could displace 25-35% of demand for air travel for trips of 500 miles or more [149]. The 
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environmental impact of this shift could be mitigated if intercity CAV travels were mostly 

through larger shared vehicles such as autonomous buses. 

CAVs are also likely to affect a variety of transport-intensive sectors and services. For 

instance, CAVs could serve as mobile overnight sleeping compartments, decreasing demand for 

hotels for long-distance trips [126]. Sectors that heavily utilize freight transportation—online 

retail, the food industry [87], etc.—will likely benefit from the emergence of CAVs. The 

environmental impacts of CAV adoption and utilization in these sectors are likely significant, but 

little is known [87]. More research is needed to measure these broader impacts and inform 

relevant policymaking. 

 

Workforce impacts: Vehicle automation will render many jobs obsolete, specifically in labor-

intensive transportation services such as freight trucking, public transit, and taxi driving [66,80]. 

The U.S. Department of Commerce estimates that 15.5 million U.S. workers are employed in 

occupations that could be affected by the introduction of automated vehicles [150]. 

Unemployment has attendant economic and social consequences. These include altered 

consumption patterns (usually moving toward less sustainable commodities and services) as well 

as adverse physical and mental health effects [83]. Both these consequences have environmental 

relevance as consumption pattern changes drive changes in supply chain and associated 

environmental impacts. It should be noted that CAV-related job losses will occur gradually in 

most cases. For instance, early automated trucks will still require human drivers to assist with 

loading and unloading, navigation, fueling, and maintenance. Over time, though, retraining the 

workforce and alternative job opportunities will be needed to ensure sustainable CAV adoption 

and mitigate adverse outcomes [87]. One option is to help workers in transportation-related jobs 
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transition to sectors that are likely to expand as CAV penetration grows. These sectors include 

but not limited to hardware and software development, fleet management, and concierge 

services.   

 

2.2.5. Summary of Environmental Impacts of CAVs  

This review shows that due to the complexity and interdependence of higher levels of 

interactions, the uncertainty of CAV-related environmental impacts increases as the impact scope 

broadens. Most studies related to energy and environmental impacts of CAVs have tried to 

identify effect bounds and speculate on system-level impacts. Collectively, these studies confirm 

that CAV technology has the potential to deliver large environmental benefits, but realizing this 

potential highly depends on deployment strategies and consumer behavior. The greatest energy 

and environmental impacts will not stem from CAV technology directly, but from CAV-

facilitated transformations at all system levels.  

At the vehicle level, CAV technology can significantly enhance efficiency. Considerable 

fuel savings and emission reduction can be achieved through CAV design oriented towards 

energy efficiency. Studies reviewed in this paper report vehicle-level fuel savings ranging 

between 2% and 25% and occasionally as high as 40%. Integrating CAV technology and vehicle 

electrification can considerably improve the economics and attractiveness of transportation 

decarbonization. Higher CAV penetration could further alleviate negative environmental impacts 

of road transportation through large-scale, connected eco-driving. However, the net effect of 

CAV technology on energy consumption and emissions in the long term remains uncertain and 

depends on other levels of interactions with the environment. 
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At the transportation system level, CAV-related environmental benefits derive from 

optimization of fleet operations, improved traffic behavior, more efficient vehicle utilization, and 

the provision of shared mobility services. Specifically, shared mobility and CAV technology 

have significant mutual reinforcing effects.  

At the urban system level, CAVs could reshape cities by changing land-use patterns and 

transportation infrastructure needs. For instance, street lighting and traffic signals could become 

less necessary or obsolete under a CAV paradigm, resulting in energy savings. However, CAVs 

could encourage urban sprawl and shifting to peripheral zones with longer commutes. CAVs also 

require communications with large-scale datacenters, which are generally energy intensive. At 

the same time, CAVs can facilitate integration of EVs and charging infrastructure into power 

grids. These urban-level mechanisms might not deliver significant net environmental benefits 

without high penetration of CAV technology. 

While long-term net environmental impacts of CAVs at the vehicle, transportation system, 

and urban system levels seem promisingly positive, the lower cost of travel and induced demand 

at the society level is likely to encourage greater vehicle utilization and VMT. Most studies 

reviewed in this paper assume current travel patterns, vehicle ownership models, and vehicle 

utilization without considering realistic behavioral changes resulted from increased CAV 

penetration. Society-level impacts of CAVs will undoubtedly be profound, but significant 

uncertainties exist about behavioral changes, making it very difficult to project the actual energy 

and environmental impacts.  

The synergetic effects of vehicle automation, electrification, right-sizing, and shared 

mobility are likely to be more significant than any one isolated mechanism. Hence these 

synergetic effects should be the focus of future research efforts. Fulton et al. projected that the 
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combination of these technologies could cut global energy use by more than 70% and reduce 

CO2 emissions from urban passengers by more than 80% by 2050 [85]. They further estimated 

that the combination of these technologies could reduce costs of vehicles, infrastructure, and 

operations in the transportation sector by more than 40%, achieving savings approaching $5 

trillion annually compared to the business-as-usual case.  

In order to ensure truly sustainable uptake and adoption of CAV technology, transportation 

systems must be more energy efficient, facilitate emissions reduction, mitigate local air 

pollution, and address public health concerns. At the same time, strategic development and 

deployment of CAV technology are necessary to control overall travel demand and congestion. 

 

 Priority Research Needs 

Based on this review of the literature, I recommend the following four principles for 

improving research on the energy, environmental, and sustainability implications of CAVs: 

I. Where possible, transition to empirical, data-based analysis of CAV impacts and 

revisit assumptions. The novelty of CAV technology and lack of data means that 

analysis of CAV impacts has, to date, been largely speculative and qualitative. Moreover, 

many analyses are based on oversimplified or unrealistic assumptions. Researchers 

should strive to increase the rigor of CAV studies as more data and higher fidelity models 

become available. 

II. Improve models by more accurately characterizing CAV impacts and better 

capturing uncertainty. Most analyses have assumed the mechanisms by which CAVs 

impact the environment are independent of one another. This assumption frequently leads 

to underestimation or overestimation of aggregate impacts. Furthermore, models should 

better reflect the true nature of CAV impacts. For instance, many studies fail to 

distinguish between general trends of energy efficiency improvement in vehicles and 
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additional benefits that are solely enabled by CAV attributes. It is also necessary to 

quantify the upper and lower bounds of impacts and incorporate these bounds into 

models to better capture and characterize uncertainty.  

III. Place more effort on understanding the effects of different CAV technologies and 

market scenarios on consumer behavior and travel patterns. Although improvements 

in CAV efficiency at the vehicle-level should not be overlooked, the largest 

environmental impacts are likely to depend on consumer behavior and travel patterns: 

i.e., when, where, how often, and how much consumers travel with CAVs. 

IV. Integrate analysis and modeling across different system levels. There is a need for 

deeper investigation on how mechanisms at each level reinforce and/or undermine each 

other. Figure 2-3 illustrates interactions and linkages across the four system levels 

identified in this review that are likely to have substantial energy, environmental, and 

sustainability implications. The trade-offs between interactions and linkages are largely 

unexplored and merit further research. 

I also recommend prioritizing research on four specific topics: CAV design and testing, 

development of CAV-specific models and tools, investigation of behavioral phenomena 

associated with CAV sharing and adoption, and assessment of policy needs and opportunities. 

Each of these is discussed in further detail below. 
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Figure 2-3. Interactions and linkages between system levels that entail energy, environmental, and sustainability 

impacts.  
 

2.3.1. CAV Design and Testing  

The evolution of vehicle design is a major source of uncertainty for the environmental 

performance of CAVs. There is a gap in the literature regarding which factors should drive the 

vehicle design optimization and decision-making protocols that will affect CAV-related energy 

consumption and emissions. Conventional life-cycle assessment (LCA) can be used to 

characterize the first-order impacts of various design protocols and provide insights that can 

improve sustainability of early CAV designs. However, for more radical and complex designs 

(including vehicle right-sizing and safety-enabled light-weighting), more sophisticated 

sustainability assessments are needed. Studies should be conducted to characterize 
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environmental benefits of different CAV designs under different real-world scenarios and 

particularly under different levels of societal CAV acceptance. 

Another priority should be quantifying energy efficiency improvements actually achieved 

by early commercial designs. Proving grounds and test facilities are needed to demonstrate that 

theoretical CAV efficiencies can be practically achieved. Providing researchers with real-world 

data from On-Board Diagnostics (of current prototypes can help identify best practices and 

designs. Results can then be used to improve real-world development and deployment. 

Considerations need to be given in carrying out such research to avoid infringing on consumer 

privacy or compromise intellectual property. 

 

2.3.2. CAV-Specific Models and Tools 

CAVs will have impacts on and be affected by land use, demand, demographic changes, 

economic factors, fueling infrastructure, and local policies, among other factors. CAV-related 

changes in demand for and supply of mobility services will change loads placed on 

transportation networks. For instance, CAVs could improve freeway traffic flows by enabling 

shorter following distances between vehicles but deteriorate road congestion and effective 

capacity by inducing more travel. Moreover, current vehicle-choice models are ill-suited to 

incorporate numerous consumer preference variables relevant to CAV adoption. Moreover, 

CAVs are not yet integrated into major transportation and energy models—such as those used by 

the U.S. DOT, EPA, EIA, and the Intergovernmental Panel on Climate Change—for estimating 

future travel demand, energy use, and environmental consequences. In most existing assessment 

studies, various measures that can reduce demand for travel and/or vehicle usage and improve 

driving performance have been identified. However, CAVs most likely entail considerable yet 
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uncertain rebound effects, making current predictions of future transportation demand unreliable 

[21]. Integrated assessment models and research support tools that incorporate environmental 

effects of system-level CAV attributes for various market penetrations of CAVs should be 

developed to enable higher-quality projections of future travel trends.  

 

2.3.3. Behavioral Studies 

Scant effort has been dedicated to analyzing how consumer preference for CAV technology, 

vehicle ownership, and ride-sharing might evolve. This is important given that the net 

environmental impacts of CAVs are highly dependent on the degree to which CAVs are shared 

versus privately owned. Pooling and shared mobility services alleviate most adverse 

environmental effects of CAV technology. However, social norms may lead people to avoid 

sharing transportation with strangers, especially if cost differences are marginal. Research is 

needed to identify the factors that will affect these choices. There is a particular need to examine 

mixed private/shared CAV scenarios, since most studies conducted to date examine scenarios in 

which CAVs are either fully private or fully shared. 

Further investigation is also needed into how readily consumers will adopt CAVs. Real-

world data can be obtained from surveys and tests. However, surveys are probably less useful 

due to the novelty of CAV technology, since most respondents will not be able to provide an 

informed response. Novel approaches are needed to investigate if and under what circumstances 

people will accept CAVs and how they will use them. Creative techniques such as virtual and 

augmented reality might be useful in this regard. More extensive engagement—i.e., participants 

work with researchers to understand possible technology options and more deeply explore 
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scenarios—could also provide deeper insight into how people actually perceive CAV 

technology.  

 

2.3.4. Policy Needs and Opportunities 

Governments are already playing an active role in supporting technological development of 

CAVs. Emphasis has been placed on safety, equity, and mobility, while scant attention has been 

paid to environmental implications. For example, a bipartisan group of U.S. senators recently 

released a set of principles for self-driving vehicle legislation as part of the American Vision for 

Safer Transportation through Advancement of Revolutionary Technologies (AV START) Act. 

These principles do not mention energy, efficiency, or emissions at all [151]. This omission is 

problematic, given large environmental opportunities—and risks—associated with CAV 

technology.  

Historically, the majority of environmental policies for the transportation sector have 

focused on regulating tailpipe emissions. Since CAVs are likely to be more efficient and 

generate lower levels of emissions than conventional vehicles, limiting emissions on a per-

vehicle basis is less important than considering potential environmental impacts of CAVs on a 

broader scale. CAVs may induce travel demand that offsets—or even eliminates—improvements 

in per-vehicle efficiency and emissions. It is important to develop policies that address this 

concern. CAVs also provide new opportunities for governance. Vehicle connectivity enables 

environmental policies such as mileage charges, regulation of unoccupied travel, and dynamic 

emission reporting [152]. Such policies have advantages. For instance, VMT taxation is seen as 

less regressive—hence more equitable—and more economically efficient than fuel taxes [153]. 
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However, collecting accurate spatial and time-of-day vehicle use may raise privacy concerns and 

is politically difficult to implement. 

In addition to exploring CAV-specific policy options, policymakers should consider 

establishing CAV policy frameworks that can be adapted based on how the market and 

technology evolves. Several possible use cases of CAVs that would have significant external 

costs are not discouraged by current policy, and the most beneficial use cases are not 

incentivized. For example, large, personally owned, inefficient CAVs could serve the owner at 

significant cost to the system by driving “selfishly” (for instance cruising streets empty instead of 

paying for parking) and underpaying for impacts on infrastructure. It remains to be seen whether 

this use case will manifest in reality. But implementing mechanisms—such as dynamically 

pricing CAV use on a per-mile basis in congested areas or at peak times—for addressing 

undesired outcomes will be far easier now than once CAVs are already on the road.  
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 Induced Travel and Energy Rebound of Connected and 
Automated Vehicles 

 

 Introduction  

Connected and automated vehicle (CAV) technology is expected to be an indispensable but 

disruptive factor in the transportation sector, transforming the mobility paradigm, transportation 

markets, and travelers’ behavior in the coming decades. It will likely increase transportation 

safety to an unprecedented level [154], enhance mobility, provide a higher level of comfort and 

convenience for travelers, and reduce the cost of driving for individuals, all of which will be 

welfare-improving for society. At the same time, vehicle connectivity and automation will 

inevitably and significantly change energy demand in the transportation sector. The extent of  

these  changes is still largely unclear [9,22,155] and yet will have major consequences for energy 

supply and the environment alike. 

Several characteristics of CAV1 technology will influence energy consumption, including 

improvements in route optimization, eco-driving, crash avoidance, and vehicle right-sizing, 

among others [9]. Many of these improvements will push energy use downwards; however, some 

will very likely work in the opposing direction. Chief among the factors that will exert upward 

pressure on energy demand is the marginal cost of driving, which is expected to drop 

                                                 

1 CAVs are also referred to as “autonomous”, “self-driving”, or “driverless” vehicles interchangeably in the literature, though 
these are not the same. For a disambiguation of definitions, refer to [9]. 
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significantly with CAV technology. Higher fuel economy of CAVs [9,10,156] will cause the per-

mile fuel cost of travel to drop. This, in turn, will induce additional travel that partially offsets 

the fuel savings of energy efficiency – commonly referred to as a “rebound effect”2. In addition, 

increased comfort and reduced attention requirements3 will cause the per-mile travel time cost to 

drop [157], inducing even more additional travel [9,10,13,87].  

The key parameter dictating the magnitude of travel demand induced through these channels 

is the elasticity of travel demand with respect to the price of travel [158–161]. The overwhelming 

majority of existing studies on the energy impact of more efficient vehicle technologies focus 

exclusively on the fuel-cost component of the price of travel [162–168]. Consequently, such 

studies are unlikely to have external validity in the context of vehicle automation, which will 

intimately affect both fuel cost and time cost. While recent research on the energy use impacts of 

vehicle automation does consider the impact of time cost changes (e.g., Wadud et al. [10]), it 

tends to borrow fuel and time cost elasticities that are estimated elsewhere, in isolation from each 

other, and without the aim of developing CAV-specific predictions. Most studies focus on how 

changes in mobility – especially changes in the vehicle-level energy efficiency of CAVs – affect 

energy use, holding travel demand constant (e.g., [19,23,65,169]). The assumption of fixed 

demand almost certainly leads to overestimation of the environmental benefits of this technology 

[9].   

In this paper, the most recent empirical microdata available is used to estimate the elasticity 

of travel demand with respect to the marginal fuel and time costs of travel in a single, unified 

                                                 

2 The rebound effect can refer to the general phenomenon of increased driving after a rise in fuel economy, or it can be 
mathematically defined as the percent change in miles traveled caused by a one-percent change in fuel economy (or, relatedly, a 
one-percent change in fuel costs). The empirical investigation of micro-level rebound usually utilizes regression-based 
approaches with cross-sectional, time series, or panel data [162,167].  

3 This is viewed as a likely feature of high levels of automation (level 3 and above) [154].   
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framework. Approach presented here adapts standard microeconomic modeling and statistical 

techniques to account for the value of time in elasticity estimation. I first specify a theoretical 

model of consumer utility maximization from vehicle-miles traveled (VMT) and other goods, 

subject to time and income constraints. The model illustrates how the opportunity cost of time 

spent traveling and the fuel cost of travel affect the privately-optimal choice of VMT. From it, I 

derive an estimating equation for the combined, fuel- and time-inclusive price elasticity of VMT. 

I fit several specifications of this equation using household-level vehicle and travel data from the 

2017 United States (U.S.) National Household Travel Survey (NHTS) [106] as well as 

predictions of travel time cost based on reported income. The resulting empirically-derived 

elasticity estimates allow forecasting the changes in travel demand induced by CAV technology, 

as well as the associated energy rebound effects. 

This study produces three key findings. First, the central estimate of the combined, fuel- and 

time-inclusive price elasticity of demand for VMT is -0.39. This is significantly larger than the -

0.06 to -0.28 range found in existing studies of the fuel price elasticity of demand [165–168] and 

significantly smaller than the -1.0 to -2.3 range found in studies of demand elasticity with respect 

to the generalized cost of travel4, the latter of which is cited in prior work on CAV-induced 

travel demand [10,22]. Replicating the procedure with 2009 NHTS data yields a similar central 

estimate of -0.45. The results highlight the importance of accounting for the opportunity cost of 

time in travel demand elasticity estimation and suggest that existing predictions of CAV-induced 

travel may not be based on relevant travel demand parameter values.  

                                                 

4 In transportation economics, “generalized cost” refers to the sum of monetary and non-monetary costs of a trip. For instance, 
the generalized cost of private vehicle travel includes total cost of ownership (TCO, including capital, fixed, and operation 
costs) and monetized passenger travel time [161]. 
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Second, travel demand elasticities exhibit significant heterogeneity that inform future 

forecasting methodology and policy discussions. I find that households respond very differently, 

on average, to fuel price changes versus time cost changes. The preferred estimate of the fuel 

price elasticity is -0.1, while this preferred estimate of the time cost elasticity is -0.4. Moreover, 

all of my elasticity estimates vary significantly with income. I find that richer households have 

less elastic demand with respect to fuel costs but more elastic demand with respect to time costs. 

The aggregate, fuel- and time-inclusive price elasticity of VMT rises with income; for example, 

the average elasticity of the upper three groups is 64% larger than that of the bottom group. In 

other words, my estimated model predicts that relatively richer households will increase their 

travel relatively more in response to automation and thus stand to experience greater welfare 

gains.  

Third, the aggregate, CAV-induced reduction in energy use may be quite small or even 

negative. In this model, the magnitude of this reduction depends on (a) elasticities of demand 

with respect to the price of travel, (b) projected increases in fuel economy of CAVs, and (c) 

projected decreases in travel time cost with CAVs. The estimates of (a) are used to simulate 

induced VMT for different combinations of (b) and (c). The range of possible impacts of CAVs 

on VMT, and thus energy consumption, is wide. However, backfire – a net rise in energy 

consumption – is a distinct possibility, because high-income households have large elasticities of 

demand and also high baseline energy use. This, in turn, implies the possibility of net rises in 

local and global air pollution. 

Ultimately, the energy and environmental impacts of CAV technology will depend on not 

just changes in the marginal cost of travel, but also the capital cost of an automated vehicle, the 

safety benefits of automation, and changes in ride- and vehicle-sharing, among other aspects of 
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the mobility transition. The very non-marginal nature of the upcoming mobility transition 

presents steep challenges to researchers who seek to provide rigorous predictions of future travel 

behavior and energy use. My contribution is to use the most recent microdata available in the 

United States to develop empirical estimates of a key parameter governing travel behavior, and 

to leverage these estimates to provide a glimpse of the possible energy impacts of vehicle 

connectivity and automation. 

 

 A Model of Private Vehicle Driving Decisions 

Conceptually, vehicle ownership and driving decisions are a function of many factors: 

vehicle capital cost, the marginal cost of VMT (including fuel, time, and depreciation), and fixed 

costs of insurance and maintenance – collectively referred to as the total cost of ownership 

(TCO) Conceptually, vehicle ownership and driving decisions are a function of many factors: 

vehicle capital cost, the running costs of VMT (including fuel, time, maintenance, and 

depreciation), and fixed costs of insurance, registration fees and tolls – collectively referred to as 

the total cost of ownership (TCO) [94], the perceived cost of in-vehicle time, the utility an 

individual derives from travel, which depends on the goods and services obtained through travel, 

vehicle attributes, and individual preferences; and constraints such as income and time. In 

keeping with an extensive literature on empirical rebound effects (see, for example 

[162,166,170]), I focus this analysis specifically on the marginal cost of VMT conditional on 

vehicle choice. Marginal fuel and time costs are economically important and technologically 

relevant: together, they make up the majority of the variable cost of travel (19% and 45%, 

respectively [171]), and they are both projected to drop significantly with the diffusion of CAV 

technology [9,94,118,172]. Moreover, available data on these fuel and time costs (as well as 
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VMT itself) allow us to develop empirically grounded forecasts of CAVs’ potential impact on 

energy use even when CAVs themselves have not yet been deployed commercially. 

I begin by modeling VMT as a choice made by a utility-maximizing household, given 

constraints on income and time. Similar models exist in the energy rebound effect literature, but 

these do not include a time constraint [144,162,164], because energy efficiency improvements 

alone do not generally affect the use of time spent in a vehicle. In contrast, vehicle automation 

will decrease the opportunity cost of time through reduced in-vehicle attention requirements, 

which has the potential to alter driving decisions considerably. To capture this change, Linn’s 

model of VMT choice [165] is adapted by adding a second constraint on time, following seminal 

economic theory on the allocation of time by Becker [173]. 

Consider a household that derives utility (U) from vehicle miles traveled (𝑉𝑉𝑉𝑉𝑉𝑉) and 

consumption of a numeraire good (𝑦𝑦), which proxies for all other goods in the economy. The 

household chooses levels of these variables subject to its available income and time as well as 

the monetary and time costs of 𝑉𝑉𝑉𝑉𝑉𝑉 and 𝑦𝑦. The maximization problem is written as follows: 

MAX
𝑉𝑉𝑉𝑉𝑉𝑉,𝑦𝑦

U(𝑉𝑉𝑉𝑉𝑉𝑉,𝑦𝑦) 
(3-1) 

such that: 

𝑃𝑃𝑓𝑓𝑉𝑉𝑉𝑉𝑉𝑉 + 𝑦𝑦 ≤ 𝑊𝑊 
(3-2) 

𝑇𝑇𝑣𝑣𝑣𝑣𝑣𝑣 + 𝑇𝑇𝑦𝑦 + 𝑇𝑇𝑤𝑤 ≤ 𝑇𝑇 
(3-3) 

In Equation (3-2), 𝑃𝑃𝑓𝑓 is the per-mile fuel cost of 𝑉𝑉𝑉𝑉𝑉𝑉, while the price of 𝑦𝑦 is normalized to 

one; 𝑊𝑊 is household income. In Equation (3-3),  𝑇𝑇𝑣𝑣𝑣𝑣𝑣𝑣 is total travel time, 𝑇𝑇𝑦𝑦 is the consumption 

time of good 𝑦𝑦, 𝑇𝑇𝑤𝑤 is time spent on wage work, and 𝑇𝑇 is total available time. Total income 𝑊𝑊  is 



 

60 
 

the product of  𝑇𝑇𝑤𝑤 and earned wage (𝑤𝑤�): 𝑊𝑊 = 𝑇𝑇𝑤𝑤𝑤𝑤� . Similarly, 𝑇𝑇𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑡𝑡𝑣𝑣𝑣𝑣𝑣𝑣𝑉𝑉𝑉𝑉𝑉𝑉 and 𝑇𝑇𝑦𝑦 = 𝑡𝑡𝑦𝑦𝑦𝑦, 

where 𝑡𝑡𝑣𝑣𝑣𝑣𝑣𝑣 and 𝑡𝑡𝑦𝑦 are the time input required per unit consumption of the two goods. 

In equilibrium, the two budget constraints will be binding. I rewrite Equation (3-3) as 

𝑇𝑇𝑤𝑤 = 𝑇𝑇 − 𝑡𝑡𝑣𝑣𝑣𝑣𝑣𝑣𝑉𝑉𝑉𝑉𝑉𝑉 − 𝑡𝑡𝑦𝑦𝑦𝑦 
(3-4) 

and substitute this expression into Equation (3-2) to yield a single budget constraint: 

(𝑃𝑃𝑓𝑓 + 𝑡𝑡𝑣𝑣𝑣𝑣𝑣𝑣𝑤𝑤�)𝑉𝑉𝑉𝑉𝑉𝑉 + (1 + 𝑡𝑡𝑦𝑦𝑤𝑤�)𝑦𝑦 = 𝑇𝑇𝑤𝑤�  
(3-5) 

This single constraint follows from the fact that time can be converted to money through 

wage work. In other words, the opportunity cost of time spent on consumption is the income one 

forgoes in order to consume. Equation (3-5) expresses time in dollars: 𝑡𝑡𝑣𝑣𝑣𝑣𝑣𝑣𝑤𝑤�  is the dollar value 

of time spent on 𝑉𝑉𝑉𝑉𝑉𝑉, 𝑡𝑡𝑦𝑦𝑤𝑤�  is the analogous value for 𝑦𝑦, and 𝑇𝑇𝑤𝑤�  is the income one would have if 

all available time was devoted to work. The household spends its total “achievable” income 

either directly through expenditure on goods or indirectly by using time at consumption instead 

of work. 

To derive an estimable equation for VMT choice, an explicit utility function should be 

specified. The household’s true utility function is unknowable; I thus follow Linn [165] – whose 

goal is to estimate the energy rebound effect for passenger vehicles – and define utility as 

follows: 

𝑈𝑈(𝑉𝑉𝑉𝑉𝑉𝑉,𝑦𝑦) = −(𝑉𝑉𝑉𝑉𝑉𝑉 ∙ 𝜉𝜉)𝛼𝛼 +  𝑦𝑦 
 (3-6) 

where 𝛼𝛼 < 0 is a utility parameter and 𝜉𝜉 is vehicle quality which is known to the household 

but unobserved by the econometrician. Utility therefore increases in 𝑉𝑉𝑉𝑉𝑉𝑉 and vehicle quality. 

The chosen functional form is part of a class of utility functions that produce a constant price 

elasticity of demand, as shown below. While constant demand response is a special case and 
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unlikely to hold in reality, it is nonetheless useful here to clearly demonstrate how fuel and time 

costs affect VMT demand. 

The optimum choice of 𝑉𝑉𝑉𝑉𝑉𝑉 and 𝑦𝑦 satisfies the first-order condition: 

𝜕𝜕 𝑈𝑈 
𝜕𝜕 𝑉𝑉𝑉𝑉𝑉𝑉

= −𝛼𝛼𝛼𝛼(𝑉𝑉𝑉𝑉𝑉𝑉 ∙ 𝜉𝜉)𝛼𝛼−1 +
𝜕𝜕 𝑦𝑦 

𝜕𝜕 𝑉𝑉𝑉𝑉𝑉𝑉
= 0 (3-7) 

 

Using the budget constraint Equation (3-5), 𝑦𝑦 can be expressed as a function of 𝑉𝑉𝑉𝑉𝑉𝑉 and 

parameters. Substituting this expression into Equation (3-7), rearranging terms, and taking the 

logarithm of both sides yield: 

log(𝑉𝑉𝑉𝑉𝑉𝑉) = �
1

1 − 𝛼𝛼
log(−𝛼𝛼) +

𝛼𝛼
1 − 𝛼𝛼

log(𝜉𝜉) +
1

1 − 𝛼𝛼
log�1 + 𝑡𝑡𝑦𝑦𝑤𝑤���

−
1

1 − 𝛼𝛼
log(𝜋𝜋𝑣𝑣𝑣𝑣𝑣𝑣) 

(3-8) 
 

where 𝜋𝜋𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑃𝑃𝑓𝑓 + 𝑃𝑃𝑡𝑡 = 𝑃𝑃𝑓𝑓 + 𝑡𝑡𝑣𝑣𝑣𝑣𝑣𝑣𝑤𝑤�  is defined as the time-inclusive marginal cost (or 

price) of travel. Since 𝛼𝛼 < 0 , Equation (3-8) implies that 𝑉𝑉𝑉𝑉𝑉𝑉 decreases with higher 𝜋𝜋𝑣𝑣𝑣𝑣𝑣𝑣. The 

log-log form of this equation makes the coefficient on 𝜋𝜋𝑣𝑣𝑣𝑣𝑣𝑣, (
−1
1−𝛼𝛼

), interpretable as a first-order 

approximation of the elasticity of 𝑉𝑉𝑉𝑉𝑉𝑉 with respect to 𝜋𝜋𝑣𝑣𝑣𝑣𝑣𝑣. Denoting this elasticity by 𝜀𝜀𝑣𝑣𝑣𝑣𝑣𝑣 and 

collecting the first three terms of Equation (3-8) results in: 

log(𝑉𝑉𝑉𝑉𝑉𝑉) = 𝜀𝜀𝑣𝑣𝑣𝑣𝑣𝑣 log(𝜋𝜋𝑣𝑣𝑣𝑣𝑣𝑣) + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
(3-9) 

With data on VMT, fuel economy, gasoline prices, and travel time cost, it is possible to fit 

this equation and estimate the key parameter of interest, 𝜀𝜀𝑣𝑣𝑣𝑣𝑣𝑣. 
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 Data and Empirical Strategy 

3.3.1. Data 

I obtain data on the price and quantity of VMT from the National Household Travel Survey 

(NHTS) [106]. This representative nationwide survey is conducted by the Federal Highway 

Administration (FHWA) in order to assist policymakers and transportation planners in 

understanding travel behavior and how it changes over time. My main source is the 2017 round 

of the NHTS, but I test the robustness of the results to use of the 2009 round as well. In both of 

these surveys, households submit day-long travel logs which include VMT and time spent 

driving for each vehicle driven. FHWA then imputes annual totals from these daily numbers 

using weight adjustments. Respondents also report the make and model of each vehicle, as well 

as the price of retail gasoline on the day of reporting. In addition to providing these vehicle data, 

the NHTS records several socioeconomic and demographic characteristics of households. The 

full sample includes 129,696 observations; the analysis sample consists of the 114,923 

households with non-missing values for key analysis variables.5 In all analyses, sampling 

weights provided in the NHTS is used, equal to the reciprocal of selection probability to make 

the sample nationally representative.6  

Table 3-1 summarizes the household-level NHTS variables on which are drawn to construct 

this analysis. I tabulate means and standard deviations, both overall and within each of five 

specific income groups. While before-tax household income is reported in eleven distinct 

                                                 

5 I remove the 3.1% of households with unreported income and an additional 8.4% who report zero VMT, no vehicle ownership, 
a vehicle model from before 1984 (which is not included in the EPA testing data), or unknown vehicle make and model. 

6 Analysis without weights would yield internally valid estimates of the parameters of interest but would not be nationally 
representative.  
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intervals in the 2017 NHTS, I follow Wadud [94] and collapse intervals into five income groups 

with roughly the same number of households. Sample-average annual VMT is 16,254 miles and 

rises monotonically from the first (i.e., lowest) income group to the fifth (highest); the latter 

group drives more than 2.5 times as many miles as the former. Annual driving time follows a 

similar pattern but drops slightly from the fourth income group to the fifth. Reported gas prices 

rise monotonically in income group but only differ by about five cents per gallon from the first 

income group to the fifth. Average fuel economy, weighted by miles traveled in each one of a 

household’s vehicles, exhibits an inverse U-shaped relationship with income group. 
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Table 3-1. Summary statistics for 2017 NHTS (non-exhaustive list of variables) 

Variable U.S. Average 
1st  

Income 
Group 

2nd  
Income 
Group 

3rd  
Income 
Group 

4th  
Income 
Group 

5th  
Income 
Group 

Income Interval - Up to $24,999 $25,000 to 
$49,999 

$50,000 to 
$74,999 

$75,000 to 
$124,999 

Over 
$125,000 

Average Income† $70,237 $19,447 $40,976 $64,563 $106,173 $180,674 

Annual VMT (Miles) 
16,254 8,592 14,146 17,580 20,589 22,055 

(20,166) (14,447) (17,818) (20,528) (21,879) (22,870) 

Annual Driving Time (Hours) 
482.18 269.73 434.27 521.69 615.38 601.67 

(496.11) (302.21) (455.73) (537.89) (622.23) (598.75) 

Reported Gas Price ($/gallon) 
2.392 2.3747 2.384 2.3902 2.4013 2.4225 

(0.2066) (0.2018) (0.2026) (0.2061) (0.2076) (0.212) 

Weighted Average Fuel Economy 
(MPG)∇ 

23.69 23.11 24.90 25.30 24.41 23.16 
(10.99) (10.41) (12.21) (11.10) (10.95) (13.11) 

Household Size (Persons) 
2.514 2.146 2.273 2.532 2.776 2.987 

(1.380) (1.451) (1.325) (1.363) (1.324) (1.233) 

Count of Adults 
1.925 1.623 1.804 1.959 2.101 2.215 

(0.821) (0.843) (0.807) (0.799) (0.767) (0.733) 

Count of Drivers 
1.762 1.205 1.623 1.842 2.049 2.210 

(0.882) (0.852) (0.790) (0.804) (0.796) (0.783) 

Count of Vehicles 
1.935 1.130 1.727 2.078 2.357 2.545 

(1.255) (0.970) (1.067) (1.169) (1.237) (1.306) 

Indicator for urban area 
(1 = urban; 0 = rural) 

0.808 
(0.378) 

0.834 
(0.363) 

0.817 
(0.385) 

0.801 
(0.394) 

0.818 
(0.385) 

0.857 
(0.348) 

Census Tract Population Density 
(Persons per square mile) 

5,647 6,314 5,388 5,340 5,273 6,005 
(7,345) (7,816) (6,897) (7,180) (7,084) (7,772) 

Census Tract Housing Density 
(House per square mile) 

3,042 3,386 2,850 2,809 2,812 3,452 
(5,465) (5,529) (4,978) (5,115) (5,369) (6,461) 

N 114,923 22,959 25,793 21,45 26,005 19,531 
Standard deviations are reported in parentheses. All observations are weighted using the sample weights provided in the 
NHTS. 
† Average income within income group is calculated from the 2016 Consumer Expenditure Survey.  
∇ Fuel economy is derived from EPA Fuel Economy Testing Data [174] for vehicles. 

 

To produce a fuel price of VMT (𝑃𝑃𝑓𝑓 in dollars per mile) for each household, its reported fuel 

price per gallon is multiplied by its weighted average fuel economy: 
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𝑃𝑃𝑓𝑓 =
𝜙𝜙 

∑ 𝑉𝑉𝑉𝑉𝑉𝑉𝑗𝑗𝑛𝑛
𝑖𝑖=1

�
 𝑉𝑉𝑉𝑉𝑉𝑉𝑗𝑗
𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗

𝑛𝑛

𝑗𝑗=1

 
(3-10) 

where 𝑛𝑛 is the number of vehicles that a household uses, 𝑉𝑉𝑉𝑉𝑉𝑉𝑗𝑗 and 𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗 are vehicle miles 

traveled and fuel economy (miles per gallon) of the 𝑗𝑗th vehicle, respectively, and 𝜙𝜙 is the price 

of gasoline (dollars per gallon). Unlike the 2009 NHTS, the 2017 NHTS does not itself report 

vehicle fuel economy; I thus obtain combined MPG (45% city, 55% highway) from EPA Fuel 

Economy Testing Data [174] for all vehicles in this sample.7 

The time component of the marginal cost of travel (𝑃𝑃𝑡𝑡), which referred to as travel time cost 

(TTC), is not directly observable in NHTS data, nor in any other dataset of which I am aware. To 

overcome this data problem, I follow the economics literature and the U.S. Department of 

Transportation’s (US DOT) 2016 guidelines for Revised Value of Travel Time [175] and 

parameterize TTC as a function of wage. The NHTS only reports an annual income bracket for 

each household; I calculate the “equivalent” hourly wage of each household by dividing the 

average income in a household’s bracket, taken from the 2016 Consumer Expenditure Survey, by 

2,080 working hours in a year. Like Chen et al., I then categorize all survey-reported trips as 

either “work-related” or “non-work”, the latter of which includes shopping, family/personal 

errands, school/church visits, social/recreational trips, among others [71]. The work-related trips 

are valued at 100% of hourly wage and non-work trips at 50% of hourly wage, following U.S. 

DOT guidelines [175].8 Finally, I compute a weighted average of these trip values using time 

shares of each trip type as weights: 

                                                 

7 Although, the EPA fuel efficiency data is known to overstate of fuel economy of vehicles, it is the most comprehensive dataset 
available. 

8 In the Appendix A, I show results of a robustness check in which I use alternative definitions of travel time cost. 
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𝑃𝑃𝑡𝑡 =
 �𝛾𝛾𝑊𝑊 𝑤𝑤� + 1

2 𝛾𝛾𝑁𝑁𝑁𝑁𝑤𝑤�� × ∑𝑇𝑇𝑣𝑣𝑣𝑣𝑣𝑣

∑𝑉𝑉𝑉𝑉𝑉𝑉
 (3-11) 

Here, 𝛾𝛾𝑊𝑊 is the share of total travel time devoted to work-related trips, 𝛾𝛾𝑁𝑁𝑁𝑁 is the 

corresponding share for non-work trips, 𝑤𝑤�  is imputed hourly wage, and ∑𝑇𝑇𝑣𝑣𝑣𝑣𝑣𝑣 is the total time 

spent on all trips. While my focus is on the travel time cost per mile, also the time cost per hour 

is plotted in Figure A-1. In the sample, the average time cost per hour of travel is 19.56 $/h, 

which is comparable to the Value of Travel Time recommended by U.S. DOT (18 $/h) [175]. 

Figure 3-1 displays fuel, time, and aggregate marginal costs by income group. The 

aggregate marginal cost of VMT (𝜋𝜋𝑣𝑣𝑣𝑣𝑣𝑣) rises steeply and monotonically with income group, as 

does the time cost component (𝑃𝑃𝑡𝑡). The fuel component (𝑃𝑃𝑓𝑓) shows a shallow U-shaped 

relationship with income group. The time cost generally dominates the fuel cost, consistent with 

previous research that highlights the relative importance of travel time cost [94,157,172]. In the 

sample, both time cost and aggregate cost per mile rise faster than linearly in income group.9 In 

fact, the top income group has nearly seven times the travel time cost as the bottom income 

group and more than three times the aggregate marginal cost of travel. 

                                                 

9 This is a result of defining time costs as proportional to income, as well as the non-linear relationship between median income 
and the chosen income grouping. 
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Figure 3-1. Marginal price of one vehicle mile traveled (VMT) by income group for the average household in each 
income group. Equations 10 and 11 are used to derive fuel cost and time cost per mile of driving. 

 

3.3.2. Empirical Estimation  

Using the above data, I fit various specifications of Equation (3-9) to estimate the price 

elasticity of demand for VMT. I choose four closely-related econometric models: 

Model 1:         log(𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖) = 𝛽𝛽0 + 𝛽𝛽1 log�𝑃𝑃𝑓𝑓,𝑖𝑖� + 𝛾𝛾𝑋⃑𝑋𝑖𝑖 + 𝜔𝜔𝑖𝑖 
(3-12) 

Model 2:         log(𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖) = 𝛽𝛽0 + 𝛽𝛽2 log�𝑃𝑃𝑡𝑡,𝑖𝑖� + 𝛾𝛾𝑋⃑𝑋𝑖𝑖 + 𝜔𝜔𝑖𝑖 (3-13) 

Model 3:        log(𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖) = 𝛽𝛽0 + 𝛽𝛽1 log�𝑃𝑃𝑓𝑓,𝑖𝑖� + 𝛽𝛽2 log�𝑃𝑃𝑡𝑡,𝑖𝑖� + 𝛾𝛾𝑋⃑𝑋𝑖𝑖 + 𝜔𝜔𝑖𝑖 (3-14) 

Model 4:        log(𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖) = 𝛽𝛽0 + 𝛽𝛽3 log�𝜋𝜋𝑣𝑣𝑣𝑣𝑣𝑣,𝑖𝑖� + 𝛾𝛾𝑋⃑𝑋𝑖𝑖 + 𝜔𝜔𝑖𝑖 (3-15) 

The subscript 𝑖𝑖 indexes a household. 𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖, 𝑃𝑃𝑓𝑓,𝑖𝑖, 𝑃𝑃𝑡𝑡,𝑖𝑖, and 𝜋𝜋𝑣𝑣𝑣𝑣𝑣𝑣,𝑖𝑖 are as described in Section 

2. 𝑋⃑𝑋𝑖𝑖 is a vector of household characteristics taken directly from the NHTS. One subset of this 

vector pertains to household members and includes household size, number of adults and drivers, 
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indicators for respondent’s race, and indicators for a household’s age distribution.10 A second 

subset contains socioeconomic measures including indicators for income group and 

homeownership as well as a count of a household’s vehicles. A third pertains to location and 

includes census block group population density and housing density, indicators for urban (versus 

rural) area and metropolitan statistical area (MSA), MSA size, and indicators for values of a 

categorical variable defined by census division, whether or not a MSA has a population above 

one million, and whether or not an MSA has a subway system. A fourth, and final, subset 

includes indicators for survey month of year and day of week. I choose these control variables  to 

match Linn and Su [165,166] as closely as possible. Lastly, 𝜔𝜔𝑖𝑖 is an error term that captures the 

effect of unobserved drivers of VMT. 

I estimate each model via Generalized Least Squares regression, using the sampling weights 

provided by the NHTS. Standard errors are clustered by MSA, to allow for correlation of 

individual errors within each MSA. The log-log functional form has three virtues: it is motivated 

directly by the model in Section 2; it gives the coefficient on log�𝜋𝜋𝑣𝑣𝑣𝑣𝑣𝑣,𝑖𝑖� the interpretation of the 

price elasticity of demand for VMT; and, in this specific empirical context, it produces model 

residuals that are normally distributed, implying that heteroscedasticity is of minimal concern. 

Model 1 specifies VMT to be a function of only the fuel component of VMT price (i.e., not 

the corresponding time component). This specification is typical in the economics literature on 

energy efficiency rebound and yields an estimate of VMT elasticity with respect to the fuel price 

of VMT (𝛽̂𝛽1 = 𝜀𝜀𝑓̂𝑓). However, it is susceptible to omitted variable bias if the omitted time 

component of price is correlated with the included fuel component. Model 2 is the time-cost 

                                                 

10 Indicators for a household’s age distribution include, for instance, “two or more adults, youngest child 16-21”. 
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analog of Model 1; it yields a VMT elasticity with respect to the time cost of VMT (𝛽̂𝛽2 = 𝜀𝜀𝑡̂𝑡) and 

suffers from the same risk of omitted variable bias. Models 3 and 4 mitigate this risk by 

including the costs of both fuel and time as explanatory variables. Model 3 allows for joint 

estimation of the fuel-price and time-cost elasticities, 𝜀𝜀𝑓̂𝑓 and 𝜀𝜀𝑡̂𝑡. Parameter estimates from this 

model can be compared to those of Models 1 and 2 to quantify the bias of the latter. 

Model 4 is the specification of VMT that follows directly and exactly from the economic 

model of VMT choice in Section 2. Fitting this model yields an estimate of the average 

combined, fuel- and time-inclusive price elasticity of VMT, 𝜀𝜀𝑣̂𝑣𝑣𝑣𝑣𝑣. This combined elasticity is 

related to 𝜀𝜀𝑓̂𝑓 and 𝜀𝜀𝑡̂𝑡 but not necessarily a linear function of the two. If 𝜀𝜀𝑓̂𝑓 ≠ 𝜀𝜀𝑡̂𝑡, then 𝜀𝜀𝑣̂𝑣𝑣𝑣𝑣𝑣 will 

depend intrinsically on the relative magnitudes of changes in 𝑃𝑃𝑓𝑓 and 𝑃𝑃𝑡𝑡. In the special case in 

which 𝑃𝑃𝑓𝑓 and 𝑃𝑃𝑡𝑡 change by the same proportion, 𝜀𝜀𝑣̂𝑣𝑣𝑣𝑣𝑣 = 𝜀𝜀𝑓̂𝑓 + 𝜀𝜀𝑡̂𝑡; but in the general case where 

cost changes are not equal in proportion, 𝜀𝜀𝑣̂𝑣𝑣𝑣𝑣𝑣 may be larger or smaller than the sum of 𝜀𝜀𝑓̂𝑓 and 𝜀𝜀𝑡̂𝑡. 

Income plays an especially important role in the determination of travel behavior and 

therefore transportation equity. As my theoretical model shows, VMT demand is affected by 

income through both the income budget constraint (i.e., money available to pay for VMT) and 

the time budget constraint (i.e., the opportunity cost of time, which depends on wage). As such, I 

break out my estimation of Models 1-4 by income group, interacting price variables with 

indicators for income group11. In all cases, the interaction of price with the lowest income-group 

                                                 

11 The primary objective in this paper is to estimate average elasticities, both overall and within income group. For applications 
that benefit from more disaggregated predictions, machine learning and artificial intelligence methods may provide significant 
gains in precision. For instance, these methods are increasingly being used to predict household-level electricity demand as a 
function of observable characteristics [259–261]. 
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indicator is omitted, so that the point estimate on the (un-interacted) price level is interpretable as 

the elasticity corresponding to this bottom group. 

 

3.3.3. Scope and Limitations 

The theoretical model and empirical strategy here are well-suited to leverage household-

level driving data to estimate demand elasticities, but they abstract from several qualitatively 

important aspects of driving decisions. First, I do not model the capital decision of vehicle 

purchase. A static, two-period economic model with a first stage capturing vehicle purchase 

would show that buying a new car tightens the budget constraint and thus pushes VMT 

downwards [144,176]. This, in turn, would suggest that my elasticity estimates will be biased 

upwards. In a dynamic model, on the other hand, a forward-looking consumer might not adjust 

VMT in response to the (planned and expected) expense of a new car. More generally, the 

upfront cost of CAV use will depend on future innovation in CAV production technology as well 

as the prevalence of shared CAV modes. In any case, since I estimate elasticities by comparing 

changes in marginal costs, the external validity of these estimates rises as the upfront cost of 

CAV use decreases. 

Also note that the measurement of costs includes fuel and time but not depreciation, 

maintenance, insurance, or congestion. The omission of depreciation, maintenance, and 

insurance costs is motivated by a lack of data on these cost components and little consensus on 

the changes likely to occur with CAV technology diffusion along these dimensions. Note, 

however, that bias from omission of these variables is only a risk insofar as changes in 

depreciation and insurance costs are correlated with changes in fuel and time costs. Congestion is 

similarly unobservable in the data and difficult to forecast in a CAV-dominant mobility 
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paradigm. Every additional VMT comes with an external congestion cost to other drivers that is 

not measure. At low levels of CAV penetration, congestion costs may be negligible, but at higher 

levels, and with large associated reductions in the marginal cost of travel, congestion may be an 

important check on induced travel [177]. 

Finally, the travel time cost measure is imputed from reported income data. It is thus subject 

to significant measurement error as well as a risk of omitted variable bias. This imputation, 

which follows a long literature in economics and transportation research that links opportunity 

costs to wage, is the best one can do to estimate the opportunity cost of time spent traveling. 

Measurement error biases estimates towards zero; on the other hand, if households that drive 

more also value time more for reasons other than income, the omission of such explanatory 

factors might bias estimates away from zero. It is for this latter reason that I include a large 

vector of control variables in regression. Ultimately, I make no strong claim on the statistical 

precision of these estimates; rather, I argue that this exercise illustrates the sizeable role that time 

cost plays in current travel decisions and will play in a future with driverless vehicles. 

 

 Estimates of Price Elasticity of Demand for VMT 

 Table 3-2 displays the estimates of the sample-wide elasticity of demand for VMT with 

respect to different components of VMT price. The point estimate obtained from Model 1 

implies a fuel price elasticity of approximately -0.14; that is, a one percent rise (drop) in the fuel 

price per VMT is associated with a 0.14 percent drop (rise) in VMT itself. This magnitude is 

well within the range provided in the existing literature [162,165–168] , which includes estimates 

as low as -0.06 [166,167]  and as high as -0.28 [168]. Model 2, meanwhile, yields a 

corresponding point estimate of approximately -0.45 for the time cost elasticity. While this is 
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significantly larger than the fuel price elasticity estimate, such a large difference is consistent 

with the findings of the travel demand literature [158,159,161,178]. There are few existing 

estimates of the elasticity of VMT with respect to travel time cost, and there is no consensus on 

its magnitude. 

The estimates from Models 1 and 2 are susceptible to omitted variable bias, because each 

omits one of the two key components of the marginal cost of travel. In fact, 𝑃𝑃𝑓𝑓 and 𝑃𝑃𝑡𝑡 are 

positively correlated in the data (the Pearson correlation coefficient is 0.37), which implies that 

the estimates from Models 1 and 2 are biased upwards. The results from Model 3 confirm this: 

the jointly estimated fuel and time price elasticities are approximately -0.10 and -0.40, 

respectively, and both are smaller than their separately-estimated analogs.12 Together, the results 

using Models 1-3 suggest that existing estimates of travel demand elasticities may be 

systematically biased upwards. There are no studies that jointly consider fuel prices and the 

opportunity cost of time in empirical measurement of elasticities. This is primarily due to a lack 

of available data on the value of time [157], which is a challenge for us just as much as any other 

researchers. While households’ true valuations of time is unknown, there is broad consensus that 

the opportunity cost of travel rises with income [157]. As long as the fuel price of VMT rises in 

income, as it does in this case, omitting one cost component or the other will produce upward 

bias in elasticity estimates. 

  

                                                 

12 A neoclassical economic model would yield the prediction that 𝜀𝜀𝑓̂𝑓 = 𝜀𝜀𝑡̂𝑡. The fact that this is not the case in this context suggests 
the possibility that some behavioral-economic phenomenon causes households to respond differently to a change in fuel cost 
than a dollar-equivalent change in time cost. 
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Table 3-2. Results of elasticity estimation (main explanatory variables) for different models 
 Model 1 Model 2 Model 3 Model 4 

𝜀𝜀𝑓̂𝑓 -0.1408*** 
(0.028) 

- 
-0.0989*** 

(0.017) 
- 

𝜀𝜀𝑡̂𝑡 - 
-0.4486*** 

(0.042) 
-0.4007*** 

(0.048) 
- 

𝜀𝜀𝑣̂𝑣𝑣𝑣𝑣𝑣 - - - 
-0.3920*** 

(0.049) 
Pseudo 𝑅𝑅2 0.227 0.261 0.272 0.240 

The dependent variable is log(𝑉𝑉𝑉𝑉𝑉𝑉). Each column reports a separate regression. All regressions 
include fixed effects and control variables described in Section 3.2. Observations are weighted by 
the household sample weights. Asterisks denote 1 (***), 5 (**), and 10 (*) percent significance 
levels.  

 

Model 4, like Model 3, accounts for both the fuel price and the time price; however, it 

parameterizes demand to depend only on the (log) sum of the two, rather than each individually. 

Using this model, I estimate a combined elasticity of demand (𝜀𝜀𝑣̂𝑣𝑣𝑣𝑣𝑣) of approximately -0.39. 

Since 𝜀𝜀𝑓̂𝑓 and 𝜀𝜀𝑡̂𝑡 from Model 3 are markedly different, there is no special reason to believe that 

𝜀𝜀𝑣̂𝑣𝑣𝑣𝑣𝑣 is equal to the sum of 𝜀𝜀𝑓̂𝑓 and 𝜀𝜀𝑡̂𝑡. Rather, the relationship between these three parameters 

depends on the empirical distribution of prices in this particular context. In this case, the time 

channel dominates the fuel channel, as 𝜀𝜀𝑣̂𝑣𝑣𝑣𝑣𝑣 is approximately the same as 𝜀𝜀𝑡̂𝑡. To us, this 

comparison exercise underscores the importance of using separate fuel and time price elasticities 

in travel demand forecasts. The combined price elasticity estimate is internally valid, but it is 

unlikely to be externally valid to scenarios in which the relative prices and price changes 

pertaining to fuel and time are different. 

The estimated combined VMT elasticity of -0.39 differs significantly from other estimates 

in the existing literature. This discrepancy illustrates the importance of empirical analysis in the 

calibration of demand response. Elasticities of travel demand are a key input into any forecast of 
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CAV travel and energy use; one must be careful in applying estimates from one context to 

another, different context. Using existing fuel price elasticity estimates – which are 25-85% 

lower than the combined elasticity [162,165–168] – to predict energy rebound would almost 

certainly underestimate the impact of vehicle automation on energy use. On the other hand, using 

previously published estimates of VMT elasticity with respect to generalized travel costs – which 

are 60-400% higher [10,22] than here – would very likely overestimate the energy use impact of 

CAVs. 

It is not just the type of price change (fuel- or time-specific) that dictates the size of the 

demand response; it is also household wealth that matters. Table 3 displays the results of 

estimating modified versions of Models 3 and 4 that allow for differences in demand response 

across the wealth spectrum. Panel A contains the individual fuel and time price elasticities, while 

Panel B contains the combined price elasticities. Figure 3-2 shows the same results graphically. 

There is significant heterogeneity in all three parameter estimates across income groups. 

Panel A of Table 3, which reports results from Model 3, show that the gap between 𝜀𝜀𝑓̂𝑓 and 

𝜀𝜀𝑡̂𝑡 in the overall sample persists within each income group as well. Panel B of Table 3, which 

reports results from Model 4, reveals the relationships between wealth and demand response to 

specific components of VMT price. The absolute-value fuel price elasticity drops in wealth until 

the last income group; in contrast, the absolute-value time cost elasticity rises monotonically in 

wealth. These findings imply that richer households have less elastic demand than poorer ones 

with respect to fuel price changes and more elastic demand with respect to time cost changes. I 

do not attempt to explain these findings here, but I note that both positive and negative 

relationships between demand elasticity and wealth have been found in the existing economics 

literature [167,179–181]. On the one hand, wealthier households may engage in more 
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discretionary travel than poorer ones, and for that reason their demand for VMT may be more 

elastic to price. On the other hand, wealthier households are also generally less price-sensitive 

than poorer ones, and this may make their demand less elastic. The results using Model 4 (Table 

3-3, Panel B) reveal that, on aggregate, wealthier households in the context have relatively more 

elastic demand for VMT. For all four models, the signs and relative magnitudes of estimated 

coefficients on control variables  are consistent with both economic intuition and the findings of 

previous studies utilizing similar approaches and datasets [165,166]. 

 

Table 3-3. Elasticity estimates by income group 
Income 
Group 

1st Income 
Group 

2nd Income 
Group 

3rd Income 
Group 

4th Income 
Group 

5th Income 
Group 

 Panel A: Model 3 

𝜀𝜀𝑓̂𝑓 
-0.153*** 

(0.026) 
-0.131*** 

(0.012) 
-0.097*** 

(0.019) 
-0.092*** 

(0.015) 
-0.109*** 

(0.017)  

𝜀𝜀𝑡̂𝑡 
-0.290*** 

(0.063) 
-0.403*** 

(0.055) 
-0.446*** 

(0.049) 
-0.463*** 

(0.038) 
-0.474*** 

(0.048) 
 Panel B: Model 4 

𝜀𝜀𝑣̂𝑣𝑣𝑣𝑣𝑣 
-0.256*** 

(0.048) 
-0.351*** 

(0.052) 
-0.401*** 

(0.051) 
-0.444*** 

(0.037) 
-0.421*** 

(0.042) 

The dependent variable is log(𝑉𝑉𝑉𝑉𝑉𝑉). Both regressions include fixed effects and control variables described in 
Section 3.2. Observations are weighted by the household sample weights. Asterisks denote 1 (***), 5 (**), and 10 (*) 
percent significance levels. The pseudo R2 of regression for Panel A is 0.272 and for Panel B is 0.240. 
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Figure 3-2. Estimated elasticities of demand with respect to 𝑷𝑷𝒕𝒕 and 𝑷𝑷𝒇𝒇 (from Model 3) and 𝝅𝝅𝒗𝒗𝒗𝒗𝒗𝒗 (from Model 4).  

Clustered standard errors are shown as error bars. Standard errors are clustered by MSA, and observations are 
weighted by the household sample weights.   

 

I conduct two sets of robustness checks to assess the sensitivity of the results to key 

modeling decisions. First, I compare results of using the 2017 NHTS to those of using the 2009 

NHTS while maintaining the same definitions and parameterizations wherever possible.13 Table 

A-1 displays the findings, including sample-wide and income-group specific estimates. The 

absolute magnitudes of all three sample-wide elasticity estimates are modestly larger in 2009 

than in 2017, as highlighted in Column 7. Across income groups, trends in 𝜀𝜀𝑡̂𝑡 and 𝜀𝜀𝑣̂𝑣𝑣𝑣𝑣𝑣 are 

consistent in both the 2009 data and the 2017 data, while 𝜀𝜀𝑓̂𝑓 exhibits more of a U-shaped 

relationship with income in the 2009 data. Some variation in estimates across the two survey 

rounds is expected, since baseline income, fuel prices, and fuel economy are not constant over 

time. In fact, 2009 is notably defined by the onset of the Great Recession. The fact that 2009 

                                                 

13 Household income groupings in the raw 2009 NHTS do not exactly match those in the 2017 NHTS. I aggregate income groups 
in the 2009 data to match those of the 2017 data as closely as possible. 
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elasticity estimates are qualitatively similar to the main, 2017-based estimates lend credence to 

the empirical strategy and results. 

In the second robustness check, I test how the definition of time cost affects estimation 

results. Two alternative definitions of travel time cost are employed: first, that it is equal to 100% 

of hourly wage for all trips; and second, that it is equal to 50% of hourly wage for all trips 

(Figure A-2). I report the results in Table A-2. Mechanically, the first of these definitions causes 

estimated time and combined price elasticities to fall relative to the preferred estimates, while the 

second causes estimated elasticities to rise. The former effect is much more pronounced than the 

latter, perhaps because the high proportion of non-work trips in the data makes the preferred 

estimates much more similar to alternative definition 2. Meanwhile, trends in all three elasticity 

parameter estimates (not shown for fuel prices) across income groups are robust. While the 

alternative definitions rely on reported income just as much as the preferred estimate, this 

robustness check does imply that the qualitative findings are not solely an artifact of defining 

work and non-work trips differently.14 

 

 Forecasting CAV-Induced Travel and Energy Use 

One way to predict the travel and energy impacts of CAVs is by estimating the demand 

response to changes in energy efficiency and travel time cost that may occur as a result of CAV 

technology. The two primary inputs to such an analysis are travel demand elasticities and price 

changes. These estimates from Section 4 are used for the former and a range of estimates based 

                                                 

14 Several robustness checks are additionally conducted to assess the sensitivity of results to model specification and 
parametrization. All results are within a reasonable range of the main estimates. 
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on the existing CAV literature for the latter. While it is widely understood that automation and 

connectivity will enable a range of fuel-saving practices at the vehicle level, estimates of the 

magnitude of associated fuel and time cost changes are rare and largely speculative. Studies 

collectively suggest 5% to 20% energy efficiency improvement in CAVs compared to 

conventional counterparts, mainly due to optimal driving cycle, eco-routing, congestion 

reduction, and improving vehicle electrification15 attributes [9,10,22,23,155,177].  

Reductions in TTC for CAVs relative to conventional cars are predicted to come mainly 

from decreased attention demands and driving-related stresses [10], the resulting increase in 

opportunities to engage in alternative in-vehicle activities16 [56,182], and increases in travel 

speeds (through improved safety and traffic flow) [80]. Comparing previous studies of TTC in 

rail travel versus vehicle travel, Wadud estimates that the switch from conventional to CAVs will 

yield a 25-60% reduction in TTC [94]. The recent survey results of Correia et al. show that a 

CAV with an office interior could reduce travel time cost by 26% compared to a conventional 

car [183]. 60% is consistently accepted as the upper bound of possible TTC reductions in the 

literature [10,22,56,65,80,118], since in-vehicle attention requirements cannot be completely 

eliminated.17  

In this forecasting exercise, I increase fuel economy (𝑀𝑀𝑀𝑀𝑀𝑀) and travel time cost (𝑝𝑝𝑡𝑡) by 𝑋𝑋 

and 𝑌𝑌, respectively, where  𝑋𝑋 ∈ [0.05,0.2] (or 5-20%) and  𝑌𝑌 ∈ [0,0.6] (or 0-60%). The direct 

outcome of interest is the travel demand induced by CAV cost changes as a percentage of the 

                                                 

15 While the effect of vehicle electrification on net energy consumption is similar to fuel economy improvement, it could have a 
much different impact on vehicle tailpipe emissions as well as upstream emissions from electricity generation. 

16 Such activities include, for example, watching movies, sleeping, eating, working, checking emails, browsing web and social 
media. 

17 Some studies argue that increased productivity while riding with CAVs is not guaranteed.  Apprehension [262] or motion 
sickness may limit the ability of passengers to engage in other activities or raise the disutility of travel [88,182]. Short average 
trip times may not provide sufficient time for sustained productivity or sleep [262]. 
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pre-CAV “business as usual (BAU)” (𝛿𝛿 = 𝑉𝑉𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶
𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝐵𝐵

− 1). The fitted regression function from 

Model 3 is used to generate VMT predictions for any cost conditions: 𝑉𝑉𝑉𝑉𝑉𝑉� = 𝑒𝑒𝛽𝛽�0𝑝𝑝𝑓𝑓𝜀𝜀�𝑓𝑓𝑝𝑝𝑡𝑡𝜀𝜀�𝑡𝑡. 

Substituting the expression for 𝑉𝑉𝑉𝑉𝑉𝑉�  into the equation for 𝛿𝛿, rewriting 𝑝𝑝𝑓𝑓 = 𝜙𝜙/𝑀𝑀𝑀𝑀𝑀𝑀, and 

assuming gasoline price 𝜙𝜙 is fixed, I obtain: 

𝛿𝛿 = �
𝑀𝑀𝑀𝑀𝑀𝑀𝐵𝐵𝐵𝐵𝐵𝐵
𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶

�
𝜀𝜀�𝑓𝑓
�
𝑝𝑝𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶
𝑝𝑝𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵

�
𝜀𝜀�𝑡𝑡

− 1 (3-16) 

Finally, I re-express CAV values as functions of BAU using 𝑋𝑋 and 𝑌𝑌 and simplify to yield 

𝛿𝛿 = �
1

1 + 𝑋𝑋�
𝜀𝜀�𝑓𝑓

(𝑌𝑌)𝜀𝜀�𝑡𝑡 − 1 (3-17) 

I compute 𝛿𝛿 overall (using elasticities from Column 3 in Table 3-2) and for each income 

group (using elasticities from Columns 1-5 in Table 3-3), iterating over values of 𝑋𝑋 and 𝑌𝑌 in 

increments of 0.05.  

In principle, elasticity estimates from any of the four empirical models (Equations 3-12 to 3-

15) could be used to forecast induced travel. Using Model 3 estimates is preferred in this case 

because they strongly suggest that demand response depends on the specific source of price 

changes (fuel vs. time). Models 1 and 2 consider only one source or the other and are thus 

relatively more susceptible to omitted variable bias. Model 4 accounts for both fuel cost and time 

cost, but it does not allow the elasticity of demand to vary with the relative sizes of fuel and time 

cost changes.18 Consider any two different {𝑋𝑋,𝑌𝑌} pairs that, on aggregate, produce the same 

proportional change in 𝑝𝑝𝑡𝑡: Model 3’s results strongly suggest that these two pairs produce 

                                                 

18 The Model-4 equivalent equation to Equation 3-16 is 𝛿𝛿 = �
𝜋𝜋𝑣𝑣𝑣𝑣𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶
𝜋𝜋𝑣𝑣𝑣𝑣𝑣𝑣𝐵𝐵𝐵𝐵𝐵𝐵

�
𝜀𝜀�𝑣𝑣𝑣𝑣𝑣𝑣

− 1. 



 

80 
 

different VMT demand response; using Model 4 would force them to yield the same response. 

Motivated by this discrepancy, I show forecasting results based on Model 3 here and those based 

on Model 4 in Appendix A. 

Figure 3-3 depicts the results in the form of heat maps. The x-axis indicates the fuel 

economy improvement, while the y-axis indicates the time cost reduction. Color depth measures 

the induced travel demand 𝛿𝛿 in percentage terms. Two patterns are readily observable. First, the 

magnitude of induced travel rises monotonically with increases in either 𝑋𝑋 or 𝑌𝑌, consistent with 

negative price elasticities of demand. For the average household in the 2017 NHTS, the range of 

simulated price changes produces a minimum forecast of 2% induced travel and a maximum of 

47%. Second, induced travel rises with income group for any given (𝑋𝑋,𝑌𝑌) pair, consistent with 

larger absolute-value time cost elasticities among richer households that dominate smaller 

absolute-value fuel price elasticities. In the lowest income group, the average household is 

forecast to increase VMT by 1-35%, while the corresponding range is 3-58% in the highest 

income group. 

The dashed lines in Figure 3-3 connect forecasted induced travel to forecasted energy use. 

In particular, they indicate combinations of (𝑋𝑋,𝑌𝑌) that yield zero net change in energy use. Such 

an exact offsetting is possible because, even as fuel and time price drops induced travel, energy 

efficiency reduces the energy required per unit of travel. The slopes of the dashed lines therefore 

denote the rate at which time costs need to drop in order to fully offset the energy savings from 

an additional percentage rise in fuel economy. For instance, Figure 3-3 indicates that, in the 

sample-average household, a 20% rise in fuel economy would lead to net energy savings unless 

travel time cost drops by 38% or more. In each heat map, the area below and to the right of the 

dashed line is characterized by net decreases in energy use from the simulated changes, while the 
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area above and to the left of the dashed line is characterized by net increases, i.e., what is known 

in the literature as “backfire” [144]. 

 
Figure 3-3. Simulation of induced travel to fuel economy improvement and reduction in TTC for CAVs, and the 

impact on net energy consumption.  
Any point above dashed curves represents the case of backfire (increase in net energy consumption despite increase 

in fuel economy). 
 

It is apparent, both overall and in each specific income group, that a wide range of CAV 

cost changes can produce backfire. Of course, not all combinations of (𝑋𝑋,𝑌𝑌) are equally likely to 

occur. I therefore do not argue that backfire is “likely” to occur at any specific levels of 𝑋𝑋 and 𝑌𝑌. 

The empirical analysis nevertheless suggests the possibility of net energy increases from changes 

which are well within the ranges predicted in the CAV literature. Furthermore, backfire is 

increasingly likely in higher income groups. This trend follows naturally from two empirical 
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facts about relatively richer households in the 2017 NHTS: (1) a greater proportion of their 

imputed total travel costs come from time rather than fuel; and (2) they have more elastic 

demand with respect to time costs. I predict that the energy savings from a 20% rise in fuel 

economy can be offset by a 50% drop in travel time cost in the lowest income group; in the 

highest income group, however, only a 32% drop in time costs is needed.19 

There are other existing studies of the travel demand changes stemming from CAV 

technology. The methods and results of some of these are highlighted in Table 3-4. In the prior 

literature, higher VMT in CAVs is attributed not just to higher passenger travel but also to, 

variously, new user groups [78], empty vehicle travel (i.e., unoccupied VMT) [99,184], and the 

possibility of shifts in mode choice and urban sprawl [22,71,143]. New user groups include 

minors and elderly and medically infirmed individuals who may begin traveling with the 

availability of CAVs. Empty vehicle travel refers to VMT with no passengers, such as what 

might occur in a private CAV before or after passenger drop-off or in a shared CAV dispatched 

to pick up the next passenger. Mode choice shift includes substitution of CAV use for public 

transit, and urban sprawl refers to the possibility of changes to residential location choice due to 

CAV availability. This work focuses entirely on induced travel among existing drivers and yields 

estimates of overall VMT change in the range of 2 to 47 percent.  

                                                 

19 Figure A-3 depicts the simulation results from use of Model 4. Overall induced travel demand is lower at any {𝑋𝑋,𝑌𝑌}, and the 
slope of the dashed line changes more dramatically with income group. Otherwise, the patterns are the same. 
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Table 3-4. Literature estimate of changes in VMT due to CAV technology (list is non-exhaustive).  

Study Method Estimate of VMT 
change Sources of VMT change 

Childress et al. [56]  Activity-based model for 
Puget Sound region 

-30% to +20%  Changes in driving cost 
through value of travel time, 
road capacity, and parking cost  

Fagnant and Kockelman [80] Scenario-based analysis 
based on assumptions 

+10 to +20% Induced travel demand 

Harper et al. [78] Demand wedge analysis 
based on 2009 NHTS 
data 

Upper bound: 
+14% 

New demand from underserved 
travelers including elderly, 
young age, and travel-restricted 
with medical condition 

Wadud et al. [10] Literature-driven 
elasticity of VMT 

+4% to +60% Reduced generalized cost of 
driving 

Stephens et al. [22] Assumption based on 
multiplicative factors for 
travel demand 

+20% to +160% Easier travel due to traffic 
flow, crash avoidance, reduced 
cost of driving 

Zhang et al. [99] Activity-based model of 
Atlanta, GA area 

+30% (per reduced 
vehicle) 

Unoccupied relocation of 
private CAVs for meeting 
travel needs of household with 
reduced vehicle ownership 

Harb et al. [184] Naturalistic experiment, 
survey, and interview 
when providing 
chauffeur as a proxy for 
CAVs 

+4% to +341% with 
central estimates of 
83% increase 

Travel pattern shift, longer and 
more frequent travels, 
unoccupied VMT (for a small 
sample size) 

This Study Estimation of VMT 
elasticity with respect to 
fuel- and time-inclusive 
marginal price of private 
vehicle driving using 
2017 NHTS data 

+2% to 47%  Reduced marginal cost of 
driving and heterogeneous 
response of different income 
groups (purpose: forecasting 
energy consumption impacts) 
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   Conclusions 

The aim of this study is to shed light on the possible travel and energy impacts of CAVs. To 

that end, I use microeconomic modeling, applied econometric techniques, and the most recent 

data available on household travel behavior to estimate average travel demand elasticities with 

respect to the price of fuel and travel time. These elasticity estimates are then leveraged in a 

forecast of CAV-induced travel under a range of different realized changes to fuel economy and 

per-mile time costs. 

I estimate an average elasticity of VMT demand with respect to the combined, fuel- and 

time-inclusive price per mile of -0.4. Allowing for heterogeneity in VMT elasticity by price 

channel (fuel vs. time) and income, I find that demand response to price increases is larger 

through the time channel (with an elasticity of -0.4) than through the fuel channel (with an 

elasticity of -0.1). I also find that richer households are more sensitive to the overall price of 

travel as well as the time cost. 

Applying these fuel and time cost elasticities in the forecasting exercise, I find a large range 

of possible travel and energy impacts of CAV diffusion. A number of plausible scenarios for fuel 

economy and time cost changes are characterized by backfire, or a net rise in energy use. 

Backfire is more likely in higher income quantiles, where relatively less of a time cost reduction 

is required to offset the energy savings from fuel economy improvements. On average, a 38% 

reduction in time cost fully offsets a 20% fuel economy improvement enabled by CAVs. 

The results strongly suggest that travel demand will rise as a behavioral response to the 

diffusion of CAVs. Some of this rise will come from shifts away from other transportation 

modes, including public transit, cycling, and walking. Some will come from additional travel – 

such as new passenger trips, empty trips in between passenger travel, travel pattern change, 
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breaking of pooled trips into several lower occupancy trips, and longer and more frequent trips 

necessitated by shifting home locations to peripheral zones. Regardless, this induced travel will 

pose a stiff challenge to policy goals for reductions in energy use, traffic congestion, and local 

and global air pollution. 

The proper government response to CAV market penetration is not obvious. There is no 

“silver bullet” that can achieve all goals efficiently and equitably, and policies aimed at meeting 

some of these goals may make it more difficult to meet others. For instance, while it is natural to 

view the results as evidence that even greater fuel efficiency is needed, this study also 

underscores the limitations of vehicle energy efficiency improvements: they provide incentive to 

drive more, which offsets some environmental benefits and increases congestion. Taxation – 

another commonly cited policy tool for internalizing the negative externalities of driving – is also 

imperfect. Taxes are viewed by many as a more economically efficient policy instrument, but 

they are also sometimes viewed as regressive, because poorer households generally devote a 

greater proportion of their total budget to energy than richer ones. Vehicle connectivity may, on 

the one hand, actually enhance the cost-effectiveness of taxation in the transportation sector by 

offering the potential to tax VMT instead of (or in addition to) to fuel use.20 On the other hand, 

the fact that wealthier households have more elastic demand than poorer ones in this context 

increases the risk of regressive welfare impacts of taxation.21 Above all, policymakers should 

prioritize incentives  for high-occupancy pooling, ride-sharing, and minimizing empty trips, as 

these have the potential for large reductions in fuel use at low cost to well-being. 

                                                 

20 This is seen as desirable because, while fuel use is highly correlated with greenhouse gas emissions, it is much more weakly 
correlated with local air pollution, congestion, and accident risk (see, e.g., [263]). 

21 The relationship between demand elasticity and income is an important input into distributional welfare analysis; see 
[264,265]). 
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This analysis expresses induced travel and rebound in percentage terms, but it is instructive 

to consider the absolute magnitude of prospective changes in travel and energy due to CAVs. For 

instance, an assumed 15% average improvement in fuel economy is expected to save 10.56 

billion gallons of gasoline equivalent (GGE) annually (26.4 billion USD), from a current 

consumption level of 88.85 billion GGE in light-duty vehicles. However, that number should be 

viewed as a best-case scenario. CAVs with the same 15% fuel economy advantage would very 

likely induce travel that would offset some of those savings. Based on this estimate, at 100% 

market penetration, CAVs may result in anywhere between the aforementioned 10.56 billion 

GGE annual decrease and a 15.26 billion GGE (17.2%, or 38.15 billion USD) annual increase.  

While the present study uses U.S. data to quantify the energy rebound caused by CAV 

penetration, the methodology that I develop here is general and can be applied to other regions of 

the world, where travel is less heavily reliant on private vehicles. Future research should also aim 

to compare the broader social benefits of CAV travel with their social costs, considering the 

value and frequency of driving and all the externalities that it produces. Finally, there remains a 

large degree of uncertainty in the attributes, costs, and benefits of connected and automated 

vehicles, which in turn makes it difficult to forecast and react to future travel and energy 

behaviors. Even at this early stage of CAV technology maturity, however, it is vital to consider 

the potential of CAVs to induce significant new travel and energy use. 
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 Widespread Range Suitability and Cost Competitiveness of 
Electric Vehicles for Ride-hailing Drivers 

 

 Introduction  

Transportation Network Companies (TNCs) or ride-hailing services [41] have brought about 

a new paradigm in personal travel that is rapidly reshaping the transportation sector. Ride-hailing 

platforms such as Lyft, Uber, and DiDi provide on-demand mobility services that complement 

and compete with personal vehicle ownership and transit use, changing urban travel patterns and 

the associated energy and environmental impacts. TNCs account for a small yet rapidly growing 

share of transportation miles [46] and have likely raised energy use and emissions by substituting 

for public transit, increasing “deadhead” miles, and inducing new travel demand 

[24,31,38,51,54]. The Union of Concerned Scientists (UCS), for example, finds that the average 

ride-hailing trip produces an estimated 69% more greenhouse gas (GHG) emissions than the trip 

it replaces [185]. California Air Resources Board estimates that the 2018 TNC vehicle fleet 

emitted 301 CO2-eq per passenger-mile travelled (PMT), approximately 50 percent higher than 

the statewide passenger vehicle fleet average of 203 CO2-eq/PMT [186]. In 2018, California 

became the first U.S. state to regulate GHG emissions by TNCs, through the California Clean 

Miles Standard and Incentive Program (Senate Bill (SB) 1014). 

Fleet electrification is widely viewed as a solution to the problem of large and increasing 

transportation-sector emissions, through the substitution of low- or zero-carbon electricity for 

emissions-intensive automotive fuels [26,32,36,187,188]. Consistent with this notion, Lyft 
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recently announced a commitment to transition to 100% electric vehicles (EVs) on its platform 

by 2030 [189]. A few months later, Uber announced the same electrification goal for its U.S. 

platform as well as a similar goal of full electrification internationally by 2040 [190]. A number 

of factors, however, are thought to constrain this transition. As of 2019, fewer than 0.5% of 

active TNC vehicles were estimated to be electric [191]. The upfront cost of an EV is currently 

higher than that of an internal combustion engine vehicle (ICEV), which elicits questions about 

the cost competitiveness of EVs. Ride-hailing drivers predominantly self-identify as low income 

and as a member of minority groups [192], which suggests the possibility that financing 

constraints limit EV uptake. In addition, EV batteries must be charged periodically, which, given 

the relative sparseness of the U.S. charging station network may induce “range anxiety” among 

some would-be EV users. Furthermore, the need to regularly charge an EV is an example of how 

the experience itself of owning and operating an EV differs from that of an ICEV. Relatedly, 

current limitations on the size or other non-price attributes of EVs may be a disincentive to their 

take-up (Supplementary Note B-1 provides more details on EVs). 

In this study, the ability of currently available battery electric vehicle (BEV) models is 

investigated to meet the range needs of ride-hailing drivers and compete with ICEV and hybrid 

vehicles on total cost of ownership. A large, novel dataset is used for this study: the universe of 

2019 rides and drivers on the Lyft platform. The absolute count of active drivers represented in 

this study remains the proprietary information of Lyft Inc. The analysis results is reported based 

on the percentage of driver cohorts to comply with the data use agreement. For context, Schaller 

(2018) estimates that there were nearly 4.2 million active ride-hailing drivers in the U.S. working 

on Lyft and Uber platforms in 2018, whose approximate market shares were 40% and 60%, 

respectively [43]. 
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A few previous studies have shed light on BEV range and cost considerations in specific 

contexts and for specific driver types. Tu et al. study range needs and vehicle operation costs in a 

week’s worth of GPS trajectory data for nearly 140,000 ride-hailing drivers on the DiDi platform 

in Beijing [193]. Bauer et al. simulate ride-hailing patterns in New York and San Francisco using 

agent-based modeling and find evidence that BEVs can provide the same level of service at 

lower cost than ICEVs [194]. Pavlenko et al. estimate the total costs of EV ownership for several 

“representative” driver profiles [195]. This work expands on these previous studies by providing 

a more comprehensive, empirical picture of BEV range suitability and cost considerations than 

has been previously possible (Supplementary Note B-2 provides a more detailed review of 

literature).  

I estimate that more than 86% of all drivers on the Lyft platform in 2019 would have seen 

their daily travel needs met by a fully charged BEV with listed range of 250 miles (BEV250) on 

at least 95% of driving days. This high level of “range suitability” is not dependent on a fully 

charged battery; when incomplete initial states of battery charge is allowed, it is observed that a 

BEV250 is sufficient to complete 82% of all observed driver-days. At the same time, I project 

that a moderate subsidy (or an equivalent purchase price reduction) of approximately $5,700 for 

the upfront purchase would be necessary to make a new BEV250 cheaper over its use-period for 

all range-suitable drivers on the Lyft platform. Some high-mileage drivers would see total cost 

savings from a new BEV250 even without any subsidy. All drivers would see total cost savings 

from a pre-owned BEV, which has the lowest total cost of all vehicle types considered. 

These findings together suggest that range and total cost should not be constraints on 

widespread BEV switching by TNC drivers. They also point to the importance of information 

campaigns to address misconceptions about BEV attributes, the value of targeting both 
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information and subsidies to cost-effectively induce EV switching, and the notion that resources 

are better spent on charging technology and infrastructure than vehicle range expansion. The 

climate benefit of inducing widespread EV switching in the ride-hailing sector is high: if every 

BEV250-suitable driver on the Lyft platform drove a BEV250 in 2019, I project saving 5.72 

million metric tons of CO2-eq from tailpipe emissions (estimated 77.2% reduction) annually (see 

Table B-6 for more details on tailpipe and life-cycle emissions reduction opportunity). This is 

equivalent to a 0.31% reduction in EPA’s estimate of total transportation emissions in the U.S. in 

2018 [2].  

 

 Materials and Methods 

4.2.1. Data 

Anonymized data on the daily travel patterns of each driver on the Lyft platform in 2019 is 

obtained. Drivers with no reported trips in the year, drivers of EVs and rental vehicles, and 

drivers with extreme outlier values for any of the relevant variables are omitted. For each driver, 

daily total VMT, occupied VMT, number of trips completed, number of shifts, and shift hours 

are observed. The driver’s state of residence is used in state-level calculations. The mileage data 

includes three segments: P1 (driver waiting for a request); P2 (driver driving to pick-up 

location); and P3 (with at least one passenger in the vehicle). I calculate daily total VMT as the 

sum of these three and use P3 to capture occupied VMT. To assess range suitability of BEVs in 

this dataset, for each driver, average VMT as well as the 90th, 95th, and 99th percentiles of daily 

VMT are calculated. Table B-1 and Figure B-2 show summary statistics of the key variables. 
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4.2.2. Driver Cohorts 

I create mutually exclusive “cohorts” of drivers exhibiting similar travel patterns using an 

unsupervised learning algorithm. I compare the performance of k-means, k-medoids, and 

hierarchical clustering and choose the k-means method with k=4 for the main analysis [196] 

(Supplementary Note B-3 provides more details on the driver clustering). The clustering 

variables are number of active days, daily number of rides, daily total VMT, daily occupied 

VMT, and daily shift hours; all variables are standardized before clustering. Based on the relative 

attributes of each cohort, I use the following cohort names: Ultra-High Mileage (UHM); High-

Frequency High-Mileage (HFHM); Low-Frequency High-Mileage (LFHM); and Low-Frequency 

Low-Mileage (LFLM) (Figure B-1). Table B-1 includes summary statistics for key variables by 

cohort. 

 

4.2.3. Total Cost of Ownership (TCO) Model 

I build a TCO model to calculate average annual ownership cost of vehicles of different 

types, total mileages, and commitment periods. New (2020) and pre-owned (2017) ICEVs, 

HEVs, and BEVs are considered; consistent with Pavlenko et al., plug-in hybrid electric vehicles 

are excluded, since they often operate similar to non-plug-in hybrid models and are challenged 

by relatively high fueling and maintenance costs and higher upfront costs [195]. For each vehicle 

type, I choose one representative vehicle model to evaluate. For ICEVs, and HEVs, the Toyota 

Camry LE and Toyota Prius are chosen, respectively; these are currently the best-selling vehicles 

of their type overall as well as the most common vehicles of their type on the Lyft platform 

[197]. For new and pre-owned BEV250, the Chevy Bolt is chosen, which is the most common 

BEV among ride-hailing drivers (the best-selling BEV overall is currently the Tesla Model 3) 
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[197]. For pre-owned BEV100, the Nissan Leaf is chosen, which is again the best-selling EV of 

its range on the used market [198]. 

I assume a 5% discount rate and calculate net present values for cash flows associated with 

future recurring costs in each year of ownership. I assume that the first year of ownership is the 

base year, that is, that costs in that first year are undiscounted. The choice of discount rate is 

higher than the 3% rate frequently used in the transportation economics literature, because ride-

hailing drivers tend to have relatively less income, which is commonly associated with a 

relatively higher discount rate. The following formulas are used to compute average annual total 

cost of ownership (AATCO): 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑜𝑜𝑜𝑜 𝐻𝐻𝐻𝐻𝐻𝐻 =
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𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑜𝑜𝑜𝑜 𝐻𝐻𝐻𝐻𝐻𝐻 and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵 are average annual total cost of ownership for ICEV or 

HEV and BEV, respectively. 𝐷𝐷𝐶𝐶𝐶𝐶 is the depreciation over the commitment period as described 

below. 𝐶𝐶𝐶𝐶 is the commitment period in years (3 or 5 years). 𝑖𝑖 denotes year index and 𝑟𝑟 is the 

discount rate (5%). 𝐼𝐼 is the annual insurance cost. 𝐺𝐺𝑠𝑠 is the 2019 average gas price ($/gallon) in 

state 𝑠𝑠 where the vehicle operates and, analogously, 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠 is the levelized cost of electricity 

($/kWh) for BEV charging in state 𝑠𝑠 as estimated in Borlaug et al [199] (Table B-5). 𝑀𝑀𝑀𝑀𝑀𝑀 is the 
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vehicle fuel economy (miles per gallon) and 𝜑𝜑 is the BEV energy efficiency (kWh/mile). 𝜙𝜙(. ) is 

the mileage weighted service and maintenance cost ($/mile) as described below. 𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇 is the 

annual mileage observed on the Lyft platform and 𝑀𝑀𝑃𝑃 is the annual mileage for personal use of 

vehicle, which I assume to be 7300 miles per year [106]. I exclude taxes, registration costs, and 

fees given their high variability and that they do not contribute substantially to the comparative 

TCO (they are very similar among ICEVs, HEVs, and BEVs. This exclusion may slightly 

disadvantage BEVs, since in some regions BEVs receive discounts on registration and fees. 

 

4.2.4. Depreciation 

Depreciation depends on both mileage and vehicle age. Vehicles depreciate much faster at 

the beginning of their lifespan; the depreciation curve flattens in later years (of ownership). Prior 

research has shown that BEV cost-competitiveness increases in total mileage and commitment 

period in part because of a depreciation curve with a steeper head and flatter tail [200–202]. 

I calculate the depreciation of vehicles as the difference between a vehicle’s manufacturer 

suggested retail price (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) and its vehicle residual value (𝑉𝑉𝑉𝑉𝑉𝑉) at the end of the commitment 

period. For simplicity, I assume BEV subsidies are directly deducted from 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀. For pre-

owned vehicles, I use Kelly Blue Book average dealer estimates of resale price for vehicles listed 

as “certified pre-owned from certified dealer - fair purchase price on very good condition”, with 

a typical mileage of 30,000 miles at the time of purchase.  

For 𝑉𝑉𝑉𝑉𝑉𝑉, I use the alg.com Vehicle Residual Value tool, which provides an estimate of 

residual value based on mileage band and age for most vehicles in the market. I consider four 

annual mileages (10,000, 20,000, 30,000, and 40,000 miles) and ownership commitment periods 

of three and five years. The residual values of benchmarked vehicles are within a 3% margin of 
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error compared to analogous Kelly Blue Book estimates. The residual value estimates for new 

and pre-owned vehicles based on annual mileage and commitment periods are presented in Table 

B-2 and Table B-3, respectively. I match the mileage band to the annual VMT of drivers and find 

the annual average depreciation for each vehicle based on three- and five-year ownership 

commitment. Since 𝑉𝑉𝑉𝑉𝑉𝑉 is based on the undiscounted rate, the depreciation cost over the 

commitment period can be expressed as 𝐷𝐷𝐶𝐶𝐶𝐶 =  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 –  𝑉𝑉𝑉𝑉𝑉𝑉
(1+𝑟𝑟)𝐶𝐶𝐶𝐶−1

 

 

4.2.5. Insurance 

Lyft provides drivers with insurance for P1, P2 and P3 segments of their mileage 

(dispatched and passenger on-board), but P0 and personal mileage is paid by the driver. Several 

studies have attempted to estimate the TCO components of ride-hailing vehicles inclusive of 

insurance cost. The most widely used estimates come from Zoepf et al., who survey drivers 

about operating cost and provide a distribution of cost estimate (median combined cost of $0.13 

per mile for maintenance, repair, and insurance) but do not break down by the components [203]. 

Henao and Marshall estimate annual insurance costs to be $1,500 [204]. Parrot and Reich 

estimate commercial insurance costs for ride-hailing drivers in New York City of $0.14/mile, 

which is higher than the national average. I opt for the American Automobile Association’s 

estimate, with the assumption that insurance rate is not a function of mileage [205] as presented 

in Table B-4. This estimation of annual insurance costs yields a median per-mile cost of 

$0.067/mile for ICEV based on the annual mileage of all drivers, which is slightly higher 

than Zoepf et al.’s survey estimates when accounting for service and maintenance (S&M) costs. 

Insurance cost is slightly lower for HEVs and BEVs relative to ICEVs as well as pre-owned 

models relative to new ones. 
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 Service & Maintenance Costs 

It is widely believed that service and maintenance (S&M) of BEVs are far less expensive 

than those of ICEV and HEV on average, given fewer parts that need routine maintenance. 

Reliable life cycle maintenance data from EVs are rare and usually reported in the form of a 

single estimate regardless of vehicle age and mileage [200]. Here, I develop a model which 

benefits from mileage-specific S&M costs for the whole lifecycle of a vehicle.  

In the TCO model, 𝜙𝜙(. ) is a dynamic function which returns a mileage-weighted average 

S&M cost per mile for each vehicle technology based on a driver’s annual mileage (observed 

and personal) and ownership commitment period. 𝜙𝜙(. ) is calculated based on the mileage-

specific S&M costs for the lifecycle of vehicles represented in Figure B-6. I assume that the 

useful life of a BEV is 200,000 miles and that of an ICEV or HEV is 150,000 miles [206]. For 

fair comparison, I augment an upfit cost of 2.04 ¢/mile after 150,000 miles for ICE and HEV, as 

suggested in  [206]. Ranges of estimated S&M costs for different combinations of vehicle type, 

new vs. pre-owned, and commitment period length are shown in Figure B-7. 

 

4.3.1. Fuel and Electricity Costs 

To produce estimates of per-mile energy costs, I first obtain EPA estimates of fuel economy 

for each vehicle model in this exercise. For new and pre-owned ICEV, I use 27 and 25 miles per 

gallon (MPG), respectively, as the combined (55% city, 45% highway) fuel economy. For new 

and pre-owned HEVs, I use 50 MPG. For new and pre-owned BEV, I assume an energy 

efficiency (𝜑𝜑) of 0.28 and 0.29 kWh per mile, respectively.  
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For gas price (𝐺𝐺𝑠𝑠), I use the EIA 2019 average estimate in the driver’s state, which includes 

taxes and is based on the weighted sales volume of three grades of gas, as shown in Table 

B-5[207]. National average gas price in 2019 is $2.763/gal with median of $2.625/gal. The 

levelized cost of charging (LCOC) for BEV charging is adopted from a recent study from NREL 

[199] and matched by driver’s state (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠). Baseline estimates of LCOC for each state are 

presented in Table B-5, which shows a national average of 0.150 $/kWh (exclusively charging at 

DCFC stations increases the national LCOC to 0.18 $/kWh, while the price falls to 0.11 $/kWh 

for drivers who only charged their BEV using a dedicated household outlet.). For simplicity, I 

assume 𝐺𝐺𝑠𝑠 and 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠 do not change over the ownership commitment period.  

 

 Range Suitability of BEVs for Ride-hailing Drivers 

I use anonymized, de-identified travel pattern data on all active, non-EV drivers in the U.S. 

in 2019 on the Lyft platform; the full year of data ensures that the analysis accounts for seasonal 

variation in ride-hailing patterns. The analysis sample includes all drivers with at least one active 

day on the Lyft platform in 2019. Observed VMT totals include mileage during “idling time” (or 

the “P1” segment, which covers travel in between occupied rides while the Lyft app is still 

open). I do not observe driving activity while the Lyft app is closed (known as P0), which 

includes personal travel as well as ride-hailing and other commercial (e.g., food and parcel 

delivery) activity through non-Lyft platforms. 

To aid in the presentation and interpretation of results in this large dataset, I use 

unsupervised learning algorithms to identify distinct cohorts of drivers with shared travel 

patterns (Methods). This procedure results in four cohorts: Ultra-High Mileage (UHM); High-

Frequency High-Mileage (HFHM); Low-Frequency High-Mileage (LFHM); and Low-Frequency 
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Low-Mileage (LFLM) (Figure B-1). These cohorts account for 9%, 14%, 31%, and 46% of all 

drivers, respectively. I report characteristics and summary statistics of relevant variables in the 

dataset in Table B-1 and Figure B-2. 

Observing the distance traveled on the job every day by every driver on the Lyft platform 

makes it possible to characterize the suitability of electric vehicles to meet daily range needs as 

well as the total cost of BEV (versus ICEV) ownership. Other attributes certainly matter as well 

in the vehicle purchase decision [34,35,208,209]; however, the fact that ride-hailing driving is 

primarily done to earn money suggests that such drivers are likely to weigh range suitability and 

cost of ownership heavily in vehicle choice. Consistent with this notion, a recent survey finds 

that ride-hailing drivers rank BEV range limitation and economics as their top reasons for not 

choosing BEVs [197]. 

I use several definitions of BEV range suitability. The primary definition is the ability of a 

BEV to meet a driver’s daily vehicle-miles traveled (VMT) needs on 95% of days in the year (or, 

alternatively, fewer than 5% of her active days have total VMT higher than BEV range). I 

additionally characterize suitability according to 90% and 99% thresholds. To illustrate the 

pitfalls of focusing on average behavior, I also show the results of defining suitability as meeting 

a driver’s average daily VMT need. Throughout the analysis, I assume that BEVs have an energy 

efficiency of 0.28 kWh/mile and 88% usable battery capacity on average [193]. Furthermore, I 

subtract 30 miles from the technical BEV range as a buffer to allow for VMT for personal use 

(the U.S. average VMT for non-work was 20 miles per day in 2017 [106]). In the base 

specification, I assume that a BEV’s State of Charge (SoC) is 100% at the beginning of the day 

and no charging occurs during the day. I conduct sensitivity analyses in which initial SoC is 

incomplete or partial mid-day charging is possible. 
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Figure 4-1 presents cumulative distributions of range suitability with respect to BEV battery 

size. In Panel A, I plot full-sample distributions for each of the four definitions of suitability; in 

Panel B, I reprint the full-sample distribution for the preferred definition alongside analogous 

distributions for the Low-Frequency Low-Mileage (LFLM) and Ultra-High Mileage (UHM) 

cohorts. Panel A shows that, for the great majority of drivers, their range needs are met on most 

or all days of ride-hailing activity. For example, a BEV250 satisfies 95% or more days of driving 

needs for 86.2% of all non-EV drivers on Lyft’s platform in 2019. The corresponding number for 

the 90% and 99% thresholds are 92.4% and 74.7%, respectively. For context, there are currently 

several BEV250s on the market, including the Chevy Bolt, Tesla Model 3, Ford Mustang Mach 

E, and Kia Niro. 

Three other facts are apparent from Figure 4-1. First, assessment of range suitability using 

average behavior is misleading. According to Panel A, a 200-mile battery meets nearly every 

driver’s average daily need – but at the same time, I calculate that such a battery size fails to 

meet a driver’s needs on 48 days of the year, on average. Second, the marginal suitability effect 

of battery size decreases at higher battery sizes in the full set of drivers (Panel A). The right tail 

of ride-hailing driver activity is long: a battery size of 300 miles would be 99% range-suitable for 

86.7% of drivers, but to provide the same level of suitability to nearly all (99.9%) drivers, a size 

of 590 miles would be needed. Third, there are wide differences in range suitability across the 

driver distribution. According to Panel B, a BEV250 is suitable for all LFLM drivers but only a 

quarter of UHM drivers. 
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Figure 4-1. (A) BEV range suitability for all drivers on the platform based on battery size (mile and kWh capacity) 

under different suitability criteria.  
95th%-VMT BEV suitability indicates that the BEV range meets the daily VMT needs of a driver on 95% of her 

active days.  90th% and 99th% suitability criteria are analogous. “Average VMT” suitability indicates that daily VMT 
needs are met on a driver’s average day. (B) BEV suitability with the 95th%-VMT metric overall and for specific 

cohorts (see text for cohort definitions). 
 

Note two additional analyses that shed light on the sensitivity of range suitability to 

assumptions about BEV charging. First, I replicate the prior calculation while assuming that each 

driver takes advantage of a 30-minute daily partial charging via a 30kW DC Fast Charger 

(DCFC), which is equivalent to a 90-mile range increase. There is an opportunity cost of mid-

day charging, but the magnitude of this cost depends on the counterfactual activity of drivers. A 

recent survey of 732 BEV drivers on the Uber platform shows that a significant portion of 

drivers do engage in mid-day charging, with a mix of public level 2 chargers and DCFCs [197]. 

With 30-minute daily partial charging, the preferred estimate of BEV250 suitability increases 

from 86.2% to 97.7% of drivers (Figure B-5).  

Second, I investigate the extent to which observed days of ride-hailing activity can be met 

with less-than-complete States of Charge (SoCs), in acknowledgment of the fact that not all 

drivers are able to charge their vehicle to 100% before starting the day. I run a stochastic 

simulation with 10,000 iterations: in each iteration, I draw a random initial SoC uniformly 
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distributed between 20-100% for each of the all active driver-days and count the number of 

driver-days whose VMT can be met with BEVs of different battery size (otherwise I use the 

same assumptions as in the Figure 4-1 analysis). Figure 4-2 plots the empirical distribution 

(across the 10,000 iterations) of the percentage of driver-days with VMT less than the range of a 

BEV250 (or BEV100). The figure shows that, on average, 82% of all driver-days can be 

completed with a BEV250, while 40% can be completed with a BEV100. For the LFLM driver 

cohort, meanwhile, a BEV100 is sufficient for the completion of 71% of driver-days. These 

findings are consistent with a prior study which finds that, relying only on night-time charging, a 

BEV with just under a 100-mile battery size could meet the travel demand of 87% of vehicle-

days in the U.S. based on the 2009 National Household Travel Survey (NHTS) [210]. More 

generally, the simulation exercise suggests that the high degree of BEV suitability implied by the 

main results is not overly sensitive to the assumption of 100% SoC. 

 

 
 Figure 4-2. Sensitivity of BEV suitability to initial State of Charge (SoC) based on stochastic simulation with 

10,000 iterations.  
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Initial SoC is uniformly distributed between 20-100%, and all other procedural details are the same as in Figure 4-1. 
The average percentage of active days completed by BEV250 (BEV100) is 82% (40%). The simulation of 

specifically the LFLM driver cohort shows 71% of active days can be fulfilled with BEV100.  
 

To the extent that Lyft ride-hailing VMT and other sources of VMT are negatively 

correlated, I may be underestimating daily VMT by low-mileage ride-hailing drivers in the data. 

Those with high average daily mileage are more likely to be loyal drivers on the Lyft platform, 

and they have limited additional time for travel in the day by nature of their high observed Lyft 

VMT. Lower-mileage drivers, on the other hand, are more likely to be engaging in ride-hailing 

through other platforms and have more time for other commercial activity and personal use. 

 

 Total Cost of Ownership of BEVs 

I utilize a Total Cost of Ownership (TCO) approach to model vehicle cost over the 

commitment period. TCO modeling is a standard tool in transportation economics for comparing 

different technologies on the grounds of cost [201]. In the analysis, TCO depends on the 

annualized fixed costs of capital and insurance, the marginal costs of service and maintenance 

(S&M) and fuel, and the levelized cost of electricity charging (LCOC). I estimate costs for a 

representative ICEV, HEV, and BEV model on the market at each battery range (Methods). 

LCOC reflects the average cost of charging given the monetized opportunity cost in level of 

access to charging infrastructure as well as electricity cost calculated at the state level [199]. I 

exclude taxes, registration costs, and other fees, which are very similar for ICEVs, hybrid electric 

vehicles (HEVs), and BEVs (this exclusion may slightly disadvantage BEVs in TCO 

comparisons, because there are rebates on such fees for BEVs in some states). I apply a 5% 

discount rate on expenses beyond the purchase year. A variety of state and federal government 

subsidies are available to most EV buyers, including, most prominently, a federal tax credit for 
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EV purchases that is currently capped at $7,500. To model the effect of these subsidies on TCO, 

I incorporate a rebate of varying sizes on all new BEV purchases in the analysis. 

I begin by estimating TCO for different vehicle types, annual VMT, and commitment 

periods. I consider both new and used BEVs (of varying battery sizes), HEVs, and ICEVs. I vary 

annual VMT from 10,000 to 40,000. Following evidence on the average ownership commitment 

period among TNC drivers [204,211], I evaluate TCO over commitment periods of three and five 

years (a longer ownership commitment period would favor BEVs). I then divide TCO by total 

VMT over the ownership commitment period to obtain a “levelized cost” of ownership in dollars 

per mile.  

Figure 4-3 illustrates the per-mile TCO of new and pre-owned vehicles for different annual 

mileages and commitment periods. With an annual VMT of 10,000 – which is close to the annual 

average mileage of a personal vehicle in the U.S. – a new pre-subsidy BEV250 costs nearly 27% 

more than a new ICEV for three years of ownership. However, as annual mileage and 

commitment period increase, BEV250 becomes increasingly cost-effective. 20,000 VMT per 

year is sufficient to make a pre-subsidy BEV250 cost less per mile than an ICEV with a five-year 

commitment period; 30,000 VMT is sufficient to do so for both commitment period lengths. 

Meanwhile, with a $10,000 purchase subsidy, which is roughly consistent with the combined 

value of current federal and state incentives for many BEV models, a new BEV250 consistently 

costs far less than a new ICEV. For example, with a modest annual VMT of 10,000, a five-year 

commitment period, and a $10,000 subsidy, a BEV250 costs nearly 29% less than ICEV. An 

HEV also consistently costs less than an ICEV and competes with BEV250 depending on 

mileage, commitment period, and subsidy level. The cost estimates are consistent with those of 

Borlaug et al. [199] and Palmer et al. [201] but slightly larger in magnitude due to the shorter 
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ownership commitment periods I use here. Several market research entities also report $6,000-

$10,000 lifetime savings for BEVs compared to ICEVs, and even larger savings for pre-owned 

BEVs [202,212]. 

 

 

 
 Figure 4-3. Levelized (per mile) total cost of (A) new and (B) pre-owned vehicles for different annual mileages and 

commitment periods.  
The error bars represent the highest and lowest estimates with respect to variation of fuel and LCOC in different 

states. Per-mile cost includes depreciation, insurance, fuel/electricity, and S&M costs  
 

Notably, pre-owned BEVs cost less than pre-owned HEVs and ICEVs regardless of mileage 

and ownership commitment period, even without the aid of any purchase subsidy (for which pre-

owned BEVs are ineligible). For instance, a pre-owned BEV100 (e.g., a Nissan Leaf) appears to 

be a very cost-effective option for those drivers whose daily VMT needs are met by a battery 

size of 100 miles. This represents a significant portion of drivers in the LFLM cohort and implies 

that, at currently observed vehicle prices, switching to a pre-owned BEV100 could significantly 

reduce total vehicle costs for many. The main reason why pre-owned BEVs have a greater 

relative cost advantage than new ones is that BEVs are currently considered semi-luxury 
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vehicles; this induces a steep depreciation curve at the beginning of vehicle use and a flatter 

curve than those of ICEVs and HEVs from the third to fifth year of ownership [202]. 

Next, I apply TCO analysis to the drivers in the ride-hailing dataset. Figure 4-4 plots ranges 

of annualized savings produced by switching from an ICEV to a BEV. In Panel A, the BEV has a 

battery size of 250 miles and the commitment period is five years. I plot ranges and averages for 

the full sample as well as each cohort, excluding drivers for whom a 250-mile range does not 

meet the suitability criterion (Figure B-8 and Figure B-9 show analogous results using alternative 

assumptions). VMT is the largest source of variation in total costs across drivers, but cross-state 

differences in LCOC and the price of gasoline are also relevant. 

With no subsidy, a new BEV250 is costlier than a new ICEV for most but not all drivers. 

Overall, 8.3% of all 2019 drivers on the Lyft platform are projected to both find a BEV250 

range-suitable and save money switching to it. High-mileage drivers, however, are more likely to 

find a BEV250 attractive on cost grounds. The analogous cohort-specific percentages of drivers 

for whom a BEV250 provides both suitable range and cost savings are 12.2% in the UHM cohort 

and 48.5% in the HFHM cohort. As Panel A of Figure 4-4 shows, no driver loses more than 

$1,100 per year switching to a BEV, but a number of drivers gain more than $1,500 per year 

from a switch. 
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 Figure 4-4. The range and distribution of annual savings from ICEV to BEV for BEV-suitable drivers.  

(A) From new ICEV to BEV250 with and without purchase subsidies, under a 5-year commitment period. (B) From 
pre-owned ICEV to pre-owned BEV250 and pre-owned BEV100, under a 3-year commitment period. The red dots 

show the average annual savings for the whole population in the cohort.  
 

With a $10,000 purchase subsidy, all drivers on the Lyft platform are projected to save 

money switching to a BEV250, though only 86% of them also find a BEV250 range-suitable. 

The switch is projected to save an average of $1,325 annually among these drivers (Figure 

B-10), though savings rises above $3,000 for some. Similarly, Panel B of Figure 4-4 shows that 

switching to a pre-owned BEV100 or BEV250 (from a pre-owned ICEV) is projected to save 

money for all drivers at current purchase prices. Panel B also illustrates the value of battery 

right-sizing: LFLM and LFHM drivers uniformly save the most from a pre-owned BEV100, 

while some HFHM and UHM would find a BEV250 to be the cheaper option. 

The purchase subsidy available to a potential BEV buyer is clearly very impactful in 

bringing BEVs to cost parity with ICEVs: a new BEV250 is projected to be range-suitable and 

cost-saving for 8.6% of drivers on the Lyft platform with no subsidy and 86.2% of drivers with a 

$10,000 subsidy. Given the magnitude of this effect, as well as uncertainty and geographic 
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variation in what the subsidy level will be going forward, it is instructive to investigate how TCO 

moves with the subsidy level between $0 and $10,000. Figure 4-5 displays precisely this 

relationship, overall and in each cohort, again under a five-year commitment period (Figure B-12 

repeats the experiment for a three-year commitment period). The average driver breaks even by 

switching to a new BEV250 with a subsidy of $3,200, though the right-skewed VMT distribution 

of ride-hailing drivers means only 26.5% of drivers actually break even at this subsidy level. 

However, a subsidy of $5,700 is enough to cause all range-suitable drivers to at least break even 

on the switch. The curves in Figure 4-5 are capped below 100% (except in the case of the LFLM 

cohort) only because there are drivers in each cohort for whom a BEV250 does not provide 

suitable range. An equivalent reduction in vehicle purchase price due to battery cost cut has the 

same effect. The re-designed 2022 Chevrolet Bolt is projected to cost $5,500 less than the prior 

model [213]; the analysis implies that this price reduction brings nearly all range-suitable drivers 

to the break-even point on switching without any additional subsidy. 

 

 
Figure 4-5. Percentage of drivers in each cohort that both find a BEV250 range-suitable and break even under a 5-

year ownership commitment, as a function of subsidy level.  
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Curves that plateau below 100% have drivers for whom a BEV250 does not have suitable range. An average driver 
breaks even with a minimum of $3,200 purchase subsidy. Vertical lines indicate certain specific levels of subsidy. 
Fed + State: current level ($10,000) for majority of states; Fed Only: $7500 federal tax credit; Reduced: a scenario 

where tax rebate is reduced to $5,000.  
 

 Discussion and Policy Implications  

Overall, the analysis suggests that range and total cost should not be seen as constraints on 

significant BEV take-up in the ride-hailing sector. I estimate that approximately 86% of drivers 

on the Lyft platform in 2019 could switch to a BEV250 – of which several models are currently 

on the market – without having to curtail their mileage on more than 5% of their active days.  

When I relax the assumption of 100% initial state of charge (SoC), the median percentage of 

driver-days (across 10,000 simulations) for which a BEV250 meets the suitability criterion 

remains high at 83%. Some of these drivers – in particular, high-mileage ones – are projected to 

save money by driving a new BEV250 even without a purchase subsidy. All range-suitable 

drivers are projected to at least break even with a subsidy of $5,700; the average savings at this 

subsidy level is $511 per year.  Given that the federal tax credit program for EV purchase is 

expiring, maintaining this level of subsidy is crucial to making new BEVs cost-effective for the 

majority of ride-hailing drivers. Meanwhile, pre-owned BEVs offer significant savings and may 

be particularly attractive to those drivers who don’t value the “luxury” attribute of new BEVs. 

These results have several implications for strategy and policy aimed at electrification. To 

the extent that drivers are unfamiliar with the technology or uninformed about range suitability 

and total costs of BEVs, information and awareness campaigns for potential EV buyers—

specifically about available incentives and subsidies—may be effective at inducing a vehicle 

switch. This may be especially true in the ride-hailing sector, where drivers are more likely to be 

motivated by profit considerations and put correspondingly less weight on non-price vehicle 
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attributes. The high resolution of the data and analysis shows the value of “targeting” here: high-

mileage drivers may already be better off with a BEV, so changing perceptions among these 

drivers may be more likely to induce a vehicle switch; low-mileage drivers may, in some cases, 

be better off with a pre-owned BEV100. 

Subsidies, too, could be targeted to good effect, to the extent that this is feasible. Not every 

driver needs the same subsidy level to be incentivized to switch. Moreover, while EVs are 

competitive with ICEVs on total cost grounds, their higher upfront cost may prevent some 

financially constrained drivers (including those with low income, credit score, or tax appetite, or 

facing other barriers to financing mechanisms) from making the switch. Subsidies targeted and 

tailored to such drivers could help reduce this barrier. More generally, the revelation (and 

communication) of widespread range suitability and cost competitiveness should free up TNCs 

and other entities in the transportation sector to prioritize other potential barriers to EV take-up. 

For instance, rather than investing in further range expansion of BEVs, companies and 

policymakers may more productively invest in charging technology and infrastructure to harness 

the battery sizes that are already suitable for most drivers. 

This work, its meaning, and its limitations suggest several avenues for future research on the 

electrification of cars on TNC platforms. First, discrepancies between perceived and actual range 

suitability and cost of ownership of BEVs point to the value of research on changing perceptions 

about such vehicles. Second, this study uses standard assumptions in the literature about access 

to charging infrastructure; accurately depicting current and projected access at a high resolution 

would improve future analyses of range suitability and total cost of ownership. Third, a TNC-

wide transition to BEVs would very likely induce changes in purchase price (among other 

attributes), and future work to understand EV supply and demand dynamics could shed light on 
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such changes. Finally, ride-hailing drivers predominantly self-identify as low-income and as 

members of a minority group [192];  research centering equity in the EV transition and policy 

design is paramount. 
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 Trip-level Sharing Behavior in Ride-hailing 
 

 Introduction  

Transportation Network Companies (TNCs) are rapidly transforming the urban and personal 

transportation. The increase in the adoption of ride-hailing (or ridesourcing) services such as 

Uber and Lyft can be attributed to the ease of access using a smartphone application along with a 

higher availability compared to the regulated, traditional taxi services [42–44]. Ride-hailing 

services offer flexible, efficient, and convenient mobility, promoted as a remedy for private 

vehicle dependency, traffic congestion, high parking costs, and environmental pollution. 

However, recent evidence reveals that the unintended consequences of ride-hailing services may 

outweigh some benefits by undermining public transportation [48,49], taking away from more 

sustainable transportation modes [38,50], increasing vehicle ownership, vehicle-miles-traveled 

(VMT) and large levels of deadheading miles [43,51–53,214], and leading to aggravated 

congestion in urban areas [54]. In large US ride-hailing markets, including metropolitan areas of 

Chicago, San Francisco, Washington, and Boston, it is estimated that 7-13% of total traffic in 

core counties is attributed to TNCs, while they serve only 2-3% of regional trips [46]. 

Ride sharing or pooling, in which a rider shares all or portion of the trip with other 

passengers, has the potential to mitigate negative impacts of solo ride-hailing by consolidating 

VMT from multiple trips, which are spatially and temporally suitable for matching. The rate of 

sharing is a key factor in determining the sustainability of ride-hailing compared to other 

transportation alternatives, especially for future autonomous on-demand mobility services 
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[9,39,55]. For instance, a recent study found sharing a ride-hailing trip reduces GHG emissions 

by 10% to 47% [185]. Despite advantages of ride sharing (services such as UberPool and 

LyftShare), the portion of shared trips relative to solo trips in ride-hailing is still small [215]. In 

California, an average ride-hailing trip has 1.54 passengers, while an average household vehicle 

trip has 1.68 passengers [186]. Both city governments and TNCs are therefore trying to 

understand underlying factors of riders’ willingness to share (WTS) their trips and factors of 

successful sharing. Nonetheless, lack of access to empirical data hinders better understanding of 

sharing behavior in ride-hailing trips. Currently, the vast majority of literature relies on revealed 

and stated preference surveys to understand ride-hailing adoption and usage [50,216–218]. To 

address the data availability challenge and better understand and regulate ride-hailing, many 

cities, including Chicago, implemented data mandates for active TNCs [219]. 

Chicago is one of the largest ride-hailing markets in the US, where ride-hailing make up 

about 3% of the total regional VMT [46]. The publicly available ride-hailing data from the City 

of Chicago has provided an unpreceded opportunity for empirical understanding of ride-hailing 

demand patterns [220,221], relationship with transit services [222], and neighborhood 

characteristics [223]. Since it has a unique feature of observing which trips were requested to be 

shared, recent studies with this data attempted to understand the determinants of WTS [224–

226]. The results of these studies reveal key factors affecting WTS, but only focusing on the 

aggregate level between origin-destination (O-D) pairs of census tracts. The WTS for individual 

trips, however, remains largely unknown. In addition, what factors determining the actual 

success of sharing once a rider requests to share the trip are also rarely studied. Understanding 

the trip-level determinants of WTS and sharing success is important for city governments and 
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TNCs to design effective policies to encourage sharing in ride-hailing and improve the 

sustainability of urban transportation. 

Building on the prior work, I examine this novel dataset of all ride-hailing trips in the city of 

Chicago [227] in 2019 to explore the factors affecting trip-level WTS (willingness of the rider to 

request a shared trip) and sharing success. By designing robust and generalizable ensemble 

machine learning (ML) prediction models, I find that the travel impedance variables (trip cost, 

length, duration) collectively contribute to 95% and 91% of the predictive power in 

determining the WTS of a trip and whether the trip that is requested to share is successfully 

shared or not, respectively. Specifically, for a dollar increase in the per-mile cost, I find about 

58% reduction in the odds of a trip being requested to share. Unlike prior studies that found other 

variables (socioeconomic, demographic, built environment, spatial and temporal attribute, and 

transit supply variables) have high predictive power in determining the portion of trips requested 

to share between O-D pairs of census tracts, I find those variables do not entail predictive power 

in determining the WTS of individual trips. The results imply that pricing signals have a higher 

potential to encourage riders to share their rides. I also find that longer but less expensive 

requested-to-share trips are more likely to be successfully shared with another ride. 

The reminder of the article is organized as follows. Section 2 reviews the literature and 

recent findings on factors that influence willingness to share the ride-hailing trips. Section 3 

describes the dataset used in this study and provides an exploratory analysis of sharing behavior 

in ride-hailing trips in Chicago. Section 4 looks at the declining time-trend of trip sharing and 

attempts to understand the factors that influenced this decline, using a regression analysis. 

Section 5 describes the machine learning approach for prediction of willingness to share and 

successful sharing of ride-haling trips, and section 6 reports the results. Finally, section 7 
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provides a detailed discussion, draws conclusions on the findings, and explains major limitations 

of data and modeling approach used in this study that could thwart the inference. The findings 

shed light on sharing behavior in ride-hailing trips and can help TNCs, urban planners, and 

policymakers to devise better strategies and targeted pricing mechanisms to increase sharing in 

ride-hailing. While sharing is currently suspended in most markets because of COVID-19, 

incentives can regain and improve the WTS of TNC users in the post-pandemic period, thereby 

helping avoid unintended congestion and environmental impacts from ride-hailing. 

 

 Factors Associated with Willingness to Share  

An extensive body of travel behavior literature is dedicated to understanding the theoretical 

aspects as well as stated and releveled preference for sharing the ride and sharing for ride-

hailing. These studies predominantly use surveys combined with the neoclassical econometric 

models to understand the preference for using ride-hailing services in general, as well as 

investigating the factors that contribute to riders opting for a shared ride-hail trip [38,50,228]. A 

majority of these stated-preference studies suggest that employed, educated, urban residents 

living in high density, walkable neighborhoods are more likely to share rides and use ride-hailing 

in general than those hailing rides from predominately non-white, older, or low-income 

neighborhoods. They also state that underlying discomfort with sharing a ride with strangers and 

increase of travel time are among major barriers of sharing [217,228–231]. Shared rides can take 

longer than private ride-hailing trips due to time and mileage penalties associated with detours 

for pickups and drop-offs of the matched rides [232]. Therefore, such trips might not be a viable 

option when traveling to time-sensitive appointments (work, doctor’s visit, airport, etc.) or for 

riders who place a high value on travel time. With shared rides costing less than regular trips, 
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individuals would have to weigh the cost savings against increased travel times, as well as 

discomfort (if any) in traveling with strangers.  

Converging evidence from revealed preference and empirical data from sharing behavior is 

scarce, and in some cases contradictory to the previous understanding. Using trip data in Los 

Angeles, Brown found riders living in low-income dense areas make higher proportion of shared 

trip, and 10% of riders make 94% of shared trips [233]. Young et al. found that higher demand 

and longer trip distances significantly improve matching propensity for shared ride-hailing trips 

in Toronto [232]. Leveraging the same Chicago dataset used in this study, Hou et al. and Xu et 

al. took a similar approach to study the ratio of shared trips to total trips between O-D pairs 

(binned by pickup and drop-off census tracts) as a regression-based ML problem [224,226]. 

They found that that socio-demographic variables as well as pickup/drop-off in airport census 

tracts have the highest predictive power, but both reported relatively large unexplained variance 

and high sensitivity to outlier observations. Dean and Kockelman employed a more nuanced 

econometric approach to model the count and ratio of shared ride trips. They found the spatial 

accessibility variables and underlying socioeconomic characteristics of the origin zones 

significantly influence the proportion and count of shared ride-hailing trips [225]. All these 

studies reveal the association of requested-to-share trips with explanatory variables. However, 

there is less empirical evidence on the factors that influence successfully shared trips, which are 

a subset of requested-to-share trips. 

 

 Ride-hailing Trip Data and Exploratory Analysis 

The City of Chicago has had a data sharing mandate in place for all active TNCs (Lyft, 

Uber, and Via) since November 2018, as a part of compliance and operation licensing 
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framework. I use the city’s person-trip level database, which records, most importantly, when 

and where a ride (that is, person-trip) happens and whether the rider (a) “requested to share” the 

ride and (b) successfully shared the ride. The raw data for this study is available from the City of 

Chicago data portal [227]. This spatiotemporal data is at the trip level and contains trip attributes 

including ID, start/end timestamps, duration, distance, pickup/drop-off census tracts, fare, 

additional charges, tip, and trip total cost. Every trip record has an indictor to show whether the 

rider requested sharing (i.e., whether the rider is willing to take a potential shared trip). Each trip 

also has a binary indictor to show whether they were successfully shared or not. For simplicity, I 

henceforth define the trips that are requested (or authorized) to share as “requested-to-share 

trips” and the subset of requested-to-share trips that are successfully shared as “shared trips”. 

The City of Chicago has had a data sharing mandate in place for all active TNCs (Lyft, Uber, and 

Via) since November 2018, as a part of compliance and operation licensing framework. I use the 

city’s person-trip level database, which records, most importantly, when and where a ride (that 

is, person-trip) happens and whether the rider (a) “requested to share” the ride and (b) 

successfully shared the ride. 

The City of Chicago has applied de-identification and aggregation techniques to reduce the 

risk of linking individuals’ trip data to their identities. This includes aggregating the pickup and 

drop-off locations at the census tract level22, rounding the trip-start and trip-end times to the 

nearest 15 minutes, and rounding the fares and tips to the nearest $2.50 and $1.00, respectively. 

Nearly 16.5% of trips suffer from missing pickup and/or drop-off census tracts, 77% of which 

                                                 

22 Although the pickup and drop-off locations are suppressed to the centers of census tracts, the trip distance and 
duration have not been impacted by the de-identification process and represent the real mileage and real time interval 
(in seconds) of the trip, respectively. 
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represent the trips that requested sharing. The data provider cites privacy concerns in masking 

these values. However, the de-identification process may have impacted the data quality. 

Specifically, rounding the fares may induce bias in the inference.  

For this study, I focus on data from the entire year of 2019 (111.85 million trip records 

before cleaning). Since the pickup and drop-off are reported at the census tracts, I can augment 

many explanatory variables from auxiliary datasets at the census tract level. I derive spatial and 

temporal attributes of trips from the main Chicago dataset. I also append the trip data with three 

sets of variables from auxiliary datasets: 1) socioeconomic and demographics variables from 

American Community Survey (ACS) [234] and Chicago Metropolitan Agency for Planning 

(CMAP); 2) built environment variables from ACS, CMAP, Longitudinal Employer-Household 

Dynamics (LEHD) [235], and Google Map API; and 3) transit supply variables from General 

Transit Feed Specification (GTFS). The census tract level data from auxiliary datasets is 

provided in the Supporting Information.  

The data requires significant cleaning effort as well as dealing with significant portion of 

missing data. For the procedure for data cleaning and imputation of missing values, I first 

remove all incorrect observations which can be characterized as inconceivable trips.23 To protect 

the privacy, the pickup and/or drop-off of some trips are masked (missing). The majority of 

missingness is from the requested-to-share trips and census tracts in outskirts. Since this 

missingness is not at random, simply removing those observations changes the distribution of 

requested-to-share trips relative to all trips and also hinders their spatial variance. This could bias 

                                                 

23 The likely inconceivable trips include trips with total trip duration less than 1 minute and longer than 5 hours; trips 
less total distance traveled than 0.25 miles and greater than 300 miles; trips with total fare equal to zero (fares are 
already rounded); trips with extreme speeds (below 0.2 mph and above 80 mph - an auxiliary variable from trip 
distance and trip duration). I removed all these trips from the dataset. 
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the analysis and thus, I follow an imputation strategy to overcome the non-random missingness. I 

first attempt to infer the pickup or drop-off tracts from the pickup or drop-off community code if 

it is not missing. The City of Chicago has 77 community areas and within each community area 

there are multiple census tracts. I group the dataset by community area and impute missing 

census tracts within each community area by trip-density weighted ranking of the non-missing 

census tracts in that group. This imputation reduces missing values to 5.8% but may induce a 

modest bias in the estimation (note that Xu et al., 2021 used a comparable strategy for 

imputation). The data also includes some trips outside the boundaries of the City of Chicago 

(Cook County). I also remove census tracts outside of the City of Chicago based on the 2010 

census boundaries (801 census tracts). After the cleaning and imputation processes, 12.1% of 

trips were removed, bringing down the total number of observations to 96,268,064 trip records 

for all 12 months in 2019 covering over 470 million miles. 

I observe that from over 96 million trips in 2019, on average, only 19.6% of trips were 

requested-to-share trips and less than 70% of those were successfully matched with another ride, 

thus only 13.8% of trips were shared. Figure 5-1 provides a detailed exploratory analysis of the 

data, showing spatial and temporal variation of requested-to-share and shared trips. The average 

portion of shared requested trips and successfully shared trips based on hour of the day and day 

of the week has a relatively similar pattern to trip demand with some distinct differences. The 

peak hours of demand for TNCs in Chicago are 7AM-9AM and 5PM-7PM weekdays, 10AM-

12AM and 5PM-7PM on weekends. As shown in Figure 5-1A, the average share of requested-to-

share trips increases during the weekday peak demand hours, likely due to the fact that commuter 

trips during these hours are more likely to share [228]. It also peaks at midnight reaching over 

25% except for Friday and Saturday. The share of shared trips follows a similar pattern, which is 
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expected as more requested trips naturally yield more shared trips. However, the portion of 

successfully shared trips drops precipitously after the midnight, despite the portion of requested-

to-share trips remains relatively high. This drop is likely due to lower supply of ride-hailing 

vehicle overnight. 

Figure 5-1B shows the share of trips and requested-to-share trips in different origin and 

destination areas including downtown, airport, economically disconnected areas (EDA), and 

other census tracts. Chicago has two major airports, and the downtown zone consists of 30 

census tracts. EDA consists of 489 tracts with higher than regional average concentrations of 

low-income households and minorities (Chicago Metropolitan Agency for Planning). I observe 

that in these areas the rate of requested-to-share trips is significantly higher than the rest of the 

city. Among those, nearly 40% of EDA-to-EDA trips are requested to be shared (twice the city-

wide average). Looking at the average spatial variation, as shown in Figure 5-2, I can observe 

that the downtown and airport trips are associated with a low average rates of shared requested 

trips and successfully shared trips, while census tracts associated with lower income residents 

and higher percentage of African American residents (majority in EDA) have higher level of 

requested-to-share and shared trips. 

Figure 5-3 shows the trend of requested-to-share trips versus solo-trips in EDA and non-

EDA. Trips with either or both pickup and drop-off in 489 EDA census tracts are labeled as EDA 

trips. The rate of requested-to-share trips in EDA is twice as non-EDA trips. EAD trips are 

consistently longer and more expansive for both solo and requested-to-share trips compared to 

non-EDA trips. Figure C-2 and Figure C-3 show the kernel density distribution of key variables 

for requested-to-share and successfully shared trips. The distributions of the total cost, distance, 

duration, and per-mile cost of requested-to-share and solo trips, as well as successfully shared 
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and unmatched subset of requested-to-share trips, significantly overlap, despite that the mean 

differences are statistically significant (mainly due to very large sample size). Due to frequent 

surge pricing that TNCs impose on trips (for instance, when vehicle supply is lower than trip 

demand), the cost per mile or time of a requested-to-share trip could be higher than a solo one 

from the same pick-up and drop-off, depending on the time of the day and many other demand 

factors that are not observable. 

 

 
Figure 5-1. Exploratory analysis of requested-to-share trips and successfully shared trips.  

(A) Day of the week and time of day average rates of requested-to-share and successfully shared trips (15-
minute window average). (B) Flow of trips between downtown, airport, economically disconnected areas 

(EDAs) and other census tracts of Chicago as pickup and drop-off points. The portion of requested-to-share 
trips is show in blue.  

 
 

 



 

120 
 

 
Figure 5-2. Density of requested-to-share and successfully shared trips by the pickup census tract.  

The downtown area is shown in black line. There densities with the drop-off census tract are highly correlated with 
those of pickup census tract. 
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Figure 5-3. The smoothed trend of requested-to-share trips versus solo-trips in EDA and non-EDA.  

(A) The percentage of requested-to-share trips among all trips; (B) Daily median per-mile cost of the trip; (C) Daily 
median trip distance, (D) Daily median total cost of the trip.  

 

 Trends of Sharing in Chicago’s Ride-hailing Trips 

Figure 5-4A shows that riders’ WTS declined throughout the year 2019, confirmed by a 

Mann-Kendall test showing monotonic downward trend of the portion of requested-to-share trips 

(ꚍ = -0.89, P < 10-4) which decreased from 27.0% in January to 12.8% in December. However, 

the trip volume and mileage have remained statistically unchanged in this period. The portion of 

shared trips closely follows the same trend with a shift, indicating a relative stable rate of 

successful sharing—67-71% of requested trips were successfully shared throughout the year. 

Intuitively, a lower demand for requested-to-share trips would further reduce the successful 

sharing, since the matching algorithm would have fewer potential rides to choose/match with. 
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This counterintuitive observation here, where the rate of successful sharing remained stable, may 

be explained by an unobserved systematic factor. For instance, the matching algorithms 

continuously maintain a metric by design such as successful matching rate. 

As show in Figure 5-4B, the continuous decline of WTS may be because the increasing cost 

of requested-to-share trips over time. Specifically, the median cost of a requested-to-share trip 

increased substantially in 2019, while the median cost of solo trips remained relatively stable 

throughout the year. The reduced incentive to share the ride due to higher cost might explain 

why more travelers opted for solo rides over time. However, the per-mile cost of the requested-

to-share and solo trips (dotted lines) was relatively stable with median of $1.99/mile and 

$3.76/mile, respectively. The per-mile cost of requested-to-share trip even decreased in the 

second half of 2019 while the per-trip cost continued to increase. This indicates that riders’ WTS 

for longer trips increased over time while that for shorter ones declined (Figure C-1). 
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Figure 5-4. Trend of sharing behavior in Chicago in 2019.  

(A) Weekly average rates of requested-to-share rides, successful sharing, weekly trip volume and aggregate VMT. 
Ribbons show daily variations. (B) The solid lines represent the smoothed daily median cost of requested-to-share 

trips and solo trips (left y-axis). The dashed lines represent the smoothed daily median per-mile cost of requested-to-
share trips and solo trips (right y-axis).  

 

To understand how trip attributes might lead to the decline of WTS over time, I run a 

logistic regression where the covariates are interacted with time (week of the year) as a 

continuous variable. This estimator explicitly examines the marginal effect of time by adjusting 

the response with the main effects. A general form of 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑃𝑃) = 𝛽𝛽0 + 𝛽𝛽𝛽𝛽 + 𝛽𝛽′𝑋𝑋 × 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝜀𝜀 is 

employed where 𝑃𝑃 is the probability of requesting a shared ride, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑃𝑃) representing the 
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natural log transformation of odds, 𝑋𝑋 is a vector of trip characteristics, and 𝜀𝜀 is the error term. In 

this specification, 𝛽𝛽 + 𝛽𝛽′𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 represents the time-varying marginal effect of a covariate. I take 

a random stratified sample of 100,000 trip observations from the dataset to fit the model. Since 

trips are collapsed at the pickup and drop-off census tract levels, there is a possibility of 

correlation within the tract clusters. Thus, I cluster-adjust the standard errors within each pickup 

census tract to account for correlated unobserved components in outcomes for trips within tracts.  

As shown in Table 5-1, all main effects are statistically significant. As expected, a unitary 

increase in time (week) reduces the WTS by 4% (more precisely, the odds of a trip being 

requested to share). Unitary increase in per-mile cost of the trip reduces the odds of WTS by 

58%. Having one or both legs of the trip in the downtown area reduces the WTS, and a trip that 

started or ended in EDAs increases the WTS. While the main effects are important determinants 

of WTS, the decline of WTS over time can be explained by the estimated coefficients for time 

interaction terms. The per-mile cost and trip distance both have positive signs when interacted 

with time. Given that higher per-mile cost and longer distance without time interactions reduce 

the odds of WTS with statistical significance, the preference of riders to share shorter rides 

declined over time and a greater number of shorter trips were requested solo. The interactions of 

time with downtown and EDA indicators are not significant.  
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Table 5-1. Logistic regression results to understand the time trend of sharing behavior  
Covariate Parameter estimates  Odds ratio 
 

Parameter Clu. Std. 
Err.  Estimate 

LB  
(95% 
CI) 

UB  
(95% 
CI) 

Main Effects       
Week of year -0.0448*** 0.006  0.9561 0.9441 0.9683 
Per-mile cost -0.8614***   0.0411  0.4225  0.3898   0.4580 
Trip distance -0.2019***   0.0133  0.8171  0.7959 0.8389 
Downtown indicator -0.3381***   0.0497  0.7131 0.6469 0.7860 
EDA indictor  0.3077***  0.0516  1.3603   1.2294   1.5051 

Time Interactions        
Week × Per-mile cost 0.0039**  0.0014  1.0039   1.0012   1.0067 
Week × Trip distance 0.0032*** 0.0003  1.0032   1.0025   1.0038 
Week × Downtown Ind. -0.0021   0.0013  0.9979   0.9953   1.0006 
Week × EDA Ind. 0.0016 0.0014  1.0016   0.9986   1.0045 

Constant  3.4182*** 0.2078     
Notes:  

• Solo trip is a base category and parameters are estimated for requested-to-share trip.  
• Sample size: 100,000; Loglikelihood: -77937.86; Pseudo R-square: 0.188; AIC: 78,058. 
• LB (95% CI) and UB (95% CI) imply lower and upper bounds of 95% confidence interval. 
• Standard errors are clustered by pickup census tract (Clu. Std. Err.). All variables in the final model have variance 

inflation factor (VIF) < 10. 
• Asterisks denote 1 (***), 5 (**), and 10 (*) percent significance levels. 
• EDA indicator denotes whether the trip had a leg in economically disconnected areas (EDA).  
• Other variables included in the regression are indictors for whether the trips had a leg in white majority (negative***) 

census tract, black majority census tract (positive***), airport (negative***), and normalized median income of pickup 
tract (negative***). The first three variables are also interacted with week, but the coefficients are not statistically 
significant at any level.  

 

 

 Predicting Willingness to Share and Successful Sharing 

To predict the probabilities of a trip being requested to be shared and a requested-to-share 

trip being successfully shared, I use several ensemble ML methods and compare the 

performance. The goal of ensemble learning is to combine decisions or predictions of several 

weak classifiers to build non-parametric and interpretable predictive models to improve 

prediction, generalizability, and robustness over a single classifier [237]. I utilize Python-based 

Scikit-Learn implementation of Adaptive Boosting or AdaBoost (Ada) [238], Gradient Boosting 
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(GB) [239], and Random Forests (RF) [240]. In addition to their ability to capture nonlinear 

relationships, these ensemble models deal well with both numerical and categorical variables and 

are robust to such issues as feature multi-collinearity, imbalanced datasets, and the existence of 

outliers and missing values [237]. The attributes of selected ensemble classifiers are particularly 

valuable given the characteristics of the dataset. The interpretability of models enables us to 

understand the relationship between the input variables and the prediction. The framework of the 

classification is depicted in Figure 5-5. 

After data preparation, building and training the model involved several steps: 

hyperparameter tuning, feature selection, model validation, calibration, and interpretation. These 

steps are explained in Appendix. The performance of models on the test set is evaluated using 

area under the receiver operating characteristic curve (ROC-AUC), prediction accuracy, 

precision, and recall as described in the performance metrics section. Informed by the literature 

and the exploratory analysis, I choose six categories of explanatory variables from the main 

dataset and auxiliary data sources to explain sharing behavior. The travel impedance variables 

and spatial and temporal attributes of trips are at the trip level. The socioeconomic, demographic, 

built environment, and transit supply variables are at the census tract level according to pickup 

and drop-off locations. Each trip is described by 45 explanatory variables (features), as shown in 

Figure 5-5. The variables of interest (target response) are binary and reflect whether the trip is 

requested to be shared and whether a requested-to-share trip is successfully shared. The level of 

correlation between binary targets and selected features are shown in Figure C-4 and Figure C-5. 

I only select explanatory variables which have a variance inflation factor (VIF) score below the 

threshold of 10, in order to avoid multicollinearity issues in the ML process [237]. 
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Using learning curves with different sample sizes of input data (Figure C-6), I find that with 

8,000 data points the models fully saturate. Thus, to reduce training time, I use a randomly 

chosen stratified sample with 8,000 observations. Although it is a small fraction of the entire 

dataset of 96 million trip records, feeding the models with more data does not improve the 

performance anymore. As a robustness check and to quantify the performance uncertainty, I 

repeat the entire learning process with 100 bootstrapped random samples size of 8,000 from the 

entire dataset. Note that the random sampling procedure does not substitute the imputation 

procedure that was explained before. Removing the observations with non-random missingness 

of pickup and/or drop-off is not appropriate since it changes the distributional balance of the data 

and biases these models. 

I split the stratified random learning sample of 8,000 trips to 75% training and cross-

validation, and 25% testing (hold-out-sample). All models are evaluated using suitable 

performance metrics for classification, including accuracy, precision, and recall on the testing 

set. The accuracy is the proportion of correct predictions. The precision evaluates the fraction of 

correct classified instances among the ones classified as positive, and the recall (sensitivity) 

quantifies the number of correct positive predictions made out of all positive predictions that 

could have been made. I evaluate the overall performance of a classifier by the area under the 

receiver operating characteristic curve (AUC-ROC). 
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Figure 5-5. ML framework to predict requested-to-share trips and successfully shared trips. 

 

 

 Results 

The learning process reveals the variables with the highest predictive power. I measure the 

predictive power of a variable by iterative measuring of how model performance decreases when 

a variable is permutated [240]. I prefer permutation feature importance to impurity-based 

measures given its robustness to inflating the importance of numerical features, which may 

overfit the model. I find the travel impedance variables (trip cost, distance, and duration) have 

the highest predictive powers for both WTS and sharing success. Figure 5-6A shows that for the 

requested-to-share trip prediction, the trip cost has the highest predictive power in all three 
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models (Ada, RF, GB) and the three travel impedance variables collectively represent 89%-95% 

of predictive power of models. For prediction of successful sharing, Figure 5-6B reveals that the 

travel duration entails the highest relative variable importance. Other variables including 

socioeconomic, demographic, spatial and temporal attribute, built environment, and transit 

supply variables at the origin and destination census tract of the trip show trivial predictive 

power compared to the travel impedance variables.  

 
Figure 5-6. Normalized relative predictive power of variables based on permutation feature importance. 

Only top ten variables with the highest median predictive power are shown. The direction of association for each 
variable is determined using partial dependence analysis.  

 

I use the results of permutation feature importance to choose the top ten relevant variables 

for the training and fine-tuning the classifiers. Irrelevant features simply add noise to the training 
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data and affect the classification accuracy [237]. For example, adding noisy features such as 

transit supply variables increases the classification error. After hyperparameter tuning, the 

performance of Ada, RF, and GB classifiers are evaluated using several metrics. To show the 

overall performance of different classifiers for prediction of requested-to-share trips and 

successfully shared trips, ROC curves are illustrated in Figure 5-7. Specifically, the Ada and GB 

models outperform the RF model for predication of requested-to-share trips even after significant 

hyperparameter tuning of the RF model. However, all three classifiers have a comparable 

performance in predicting successful sharing. I find that the shard-requested predictive models 

show higher performance than successful-sharing predictive models. This is likely due to more 

stochastic nature of successful matching affected by availability of nearby trips, traffic 

conditions, and the performance of TNC dispatch algorithms.  

 

 
Figure 5-7. Performance of ML models in prediction 

(A) requested-to-share trips and (B) successfully shared trips. The area under the receiver operating characteristic 
(AUC-ROC) curve is equivalent to the probability that the model will rank a randomly chosen positive instance 

higher than a randomly chosen negative instance. The higher the AUC, the better a classification model. The 
diagonal line represents the baseline null classifier. 
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Table 5-2 provides more details on the performance metrics of final optimized classifiers. 

Since recall and precision are more important than accuracy in this problem, I specifically tune 

the classifiers’ hyperparameters to maximize recall instead of accuracy. In this process, the RF 

model trades off a significant improvement in recall and precision to a slight decline in accuracy 

compared to the untuned model. This is mainly due to aggressive overfitting nature of the RF 

method before tuning (Figure C-6). The Ada model shows superior classification performance 

with the highest recall rate for predicting requested-to-share trips while maintaining over 96% 

accuracy. For prediction of successfully shared trips, all three models are reasonably accurate, 

but the GB model maintains a slightly higher edge in other performance metrics.  

 

Table 5-2. Performance of hyperparameter-tuned models on the test set.  
The percentage performance improvement compared to the untuned model on the validation set is shown in 

parentheses. 

Models Prediction of Requested-to-
Share  Prediction of Successfully Shared 

 Accuracy Precision Recall  Accuracy Precision Recall 

Random Forest 0.92 
(-1%) 

0.93  
(-2%) 

0.74  
(+4%)  0.89 

(-1%) 
0.91  

(-1%) 
0.91  
(+3) 

Ada-Boosting 0.96 
(+3%) 

0.94  
(-1%) 

0.82 
(+6%)  0.90 

(0%) 
0.92  
(+1) 

0.90  
(+1%) 

Gradient 
Boosting 

0.95 
(+1%) 

0.94 
(0%) 

0.80  
(+4%)  0.91 

(+1%) 
0.91 

(+2%) 
0.92  

(+1%) 

 

To assess the relationship between the target responses of models (WTS and probability of 

sharing success) and selected explanatory variables, I use partial dependence plots (PDP). They 

intuitively show the marginal effect that specific features have on the predicted outcome of a 



 

132 
 

model [239,241]. The PDPs for top three variables are shown in Figure C-7 and Figure C-8, 

capturing the highly nonlinear relationship with the target responses. The direction of 

associations reveals that longer trip distance and duration increase both requested-to-share and 

shared probabilities, but higher cost reduces the probability. The joint dependency of trip cost 

and distance also signifies a high level of nonlinearity, which cannot be capture by a simple per-

mile cost variable. I also tested several other scenarios for model specifications such as 

substituting trip duration and cost by per-mile cost, removing trip duration, which is correlated 

with trip distance. However, the performance of all alternative scenarios was inferior to the 

preferred classifiers. Moreover, other tested classification models including logistic regression 

and support vector machine do not reach an acceptable recall likely because the relationship 

between high importance features cannot be explained as linear. 

To ensure robustness of the model, I repeat the entire learning process for all candidate 

models using 100 bootstrapped random samples size of 8,000 from the whole dataset. To 

quantify the uncertainty in performance metrics, I measure accuracy, precision, and recall on the 

test sets. As Figure 5-8 shows, on average, the Ada model outperforms other models in all 

metrics for prediction of requested-to-share trips and GB has a slight edge for prediction of 

successfully shared trips. Overall, the narrow bounds of distributions of performance metrics 

ensures robustness to sampling and the training process in the classifications. 
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Figure 5-8. Distribution of model performance metrics over 100 bootstrapped random samples size of 8,000 from 

the entire dataset.  
 

 

 Discussion and Conclusions 

In this study, I investigate sharing behavior in ride-hailing trips in Chicago. I show that 

WTS and successfully shared trips in Chicago halved throughout 2019 with a strictly declining 

trend, while the rate of successful matching, as well as trip volume and VMT, have been stable. 

A regression analysis reveals that a gradual increase in per-mile cost of the trip over time has 

been the major factor in the decline of WTS, especially for shorter trips which were likely 

substituted by solo trips. Using ensemble ML methods, I find that travel impedance variables 

(trip cost, distance, and duration) have the highest predictive power in predicting the propensity 

to share. Longer but less expensive requested-to-share trips are more likely to be successfully 
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shared with another ride. A wide range of explanatory variables at the pickup and drop-off of 

trips, including socioeconomic, demographic, spatial and temporal attributes, built environment, 

and transit supply variables are loosely correlated with WTS and successful sharing, but do not 

bear significant predictive power (although the characteristics of all census tracts along the trip 

route could matter as well, I have not studied them here). WTS in EDAs (low incomes and high 

concentration of minorities) is nearly double that of non-EDAs. However, as shown in Figure 

5-3, since the EDA trips are longer and more expensive, lower price of shared trips has become a 

stronger factor encouraging riders to opt for sharing. In EDAs, the transit supply is also poor, 

suggesting that the convenience of door-to-door mobility combined with lower price of shared 

trips may be replacing active and public transit trips and come at the expense of expanding 

infrastructure and/or services to those areas [222]. This is consistent with Schaller (2021) which 

found sharing in ride-hailing is most popular in lieu of public transit and attracts passengers from 

existing shared modes [215]. Some studies, however, argue that ride-hailing and sharing to 

transit hubs have increased transit ridership [242]. 

Since travel impedance variables best explain sharing behavior compared to other variables, 

pricing signals have the highest potential to encourage riders to substitute solo rides with sharing. 

Thus, policymakers and TNCs can more efficiently allocate sharing incentives to increase the 

penetration of sharing and reduce congestion and environmental externalities of ride-hailing. 

Recognizing this, on January 6, 2020, the City of Chicago initiated a new congestion fee policy 

for ride-hailing trips with differential pricing for shared trips in the downtown area [243]. The 

new policy increased the congestion tax on shared trips in the downtown congestion zone by 

74% (0$.72/trip to $1.25/trip), but more than quadrupled the congestion tax on solo ride-hailing 
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trips ($0.72/trip to $3/trip). Future research may assess the impacts of this new policy on sharing 

behavior.  

In essence, the trip-level classification problem here is comparable to Hou et al. [224] and 

Xu et al. [226] in which the aggregate ratio of requested-to-share trips between O-D pairs at the 

census tract level is predicted as a regression-based problem. These studies attempted to identify 

the factors that are associated with WTS. They found high mean squared error in prediction as 

well as high sensitivity of models to inclusion of O-D pairs with few connecting trips (outliers). 

Since travel impedance variables show little variance in O-D pair analysis aggregated at the 

census tract level, their predictive power is limited. The classification models demonstrate high 

level of accuracy and robustness in direct prediction of shard-requested and successfully shared 

trips with the highest predictive powers in travel impedance variables. The association of factors 

with WTS does not necessarily guarantee causality. For instance, it is identified that the higher 

portion of black population or lower income in the pickup or drop-off census tracts are 

associated with greater WTS [224,226]. However, cost, distance, and duration of trips are also 

higher in lower income and black-majority areas (EDAs) in Chicago (Figure 5-3). Thus, a casual 

inference without constructing a structural model is likely unreliable.  

There are several inherent limitations in the Chicago data as well as the approach of 

examining the sharing behavior and making inference. First and foremost, the Chicago dataset 

does not divulge details on characteristics of riders and trips. The choice of solo and shared for 

the rider is largely a function of fare difference between alternatives when the rider requests a 

ride. The data does not reveal the cost difference between alternatives choices and only report the 

final state of the trip. Rounding the fare to nearest $2.5 is a source of unknown bias in the 

inference, which prior studies have also acknowledged [224–226]. Secondly, since the trips are 



 

136 
 

anonymized, I cannot attribute the pattern to individual riders with specific sociodemographic 

attributes to identify the determinants of WTS. The data does not reveal wait time for requested-

to-share rides versus solo rides, which is among the most important factors for WTS of 

individual trips.  The suppression of pickup and drop-off locations to the census tracts creates 

large bias. The data does not carry any information on individual ridership characteristics, which 

hinders higher resolution identification of sharing preferences (for instance, the number of 

people in each requested ride or a unique id for each rider to assess the individual sharing 

behavior over multiple trips). Thus, the findings cannot be generalized to human behavior in 

facing a choice and should not be interpreted as a choice experiment. Rather, the findings 

underscore the predictive power of trip-level attributes, which can still be leveraged to answer 

important questions associated with propensity for ride sharing. Finally, the sharing behavior 

after COVID-19 will likely change significantly. Since March 16, 2020, no shared ride was 

offered in Chicago, and it will likely continue for a foreseeable future. Thus, it is important to 

revisit the data once shared rides are offered again and assess the post-pandemic behavior and 

how preference has changed. 
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 Impacts of Congestion Pricing on Sharing Behavior in Ride-
hailing Trips  

 

 Introduction  

In the age of transportation network companies (TNCs), ridesharing – that is, the combining 

of two or more individual trips entirely or partly into one trip served by a single vehicle – is an 

important potential lever for reducing negative externalities from energy use. There has been 

much interest in the question of what effects TNCs have had on vehicle miles traveled, 

emissions, and congestion. While electrification can reduce the emissions intensity of ride-

hailing services [19,187], it does not address the congestion externality [51,54,244,245]. 

Ridesharing, in contrast, can reduce both emissions [185] and congestion [215], by raising the 

efficiency of energy use for travel. It is thus a key part of TNCs’ claim to being sustainable 

[9,39]. 

Despite this, little is known about how attainable the vision of widespread ridesharing truly 

is. Ridesharing is currently only offered by TNCs in an urban subset of the U.S. Scattered data 

show recent rates of TNC ridesharing in a selection of cities to be in the range of 13-36% 

[215,233]. A few recent studies build predictive models of “willingness to share” and identify its 

key predictors [224–226]. TNCs and municipal governments have both experimented with 

incentives for ridesharing like fare discounts and driver subsidies [215,246], but there is no 

published evidence on the impacts of such incentives.  



 

138 
 

In this paper, I provide some of the first empirical evidence of the effect of price incentives 

on ridesharing. I study a unique policy change in the city of Chicago, which in January 2020 

implemented a congestion pricing scheme for TNC rides, differentiated by whether a ride is 

private or shared. This policy is a direct response to perceived impacts of TNCs on congestion 

and public transit ridership [247], and the first of its kind as an effective “tax” on private ride-

hailing. While the fee is applied to all TNC rides, the fee is relatively higher for private rides, 

and also relatively higher for rides to or from the downtown “zone” during peak hours (6AM-

10PM). I leverage these differences in policy “treatment”, in conjunction with trip-level TNC 

data from the city of Chicago, to show how ride-hailing activity in the city has responded to a 

rise in the relative price of a private ride. 

Total TNC ridership (measured as person-trips) in Chicago is roughly flat during the period 

of observation (July 2019 to February 2020) [248]. Total shared person-trips, on the other hand, 

drops steadily over time but jumps noticeably in the week the policy takes effect. Using 

difference-in-differences (DD) and triple-differences (DDD) regression. I estimate that a $1.15 

rise in the relative price of a private ride is associated with a 2.4 percent rise in willingness to 

share (which I measure as a rider’s authorization of a shared TNC ride). I find no evidence that 

total person-trips dropped as a result of higher prices, which implies that the short-run effect of 

the policy has been to induce some substitution from private to shared rides. The back-of-the-

envelope estimate is that the $1.15 rise in the relative price of a private ride reduced VMT by 

roughly 4,000 miles per week, and that the full policy effect (including price increases in the 

neighborhoods and off-peak periods) may be closer to a reduction of 8,000 miles per week.  

Price incentives for ridesharing thus appear to have some empirical backing as a policy for 

reducing externalities from urban energy use. However, while their effect here is statistically 
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significant, it is of relatively modest magnitude. The evidence here thus does not, on its own, 

suggest that strong price incentives would be adequate to induce a major shift towards 

ridesharing. I emphasize that the results speak only to short-run effects; the COVID-19 pandemic 

dramatically changed travel behavior around March 2020, so I only observe two months of post-

policy outcomes (which themselves may have been affected by the pandemic). Moreover, the 

results pertain specifically to the price changes observed in the Chicago sample, so the effects of 

further price changes in Chicago are unknown, and so are the effects of similar price changes 

occurring in different cities, where demand for ride-hailing may differ. I view the results as 

evidence that price incentives can induce at least modest increases in ridesharing. However, 

given the trajectory of transportation emissions and urban congestion in the United States, I 

believe a much more widespread switch to ridesharing is needed to make private vehicle travel 

sustainable. More research is needed to assess the broader potential for policy and innovation to 

induce this sort of norm shift.  

 

 The Chicago Congestion Fee System 

Chicago is one of the largest ride-hailing markets in the US, where Uber, Lyft, and Via together 

dispatch nearly 300,000 rides per day [227] and ride-hailing makes up about 3% of the total 

regional VMT [46]. Between 2015 and 2018, the annual number of TNC trips grew by 271 percent, 

with half of all TNC trips citywide beginning or ending in the downtown area [247]. In November 

2019, the City approved a new congestion fee policy for ride-hailing services. The new policy 

went in effect starting January 6, 2020, and is currently the highest ride-hailing tax in the nation, 

expected to raise $40 million per year [249]. 
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The policy did three things: first, it changed the price of all TNC rides in the city; second, it 

raised the price of all rides in the “congestion zone” [243], that is, the downtown area during 

weekday peak hours (6AM-10PM); third, it raised the prices of private rides more than those of 

shared rides. shows the geographic coverage of the congestion zone versus “the neighborhoods”. 

Table 6-1 details the fee structure for TNC rides before and after the congestion fee went into 

effect. 

 

 
Figure 6-1.  The City of Chicago and the boundary of the downtown, airports, and neighborhoods.  

The City of Chicago designated the Congestion Zone as the boundary of downtown area during weekdays 6AM to 
10PM. Any trip with pickup or drop-off in the congestion zone is assessed a higher tax. 
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Table 6-1. Ride-hailing fees before and after the congestion policy took effect 
 Post-Policy 

(1/6/2020 –present) 
Pre-Policy 

(1/1/2019 –1/5/2020) 

 Solo Pooled All 

Downtown Peak Time 
(Congestion Zone) $3.00/trip $1.25/trip $0.72/trip 

Downtown Off-Peak  $1.25/trip $0.65/trip $0.72/trip 

Neighborhoods    $1.25/trip $0.65/trip $0.72/trip 

Airports – Congestion Zone $8.00/trip $6.25/trip $5.72/trip 

Airports – Neighborhoods  $6.25/trip $5.65/trip $5.72/trip 
† All taxes and fees include $0.10/trip Access fee and $0.02/trip administration fee. 

 

 
Since all areas of Chicago are “treated” with price changes, there is no natural control group 

with which to estimate an aggregate policy impact on ride-hailing outcomes. However, 

differences in treatment across time of day and area of the city make it possible to compare the 

effect of relatively larger price changes to the effect of relatively smaller ones. In particular, the 

relative price of a private ride in the “congestion zone” (downtown, peak time) rose more than in 

all other “zones” listed in Table 6-1. I thus compare ride-hailing over time and across these 

zones, using the difference-in-differences (DD) method. The primary zonal comparison is 

between downtown peak periods and downtown off-peak periods, but I also consider the triple-

difference using pre-post, downtown-neighborhoods, and peak-off peak differences. Further, I 

compare estimated effects in areas classified as “economically disconnected areas” (EDAs) 

versus those in areas that are not. The Chicago Metropolitan Agency for Planning defines EDAs 

as areas that have higher than regional average concentrations of low-income households and 

minority or limited English proficiency population, resulting in lower economic mobility [236]. 
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 Materials and Methods 

The raw data for this study are available from the City of Chicago data portal [227]. These 

spatiotemporal data are at the trip level and contain trip attributes including ID, start/end 

timestamps, duration, distance, pickup/drop-off census tracts, fare, additional charges, tip, and 

trip total cost. Every trip record has an indicator to show whether the rider requested sharing 

(that is, whether the rider is willing to take a shared trip). A requested-to-share trip does not 

necessarily translate to a successfully shared trip, and may end up solo, but the rider secures the 

trip cost regardless of matching with another rider or not. For this study, I focus on data from 

July 1, 2019 to March 8, 2020 (75.73 million trip records before cleaning). This range spans six 

months prior to enactment of the new congestion policy and two months following it, before all 

shared trips were suspended on March 11, 2020 due to the COVID-19 pandemic (the data show a 

significant reduction in demand beginning March 9, 2020). The data provider has taken several 

steps to protect the privacy of riders and drivers (Supplementary Note ); de-identification has 

resulted in missingness of some characteristics for many trips. Supplementary Note  explains the 

procedure for data cleaning and imputation of missing values. 14.6% of trip records are removed 

as part of the cleaning process, bringing down the total number of observations to 64,663,012 

trips for the period of study.  

I transform the trip-level data so that each observation is an origin-destination (O-D) census 

tract pair in a specific week during a specific time-period (peak or off-peak). This dataset 

contains 9,525,426 unique observations. For each tract-pair week time-period, I count total trips, 

total shared trips, and the proportion of all trips (a) requested to be shared and (b) successfully 

shared. Table D-1 summarizes the key variables in this sample. 
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Our preferred, “downtown” difference-in-differences (DD) estimation model uses only the 

observations from the downtown area and is given by Equation (6-1): 

𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜃𝜃𝑡𝑡 + 𝜑𝜑𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 (6-1) 

Here,  𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 is percentage requested to be shared (“willingness to share”), percentage 

successfully shared, or total trips, all corresponding to tract-pair 𝑖𝑖, in week 𝑡𝑡, in time-period 𝑝𝑝. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 is a binary variable equaling one if an observation is from a week after the 

policy change as well as from the peak time-period. 𝜃𝜃𝑡𝑡 and 𝜑𝜑𝑖𝑖𝑖𝑖 are week and tract-pair time-

period fixed effects, respectively; these two vectors together control for “single differences” 

across space and over time.  I cluster standard errors at the week level (there are 36 weeks in the 

data and thus 36 clusters; as a robustness check, I cluster standard errors at the week time-period 

level in Panel A of Table D-2). For regressions with percent shared as the outcome variable, I 

weight observations by total trips (regressions with total trips as outcome variable do not use 

weights, and Panel B of Table D-2 omits weights entirely as a robustness check). 

 I also estimate a triple-differences (DDD) model, given below by Equation (6-2): 

 

𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛽𝛽3𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ×
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛽𝛽4𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 +  𝜃𝜃𝑡𝑡 + 𝜑𝜑𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖  

(6-2) 

 

Here, 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 are binary interaction terms 

analogous to 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖. 𝛽𝛽4, the coefficient on 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖, is the DDD 

coefficient of interest.  I employ the same clustering and weighting strategies as with Equation 

(6-1). 

Finally, I use the “downtown DD” specification given by Equation 1 to compare the policy 

effect in Economically Distressed Areas (EDAs, as defined by the City of Chicago) against the 
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effect elsewhere.  I define a binary variable 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 that equals one if a tract-pair has either 

origin or destination in an EDA.  I then estimate Equation 1 separately for the EDA subsample 

and the non-EDA subsample. Further,  I estimate Equation 1 with the full sample but augmenting 

the equation with interaction terms 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖, and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ×

𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 – the last of which provides an estimate of the differential policy impact in EDAs vs. 

non-EDAs. 

 

 

 Impact of the Policy on Ridesharing 

The City of Chicago has had a data sharing mandate in place for TNCs since February 2019 

[227] (and other cities have done the same [219]). I use the city’s person-trip level database, 

which records, most importantly, when and where a ride (that is, person-trip) happens and 

whether the rider (a) “requested to share” the ride and (b) successfully shared the ride (see Table 

D-1 for summary statistics on the key variables). Figure 6-2 shows how total TNC person-trips 

and total shared (requested) TNC person-trips evolved from July 2019 to February 2020. Both 

counts show a precipitous, short-lived drop at the end of December 2019 – this is due to the 

significant drops in demand for as well as supply of TNC rides during the Christmas period. 

Otherwise, the visual trends look different: total person-trips do not discernibly rise or fall over 

time; total shared trips drop steadily over time, including after the congestion policy took effect, 

but this downward trend is interrupted by a noticeable jump in the first week of the policy. 
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Figure 6-2. (A) Weekly total number of person-trips citywide over time; (B) Weekly total number of requested-to-

share person-trips citywide over time 
 

With total and shared counts, I can compute a willingness to share (WTS) measure as the 

percentage of person-trips in a week-zone that were requested to be shared. In Figure 6-3, I 

compare WTS over time in the downtown area during peak hours (i.e., the “congestion zone”) 

versus the downtown area in off-peak hours. Prior to the congestion fee policy taking effect, all 

(non-airport) rides to or from the downtown area are subject to the same 72-cent fee, regardless 

of timing and number of vehicle occupants. After the policy’s imposition, private rides in the 

downtown area are subject to a higher fee than shared ones: during off-peak hours, a private ride 

comes with a $1.25 fee, while a shared ride comes with a $0.65 fee; during peak hours, the 

private-ride fee is $3,00, while the shared-ride fee is $1.25. Thus, both time periods are “treated” 

with a rise in the relative price of a private ride, but the rise is larger in the peak period ($3.00 - 

$1.25 = $1.75) than in the off-peak period ($1.25 - $0.65 = $0.60). 

Figure 6-3 provides compelling evidence that the downtown off-peak times is a viable 

control group for downtown peak. Panel A shows consistently parallel trends in WTS: both lines 

drop steadily over time from July through December 2019, with weekly changes of very similar 

magnitudes. WTS jumps suddenly in both periods concurrently with the policy change, and then 
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resumes a downward trend in both periods. The strongly similar time trends in WTS throughout 

the pre-policy period imply that the analogous difference-in-differences regression would yield a 

credible estimate of short-run impact. Panel B of Figure 6-3 makes this case more directly, by 

plotting the cross-period difference (normalized to zero in the first week of the sample) in WTS 

over time. The difference hovers near zero for the duration of the pre-period, never deviating 

more than one percentage point. In the week of the policy’s start, however, the difference jumps 

to 2.3 percentage points, and it remains elevated with a mean of 2.6 percentage points throughout 

January and February. Figure D-1 shows similar results using the “percentage successfully 

shared” outcome variable. 

 

 
Figure 6-3. (A) WTS in downtown during peak versus off-peak; (B) Difference in WTS in downtown during peak 

versus off-peak, with the difference in the first week being normalized to zero. 
 

Figure 6-4 shows analogous trends using total person-trips as the outcome variable of 

interest. In contrast to Figure 6-3, however, Figure 6-4 reveals no discernible change in the cross-

period difference in ride-hailing behavior. There are sizeable drops in trips taken in both periods 

during the week of Christmas, but the post-policy difference is not noticeably distinguishable 

from that of the pre-period. Put together, Figure 6-3 and Figure 6-4 provide suggestive evidence 
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that the policy change has affected propensity to share a ride but not overall ride-hailing person-

trips taken. Figure D-2 and Figure D-3 show analogous results to Figure 6-3 and Figure 6-4 

using the peak-period DD comparison of downtown versus neighborhoods, before versus after 

the policy change. These figures show non-parallel trends downtown and in neighborhoods, so I 

do not rely on them for estimation. 

 

 
  Figure 6-4. (A) Weekly total number of person-trips in downtown; (B) Difference in weekly number of person-

trips in downtown during peak versus off-peak, with the difference in the first week being normalized to zero. 
 

In Table 6-2, I present the point estimates of the impacts implied by Figure 6-3 and Figure 

6-4. I show results using three different outcome variables: percent requested to share; percent 

successfully shared; and total person-trips. I estimate the DD model comparing downtown peak 

to downtown off-peak before and after the policy start; and I additionally estimate the analogous 

triple-differences model, where the third difference is downtown vs. neighborhoods (Table D-2 

shows robustness checks that adjust standard-error clustering and regression weighting). The 

coefficients shown can be interpreted as the predictive effect of the rise in the relative price of a 

private ride induced by the policy. The congestion zone is associated with a $1.15 rise in this 

price; Table 6-2 shows that this is associated with a 2.4-2.5 percentage-point rise in willingness 
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to share (columns 1 and 2). This, in turn, translates into a slightly smaller impact on the 

percentage successfully shared – roughly two percentage points (columns 3 and 4). These 

estimates are significant at the one percent level. The estimates of the effect on total person-trips 

are, in contrast, small and statistically indistinguishable from zero (columns 5 and 6). 

 

Table 6-2. Difference-in-differences estimates of policy effects 

 % requested to share  
% successfully 

shared  Total person-trips 
  (1) (2)    (3) (4)    (5) (6) 
Estimated 
effect 2.38*** 2.47***  2.06*** 1.99***  0.32 0.04 

  (0.17) (0.17)   (0.17) (0.13)   (0.41) (0.40) 
Downtown DD X   X   X  
DDD  X   X   X 

N 1,639,450 6,815,103   
1,639,45

0 
6,815,10

3   1,990,102 9,372,058 
Notes: The dependent variable is percent of person-trips requested to be shared (columns 1-2), percent of person-trips 
successfully shared (columns 3-4), or the total number of person-trips (columns 5-6). “Downtown DD” denotes the 
difference-in-differences (DD) estimate comparing downtown peak-period ride-hailing to downtown off-peak period 
ride-hailing, before and after the policy change. “DDD” denotes the triple-differences specification, where the 
differences are peak vs. off-peak, downtown vs. neighborhoods, and pre vs. post. In all specifications, an observation 
is uniquely identified by its origin-destination pair of census tracts 𝒊𝒊 in week 𝒕𝒕 during period 𝒑𝒑 (peak or off-peak). All 
regressions weight observations by total person-trips. See Methods for precise estimating equations. 

 

The aforementioned table and figures speak to the average effect of the policy among rides 

to and/or from the downtown area, but there may be differences in responsiveness to the price 

change across space. For example, if income is positively correlated with demand inelasticity, 

then I might expect to see a larger shift to ridesharing among the relatively poor. I test this 

hypothesis in Figure 5, by comparing rides starting and/or ending in an EDAs to those that do 

not. The plotted data points are week-specific peak / off-peak differences in willingness to share, 

analogous to Panel B of Figure 6-3. I see relatively stead peak / off-peak differences in both 

groups (EDA and non-EDA) prior to the policy start, followed by similar jumps in the WTS 

differential of approximately two to three percentage points. These trends show no visual 
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evidence of a greater ridesharing response in EDAs. Via difference-in-differences regression, I 

estimate that the price change is associated with a 2.38 percentage-point rise in WTS among non-

EDA ride and a 2.54 percentage-point rise in EDA rides. The difference is small in magnitude 

and statistically insignificant (I present these results in Table D-3). 

 

 
Figure 6-5. WTS in EDA versus non-EDA trips.  

The difference is small in magnitude and statistically insignificant, indicating that there is no greater ridesharing 
response in EDAs versus non-EDAs. 

 

 Discussion 

Despite the importance of ridesharing to transportation network companies’ sustainability 

claims, willingness to share rides has empirically been low and there is no direct evidence on 

what works to change that. I attempt to fill this void by estimating the effect of an increase in the 

relative price of private ride-hailing, in the context of Chicago’s landmark TNC congestion fee 

policy. The main results are that raising this price is, in fact, associated with increased 
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willingness to share (and successful sharing as well), but it does not, in Chicago’s context, 

reduce total person-trips. 

As Table 6-2 shows, the downtown-area DD model finds a significant predictive effect of 

the relative-price change on the percentage of rides requested to be shared and successively 

shared. Trends in the peak and off-peak periods downtown appear to be parallel prior to the 

policy change (Figure 6-3), suggesting the possibility of a causal interpretation. The estimated 

effect sizes are very similar when I add a third difference (downtown versus neighborhoods) to 

the identification strategy. They also hold for the slightly different DD comparison between 

downtown and neighborhoods, though I do not rely on these results because of non-parallel pre-

policy trends in the outcome variable. Finally, the estimates are robust to both an alternative 

level of standard error clustering and the exclusion of regression weights (Table D-2). 

Note two primary limitations to the interpretation of the analysis. First, the estimates can 

only be accurately described as capturing short-run impacts. The new fees took effect on January 

6th, 2020, and I observe TNC ridership for the following eight weeks – after this point, the 

intensification of the COVID-19 pandemic caused TNC ridership to plummet. It is thus unclear 

whether the magnitude of the estimate (a 2.4 percentage-point increase in WTS) would have held 

in the longer run (that is, in the absence of the pandemic).  

Second, the estimates do not speak to the full impact of the congestion fee policy change. 

Rather, they pertain specifically to the additional impact of the congestion-zone price change 

relative to the price change elsewhere. I do not attempt to estimate the full impact of the policy 

change because all areas of the city are “treated” with a change in prices, and thus there is no 

credible control group with which to identify the full impact.  Instead, I focus on the “marginal” 

effect of the congestion-zone price changes (relative to the price changes elsewhere). While this 
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is incomplete with respect to the full congestion fee policy, it nonetheless captures a meaningful 

change – a rise of $1.15 – in the price of a private ride relative to a shared one. It thus sheds light 

on the potential for price incentives to induce more ridesharing. Note, however, that Figure 6-3 

Panel A does provide suggestive, time-series evidence of larger aggregate policy impacts: WTS 

rises suddenly in both the peak and off-peak periods in the week of the policy change. 

I believe the findings are the first empirical evidence on the impact of price incentives to 

rideshare. They provide reason to believe that raising the price of private TNC rides (and/or 

reducing the price of shared rides) is a viable strategy for reduction of energy use, emissions, and 

congestion. However, the estimated effect size of the $1.15 rise in the relative price of a private 

ride is modest: a 2.2 percentage-point increase in the proportion of rides successfully shared 

(with no reduction in overall person-trips). To put this in more context, I make a back-of-the-

envelope calculation of the vehicle miles traveled (VMT) saved from this effect. Assuming that 

half of each person-trip is actually shared [215] and using observed person-trips totals and 

average trip length (in miles), I estimate that the relative price change in the Chicago Congestion 

Zone avoided 4,034 vehicle miles traveled (VMT) per week, or 32,272 miles over the course of 

the eight-week period of the observation. While the full policy impact is likely larger than the 

effect I estimate here, 4,000 miles avoided per week is a mere sliver of total weekly ride-hailing 

VMT – approximately 0.04 percent. I thus believe that modest policy interventions in the TNC 

market are unlikely to lead to a meaningful shift in willingness to share rides. Aggressive price 

incentives, as well as a change in perceptions about private vehicle travel, are likely necessary 

(but perhaps not sufficient) for a future with widespread ridesharing.  
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 Conclusions and Future Directions 
 

Emerging technologies in transportation, including vehicle automation, electrification, and 

shared mobility are increasingly gaining attention in academia, industry, and government, 

especially as environmental and social impacts of transportation sector are becoming mainstream 

in the infrastructure overhaul. Drawing from various disciplines, including data science and 

econometric modeling, this dissertation sheds light on how these emerging technologies impact 

travel pattern, energy use, and economics of mobility and leverages the synergies that 

improve transportation system efficiency, sustainability, and social equity. Overall, robust 

understanding of energy, environmental, and sustainability impacts of emerging mobility 

technologies depends on the evolution of technologies, behavioral responses, market dynamics, 

and regulatory and policy considerations.  

In particular, Chapter 2 demonstrates that due to the complexity and interdependence of 

higher levels of interactions, the uncertainty of CAV-related environmental impacts increases as 

the impact scope broadens. The greatest energy and environmental impacts will not stem from 

CAV technology directly, but from CAV-facilitated transformations at all system levels. Results 

from Chapter 3 suggest that travel demand will rise as a behavioral response to the diffusion of 

CAVs. Some of this rise will come from shifts away from other transportation modes, including 

public transit, cycling, and walking. Some will come from additional travel – such as new 

passenger trips, empty trips in between passenger travel, travel pattern change, breaking of 

pooled trips into several lower occupancy trips, and longer and more frequent trips necessitated 
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by shifting home locations to peripheral zones. Regardless, this induced travel will pose a stiff 

challenge to policy goals for reductions in energy use, traffic congestion, and local and global air 

pollution. 

Chapter 4 focuses on the nexus of electrification and shared mobility and suggests that range 

and total cost should not be seen as constraints on significant BEV take-up in the ride-hailing 

sector. The effective communication of widespread range suitability and cost competitiveness to 

different stakeholders should free up TNCs and other entities in the transportation sector to 

prioritize other potential barriers to EV take-up. Chapter 5 investigates sharing behavior in ride-

hailing trips and shows that WTS and shared trips in Chicago halved throughout 2019 with a 

strictly declining trend while the successful matching rate, as well as trip volume and VMT, has 

been stable. Using ensemble ML methods, I find that travel impedance variables (trip cost, 

distance, and duration) have the highest predictive power in predicting the propensity to share. 

Results from Chapter 6 provide empirical evidence that raising the price of private TNC rides 

(and/or reducing the price of shared rides) is a viable strategy for reduction of energy use, 

emissions, and congestion. However, for the Chicago case, the estimated effect size of the $1.15 

rise in the relative price of a private ride is modest: a 2.2 percentage-point increase in the 

proportion of rides successfully shared (with no reduction in overall person-trips). 

Despite the rapid developments in this research space in the past few years, there are some 

significant gaps in understanding the true impacts of emerging mobility technologies.  In 

particular, the novelty of CAV technology (and ambiguity of its nature to the public) hinders the 

ability to model the behavioral response to adoption of this technology [250]. The state of 

understanding from behavioral response is based on unrealistic representation of the technology 

to survey responders who have never experienced this technology, or oversimplified assumption 
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for agent-based and optimization studies. As more companies test their technology on public 

roads and more people experience automated features in their cars and become familiar with the 

technology, the acceptance of CAV technology and willingness to adopt them will change. 

Future research should continue to design studies and collect data to identify the dynamic nature 

of CAV adoption, and monitor the evolution of responses over time, for different groups, as a 

function of social or formal information sources, and across cultures. 

As identified in Chapter 3, an outstanding question in the behavioral response and 

consequent environmental impacts of the CAV technology is whether (and to what degree) 

CAVs will be largely privately owned or operated by the mobility companies, and users pay per 

use. Limited research has attempted to answer this question using survey results with 

respondents in geographically constrained regions [251]. Furthermore, while the reduction in 

value of time is a key driver and a large assumption for changes in travel-related behaviors in 

response to CAVs, not enough attention has been devoted to this research question. Various 

studies estimated that value of time for shared automated vehicles generally stands between 

typical transit and private driving. More effort needs to be put into collecting stated preference 

data from surveys and revealed preference data from field experiments to quantify changes in 

value of time and how it differs by mode, demographic, and trip purpose for a more accurate 

integration of these changes into simulation studies. Addressing the change in residential 

location decisions in response to adoption of CAV technology is another priority area of 

research. 

The impacts of CAVs on modality and mode choice have been receiving more attention in 

the past couple of years. Additional research is required to understand the driving forces that will 

shift people away from auto-dependency and into sharing and multimodality. Future research can 
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also explore more robust answers to different sociodemographic groups from cultures with 

higher dependency on vehicle ownership. CAVs could also exacerbate existing social 

inequalities if government agencies do not implement the appropriate policies to encourage CAV 

deployment strategies that consider traditionally under-served populations. Future research could 

identify the equity implications of these technologies on different sociodemographic profiles and 

evaluate how regulatory requirements for CAVs could affect access, congestion, and 

environmental sustainability. As an effort to address this, I attempted to determine the 

distributional impact of using CAVs for private ownership or on-demand mobility for different 

socioeconomic groups. I utilized a dual stage choice model for mobility choice, called multiple 

discrete-continuous extreme-value (MDCEV) model. This model can be used when one is 

interested in both a discrete outcome and a continuous outcome, particularly when the choices 

are made jointly. The continuous choice of mileage depends on the prior discrete choice of 

mobility mode, and the discrete choice of mobility mode is made recognizing the expected levels 

of the continuous choice (mileage) that will follow. While MDCEV estimation was a very 

promising approach for joint modeling of modality choice and demand, as well as their equity 

implications, I faced major identification issues due to limited behavioral attributes of NHTS 

data, and hence excluded this analysis from the dissertation. I suggest continuing this line of 

research line with better data sources, due to its theoretical significance and applicability.  

Among the three emerging mobility technologies, electrification has received greatest 

attention in academic research. EVs can provide a number of benefits, including addressing 

reliance on fossil fuels, improving local air quality, reducing GHG emissions, and improving 

driving experience. Vehicle electrification aligns with broader electrification and decarbonization 

trends and integrates synergistically with other emerging technologies of automation and 
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mobility-as-a-service. The effective integration of EVs into power systems presents numerous 

complementary opportunities for enhancement of the efficiency and economics of both fleets and 

power grid, with EVs capable of supporting power-system planning. I suggest more research on 

investments in charging infrastructure, consumer education (especially for low-income and 

marginalized drivers including ride-hailing drivers), CAV-facilitated grid integration, and the 

role of electrification in mobility-as-a-service businesses.  

Despite developments on understanding of pooling behavior and shared mobility service, 

with the ongoing COVID-19 pandemic, it is an open question how views of health and safety of 

shared and pooled services are evolving. Questions on the critical service-levels, including cost, 

waiting time, travel time, or the flexibility that shared services offer, remain unanswered and 

addressing them will enable decision-makers to develop informed policies to guide these 

emerging technologies. 

Forecasting the future, including technology adoption, remains a daunting task. 

Nevertheless, I remain hopeful that the regulatory, societal, behavioral, and business-model 

barriers associated with the emerging mobility technologies can be addressed over time to 

support a faster transition toward cleaner, more efficient, equitable, and affordable mobility 

solutions for all. To conclude, the emerging mobility technologies have the potential to transform 

our lives, and understanding their implications is key in realizing their benefits and minimizing 

associated costs. Inclusion of all relevant factors to maximize environmental and social benefits 

and minimize adverse consequences is critical for the development of these transformational 

transportation technology that do not only enhance the transportation system safety and 

efficiency but also save the environment. 
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Appendices 
 

Appendix A. Supporting Information for Chapter 3 

 

 
Figure A-1. Travel time cost of one hour of driving, for the average household in each income group.  

 
 

 
Figure A-2. Scenarios designed for different definitions of TTC.  

‘Base Case’ assigns 100% hourly wage to work trips and 50% hourly wage to non-work trips. ‘Scenario 1’ assigns 
100% hourly wage to all trips while ‘Scenario 2’ assigns 50% hourly wage to all trips. 
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Table A-1. Estimation result of 2009 NHTS 

Income 
Group 

1st Income 
Group 

2nd Income 
Group 

3rd Income 
Group 

4th Income 
Group 

5th Income 
Group 

U.S. 
Average 

% difference 
of average 

with average 
of 2017 NHTS  

 Panel A: Model 3 

𝜀𝜀𝑓̂𝑓 
-0.161*** 

(0.027) 
-0.119*** 

(0.014) 
-0.101*** 

(0.016) 
-0.137*** 

(0.020) 
-0.140*** 

(0.022) 
-0.128*** 

(0.022) 
29.4% 

𝜀𝜀𝑡̂𝑡 
-0.353*** 

(0.055) 
-0.444*** 

(0.049) 
-0.498*** 

(0.051) 
-0.518*** 

(0.039) 
-0.552*** 
(-0.051) 

-0.501*** 
(0.055) 

25.1% 

 Panel B: Model 4 

𝜀𝜀𝑣̂𝑣𝑣𝑣𝑣𝑣 
-0.291*** 

(0.050) 
-0.394*** 

(0.048) 
-0.459*** 

(0.037) 
-0.488*** 

(0.049) 
-0.513*** 

(0.054) 
-0.451*** 

(0.051) 
15.0% 

Dependent variable is log(𝑉𝑉𝑉𝑉𝑉𝑉). Asterisks denote 1 (***), 5 (**), and 10 (*) percent significance levels, based on 
p-value. Clustered standard errors are reported in parentheses. Regressions include all controls and fixed effects 
described in the main text. Standard errors are clustered by MSA, and observations are weighted by household 
sampling weights. The dollar value is unadjusted between 2017 and 2009. The sample size for both models is 
134,482. The pseudo R2 of the regression is 0.213 in Panel A and 0.198 in Panel B. 

 

 

Table A-2. Results of robustness check with respect to the definition of TTC 

Income  
Group 

1st Income 
Group 

2nd 
Income 
Group 

3rd 
Income 
Group 

4th  
Income 
Group 

5th  
Income 
Group 

U.S. 
Average 

 Panel A: Scenario 1 
𝜀𝜀𝑣̂𝑣𝑣𝑣𝑣𝑣 

(Model 4) 
-0.140*** 

(0.026) 
-0.197*** 

(0.029) 
-0.230*** 

(0.028) 
-0.261*** 

(0.022) 
-0.251*** 

(0.028) 
-0.225*** 

(0.028) 

𝜀𝜀𝑡̂𝑡 
(Model 3) 

-0.159*** 
(0.034) 

-0.226*** 
(0.031) 

-0.256*** 
(0.028) 

-0.272*** 
(0.022) 

-0.283*** 
(0.029) 

-0.229*** 
(0.027) 

 Panel B: Scenario 2 

𝜀𝜀𝑣̂𝑣𝑣𝑣𝑣𝑣 
(Model 4) 

-0.283*** 
(0.053) 

-0.373*** 
(0.055) 

-0.432*** 
(0.051) 

-0.481*** 
(0.040) 

-0.460*** 
(0.046) 

-0.422*** 
(0.053) 

𝜀𝜀𝑡̂𝑡 
(Model 3) 

-0.318*** 
(0.069) 

-0.552*** 
(0.062) 

-0.511*** 
(0.056) 

-0.543*** 
(0.045) 

-0.566*** 
(0.057) 

-0.459*** 
(0.055) 
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Figure A-3. Heat maps of induced travel using Model 4.  

All points above dashed curves are characterized by backfire in net energy consumption. 
 

 



 

160 
 

  

Appendix B. Supporting Information for Chapter 4 

 

Supplementary Note B-1: Electric vehicles in the transportation sector.  

Transportation is currently the largest contributor to greenhouse gas (GHG) emissions 

among the U.S. economic sectors [2] and the fastest-growing source of GHG emissions and 

energy consumption globally [3]. Improving the energy efficiency of transportation and reducing 

the associated GHG emissions are crucial to meeting the Paris Agreement 2°C goal. Electric 

vehicles (EVs) not only entail higher energy efficiency compared to internal combustion engine 

vehicle (ICEVs), but also can concentrate emissions from point sources of tailpipes to power 

plants for more efficient and effective emission control and, most importantly, help renewable 

energy integration [26]. However, transportation electrification is challenging due to 

decentralized operation, policy conflicts, infrastructure insufficiency, and consumers’ lack of 

awareness, interest, and confidence, among other factors [36]. Recent studies have shown even 

aggressive adoption of EVs cannot alone meet the net zero emission economy targets [31,32]. 

The market penetration of battery electric vehicles (BEVs) is currently hindered by their high 

cost, arguably short driving ranges, long charging time, and limited charging infrastructure 

[33,34]. The extent to which BEVs can be accepted by consumers depends on individual travel 

patterns (travel time, trip length, parking duration, etc.), BEV characteristics (driving range, 

charging rates, etc.), charging infrastructure access, economics, and a host of psychological 

factors [35].  
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Supplementary Note B-2: Literature review of EVs for ride-hailing drivers.  

Limited research has shown the potential for adoption of EVs among ride-hailing drivers. 

However, these conclusions were drawn largely based on using limited unrepresentative data, 

simulation, or proxy data such as data from taxi operations, because data from real-world ride-

hailing operations are scarce. Chief among which is a new study suggested that electrifying a 

ride-hailing vehicle offers triple the emission reduction compared to switching a personal ICEV 

vehicle to BEV in California [187]. UCS suggested that ride-hailing with BEVs can reduce GHG 

emissions by 39% per passenger-trip compared to private ICEVs [185]. Tu et al. used GPS 

trajectories from 144,867 ride-hailing drivers in Beijing over one week to quantified that up to 

55% of total distance driven by the ride-hailing drivers can be met by 200-mile range BEV and 

ubiquitous home chargers (1.7 kW) [193]. Yu et al. found that environmental benefits of 

electrifying ride-hailing can be further enhanced with clean electricity generation [252]. Studies 

from the International Council on Clean Transportation found that hybrid electric vehicle (HEV) 

is the least expensive option for ride-hailing drivers on per-mile cost basis and BEV will reach 

cost parity with ICEV by 2023-2025 even without subsidies [195,253]. Bauer et al. showed that 

BEVs can provide equivalent ride-hailing services to ICEVs at lower cost and the cost of 

charging infrastructure is not a significant barrier to ride-hailing electrification [194]. 
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Figure B-1 Near optimal and externally valid driver cohorts.  
UHM: Ultra High Mileage; HFHM: High Frequency High Mileage; LFHM: Low Frequency High Mileage; LFLM: 

Low Frequency Low Mileage. 
 

 

Table B-1. Summary statistics of variables in the dataset for all drivers and by cohort. 

 All UHM HFHM LFHM LFLM 

Number of Active Days in 2019 59 124 190 36 24 
Average Active-Day Number of Rides 5.4 12.4 5.6 6.4 3.2 
Average Active-Day Observed VMT on Platform 70 145 77 86 43 
Average Active-Day Occupied VMT 25 58 26 30 14 
90th-percentile VMT 123 234 137 152 77 
95th-percentile VMT 139 261 160 173 88 
99th-percentile VMT 165 309 208 201 101 
Average Active-Day Shift Duration (hr)  3.54 7.04 4.21 4.21 2.22 
Observed Annual VMT on Platform 5,112 17,782 14,887 3,095 1,132 
Total Annual VMT* 12,412 25,082 22,187 10,395 8,432 

 * Derived variable: annual observed VMT by Lyft plus 7,300 miles of personal miles. 
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Figure B-2. Distributions of selected variables in the dataset for all drivers and by cohort.  
The gray shade represents the distribution of variable for all drivers, regardless of cohort. 

 

Supplementary Note B-3: Driver clustering. 

Based on computational efficiency and superior clustering power, I choose k-mean 

clustering, which minimizes within-cluster variances (squared Euclidean distances) of the 

aforementioned variables. Finally, several verification methods are used for checking the 

optimality of clusters (Figure B-3). Both Elbow method and Silhouette width method suggest 

only two optimal clusters on selected variables and then marginal decrease in optimality with 

higher number of clusters (Figure B-4). I use expert knowledge on average characteristics of 

resultant clusters to choose the near-optimal yet externally valid set of driver clusters. While the 

analysis is conducted at the individual driver level, some results are also reported on the cohort 

basis to provide a roadmap for identifying the ideal cohort of drivers for electrification efforts. 



 

164 
 

Note that these cohorts based on the clustering method are not absolute, and drivers on the 

boundary of cohorts have travel patterns similar to those of either cohort. 
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Figure B-3.  The performance of other unsupervised ML methods tested for defining the driver cohorts.  

Both Elbow method and Silhouette Width result in only two optimal clusters for all three algorithms. I use expert 
knowledge to choose four clusters as externally valid cohort without significantly losing the cluster optimality.  
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Figure B-4. Results of different number of clusters on K-means clustering of cohorts on two variables.  

4-cluster appears to have more external validity than others. The Greater number of clusters than 4 makes further 
cuts on low frequency low mileage drivers and does not improve the external validity. 
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Figure B-5. 95th%-VMT BEV Suitability with midday 30-minute charging at 30 kW DCFC.  

I use the full sample of drivers on the Lyft platform.  
 

 

 

Table B-2. The residual value (𝑽𝑽𝑽𝑽𝑽𝑽) of new vehicles at the end of ownership commitment period from alg.com.  
The residual value is expressed as the percentage of MSRP.  

New Models ICEV HEV BEV250* 
MSRP $24,365 $27,280 $36,620 

Mileage Per Year 3-Year Commitment 
10K miles/year 47% 56% 44% 
20K miles/year 41% 51% 38% 
30K miles/year 34% 45% 30% 
40K miles/year 24% 39% 23% 
 5-Year Commitment 
10K miles/year 32% 39% 34% 
20K miles/year 23% 27% 23% 
30K miles/year 10% 16% 13% 
40K miles/year 1% 8% 8% 

*For simplicity, I assume EV tax credits and subsidies are directly deducted from MSRP. The 
depreciation cost over commitment period is the difference between MSRP and residual value. 
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Table B-3. The residual value (𝑽𝑽𝑽𝑽𝑽𝑽) of pre-owned vehicles at the end of ownership commitment period from 
alg.com 

Pre-owned Models* ICEV HEV BEV250 BEV100 
Pre-owned Certified 
Dealer Price $15,632 $18,362 $19,144 $11,083 

Mileage Per Year 3-Year Commitment 
10K miles/year 38% 49% 51% 61% 
20K miles/year 29% 42% 40% 45% 
30K miles/year 19% 33% 26% 26% 
40K miles/year 9% 24% 13% 8% 
 5-Year Commitment 
10K miles/year 32% 42% 33% 52% 
20K miles/year 17% 29% 14% 25% 
30K miles/year 2% 15% 2% 3% 
40K miles/year 2% 2% 2% 3% 

*Kelly Blue Book estimate corresponding to “Certified Pre-Owned from Certified Dealer - Fair Purchase 
Price on Very Good Condition”, with typical mileage of 30K at the time of purchase. 

 
 

Table B-4. Estimated annual insurance costs (𝑰𝑰) for new and pre-owned vehicles.  
I assume the insurance rate is not a function of mileage, following the methodology of AAA. 

 ICEV HEV BEV 
New Models $1,109 $1,200 $1,215 
Pre-Owned Models $964 $1,022 $1,001 
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Figure B-6. Service & Maintenance (S&M) costs per mile for different vehicle types.  

I assume that ICEV and HEV reach the end of their life (EOL) at 150,000 miles, while BEV reaches EOL at 
200,000 miles. An upfit cost of $0.0204/mile is assumed for any mileage after 150,000 miles for ICEVs and HEVs. 
No vehicle in this analysis reaches over 200,000 miles under the assumption of a 3- or 5-year commitment period. 

 

 

 
 Figure B-7. Range of mileage-weighted average S&M costs per mile for all drivers by model type, new vs. pre-

owned, and commitment period length.  
The mileage-weighted average S&M cost additionally depends on annual mileage. Red points denote averages and 

whiskers show minimum and maximum. 
 



 

169 
 

Table B-5. 2019 average gas price and LCOC by state.   
Gas price includes taxes and is based on the weighted sales volume of three grades of gas, as calculated by the U.S. 
Energy Information Administration [207]. The national average gas price in 2019 is $2.763/gal, and the median is 

$2.625/gal. LCOC is based on the central estimate of Borlaug et al. for each state [199].  
State LCOC  

($/kWh) 
Gas Price 

(𝑮𝑮𝒔𝒔) 
($/gal) 

BEV per-mile 
LCOC ($/mile)  

ICEV per-mile gas 
cost ($/mile) 

Alabama 0.13 2.369 0.0364 0.0877 
Alaska 0.25 3.516 0.0700 0.1302 
Arizona 0.12 3.101 0.0336 0.1149 
Arkansas 0.13 2.332 0.0364 0.0864 
California 0.18 3.968 0.0504 0.1470 
Colorado 0.13 2.503 0.0364 0.0927 
Connecticut 0.15 3.040 0.0420 0.1126 
Delaware 0.10 2.625 0.0280 0.0972 
District of Columbia 0.10 3.089 0.0280 0.1144 
Florida 0.15 2.698 0.0420 0.0999 
Georgia 0.12 2.552 0.0336 0.0945 
Hawaii 0.31 3.944 0.0868 0.1461 
Idaho 0.13 2.930 0.0364 0.1085 
Illinois 0.16 2.637 0.0448 0.0977 
Indiana 0.15 2.491 0.0420 0.0923 
Iowa 0.12 2.576 0.0336 0.0954 
Kansas 0.16 2.393 0.0448 0.0886 
Kentucky 0.13 2.576 0.0364 0.0954 
Louisiana 0.13 2.381 0.0364 0.0882 
Maine 0.10 2.723 0.0280 0.1009 
Maryland 0.17 2.711 0.0476 0.1004 
Massachusetts 0.23 2.955 0.0644 0.1094 
Michigan 0.18 2.515 0.0504 0.0931 
Minnesota 0.14 2.527 0.0392 0.0936 
Mississippi 0.15 2.357 0.0420 0.0873 
Missouri 0.15 2.332 0.0420 0.0864 
Montana 0.15 2.784 0.0420 0.1031 
Nebraska 0.15 2.613 0.0420 0.0968 
Nevada 0.11 3.504 0.0308 0.1298 
New Hampshire 0.12 2.808 0.0336 0.1040 
New Jersey 0.15 2.845 0.0420 0.1054 
New Mexico 0.14 2.479 0.0392 0.0918 
New York 0.12 3.053 0.0336 0.1131 
North Carolina 0.13 2.576 0.0364 0.0954 
North Dakota 0.14 2.552 0.0392 0.0945 
Ohio 0.15 2.393 0.0420 0.0886 
Oklahoma 0.12 2.259 0.0336 0.0837 
Oregon 0.10 3.480 0.0280 0.1289 
Pennsylvania 0.16 3.004 0.0448 0.1113 
Rhode Island 0.22 2.894 0.0616 0.1072 
South Carolina 0.16 2.589 0.0448 0.0959 
South Dakota 0.16 2.381 0.0448 0.0882 
Tennessee 0.15 2.442 0.0420 0.0904 
Texas 0.15 2.332 0.0420 0.0864 
Utah 0.15 2.943 0.0420 0.1090 
Vermont 0.15 2.943 0.0420 0.1090 
Virginia 0.11 2.491 0.0308 0.0923 
Washington 0.14 3.578 0.0392 0.1325 
West Virginia 0.16 2.723 0.0448 0.1009 
Wisconsin 0.12 2.503 0.0336 0.0927 
Wyoming 0.15 2.906 0.0420 0.1076 
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Figure B-8. Distribution of average annual savings from switching to new BEVs under various scenarios.  

The range for all drivers is shown regardless of whether they are BEV suitable or not. Columns show with and 
without purchase subsidy and rows show the distribution for the cohorts. The boxes describe 25th percentiles (left 

hinge), medians, and 75th percentiles (right hinge) and whiskers describe 1.5 times the interquartile range. 
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Figure B-9. Distribution of average annual savings from switching to pre-preowned BEVs under various scenarios. 
 The range for all drivers is shown regardless of whether they are BEV suitable or not. Columns show the average 
savings 3- and 5-year commitment period and rows show the distribution for the cohorts. The boxes describe 25th 

percentiles (left hinge), medians, and 75th percentiles (right hinge) and whiskers describe 1.5 times the interquartile 
range. 
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Figure B-10. The range and distribution of annual saving from ICEV to BEV for BEV-suitable drivers with positive 

savings  
(A) From new ICEV to BEV250 with and without purchase subsidies under 5-year commitment period. (B) From 
pre-owned ICEV to pre-owned BEV250 and pre-owned BEV100 under 3-year commitment period. The red points 

show the average annual savings. The boxes describe 25th percentiles (left hinge), medians (white line), and 75th 
percentiles (right hinge) and whiskers describe absolute minimum and maximum.  
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Figure B-11. State-level average annual savings from new ICEV to new BEV250 with and without purchase 

subsidies under 5-year commitment period. 
 

Supplementary Note B-4: State-level average annual savings from new ICEV to new BEV250. 

Figure B-11 illustrates the state-level average annual savings from new ICEV to new 

BEV250 with and without purchase subsidies. With subsidies, states of WA, NE, OR, CA, and 

NY have the highest average annual savings. Without subsidies, Nevada’s drivers return the 

highest savings, mostly due to the highest average mileage in the nation. States of KS, SD, MS, 

and RI have the lowest average annual savings in both cases. Note that, with subsidies, far more 

LFLM drivers in those states break even or save from switching to BEV, which changes the 

decomposition of the set of drivers in that states who are both BEV suitable and save from 

switching to BEVs. 
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Figure B-12. Percentage of drivers in each cohort that both find a BEV250 range-suitable and break even under a 3-

year ownership commitment, as a function of subsidy level.  
Curves that plateau below 100% have drivers for whom a BEV250 does not have suitable range. An average driver 
breaks even with a minimum of $4,800 purchase subsidy. Vertical lines indicate certain specific levels of subsidy. 
Fed + State: current level ($10,000) for majority of states; Fed Only: $7500 federal tax credit; Reduced: a scenario 

where tax rebate is reduced to $5,000.  
 
 

Table B-6. Implications of electrification of all drivers who are BEV250-suitable and save from switching.  

 All UHM HFHM LFHM LFLM 

Annual Oil Consumption Savings  
(Million Barrels of Oil) 1422.6 70.9 380.5 387.9 583.3 

Annual Avoided Tailpipe GHG Emissions 
(Million Metric Tons of CO2-eq) 

5.72 0.85 1.52 1.55 2.34 

Annual Avoided Life-Cycle GHG 
Emissions 
(Million Metric Tons of CO2-eq) 

4.30 0.22 1.18 1.16 1.74 

Annual Electricity Consumption (TWh) 4.86 0.24 1.30 1.33 1.99 
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Supplementary Note B-5: Sustainability implications. 

The emissions conversion from gasoline to CO2 is based on EPA measurements of 8,887 

grCO2-eq per gallon of gas and the fuel economy of replaced ICEV (27 miles per gallon). For the 

life-cycle GHG emissions I use BEV energy efficiency, data from state-level average emission 

factor of electricity generation from NREL’s Cambium dataset [254] and per-mile vehicle 

cradle-to-grave emissions (including vehicle manufacturing and battery production and end of 

life) for ICEV and BEV. The estimate of state-level marginal emission factor of electricity 

generation is for year 2020 based on short-run mid-case scenario of NREL’s Regional Energy 

Deployment System [254]. The U.S. average marginal emission factor of electricity generation is 

365.16 grCO2-eq/kWh but varies greatly among the states. As a point of comparison,  the 

estimate of California’s marginal emission factor for electricity generation is 192 grCO2-eq/kWh 

which is slightly higher than the estimate of  Jenn [187] (186 grCO2-eq/kWh). I use a central 

estimate of 43 grCO2-eq/mile for ICEV and a conversative estimate of 144 grCO2-eq/mile for 

BEV including battery production for cradle-to-grave emissions excluding the use phase. Note 

that Cox et al., Hoekstra et al. and Elgowainy et al. estimate a range of 85-162 grCO2-eq/mile 

for BEV as use-phase excluded cradle-to-grave emissions [206,255,256]. 
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Figure B-13. Annual avoided life-cycle GHG emissions from switching to new BEV250 across different states.  
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Appendix C. Supporting Information for Chapter 5 

 

Supplementary Note C-1: Model training procedure. 

Hyperparameter tuning. To ensure the model performance and address the potential risk of 

overfitting, the models’ hyperparameters are tuned. The regularization in the training process 

excludes the patterns that are unimportant for the prediction and do not generalize beyond the 

training set. These hyperparameters included core parameters and learning control parameters 

(e.g., learning rate and, number of trees, and maximum tree depth; see Table C-1 for all 

hyperparameters tuned).  

Since I deal with unbalanced classifications (i.e., nearly 20% requested-to-share versus 80% 

solo trips and 70% successfully shared versus 30% unmatched trips), I maximize recall as the 

objective of hyperparameter tuning instead of prediction accuracy. The best set of parameters 

enables the model to generalize from the training set to the test set while maintaining the highest 

intended performance. I use randomized grid search for implementation of hyperparameter 

tuning to reduce the training time. 
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Table C-1. Hyperparameter tuning results using 5-fold cross-validation.  

Hyperparameter Prediction of Requested-to-
share  Prediction of Successfully 

Shared 
 Ada GB RF  Ada GB RF 

Number of Trees  
(number of estimators) 100 100 50  100 100 150 

Max Depth - 7 5  - 5 5 

Number of Features 10 5 8  8 8 5 

Learning Rate 0.5 0.1 -  1 0.7 - 

Criterion - friedman
_mse gini  - friedman_

mse entropy 

 

Feature selection. Before confirming the final list of features to be included in the models, I 

perform feature selection, to identify the variables most relevant to the prediction and removing 

those that do not contribute to, or reduce, the predictive power of the model [240]. An incorrect 

generalization from an unintended property of the training set is called overfitting. The feature 

selection process is implemented trough permutation feature importance (Scikit-learn), which 

reports the relative importance of all variables as shown in Figure 5-6 (normalized for 

comparison and only top 10 are shown). I exclude the variables that have an average impact on 

the prediction less than 0.5% when the variable value is randomly shuffled. This ensures that the 

10 variables included in the final models (as listed in Figure 5-6) are all stable and important for 

the prediction.  

Model validation. I validate models, a process to test the performance of the tuned and 

trained model on data different from the training set, that is, a validation set. This ensures that the 

models do not overfit, and performs well not only on the training set, but also out-of-sample. I 

use 𝑘𝑘-fold cross-validation, in which the data are split into 𝑘𝑘 folds and the model is fitted 𝑘𝑘 

times, each time with a different fold chosen as a test set with the rest performing as a training 

set. I chose 𝑘𝑘 = 5 here.  
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Model calibration. The classification models return the probability of binary class (soft 

predictor). The probabilistic prediction made by the model are calibrated using the sigmoid 

approach [258]. Calibration is essential for retrieving unbiased probability estimates from the 

model. The output of a well-calibrated model can be directly interpreted as an estimate of 

probability.  

Performance metrics. Accuracy, precision, and recall are compiled to assess the 

performance of models from different perspectives. All measures can be calculated from TP (true 

positives), TN (true negatives), FP (false positives), and FN (false negatives) of the confusion 

matrix. The accuracy is the proportion of correct predictions (𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑛𝑛

), the precision evaluates the 

fraction of correct classified instances among the ones classified as positive ( 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

), and the 

recall (sensitivity) quantifies the number of correct positive predictions made out of all positive 

predictions that could have been made ( 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

). For imbalanced classifications such as this 

problem, recall and precision are more important performance measures than accuracy. Unlike 

precision that only comments on the correct positive predictions out of all positive predictions, 

recall provides an indication of missed positive predictions [237] and hence is a better metric for 

classification of requested-to-share and shared trips. The overall performance of a classifier can 

be evaluated by the area under the receiver operating characteristic curve (ROC-AUC), which is 

equivalent to the probability that the model will rank a randomly chosen positive instance higher 

than a randomly chosen negative instance [237]. Higher AUC reflects higher predictive 

performance of a model. 
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Figure C-1. Smoothed trend of requested-to-share trip by trip distance.  

The requested-to-share trips are divided to three equally sized quantiles: 0-33.4 percentile: short (less than 2.7 
miles); 33.4-66.7 percentile: medium (2.7-6.1 miles); and 66.7-100 percentile: long (above 6.1 miles. Over time, the 
frequency of short and medium trips drops more long ones. Since the volume of trips did not statistically changed 

over time, it implies that the preference for shorter trips shifted to solo. 
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Figure C-2. Kernel density distribution of key variables for requested-to-share trips, solo trips, shared trips, and 

unmatched requested-to-share trips.  
(A) trip total cost; (B) trip per-mile cost; (C) trip distance; (D) trip duration. 
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Figure C-3. Joint density distribution of trip distance and per-mile cost for requested-to-share trips, solo trips, 

shared trips, and unmatched requested-to-share trips. 
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Figure C-4. Correlation matrix between target response and explanatory variables.  

The target response is whether the trip is requested to be shared. 
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Figure C-5. Correlation matrix between target response and explanatory variables.  

The target response is whether a requested-to-share trip is successfully shared or not.  
 

 
Figure C-6. Learning curves with 5-fold cross validation for RF, GB, and Ada classifiers.  

A training sample of 6000 trips (8000 trips including test set) saturates all models with sufficient amount of data. 
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Figure C-7. Partial dependence plots for three classification models of requested-to-share trips.  

Top three variables with highest permutation feature importance are shown. The partial dependence shows high 
nonlinearity between the target response and explanatory variables.  
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Figure C-8. Partial dependence plots for three classification models of successfully shared trips.  

Top three variables with highest permutation feature importance are shown. The partial dependence shows high 
nonlinearity between the target response and explanatory variables.  
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Appendix D. Supporting Information for Chapter 6 

 

Supplementary Note D-1: Data privacy and de-identification 

The City of Chicago has applied de-identification techniques to reduce the risk of linking 

individuals’ trip data to their identities. This includes reporting pickup and drop-off locations 

disaggregated only to the census tract level, rounding the trip-start and trip-end times to the 

nearest 15 minutes, and rounding the fares and tips to the nearest $2.50 and $1.00, respectively. 

Nearly 16.5% of trips suffer from missing pickup and/or drop-off census tracts, 77% of which 

are trips that requested sharing. The data provider cites privacy concerns in masking these 

values. 

 

Supplementary Note D-2: Data cleaning and imputation procedures 

I first remove all observations with attributes inconsistent with the logic of travel: 

• Trips with total trip duration less than 1 minutes and longer than 5 hours. 

• Trips less total distance traveled than 0.25 miles and greater than 300 miles. 

• Trips with total fare equal to zero (fares are already rounded). 

• Trips with extreme speeds (below 0.2 mph and above 80 mph - an auxiliary variable from 

trip distance and trip duration). 

• Trips which were successfully shared but did not authorized to share. 
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For the trips with missing pickup or drop-off census tracts as described in Supplementary 

Note , given that the majority are requested-to-share trips and removing those biases our 

analysis, we follow an imputation strategy. We first attempt to infer the pickup or drop-off tracts 

from the pickup or drop-off community code, if it is not missing. The City of Chicago has 77 

community areas, and within each community area there are multiple census tracts. We group the 

dataset by community area and impute missing census tracts within each community area by trip-

density weighted ranking of the non-missing census tracts in that group. This imputation reduces 

missing values to 5.8% but may induce a modest bias in our estimation. The data includes some 

trips outside the boundaries of the City of Chicago (Cook County). We also remove census tracts 

outside of the City of Chicago based on the 2010 census boundaries (801 census tracts). 

 

Table D-1. Summary statistics for selected variables 

 Mean St. Dev. Min Max 
Downtown (0/1) 0.21 0.41 0 1 
Post (0/1) 0.26 0.44 0 1 
Peak (0/1) 0.5 0.5 0 1 
Person-trips 6.79 39.01 0 4163 
Person-trips requested to be shared 1.02 5.42 0 810 
Person-trips successfully shared 0.64 2.98 0 322 
Willingness to share (%) 15.61 30.6 0 100 
Successfully shared (%) 10.72 26.04 0 100 
Economically distressed area (0/1) 0.68 0.47 0 1 
(N=9,525,426)         

Notes: An observation is a tract-pair week time-period (peak vs. off-peak). Source: City of Chicago. 
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    Figure D-1. (A) Weekly percentage successfully shared in the peak period, downtown versus neighborhoods; (B) 
The weekly difference in peak-period percentage successfully shared between downtown and neighborhoods, with 

the difference in the first week being normalized to zero. 
 

 

 

 

 
  Figure D-2. (A) Weekly willingness to share (WTS; %) in the peak period, downtown versus neighborhoods; (B) 
The weekly difference in peak-period WTS between downtown and neighborhoods, with the difference in the first 

week being normalized to zero. 
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  Figure D-3. (A) Weekly total person-trips in the peak period, downtown versus neighborhoods; (B) The weekly 
difference in peak-period person-trips between downtown and neighborhoods, with the difference in the first week 

being normalized to zero. 
 

  



 

191 
 

 
Table D-2. Robustness checks on DD and DDD estimates 

 % requested to share  % successfully shared  Total person-trips 
  (1) (2)         (5) (6) 
Panel A. Clustering by week-period        
Estimated effect 2.38*** 2.47***  2.06*** 1.99***  0.32 0.04 
  (0.12) (0.49)   (0.12) (0.29)   (0.29) (0.79) 
Downtown DD X   X   X  
DDD  X   X   X 
N 1,639,450 6,815,103   1,639,450 6,815,103   1,990,102 9,372,058 
                  
Panel B. No weights         
Estimated effect 2.39*** 1.84***  2.13*** 1.75***  0.32 0.04 
  (0.20) (0.20)   (0.20) (0.16)   (0.41) (0.40) 
Downtown DD X   X   X  
DDD  X   X   X 
N 1,990,102 9,372,058   1,990,102 9,372,058   1,990,102 9,372,058 

Notes: In all specifications, an observation is uniquely identified by its origin-destination pair of census tracts 𝒊𝒊 in 
week 𝒕𝒕 during period 𝒑𝒑 (peak or off-peak). The dependent variable is percent of person-trips requested to be shared 
(columns 1-2), percent of person-trips successfully shared (columns 3-4), or the total number of person-trips (columns 
5-6). Panel A depicts results from the same specifications as in Table 6-2 except for changing the level of standard 
error clustering to week-period (where period is either peak or off-peak). Panel B depicts results from the same 
specifications as in Table 6-2 except for the exclusion of regression weights. “Downtown DD” denotes the difference-
in-differences (DD) estimate comparing downtown peak-period ride-hailing to downtown off-peak period ride-
hailing, before and after the policy change. “DDD” denotes the triple-differences specification, where the differences 
are peak vs. off-peak, downtown vs. neighborhoods, and pre vs. post. 
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Table D-3.  Estimated policy effects by economic disconnected status  

 Overall  EDA=1  EDA=0  Interaction 
  (1)   (2)   (3)   (4) 
Panel A. Willingness to share (%)       
Post x Peak (0/1) 2.38***  2.54***  2.34***  2.33*** 

 (0.17)  (0.30)  (0.15)  (0.15) 
Post x Peak x EDA (0/1)       0.28 
              (0.18) 
N 1,639,450   830,075   809,375   1,639,450 
                
Panel B. Total person-trips        
Post x Peak (0/1) 0.32  0.28***  0.36  0.36 

 (0.41)  (0.09)  (0.80)  (0.80) 
Post x Peak x EDA (0/1)       -0.07 
              (0.73) 
N 1,990,102   1,089,582   900,520   1,990,102 
Notes: An observation is a tract-pair week time-period (peak or off-peak). All regressions are based on the downtown 
difference-in-differences (DD) strategy. “Overall” refers to the full-sample DD and is identical to column 1 of Table 
6-2. “EDA=1” refers to the subsample of observations with origin and/or destination in an “economically disconnected 
area” (EDA) as defined by the Chicago Metropolitan Agency for Planning [236].  “EDA=0” refers to the subsample 
with neither origin nor destination in an EDA. “Interaction” refers to the full-sample regression with an interaction 
term between the “Post x Peak” dummy and an EDA dummy (as well as interactions between EDA and Post and EDA 
and Peak). 
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