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ABSTRACT

Understanding how quantum matter behaves when driven out of equilibrium is one of the

key focuses in quantum physics. Thanks to impressive progress in the control and precision

achieved in quantum synthetic matter over the past decades, the nonequilibrium quantum

many-body physics has become one of the most active research areas today, especially after

the experimental realization of Bose-Einstein condensates and optical lattices, which allows

us to directly observe and study nonequilibrium quantum matter with great accuracy and

controllability. In this dissertation, I explore the rich landscape of nonequilibrium quan-

tum many-body physics and how quantum phase transitions, both symmetry-breaking and

topological, can be extended to the nonequilibrium setting.

In the first part of the dissertation, I focus on spinor Bose-Einstein condensates as an

isolated quantum many-body system, and reveal their various dynamical behaviors, including

quantum collapse and revivals, thermalization and nonthermal equilibration with no revival

even though the system has finite degrees of freedom. In contrast to typical integrable

systems, which usually do not thermalize, we find that spinor condensates have a parameter

range in which the system thermalizes via the Eigenstate Thermalization Hypothesis (ETH).

We show that this observation is linked to the presence of rare nonthermal states whose

fraction vanishes with system size, and contributes to the notion of thermalization via weak

ETH.

Next, I explore a dynamical process that is complementary to thermalization in isolated

quantum systems: information scrambling, which could be probed via out-of-time-order

correlators (OTOC). I propose a nonintegrable, disordered and quasi-1D spin model, the

ladder−XX model, for a feasible detection of information scrambling in a cold atom sim-

ulator. This chapter poses a fundamental question: ‘What are the signatures of quantum
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phases and phase transitions in isolated interacting systems driven out-of-equilibrium?” I

study the ladder-XX model in both clean and disordered potentials, and characterize dif-

ferent nonequilibrium phases, i.e., ergodic and many-body localized, of the model based on

the decay properties of OTOCs. Emergent light cone shows sublinear behaviour, while the

butterfly cones drastically differ from the light cone by demonstrating superlinear spread of

information with a velocity that is bounded by the light cone velocity.

In the second part of the dissertation, I continue to search for answers to the question

posed above, however this time with a particular focus on symmetry-breaking and topolog-

ical quantum phase transitions. I pin down a universal mechanism underlying the relation

between information scrambling at any temperature and quantum phases at low temper-

atures. Our method points to key ingredients to dynamically detect long-range order in

gapped phases through OTOCs for symmetry-breaking quantum phase transitions and Z2

topological order associated with Majorana zero modes localized at the edges. Our results

pave the way to an intriguing observation that phases of quantum matter could protect the

information from scrambling and thermalization, even when the system is interacting and

nonintegrable.

Finally, I explore and propose utilizing short-time transient temporal regimes and single-

site probes to detect the phases and phase transitions in quantum matter. These studies

reveal a dynamical crossover and a dynamical phase transition, respectively for periodic and

open-boundary chains. In both cases, a nonequilibrium scaling law appears in the vicinity of

the crossover/transition with associated exponents that differ from the analytical predictions

for long times. Feasibility of detecting such dynamical criticality in experimental systems

are discussed.
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Chapter 1

Introduction

Here we are, after more than two millennia of pondering about the nature of things [1]. On

this path of understanding matter, there are few stories as important as that of the mod-

ern atomic theory [2–14]. In our everyday experience though, matter is macroscopic with

conductors and insulators in a crude classification [15]. Macroscopic matter is composed of

an innumerable amount of constituents, i.e., nuclei and electrons. To describe the motion of

electrons in matter, one needs to abandon the treatment of individual particles and rather

work with ensembles of them. Such statistical mechanic approach is the bedrock of our un-

derstanding of the collective behavior of constituents in matter [16–18]. Either fermionic [17]

or bosonic [16], the collective quantum matter, or a quantum many-body system [18], would

be described in equilibrium with the tools of quantum statistical mechanics [19]. Similar

to solids, liquids and gases in our everyday experience, the quantum many-body systems

exhibit phases with different orderings in equilibrium [18]. Some well-known examples are

quantum gases and liquids, i.e. superconductors and superfluids [20, 21]. Quantum phases

and their phase transitions are going to be introduced in the first section of this Chapter.

Although the examples are plenty, we will in particular focus on the quantum phases and

phase transitions of the systems that are studied in this dissertation.

This dissertation is a continuous application of Schrödinger’s and Heisenberg’s formula-
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tion of mechanics [10, 11, 13, 14] to better understand the collective quantum matter away

from the equilibrium. By eliminating the assumptions that the system is already in equilib-

rium and the dynamics is sufficiently slow to satisfy the adiabatic theorem [22] and not to

drive it out of equilibrium, we start to explore an uncharted territory of physics. Arguably

one of the most important motivations behind these fundamental theoretical questions is our

ability to experimentally probe nonequilibrium quantum matter. Quantum synthetic matter

can be used as an umbrella term that includes modern quantum simulators where model

Hamiltonians are implemented and tested in very controlled environment with high levels

of precision [23–25]. These include neutral cold atoms [26, 27], ion traps [28, 29], supercon-

ducting circuits [30], photonic systems [31], quantum dots and others [23,24]. The quantum

many-body systems could be driven out of equilibrium experimentally with quenches, ramps

and periodic driving [32], some of which are going to be detailed in the next sections. We

observe that two overarching themes typically appear in nonequilibrium quantum matter,

(i) integrability of the Hamiltonian [33] and (ii) the presence/absence of interactions. While

nonintegrability implies the presence of interactions, the opposite is not true: the pres-

ence of interactions does not always mean that the system is nonintegrable. How static

properties of a Hamiltonian like its energy spectrum, its equilibrium quantum phases and

emergent order parameters upon symmetry breaking, affect the nonequilibrium response

will be a persistent question that I will be exploring in this dissertation. We are going

to see that the nonequilibrium response of an isolated quantum system provides us with

information [32, 34, 35] on (i) whether the local observables could equilibrate [36], exhibit

quantum recurrences [37], thermalize [38–40]; (ii) how the decay properties of correlators

probe the energy level statistics [41, 42], e.g., ergodic and many-body localized phases [43],

correlation spread and bounds on correlation speed [44]; (iii) how both the steady-states and

transient regimes of local observables and correlators could probe low temperature quantum

phases [35], symmetry-breaking and topological.
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1.1 Quantum Phase Transitions

Symmetry and topology are two paradigms in our understanding of matter in equilibrium.

The former is the founding element of Landau’s theory of critical phenomena [45], where

symmetry is broken or preserved determines the phase of matter and there is a continu-

ous transition between two phases, e.g., a second-order phase transition. Meanwhile, the

classification according to the topology of the ground states is our current understanding

on the phases of matter and their transitions where symmetry remains the same across the

transition boundary, but a topological invariant, i.e., Chern number, of the ground state

changes [46,47].

Symmetry-breaking phase transitions between symmetry-broken and -preserved phases

are associated with local order parameters where the order parameter is nonzero and zero,

respectively. The critical point where the continuous transition occurs is also where the

correlation length diverges and a field theoretic approach becomes applicable with coarse-

grained microscopics, and hence universality classes that are equipped with universal critical

exponents [45, 48]. Physics of critical phenomena is arguably one of the most intuitive

principles that also connect theory with experiment: Although the underlying microscopic

structure could differ greatly from one material to another, in the vicinity of the critical point

one observes the same handful of critical exponents that describe the same long-wavelength

physics if the compared materials belong to the same universality class.

As the temperature decreases, T → 0, if a nonanalyticity is established in the ground state

energy in the thermodynamic limit, the phenomenon is called a quantum phase transition

(QPT), which holds strictly at T = 0 [49]. Continuous quantum phase transitions have a

vanishing energy gap ∆ between their ground and their first excited states at the quantum

critical point, and scaling behavior of the gap provides information about some of the critical

exponents,

∆ ∼ J

∣∣∣∣h− hchc

∣∣∣∣zν , (1.1)
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where z and ν are the dynamical critical exponent and the correlation length ξ critical

exponent, respectively, and individually defined as ∆ ∼ ξ−z and aξ−1 ∼ |(h − hc)/hc|ν

where a is the unit lattice spacing; J is the energy level; h is the control parameter; hc

is the quantum critical point; and (h − hc)/hc is the reduced control parameter. While

sometimes there exists a finite-temperature phase transition that extends from a quantum

phase transition, this is not always true. A relevant example of this in the dissertation is the

transverse-field Ising model (TFIM) in one dimension, which also goes under the name of

transverse-field Ising chain (TFIC). For concreteness, we state the Hamiltonian of the TFIM

when its interactions are long-range,

H = −
∑
r 6=l

J(r − l)σzrσzl + h
∑

σxr , (1.2)

where σir, i = x, y, z are Pauli spin matrices at site r [50] in a one-dimensional chain.

J(r− l) = J0/|r− l|α is power-law decaying interactions with α rate coefficient. For α→ 0,

Eq. (1.2) reduces to the integrable all-to-all coupled Lipkin-Meshkov-Glick (LMG) model [51];

and for α→∞ it reduces to integrable nearest-neighbor TFIM [49]. This long-range model

has a quantum phase transition with a corresponding finite-temperature phase transition

only when α ≤ 2 [52]. Therefore, the locally-connected (or short-range) TFIM with nearest-

neighbor terms which is going to be extensively studied in this dissertation, hosts only

quantum phase transitions. Henceforth, we will focus on the locally-connected TFIM, l =

r + 1 in Eq. (1.2).

1.1.1 Transverse-field Ising Model

In this subsection, we will review the bullet points of the relevant section in Ref. [49] where

the rest of the content can be found in detail.

When the transverse field is zero, h = 0, the model is classical with product states as its

eigenstates. In particular, the ground states are spin-up or -down polarized states, |↑↑ · · · ↑〉
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or |↓↓ · · · ↓〉 with exact two-fold degeneracy in energy. In the opposite limit where h� |J |,

the ground state is a product state but in the x−basis.

TFIM with nearest neighbor couplings only is an integrable model and can be solved

exactly via mapping to noninteracting fermions [49]. The mapped fermionic model is called

the Kitaev chain [53], which will be detailed in Chapter 5 together with the mapping. The

TFIM Hamiltonian is invariant under Ising (Z2) symmetry, σzi → −σzi and σxi → σxi with

the symmetry generator P =
∏

i σ
x
i .

In the limit where h � J but h 6= 0, nonzero h will mix the ground states and the

degeneracy will be approximate in systems with finite sizes. However the degeneracy will

become exact as the system size increases to the thermodynamic limit. Hence, the ground

state in this limit is still two-fold degenerate, while there is a unique ground state in the

opposite limit where h� J . This is a heuristic way of observing the presence of a quantum

phase transition between two quantum phases, because the nature of the ground states

changes from one limit to another.

One would notice that the Ising symmetry maps degenerate ground states into each other

in the limit h� J . In fact this mapping is more general than the ground states in the TFIM,

and it is applicable throughout the energy spectrum. The details and the consequences of this

symmetry property in the nonequilibrium response will be extensively studied in Chapter 5.

A system in thermodynamic limit will always choose one state or another in the ground

state, while the entire Hamiltonian still preserves the symmetry. This is called spontaneous

symmetry breaking [45,48] and it is one of the most ubiquitous physical phenomena in physics

appearing in fields ranging from condensed matter to high energy physics. In the context

of TFIM, the system spontaneously breaks the Z2 symmetry in the limit h � J . We will

in particular focus on the impact of spontaneous symmetry breaking on the nonequilibrium

response in Chapter 4.

The quantum phase transition of the TFIM lies at the point hc = J separating two quan-

tum phases, a quantum ferromagnet at h < hc and a quantum paramagnet at h > hc. Study-
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ing the spatial correlations with respect to the ground states reveal the properties of these

phases. (i) In the ferromagnetic phase,
〈
σzi σ

z
j

〉
= N2

0 for large distances |i− j| → ∞ where

N0 6= 0 is the spontaneous magnetization of the ground state, and similarly 〈σzi 〉 = ±N0.

When h = 0, N0 = 1, and N0 decreases as h increases, however remains nonzero until h = hc.

(ii) In the paramagnetic phase, the spatial correlations over large distances decay exponen-

tially
〈
σzi σ

z
j

〉
∼ e−|ri−rj |/ξ, implying that there is no ferromagnetic order in a quantum

paramagnet. (iii) At the critical point h = hc, the spatial correlations decay as a power-law

over large distances. In this dissertation, I will study observables and various correlators,

e.g., two-point correlators, two-time correlators, out-of-time-order correlators (OTOC), in

the magnetically ordered and disordered phases and in the vicinity of the quantum critical

points of the TFIM and other Ising-like chains driven out of equilibrium.

Finally, let us point out that there are two obvious ways of breaking integrability in the

TFIM: (i) introducing a longitudinal field hz
∑

i σ
z
i , (ii) introducing next-nearest neighbor

terms, i.e., ∆
∑

i σ
z
i σ

z
i+2. I focus on the latter in this dissertation, because the second method

preserves the Z2 symmetry and the quantum critical point merely shifts to favor order, while

it introduces interactions that break the integrability.

1.1.2 Bose-Einstein Condensates and the Bose-Hubbard Model

The next illustration of quantum phase transitions is going to be on the Bose-Einstein

condensates, e.g., superfluids.

Bose Einstein condensation (BEC) is a truly quantum phenomenon where under a critical

temperature, a fraction of noninteracting Bose particles, i.e. neutral atoms with bosonic

statistics [16], start to share the same wave function [54]. Dilute gases are utilized to create

BEC, where the particle density at the center of a Bose-Einstein condensed gas is around

1013− 1015 cm−3. This number can be contrasted with the density of molecules in air under

standard temperature and pressure (STP) which is 1019 cm−3, or the atoms in a liquid or

a solid, which is 1022 cm−3 or nucleons in atomic nuclei, which is 1038 cm−3 [21]. To turn
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Figure 1.1: The experimental stages of how to realize Bose-Einstein condensation with Zee-
man slower, magneto-optical trap (MOT), magnetic trap and evaporative cooling. See text
for details on different stages.

on the interactions in a dilute gas that can form a collective quantum matter like in solids

and liquids, the temperature needs to decrease at least to ∼ 10−5 K. Therefore, cooling

and trapping techniques for atomic gases have been developed in last decades [55], which

paved the way to the first realization of Bose-Einstein condensation [56, 57] in 1998. Dilute

gases are theoretically tractable and experimentally feasible, mainly because the effective

interaction can be described with only one parameter: the scattering length as that can be

tuned through Feshbach resonances via electric or magnetic fields [21].

Cooling and trapping of dilute gases are performed with lasers and magnetic fields [21,55].

When atoms are expelled out of the oven, they have an approximate speed of 1000 ms−1.

In order to slow them, the experimentalists use laser cooling techniques by shooting a laser

beam at the beam of hot atoms and making sure that atoms and laser beam are on reso-

nance. This process introduces Doppler broadening in the spectral lines. Hence, in order

to compensate for the effect of Doppler shift, atoms are let into a Zeeman slower, which
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applies a spatially changing magnetic field to the atoms to cause Zeeman effect. At the end

of this process, the atoms slow down to an approximate speed of 5 ms−1, from where they

are captured by a magneto-optical trap (MOT). The lasers that are shined on the atoms

in a MOT have different polarizations induced by the inhomogeneous quadrupole magnetic

field gradient. This creates a trap potential to accumulate ∼ 1010 atoms. Then the lasers

are turned off and the atoms stay in a pure magnetic trap where they are exposed to a

nondissipative trapping force. The magnetic trap increases the particle density, and hence it

helps with the evaporative cooling process. The evaporative cooling is the last stage where

the experimentalists turn on the crossed beam lasers to create a dipole trap. In evaporative

cooling, they let the hottest atoms at the edge of the trap leave the trap by reducing the

trap potential continuously. When the rest of the atoms recover their Maxwellian velocity

distribution [19], the mean temperature decreases. The evaporative cooling process reduces

the temperature of an atomic gas from tens of µK to hundreds of nK. A cartoon schematic

of this process can be seen in Fig. 1.1.

As the temperature of the gas decreases, the de Broglie wavelength of the atoms increases

λT =

(
2π~2

mkT

)1/2

.

When the de Broglie wavelength becomes comparable to the inter-particle spacing, Bose-

Einstein condensation starts to occur. The critical temperature Tc that corresponds to the

phase change from normal to condensed gas, and the associated condensate fraction in a

harmonic trap are given as [21]

kTc ∼ 0.94~ω̄N1/3,

N0 = N

[
1−

(
T

Tc

)3
]
,

where ω̄ is the geometric mean frequency of the trap; N and N0 are the numbers of all

particles and condensed particles in the atomic gas, respectively; k is the Boltzmann constant;
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~ is the Planck’s constant and T is the temperature of the atomic gas.

When interactions and scatterings between Bose particles are taken into account, BEC

dynamics follow a nonlinear Schrödinger equation, the so-called Gross-Pitaevskii equation

[21,58].

i~
∂Ψ(r, t)

∂t
= − ~2

2m
∇2Ψ(r, t) + V (r, t)Ψ(r, t) + U0|Ψ(r, t)|2Ψ(r, t), (1.3)

where Ψ(r, t) is the wave function of a single-particle state into which the condensation

occurs; U0 = 4π~2as/m is the strength of the effective potential; as is the scattering length

for two-body s−wave scatterings [59] that dominate a dilute cold atomic gas and V (r, t) is

the external potential. While this is the case for spin−0 BEC, we can utilize the hyperfine

energy structure of these cold atoms and introduce spinor Bose-Einstein condensates. A

spinor condensate is a multi-component condensate of atoms with their spin degrees of

freedom affecting the Hamiltonian of the system [21, 60]. More specifically, a spinor BEC

experiences quantum spin-mixing which is initiated due to the s−wave scatterings of spinful

Bose atoms [61]. In the next subsection, we will introduce the spinor condensates and their

quantum phase transitions. In a later subsection, we will go back to the physics of spinless

Bose-Einstein condensates, introduce optical lattices and the resulting Bose-Hubbard Model.

Spinor Bose-Einstein Condensates

To write down the spinor BEC Hamiltonian, we need to make some approximations in the

scattering processes of cold atoms. The effective interactions between atoms in a dilute gas

are assumed to be short-range contact type [60],

Ueff(r, r′) = U0δ(r − r′), (1.4)

where U0 is the interaction strength and r, r′ are the positions of the atoms to scatter from

each other. The approximations of spinor condensates are [60],

9



1-Cold-collision approximation: all scatterings are s−wave scatterings, because the incident

collision energy is low.

2-Spinor gas collision approximation: the short-range potential is rotationally invariant, so

that the total angular momentum (both orbital and internal angular momenta) of a scatter-

ing pair of atoms is conserved.

3- Weak dipolar approximation: We neglect the spin-orbit coupling due to short-range molec-

ular potential, so that the orbital and internal angular momenta are separately conserved.

4- No mixing of the total hyperfine states of the colliding atoms, so that we neglect the

collisions where the atoms undergo hyperfine relaxation processes.

These approximations ensure that the s−wave scattering length of the colliding pair aFpair

is sufficient to describe the collisions among spinor gas atoms. In addition to these approxi-

mations, quantum statistics constrain the parity of aFpair
. Integer spins behave like bosons,

and hence they should be symmetric under the exchange of any two particles, whereas the

half-integers behave like fermions, and hence they should be anti-symmetric. Therefore, the

many-body wave function of identical spin−F atoms will have a factor of (−1)2F under the

exchange of any two atoms. Due to the same exchange principle, the internal spin part of

the wave function has a factor of (−1)2F+Fpair , and the orbital angular momentum part of

the wave function has (−1)Lpair . Therefore we have,

(−1)2F = (−1)2F+Fpair × (−1)Lpair , (1.5)

which implies that Fpair must be even, when we have only s−wave scattering with Lpair = 0.

These arguments simplify the interaction Hamiltonian greatly,

Hi =
1

2

∑
i,j

δ3(ri − rj)
∑

even Fpair

4π~2aFpair

M
PFpair

, (1.6)

where PFpair
is the projection operator for a pair of atoms that is projected onto the total

spin-Fpair. There are two possible operators: the identity operator Ii (for the ith atom) which
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is invariant under the exchange of spin indices (being the symmetric part of the Hamiltonian)

Ii ⊗ Ij =
∑

all Fpair

PFpair
(1.7)

and the angular momentum or the spin-mixing interaction operator Fi which is the nonsym-

metric part of the Hamiltonian,

Fi · Fj =
∑

all Fpair

[
1

2
Fpair(Fpair + 1)− F (F + 1)

]
PFpair

, (1.8)

where Fi = Fj = F = 1, since all atoms possess spin−1 in our case. Then the interaction

Hamiltonian will be of the form,

Hi =
1

2

∑
i,j

δ3(ri − rj)
(
c′0 [Ii ⊗ Ij]s + c′1 [Fi · Fj]s

)
, (1.9)

where s reminds us that we are summing over only even Fpair because of the quantum

statistics. The coefficients c0 and c1 are to be determined in the following. We notice that

[Ii ⊗ Ij]s = P0 + P2, (1.10)

and using Eq. (1.8),

[Fi · Fj]s = P2 − 2P0. (1.11)

If we substitute Eqs. (1.10)-(1.11) into Eq. (1.9) and equate the result to Eq. (1.6) for only

even Fpair, we obtain the coefficients as

c′0 =
4π~2

M

a0 + 2a2

3
, (1.12)

c′1 =
4π~2

M

a2 − a0

3
. (1.13)
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Let us write the identity and spin operators in terms of field operators,

I =
F∑

m,n=−F

ψ̂†m(r)Imnψ̂n(r) = n(r), (1.14)

Fν =
F∑

m,n=−F

ψ̂†m(r)(Fν)mnψ̂n(r), (1.15)

where ψ̂†mF is the annihilation operator that satisfies Bose statistics for the Zeeman state

mF . Hence,

Hi =
1

2

∫
dr
(
c′0 : n2(r) : +c′1 : F2(r) :

)
. (1.16)

Here, :: denotes normal ordering. The total Hamiltonian in terms of field operators can be

written more explicitly,

H =
F∑

m=−F

∫
drψ†m

(
− ∇

2

2M
+ V (r)

)
ψm +

c′0
2

F∑
m,n=−F

∫
drψ†mψ

†
nψmψn

+
c′1
2

∫
dr(ψ†1ψ

†
1ψ1ψ1 + ψ†−1ψ

†
−1ψ−1ψ−1 − 2ψ†1ψ

†
−1ψ1ψ−1 + 2ψ†1ψ

†
0ψ0ψ1

+ 2ψ†−1ψ
†
0ψ0ψ−1 + 2ψ†0ψ

†
0ψ1ψ−1 + 2ψ†1ψ

†
−1ψ0ψ0). (1.17)

We note that from now on, we skip the operator notation for simplicity in the equations

ψ̂m = ψm. Since the first term in Eq. (1.17) is derived from the identity operator, we know

it is the symmetric part of the interaction Hamiltonian under the exchange of two atoms.

The second term, on the other hand, can be written with spin matrices for spin−1 atoms.

For sodium and rubidium alkali atoms, the symmetric part of the interaction Hamiltonian

is dominant over the nonsymmetric part, so that |c0| � |c1| holds. This observation leads

us to the so-called single mode approximation (SMA), where we assume that the condensate

wave functions for each spin component φm=−1,0,1(r) are described by the same spatial wave

function φ(r) [60,61]. The spatial wave function φ(r) satisfies the Gross-Pitaevskii equation
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which gives the spatial structure of the spin−1 spinor Bose-Einstein condensate. Then one

can write,

ψm ∼ amφ(r), m = 0,±1 (1.18)

with the normalization condition
∫
dr|φ(r)|2 = 1. The Hamiltonian reduces to rotationally

invariant H = c1
2
L2, which has well-known analytical solutions for both ferromagnetic c1 < 0

and anti-ferromagnetic c1 > 0 interaction [61]. In the next step, we apply a magnetic field

to the system, which introduces linear and quadratic Zeeman effects. These terms read

ψ̂†m (q(L2
z)mn − p(Lz)mn) ψ̂n, and under SMA, they take the following form,

H = c1
L2

N
+

m=1∑
m=−1

(
qm2 − pm

)
a†mam, (1.19)

= c1
L2

N
+ q

(
a†−1a−1 + a†1a1

)
− p

(
a†1a1 − a†−1a−1

)
= c1

L2

N
− qa†0a0 − pLz,

where the linear Zeeman term is the angular momentum operator in z-direction Lz = n1−n−1

and we introduced c1 = c′1N . The SMA Hamiltonian Eq. (1.20) commutes with the linear

Zeeman operator Fz, hence the eigenstates of the SMA Hamiltonian are always eigenstates

of the operator Lz. We also note that the number of particles in level m = 1 are always

equal to the number in m = −1, when the magnetization is set to zero. So when there

is no magnetization, the linear Zeeman term will disappear, and when there is nonzero

magnetization, this term will be constant throughout the time evolution. Therefore, we can

safely neglect the linear Zeeman term. Therefore, the Hamiltonian reduces to

H = c1
L2

N
− qa†0a0, (1.20)

=
c1

N
(a†1a

†
1a1a1 + a†−1a

†
−1a−1a−1 − 2a†1a

†
−1a1a−1 + 2a†1a

†
0a0a1

+ 2a†−1a
†
0a0a−1 + 2a†0a

†
0a1a−1 + 2a†1a

†
−1a0a0)− qa†0a0. (1.21)
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Figure 1.2: Full phase diagram of spin−1 ferromagnetic condensate with respect to q, the
Zeeman parameter, and m, the magnetization density, computed via exact diagonalization
of 104 atoms. The quantum phases are marked on the figure.

This system hosts quantum phase transitions for both ferromagnetic and antiferromag-

netic interactions due to the competition between spin-mixing and Zeeman terms. For fer-

romagnetic interaction the phase transition is continuous, whereas for antiferromagnetic

interaction the phase transition is continuous only when the net magnetization is nonzero.

Otherwise, the antiferromagnetic spinor condensate has a first order quantum phase transi-

tion.

At large and positive q values the quadratic Zeeman term in the Hamiltonian Eq. (1.20)

dominates the Hamiltonian and all atoms favor the hyperfine level |m0〉. Therefore, the

ground state will be of the form,

|ψ(q/c1 →∞)〉 = |ρ−1 = 0, ρ0 = 1, ρ1 = 0〉 . (1.22)

Here ρm is the atom density in each hyperfine level |m〉. When we take the q to large negative
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Figure 1.3: The ground state energy gap of ferromagnetic condensate for m = 0 and N = 104

atoms. The gap vanishes at two critical points as the system size increases, implying the
presence of two second-order quantum phase transitions.

values, Hamiltonian will prevent the occupation of |m0〉 due to minimization of energy,

|ψ(q/c1 → −∞)〉 = |ρ−1, ρ0 = 0, ρ1 = 1− ρ−1〉 . (1.23)

As in previous section, the change in the ground states points to a quantum phase transition,

as we sweep the parameter q.

When the interaction is ferromagnetic, we set c1 < 0 and apply exact diagonalization

to a system of 104 atoms. The full phase diagram of ferromagnetic condensate is given in

Fig. 1.2. When there is no net magnetization m = 0, the ferromagnetic spinor BEC hosts two

continuous quantum phase transitions between different quantum phases. A phase diagram

can be seen in Fig. 2.1a in the next chapter. Here we plot the ground state energy gap of

of this system in Fig. 1.3, that shows two quantum critical points that have, expectantly,

vanishing gaps with increasing system size. We apply finite-size scaling analysis on one of
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Figure 1.4: The ground state phase transition and the energy gap for ferromagnetic spinor
condensates when magnetization density is m = 0.8 for a system size of N = 104.

these quantum critical points and find,

∆ = 5.656N−0.331, R2 = 1,

qc = 8.269N−0.648 − 4, R2 = 1. (1.24)

Let us first observe that ∆, the energy gap, indeed vanishes in the thermodynamic limit, as

we discussed in the beginning of the current Section. The critical point reads qc = −4 in the

thermodynamic limit. Thus, we can derive Eq. (1.1) for the ferromagnetic spinor condensate

by comparing the gap and the reduced control parameter in Eq. (1.24). This comparison

gives zν ∼ 1/2. (i) The region where q/c1 > 4 holds is the longitudinal polar phase, since all

atoms in the ground state occupy the hyperfine level |m0〉. (ii) The region where q/c1 < 4

and q/c1 > −4 is where the ground state breaks axial symmetry and is partial magnetized.

This phase is called broken-axisymmetry (BA) phase. (iii) The region where q/c1 < −4

holds is the transverse polar phase, since no atoms in this phase occupy the hyperfine level

|m0〉. If the magnetization is zero, the ground state reads |ρ−1 = 0.5, ρ0 = 0, ρ1 = 0.5〉.

When magnetization is turned on, the longitudinal polar phase disappears, while the
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other quantum critical point survives to favor transverse polar phase over BA phase as the

magnetization increases. A cross section at m = 0.8 is taken from Fig. 1.2 and the particle

density at the hyperfine level |m0〉 is plotted in Fig. 1.4a. The nonanalyticity of Fig. 2.1a at

qc = 4 smooths out. Correspondingly the energy at qc gaps out in Fig. 1.4b. The quantum

critical point at qc = −4 in Fig. 2.1a survives but shifts. We apply finite-size analysis and

find,

∆ = 4.368N−0.3302,

qc = 8.054N−0.6436 − 3.2. (1.25)

The exponents are found to be the same with Eq. (1.24), giving zν ∼ 1/2 as expected,

because the critical exponents are universal. We also find the location of the critical point

in the thermodynamic limit at m = 0.8 magnetization density as qc = 3.2.

Finally, we turn our focus to antiferromagnetic condensates, c1 > 0. When q = m = 0,

one can write the ground state in closed form [61],

|ψ(q = 0)〉 =

N/2∑
k=0

Ak |ρ−1 = k/N, ρ0 = (N − 2k)/N, ρ1 = k/N〉 , (1.26)

where the coefficients Ak are uniformly distributed across different k values [61]. Such a

ground state is special and this is reflected in the phase diagram plotted in Fig. 2.1b in the

next Chapter. When the net magnetization is zero, the antiferromagnetic spinor condensate

hosts a first-order quantum phase transition, e.g., sudden change in the order parameter.

This is not a symmetry-breaking phase transition, as the quantum phases that are connected

via the first-order phase transition are longitudinal and transverse polar phases. However

one can still perform finite-size scaling analysis in the vicinity of the transition. We find,

∆ = 5.672N−1 and qc = 3.311N−2 for the energy gap and the quantum critical point, respec-

tively. Hence, we can conclude that the gap vanishes faster compared to the ferromagnetic
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Figure 1.5: Full phase diagram of spin−1 antiferromagnetic condensate with respect to q, the
Zeeman parameter, and m, the magnetization density, computed via exact diagonalization
of 104 atoms. The quantum phases are marked on the figure.

condensate and the quantum critical point is indeed at qc = 0 in the thermodynamic limit.

Introducing nonzero magnetization transforms the first-order quantum phase transition

into a continuous quantum phase transition. Fig. 1.5 shows the full phase diagram for

antiferromagnetic interaction where a BA phase appears with nonzero magnetization density.

Perfoming finite-size scaling analysis to a cross section at m = 0.8 in this figure indeed reveals

a second-order quantum phase transition,

∆ = 2.931N−0.3357, R2 = 1,

qc = 3.752N−0.66 + 0.8, R2 = 1. (1.27)

The exponents are the same with that of ferromagnetic spinor condensate, leading to a

zν ∼ 1/2 critical exponent.

In conclusion, I demonstrated the QPTs in spin−1 spinor Bose-Einstein condensates with

18



different types of interactions in this subsection. In Chapter 2 we will study the quench

dynamics of spinor condensates where I will establish how quench dynamics can capture

the equilibrium QPTs. Later in Chapter 6, I will present how transient probes of spinor

condensates could be useful to probe QPTs.

Bose-Hubbard Model

Due to light-matter interaction, the atoms in a dilute gas can experience an energy shift in

the presence of an electric field, which is given as a potential [21]

V = −1

2
α′(ω)

〈
E(r, t)2

〉
t
, (1.28)

where α′(ω) is the real part of the dynamical polarizability of the atom, ω is the laser

frequency and E is the electric field of the laser. Dynamical polarizability of the atom depends

on the detuning, Rabi frequency and the lifetime of the excited state [21]. The coupling

between atoms and the coherent light, Eq. (1.28), is the heart of the optical lattice generation.

If the electric field E has a spatial periodicity, by interfering two counter-propagating waves

and time-averaging for longer times than the period of the light waves, one could produce

an optical lattice potential. Assuming that two counter-propagating have the same frequency

and linear polarization in z−direction, the electric field reads

Ez = E0 cos(kx− ωt) + E0 cos(−kx− ωt) = 2E0 cos(kx) cos(ωt). (1.29)

To substitute in Eq. (1.28), we calculate

〈
E(r, t)2

〉
t

= 4E2
0 cos2(kx)

∫ π/q

0

dt cos2(ωt) = 2E2
0 cos2(kx) = E2

0 (cos(2kx) + 1). (1.30)
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Therefore, by also taking into the account k = 2π/λ, the spatial dependence of the potential

reads

V (x) = V0 cos(2kx) = V0 cos

(
4πx

λ

)
= V0 cos

(
2πx

d

)
, (1.31)

where d = λ/2 is the optical lattice spacing. V0, which is the lattice depth, depends on

the intensity of the light and the real part of the atomic polarizability. The generalization

to higher dimensions follows similarly, by superposing multiple sets of counter-propagating

light waves depending on the lattice geometry that is desired [21,27]. The physics of optical

lattices follow closely that of solid state crystals, albeit the characteristic parameters are

different due to the huge difference between interatomic distance between crystal atoms

(∼ 10−8 cm) and typical laser wavelengths (∼ 600 nm). Therefore, the band theory of solid

state systems and Bloch theorem apply [15].

In Chapter 3, we are going to propose an optical lattice for a spin model on a ladder

geometry, which is a quasi-1D model. For this geometry, similar to a 2D square lattice,

we will need two sets of counter-propagating waves. Let us also note that, in experimental

setups, one could use a mirror to reflect back the light wave onto itself [62].

Upon generation of an optical lattice loaded with a dilute gas of bosonic atoms, one could

write the Hamiltonian in the second quantized form,

H =

∫
d3xψ†(x)

(
− ~2

2m
∇2 + V (x) + VT (x)

)
ψ(x)

+
1

2

4πas~2

m

∫
d3xψ†(x)ψ†(x)ψ(x)ψ(x), (1.32)

where ψ(x) is the bosonic field operator, as introduced in the previous section for spinor

BEC, but with no spin degree of freedom. V (x) is the optical lattice potential, VT (x) is

the external trap potential and the final term in Eq. (1.32) is the interaction term. A usual

assumption is that the energy scale of the system is much smaller compared to the gap from
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the first to the second band, and hence one can expand the field operators in the Wannier

basis of the first band, ψ(x) =
∑

i biw(x−xi). This expansion introduces the tight-binding

model of an atomic dilute gas loaded into an optical lattice, which is the Bose-Hubbard

model (BHM) [63,64]

H = −J
∑
i,j

b†ibj +
∑
i

εini +
1

2
U
∑
i

ni(ni − 1). (1.33)

Here the algebra is [bi, b
†
j] = δij and ni = b†ibi is the number operator at site i. The parameters

J, εi and U can be derived in terms of the Wannier functions:

U =
4πas~2

m

∫
d3x|w(x)|4, (1.34)

J =

∫
d3xw∗(x− xi)

(
− ~2

2m
∇2 + V (x)

)
w(x− xj), (1.35)

εi =

∫
d3xVT (x)|w(x)|2 ∼ VT (xi). (1.36)

These are the onsite repulsion, the hopping strength between sites i and j, and the energy

offset of site i, respectively. Wannier functions can be calculated with band theory [15]. Let

us also briefly note the characteristic energy scales of the model when it is realized in an

optical lattice. The recoil energy of an atom with mass m is its kinetic energy in the wake of

absorbing a photon after being initially at rest, ER = ~2k2/2m. Stating the lattice depth V0

in terms of the recoil energy ER helps us observe whether the atoms tunnel freely ER > V0

or their tunneling is suppressed ER < V0. This inequality can be exactly determined if we

estimate the extent of the ground state wave function of atoms localized near the potential

minima by utilizing the harmonic approximation [21]. For a 1D optical lattice, the frequency

of small oscillations in the vicinity of a potential minimum is ~ωosc = 2
√
ERV0 and the size of

the ground state wave function is aosc = (~/mωosc)
1/2 [21]. By comparing these two equations
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and using the recoil energy,

a2
osc

d2
=

1

π2

(
ER
V0

)1/2

. (1.37)

Therefore, by tuning the laser frequency and intensity, we can change the tunneling amplitude

of the atoms in the optical lattice. This observation can also be verified by examining

Eq. (1.35). In a similar vein, we can determine how the laser frequency and intensity affect

the interaction strength U , which turns out to be U = 2~ωoscas/(aosc

√
2π) [64]. As a result,

optical lattices provide a very controlled environment to simulate strongly correlated physics

[24,26,27,64].

Finally let us very briefly mention the quantum phase transition hosted in the Bose-

Hubbard model [63]. The BHM has two quantum phases: when J > U the ground state is

a superfluid (SF) and when J < U it is a Mott insulator (MI). In the SF phase, each atom

is delocalized over the lattice and the phase is gapless; while the MI phase is gapped and

the ground state is a product of local Fock states with a fixed number of atoms at each site.

The latter can be understood in the context of repulsive interactions. The SF-MI transition

has been realized in cold atoms in Ref. [62].

In this dissertation, we utilize the hard-core boson limit of the BHM where the interaction

strength is effectively infinite U → ∞ and the number of bosons at each site is either |0〉

or |1〉 in Fock basis due to the noninteger filling factor f [27]. Then the BHM in hard core

boson limit is exactly mapped to the XX−chain [65],

H = −t
∑
i

(
σxi σ

x
i+1 + σyi σ

y
i+1

)
+ h

∑
i

σzi . (1.38)

The details of the mapping are given in Chapter 3 where we also extend the mapping to

quasi-1D systems.
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1.2 Nonequilibrium Quantum Physics

Quantum many-body dynamics is one of the most active fields of physics with vast amounts

of research over the decades thanks to experimental progress in quantum simulators [66].

Since my aim in this Chapter is to prepare the reader for the rest of the dissertation, I

will be focusing on select topics of quantum many-body physics out-of-equilibrium, such

as equilibration, thermalization, light cone bounds, information scrambling and dynamical

phase transitions. More details on the research topics of this field can be found in excellent

reviews written over the years [32,34,35,66,67].

We exclusively use sudden quenches in this dissertation as a way of driving quantum

many-body systems out-of-equilibrium. Sudden quench is also a limiting case of a ramp.

Given that the ramp parameter is q(t), a ramp reads

q(t) = q0 − vt = q0 −
t

τQ
, (1.39)

where v and τQ both are the ramp speed parameters in different units, either the reciprocal

time (v) or time (τQ). The parameter q0 is the initial q from where the ramp starts. When we

ramp with τQ →∞, e.g., a very slow ramp, the dynamics approach to its adiabatic limit and

the ground state changes adiabatically by following the change in the control parameter q(t).

In the opposite limit where we perform a very fast ramp with τQ → 0, the ramp approaches

to a sudden quench where the many-body system is excited to higher energies.

Ramps are particularly important in dynamical detection of phase transitions and map-

ping the phase diagrams of quantum phases in the laboratory [68–71]. As we change the

control parameter q, the Hamiltonian and its eigenstates change. As long as the order pa-

rameter has time to follow the external change in the Hamiltonian, the process remains

adiabatic. Since the relaxation time diverges in the vicinity of the phase transition, the dy-

namical evolution freezes and the system cannot equilibrate at the critical point. After the

change in control and order parameters becomes comparable again, the adiabatic dynamics
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resume. This mechanism is called the Kibble-Zurek mechanism (KZM) when the transition

is from/to a gapped phase [70,71], which determines the scaling of freeze-out time t̄ and the

control parameter q̄ in terms of the quench speed parameter τQ in the vicinity of the critical

point,

t̄ ∼ τ
zν/(1+zν)
Q , q̄ ∼ τ

−1/(1+zν)
Q . (1.40)

KZM critical exponents of spin−1 spinor condensates were recently measured in the labora-

tory [72].

Although the most usual ramps are linear ramps [68,69], one can also engineer ramps of

more complicated functional forms to achieve adiabaticity most optimally, e.g., shortcuts to

adiabaticity [73]. In all these cases, one assumes that the initial state is the ground state

of a Hamiltonian with an initial control parameter q0 and that the aim is not to excite the

system to its higher energy states. In the limit of sudden quenches, although one can still

choose a ground state of an initial Hamiltonian as the initial state (which we will choose to

do so in Chapters 6 and 7), we can set the initial state arbitrarily. Given an arbitary initial

state |ψ(0)〉 and an evolution Hamiltonian Hf with eigenbasis [Eα, |φα〉], the initial state in

the basis of the evolution Hamiltonian is |ψ(0)〉 =
∑

α cα |φα〉. A system that goes under

a sudden quench from |ψ(0)〉 is then the time evolution of |ψ(0)〉: e−iHt/~ |ψ(0)〉. When a

measurement is performed where O is an observable, we calculate 〈O(t)〉,

〈O(t)〉 =
∑
αβ

c∗αcβ exp [−i(Eα − Eβ)t]Oαβ. (1.41)

When the initial state is not a pure state, one can calculate 〈O(t)〉 = tr(eiHt/~Oe−iHt/~ρ0)

with the density matrix of the initial state ρ0, c.f. Chapters 3 and 5.

There are a few different nonequilibrium responses that 〈O(t)〉 can exhibit. It can equi-

librate or show quantum oscillations; if equilibration occurs, it might thermalize; depending

on the locality of the Hamiltonian and the size of the system, it might demonstrate quantum
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revivals. We will touch upon these processes in a quantum many-body system in the next

subsections.

1.2.1 Equilibration, Thermalization and Absence Thereof

Dynamic processes in a quantum system could be very illuminating about the underlying

system and the physics in play. The equilibration of quantum systems is the first example

of those that we will be focusing on in this dissertation. Although the concept of equili-

bration is very prevalent in our everyday life in the macroscopic world, the question of how

it could possibly happen in isolated quantum systems governed by the Schrödinger equa-

tion, and hence unitary time evolution attracted its first attention as early as 1929 from

von Neumann [74]. Based on the principles of thermodynamics and statistical mechanics,

the equilibration accompanies an increase in entropy over time, and hence the equilibrium

state is the maximum entropy state [75]. However, the microscopic quantum dynamics of

time-independent Hamiltonians are time-reversal invariant, and the (entanglement) entropy

of pure states remains constant all times. How irreversible macroscopic dynamics could

originate from reversible microscopic dynamics with an associated time-independent Hamil-

tonian in an isolated system on the other hand, was discussed in the context of classical

statistical mechanics well before the formulation of quantum mechanics [76–81]. The analog

of von-Neumann entropy of quantum mechanics is the Gibbs-Shannon entropy in isolated

classical systems, and the reversible phase space trajectory of classical microscopic dynamics

is replaced by the unitary evolution of wave functions in Hilbert space [82,83]. According to

the early discussions in the literature [83–85], what is unique about equilibration in isolated

quantum systems is (i) the quantum coherence which originates from the superposition of

states and (ii) the observation that the canonical state of a subsystem in an isolated system

will not be altered for different system states as the system size approaches to infinity. In

the following discussion, I will detail the argument (i) as a part of the explanation for the

equilibration of an isolated quantum system. Later I will briefly review the argument (ii) in
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the context of subsystem equilibration and thermalization.

The notion of equilibration is defined as ‘the dynamical process where a time-dependent

observable evolves to some equilibrium value and remains close to this value for most times

during the evolution’ [67]. Note that this definition is free from an arrow of time that

naturally emerges in macroscopic irreversible processes. This is reasonable, because quantum

mechanics by itself does not prefer a direction for time [82]. If equilibration happens, long-

time average of 〈O(t)〉 has to be equal to the value of the long-time equilibrium state. We

can estimate this value straightforwardly by examining Eq. (1.41): When t → ∞, there

is a unique energy condition that will give a nonzero value 〈O(t→∞)〉 6= 0, and that is

Eα = Eβ. If the energy spectrum is nondegenerate, the energy condition implies α = β and

this leads to

〈O(t→∞)〉 =
∑
α

|cα|2Oαα. (1.42)

This value is the prediction of an ensemble that describes the long-time equilibrium state

of a quantum system and the ensemble is called the diagonal ensemble (DE) [40, 86–88].

Therefore, equilibration means 〈O(t)〉t→∞ = 〈O(t→∞)〉, where the 〈̄·〉t→∞ is the long-time

average. One can notice that if a quantum system equilibrates, this implies a form of phase

decoherence in Eq. (1.41). In other words, the terms in Eq. (1.41) destructively interfere in

the long-time dynamics, resulting in an equilibrated (or a dephased) state.

More insights regarding the equilibration, including that of subsystems and in finite

times, were reached with the rigorous proofs and results of Refs. [36,84,89–92]. An overview

of these results and proofs can be found in Ref. [67]. Here I will quote one theorem from

Ref. [36], which unified those of Refs. [90] and [91].

Definition 1 (Non-degenerate energy gaps [36, 67]). If the Hamiltonian has non-

degenerate energy gaps, then any four energy eigenvalues Ek, El, Em and En with an energy
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condition of Ek − El = Em − En has to satisfy

(Ek = El ∧ Em = En) ∨ (Ek = Em ∧ El = En) , (1.43)

where ∧ and ∨ stand for ‘and’ and ‘or’ logical operations. One observes that we can still treat

a Hamiltonian with symmetry sectors, e.g., degenerate energy levels, while ensuring that the

Definition 1 is satisfied. The cases that are eliminated by Definition 1 are when there are

physically noninteracting (or uncoupled) subsystems in a model, e.g., H = HA⊗IB+IA⊗HB

where subsystems A and B can be for example spins in a spin chain. All systems studied in

this dissertation are of interacting types, hence Definition 1 is automatically satisfied in the

rest of the dissertation.

Theorem 1 (Equilibration) [36]. Given that the time evolved state is ρ(t) (generaliza-

tion of the pure state |ψ(t)〉 to its density operator) and its time-averaged state is ω ≡ ρ(t)|t

over time t, if Definition 1 holds, the following quantity should be bounded for any operator

O

σ2
O ≡ |tr(Oρ(t))− tr(Oω)|2|t ≤

‖O‖2

deff

, (1.44)

where ‖O‖ is the operator norm, e.g., the largest singular value of O and deff is the effective

dimension of the initial state

deff ≡

(∑
α

tr(|φα〉 〈φα| ρ(t = 0))2

)−1

=

(∑
α

|cα|4
)−1

, (1.45)

where |φα〉 〈φα| is the projector onto the eigenspace with energy Eα and the second term is

valid when the state is pure, i.e., ρ(0) = |ψ(0)〉 〈ψ(0)|.

Theorem 1 quantifies the notion of equilibration: If the value of the time evolving ob-

servable is close enough to the value of the time average of this observable, equilibration

occurs. How much close is determined by the effective dimension of the initial state deff,

27



which was first defined in this context [36]. It is a measure of the population density of the

energy levels excited by the initial state. When it is small O(deff) ∼ 1, the nonequilibrium

response is composed of a few eigenstates and hence oscillatory, whereas in the case that it

is large O(deff) ∼ d where d is the dimension of the Hilbert space, a macroscopic number

of energy eigenstates contribute to the dynamics, initiating equilibration. In Chapter 2, we

will utilize this insight which also does not require infinitely long time evolution, and cal-

culate deff for spinor condensates for two distinct nonequilibrium responses. The value and

the system size scaling of effective dimension will help us to argue when we observe equili-

bration and when not in spinor condensates. Later in Chapter 3, we will again utilize the

effective dimension of the initial state to demonstrate that realistic initial states prepared

for experimentation scales the same with the infinite-temperature states in the system size

for a system in quantum ergodic regime.

Let us also finally note that the rigorous proofs and results in the literature [67] reveal

about the subsystem equilibration in quantum systems where we observe that a smaller

subsystem of a large enough quantum system is not sensitive to the nature of the wave

functions of the entire system [84]. In other words, the wave function could be any pure or

mixed state, and yet the state of the subsystem will be always very close to a canonical state,

i.e., an equiprobable mixed state. Such an irrelevance of the entire system’s wave function

to the state of a subsystem is a truly quantum phenomenon with no classical analogue [83].

Let us also note that Theorem 1 can be used to prove equilibration bounds for subsystems

too [36, 91]. Finally, it is well-known that the entanglement entropy of the subsystems,

regardless of their size, will increase in time [93, 94] and the trend of this increase is an

important signature of quantum ergodicity and lack thereof. In this sense, the equilibration

of subsystems in quantum systems is similar to classical systems, because (i) one could

obtain a subsystem with a state drawn from the canonical ensemble, and (ii) the entropy

of the subsystem increases in time up until a finite value for bounded Hilbert spaces, thus

reminding of the second law of thermodynamics.
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When equilibration does not occur, we observe quantum oscillations. Depending on their

origins, such oscillations could tell us about the underlying system, i.e., spin mixing oscilla-

tions in spinor condensates [60,95–98] and domain-wall binding in long-range transverse-field

Ising models Eq. (1.2) [99] or its ergodicity breaking mechanisms if the system is ergodic in

the first place, i.e., quantum scars [100–102]. Quantum oscillations could also be the signa-

ture of a dynamical phase where the time-translational symmetry is spontaneously broken,

resulting in the so-called time crystals [103–106]. In Chapter 6 we will show how tran-

sient properties of an oscillatory spinor condensate dynamics could be useful for probing the

underlying quantum phase transitions.

Equilibration in quantum systems does not necessarily imply thermalization. For ther-

malization to occur, typically the long-time equilibrium value has to be predicted by a

statistical ensemble and a few parameters, i.e., temperature, particle number [19]. In other

words, the equilibrium value must be also the thermal value [40].

Here we focus on the Eigenstate Thermalization Hypothesis (ETH) as a route to thermal-

ization in quantum many-body systems. However alternative approaches to thermalization

exist and these can be found in the review articles [67]. The thermalization of an entire

system must be described by the microcanonical ensemble fixing the energy of the system

with a sufficiently narrow energy window on the energy spectrum [40, 107]. For subsystem

thermalization, the long-time equilibrium value should be predicted by the canonical ensem-

ble with an associated temperature that is determined by the rest of the system, because

the rest of the system acts like a bath for the smaller subsystem [107]. Ref. [67] provides

a straightforward guideline for subsystem thermalization which includes the following steps:

(i) equilibration, (ii) subsystem and bath initial state independence, (iii) diagonal form of

the subsystem equilibrium state and (iv) recovering a Boltzmann or Gibbs state for the sub-

system, i.e., canonical or grand canonical ensembles. Let us note that if an extensive number

of conservation laws exist in the system, the system becomes quantum integrable [33] and

usually integrable systems do not thermalize to a thermal state, instead they equilibrate
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to a generalized Gibbs state where additional conservation laws appear in the generalized

Gibbs ensemble with Langrange multipliers [108, 109]. However, there exist integrable sys-

tems that do thermalize to thermal equilibrium values in the literature [110,111]. Chapter 2

in the dissertation gives an example of such integrable models and numerically proves the

thermalization by invoking ETH.

Conjecture 1 (ETH) [40]. The eigenstate expectation values (EEVs) Oαα of a large

interacting many-body system is equal to the microcanonical thermal average of O at the

mean energy Em where a narrow energy window is defined around Em as Eα ∈ [Em−δ, Em+δ]

and δ � Em. Here the microcanonical state could be constructed from the energy eigenstates

in the narrow energy window,

ρmc =
1

Nint

′∑
α

|φα〉 〈φα| , (1.46)

where Nint is the number of states in the energy window and the notation
∑′

α means that

we sum over the states in the energy window only. The essence of this conjecture is that

one eigenstate alone, i.e., any state |φα〉 in the energy window, can encode the equilibrium

properties of the Hamiltonian, and the states |φα〉 are called thermal eigenstates. A more

precise definition for ETH can be also given:

Definition 2 (ETH, strong form) [40, 67, 107]. ETH holds if for an arbitrary initial

state |ψ(0)〉, (i) the EEV Oαα changes sufficiently smoothly with the energy eigenvalues Eα

and (ii) the off-diagonal elements of the observable Nαβ where α 6= β are negligibly small

compared to the diagonal elements Nαα, assuming nondegenerate energy spectrum.

As also shown in Refs. [40,112], a precise definition of ‘sufficiently smooth’ can be given

and this will be presented and discussed in Chapter 2. The second condition is similar in spirit

with the condition (iii) cited above for subsystem thermalization, requiring a diagonal form

in the observable in the equilibrium thermal state. What makes the Definition 2 the strong

form of ETH is the independence of the definition from the initial state choice [113]. This
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means that for the strong form of the ETH to hold, all energy eigenstates should be thermal.

Later, the weak form of the ETH is introduced to explain thermalization in the presence

of rare fluctuations or rare nonthermal states [114]. In Chapter 2, it is going to be shown

that the spinor condensates have such rare nonthermal states in their energy spectrum for

some parameters and that the fraction of the rare states in the spectrum vanishes in system

size. Based on the works in the literature [114] and our results in Chapter 2, we restate the

definition of the weak ETH as,

Definition 3 (ETH, weak form). The weak form of the ETH holds, if (i) for typical

eigenstates in the energy spectrum, the EEV Oαα changes sufficiently smoothly with the

energy eigenvalues Eα; (ii) the fraction of the rare nonthermal eigenstates vanishes in system

size, meaning that there could be nonthermal states existing but they are a vanishingly small

part of the spectrum, and hence they are rare, and it requires fine-tuning to probe them in

the thermodynamic limit.

Based on Definition 3, we observe that a finite-size system that satisfies the weak form

of ETH, but not the strong form of the ETH, cannot be thermalized by all possible initial

states. Due to the presence of rare nonthermal states in the spectrum, one can design a

state, either realistically or not, to probe the rare region in the energy spectrum and the

resulting dynamics cannot thermalize, and even maybe cannot equilibrate.

1.2.2 Quantum Revivals, Light Cone Bounds and Information

Scrambling

Finite-size quantum many-body systems typically reveal their system size in their nonequi-

librium response. After enough time, the time-evolving state of a finite-size system may go

back to the initial state, which is called a quantum revival and this nonequilibrium response

is predicted by quantum recurrence theorem [37]. Such finite-size effects are important to

detect, as often times, especially in solid-state physics, one strives to understand the physics

independent of the system size, i.e., by applying finite-size scaling analysis. However, the
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physics of finite-size effects are as interesting as lack thereof.

The reason why finite-size systems exhibit finite-size effects is because of the propaga-

tion of excitations across the system. When we suddenly quench a system with an initial

state in nonequilibrium, we pump energy into the system and excitations to higher energy

levels are created. Any observable that exhibits quantum revivals probe the propagation

of these excitations to the edges of the system and their reflection back to the location of

the observation. We will see many examples of quantum revivals in this dissertation, i.e., in

Chapter 2 we will observe them in spinor condensates. Although the spinor condensates are

effectively all-to-all coupled systems, we will show that the timescale of quantum revivals di-

verge with increasing system size, confirming that they are indeed quantum revivals, probing

an effective system size. Later in Chapter 6, we will return back to quantum revivals in the

context of a locally interacting spin chain, short-range (non)integrable TFIM. We will see

that one can utilize the time range before finite-size effects kick in to predict the dynamic

behavior in the thermodynamic limit. In this sense, we will focus on many different occasions

of finite-size effects to demonstrate that it might be really helpful to recognize them with

concrete examples, such as (i) to argue for an equilibration interval [67] (Chapter 2), (ii) to

numerically estimate the coherence times of edge spins [115] in infinite time (Chapter 5),

(iii) to determine a universal temporal regime in a nonequilibrium response (Chapter 6), (iv)

to estimate when cluster theorem [116] breaks down in a finite-size system (Chapter 7).

Arguably, one of the most intuitive dynamical behaviors emerging in locally connected

quantum many-body systems is the light cone bounds of information spread [44]. The

Lieb-Robinson bound is the natural result of the geometry and limited connectivity of the

underlying lattice, i.e., lattice with only nearest-neighbor couplings. It is a remarkable

extension of finite velocity of light as the upmost velocity bound in relativistic quantum

mechanics [48, 117] to nonrelativistic quantum mechanics where there is an emergent light

cone speed that cannot be exceeded by the excitations of the system, solely due to the nature

of the interactions in the Hamiltonian.
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Figure 1.6: Light cones of (a) integrable and (b) nonintegrable TFIM at a system size of
N = 36 emerging from the fluctuations of the equal-time two-point correlators (coded in
colors) that are computed via t-DMRG. (a) The integrable TFIM calculated at transverse
field h/J = 0.4 exhibits a linear light cone with numerically extracted correlation speed
of 1.6J . (b) The nonintegrable TFIM with interaction strength ∆/J = −1 calculated at
transverse field h/J = 0.75 exhibits a linear light cone with numerically extracted correlation
speed of 3.04J . In a light cone figure, x− and y−axes stand for the spatial distance R and
time t, respectively. The circles are the data points corresponding to the contour threshold
ξ and the fitted dashed lines are the best fits to the data. R2 in the legend is the correlation
coefficient of the fit; v corresponds to the extracted light cone velocity at its associated
threshold value ξ.
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Theorem 2 (Lieb-Robinson bound) [44,67]. Given a Hamiltonian with finite range

interaction and strictly local observables W and V , there exists a finite group velocity v

called the Lieb-Robinson (or light cone) speed and the following bound holds,

‖[W (t), V ]‖ ≤ A ‖W‖ ‖V ‖ exp(−(x− v|t|)), (1.47)

where x is the distance between the support of the observables and A is a positive constant.

The essence of Theorem 2 is that (i) the operator spread, e.g., spread of correlations

across spacetime W (t) = e−iHt/~WeiHt/~, has a finite speed for a Hamiltonian with finite

range interactions, meaning that there is a well-defined information light cone that parti-

tions the spacetime of excitations into regions: timelike, lightlike and spacelike [59]. (ii)

The probability of excitations following a spacelike trajectory is exponentially suppressed,

i.e., correlation functions cannot grow significantly outside of the light cone. Light cone

bounds of systems with different statistics and interaction types and ranges have been stud-

ied extensively in the literature with analytical and numerical methods [118–125], and in a

laboratory [126,127].

Figs. 1.6 give examples of linear light cones in the spacetime of the short-range TFIM

where left and right panels are for the integrable and nonintegrable cases, respectively.

Integrability is broken by introducing next nearest neighbor couplings, c.f. Eq. (5.15) for

the Hamiltonian. These figures depict the fluctuations of equal-time two-point correla-

tors [121,126,128,129],
〈
δσrz(t)δσ

r′
z (t)

〉
where δσrz(t) = σrz(t)− 〈σrz(t)〉 for pairs of (r′, r 6= r′)

running from t = 0 to some time t that reveals the functional form of the light cone. Then, we

determine the contours of very small amplitude ξ, that sets the onset of fluctuation growth〈
δσrz(t)δσ

r′
z (t)

〉
> 0 for t > 0. Numerically one can study a set of light cones with different

ξ. To eliminate this arbitrariness we choose ξ with the best goodness of fit, R2 value. In

Chapter 3, we will show that other types of correlators, i.e., out-of-time-order correlators

(OTOC) that will be explained below, could exhibit light cone bounds in disordered spin

34



systems [130–132].

Information scrambling is a dynamical process that is complementary to the processes

that we have discussed so far. It quantifies the operator spread, and probes the timescales

of local operators being nonlocal [133–136]. Its associated timescale, that is the scrambling

time, is when an initially local operator becomes the most nonlocal given the bounds on

the Hilbert space dimension. This timescale is typically different than the thermalization

timescale of the system [137, 138]. In other words, scrambling is the process where initially

local correlations become lost to local probes in yet reversible and unitary quantum evolution.

A natural probe for information scrambling (operator spread) is some form of the commutator

between W (t) and V , as appeared in Lieb-Robinson bound Eq. (1.47), Theorem 2 above.

Observing only the commutator, i.e., tr(e−βH [W (t), V ]), at an inverse temperature β turns

out to be featureless [139]. The next possibility is to look at the second moment of the

commutator, that is the commutator square,

Cβ(t) = − 1

Z
tr(e−βH

∣∣[W (t), V ]
∣∣2), (1.48)

where Z is the partition function. This quantity is called out-of-time-order commutator

[140–144]. Let us note that the norm in Eq. (1.48) is Frobenius norm. For unitary and

hermitian operators one can cast the out-of-time-order commutator to out-of-time-order

correlator (OTOC) [145],

FW,V (t) = tr
(
e−βHW (t)VW (t)V

)
. (1.49)

There are multiple proposals for scrambling detection in different media [146–155] and mea-

surements in laboratory [156–161]. In Chapter 3, we will focus on a proposal of scrambling

detection on cold atoms.

OTOCs have been found to be useful not only in the detection of quantum chaos

[132,140,142–144,150,162–166], but also lack thereof [131,139,158,162,167–169], i.e., many-

35



Figure 1.7: Measurement schematic of dynamical phase transitions type-I. |ψ0〉 is the initial
state and Ô is an order parameter observable.

body localization (MBL) [43, 170–177]. MBL is an extension of single-particle Anderson

localization [178] in disordered medium to systems with interactions [170]. A many-body

localized system cannot thermalize via ETH, exhibits logarithmic spreading of entangle-

ment as opposed to linear spreading of entanglement in ergodic phase [93], has eigenstates

with area-law entanglement, does not show nonzero DC conductivity and could retain some

memory of local initial conditions [43]. Again in Chapter 3, we will study the ergodic and

MBL regimes of a disordered quasi-1D locally connected spin system from the perspectives

of energy level statistics and information scrambling. Furthermore, OTOCs exhibit not only

light cone dynamics, but also butterfly cones which are the wavefronts associated with the

scrambling time [130–132]. This observation will be explained in detail in Chapter 3, as well.

Information scrambling and OTOCs have also shown to be more broadly useful than

just being a probe for quantum chaos and MBL, [179–182]. In particular, a new branch

of research emerged in the field of information scrambling that focuses on the detection

of equilibrium and dynamical phase transitions through OTOCs Refs. [160, 161, 181, 183–

191] including Chapter 4. This line of works brings together the research on information

scrambling and quantum chaos with the research on dynamical phase transitions where the

latter will be detailed in the next subsection. Chapters 4 and 5 will focus on explaining

why a connection exists between quantum phase transitions and OTOCs, and how OTOCs

at infinite-temperature could probe topological phase transitions associated with Majorana

edge modes, respectively.
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1.2.3 Dynamical Phase Transitions

Criticality, defined under the Landau paradigm [192], is one of the milestones in our under-

standing of matter, providing us with a framework to classify microscopically diverse phe-

nomena into a handful of universality classes with their associated critical exponents [45,193].

Thanks to recent impressive progress in the control and precision achieved in quantum syn-

thetic matter [94,126,156,194–197], not only have concepts from equilibrium quantum physics

been extended to the out-of-equilibrium realm such as with dynamical phase transitions

(DPTs) [198–202] and dynamical scaling laws [200,203–207] where Chapter 6 is an example,

but there have also been concerted efforts to probe equilibrium quantum critical points and

universal scaling laws through quench dynamics [181,203,205,208–212] including Chapters 2

and 6 in this dissertation, or with infinite-temperature initial states [186, 187, 213]. Such

techniques obviate the need for undertaking the usually difficult task of cooling the system

into its ground state over a range of its microscopic parameters in order to construct its

equilibrium phase diagram.

Two different but related types of DPTs have been defined in the literature [199,214–217].

A type-I DPT arises when the quench dynamics undergoes a nonanalytic change with respect

to a system parameter in a quenched Hamiltonian [199, 214–217]. Whereas, a type-II DPT

appears when one global order parameter under the quench Hamiltonian has a nonanalytic

singularity in its time evolution, i.e., the Loschmidt echo [199,201,202,206,214,216,217]. In

this dissertation, we will exclusively focus on the former definition, when it is applicable.

A measurement schematic of DPT-I can be seen in Fig. 1.7. Typically the initial state

is chosen as a product state, because product states are easier to prepare in a laboratory,

and the observable is set as the order parameter of the quantum phase, i.e., O = M =∑
i σ

z
i total longitudinal magnetization for TFIM. After a transient temporal regime, time

evolving order parameter equilibrates and the steady state values across the transition point

become a probe of the equilibrium phase transition [35]. In Chapters 6 and 7, we will

extend this idea to single-site observables in chains with different boundary conditions, as

37



single-site observables are experimentally achievable with modern quantum simulators [195].

Particularly in Chapter 6, we will show that the transient temporal regimes could be useful

to extract quantum critical points by exhibiting a dynamical crossover, eliminating the need

to reach long time steady-state regimes. In Chapter 7 we will focus on quasi-stationary

temporal regimes to detect quantum critical points in an open chain. In both Chapters,

we will pay special attention to dynamical scaling laws in the vicinity of the crossover or

transition, and extract the exponents of these scaling laws. Remarkably, these dynamical

scaling law exponents will significantly differ from the analytical predictions that are valid

in equilibrium at infinite-time limit. The mechanism that leads to such truly nonequilibrium

critical exponents is the critical slowing down and the divergence of the relaxation time in

the vicinity of the transition or crossover.

1.3 A Brief Outline of the Dissertation

Having discussed the preliminaries of the dissertation in detail and drawn an outline in the

previous Sections, here let us briefly summarize the rest of the Chapters, which appeared

elsewhere either as a publication or a preprint.

Chapter 2, published in Ref. [218], studies the nonequilibrium responses of spin−1 spinor

Bose-Einstein condensates in the wake of a sudden quench, finds that spinor condensates can

thermalize via ETH, although they are integrable systems and can equilibrate while showing

no sign of quantum revival, although the system has finite degrees of freedom. This chapter

also proposes that quench dynamics could probe the underlying QPT in spinor condensates

for both ferromagnetic and antiferromagnetic interactions.

Chapter 3, published in Ref. [219], proposes a detection mechanism for information scram-

bling in cold atom quantum simulators and studies the scrambling properties of this exper-
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imentally feasible model in different dynamic regimes, e.g., ergodic and MBL in disordered

potentials. It finds that the ladder−XX model in its ergodic regime exhibits power-law

decay in OTOC and logarithmic decay in the MBL regime. The light cone extracted from

OTOC exhibits sublinear propagation of excitations.

Chapter 4, published in Ref. [220], puts forward an analytical framework to calculate

the infinite-time steady-state value of OTOCs, finds conditions on the initial state and the

observable based on the analytical expression that are required to probe QPT via OTOCs

and applies the method to a critical spin chain, the XXZ−chain. This method renders the

connection between QPTs and information scrambling universal.

Chapter 5, published in Ref. [187], generalizes the method devised in the previous Chapter

to infinite-temperature OTOCs, explains why OTOCs of edge observables are susceptible to

topological phase transitions associated with Z2 topological order and Majorana edge modes.

When integrability is broken, full scrambling is prevented and a new timescale in the scram-

bling dynamics emerges with a long-lived plateau called the prescrambling plateau.

Chapter 6, published in Refs. [221] and [222], utilizes the transient temporal regimes to

probe QPT and find dynamical scaling laws in the vicinity of the transition or crossover.

The first Section, Ref. [221], presents experimental data on the spinor condensates where

the amplitude and the timescale of the first dip in the oscillatory behavior acts like an order

parameter across a first-order QPT. The second Section, Ref. [222], studies the decay rates

of the transient temporal regime and proposes a dynamical order parameterlike quantity to

reveal a dynamical crossover in the short-range TFIM with single-site observables.

Chapter 7, in peer-review [223], proposes utilizing single-site observables close to the

edge in an open-boundary chain to initiate a quasi-stationary regime, probe quantum critical
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points and extract an associated dynamical critical exponent in the vicinity of the transition.

Remarkably, the critical exponent is robust to changes in the initial state, observable location

and weak integrability breaking, resulting in a notion of universality in the vicinity of the

transition.

Although not directly related to my dissertation, multiple other publications emerged

from other collaborations during my PhD in the fields of quantum thermodynamics [224–226],

quantum computing with microwave photons [227] and Quantum Hall Effect [228].
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Chapter 2

Equilibration and Thermalization in

the Integrable Models

Thermalization of isolated quantum systems is a long-standing fundamental problem where

different mechanisms are proposed over time. We contribute to this discussion by classifying

the diverse quench dynamical behaviours of spin-1 Bose-Einstein condensates, which includes

well-defined quantum collapse and revivals, thermalization, and certain special cases. These

special cases are either nonthermal equilibration with no revival but a collapse even though

the system has finite degrees of freedom or no equilibration with no collapse and revival.

Given that some integrable systems are already shown to demonstrate the weak form of

eigenstate thermalization hypothesis (ETH), we determine the regions where ETH holds

and fails in this integrable isolated quantum system. The reason behind both thermalizing

and nonthermalizing behaviours in the same model under different initial conditions is linked

to the discussion of ‘rare’ nonthermal states existing in the spectrum. We also propose a

method to predict the collapse and revival time scales and find how they scale with the

number of particles in the condensate. We use a sudden quench to drive the system to

non-equilibrium and hence the theoretical predictions given in this chapter can be probed in

experiments on spinor Bose-Einstein condensates.
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2.1 Introduction

Understanding if and how isolated quantum systems driven out-of-equilibrium thermalize

has practical implications as well as being interesting from a fundamental point of view.

Being able to explain the thermalizing dynamics in an isolated quantum system is the key to

have thermal quantum baths with finite size [229,230]. Thermalization of quantum systems

also sheds light on how Statistical Mechanics emerge from unitary dynamics of quantum

mechanics [196, 231]. At the opposite side, nonthermalizing quantum systems might be

useful to store quantum information in the protected degrees of freedom [43,232].

Study of thermalization of isolated quantum systems has a long history that starts with

the development of quantum mechanics itself [74] and can be understood in the context of

Eigenstate Thermalization Hypothesis (ETH) for isolated systems [38–40, 66, 107]. In this

search to understand quantum thermalization, analogue concepts which are important in the

thermalization of classical systems have been drawn such as the integrability of the system

[108,233]. In this chapter, we study dynamics of the spin-1 spinor Bose-Einstein condensate

(BEC) system under single-mode approximation (SMA), which is known to be a quantum-

integrable model [234] based on its mean-field calculations [97, 235]. The consensus is that

quantum-integrable systems do not thermalize according to statistical ensembles, but they

obey the predictions of generalized Gibbs ensemble which takes into account the conservation

laws in the system Hamiltonian [108] in the aim of maximizing the entropy of the system

under study [236]. However, it has also been shown that the non-integrability does not always

point to thermalization [208,237–239] and some integrable systems, e.g., Lieb-Liniger model

and integrable spin chains, do show thermalization in the form of weak ETH [110,111,114].

In fact, it seems that what differentiates a quantum integrable system from a non-integrable

one in the context of thermalization is not that the system can thermalize or not, but

instead having ‘rare’ nonthermal eigenstates in the spectrum that do not disappear in the

thermodynamic limit [114]. Our results on spinor condensate model support this idea of

quantum thermalization for a specific region of Hamiltonian parameters, where we observe
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a spectrum composed of mostly ‘typical’ thermal states with some ‘rare’ nonthermal ones.

The exact diagonalization of spin-1 condensate under the SMA for realistic condensate sizes

provides us the opportunity to dig into the whole spectrum of eigenstates and determine the

regions where ETH is applicable based on the condition in Ref. [40]. Then we show that these

regions in the spectrum are composed of ‘typical’ thermal eigenstates that lead to vanishing

fluctuations and shrinking support in the thermodynamic limit [110, 114]. We apply some

other ETH indicators, as well, such as the scaling of eigenstate expectation value differences

[113, 173] and the scaling of the maximum divergence from the microcanonical ensemble

average [239] with the system size. The scaling exponents match with each other and all of

them point to the observation that in the thermodynamic limit spinor condensates thermalize

for certain initial conditions (but not for all initial conditions), implying the weak form of

ETH. Given the fact that ultracold atoms provide a highly controllable and a sufficiently

isolated system [66], we show that a spin-1 spinor condensate under the SMA could be

a testbench to observe the predictions of ETH for certain sudden quench parameters and

the transition between thermalization and nonthermalization without a need to add a non-

integrable perturbation to an integrable Hamiltonian [238,240,241]. In fact, being able to see

this transition without breaking the integrability of the model hints at that thermalization is

not directly tied to non-integrability [238]. Instead, it might be more relevant to consider the

localization properties of the spectrum to observe thermalizing behaviour in isolated quantum

systems [173, 241]. Therefore, by invoking the analogy between our model and the single

quantum-particle hopping model and hence calculating the participation ratios [242] that is

a widely-used tool for Anderson models [178], we show that the most localized eigenstates in

the spectrum (excluding the edges of the spectrum) are also the ‘rare’ nonthermal eigenstates

that cause nonthermalization behaviour in the system.

Quantum collapse and revivals are well-known phenomena observed in different systems

spanning from light-matter interactions in Jaynes-Cummings model [243] to Bose-Hubbard

models in optical lattices [208, 244] and the matter wave field of a BEC [194]. This kind of
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behaviour is also expected in discrete and finite systems due to the recurrence theorem [37].

The possibility that spin-1 BEC under the SMA might also demonstrate collapse and revivals

has been suggested in Ref. [61, 245] and a detailed analysis of collapses with specific initial

Fock states in this model has been given [246]. These full-quantum model studies did not

take the Zeeman effects into account, partly because the model without Zeeman effects has

rotational symmetry and is analytically solvable via the introduction of angular momentum-

like operators in the Fock basis [61]. On the other hand, the experiments of the spinor

BECs make use of the quadratic Zeeman effect as a control parameter to sweep across the

well-established phase transitions [60, 247, 248] that spinor BECs have in their mean-field

representation [249]. With the introduction of quadratic Zeeman effect, at the mean-field

level the physics is mapped to an analytical pendulum-like model [97]. Some of the mean-

field predictions have been experimentally verified [250]. However, the mean-field model

cannot capture the quantum collapse and revivals of the full-quantum Hamiltonian. In the

second part of our chapter, we calculate the time scales for quantum collapse and revivals in

the spin-1 condensate model in the parameter region where they exist and show that under

realistic conditions and condensate sizes the system equilibrates around its thermal value,

validating the ETH for our model. Finally, we discuss some particular parameter regions

where we observe only equilibration but not thermalization without quantum revivals in any

time-scale of the evolution. This is somewhat unexpected given the fact that our model is a

discrete system with finite degrees of freedom and the initial information tends to recur in

long-time scale for finite-size systems.
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2.2 Classification of Dynamical Behaviours under Sud-

den Quench of Spin-1 Spinor Condensate

The interaction Hamiltonian for a spin-1 BEC in the second-quantization picture takes the

form [60]

Ĥint =
1

2

∫
dr
(
c′0 : n̂2(r) : +c′1 : F̂ 2(r) :

)
, (2.1)

where :: denotes the normal ordering. The coefficients in the interaction Hamiltonian depend

on the scattering length and the atom mass through

c′0 =
4π~2

M

a0 + 2a2

3
,

c′1 =
4π~2

M

a2 − a0

3
, (2.2)

where a0 and a2 are the scattering lengths [21] corresponding to a total spin 0 and a total

spin 2 of the colliding atoms. The operators in the interaction Hamiltonian are defined by

n̂(r) =
1∑

m,n=−1

ψ̂†m(r)Imnψ̂n(r),

F̂ν(r) =
1∑

m,n=−1

ψ̂†m(r)(Fν)mnψ̂n(r), (2.3)

where ψ̂mF

(
ψ̂†mF

)
is the Bose field operator for the Zeeman state mF . Imn and (Fν)mn

are the identity and spin-1 matrices, respectively and ν = x, y, z in the angular momentum

operator F̂ν . Also note that F̂ 2(r) = F̂ 2
x (r) + F̂ 2

y (r) + F̂ 2
z (r) in Eq. (2.1) and the identity

matrix Imn results in the density operator n̂(r) for the condensate. A detailed derivation of

these equations are given in the Introduction Chapter.

For sodium or rubidium alkali atoms, we have |c′0| � |c′1|, so the symmetric part of the

interaction Hamiltonian dominates over the non-symmetric part. This observation leads

to the so-called single mode approximation (SMA), where we assume that the condensate
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wave functions for each spin component φm=−1,0,1(r) are described by the same spatial wave

function φ(r) as in ψ̂m ∼ âmφ(r), m = 0,±1 [60, 61, 249, 251]. Then the spatial wave

function φ(r) satisfies the Gross-Pitaevskii equation which gives the spatial profile of our

spin-1 Bose-Einstein condensate. With the normalization condition
∫
dr|φ(r)|2 = 1, the

interaction Hamiltonian reduces to rotationally invariant Hint = c1L̂
2/2N , where L̂ is the

spin-1 angular momentum operator, c1 = c′1N
∫
dr|φ(r)|4 and N is the total atom number,

which has well-known analytical solutions [61]. In the experiment, an additional magnetic

Zeeman field is added to the system, which results in a competition between different terms

in the Hamiltonian and drives phase transitions [248]. The linear Zeeman term proportional

to L̂z = n̂1 − n̂−1 commutes with the other terms in the Hamiltonian, and its effect is to

conserve the magnetization. It has no influence on spin dynamics and therefore can be

dropped [248]. Adding the quadratic Zeeman term, the Hamiltonian reduces to

Hint = c1
L̂2

N
− qâ†0â0 =

c1

N
(â†1â

†
1â1â1 + â†−1â

†
−1â−1â−1 − 2â†1â

†
−1â1â−1

+ 2â†1â
†
0â0â1 + 2â†−1â

†
0â0â−1 + 2â†0â

†
0â1â−1 + 2â†1â

†
−1â0â0)− qâ†0â0. (2.4)

Spin-1 BEC Hamiltonian with the quadratic Zeeman term gives rise to different phases

observed at the ground state due to the competition between quadratic Zeeman effect and

spin-mixing interaction [250]. An adiabatic passage from one phase to another can create

highly entangled states from product states as proposed in Ref. [248] and quite recently

implemented in Ref. [252]. Fig. 2.1 shows the ground state quantum phase transitions by

observing the order parameter 〈N0〉, the number of particles in Zeeman sublevel |m = 0〉,

by varying the quadratic Zeeman coefficient q. In the rest of the chapter, we study the

dynamics of the system under a sudden quench, i.e., we start from the ground state of the

initial Hamiltonian Hi, which is Hint (Eq. (2.4)) with an initial quadratic Zeeman term qi,

and abruptly quench the Zeeman field to a final value qf with the final Hamiltonian denoted

as Hf . The dynamics and thermalization behaviour of the system are then investigated.
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Figure 2.1: The ground state phase transitions for (a) ferromagnetic and (b) anti-
ferromagnetic interactions for N = 104 particles in the condensate and zero total mag-
netization.

Both the sudden quench and the measurement of 〈N0〉, which is used as the main observable

in our study, can be readily performed in experiment [72,250,253,254].

We now show how a dynamical phase transition (DPT) might be arising for spinor con-

densates via the sudden quench based on an alternative definition of DPTs that takes the

time-average of dynamical response as the order parameter [197,217]. In our study, we start

with the ground state, |ψ(0)〉 of the initial Hamiltonian Hi with q = qi. After a sudden

quench of the Zeeman coefficient q to the value qf , the initial state can be expressed as

|ψ(0)〉 =
∑
α

cα |ψα〉 , (2.5)

where |ψα〉 are the eigenstates of the final Hamiltonian Hf . The number of atoms in the

Zeeman sublevel |m = 0〉 can be written as

〈N0(t)〉 = 〈ψ(t)|N0 |ψ(t)〉 ,

=
∑
α,β

c∗αcβe
−i(Eα−Eβ)tN0,αβ, (2.6)

where N0,αβ = 〈ψα|N0 |ψβ〉 and Eα are the energy of the eigenstates |ψα〉 under the final
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Figure 2.2: Eigenstate occupation numbers (EONs) |cα|2 for a ferromagnetic quench at (a)
qi = −3 to qf = 0.5 and (b) qi = 4.1 to qf = 2 (focused on non-zero sections of the
eigenspectrum in the insets) and their corresponding eigenstate expectation values (EEVs)
(focused on the nonlinear kink region in the insets) Nαα at (c) and (d), respectively for a
particle number of 104 with respect to the energy density E/N .
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Figure 2.3: The sudden quench map for the ferromagnetic case with qf and qi on the x and

y axes, respectively for 5× 103 particles. Color labels 〈N0(t)〉 in the long time limit.

Hamiltonian Hf . The long-time average of 〈N0(t)〉 then should follow the diagonal ensemble

prediction [40,66,87],

〈N0(t)〉t→∞ =
∑
α

|cα|2N0,αα, (2.7)

if the equilibration happens or when the phase coherence diminishes. In order to visualize

this quantity, in Figs. 2.2a and 2.2b we plot the eigenstate occupation numbers (EONs) |cα|2

for certain sudden quench parameters (seen in the caption). EONs represent windows in the

eigenspectrum where we are allowed to peak into when we make a measurement. Figs. 2.2c

and 2.2d are plots of the corresponding eigenstate expectation values (EEVs) N0,αα. What

we expect to see in the long-time average of a sudden quench experiment is the summation

of EEVs weighted with EONs as shown by Eq. (2.7).

Each point on sudden quench maps (Figs. 2.3 and 2.4) corresponds to the prediction

of diagonal ensemble (equilibration value if it happens, or the time-average of the dynamic

response of the system) when a sudden quench is applied to the ground state from an initial

Hamiltonian with qi to a final Hamiltonian with qf . Note that there are different regions
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Figure 2.4: The sudden quench map for the anti-ferromagnetic case with qf and qi on the x

and y axes, respectively for 5× 103 particles. Color labels 〈N0(t)〉 in the long time limit.

Region Boundaries
I |qi| < 4, all qf except traces
II |qi| < 4, traces of qf
III qi > 4 & 0 < qf < 4 or qi < −4 & −4 < qf < 0
IV the rest of the map

Table 2.1: The regions of the sudden quench map for the ferromagnetic case.

on both maps and the ferromagnetic sudden quench map is more diverse than the anti-

ferromagnetic one when the ground state is chosen as the initial state of the non-equilibrium

process. Due to the symmetry embedded in the Hamiltonian for both interactions, one can

obtain point symmetric version of Fig. 2.3 (reflection with respect to the origin of the plot)

with anti-ferromagnetic interaction when the initial state is set as the most-excited state of

the Hamiltonian.

These maps capture the ground state phase transition points of both FM (q = ±4) and

AFM (q = 0) cases. In Fig. 2.4, the upper half (qi > 0) of the map plane reveals two different

regions with transition points at qf = −4 and qf = 0. Similarly for the lower half (qi < 0), we

observe two regions with the transition points at qf = 0 and qf = 4. In Fig. 2.3, for |qi| > 4
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Region Dynamic Behaviour
I ETH valid, well-defined collapse and revivals
II nonthermal equilibration, collapse, no revival
III no equilibration, no collapse or revival
IV no non-equilibrium evolution

Table 2.2: The dynamic behaviors corresponding to the regions of the sudden quench map
for the ferromagnetic case.

we see a similar behaviour to Fig. 2.4 with transition points either at qf = 0 and qf = 4 (for

qi > 4) or at qf = −4 and qf = 0 (for qi < −4). In between |qi| < 4, the two transition

points gradually shift as qi increases. In later sections, we are going to show that the sudden

quench maps also show us when we do and do not expect a thermal behaviour in our system,

similar to the non-equilibrium phase diagram given for Bose-Hubbard model in Ref. [208].

Additionally it will provide us a way to predict types of the dynamical behaviour in different

time scales. To give an idea of the regions on the maps, we summarized them in Tables

2.1 and 2.2. Although the non-equilibrium behaviour of these regions will be explained in

detail in the rest of the section, we shortly list them here. Region I is where the system

equilibrates around its thermal prediction after a collapse with a well-defined time-scale. It

is also a region where we observe clear quantum revivals due to finite-size effects. Region

II demonstrates nonthermal equilibration after a collapse, but no clear collective-revival is

observed for these points on the map. We do not see equilibration, collapse or revival for

the region III, instead we observe an oscillatory behaviour around the system’s PDE value

due to the interference of a small number of modes of the system. Finally in region IV, the

initial state turns out to be already in equilibrium with the quench Hamiltonian, giving us

practically a constant behaviour for all times.
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Figure 2.5: The comparison of mean values predicted by diagonal ensemble (PDE), micro-
canonical ensemble (MCE), the eigenstate corresponding to the mean energy of the system
(Mean ES) and arbitrary eigenstates in the microcanonical energy window (ES 1 and ES
2), when the sudden quench is applied from qi = −3 to different qf values on the x-axis
for ferromagnetic case. Each data point is obtained with a simulation of 104 particles. The
inset shows the difference between the diagonal and the microcanonical ensemble predictions
when it is possible to define a valid energy interval for the microcanonical ensemble.

2.3 Eigenstate Thermalization Hypothesis in Spin-1

BEC

When a system that is driven out-of-equilibrium equilibrates around a thermal value pre-

dicted by a statistical ensemble, the process is called thermalization. For isolated interacting

bodies, microcanonical ensemble describes the equilibrium predictions. In this context, ETH

is a possible pathway to thermalization and explains the match between the equilibration

value predicted by the diagonal ensemble after a quench (Eq. (2.7)) and the microcanonical

thermal value [40].

The microcanonical ensemble is a statistical ensemble with a sufficiently narrow energy
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interval that describes the equilibrium properties of an isolated system [255]. In order to

check the prediction of the microcanonical ensemble, we seek to define a narrow energy

window around the mean energy of the eigenspectrum. Refs. [40, 87, 112] emphasize the

approximate linearity of the EEVs in the microcanonical energy window in order to define

a finite and narrow energy window which will also ensure the validity of ETH. Based on

this idea, they state the following condition (which has been derived for the eigenstate

thermalization to happen by Ref. [256])

(δE)2 | 〈N0〉′′ (E)/ 〈N0〉 (E)| � 1, (2.8)

where δE is the energy window, 〈N0〉 (E) is the EEV behaviour of the system N0,αα as a

function of the energy and ′ denotes the differentiation with respect to energy. Another

possibility implemented in Ref. [40] is to define the window based on a sensitivity analysis

where the size of the energy window chosen does not affect the thermal prediction of the

microcanonical ensemble (see Appendix A.1 for a demonstration of this method for our

model). We generate the finite and narrow microcanonical energy windows for our model

with a combination of these two ways. Figs. 2.5 and 2.6 show the regions where the thermal

prediction of diagonal ensemble (PDE) matches the prediction of microcanonical ensemble

(MCE), mean energy eigenstate (Mean ES) and two arbitrary eigenstates (ES 1 and ES 2) in

the microcanonical energy window when it is possible to define one for a sudden quench from

qi = −3 and qi = 4.1 to various qf spanning from −5 to 5, respectively. It is important to

note that the match happens only when the EON window coincides with the approximately

linear or constant parts of the EEV plot. See Fig. 2.2 for the cases where the match does

not happen, so that the system fails to thermalize. Hence, we conclude that the relaxation

in the matching cases represents thermalization via ETH, when we disregard the finite-size

effects, e.g., a quantum revival, which will be discussed in the next section.

In order to strengthen the argument that we see a nonthermal behaviour only when EON
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Figure 2.6: The comparison of mean values predicted by diagonal ensemble (PDE), micro-
canonical ensemble (MCE), the eigenstate corresponding to the mean energy of the system
(Mean ES) and arbitrary eigenstates in the microcanonical energy window (ES 1 and ES
2), when the sudden quench is applied from qi = 4.1 to different qf values on the x-axis for
ferromagnetic case. Each data point is obtained with a simulation of 104 particles.

captures the non-linear ‘kink’ behaviour in the EEV spectrum, we look at a couple of ETH

indicators. These indicators are also used to determine the form of ETH observed in the

system, e.g., weak or strong, if there is thermalization and they require an energy interval

over the spectrum. It is possible to define a microcanonical ensemble energy window at the

linear region of the spectrum with the methods mentioned above, while such a window is

not well-defined for the kink region. Since we want to compare two cases, we define a fixed

energy interval around the center of the spectrum. The first ETH indicator that we applied

is the system size scaling of average EEV differences [113,173]. An EEV difference is defined

as

rn = | 〈ψn+1|N0 |ψn+1〉 − 〈ψn|N0 |ψn〉 |, (2.9)

for random eigenstate |ψn〉 chosen in the energy interval and its adjacent state |ψn+1〉. Re-

gardless of the interval size, when the interval encompasses the linear region as for qf = 3
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in Fig. 2.7, we obtain the N−1 scaling with R2 = 1. Therefore the average of differences

between EEVs vanish in the thermodynamic limit N →∞. Other indicators are: the ETH

noise or fluctuations [110,114]

σN0 =


∑

ψn∈δE

[
〈ψn|N0 |ψn〉 − 〈N0〉mc,δE

]2

Nint


1/2

, (2.10)

where the Nint is the number of eigenstates in the chosen interval, 〈N0〉mc,δE is the micro-

canonical prediction defined in the energy interval of δE and |ψn〉 ∈ δE are the eigenstates in

the energy interval; the support of the eigenstate distribution in the energy interval [110,114],

sN0 = maxψn∈δE 〈ψn|N0 |ψn〉 −minψn∈δE 〈ψn|N0 |ψn〉 , (2.11)

and the maximum divergence from the microcanonical ensemble prediction [239],

rmax = maxn| 〈ψn|N0 |ψn〉 − 〈N0〉mc,δE |, (2.12)

in Fig. 2.7 across the energy interval chosen. We obtain N−1 scaling with R2 = 1 for all

these ETH indicators for the aforementioned case. The extracted scaling exponent of the

support Eq. (2.11) clearly indicates in the thermodynamic limit all of the eigenstates in the

energy interval contribute the same amount to the expectation value. Furthermore the rest

of the ETH indicators, Eqs. (2.10) and (2.12), reveals that all of the EEVs in the energy

interval converge to the microcanonical energy prediction 〈N0〉mc,δE as N → ∞. Also note

that N−1 scaling is not surprising, since the dimension of the Hilbert space is in the order

of N for our model.

The observation that all of the ETH indicators vanish in the thermodynamic limit for the

linear regions of the spectrum implies that ETH holds, even in the strong sense because of

the shrinking support [114]. However this is not the case when the energy interval contains
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Figure 2.7: The system size scaling of the support χδE = sN0 (solid-blue), the fluctuations
(or the ETH noise) χδE = σN0 (dashed-red), the maximum divergence of EEV differences
from the MC prediction χδE = rmax (dashed-dotted orange) and the average EEV difference
χδE = 〈rn〉δE (dotted purple) for a fixed energy interval when the interval is chosen right at
the middle of the spectrum for qf = 3. All of the scalings show a trend of N−1 with R2 = 1
where R is the correlation coefficient.

the kink region as seen in scaling plots for qf = 0.65 in Fig. 2.8. The scaling relation for

the support shows that the support still exists in the thermodynamic limit when the kink

region appears in the window. Therefore, we conclude that the kink region is composed of

nonthermal states that do not vanish in the thermodynamic limit. Hence when the spectrum

contains the kink region, the whole spectrum will never have a shrinking support, violating

the strong form of ETH. Similarly, we observe a non-vanishing ETH noise when the kink

exists in the energy interval (dashed line in Fig. 2.8). In literature, the fluctuations are

expected to vanish away in the thermodynamic limit for the weak form of ETH to hold [114].

However, we see that they do not disappear when the interval includes the kink eigenstates.

This matches with the fact that we do not see thermalization when the initial state overlaps

with the kink eigenstates. Therefore, we can clearly conclude that the kink eigenstates are

nonthermal states that cause nonthermalization when the initial state is chosen carefully

to overlap with them (Regions II and III on sudden quench maps). As a result, we argue

that when the kink region exists in the spectrum (|q| < 4) not all initial states can lead
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Figure 2.8: The system size scaling of the support χδE = sN0 = 0.07 + 48N−0.71 (solid-
blue) with R2 = 0.9997, RMSE = 10−3, SSE = 10−5, the fluctuations (or the ETH noise)
χδE = σN0 = 0.02 + 15.5N−0.77 (dashed-red) with R2 = 0.9994, RMSE = 10−4, SSE = 10−6,
the maximum divergence of EEV differences from the MC prediction χδE = rmax = 0.04 +
5.4N−0.5 (dashed-dotted orange) with R2 = 0.998, RMSE = 10−3, SSE = 10−5 and the
average EEV difference χδE = 〈rn〉δE = 10−3 + 0.1N−0.55 (dotted purple) with R2 = 0.9996,
RMSE = 10−6, SSE = 10−10 for a fixed energy interval when the interval is chosen right at
the middle of the spectrum for qf = 0.65. Here χδE(∞) stands for the offset value of the
fitting. The RMSE and SSE stand for root mean square error and sum of squares of error,
respectively.
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Figure 2.9: The participation ratio values of the eigenspectrum for a ferromagnetic Hamil-
tonian with (a) qf = 0.5 and (b) qf = 2 for a particle number of 104. The eigenstates are
ordered ascending in energy from the ground state (α = 1) to the most excited state.

the system to thermalization even in thermodynamic limit. However due to the rarity of

these nonthermal states, most of the initial states will result in thermalization (Region 1 on

sudden quench map Fig. (2.3). Therefore, the weak form of ETH holds for |q| < 4, and

otherwise ETH holds in the strong sense (based on the shrinking support for all spectrum)

since kink region disappears when we choose |q| > 4.

In order to understand why there is a nonlinear structure in the EEV plot, which basi-

cally results in a nonthermal behaviour in the dynamics, we compute other quantities which

can provide more information on the eigenspectrum structure of the model. The spinor

Hamiltonian in Eq. (2.4) can actually be mapped to a single quantum-particle Hamilto-

nian with nearest-neighbor hopping and onsite potentials on a finite lattice. The Fock basis

|N−1, N0, N1〉 = {|0, N, 0〉 , |1, N − 2, 1〉 , · · · , |N/2, 0, N/2〉} with zero total magnetization

in our spinor Hamiltonian can be mapped to a basis of different lattice sites in the lan-

guage of a single hopping particle in 1D lattice. Then the interaction terms a†0a
†
0a1a−1 and

a†1a
†
−1a0a0 realize the nearest-neighbor hopping as can be seen when we do the operation

a†1a
†
−1a0a0 |0, N, 0〉 =

√
N(N − 1) |1, N − 2, 1〉. The rest of the terms in Eq. (2.4) impose an
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onsite potential. The tight-binding Hamiltonian for the mapping could be stated as

Hm =

N/2−1∑
i=1

J(i)
(
c†i+1ci + h.c.

)
+

N/2∑
i=1

η(i)c†ici, (2.13)

where J(i) are real hopping coefficients that are a function of site position and η(i) are

the onsite potentials that depend on the site positions as well. The lattice size N/2 is the

dimension of the Fock space. Here the exact dependence of J and η parameters on the

positions of the sites in our imagined lattice is determined through the terms in the spinor

BEC Hamiltonian Eq. (2.4). See Appendix A.2 for how a spinor Hamiltonian engineers the

lattice parameters for the mapped Hamiltonian Eq. (2.13). This mapping reminds us of

the physics of Anderson localization [178], albeit the onsite potentials η(i) are not random.

Hence, we study the participation ratio (PR)

Pα =

(∑
n=1

|ψαn|4
)−1

, (2.14)

to analyze the localization properties of the eigenstates [241, 242, 257]; here, α denotes each

eigenstate and n is the Fock basis vectors. As seen in Fig. 2.9, PR has a dip around the

eigenstate corresponding to the nonthermal kink eigenstate in its corresponding EEV plot,

which points to lower PR values of the nonthermal states in the Fock basis when compared

to other eigenstates in the spectrum. This result hints at a link between the nonthermal

behaviour that we observe in the system and the Anderson-like localization [178] of the

eigenstates in the Fock space. In other words, the nonthermal states of the system also seem

to be the most localized states in the spectrum (excluding the edges).

In order to make this point stronger, we analyze the system size PR scaling of eigenstates

with high- and low-PR values. To target the low-PR region of the spectrum, we utilize two

different methods. We emphasize that low-PR region of the spectrum in Figs. 2.9 (excluding

the edges of the spectrum) is also the nonthermal region as already shown with the ETH
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Figure 2.10: System size scaling of (a) averaged participation ratio of low-PR eigenstates
with a fixed energy interval of ∼ 25[c1] around the most outlier (kink) eigenstate (solid blue),
the ground state participation ratio at q = −4 (dashed red) and at q = 4 (dotted-dashed
orange); (b) averaged participation ratio of high-PR eigenstates with a fixed energy interval
of ∼ 60[c1] around the center of the spectrum (solid blue) when q = 3 is chosen, PR of
ground state (dashed red) and of the most-excited state (dotted-dashed orange) when the
system is not going through one of its phase transition points e.g., q = 1.

indicators. There is a rapid change around the kink state which is always the extremum

point of the EEV (Figs. 2.2c-2.2d) and the level spacings (Fig. 2.12c). Additionally the

kink state slightly shifts in the spectrum as we increase the system size upto thermodynamic

limit. So, even though we are able to detect the kink state in the spectrum with all these

observations, we note that the kink state shows consistently low PR values for each system

size but its scaling is not well-defined possibly due to finite-size effects. Therefore, the first

method we apply is averaging over low-PR states around the most outlier (kink) state for

each system size with a fixed energy interval. The solid line in Fig. 2.10a is the scaling

behaviour that we observe for this method when q = −0.65 is chosen, which is also a q value

that keeps the kink state around the center of the spectrum. The extracted scaling exponent

is γ ∝ 0.22 with R2 = 0.997. The second method employs the phase transition points. We

know that the ground state is the kink eigenstate at phase transition points when q = 4 or

q = −4 is taken in the thermodynamic limit. Even though for a finite size condensate the
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phase transition points are slightly off from q = 4 and q = −4 and hence the ground state is

not exactly the kink eigenstate, the region around the ground state is the nonthermal kink

region. This observation can be made through the difference in the PR scaling exponents of

the ground state when we have q = 4 (or q = −4) and q is away from the phase transition

points. Fig. 2.10b dashed line shows the scaling of the ground state when q = 1 which we

extract P ∝ N0.5 (R2 = 1). The exponent γ ∝ 0.5 is obtained for any q sufficiently far

from q = 4 or q = −4. On the other hand, we obtain a scaling of P ∝ N0.32(R2 = 1) and

P ∝ N0.24(R2 = 0.999) for q = 4 and q = −4, respectively. Thus, clearly the ground state

is neither localized nor extended completely when the system is not at its phase transition

points. However, when the system goes through its phase transitions, the ground state

coincides with the low-PR region states and this provides us a way to estimate the scaling

exponent of states at the low-PR region. We note that extracting a well-defined scaling only

for the most outlier (kink) state in a finite-size system is difficult, but still averaging over a

couple of states around it gives an idea about the localization properties of the nonthermal

region. Overall the extracted scaling exponents point out to that the low-PR nonthermal

kink region is not completely localized region with a scaling exponent of γ = 0, however it is

the most localized region of the spectrum. The high-PR eigenstates that are also responsible

of thermalization observed in the system show a scaling of Pδ ∝ N0.91 (R2 = 1), when

we choose a fixed energy interval in the middle of the spectrum for Zeeman field strength

q = 3, (solid line in Fig. 2.10b). We observe almost the same PR scaling with exponent

γ = 0.9 for single eigenstates chosen at the high-PR section of the spectrum and for different

q values. Even though such an eigenstate is not completely extended with a scaling exponent

of γ = 1, it is the most extended region of the spectrum. All in all, the previous analysis of

the ETH indicators clearly distinguishes the thermal and nonthermal states in the system

and PR analysis demonstrates a link between localization and thermalization properties of

our system, even though the thermal and nonthermal states are not completely delocalized

and localized, respectively.
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Finally, we note the difference between the behaviours seen in regions I and IV. Although

the equilibrium behaviour in region IV can be predicted by microcanonical ensemble as

seen in Fig. 2.6, its cause is not related to the eigenstate localization properties. We

observe almost constant dynamic evolution (or almost-no nonequilibrium evolution) for the

simulations at this section, which implies that one of the eigenstates dominates the evolution.

In the case seen in Fig. 2.6, it is the most-excited state that governs the dynamics for

negative qf values. The most-excited state shows a constant PR scaling with an exponent

of 0 (dashed-dotted line in Fig. 2.10b). So, even though the eigenstate is perfectly localized,

the initial state is already in equilibrium with the quench Hamiltonian, which leads to the

thermalization. In Fig. 2.6, also note that we observe thermalization for values at qf > 4

because now the initial state mostly resembles the ground state of the quench Hamiltonian

instead of the most-excited state. Finally, even though we show the PDE values at region III

in Fig. 2.6, we should remind the reader that the dynamics of region III does not equilibrate

but shows large fluctuations around its PDE value (which will be discussed in the next

section as a special case).

An important difference between the spinor BEC model and the single quantum-particle

hopping model is that even though the observable 〈N0〉 is local in the spinor BEC case,

it is a non-local observable when it is mapped onto the particle lattice. However more

importantly, our model does not translate to an Anderson model with random potentials.

Single quantum-particle hopping model with random potentials leads to sites with very low

PR values. It is also analytically known that such a model cannot cause thermalization

and satisfy ETH [258]. Therefore, based on our results with spinor BECs, we argue that

engineering the potential of a single quantum-particle model should prevent the localization

in the particle lattice and give rise to thermalization for global observables defined for this

model.
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Figure 2.11: The sudden quench dynamics in the short time-scale showing the collapse in
detail when there is N = 2 × 103 particles in the condensate and x-axis is scaled with the
number of particles when we quench from qi = −3 to qf = −0.5 for the ferromagnetic case.
The inset plot shows the revivals in long time-scale.

2.4 Existence and Absence of Quantum Collapse and

Revivals

In this section, we analyze the cases that demonstrate quantum collapse and revivals and

derive an analytical expression to predict their time scales. Further we examine the scaling

of collapse and revival times with the number of particles in the condensate to be able to

present realistic predictions for the experiment. Finally we discuss ‘the special cases’, where

we do not observe a revival or even equilibration.

Now we choose a point on the ferromagnetic sudden quench map Fig. 2.3 that thermalizes

which can be detected via Figs. 2.5 and 2.6. So then, if we quench from qi = −3 to qf = −0.5,

we observe a series of collapses and revivals in Fig. 2.11, and the equilibration value in

between matches the predictions of both diagonal and microcanonical ensembles. A collapse

before equilibration is what is mostly observed in experiments. We also intuitively expect

to see a series of revivals due to the finite-size effects. However in order to understand how
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Figure 2.12: (a) The overlap matrix with respect to eigenstates α and β, (b) the first off-
diagonal terms of the overlap matrix, (c) the nearest-neighbor (NN) energy gaps and (d)
The difference/derivative plot of the NN energy gaps with N = 2 × 103 particles in the
ferromagnetic condensate for the quench from qi = −3 to qf = −0.5. The x-axis is the
eigenstates α ordered ascending in energy from the ground state α = 1 to the most-excited
state.
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collapses and revivals emerge in our model, let us go back to the sudden quench procedure

given in the previous section and modify Eq. (2.6). Notice that c∗αcβ = c∗βcα when the

coefficients are real, which is the case in our problem. Also N0,αβ = N0,βα in our model.

Then we can regroup Eq. (2.6) as,

〈N0(t)〉 =
∑
α≥β

c∗αcβ
(
ei(Eα−Eβ)t + e−i(Eα−Eβ)t

)
N0,αβ,

= 2
∑
α≥β

c∗αcβ cos ((Eα − Eβ)t)N0,αβ. (2.15)

Eq. (2.15) tells us that the dynamics we observe in a sudden quench is the interference of

sinusoidal functions weighted with some overlap. We can write Eq. (2.15) more clearly as,

〈N0(t)〉 =
∑
α≥β

Aαβ cos (∆αβt) , (2.16)

where ∆αβ = Eα−Eβ are the energy gaps, Fig. 2.12c and Aαβ = 2c∗αcβN0,αβ are the overlap

matrix elements, Fig. 2.12a. We note that the diagonal terms are the most populated terms

in the overlap matrix and they correspond to the diagonal ensemble prediction. In fact it is

important that the off-diagonal terms vanish for thermalization to happen or they should be

much smaller compared to diagonal terms. We observe this is almost the case in Fig. 2.12a,

except the first and second off-diagonals still contribute to the dynamics even though they

are much smaller than the diagonal terms. Fig. 2.12b shows the first off-diagonals of the

overlap matrix (which we call overlap distribution in the following). This Poisson-like overlap

exists when the dynamics demonstrate a series of collapse and revivals and it turns out to

be important in determining the time scales of collapse and revivals in spinor condensates

under SMA.

The time scale of a collapse is related to the time when the oscillating terms with an energy

gap argument in Eq. (2.16) start to become uncorrelated. The terms corresponding to the

farthest ends of the distribution are also the farthest in oscillation frequency. They become
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uncorrelated after all the other terms get uncorrelated. From that point on, all the oscillating

terms will be destructively interfering. We estimate these elements with root-mean-square of

the overlap distribution as also done for collapses in Jaynes-Cummings model [243]. Ref. [107]

predicts the collapse time for the Ising model as inversely proportional to the energy spread

of the initial state, which is similar to our criteria and expression. The following collapse

time expression produces a value of c1tc/N ∼ 0.02 for the quench simulation depicted in Fig.

2.11:

tc =
2π

|∆m+σ
α,α+1 −∆m−σ

α,α+1|
, (2.17)

where ∆m
α,α+1 denotes the nearest-neighbour energy gap (level spacing, Fig. 2.12c) corre-

sponding to the maximum value in the overlap distribution (Fig. 2.12b) and hence ∆m+σ
α,α+1

is the nearest-neighbour energy gap corresponding to the value which is σ farther from the

mean in the distribution (cf. the inset of Fig. 2.12b). It is possible to fine-tune the predicted

collapse time by taking more than 1σ of the overlap distribution. Also note that we find

c1tc ∼ N1/2 as the scaling of the collapse time-scale.

A quantum revival happens when all the oscillating terms become correlated with each

other again. This can be measured through the difference between nearest-neighbour energy

gaps corresponding to the the mean ∆m
α,α+1 and the closest point to mean ∆m−1

α,α+1 in the

overlap distribution (cf. the inset of Fig. 2.12b),

tr =
2π

|∆m
α,α+1 −∆m−1

α,α+1|
. (2.18)

Fig. 2.12d shows the differences between nearest-neighbour energy gaps. Note that ∆α−∆α+1

are mostly flat around where the overlap distribution is nonzero. This is vital for a collective

revival to occur, since otherwise terms in Eq. (2.16) will never constructively interfere at

a fixed time, namely the revival time. When we have tr(∆α − ∆α+1) = 2π, all oscillating

terms interfere constructively, creating the first revival. Both the analytical expression and
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the data analysis give a revival time c1tr/N ∼ 0.735. Since the scaling of the revival time-

scale turns out to be c1tr ∼ N , this value can be obtained for all sizes for the parameters

depicted in Fig. 2.11. Also note that the linearly growing recurrence times is well-known in

the literature [32]. The small peaks between the collapse and revivals seen in Fig. 2.4 are

the small revivals contributed by the second off-diagonal terms in the overlap matrix, Fig.

2.12a. We can also predict the oscillation frequency,

tosc =
2π

∆m
α,α+1

, (2.19)

by using the nearest-neighbor energy gap at the maximum point of the overlap distribution

∆m
α,α+1. There is an another interesting quantity that can be predicted in a collapse-revival

picture. We observe how revivals are suppressed in a very long time scale in the inset of Fig.

2.4. This ‘randomizing time’ is where the initial memory of the system irreversibly gets lost.

Even though a typical randomizing time is out of experimental reach, it is interesting to note

that an isolated, unitary and finite-size quantum system will be eventually randomized and

hence completely thermalized at the randomizing time which can be estimated via

trz =
2π

|∆′m+σ −∆′m−σ|
, (2.20)

where ∆′ = ∆α − ∆α+1 denotes the difference between nearest-neighbor energy gaps (Fig.

2.12d) and the rest of the notation is same with the previous definitions where we use the

overlap distribution for m± σ.

In order to give a sense of these time scales, let us fix the particle density in our condensate

to 5×1014 cm−3. Then the coefficient reads c1 ∼ −2π×9 Hz, which gives a realistic collapse

time of ∼ 0.5 s and a revival time of ∼ 25 s for a condensate particle number of 2 × 103.

This sudden quench experiment corresponds to a data point on Fig. 2.5, where ETH can

explain the match between the thermal relaxation values predicted by diagonal ensemble and

microcanonical ensemble. Therefore we can conclude that there is thermalization until the
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(a) (b)

Figure 2.13: The sudden quench dynamics in short time-scale (a) from qi = −3 to qf = 0.5
and (b) from qi = 4.1 to qf = 2 with insets of long time-scales for ferromagnetic condensates
and N = 2× 103 particles.

initial memory of the system comes back with a quantum revival. Then it is important to see

how the times of the collapse and the first revival scale with the number of particles in the

condensate. Reminding the reader of c1tc ∼ N1/2 and c1tr ∼ N and using the estimations

done for Thomas-Fermi limit in Ref. [246], we figure out that c1 ∼ N2/3 in 1-dimension, hence

tc ∼ N−1/6 and tr ∼ N1/3. Although SMA breaks down in large condensate limit [246] and

the experiments always have finite sizes, it is still insightful to imagine the thermodynamic

limit N → ∞. In thermodynamic limit, a 1D spinor BEC system has a diverging revival

time and a vanishing collapse time, which implies thermalization described by ETH for our

model.

Now let us choose a point on the map Fig. 2.3 that does not thermalize to illustrate

one of the special cases. If we quench from qi = −3 to qf = 0.5 (corresponding to the

parameters in Fig. 2.2a and 2.2c), we observe the dynamical behaviour in Fig. 2.13a. There

is a well-defined collapse whose time-scale can be predicted with the collapse criterion and

the system seems to equilibrate right after the collapse. However looking at the dynamics

for a longer time (inset of Fig. 2.13a) reveals that the revivals attempt to happen at different

times resulting with no collective recurrence for a finite system. This is due to the broad

68



N
10 3 10 4 10 5

d
e

10 1

10 2

10 3

de,I
de,II

(a)

N

10 3 10 4 10 5

d
e
(∞

)
−

d
e

10

15

20

30

(b)

Figure 2.14: The effective dimension scaling for a quench (a) from qi = −3 to qf = 0.5
(Region II) (dashed red) with de ∝ N0.57, from qi = −3 to qf = −0.5 (Region I) (solid blue)
with de ∝ N0.5 and (b) from qi = 4.1 to qf = 2 (Region III) with de = 28.3−36.3N−0.092 with
respect to system size. The correlation coefficient is R2 = 1 for all figures. de(∞) stands for
the offset value of the fitting in subfigure b.

shape of the EON window (Fig. 2.2a). One can calculate the so-called effective dimension of

the system [36, 90] under this specific quench, which is the participation ratio of the initial

state in the eigenstate reference basis instead of Fock basis,

de =

(∑
α

|cα|4
)−1

, (2.21)

where |cα|2 is the eigenstate occupation numbers as in Eq. (2.5). The effective dimension

is a measure of how broad the EON window is. In order to determine if a quantum system

equilibrates, one needs to look at the scaling of the effective dimension with the system size.

We find a scaling of de ∝ N0.57 (R2 = 1) for this quench (Fig. 2.14a) and in fact almost

the same exponent for any other quench in region II of the sudden quench map. Therefore,

we argue that in thermodynamic limit the effective dimension diverges de →∞ as N →∞,

which leads the system to equilibration. For a comparison with region I, we calculated the

effective dimension of a region I quench from qi = −3 to qf = −0.5 which is already shown

to thermalize and hence equilibrate. As seen in Fig. 2.14b, the effective dimension is found
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to be de ∝ N0.5 (R2 = 1) and this scaling exponent is universal for all the quenches in

region I. Hence, the previous argument follows. If we return to the discussion on region II

dynamical behaviour, the overlap distribution (first off-diagonals in the overlap matrix) is

similar in shape with Fig. 2.2a. Further computations show that the energy gap differences

between neighbouring terms in the overlap distribution are different and hence they give rise

to different revival times (see. Eq. (2.18) and Fig. 2.12d around the kink region) confirming

the dynamical response. Also clearly the EON for this point on the map (Fig. 2.2a) is not

narrow enough to avoid the kink nonthermal states, which causes nonthermalization for the

system. As a result, the system only equilibrates with no collective recurrence for any finite

dimensions of the system. Also note that as we increase the system size, the time-scale of

the revival attempts diverges which leaves us with the equilibrated section seen right after

the decay. This is the behaviour that we observe for the region II on sudden quench map

Fig. 2.3.

The second special point on the map Fig. 2.3 is a quench from qi = 4.1 to qf = 2,

which demonstrates the behaviour for region III on Fig. 2.3. Fig. 2.13b shows oscillatory

behaviour around the system’s PDE value for all times without any collapse or revival. The

overlap distribution looks like Fig. 2.2b, however differently the first off-diagonal terms are

not really smaller than the diagonal terms (EON of the system) and in fact second and third

off-diagonal terms in the overlap matrix Aαβ substantially contribute to the dynamics, too.

This is in fact why we observe large fluctuations Eq. (2.16). The scaling of the effective

dimension for this quench turns out to be de ∝ 28.3 − 36.3N−0.092 (R2 = 1), which implies

that in thermodynamic limit de → 28.3 while N →∞ and the effective dimension is going to

saturate at a constant value (Fig. 2.14b). This will lead to nonequilibration since the effective

dimension will be so much smaller than the dimension of the Hilbert space, de � dH = ∞.

We note that all quenches on region III shows a universal scaling exponent with slightly

different scaling parameters. As a final remark, the EON window is narrow enough to

coincide only with the nonthermal kink states implying the PDE of the system is not the
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thermal prediction.

2.5 Conclusions and Discussion

Spinor BEC model with SMA has an eigenstate expectation value spectrum for the observ-

able 〈N0〉 (the number of particles with spin-0 component in the condensate) that shows

thermalization in the context of eigenstate thermalization hypothesis in the weak form when

the quadratic Zeeman term is |q| < 4 due to the ‘rare’ nonthermal states and in the strong

form, otherwise. We adopted widely used ETH indicators to obtain our results, e.g., support,

ETH noise (fluctuations), maximum divergence from the microcanonical prediction for an

eigenstate in a fixed energy interval and the EEV differences. We studied the effect of these

nonthermal states in the spectrum by driving the system out of equilibrium via a sudden

quench from the ground state of an initial Hamiltonian with qi to a final Hamiltonian with

qf . Even though this procedure allowed us to study certain initial conditions, we are able

to generalize the results and predict the behaviour of the system with an arbitrary initial

condition. Therefore, such a procedure is experimentally realizable and we have shown that

it leads to a classification scheme of the system dynamics: the sudden quench maps, Figs.

2.3 and 2.4. Sudden quench maps give us the long-time average of the dynamical response,

or the prediction of diagonal ensemble, which is valid in the long-time limit. For a region

where the system does not equilibrate (e.g., Region III), the value on the map is the average

of the response.

We observed that ETH is satisfied in region I with well-defined collapse and revivals where

the revival time-scale is out of reach for realistic condensate sizes. For the region II, the

dynamics equilibrate around a nonthermal value right after a collapse (shown via the scaling

of effective dimension) due to the effect of nonthermal rare states in the spectrum. Even

though dynamics at region II shows attempts for a quantum revival, not all the oscillating

terms become correlated at the same time, implying the lack of a clear quantum revival. We
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interpreted the thermalization seen for the region I as weak ETH, because even though the

initial state does not overlap with the rare nonthermal states (kink region), these states still

exist in the spectrum, even in the thermodynamic limit. Therefore, clearly not all initial

states are able to thermalize the system. In fact, region II is an example of these cases.

However, for the Hamiltonians with |q| > 4, the kink region does not exist in the spectrum

even for finite-size condensates. Thus, we conclude that ETH holds in the strong sense for

this set of Hamiltonians.

The system for the region III does not equilibrate or show any collapse-revival phenomena

and instead oscillates, because the effective dimension saturates at a finite value whereas the

Hilbert space dimension diverges in the thermodynamic limit and the main contribution to

the dynamics comes from nonthermal states which also have low participation ratio values

in the Fock basis. We explicitly showed that the thermal and nonthermal states in the

spectrum have high and low PR values with system-size scaling exponents of ∼ 0.9 and ∼ 0.2,

respectively. In the end, thermalization seems to be linked to the localization properties of

the eigenstates. In region IV, the system thermalizes with very small amplitude collapse and

revivals either at 0 or 1. The initial state is already in almost-equilibrium with the quench

Hamiltonian, leading to almost-no nonequilibrium evolution for the system to pursue. For

the anti-ferromagnetic sudden quench map Fig. 2.4, we always observe only the regions III

and IV given that the initial state is a ground state of an anti-ferromagnetic Hamiltonian.

Finally, we note that the region around qf ∼ 0 on both sudden quench maps is special

in terms of how the thermalization value is independent of the initial state chosen. This

behaviour is expected, because almost all of the eigenstates in the spectrum contribute to

the observable expectation value in the same amount regardless of the system size.

Interpretation of sudden quench maps as non-equilibrium phase diagrams and the tran-

sitions between regions as the dynamical phase transitions seems possible given that these

dynamical transition points originate from the equilibrium quantum phase transitions of the

system. We leave the question if these transitions can be related to dynamical quantum
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phase transitions (DQPTs) [259] as an investigation for future.

Spinor Bose-Einstein condensates are relatively more convenient to experiment with [60,

72, 250, 253, 254] and numerically less costly (when SMA is applied), compared to more

popular models such as Bose-Hubbard model or Ising models. Here, we showed that spinor

BECs can also be used as a test-bench to test the ideas on the thermalization of isolated

quantum systems.
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Chapter 3

Detection of Information Scrambling

in Cold Atoms

Out-of-time-order correlators (OTOC), recently at the center of discussion on quantum chaos,

are a tool to understand information scrambling in different phases of quantum many-body

systems. We propose a disordered ladder spin model, the ladder-XX, which can be de-

signed in a scalable cold atom setup to detect OTOC with a novel sign reversal protocol

for the evolution backward in time. We study both the clean and disordered limits of the

ladder-XX model and characterize different phases (ergodic-MBL) of the model based on

the decay properties of OTOCs. Emergent effective lightcone shows sublinear behaviour,

while the butterfly cones drastically differ from the lightcone by demonstrating superlinear

behaviour. Based on our results, one can observe how the information scrambling changes

in the transition from well-studied 1D spin models to unexplored 2D spin models in a local

setting.

3.1 Introduction

Information scrambling has drawn much attention in the last years, not only in gravitational

theories to study the information properties of black holes [133, 140, 260, 261], but also in
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quantum many-body physics [130,132,139,150,162,167–169,181,262]. Even though the initial

interest in scrambling was to study quantum chaos in models with gravity duals, information

scrambling is, first, not limited to systems with duals, second, provides an understanding

about the dynamics of any generic many-body system. Besides being a complementary

approach to level-statistics [41] in the context of quantum chaos, the way that systems

scramble information in time can dynamically reveal the properties of a Hamiltonian in an

experiment. The tool to measure information scrambling is a correlation function, called

out-of-time-order correlator (OTOC). The physics that OTOC captures is the growth of

the commutator of two operators in time and this growth, also called out-of-time-order

commutator, can be characterized by,

Cβ
ij(t) = − 1

Z
Tr
{
e−βH [Ai(t), Bj]

2} , (3.1)

for a system with a finite inverse temperature β. Here i and j denote arbitrary sites in

the lattice, Ai(t) and Bj are local hermitian operators for their corresponding sites and

Z is the partition function. We take j = 0, an observable at the first lattice site in the

rest of the study. The local observables of two sites at a distance initially commute, but

the interactions lead the system to become more correlated in time, and the build-up of

the correlations between sites-at-a-distance starts to be seen in the Heisenberg operators

that no longer commute. Therefore, the initially localized operators spread across the space

dimension and become as nonlocal as possible around the scrambling time. OTOCs are

sensitive to conserved quantities [157,162,180], revealing the (non)integrability of the system;

they also show the signatures of localized phases [139, 162, 167–169], equilibrium [220] and

dynamical phase transitions [181], chaotic properties of thermal systems [140,142,150], e.g.,

exponential decay in OTOC and finally the (non-)locality and information transport of the

Hamiltonian via emergent lightcones [130,132,150,262]. All these theoretical discoveries on

OTOCs call for experimental proposals and experiments in order to probe and eventually
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utilize scrambling.

To date, there have been a number of experimental proposals [146–148, 150, 158] and

realizations [156, 157, 159] on scrambling detection. In this Chapter, one of our aims is to

come up with the simplest possible cold atom setup that shows a wide range of diverse

scrambling phenomena and could pave the way to scalable OTOC measurements of non-

integrable spin systems. The cold-atom setup is a realistic candidate to probe OTOC,

mainly due to scalability and its weak coupling to the environment [66, 263]. Information

scrambling could be induced by environment effects as well, and therefore it is important

to differentiate the scrambling due to correlation built-up via many-body interactions in an

experiment [159]. The scalability of cold atoms could be utilized to increase the size and

hence the duration of transient effects in OTOC by delaying the saturation stage. The most

crucial step of OTOC measurement is the evolution backward in time. We propose a novel

sign reversal mechanism as an alternative to existing approaches. The convential solution to

reverse the sign of a cold-atom Hamiltonian is to utilize Feshbach resonances [21, 150]. We

will show that a sequence of single-spin gates can be performed via fast laser pulses [264,265]

to measure the OTOC.

In the first section, we explain our model and its cold-atom setup. Then we systematically

study the level-statistics and scrambling properties of ladder-XX both with and without

disorder. In the final part, we layout the scrambling detection with the preparation of

realistic random states.

3.2 The Ladder-XX Model

Ladder spin models have been studied to explore their critical phenomena [266–268] and

entanglement properties [269]. They are seen as useful intermediate models to understand the

magnetic properties of materials while increasing the dimension from d to d+ 1 [270]. There

are also natural cuprate compounds that are modelled by ladder spin models at d = 1 [268]
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Figure 3.1: A schematic of the proposed optical superlattice for the ladder−XX model where
x− and y−axes are spanned by disordered and double well potentials, respectively.

and they have been considered as candidate models to explain high-Tc superconductivity

[271]. More recently ladder-spin models are studied in the context of transport [272]. We

choose our chaotic ladder model as the ladder-XX model because of its simplicity in cold

atom realization,

H =
∑
j=1,2

L−1∑
i=1

J‖
(
σxj,iσ

x
j,i+1 + σyj,iσ

y
j,i+1

)
(3.2)

+
L∑
i=1

J⊥
(
σx1,iσ

x
2,i + σy1,iσ

y
2,i

)
+

L∑
i=1

hi
(
σz1,i + σz2,i

)
,

with random disorder hi which is drawn from a uniform distribution with disorder strength

of [−h, h]. σx,y,z are Pauli matrices for the spin−1/2 system, J‖ is the intra-chain hopping

coefficient and J⊥ is the rung hopping coefficient. L is the system size for a single-chain and

we go up to L = 8 in our numerical analysis with exact diagonalization.

The ladder-XX model could be realized at the hard-core boson limit of the Bose-Hubbard

model [62, 64]. At the hard-core boson limit, with U → ∞ and non-integer filling factor

that implies every site has either 0 or 1 boson, we end up with a superfluid Hamiltonian

HU→∞ = −t‖
∑

i,i+1

(
a†iai+1 + h.c.

)
−
∑

i µia
†
iai, that can easily be mapped to XX-chain

via mapping the annihilation operator to the spin lowering operator a → σ− and creation
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operator to raising operator a† → σ+. The mapping leads us to have J‖ = 2t‖, J⊥ = 2t⊥

and the random chemical potential is mapped to random magnetic field strengths µi = hi

via a†iai − 1/2→ σz. Therefore, we can recover Hamiltonian Eq. (3.2) with two interacting

Bose-Hubbard chains exposed to random chemical potential in the hard-core boson limit.

The boson state vectors correspond to either spin down |↓〉 or spin up |↑〉 in the ladder-XX

model. Since the filling factor is fixed in the cold atom scheme, the corresponding case in

our spin model (Eq. (3.2)) has fixed total spin Sz. We set the filling factor f = 0.5 and the

OTOC of the system is studied at the subsector Sz = 0.

We utilize superlattices to create random disorder in the Bose-Hubbard chains [273,274]

and to let two chains interact with each other. For the latter, we create a double well potential

via choosing the laser frequencies as k and 2k in the y-direction with a phase difference be-

tween them φ, e.g., Vy(y) = V1y sin2 (kyy)+V2y sin2 (2kyy + φ), assuming V1y ∼ V2y so that the

bosons can be trapped in the double well potential. For the random disorder, we interfere two

optical fields with incommensurate frequencies, e.g., Vx(x) = V1x sin2 (k1xx) +V2x sin2 (k2xx),

where k1x/k2x ∈ R/Q for both of the chains. When V2x � V1x, the disorder lattice can

simulate the true random potential [273, 274]. A schematic of the optical superlattice can

be seen in Fig. 3.1. One can tune the hopping coefficients J‖ and J⊥ in the ladder-XX

model through the laser amplitudes and frequencies [64]; and thus access different OTOC

behaviours with the simulation time of t ∝ 1/J‖ ∝ 1-10 ms in laboratory. Therefore, the

measurement time of OTOC is in the limits of cold atom experiments [275].

3.3 The OTOC Properties and Level Statistics

For a spin system Eq. (3.1) can be recast to the OTOC, by first setting the temperature

infinite, β → 0 and then noting that,

F ex
i (t) = 1− C0

i (t)

2N
, (3.3)
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where C0
i (t) = ‖ [σzi (t), σ

z
1] ‖2

F . Since the Pauli matrices are hermitian, norm-2 (Frobenius

norm) could be utilized to rewrite Eq. (3.1). N is the dimension of the Hilbert space and

the superscript ex stands for the exact value of the out-of-time-order correlator. Eq. (3.3)

is measurable given a β = 0 initial state is prepared. In general, calculating an expectation

value with respect to the infinite temperature state requires averaging over all eigenstates.

However, we can approximate the OTOC Eq. (3.3) with smaller number of states,

F∼i (t) =
∑
j

〈ψj|σzi (t)σz1σzi (t)σz1 |ψj〉 , (3.4)

where |ψj〉 denotes a pure random initial state (or a mixture of random initial states) drawn

from the Haar measure [130]. Haar random states are typically maximally-entangled states

within a small error [276]. The error of approximating a β = 0 initial state is exponentially

suppressed as the Hilbert space increases via typicality arguments [84,277]. This procedure

is numerically less expensive compared to other methods for preparing the initial state at

β = 0, even though the Haar random states are hard to generate experimentally [278]. The

results presented in this paper are based on averaging over more than one random initial

state to obtain OTOC as precise as possible (Appendix B.2 for error bounds).

When a generalized form of Jordan-Wigner transformation [279] is applied, ladder-XX

can be shown to be interacting in the spinless fermion representation. Therefore we expect

to see ergodic to many-body localized (MBL) phase transition in this model [171, 173]. A

common way to determine if a quantum system is chaotic is via the energy level statistics

[34,41,171,173]. Energy level spacings are δnγ = |En
γ −En−1

γ | where En
γ is the corresponding

energy of the many-body eigenstate n in a Hamiltonian of disorder realization γ. Each γ

represents a different set of random disorder hi drawn from uniform distribution. Then

we can calculate the ratio of adjacent gaps as rnγ = min
(
δnγ , δ

n+1
γ

)
/max

(
δnγ , δ

n+1
γ

)
as the

indicator of the level-statistics [171, 173]: rnγ ∼ 0.53 and rnγ ∼ 0.39 are representative of

Wigner-Dyson and Poisson statistics, respectively. If the distribution of the energy level
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Figure 3.2: The average ratio of level spacings
〈
rnγ
〉
γ,n

with respect to disorder strength h.

Coupling strengths are set to J⊥ = J‖ and
〈
rnγ
〉
γ,n

is averaged over 5 × 103 to 10 random

realizations for single-chain sizes ranging between L = 4 − 8. Inset:
〈
rnγ
〉
γ,n

at h = 1 [J||]

with respect to rung interaction strength α where J⊥ = αJ‖ for L = 7.

spacings follows Wigner-Dyson statistics through a GOE (generalized orthogonal ensemble)

distribution, the model shows ergodic behaviour, whereas Poisson statistics imply a localized

phase [34,41]. Fig. 3.2 shows the average ratio values
〈
rnγ
〉
γ,n

varying between random field

strengths of h = 0 − 10 for different system sizes ranging between L = 4 and L = 8 when

they are averaged over 5× 103 to 10 different random samples. The average of rnγ over a set

of different Hamiltonians Hγ and eigenstates n, converges to
〈
rnγ
〉
γ,n
∼ 0.53 in the presence

of small disorder strength h . 3 [J||], hence implying an ergodic phase. As h & 9 [J||], we

observe
〈
rnγ
〉
γ,n
∼ 0.39 that indicates a many-body localized (MBL) phase.

Fig. 3.3 shows how OTOC between σz1 and σz7 for L = 7 chain changes with respect to

the rung interaction strength. In the limit α = J⊥/J‖ → 0, the system converges to two

independent XX-chains with random disorder. Whereas the opposite limit of α→∞ implies

a dimer phase as another integrable limit of ladder-XX. In both cases, the corresponding

fermion representation becomes non-interacting, which points to single-particle dynamics

with Anderson localization [162, 168]. We see a permanent revival after a decay and larger
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Figure 3.3: The OTOC of the ladder-XX model at h = 1 [J||] between two distant operators
σz1 and σz7 in the first chain with respect to α for L = 7. α ∼ 1 corresponds to the interacting
limit, whereas the cases α � 1 and α � 1 are integrable limits of the ladder-XX model.
The OTOC is averaged over 100 different random samples. The plot shows the mean values,
see Appendix B.1 for the error bars on the curves.

oscillations in OTOC as observed in integrable systems [142, 157]. In addition, the average

level spacing ratio
〈
rnγ
〉
γ,n

decreases from ∼ 0.53 to ∼ 0.39, thus demonstrating the signature

of level statistics for integrable systems (see inset of Fig. 3.2). We note that the OTOC for

α→∞ scrambles less than the OTOC for α→ 0 with a small initial decay, since the model

also becomes weakly-coupled throughout the x-dimension in this limit. The OTOC decays

rapidly in the interacting limit around α ∼ 1 and saturates at F (t→∞) ∼ 0 while showing

GOE distribution with
〈
rnγ
〉
γ,n
∼ 0.53 and hence quantum chaos in its energy levels. We set

α = 1 for the rest of our paper and study the interacting limit.

The chaotic regime of the ladder-XX model (h = 1 [J||]) demonstrates a brief interval of

exponential decay in early-time dynamics (Fig. 3.4a), followed by power-law tails (Fig. 3.4b)

before entering into the saturation regime. The inset in Fig. 3.4b shows the Lyapunov-like

exponents extracted from the data both for L = 8 and L = 7 (Appendix B.3) when we

fit Re(F ) = a exp(−λt) to the data, where a is a constant. Quantum chaotic models are

expected to scramble the information fast and hence show exponential decay of OTOC [140]
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before saturation. Exponential decay is a transient feature of systems with finite size and

bounded operators [280], a result we observe in Fig. 3.4a. The Bose-Hubbard model [150]

and time-dependent systems [162, 281] were shown to decay exponentially, whereas it is

numerically hard to show the exponential decay in time-independent quantum chaotic spin

chains, e.g., disordered Heisenberg model [162]. In fact, the transient exponential decay turns

into power-law decay Re(F ) = at−b in Fig. 3.4b for the ladder-XX model, thus reminding us

of the quasi-exponential generic form put forward by [132]. When there is no disorder, Fig.

3.4c, a decay with power-law trend is observed. There are significantly larger oscillations

around the saturation value in the clean limit, however in both clean and disordered cases, the

scrambling time is approximately the same. For a comparison, the power-law exponents for

disordered and clean cases are b = 2.65 and b = 2.76, respectively for the observables σz1−σz7

in a system with L = 7. The ladder-XX model has energy and spin conservation, similar

to Heisenberg model where OTOC has been observed to be sensitive to conserved quantities

and show power-law decay [162]. In addition to that, ladder-XX has invariant subspaces

that show ballistic transport but are not associated with local conserved quantities at the

same time, hence the energy levels still show quantum chaos [272]. When random disorder is

introduced, these invariant subspaces can support Anderson localized eigenstates regardless

of the disorder strength [282]. We first conclude that the invariant subspaces do not change

the power-law decay, however affect the saturation value of OTOC. Figs. 3.4b-3.4c show

that the saturation value is much higher both in disordered F (t → ∞) > 10−2 and clean

F (t → ∞) > 10−3 limits, compared to other models such as Heisenberg and transverse-

field Ising models of similar sizes F (t → ∞) ∼ 10−5 [162]. Further, we notice that the

saturation value of OTOC becomes even larger when the disorder is introduced. Even though

the disorder clearly resolves the degeneracies caused by symmetries, the disordered system

scrambles less than the clean system. Thus, we point to Griffiths rare-region effects [283]

that might also be responsible for turning exponential decay in early time into power-law

later in time.
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Figure 3.4: (a) The exponential and (b) power-law decay of OTOCs for σz1 with σz5 (blue-
triangles), σz6 (red-pentagrams), σz7 (orange-diamonds) and σz8 (purple-circles) observables
in a system size of L = 8. The inset in (b) shows the Lyapunov-like exponent extracted
from exponential fitting for both L = 7 (black-asterisks) and L = 8 (red-triangles). (c) No
disorder case: Only power-law decay of OTOC for σz1 with σz5 (orange-diamonds), σz6 (red-
pentagrams) and σz7 (blue-triangles) observables when L = 7 and h = 0. (d) Crossover region
with h = 5 [J||] (red-pentagrams) and MBL with h = 10 (blue-triangles) for observables
σz1 − σz7 with L = 7.
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The decay becomes even slower as we increase the disorder strength h, Fig. 3.4d. The

system shows no scrambling for a time interval of t ∼ 10[1/J||] when h = 10 [J||] and

differs from OTOC at h = 5 [J||] that is at the crossover region in Fig. 3.2. Even though

for short times it looks like Anderson localization, simulation over long times reveals an

MBL-like decay by showing a clear signature of logarithmic decay at intermediate times

for both h = 5 and h = 10. By slightly modifying the general form given in Ref. [169]

for logarithmic MBL decays, we find that the decay profiles in Fig. 3.4d could be fitted

to Re(F ) = 1 − a exp (−btc), where the parameter a determines the saturation value, and

c < 0 for OTOC to decay as t → ∞ and F = 1 as t → 0. Similarly this form reduces

to logarithmic decay, Re(F ) ∼ 1 − a
e

+ a×c
e

log
(
b1/ct

)
for b1/ct ∼ 1. The fit parameters

read a = 0.725, b = 5.727, c = −0.812 for h = 5 and a = 0.154, b = 8.661, c = −0.519 for

h = 10 [J||]. Therefore, the logarithmic decay is valid around t ∼ 10 [1/J||] and t = 102 [1/J||]

for h = 5 [J||] and h = 10 [J||], respectively. One can further see that Anderson localization

lies in the limit |c| → 0, which implies logarithmic decay should happen when t → ∞,

meaning that the OTOC does not decay at all. As a result, we demonstrate that there

could be intermediate cases where the OTOC does not decay to zero, but to finite nonzero

values in the MBL phase, which is possibly related to atypical eigenstates in the ladder-XX

model [282].

In a lightcone figure (Fig. 3.6), each point has a set of discrete space x and time t

coordinates, where the space dimension is emergent due to the nearest-neighbor couplings

and defined as the distances between lattice sites in the lower leg of the ladder. The value of

a point is OTOC, denoted as η. If we follow OTOC contours composed of the same η values,

we obtain a series of space-time coordinates that give us a wavefront [122, 130, 262, 284]. A

couple of wavefronts associated with different η values ranging between η = 1 and η = 10−2

are shown in Fig. 3.6. These wavefronts are expected to reveal how the correlations spread

in the system over time. The outermost wavefront η ∼ 1 corresponds to the lightcone, while

η ∼ 0 corresponds to the butterfly cone in the literature [285]. The wavefronts that we
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γ

Figure 3.5: The dynamical exponent γ with respect to the OTOC contour values η extracted
from analyzing data sets for L = 6 with observables from σz2 to σz6 (light blue-circles), with
observables from σz4 to σz6 (dark blue-stars), L = 7 from σz4 to σz7 (green-squares) and L = 8
from σz4 to σz8 (red-triangles) for a random disorder strength of h = 1. We averaged the data
over 2× 102, 1× 102, 1× 102 and 1× 101 times for first two L = 6, L = 7 and L = 8 system
sizes, respectively. Inset: The rates of the sublinear, linear and superlinear wavefronts for a
system size of L = 7. The markers are the data points, while the lines are the differentiation
of the wavefront curves.
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Figure 3.6: A demonstration of wavefronts for a system size of (a) L = 8 and (b) L = 6,
where x-axis and y-axis are the distance and time, respectively. (a) The fitted wavefronts
change from sublinear to superlinear in time between the displacements ∆x = 3 and ∆x = 7
units. (b) Only the sublinear wavefronts are fitted between ∆x = 1 and ∆x = 5 units
(dotted lines), while the solid lines show irregular wavefronts appearing later in time.

extracted follow power-laws: x ∼ tγ where γ is dubbed the dynamical exponent. Fig. 3.5

shows a range of γ changing from the low end of ∼ 0.5 to the high end of ∼ 1.5 with respect

to η for different system sizes. It is not clear if γ would have a maximum in Fig. 3.5 due

to the limitations in the data. We find a sublinear lightcone with γ < 1 where the spread

is sub-ballistic. This observation aligns with the rare-region effects [283]. On the other

hand, as the system scrambles, we observe that the wavefronts first become linear γ = 1

and then passes to a superlinear region γ > 1 in Fig. 3.5. Therefore, the butterfly cones at

η ∼ 0 seem to differ significantly from the lightcone at η ∼ 1. The wavefront structures that

demonstrate the superlinear butterfly cones can be seen in Fig. 3.6a. We plot the rates of the

wavefronts in the inset of Fig. 3.5 where the sublinear lightcone (η = 0.99) initially bounds

the rest. Towards the scrambling time, the linear wavefront (η = 1) seems to be the new

bound on the wavefront rates. A range of sublinear wavefronts were detected in disordered

Heisenberg chain before [130], implying the lightcone still differs from the butterfly cones in

the dynamical exponent. Super-ballistic spread of correlations (γ > 1) has been previously

observed in 1D spin chains with power-law decaying long-range interactions [122, 262, 284].
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The ladder models can always be mapped to a path that passes through all the sites, e.g.,

zigzag or meander paths, so that 1D Jordan-Wigner transformation can be applied [286].

Such mappings bring long-range interactions due to the Jordan-Wigner strings, which could

explain the super-ballistic spread appearing later in time. We note that its rate remains

insignificant compared to the faster wavefronts. It is an interesting direction to see if other

ladder models present similar wavefront structures. Finally, we demonstrate the irregular

wavefronts appearing in the spatial region [131] when the displacement is ∆x = 1− 2 in Fig.

3.6b. The only fitted wavefronts are the sublinear wavefronts shown in Fig. 3.6b as dotted-

white lines, because the wavefronts start to exhibit irregularities later in time (solid-white

lines). The irregularity appears between the origin and two sites away from it, as we observe

that it takes significantly greater time for the information to spread ∆x = 2 units compared

to ∆x = 1 unit in the time interval of t ∼ 0.5 [1/J||] to t ∼ 2 [1/J||]. Hence it seems that

the information spread slows down locally and temporarily (the jump feature in Fig. 3.6b)

before showing a sub-ballistic trend for ∆x > 2. Furthermore, after t ∼ 2 [1/J||] the jump

feature is replaced by a constant line between ∆x = 1 and ∆x = 2 units, which points to a

locally-scrambled region in the ladder while the information still spreads in the rest of the

system at a finite rate. This unusual region-restricted scrambling continues until the whole

ladder completely scrambles. Therefore, we conclude that different rare-region effects are at

play in the ladder-XX, which calls for a more systematic future study.

3.4 OTOC Detection Protocols

The scrambling in the ladder-XX model can be detected via the interference measurement

scheme on many-body states in optical lattices [94,287] or the interferometric measurement

scheme [146]. We detail both measurement schemes in the following subsections and elab-

orate on their advantages and disadvantages. Since both schemes need an experimental

random initial state preparation, we first focus on the initial state preparation.
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3.4.1 Initial state preparation

One can ideally use the whole set of Fock states to create a β = 0 initial state. However,

given this process would be lengthy, we ask if using a few (M � N) randomly chosen

Fock states would sufficiently mimic β = 0 initial state I ∼
∑M

j=1 |ψj〉 〈ψj|, where |ψj〉 ={∣∣(1...
0...

)〉
, ...,

∣∣(0...
1...

)〉}
are Fock states for the ladder and they span the Hilbert space at half-

filling. We find out that initiating an experiment with a randomly set Fock state for ∼ 10

or ∼ 102 times mimics the β = 0 state up to a mean error of ∼ 7 × 10−3 or 2 × 10−3,

respectively for a system size of L = 6 (Fig. 3.7e). We study how the mean error scales with

the sampling ratio M/N in Figs. 3.7a-3.7b for different system sizes. Here the mean of the

error is calculated for the data points when the error signal ε1(t) = |F ex(t) − 1
M

∑
j Fj(t)|

saturates in time. The sampling ratio M/N has bounds 0 < M/N < 1 and we observe when

M/N < 1 the scaling is exponential and the data for all simulated system sizes could be

collapsed to a single decay exponent b ∼ −2.5 in ε1(t) ∝ a exp (−bM/N), cf. Fig. 3.7a. Note

that when M/N = 1, meaning that all Fock states are used, the error is zero up to machine

precision and the OTOC is exact; and the point M/N = 0 is not well-defined. Except for

small sizes, e.g., L = 3, the observed exponential scaling in Fig. 3.7a is not experimentally

practical due to the increasing number of randomly-sampled Fock states. Therefore, we study

the limit M/N → 0 separately where we obtain power-law scaling in M/N , cf. Fig. 3.7b

with b ∼ −0.5 in ε1(t) ∝ a (M/N)b for system sizes L = 4− 7.

Remarkably, it is possible to bound the error of approximation to ∼ 10−2 with only one

Fock state for L = 7. In fact the error decreases as a power-law with the increasing system size

when only one Fock state is used to mimic the infinite temperature state (Fig. 3.7c). Fig. 3.7c

shows 9 different realizations of using only one randomly-set Fock state and a single power-

law curve fitted to all with b ∼ −2.26 in ε1(t) ∝ (2L)b (Appendix B.4). This observation

is not utterly surprising, because a Fock state has a broad EON (eigenstate occupation

number) distribution (Fig. 3.7d and Appendix B.4). An EON distribution |cβ|2 can be

defined as the overlap of the initial state with the eigenbasis of the time-evolving Hamiltonian:
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Figure 3.7: Initial state preparation at h = 1 [J||]. (a) The scaling of the mean error ε1(t) with
respect to M/N sampling ratio, where M and N are the number of randomly-sampled states
and the dimension of the Hilbert space, respectively. The blue-triangles, red-pentagrams,
orange-diamonds and purple-circles stand for a single-chain size of L = 3 to L = 6, where
all have an exponent of b ∼ −2.5 in the fit ∝ a exp (−bM/N). (b) The scaling of the mean
error for small M/N ratio has power-law scaling ∝ a (M/N)b with b ∼ −0.5 for all system
sizes of L = 4 (blue-triangles), L = 5 (red-pentagrams), L = 6 (orange-diamonds) and L = 7
(purple-circles). (c) The data collapse applied to the scaling of the mean of the error ε1(t)
with respect to the system size for only one randomly-sampled Fock state. Each data point is
a random realization where the fitted curve gives an exponent of b ∼ −2.26 in ε1(t) ∝ (2L)b.
(d) The scaling of the effective dimension, de with the Hilbert space size, N , gives linear
scaling de = 0.3N , mimicking an infinite-temperature state. (e) The error signal ε1(t) with
respect to time, for an average of M = 7 (blue-dashed), M = 36 (red-dashed dotted),
M = 133 (green-dotted) M = 178 (black-solid) and M = 748 (pink-circles) randomly-
sampled Fock states. (f) The error signal ε2(t) = ||F ex(t)|2 − 1

M

∑M
j |Fj(t)|2| with respect

to time, for an average of M = 7 (blue-dashed), M = 36 (red-dashed dotted), M = 133
(orange-dotted) M = 178 (purple-solid) and M = 461 (green-circles) randomly-sampled
Fock states. Both subfigures (e)-(f) have a system size of L = 6.
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|ψ(0)〉 =
∑

β cβ |ψβ〉 → |cβ|2, where ψβ are the eigenstates and |ψ(0)〉 is the initial Fock state.

For instance, an infinite-temperature state has a uniform EON distribution: |cβ|2 = 1/N .

To be more precise, we can calculate the so-called effective dimension of the initial state,

de =
(∑

β |cβ|4
)−1

[36], like we did in Chapter 2 for the spinor condensates, and study the

scaling of the effective dimension with the dimension of the Hilbert space. For an infinite-

temperature state, de = aN ξ with an exponent of ξ = 1 and a = 1, which should be compared

with the scaling exponent for the effective dimension of a randomly-set Fock state. Fig. 3.7d

shows the data collapse on the effective dimensions of 10 different randomly-set Fock states

for each system size. The fit parameters de ∼ 0.3N show that a randomly-set Fock state also

gives an exponent ξ = 1, which more accurately demonstrates the broadness of the EON

distribution. The coefficient in front is bounded for effective dimension scalings, a ≤ 1 and

we see that a randomly-set Fock state has a ∼ 0.3. This reflects the fact that Fock state

does not show uniform distribution in the eigenbasis of the Hamiltonian, and hence we have

a nonzero error signal ε1(t).

In conclusion, we see that the exact shape of the EON distribution is insignificant as

L → ∞, as long as it is a broad distribution in the eigenbasis. Therefore, only one Fock

state could approximate the infinite-temperature OTOC reasonably well. We note that

our analysis is valid for h = 1 [J||] disorder strength. The observation that a single Fock

state could exhibit ξ = 1 exponent in its effective dimension scaling is possibly related to

the extended eigenstates existing throughout the spectrum in the chaotic regime. Hence,

whether the found power-law scaling in system size for a single Fock state as well as the

exponential and power-law scalings of the error in the sampling ratio M/N , depend on the

disorder strength is an interesting question for future studies and experiments. Our results

also show that a few randomly-sampled Fock states could be used as an alternative approach

to Haar-distributed random states in numerics to calculate OTOC with a β = 0 initial state

at the chaotic regime of a model.
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3.4.2 The interference measurement

|F (t)|2 is the quantity to measure in the interference measurement scheme [287]. We see

that Im(F (t)) ∼ 0 and Re(F (t)) ≥ 0 throughout the simulation time with the parameters

used in the Chapter, thus rendering |F (t)|2 a good quantity to measure. The interference

measurement scheme has been proposed to probe scrambling in the Bose-Hubbard model

previously [150,183], however note that the implementation of the interference measurement

further simplifies for the hard-core boson limit [287] which we utilize in the cold-atom setup

of our model. The steps of the interference detection protocol follow as (Fig. 3.8a):

(i) Generate two copies of the same randomly-sampled Fock state |ψj〉: We can first set

a 2D lattice to Mott-insulator phase with unit filling factor and then adiabatically ramp

the lattice potential to a double-well potential at each site in the y-direction. This would

produce (|10〉+ |01〉) /
√

2 state for a double-well; and via suppressing the tunneling between

wells in the double-wells, one can generate randomly sampled Fock states in 2D lattice at

half-filling. To make two copies of the initial state, we can introduce another lattice layer in

z-direction and apply the same operations of lattice potential simultaneously for both planes.

(ii) Apply σz1,1 gate on the first spin in the lower leg in the first copy.

(iii) Apply to both copies U(τ)σz1,i, where U(τ) is evolution forward in time for τ and σzi

gate is applied to any spin i further away from the first spin in the lower leg.

(iv) Hamiltonian sign reversal protocol : As illustrated in Fig. 3.8b, we apply a set of gates

to the lattice sites simultaneously to change the overall sign of the Hamiltonian so that we

could evolve the many-body state with −H. Given that we shine either laser pulses [265,288]

or microwaves [289] to implement single-spin rotations, our protocol of Hamiltonian sign-

reversal could be related to NMR (nuclear magnetic resonance) Hamiltonian engineering [157,

158], though with a difference of site-resolving pulses in the cold-atom setup. Remembering

R†z(θ)σ
xRz(θ) → cos θσx − sin θσy, R†z(θ)σ

yRz(θ) → cos θσy + sin θσx, we can create sign

difference in the X and Y coupling terms if we apply the Rz(π) pulse alternating on the

sites, e.g., odd-numbered and even numbered spins in the first and second legs, respectively.
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(a)

(b)

Figure 3.8: (a) The schematic that illustrates the circuit for OTOC measurement with
the spin operators σz1 and σzi . The circuit utilizes interference measurements providing
Tr {|ψf1〉 〈ψf1 |ψf2〉 〈ψf2|} = |Fj(τ)|2. (b) Schematic for Hamiltonian sign-reversal protocol
for evolution backwards in time: red and blue spheres stand for spin up and down states,
respectively. We simultaneously perform Rz(π)Rx(π) gates for the odd-numbered spins in
the first leg and even-numbered spin in the second leg, while only one gate Rx(π) is applied to
the rest of the spins. Rz(π) and Rx(π) are denoted by green and purple wiggly lines, meaning
that the single-spin gates for cold-atom systems could be realized via laser pulses [265, 288]
or microwaves [289].

In order to change the sign of the random disorder term, we apply Rx(π) gate to each of the

spins via utilizing R†x(θ)σ
yRx(θ)→ cos θσy − sin θσz. Then the gate sequence that we apply

to both copies becomes,

Πi:oddR
z
1,iR

x
1,iR

x
1,i+1R

z
2,i+1R

x
2,iR

x
2,i+1(π), (3.5)

where 1 − 2 denotes the leg number. Eq. (3.5) could be realized via a programmable

acousto-optic modulator (AOM) with multiple laser outputs whose frequency differences

are negligible [290] and high-resolution imaging devices that can provide single-site address-

ability [195,289].

(v) Apply σz1,1 gate on the first spin in the second copy.

(vi) Make an interference measurement between final copies |ψf1〉 =

U(−τ)σz1,iU(τ)σz1,1 |ψj〉 and |ψf2〉 = σz1,1U(−τ)σz1,iU(τ) |ψj〉 in the hard-core boson
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limit [94, 287]. By measuring the swap operator on both copies [287], we can obtain

Tr {ρf1ρf2} = |Fj(τ)|2 for each |ψj〉 initial state where ρf1 = |ψf1〉 〈ψf1|. The same

measurement could be applied to the copies of initial state to check if they are iden-

tical Tr
{
ρ2
j

}
= 1. The interference measurement scheme has been applied to measure

entanglement entropy [94].

(vii) Repeat the measurement protocol for M times with randomly chosen |ψj〉 initial

states to obtain 1
M

∑
j |Fj(τ)|2 which is equal to |F ex(t)|2 up to an error . 10−2 and ∼ 10−4

in decay and saturation regimes, respectively for M ∼ 102 Fock states. Fig. 3.7f shows

the difference between the square of the exact OTOC (Eq. (3.3)) and 1
M

∑M
j |Fj(τ)|2 for M

randomly chosen Fock states for a system size L = 6.

3.4.3 The interferometric scheme

We can measure F (t) with the interferometric approach [146], because the measurement of

the control spin either in x- or y-basis provides the real and imaginary parts of the OTOC,

respectively. Fig. 3.9 demonstrates the measurement circuit where the control spin needs to

be coupled only to the first spin in the ladder. The protocol follows as:

(i) Initialize the control spin in a superposition state of |ψc〉 = (|0〉c + |1〉c) /
√

2 to prepare

the many-body state

1√
2

[(
σz1,1σ

z
1,i(t) |ψj〉

)
|0〉c +

(
σz1,i(t)σ

z
1,1 |ψj〉

)
|1〉c
]
,

where the ladder-XX model is simultaneously initiated in a randomly-sampled Fock state

|ψj〉.

(ii) Apply controlled-σz1 operation to the first spin in the lower leg:(
|0〉c 〈0| ⊗ I1 + |1〉c 〈1| ⊗Rz

1,1(π)
)
⊗ I⊗2L−1.

(iii) Evolve the ladder-XX model forward in time and apply σzi rotation to the spin i:

Ic ⊗ U(τ)
(
I⊗i−1 ⊗ σz1,i ⊗ I⊗2L−i).

93



Figure 3.9: The measurement circuit for the interferometric approach [146] on the ladder-
XX model with local spin observables σz1 and σzi by using an auxiliary spin |ψc〉 to measure
only the real part of the OTOC.

(iv) Apply Eq. (3.5) to the ladder-XX model and evolve the many-body state with −H

as Ic ⊗ U(−τ).

(v) Apply σxc gate to the control spin before another controlled-σz1 operation, so that

we have
(
|0〉 〈0|c ⊗Rz

1,1(π) + |1〉 〈1|c ⊗ I1

)
⊗ I⊗2L−1. Further apply another σxc gate to the

control spin.

(vi) Make a measurement on the control spin in the x-basis to obtain the real part of the

OTOC, Re [Fj(t)] = 〈σxc 〉 = 〈ψj(t)|σxc |ψj(t)〉.

(vii) Repeat the measurement protocol for M times with randomly chosen |ψj〉 initial

states to obtain 1
M

∑
j Fj(τ) which is equal to F ex(t) up to an error shown in Fig. 3.7.

Outlook. The interference measurement scheme requires two copies of the same randomly-

sampled initial Fock state, which is challenging but doable. On the other hand, the inter-

ferometric approach could be realized with only one copy. However, in this measurement

scheme we need to couple an auxiliary spin to the first spin and implement controlled-spin

gates [291, 292] which is challenging in the current technology. Therefore both approaches

have certain (dis-)advantages. An important difference that we observe in two measurement

schemes are the error bounds due to the measurement output, |F ex(t)|2 = 1
M

∑M
j |Fj(t)|2

and F ex(t) = 1
M

∑
j Fj(t) for interference and interferometric, respectively. The error bounds

are stable throughout the evolution in the interferometric approach; while they significantly

lower in the saturation regime (by a factor of ∼ 102) and slightly higher in the decay regime

of an interference measurement. Therefore, in the case of measuring only the saturation
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values of the OTOC, the interference measurement seems to be more advantageous.

3.5 Conclusions

The ladder-XX model’s OTOC decay profiles and information spread show a variety of

phenomena ranging from quantum chaos to MBL phase and possibly rare-region effects in

the ergodic phase that we leave as a future study. We further discussed a Hamiltonian sign

reversal protocol that is a novel alternative to existing approaches in cold atoms and how to

apply both interference and interferometric measurements in the scrambling detection with

experimental random state preparation. Our results demonstrate that the experiments could

utilize only one randomly-set Fock state for sufficiently big many-body systems to reproduce

infinite-temperature OTOC up to a bounded error in the chaotic regime. The ladder-XX

has a more convenient experimental cold-atom setup compared to the Heisenberg chain,

since it lacks Z-coupling terms, while it is still interacting due to its quasi-1D nature. Thus,

it can be more easily implemented in the laboratory to further investigate scrambling and

understand how scrambling changes in the transition from 1D to 2D.
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Chapter 4

The Connection Between Information

Scrambling and Quantum Phase

Transitions

In this chapter, we elucidate the relation between out-of-time-order correlators (OTOCs) and

quantum phase transitions via analytically studying the OTOC dynamics in a degenerate

spectrum. Our method points to key ingredients to dynamically detect quantum phases via

out-of-time-order correlators for a wide range of quantum phase transitions and explains the

existing numerical results in the literature. We apply our method to a critical model, the

XXZ chain that numerically confirms our predictions.

4.1 Introduction

Out-of-time-order correlators (OTOCs) [145] probe information scrambling in quantum sys-

tems of different nature c.f. Refs. [133, 134, 142, 150, 156, 162, 167] and Chapter 3, and re-

flect the symmetries [162, 167] as exemplified in Chapter 3 or lack thereof [133, 140, 162] of

the underlying Hamiltonian. An OTOC, unlike a time-ordered four-point (or two-point)

correlator [139], can determine the spatial and temporal correlations throughout the sys-
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tem, thus giving rise to a bound on information spread [130, 132] as also demonstrated in

Chapter 3. Through such bounds and the decay rate of an OTOC, one can dynamically

detect thermal [150, 162] and localized phases [139, 162, 167–169] as again shown in Chap-

ter 3. Recently OTOC has been numerically observed to be sensitive to phase transitions

either signaling criticality in a diverging Lyapunov exponent [183] or showing signatures of

symmetry-broken phases in its saturation value [181]. The latter led to more research that

shows the relationship emerging in other forms, e.g., in excited states [185], or with more

experimentally-relevant platforms and system parameters [293]. The interest in providing

more verification for such an emergent relationship is understandable, not only because the

relationship points to a practical potential for OTOC in the dynamical detection of quantum

criticality, but also the underlying reason of this relationship was not understood [181]. It is

indeed an intriguing question how a chaos-detecting and out-of-time ordered correlator that

is contributed by presumably the entire spectrum could also probe ground state physics. The

reasons of this relationship remain unknown as well as an answer to whether the relationship

is universal. Motivated by these questions, here we develop a method on OTOC dynamics

to obtain intuition for the emerging connection between quantum phase transitions and out-

of-time-order correlators. Remarkably it is possible to dynamically decompose OTOC and

show that the ground state physics is the leading order contribution to it under the criteria

that our method provides. This is the origin why OTOC saturation value could detect the

ground state degeneracy. Therefore, we reach the conclusion that the OTOC is sensitive

to long-range order, e.g., its steady-state value presents a dynamical phase diagram, while

the quasi-long range order is not visible to it, e.g., its steady-state value remains featureless

in the quasi-long range ordered phase. Our method provides additional insights regarding

the relationship, e.g., (i) the relationship is not restricted to already-studied models and

1D [181,293]; (ii) the relationship can be extended to include the phase transitions in other

eigenstates [185]. Hence, our theory elucidates the reasons of this unexpected connection,

renders it intuitive and universal with further insights. To verify our method, we study the
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dynamics of 1D critical XXZ chain, where there are Ising and critical XY phases.

4.2 Method

Our aim is to be able to come up with an expression that predicts the saturation value of

OTOC for long times in the spirit of Eigenstate Thermalization Hypothesis (ETH) [294,295].

Complementary to the definition in previous Chapter Eqs. (3.3) and (3.4), OTOC can also

be defined as

F (t) =
〈
W †(t)V †W (t)V

〉
, (4.1)

where V and W are local operators and the expectation value is over an initial state |ψ(0)〉.

This initial state could be chosen as the ground state [156,181], or a random Haar-distributed

state [130] which is also utilized in Chapter 3 to approximate an equiprobable state I in

Eq. (4.1) [277, 296] (see Appendix C). Eventually, the original definition that is the out-of-

time-order commutator −Tr
(

exp[−βH]
Z

[W (t), V ]2
)

[140] could be reexpressed in terms of the

OTOC of operators W and V with an initial state at the inverse temperature β (see also

Eq. (3.3)). Therefore we can probe the information scrambling through OTOCs [146, 150,

156,157], as shown in Chapter 3.

Given |ψ(t)〉 =
∑

α cαe
−iEαt |ψα〉, where |ψα〉 are eigenstates of the Hamiltonian with

the associated eigenvalues Eα, we define a modified initial state |ψ′(0)〉 = V |ψ(0)〉 and

have |ψ′(t)〉 =
∑

β bβe
−iEβt |ψβ〉 where bβ =

∑
τ Vβτcτ and 〈ψβ|V |ψτ 〉 = Vβτ are eigenstate

expectation values [40]. Then the OTOC, Eq. (4.1), can be recast to a fidelity measure of

3-point function, and with the help of completeness relation
∑

γ |ψγ〉 〈ψγ| = I, it becomes

F (t) =
∑

α,β,γ,γ′

c∗αbβe
−i(Eβ−Eα+Eγ−Eγ′ )tW †

αγV
†
γγ′Wγ′β.

Now one can derive the saturation value for long times as well as dynamical features, such
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as revival timescales in integrable Hamiltonians with the procedure outline in Chapter 2.

We study the saturation value at long times, since this value is expected to contain the

signature of quantum phases. For long enough times, equilibration in OTOC dynamics can

be obtained only when the phase decoheres. Then the equilibration value can be obtained

by requiring Eβ − Eα + Eγ − Eγ′ = 0. This condition can be satisfied with four different

scenarios: (i) Eα = Eβ and Eγ = Eγ′ ; (ii) Eα = Eγ and Eβ = Eγ′ ; (iii) Eα = Eβ = Eγ = Eγ′ ,

which is contained both in (i) and (ii); (iv) Eβ−Eα+Eγ−Eγ′ = 0 with Eβ 6= Eα 6= Eγ 6= Eγ′ .

If a nondegenerate spectrum is assumed, i.e., Eα = Eβ implies α = β, the OTOC reduces

to,

Ft→∞ =
∑
α,γ

c∗αbα|Wαγ|2V †γγ +
∑
α,β

c∗αbβW
†
ααV

†
αβWββ −

∑
α

c∗αbα|Wαα|2V †αα

+
∑

α 6=β 6=γ 6=γ′
c∗αbβW

†
αγV

†
γγ′Wγ′β, (4.2)

with four terms corresponding to four conditions (i)-(iv), respectively. The last term as-

sociated with the condition (iv) can be in fact eliminated by invoking the Definition 1 in

Chapter 1, e.g., the condition of non-degenerate energy gaps. However, we keep this term

for completeness in the rest of the Chapter.

We note that writing OTOC as in Eq. (4.2) is useful to understand the quantum chaotic

systems better, e.g., in chaotic spin chains with conserved quantities that also obey ETH,

the decay of OTOC to zero is not supposed to be exponential, but inverse polynomial in

system size [297] and OTOCs capture eigenstate correlations that ETH cannot [166]. These

correlations can readily be seen in the first, second and the fourth terms of Eq. (4.2). See

Appendix C.5 for some remarks that immediately follow from Eq. (4.2) about systems with

nondegenerate chaotic spectra. Now we are going to generalize Eq. (4.2) to a form, which

is more generic and allows degeneracy in the energy spectra, because a quantum phase

transition usually involves energy degeneracy, e.g., degeneracy from spontaneous symmetry

breaking or other sources [187]. We group all eigenstates of the Hamiltonian into degenerate
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sets labeled by θ, and each state in its corresponding set is denoted by α for an eigenstate

ψ[θ,α]. The OTOC can be reorganized with the new notation, which is one main result of

this chapter,

F (t→∞) =
∑
θθ′

∑
αβγγ′

c∗[θ,α]

(
b[θ,β]W

†
[θ,α][θ′,γ]V

†
[θ′,γ][θ′,γ′]W[θ′,γ′][θ,β]

+ b[θ′,β]W
†
[θ,α][θ,γ]V

†
[θ,γ][θ′,γ′]W[θ′,γ′][θ′,β]

)
+

∑
αβγγ′

(
−
∑
θ

c∗[θ,α]b[θ,β]W
†
[θ,α][θ,γ]V

†
[θ,γ][θ,γ′]W[θ,γ′][θ,β]

+
∑

θ 6=θ′ 6=φ 6=φ′
c∗[θ,α]b[θ′,β]W

†
[θ,α][φ,γ]V

†
[φ,γ][φ′,γ′]W[φ′,γ′][θ′,β]

)
. (4.3)

Here, θ, θ′, φ, φ′ denote degenerate sets while α, β, γ, γ′ denote quantum states in their cor-

responding sets. Eq. (4.3) can determine the saturation value of OTOC accurately if the

OTOC saturates at a finite time. If the OTOC does not saturate or shows transient effects,

Eq. (4.3) still predicts the time-average of OTOC signal F̄ = 1/T
∫
dtF (t) over a time inter-

val T with sufficient accuracy. In this sense, Eq. (4.3) is not limited to long-time dynamics

t→∞ (see Appendix C).

We look for the criteria that the ground state subspace contribution is leading order in the

OTOC saturation value Eq. (4.3). For this, we first setW = V as the order parameter observ-

able in Eq. (4.3) for convenience. Then we expand the coefficients b[θ,β] =
∑

κ,τ W[θ,β][κ,τ ]c[κ,τ ]

in Eq. (4.3) by using the initial state. If (i) the initial state is set to the state where the phase

transition is expected to happen, e.g., the ground state(s) c[1,1] = 1; and (ii) we apply an

ansatz on the matrix elements of the observable projected on this state, e.g., |W[1,α][θ,β]|2 � 1,

where θ 6= 1 is a different energy subspace than the subspace of the ground state(s), we ob-

serve the following dynamical decomposition:

F (t→∞) = Fgs(t→∞) + Fex(t→∞). (4.4)
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Here Fgs(t → ∞) is the ground subspace contribution, whereas the Fex(t → ∞) is the

contribution of higher energy excitations. When the criteria are satisfied, the latter is a

correction to the ground-state physics in the OTOC in the ordered phase, and this is the

second part of our conjecture. The assumption on the initial state sets the scrambling

discussed in the rest of the chapter to effectively zero temperature. Whereas the operator

ansatz becomes even more specific for the phase of interest. If there is a symmetry-broken

long-range order to capture, the fluctuations between the matrix elements of the observable

are suppressed in the ground state subspace, meaning there is at least a pair of matrix

elements accumulating the order → |W[1,α][1,β]|2 ∼ O (1). This modifies the operator ansatz

as |W[1,α][1,β]|2 � |W[1,γ][θ,γ′]|2 for the ordered phase. Thus, we derive the expression for

Fgs(t→∞) in the ordered phase as,

Fgs(t→∞) ∼
∑
β,γ,γ′

W[1,1][1,γ]W[1,γ][1,γ′]W[1,γ′][1,β]W[1,β][1,1], (4.5)

while the operator ansatz simultaneously implies that the OTOC is dominated by the ground

state physics, Fgs � Fex in the ordered phase. On the other hand, the fluctuations be-

tween the matrix elements of the observable are maximal in a disordered phase, implying

W[1,α][1,β] ∼ 0 for all states in the ground state subspace, which results in Fgs(t → ∞) ∼ 0.

Therefore, the OTOC is dominated by the higher energy levels in the spectrum Fex(t→∞).

This result is an important insight that originates from the dynamical decomposition method

and cannot be observed in real-time dynamics simulations, e.g., in Ref. [181]. In addition, the

operator ansatz |W[1,α][θ,β]| � 1 guarantees a bounded correction term Fex(t→∞)� 1. As

a result, (i) the OTOC is able to capture the degeneracy in the ground state (Eq. (4.5)) and,

(ii) the correction of the excited states always remains bounded; all of which explains why

the OTOC differentiates an ordered phase from a disordered one, e.g., in ground state [181]

or excited-state [185] phase transitions. A mixed initial state (e.g. finite or infinite tempera-

ture) violates the initial state assumption, hence suggesting a smoothed phase boundary by
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Figure 4.1: Phase diagram based on the OTOC saturation values via Eq. (4.3), x-axis is the
spin interaction strength in the z-direction Jz and y-axis is the magnetic field h, for N = 14
system size and σzi bulk spin observable, when periodic boundary conditions are set and the
initial state is a ground state. The red lines are the phase boundaries based on Bethe ansatz
technique for infinite-size system [65].

washing away the sharp signature at the transition point [293]. Hence the dynamical decom-

position method reveals the key ingredients of the emergent connection between information

scrambling and symmetry-breaking phase transitions, rendering this unexpected numerical

observation [181] a fundamental connection.

Advanced numerical methods (Lanczos, tensor networks) can be employed to determine

only the lowest-lying states to give the leading order term in OTOC, Eq. (4.5). In this

sense, Eq. (4.5) provides us a low-cost alternative to simulating the real-time OTOC dy-

namics in the computation of the OTOC saturation value when we use the OTOC to probe

criticality. Finally, we predict that the ground state contribution to the OTOC saturation

cannot efficiently distinguish quasi-long range order from a disordered phase. Because, the

quasi-long range order produces zero expectation value for the order parameter (per site):

W[1,α][1,β] ∼ 0, similar to a disordered phase, and hence Fgs(t → ∞) ∼ 0 follows with cor-

rection term dominating the OTOC saturation F (t→∞). In the following we will provide

verification for our method and theory on the 1D XXZ model.
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4.3 Model and the Results

The Hamiltonian of the XXZ chain reads,

H = J
∑
i

(
σxi σ

x
i+1 + σyi σ

y
i+1 +

Jz
J
σzi σ

z
i+1

)
+ h

∑
i

σzi ,

where σni are spin-1/2 Pauli matrices with energy scale set to J and hence time scale set to

1/J ; Jz/J and h are the z-axis spin coupling strength and the magnetic field strength, respec-

tively. The red lines in Fig. 4.1 show the phase boundaries produced by an exact method

(Bethe Ansatz) for an infinite-size system. Therefore, this model has three phases: two

gapped Ising phases (ferromagnetic and antiferromagnetic) at large |Jz/J | and a gapless XY

phase with quasi-long range order for small |Jz/J |, i.e., the Berezinskii-Kosterlitz-Thouless

transition [298,299]. We choose the OTOC operators as σzi or σxi for the spin at the ith site,

based on the order parameters of the ferromagnetic Ising phase (
∑

i σ
z
i ), antiferromagnetic

Ising phase (
∑

i(−1)iσzi ), and the XY-phase (
∑

i σ
x
i ). Fig. 4.1 shows the phase diagram

based on the saturation values of OTOCs with σzi [computed using Eq. (4.3) for a system of

N = 14 spins]. We numerically confirm our theory with OTOC saturation values that are

either nonzero or nearly zero in the Ising and XY phases, respectively. In fact, the OTOC

recovers the phase boundaries of the Bethe ansatz solution: the agreement is perfect at the

ferromagnetic-XY phase boundary and approximate at the antiferromagnetic-XY boundary

due to significant finite-size effects (see Appendix C).

We plot two cross-sections from Fig. 4.1 in Fig. 4.2a where the lines with orange-squares

(h/J = 0) and blue-circles (h/J = 4) are the saturation values, Eq. (4.3) for a short-time

tJ ∼ π
4
101 (long-time results in the Appendix C). We also plot the leading order term in the

saturation, Fgs(t→∞) in Fig. 4.2a with purple-cross (h/J = 0) and red-diamond (h/J = 4)

lines. The OTOC saturation exactly reduces to the ground state contribution with no

correction Fex = 0 in the Ising-ferromagnet, meaning that the saturation value in the ordered

phase is exactly predicted by the Eq. (4.5). The reason follows as: the spins are fully polarized
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Figure 4.2: (a) The OTOC saturation values for a periodic-boundary chain with N = 14
size and a short-time of tJ = π

4
101 at fields h/J = 0 (orange-squares: Eq. (4.3), purple-

crosses: Eq. (4.5)) and h/J = 4 (blue-circles: Eq. (4.3), red-diamonds: Eq. (4.5)), for σzi
observable. (b) Real-time dynamics (blue-circles) averaged over a time interval tJ = 10,
F̄ , and its ground state contribution Fgs (orange-diamonds) with DMRG algorithm and
MPS for N = 60 at h/J = 0. (c) System size scaling of Fgs shows J cz = aN ξ + J∞z with
exponent ξ = −0.98 and J∞z = 1.02. (d) The OTOC saturation values for σxi observable at
h/J = 0, N = 13 (blue-circles: Eq. (4.3), red-diamonds: Eq. (4.5)) and N = 14 (orange-
squares: Eq. (4.3), purple-crosses: Eq. (4.5)) for time tJ = π

4
103. Inset: System-size scaling

of Eq. (4.3) (blue-circles) and Eq. (4.5) (red-diamonds) at Jz/J = −0.9.
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in the ferromagnetic ground states, and they belong to the opposite magnetization sectors

of the Hamiltonian which has magnetization conservation [H,Sz] = 0 (Sz =
∑

i σ
z
i ). Since

they are the only states of their corresponding magnetization sectors, the fluctuations in the

matrix elements are exactly zero, |W[1,α][θ,β]| = 0. This is why the system does not scramble

information at all F (t→∞) = 1, even though the XXZ model is an interacting model. We

emphasize that this nonscrambling is not due to integrability of XXZ model, rather it is the

signature of critical order. The rotational symmetry also protects the ferromagnetic ground

states from hybridizing, all of which results in no finite-size effects at the phase boundary

from ferromagnet to XY-paramagnet. In the disordered-XY phase (h/J = 0), the ground

state contribution is zero Fgs = 0, leaving the correction term to dominate the saturation

value, however with a small magnitude as explained above. This is the reason of the mismatch

between the OTOC saturation value and its leading order term, seen in the XY-phase of

Fig. 4.2a, while we are still able to differentiate the disordered phase from the ordered phases.

Finally, in the Ising-antiferromagnet the exact agreement between Eqs. (4.3) and (4.5) takes

place only at the Jz/J → ∞ limit. As we approach the phase boundary towards the XY-

phase, the fluctuations between matrix elements gradually increase, |W[1,α][1,β]| → 0 (see

Appendix C), result in a nonzero but small correction term to the ground-state contribution

and eventually drive the phase transition. Since the finite-size effect is significant for small

sizes with exact methods, we apply density-matrix renormalization group (DMRG) algorithm

with matrix product states (MPS) [300] to a system with N = 60 and compute the real-time

dynamics averaged over a short-time interval of tJ = 10 shown with blue-circles in Fig. 4.2b

with orange-diamonds being Fgs, Eq. (4.5). Note that the transition point significantly shifts

towards the equilibrium phase transition point, Jz/J = 1. We extract the system-size scaling

parameters from our DMRG computations, Fig. 4.2c and observe that the system indeed

approaches to the equilibrium transition point when N →∞, J cz = aN ξ +J∞z with exponent

ξ = −0.98 and J∞z = 1.02 with a power-law scaling.

We plot the OTOC with σxi observable for N = 13 (blue-circles) in Fig. 4.2d: the OTOC
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saturation remains small in all three phases and thus the OTOC can hardly distinguish the

XY-ordered from XY-disordered phases. When the chains with even number of spins are

used (N = 14, orange-squares) in the theory, we do not even obtain any difference between

the phases. This is in agreement with our theoretical predictions discussed previously. Ad-

ditionally, the fluctuations between the matrix elements of quasi-long range order parameter

σxi are always maximal regardless of the phase. Hence, we observe the mismatch between

the OTOC saturation and its ground state contribution (red-diamonds N = 13 and purple

crosses N = 14). The inset of Fig. 4.2d shows that the OTOC saturation value and its ground

state contribution both decrease with the system size for odd-numbered chains, exhibiting

that the OTOC saturation cannot capture the quasi-long range order in bigger systems and

thermodynamic limit. We briefly note that the detection of the order at Jz/J = −1 is robust

due to the massive degeneracy in the ground state at this point of different symmetry (SU(2)

symmetry).

4.4 Conclusions

Our theoretical predictions on the XXZ model can be experimentally observed with cold

atoms [301]. Based on the studies in the literature [181,185,293] and our results in the XXZ

model, our method seems to be universal in explaining the reasoning behind the relationship

between scrambling and the quantum criticality. In this sense, our method is an analogue of

the Eigenstate Thermalization Hypothesis: It tells us the criteria of how scrambling probes

criticality; though it is independent of the integrability of the system, unlike ETH. Dynamical

decomposition of OTOC is a complementary tool to the real-time evolution of a state in

determining the OTOC saturation value. However in addition to providing the saturation

value, it also presents us the conditions for OTOC to show either order or disorder. Based

on this fact, the leading order term in our theory, Eq. (4.5), could mark the phase transition

points via system-size scalings. In conclusion, given that the initial state of OTOC is a state
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where the phase transition is expected to happen and the off-diagonal matrix elements of

the observable are sufficiently suppressed in this state (or degenerate state subspace), OTOC

could be used to dynamically detect the quantum phases with long-range order and capture

the symmetry-breaking quantum phase transitions.
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Chapter 5

Topologically Induced Prescrambling

We report a numerical observation where the infinite-temperature out-of-time-order corre-

lators (OTOCs) directly probe quantum phase transitions at zero temperature, in contrast

to common intuition where low energy quantum effects are washed away by strong thermal

fluctuations at high temperature. By comparing numerical simulations with exact analytic

results, we determine that this phenomenon has a topological origin and is highly generic,

as long as the underlying system can be mapped to a 1D Majorana chain. Using the Majo-

rana basis, we show that the infinite-temperature OTOCs probe zero-temperature quantum

phases via detecting the presence of Majorana zero modes at the ends of the chain that

is associated with 1D Z2 topological order. Hence, we show that strong zero modes also

affect OTOCs and scrambling dynamics. Our results demonstrate an intriguing interplay

between information scrambling and topological order, which leads to a new phenomenon

in the scrambling of generic nonintegrable models: topological order induced prescrambling,

paralleling the notion of prethermalization of two-time correlators that defines a time-scale

for the restricted scrambling of topologically-protected quantum information.
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5.1 Introduction

Out-of-time-order correlators (OTOCs) have become a widely-appreciated tool to measure

the correlation build-up in space and time, and hence quantitatively characterize information

scrambling in interacting many-body systems [133, 134, 142, 156, 167]. Started off as a

theoretical tool to understand quantum information in a black hole [133, 261] its impact

quickly expanded to a wide variety of subjects including but not limited to: quantum chaos

[132, 140, 150, 157, 162], many-body localization [139, 162, 167, 169] (c.f. Ch. 3), quantum

integrability [132, 157, 179, 180], quantum criticality [183] and recently symmetry-breaking

quantum phase transitions in Ref. [181] and Chapter 4 in this dissertation.

For completeness, let us repeat the definition of OTOC here. At temperature T = 1/β,

an OTOC is defined as,

F (t) = Tr
(
e−βHW †(t)V †W (t)V

)
, (5.1)

where W and V are local quantum operators and H is the Hamiltonian. At infinite temper-

ature (T = ∞ and β = 0), the Boltzmann weight e−βH becomes the identity operator and

thus the OTOC reads

F (t) =
1

M

M∑
n=1

〈
ψn|W †(t)V †W (t)V |ψn

〉
≈
〈
ψh|W †(t)V †W (t)V |ψh

〉
. (5.2)

Here we sum over a complete basis of the Hilbert space of dimension M , while in the second

line, we use a random state |ψh〉 drawn from the Haar measure [130] like in Chapter 3 to

approximate an infinite-temperature state in a correlation function, e.g., Eq. (5.1) [84, 85,

277,296,302].

The OTOC of a generic system is expected to decay to zero fast where the rate of de-

cay carries information on the chaotic properties of the system, and to saturate at zero in

long time dynamics. Saturation at zero indicates that the system scrambles information
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Figure 5.1: The schematic of dynamic phase boundaries determined by OTOC time-average
F̄ with respect to control parameter h and temperature T . The system experiences a topo-
logical phase transition (TPT) defined at T = 0 temperature from Z2 topologically ordered
phase to a trivial phase. The graphics with red-grids and solid-blue show how the topo-
logical phase survives in dynamics and at higher temperatures for integrable and generic
nonintegrable models, respectively. While integrable models recover zero-temperature phase
boundary at infinite temperature, nonintegrable models experience a shift that tends to
destroy order quicker than at low temperature.
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completely, whereas a finite saturation value points to a restricted scrambling [137]. In this

Chapter, we focus on the regime starting shortly after the (initial) decay of OTOC and

lasts for a time interval of T . In the previous Chapter, we showed that the OTOC satura-

tion value at zero-temperature exhibits order parameter-like behavior, and thus can directly

probe the long-range quantum order and quantum phase transitions. In contrast to the

naive intuition, where thermal fluctuations wash away low energy quantum effects at high

temperature, in this chapter we observe an emergent relation between infinite-temperature

information scrambling and zero-temperature Z2 topological order in the bulk in multiple

model systems, e.g., non-interacting, interacting and/or nonintegrable. The effect is robust

where the qualitative features remain invariant regardless of microscopic details, e.g., integra-

bility and symmetries. In particular, by setting W and V as local degrees of freedom localized

near the edge of the system, we find that the time-average of OTOC F̄ = 1/T
∫
dtF (t) (or

equivalently the saturation value, if the OTOC saturates) behaves like an order parameter

(Fig. 5.1). It is worthwhile to emphasize that the infinite temperature OTOCs are effective

tools for detecting chaos that is based on the entire energy spectrum [132,140,150,157,162]

as already demonstrated in Chapter 3. Hence it is surprising and highly not obvious that

this correlator can also directly probe zero temperature physics of the ground state, such

as quantum phase transitions. Then what is the underlying physics that allows the infinite

temperature out-of-time-order correlator at the edge to accurately sense the bulk ground state

physics and capture the bulk phase transition? Is this a generic feature?

Through a careful analysis, we find that this connection arises universally as long as the

quantum system can be mapped to a Majorana chain (1D superconductor) [53], and F̄ value

of edge operators serves as the Z2 topological order parameter. It is known that Z2 topological

order results in a two-fold degeneracy for all energy eigenstates of the entire spectrum; and

recently it is pointed out that this degeneracy structure of Z2 topological order has a highly

nontrivial impact on dynamics at any temperature, e.g., long coherence times for edge spins

in Ref. [115] while the zero modes surviving in the dynamics is dubbed as strong zero modes,
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and pre-thermalization effect in Ref. [303]. Our results extend this impact of Z2 topological

order to information scrambling and OTOCs, opens up new avenues to dynamically detect

and study topological order through utilizing information scrambling as an order parameter.

Paralleling the well-known prethermalization effect appearing in simpler correlators [35,303,

304], we find that a new time-scale appears in information scrambling when Z2 topological

order [305] exists. We name this phenomenon topologically induced prescrambling and hence

define the time-scale as prescrambling time. Fig. 5.2 shows a cartoon picture of prescrambling

for a generic (nonintegrable) model with solid-red line where the system experiences restricted

scrambling, F̄ 6= 0, forming a plateau at τpresc for a period of time T after the first OTOC

decay and preceding the full scrambling at τsc in a topological phase. On the other hand,

the purple-dotted line in Fig. 5.2 shows the expected rapid OTOC decay until scrambling

time τsc for a generic system with no topological order. Prescrambling (green panel) plateau

in Fig. 5.2 survives at infinite-time in the thermodynamic limit for systems with extensive

number of symmetries, e.g., non-interacting and/or integrable limits, with no full scrambling

occurring. Such systems might demonstrate F̄ 6= 0 in their trivial phases [162, 168] as

observed in Chapter 3, nevertheless it is still possible to mark down the topological phase

transition due to sharp transition signatures. We compare the infinite-temperature dynamic

phase boundary with zero-temperature quantum phase boundary where topological order

starts to develop in Fig. 5.1 and observe that they perfectly coincide with each other in

integrable systems. Away from the integrability, the dynamical phase boundary significantly

shifts away from the zero-temperature phase boundary, although the qualitative trend of F̄

survives.

The dynamical detection of topological order has been under intensive investigation [115,

213, 303, 306, 307]. Furthermore, the topological insulators and superconductors have been

studied [308–312] and classified [313] according to their non-equilibrium dynamics rather in

an analogy to the classification tables for topological states of matter [314] superposed with

the notion of dynamical quantum phase transitions [199, 315, 316]. Thus, understanding if
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Figure 5.2: The schematic of infinite-temperature OTOC evolving in time t for a quantum
system with (solid-red line) and without (dotted-purple line) Z2 topological order. A generic
system with Z2 topological order would exhibit topologically induced prescrambling F̄ 6= 0
before fully scrambles at scrambling time τsc. We coin τpresc for the prescrambling time-
scale. Our study focuses on this prescrambling plateau (green panel), where the OTOC
time-average exhibits order parameter like behavior (Fig. 5.1).

the information scrambling has fundamental restrictions when topological order exists is a

puzzle left at the intersection of many sub-fields.

In Sec. II, we are going to detail our numerical observation around its corresponding

Majorana chain and discuss about the connection between infinite temperature scrambling

and T = 0 topological order with quantitative arguments. Later in Sec. III, we are going

to show how the topological order is encoded in the saturation regime of OTOCs based

on the analytical calculations in the non-interacting regime. In Sec. IV, we extend the

discussion to interacting and/or nonintegrable models and demonstrate topologically induced

prescrambling. Later we show how topological order persists in two separate contributions

to the coherence times of the prescrambling plateaus. This will help us to explore if and how

strong zero modes affect the scrambling dynamics of OTOC different than the dynamics

of two-time correlators. Finally we discuss the effect of prescrambling on dynamic phase

diagrams. We conclude in Sec. V and elaborate on possible questions to answer in the

future.
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5.2 Demonstration of Topological Origin

It turns out that the connection between infinite-temperature information scrambling and

quantum phases at zero temperature has a robust topological origin. Let us demonstrate

how the topological origin reveals itself in the dynamics of OTOCs with an example on 1D

XXZ chain,

H = J
∑
i

(
σxi σ

x
i+1 + σyi σ

y
i+1 +

Jz
J
σzi σ

z
i+1

)
. (5.3)

At T = 0, the model exhibits quantum phase transitions between a gapped Ising phase

|Jz| > 1 and a critical XY-phase |Jz| < 1 where the spectrum is gapless [65]. We employ

Haar-distributed random states |ψh〉 and compute F̄ shown in Fig. 5.3.

If spin operators at the edge of the chain W = V = σzedge are utilized (blue-circles),

the infinite-temperature OTOC saturation value behaves like an order parameter of the

zero-temperature quantum phase transition, i.e., F̄ ∼ 0 in the XY phase (|Jz/J | < 1) and

increases monotonically as we enter the Ising phases (|Jz/J | > 1). In contrast, under periodic

boundary conditions (yellow diamonds line) and for a bulk spin W = V = σzbulk (green left-

pointing triangles), the OTOC no longer differentiates the two phases, and the transition

point is smoothed out consistent with predictions from the previous Chapter.

To demonstrate the role of topological order, we rewrite the Hamiltonian of the XXZ

model in the Majorana basis. First, via the Jordan-Wigner (JW) transformation [49]

σzi = −
∏
j<i

(
1− 2c†jcj

)(
ci + c†i

)
, (5.4)

σxi = 1− 2c†ici,

σyi = −i
∏
j<i

(
1− 2c†jcj

)(
ci − c†i

)
.
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the spin Hamiltonian is mapped to

H = J
∑
i

[(
1− 2c†ici

)(
1− 2c†i+1ci+1

)
−
(
ci + c†i

)(
ci+1 − c†i+1

)
+

Jz
J

(
ci − c†i

)(
ci+1 + c†i+1

)]
, (5.5)

which can be written in terms of the Majorana fermions a2j−1 = cj+c
†
j and a2j = −i

(
cj − c†j

)
[53]:

H = −J
∑
i

(a2i−1a2ia2i+1a2i+2 + ia2i−1a2i+2) + iJz
∑
i

a2ia2i+1. (5.6)

In the Majorana basis, the spin system is mapped to an interacting Majorana chain. The XY

(Ising) phase is mapped to a gapless (topological) phase, and the quantum phase transition

becomes a topological transition. Same as the Kitaev chain, the topological phase in Eq. (5.6)

develops Z2 topological order and is characterized by two Majorana zero-modes localized at

the two ends of the chain [53].

The physics can be understood by considering the Jz � J limit, where Eq. (5.6) converges

to the Kitaev model [53] with two zero-energy Majorana modes γ1 = a1 and γ2 = a2N

fully decoupled from the rest of the chain. Away from the Jz � J limit, quartic terms

in the Hamiltonian introduce interactions, but the zero-energy Majorana modes at the two

ends of the chain remain topologically protected for the entire topological (Ising) phase.

The existence of two Majorana modes at the two ends of the chain (γ1 and γ2) indicates

that a zero-energy non-local fermion d = γ1+iγ2√
2

can be defined. Because of its zero-energy

nature, for an eigenstate of the Hamiltonian |ψ0〉, another degenerate state |ψ1〉 = d |ψ0〉

must exist with an opposite fermion parity. Therefore, in the topological phase, the edge

modes are responsible for the degenerate subspaces forming not only in the ground state,

but throughout the entire spectrum [53, 65]. In other words, in contrast to a conventional

(Landau-type) quantum phase transition, where across the phase boundary the ground state
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XY-
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Ising-

phase

Figure 5.3: Long-time average of OTOC for XXZ model for edge-spin operators W = V =
σzedge in blue circles and its (later explained) diagonal contribution in orange squares; for
bulk-spin operators σzbulk with periodic boundary chain (pbc) in yellow diamonds and its
diagonal contribution in purple dots; with open boundary chain (obc) in green left-pointing
arrows and the diagonal contribution in light-blue right-pointing arrows. System size is
N = 14 and the time of averaging is tJ = 800.
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changes from non-degenerate (the disordered phase) to degenerate (the ordered phase), Z2

topological order has a direct impact for the degeneracy of all eigenstates in the entire

energy spectrum, i.e., two-fold degeneracy for the entire spectrum. The effect has a direct

impact on measurements and dynamical quantities at any temperature [115,303] and it is in

sharp contrast to a conventional phase transition that can only be detected by zooming to the

ground state at low-temperature. This is the key reason why the infinite-temperature OTOC

is capable of detecting a zero-temperature topological order, but not a regular Landau-type

quantum order (unless it can be mapped into a topological order).

5.3 Topological Edge Physics Encoded in the Out-of-

time-order correlators

In this section, we study the non-interacting limit to provide analytical arguments in the

demonstration of how infinite-temperature information scrambling of edge spins encodes the

existence or absence of Majorana zero modes. Later we will mark the topological phase

transition point via F̄ in this non-interacting limit.

5.3.1 Transverse-field Ising Model

We consider a non-interacting, hence analytically solvable model and directly compute the

contributions of Majorana zero-modes in the infinite-temperature OTOCs with edge opera-

tors. The Hamiltonian for the transverse-field Ising model with open boundary conditions

is,

H = −J
N−1∑
j=1

σzjσ
z
j+1 + h

N∑
j=1

σxj . (5.7)

Eq. (5.7) has a critical point at h = 1 that separates a ferromagnetic ordered phase from a

disordered phase. The time-average of OTOC F̄ with σz1 at β = 0 is shown with the lines
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Figure 5.4: Transverse-field Ising model at infinite-temperature. The OTOC time-average
of the edge spin operators σz1 via real-time OTOC dynamics (blue circles) at N = 14 and
(orange diamonds) at N = 50 where we used MPS (see Appendix D.1) for a time interval
tJ = π

4
10 ∼ 7.85. The yellow-pentagrams show F11 based on Eq. (5.9) where the Majorana

edge states are extracted from HBdG matrix at N = 50 at infinite time limit for a comparison
with other data. The green-triangles show the OTOC time-average of the bulk spin operator
σz7 at N = 14 for a time interval tJ = π

4
103 ∼ 800.
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Figure 5.5: Transverse-field Ising model at infinite-temperature. (a) The OTOC dynamics
F (t) with respect to tJ . Blue-circle and orange-diamond lines are the OTOC of edge σz1
operator for h = 0.1 and h = 0.9, respectively. Yellow-cross and purple-triangle lines are the
OTOC of bulk σz25 operator for h = 0.1 and h = 0.9, respectively. All curves are computed
in t-DMRG for a system size of N = 50, averaged over 10 random product states to generate
β = 0 results. The error bars stand for 1σ variation around the mean value of OTOC due
to oscillations in this set of random states. (b) Robustness of order against changing the
boundary conditions: a strong field is applied to the first spin only for N = 13 and tJ ∼ 8
(blue circles); and to the edge fermions in the non-interacting fermion chain for N = 50
and tJ → ∞ (yellow squares). The edge modes shifted to the nearest site that is free of
pinning field, F̄ of σz2 spin (red-diamonds) and F̄33 of a3 Majorana fermion (purple asterisks),
respectively.
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with blue-circles and orange-diamonds for N = 14 and N = 50, respectively in Fig. 5.4.

The simulation with N = 50 spins is performed with matrix product states (MPS) in a t-

DMRG (time-dependent density matrix renormalization group) method, (see Appendix D.1

for details). Here the error bars give us an information on the amplitude of oscillations in

time, as we time-average the real part of the OTOC signal in a time interval of tJ = π
4
10 ∼

7.85. For an edge spin operator σz1, F̄ behaves like an order parameter, which is F̄ ∼ −1

in the disordered phase (h > J) and increase monotonically in the ordered phase (h < J).

On the contrary, for a bulk spin operator, σz7, this feature disappears (green-triangles in Fig.

5.4). This observation reflects that the physics captured by edge- and bulk-spin operators are

different; a similar observation to what we presented for the XXZ model earlier. To further

show how the real-time OTOC dynamics looks like, we contrast time-evolving OTOC F (t)

of edge and bulk operators in Fig. 5.5a. The OTOCs of the edge spin converge to different

values at large times, depending on the value of h/J , while the OTOCs of bulk spins always

converge to 0 at large t, as long as h 6= 0. The h = 0 limit is trivial for information

scrambling, because the spin chain turns into the classical Ising model without quantum

fluctuations or non-trivial dynamics, and thus information cannot scramble, F (t) = 1.

The results above can be easily understood by using the Majorana basis, which transforms

the spin Hamiltonian into a non-interacting Majorana chain

H = −iJ
N−1∑
j=1

a2ja2j+1 − ih
N∑
j=1

a2j−1a2j, (5.8)

where we used Eqs. (5.4). A figure adapted from Ref. [53] can be seen in Fig. 5.7 which

shows the cases (i) nonzero J and h where all Majorana fermions are coupled to each other;

(ii) the topological superconductor phase with h = 0 where two Majorana fermions remain

unpaired and their wave functions are depicted with red and blue lines at the edges; (iii) the

trivial phase where Majorana fermions of different sites are not coupled. The topological

superconductor phase is characterized by the presence of Majorana edge modes [22], and
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Figure 5.6: (a) The second derivative of the OTOC time-average d2F̄11(t → ∞)/dh2 pin-
points the phase transition point via its maximum. (b) The system-size scaling of the phase
transition point gives hdc ∼ N−0.7189 + 1.0069 with R2 = 0.9996, meaning in the thermody-
namic limit the OTOC pinpoints the phase transition point as h∞dc = 1.0069.

Figure 5.7: A pictorial representation of the Hamiltonian Eq. (5.8) where red circles and
blue rectangles stand for Majorana and Dirac fermions, respectively. The top schematic is
Eq. (5.8) for nonzero J and h. The lower two schematics are for the topological supercon-
ductor (h = 0) and the trivial phases (J = 0), respectively.
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the topological phase transition between two phases lies at h = J , which coincides with the

QPT in the TFIM.

In contrast to the XXZ model discussed above, Eq. (5.8) only contains quadratic terms,

hence non-interacting, and thus can be easily diagonalized, which enables us to compute

infinite-temperature OTOC saturation values F̄ exactly. This exact solution agrees perfectly

with numerical simulations in Fig. 5.4. More interestingly, as will be shown below, the

analytical result exhibits that F∞ is solely contributed by Majorana zero modes, while the

contributions from all other finite energy excitations fade away at large t.

5.3.2 Exact solution

We compute the OTOC of an edge spin using the Majorana basis in this section. In

the Majorana basis, the OTOC of Majorana fermions can be defined as F2i−1,2i−1(t) =

Tr (a2i−1(t)a2i−1a2i−1(t)a2i−1) /2N , where we set W = V = a2i−1 = ci + c†i . Since it can be

easily shown that the OTOC of edge Majorana fermions must be identical to the OTOC of

edge spins, σz1 =
(
c1 + c†1

)
= γ1 and σzN = P

(
cN − c†N

)
= iPγ2, where P =

∏N
j

(
1− 2c†jcj

)
is the parity operator, here we focus on F11 with W = V = a1.

The Majorana-fermion OTOC F2i−1,2i−1(t) can be conveniently computed by utilizing

the Bogoliubov-de Gennes (BdG) basis, as detailed in Appendix D.2. With fermion opera-

tors defined for a space of double spectrum, we write the BdG Hamiltonian and calculate

F2i−1,2i−1(t) at site i,

F2i−1,2i−1(t) =

[
2N∑
α

(
|ψα,i|2 + ψα,iψ

∗
α,i+N

)
cos (Eαt)

]2

(5.9)

+

[
2N∑
α

(
|ψα,i+N |2 + ψα,i+Nψ

∗
α,i

)
cos (Eαt)

]2

− 1.

where Eα and ψα are eigenenergy and eigenstate of the BdG Hamiltonian, while the sum goes

over all energy eigenstates α = 1, . . . 2N . In the long-time limit, only the non-oscillating
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terms (i.e., Eα = 0) contribute to the saturation value of F2i−1,2i−1(t), i.e., only zero modes

need to be considered for t→∞. For h < J in the Ising ordered phase, the BdG Hamiltonian

describes a topological superconductor with Majorana zero modes at the two ends, Fig. 5.7,

and hence we only sum over the two Majorana zero modes, e.g., α = mj. In the disor-

dered phase (h > J), the BdG Hamiltonian describes a topologically-trivial superconductor

without any zero modes. Thus in the absence of zero modes, Eα = 0, F2i−1,2i−1(t)→ −1, ex-

plaining F̄ approaching to −1 in the Ising model results (Figs. 5.4 and 5.5). By calculating

Eq. (5.9) as t → ∞, we plot F11 = Fmj in Fig. 5.4 with orange-pentagrams, which matches

well with the Ising model results. To conclude, the derived relation, e.g., Eq. (5.9) rigorously

proves that the saturation value of an OTOC with Majorana fermions (W = V = a2i−1)

is contributed only by Majorana zero modes (Eα = 0), while the contributions from any

excited states (Eα 6= 0) vanish at long times. Since the Ising model can be exactly mapped

to a 1D Majorana chain, the infinite-temperature OTOC of the edge spins directly probes

the presence or absence of the Majorana zero modes. This is one of the key conclusions in

this Chapter.

Motivated by this observation, we pinpoint the phase boundary of the topological phase

transition in the following. Since the OTOC F11(t → ∞) has a continuous transition from

topologically non-trivial to trivial phase, we focus on its second derivative d2F̄11(t→∞)/dh2

with respect to external field h. The maximum of the second derivative pinpoints the tran-

sition point, Fig. 5.6a. Then the system-size scaling provides the transition point in the

thermodynamic limit as h∞dc = 1.0069 with a power-law scaling hdc ∼ N−0.7189 + 1.0069

(Fig. 5.6b). For further details, see Appendix D.4. We note that the results obtained in the

non-interacting limit (Ising model) are valid at the infinite time in the thermodynamic limit

since topologically induced prescrambling plateau persists indefinitely (Appendix D.4).
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5.3.3 Robustness against varying the boundary conditions

Although the phenomenon discussed above relies on utilizing edge degrees of freedom, all

the key conclusions are robust against any local perturbations and independent of boundary

conditions. Because, the physics is based on topological edge modes. To demonstrate this

robustness, we vary the boundary condition of the transverse-field Ising chain by introducing

a constant magnetic field (along the x direction) for the edge spin only, i.e., h1/J = h/J + 6

where h1 is the strength of the transverse field for the first site, while the rest of the spins have

the same transverse field h. This strong field at the edge site introduces a strong pinning to

the first spin and hence F̄ oscillates significantly, being featureless across the phase boundary

(blue-circles in Fig. 5.5b). However, if we choose the spin operator at the second site instead,

the physics discussed above is recovered as shown in Fig. 5.5b with orange-diamonds. This

is because such a local field cannot destroy the Majorana zero mode, which is topologically

protected by the nontrivial bulk. Instead, it can only move the location of the zero modes,

and thus, utilizing the second site, the conclusion remains the same. We additionally show

the results for non-interacting fermion chain with an additive field affecting only the fermion

at the edge. Yellow-squares in Fig. 5.5b show F̄mj (Eq. (5.9)), the OTOC of edge Majorana

mode γ1 at the infinite-time limit, hence demonstrating no transition point. Purple-asterisks,

on the other hand, show F̄33, the OTOC of Majorana mode a3 at site i = 2 at the infinite-

time limit, which is observed to match with F̄ of the Ising model, implying an agreement

between numerics and analytics.

5.4 The Interplay between Topological Order and

Scrambling

The default expectation for generic systems in 1D is scrambling over a time interval where

the OTOC decays fast or slow but saturates to a residue close to zero, both depending on the

set of symmetries existing in the system and the size of the Hilbert space [139,162,168,297]
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as demonstrated in Chapter 3. An exception to this observation is the models that possess

a symmetry-breaking phase transition with a long-range ordered phase at zero temperature

regardless of the interactions as exemplified in Chapter 4, or the non-integrability [181].

However, could order in such generic systems be captured at higher temperatures, preferably

at infinite temperature? Now we systematically study the detection of topological order in

generic systems at infinite temperature, and show that the machinery for the detection of

the topological order with simpler correlators can also be used for OTOCs. In fact, this

encourages us to devise a method to show if and how the dynamical imprint of topological

order on information scrambling could differ from the one on thermalization dynamics.

5.4.1 Coherence times of prescrambling plateaus

Z2 topological degeneracy does not only slow down the scrambling process, but also tem-

porarily freezes the dynamics for generic nonintegrable models, causing topologically induced

prescrambling. Hence we observe that the topological order has a profound effect on the

dynamics of systems [115, 303], suggesting a new time-scale for information scrambling in

our case. In this section, we explore the coherence times of the prescrambling plateaus to

understand the associated timescales in the thermodynamic limit.

Fig. 5.8a shows how the coherence times of the prescrambling plateau in a near-

integrability model, see Eq. (5.15), (∆/J = −0.1) exponentially increase until aroundN = 15

where the increase halts, suggesting that the curves of the systems with larger sizes possibly

collapse on each other. Better examples can be seen in Figs. 5.8b-5.8c of h/J = 0.7 of

near-integrability model and deep in the non-trivial phase of the model with stronger inter-

actions ∆/J = −0.5, respectively. Therefore, prescrambling plateau has a finite lifetime in

generic systems, including the vicinity of non-interacting limit. When the model becomes

integrable, prescrambling plateau persists indefinitely, meaning that a system in the thermo-

dynamic limit never scrambles. Fig. 5.8d shows the exponential increase of full scrambling

decay times in the XXZ model, thus implying that the observed scrambling is a finite-size
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Figure 5.8: Coherence times of prescrambling plateau at (a)-(b) ∆ = −0.1, (a) deep in the
topologically non-trivial phase h/J = 0.3 and (b) at h/J = 0.7 showing negative prescram-
bling plateau values; (c) ∆ = −0.5 at h/J = 0.3. N = 60 is computed via t-DMRG with
25 random initial states to have the infinite-temperature OTOC. (d) Prescrambling plateau
deep in the topologically non-trivial phase of the XXZ model with Jz/J = 10 persists indef-
initely.
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effect. Similar behavior can be found for different Jz/J parameter (Appendix D.5), as well

as the non-interacting limit (Appendix D.3).

A natural question is how a generic system could host a prescrambling plateau for mostly

long but finite amount of time. Finite coherence times of edge-spin two-time correlators in

generic systems have been recently based on spectrum characteristics [115]. Hence these

findings should be applicable to information scrambling. The notion of easy spin flips are

introduced by Ref. [115] to demonstrate that these spin flip processes destroy the perfect

pairing of energy eigenstates that are caused by zero modes. Such perfect pairing, meaning

exponentially close eigenstates, happen in the integrable case and is dubbed as strong zero

modes. When integrability breaking interactions are introduced, due to the poles appearing

in the perturbation theory, also called resonances, degeneracies are no longer exponentially

close, but polynomially in system size. Hence there is not perfect pairing anymore, and

strong zero modes turn into almost-strong zero modes as called by Ref. [115]. The processes

of easy spin flips are the reason behind such a change in the degeneracy structure. Due to the

poles in the perturbation theory, certain basis states with spin flips are equally energetically

favorable with the Kramer partner. When the external transverse field is on, these states

mix and one ends up with eigenstates that are comprised of not only a state and its Kramer

partner as expected in a doubly-degenerate spectrum, but a state, its ‘easy spin partners’

and the Kramer partners of all. These now polynomially close eigenstates, depending on the

external field strength as well as where the poles are, could cause bigger regions of degeneracy

compared to double degeneracy. However we stress on the fact that these degeneracies are, so

to speak, weaker than the degeneracies when there are no integrability breaking interactions,

hence they indeed deserve the name almost-strong zero modes. Again we emphasize that

these eigenstates are still Kramer partners of each other, as would be expected from a

system that obeys Z2 symmetry. Hence the Z2 topological imprint is not lost, but instead

reduced to a signature that could survive only for finite times. Such a profound effect on

dynamics by zero modes is shown with two-time correlators by Refs. [115, 303]. Hence our
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results are an intuitive extension of this effect to the dynamics of information scrambling and

OTOCs. In this regard, our results demonstrate that the scrambling could be slowed down

in nonintegrable systems, introducing a two-step timescale to scrambling dynamics, with

the name prescrambling, analogizes with prethermalization as the name correctly implies.

This encourages us to question how much OTOCs are really different than their simpler

cousins, e.g., two-time correlators. An immediate observation shows us that Figs. 5.8a and

5.8b of the near-integrability model behave considerably different: the former has a positive-

valued plateau, paralleling with the behavior of two-time correlators, whereas the latter has

a negative-valued plateau. To better understand such distinct behavior appearing in OTOCs

and further elaborate on related questions, we introduce a method in the next section.

5.4.2 Dynamical decomposition method

In this section, we develop a framework that can provide us more insight about detecting

topological order in generic systems via OTOCs, as well as the saturation regime of OTOCs

in general. Since we can already derive the OTOC saturation value analytically in the non-

interacting regime (Sec. 5.3.2), we need a framework that works in nonintegrable models;

a limit that is in general not analytically tractable. This framework is an application of

dynamical decomposition to OTOC that is presented in the previous Chapter, and we aim to

calculate F̄ with a term that becomes the dominant contribution in F̄ and a correction to it,

as we move away from the non-interacting limit. Dynamical decomposition method is utilized

in Chapter 4 to find a leading-order term in F̄ (of arbitrary bulk spins) at zero-temperature

to probe zero-temperature symmetry-breaking phase transitions. Here we generalize the

idea to infinite temperature and put forward a conjecture in analogy to the Eigenstate

Thermalization Hypothesis (ETH), as explained in the following. Our motivation for putting

forward this method is two-fold: (i) this approach provides us an approximated solution

of the saturation regime for a generic system; (ii) it also offers us a common ground to

compare the saturation regime of OTOCs with the saturation regime of two-time correlators
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to further understand if they differ in reflecting the dynamics of zero modes. We note why

the point (ii) is interesting for our purposes: OTOCs at infinite-temperature are well-known

probes of quantum chaos [132, 134, 140, 142, 162] as shown in Chapter 3, whereas two-time

correlators seem to be featureless to reflect such property of the system [139, 150]. Even

though intuitively related, thermalization and scrambling seem to be different from each

other, motivated by their different timescales, Refs. [138, 140, 150]. Hence finding where

OTOC points to additional information about the system, and where it can be reduced to

two-point correlators, could prove useful to understand the relations between scrambling

and thermalization. In the cases where such a reduction is possible, reminding of Wick’s

theorem but for OTOCs, the hope is that one can use two-point correlators instead of OTOCs

to determine the scrambling in an experimental setting, because implementing an OTOC

protocol is unarguably harder than measuring a two-point correlation function [146,156,157,

159,210] (see Ch. 3 for the challenges of such an implementation). In the opposite situation

where OTOCs provide additional information, we could know how scrambling dynamics

differ from thermalization, at least for the model under study.

By utilizing the energy eigenstates as a complete basis of the Hilbert space, OTOC at

infinite-temperature can be written as

F (t) =
1

M

∑
α,β,γ,δ

WαβVβγWγδVδαe
i(Eα−Eβ+Eγ−Eδ)t (5.10)

where Wαβ and Vαβ are defined as Wαβ = 〈ψα|W |ψβ〉 and Vαβ = 〈ψα|V |ψβ〉 with |ψα〉 and

|ψβ〉 being the energy eigenstates with associated energies Eα, . . ., Eδ. To keep the notation

simpler, we do not explicitly specify the degeneracies in Eq. (5.10).

In the long time limit (t → ∞), only the static terms with Eα − Eβ + Eγ − Eδ = 0

contribute to the saturation value, while the rest of the terms dephase. Then the saturation
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value, and equivalently the long time-average F̄ of OTOC (see Ch. 4) reads,

F̄ =
1

M

 ∑
Eα=Eβ ,
Eγ=Eδ

+
∑

Eα=Eδ,
Eβ=Eγ

−
∑

Eα=Eβ=
Eγ=Eδ

+
∑

Eα 6=Eβ 6=
Eγ 6=Eδ

WαβVβγWγδVδα, (5.11)

where
∑

Eα=Eβ , Eγ=Eδ
implies that we take the operator matrix elements that satisfy the

corresponding energy condition Eα = Eβ, Eγ = Eδ. Since we look for a dominant con-

tribution to Eq. (5.11) as the interaction strength increases, the most suitable dynamical

decomposition is through a conjecture where F̄ is dominated by the diagonal contribution.

This corresponds to the contribution with the energy condition Eα = Eβ = Eγ = Eδ on the

spectrum. A way to see why we expect our conjecture to hold is via remembering ETH.

ETH, up to exceptions, i.e., [114] and Chapter 2, holds for nonintegrable systems whereas

it fails for integrable systems [40]. One of the conditions of ETH is that the off-diagonal

elements are suppressed compared to diagonal elements of the local observable written in

the eigenbasis of the Hamiltonian. Therefore, based on the literature of ETH, we know that

a local operator should dominantly populate its diagonal entries when the Hamiltonian is

nonintegrable. In parallel with this argument, we numerically observe that our conjecture

is indeed valid when an ansatz on the matrix elements of W and V is satisfied. This ansatz

demands that the off-diagonal elements of the operators (in the eigenbasis) are suppressed

with respect to the diagonal elements when the spectrum is explicitly degenerate; and can be

formulated as |WEα 6=Eβ |2 � |WEα=Eβ |2 for both W and V , as well as |VEα 6=Eβ |2 � |WEα=Eβ |2

and vice versa. When the ansatz is satisfied, F̄ simplifies to the diagonal contribution Fdiag,

Fdiag =
1

M

∑
Eα=Eβ=
Eγ=Eδ

WαβVβγWγδVδα. (5.12)

We note that the operator ansatz is the generalization of ETH’s aforementioned criteria

[34, 40, 67] to a degenerate spectrum. However, since we do not need to assume that the
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diagonal elements of the operator matrix are a smooth function of energy WEα=Eβ = g(Eα),

the other criteria of ETH [40] does not need to be followed, hence our conjecture does not

require thermalization. This is reasonable, given that for a quantum system to thermalize

strictly (in ETH sense) the saturation value should be predictable by the microcanonical

ensemble in a narrow energy window on the spectrum [40]. There is not such a requirement

for the saturation value of OTOCs. In conclusion, we can anticipate that our conjecture

should be applicable for a wider range of systems e.g., including integrable but interacting

systems.

If W and V are Majorana operators, i.e., a2i−1, the only contribution to Fdiag comes from

the degenerate energy levels which contain two eigenstates with opposite fermion parity.

Since the two-fold degeneracy arises in the entire spectrum, a finite Fdiag is expected in the

topologically non-trivial phase. However in the topologically trivial phase, although it could

arise accidentally for some energy levels, two-fold degeneracy is generically not expected

implying F̄diag ∼ 0. Hence F̄diag directly probes topological degeneracy in any system with Z2

symmetry. Our conjecture can be rigorously proven for two-time correlation functions, where

the off-diagonal contribution does not satisfy the corresponding energy condition Eα−Eβ = 0

and thus, must vanish in long time. Hence, the saturation value for a two-time correlator,

C̄ = Tr (W (t)W ) =
1

M

∑
Eα=Eβ

WαβVβα, (5.13)

already consists of only diagonal contribution with no need to introduce an operator ansatz,

unlike OTOC. For OTOC, if the operator ansatz does not hold and hence the conjecture fails,

other contributions to F̄ might exist (Eq. (5.11)), which we call off-diagonal contribution.

Such cases, e.g., non-interacting model, clearly make the saturation regime of OTOC distinct

than the saturation regime of two-time correlators, because the off-diagonal contribution

becomes comparable to the diagonal contribution, and even dominates F̄ . On the other hand

when the conjecture holds, and hence off-diagonal contribution sums up to∼ 0, Fdiag becomes
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the approximated solution to F̄ ; and since Fdiag (Eq. (5.12)) is related to C̄ (Eq. (5.13)), F̄

might be predicted by C̄.

How Fdiag relates to C̄ can be seen better in the non-interacting limit. At infinite tem-

perature, C̄ could be utilized to straightforwardly come up with an analytical expression for

Fdiag: We calculate matrix elements of the edge operator W ,

Wαβ

∣∣
Eα=Eβ

= 〈ψα| f(h)γ1

(
γ1 + iγ2√

2

)
|ψα〉 =

2f(h)√
2

=
√

1− h2, (5.14)

in the topologically non-trivial phase; Wαβ

∣∣
Eα=Eβ

= 0 otherwise. Here f(h) is a smooth

function of magnetic field h, that can be extracted numerically for finite size systems, whereas

by using C̄ [213] we can determine an analytical expression f(h) =
√

2(1− h2)/2 in the

thermodynamic limit. Hence Fdiag = (1 − h2)2 can be written, while C̄ = 1 − h2 [213]. See

Appendix D.3 for details and the numerical demonstration of this relation.

Now we calculate F̄diag for three different scenarios: i) strongly interacting but integrable

case (XXZ model), ii) nonintegrable models with different interaction strengths and iii)

non-interacting limit; and numerically determine the bounds of our conjecture.

Strongly interacting but integrable case

We revisit the Fig. 5.3 of the XXZ model in Sec. 5.2. Fdiag is shown for an edge-spin σz1 (obc)

with red-squares; whereas the Fdiag of bulk-spins σz1 (pbc) and σz7 (obc) operators are with

purple-dots and light-blue right-pointing triangles, respectively. We observe that the diagonal

contribution could be used to approximate F̄ at the edge in the Ising phases, confirming the

conjecture. Even though this model has interactions between Majorana fermions Eq. (5.6),

it is still an integrable system which might explain why F̄ does not completely reduce to

its diagonal contribution in the long-time limit. However, the qualitative behavior is the

same. The diagonal (and hence topological) contribution in the XY-phase becomes zero

which is consistent with a gapless phase. Hence the sole contribution in the XY-phase is
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the corrections, which shows a steady non-zero residue F̄ 6= 0. This residue seems to be a

consequence of the rotational symmetry of the system, [H,Sz] = 0 and could be expected to

vanish away in the thermodynamic limit (Appendix D.6). Since the topological order is not

visible to bulk degrees of freedom, we see Fdiag ∼ 0 for bulk operators.

From nonintegrable cases to non-interacting limit

A generic Ising model could be introduced as,

H = −J
N−1∑
j=1

σzjσ
z
j+1 −∆

N−2∑
j=1

σzjσ
z
j+2 + h

N∑
j=1

σxj , (5.15)

= −iJ
N−1∑
j=1

a2ja2j+1 + ∆
N−2∑
j=1

a2ia2i+1a2i+2a2i+3 − ih
N∑
j=1

a2j−1a2j, (5.16)

where ∆ is the next-nearest neighbor coupling between spins in Eq. (5.15) and breaks the in-

tegrability of the model. The strength ∆ introduces interactions between Majorana fermions

in Eq. (5.16). We focus on three different ∆ values in our numerical analysis from weak to

strong integrability-breaking terms (i) ∆/J = −0.1, (ii) ∆/J = −0.5 and (iii) ∆/J = −2.

As we increase the interaction strength, F̄ ∼ F̄diag holds as expected from the conjecture.

Fig. 5.9a compares the dynamic phase diagrams of ∆/J = −0.5 and ∆/J = −2 where time

of averaging is fixed to tJ = 800 for a system size of N = 14. On the other hand, at the

vicinity of the non-interacting limit ∆/J = −0.1, F̄ differs from its diagonal contribution

F̄diag considerably (yellow-triangles and green-circles Fig. 5.9b). Consistently, the operator

ansatz in the non-interacting limit fails, leading to F̄ 6= F̄diag. Black-circles and red-diamonds

in Fig. 5.9b show F̄ and F̄diag calculated at N = 200 in the infinite-time limit, respectively.

Note that the difference is the off-diagonal contribution, which increases towards the phase

boundary h/J → 1 and clearly is not bounded. The off-diagonal contribution is robust, i.e.,

it does not vanish at infinite-time in the thermodynamic limit (Fig. 5.9b). The off-diagonal

contribution also shows up in a generic model at near-integrability limit (∆/J = −0.1), seen

in the observation that F̄ diverges from F̄diag (Sec. 5.4.1 and Appendix D.4).
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Figure 5.9: Comparison of F̄ and its diagonal contribution F̄diag at different non-integrability
breaking term strength ∆/J . (a) For a time interval of tJ = 8 × 102 and size N = 14, F̄
(red-triangles) and F̄diag (green-squares) of ∆/J = −0.5; and F̄ (black-circles) and F̄diag
(yellow-diamonds) of ∆/J = −2. Hence F̄ ∼ F̄diag holds for a generic nonintegrable system.
(b) F̄ (yellow-triangles) and F̄diag (green-squares) of ∆/J = −0.1 for a time interval of
tJ = 2 × 103 and size N = 14; and F̄ (black-circles) and F̄diag (red-diamonds) of non-
interacting fermion model for a size of N = 200 at the infinite-time limit. At the vicinity of
the non-interacting limit, off-diagonal contribution starts to be significant.

Outlook

In conclusion, deep in the interacting and/or nonintegrable limit, our conjecture holds and

hence F̄ ∼ F̄diag ∝ C̄. In near-integrability, OTOC starts to exhibit distinct behavior from

two-time correlators and this becomes more apparent in the non-interacting model. We

revisit Figs. 5.8a and 5.8b where the former is a point deep in the non-trivial phase with

F̄ ∼ F̄diag (Fig. 5.9b) and hence shows similar behavior to C̄ with a positive-valued plateau.

Whereas Fig. 5.8b demonstrating a closer point to hc gives F̄diag ∼ 0, hence the OTOC time-

average is mainly contributed by the off-diagonal contribution |F̄ | � F̄diag ∝ C̄, resulting in

a negative-valued plateau.
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Figure 5.10: Coherence times of the edge spins based on OTOC of (a) ∆/J = −0.5 and (b)
∆/J = −2 closer to the critical point in their respective topological phases at h/J = 1 for
different system sizes. The size N = 40 in both sub-figures is calculated via t-DMRG by
averaging 10 different random product states.

5.4.3 Effect of scrambling on dynamic phase diagrams

The topological transition for ∆/J = −0.5 and ∆/J = −2 occurs at h/J ∼ 1.7 and h/J ∼

3.78, respectively (Appendix D.5). On the other hand, Fig. 5.9a demonstrates the dynamic

transition boundaries early on, hdc/J < 1. Even though one might argue for finite-size

effects, such a dramatic shift begs for additional reasons. The observation that prescrambling

plateau has a finite lifetime in a nonintegrable model also suggests that the dynamic phase

diagrams would significantly depend on the interval of the time-averaging (Appendix D.5

for demonstration). Hence it is not clear even if a dynamical phase transition boundary

could be well-defined. Given such technical problems, instead of finite-size scaling to mark a

transition point, we aim to bound the dynamic phase boundaries in these models. Figs. 5.10

demonstrate very limited prescrambling plateaus whose lifetimes are around tJ ∼ 20 for

∆J = −0.5 and ∆/J = −2 at h/J = 1. The curves of multiple system sizes collapse on

each other in a computation performed with both ED (exact diagonalization) and DMRG.

Hence we can state that the dynamic phase boundary over a relatively long period of time is

bounded to hdc/J < 1, indeed suggesting a significant shift from the zero-temperature phase
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Figure 5.11: (a) OTOC time-average of edge spin for the nonintegrable Ising model with
∆/J = −2 at zero temperature and N = 30 system size. Blue-circles and orange-diamonds
show F̄ real-time average over tJ = N = 30 and the ground-state subspace contribution Fgs.
(b) The system-size scaling of the critical point determined by Fgs as h∞dc = 3.7 ± 0.05. All
computations in (a)-(b) are done either with t-DMRG or DMRG.

boundaries.

Such phase boundary shifts, although more mild than demonstrated here, in dynamical

phase diagrams with corresponding symmetry-breaking transitions and that are initiated

with polarized states in near-integrable Ising chain have been recently discussed [210]. These

shifts seem to be linked to exciting the system to higher energy levels when quenched from

a polarized state. Hence we can anticipate that working at infinite-temperature possibly

maximizes the amount of shift from the zero-temperature phase boundary. Therefore, we

lower the temperature to zero and compute F̄ and its diagonal contribution which is simply

the ground state contribution F̄gs in Fig. 5.11a at N = 30 and over a time interval of

tJ = 30. The correspondence between F̄ and F̄gs motivates us to apply system-size scaling

on F̄gs. Fig. 5.11b demonstrates this system-size scaling which determines the critical point

as h∞dc = 3.7± 0.05. Therefore the dynamical phase boundary is very close to h∞c ∼ 3.78(2)

that is determined by two independent methods (Appendix D.5). Hence the dynamical phase

diagram based on OTOC matches fairly well with the topological phase transition boundary

in low temperature, suggesting that the shift observed in Fig. 5.9a is indeed an effect from the
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excited state spectrum. This is perhaps not too surprising, given the discussion on easy spin

flips in Sec. 5.4.1. Since increasing the transverse field strength h (linked to spin flip operator)

enhances the effect of easy spin flips on the spectrum [115], the dynamical signature of the

topological order is lost well before the field value reaches the critical transition boundary

hc.

In conclusion, we demonstrate the effect of almost-strong zero modes on a dynamic phase

diagram based on OTOC showing significant shift in the phase boundaries. Whether it is

possible to find a functional dependence of the hdc on temperature is an interesting question

that can be studied systematically in future studies.

5.5 Conclusions and Discussions

We put forward a numerical observation on the XXZ model, where we showed the infinite-

temperature OTOC, namely a correlator that probes the quantum chaos in interacting

many-body systems, is also susceptible to ground-state phase transitions. The origin of

this observation is demonstrated to be Majorana edge modes existing in the system with

a systematic study of different models. This suggests the appearance of strong zero modes

in the dynamics of information scrambling and OTOCs. We marked the topological phase

transition in the non-interacting limit via F̄ . We further numerically studied the coherence

times of the prescrambling plateaus in the nonintegrable models and demonstrated the effect

of prescrambling in dynamic phase diagrams. We found that F̄ continues to be an order

parameter for the topologically non-trivial phase even in the nonintegrable limit where the

dynamic phase boundary is significantly altered by the temperature. The dynamical decom-

position of infinite-temperature OTOC into diagonal and off-diagonal contribution exhibits

the differences and similarities between scrambling and thermalization dynamics affected by

(almost-)strong zero modes.

The observations on finite topological order detected via OTOC point to edge spins that
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remain local for long times in generic systems. Hence the scrambling of the edge spins

with the rest of the system is negligible when the Z2 topological order exists. Therefore,

we demonstrate how topologically-protected degrees of freedom fight against being scram-

bled, either completely preventing (integrable systems) or restricting (generic systems) the

operator spreading and thus exhibiting a clear interplay between the topological order and

scrambling. Nonintegrable systems at infinite temperature are almost always expected to

scramble down to zero where the decay rate depends on the symmetries existing in the Hamil-

tonian. However, we see that this is not always the case and the scrambling can be severely

hindered by the topological protection of information. Motivated by these observations, we

introduced a two-step scrambling process with the new timescale being prescrambling time

τpresc and the associated process, topologically induced prescrambling. Our conclusions in

principle can be generalized to higher dimensions for topological states with similar fraction

excitations and topological degeneracy [303], although the numerical verification is yet to be

found.

In principle, this probe allows experimental detection of topological states without a

need to cool down the system to ultra-low temperatures whether it is the OTOCs, Eq. (5.1)

or two-time correlators Eq. (5.13), when the control parameter is sufficiently away from the

zero-temperature phase boundary. In particular, the infinite-temperature OTOCs are exper-

imentally more appealing than zero-temperature OTOCs [293], since it can be challenging

to prepare a ground state as the initial state in certain experimental platforms.

Although surprising, the interplay between information scrambling and topological order

is an intuitive observation. Beside the notion of strong-zero modes affecting the thermaliza-

tion dynamics [303], the entanglement entropy of a ground state has a universal topological

contribution in topologically non-trivial phases [317–319]. Moreover, the connection be-

tween OTOCs and the entanglement entropy of the time-evolved states has been introduced

too [164,168]. Hence here we make another connection that relates a dynamical quantity to

a static property of the Hamiltonian.
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Chapter 6

Probing Criticality in the Transient

Quench Dynamics

In this Chapter, I will focus on two different models and demonstrate how to dynamically

probe equilibrium quantum phase transitions in transient regimes of quench dynamics. The

first section is going to be on the quench dynamics of spinor condensates, closely following

the discussion on the signature of dynamical phase transitions in Chapter 2. An important

difference, however, will be that we are not going to utilize the steady-state temporal regimes

of the quench dynamics. Instead we are going to focus on a probe based on the oscillations

that are observed in the nonequilibrium response. In the second section, we are going to turn

our attention to the transverse-field Ising model and show how its exponentially decaying

transient quench dynamics could be useful to probe equilibrium quantum criticality.

6.1 Observation of Dynamical Quantum Phase Transi-

tions in a Spinor Condensate

A dynamical quantum phase transition can be characterized by a nonanalytic change of

the quench dynamics when a parameter in the governing Hamiltonian is varied. Such a
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transition typically only shows up in long time dynamics for extensive systems with short-

range couplings. We analyze a model Hamiltonian of spin−1 atoms with effectively infinite-

range couplings, and demonstrate that for this system the nonanalytic transition occurs

for local observables in short time durations even when the cold atomic gas has a large

system size. We experimentally realize this model Hamiltonian and observe the dynamical

quantum phase transition in an antiferromagnetic spinor Bose-Einstein condensate of around

105 sodium atoms. Our observations agree well with the theoretical predictions. We also

analyze the scaling exponent near the dynamical phase transition and discuss its relation

with the excited state spectrum of the system.

6.1.1 Introduction

As already introduced in detail in Chapter 1, a dynamical quantum phase transition (DPT)

is a nonequilibrium many-body phenomenon, which has recently attracted significant in-

terests [199, 214–216]. Observing DPTs (see Sec. Sec. 1.2.3 for its definition and types) in

systems with short-range couplings requires measurements of long-range correlations (e.g.,

infinite-range in the thermodynamic limit for type-II DPTs [217], or asymptotic long-time

dynamics (e.g., infinite-time in the thermodynamic limit for type-I DPTs [210]). Recently,

type-I DPTs have been observed in experiments that are modeled by a spin−1/2 long-range

transverse-field Ising model (Eq. (1.2) in Chapter 1) with up to several tens of trapped

ions [197] and Rydberg atoms [100], where the required observation time t is within the ex-

perimental reach because of the limited system size. As t scales up with the system size for

type-I DPTs, it is challenging to confirm DPTs in large-size systems near the thermodynamic

limit.

In this Section, we experimentally demonstrate the type-I DPT in a spinor Bose-Einstein

condensate (BEC) with up to 105 sodium atoms. We start by analyzing a model Hamilto-

nian of spin−1 atoms with effectively infinite-range couplings. Our results show that the

infinite-range couplings help type-I DPTs occur in a finite and practically short time duration
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even for a system near the thermodynamic limit, which largely simplifies their experimen-

tal observations. After experimentally realizing the model Hamiltonian, we observe type-I

DPT in an antiferromagnetic spinor BEC of around 105 sodium atoms, a massive system

size compared with previous experiments [100, 197, 201]. Even in this large system size, we

confirm that the DPTs could still occur in short time quench dynamics. We also measure

the scaling exponents of the order parameters near the DPT, and find that they are close to

the theoretical prediction.

A model Hamiltonian of N spin−1 atoms with effectively infinite-range (all-to-all) cou-

plings takes the form

H =
c1

2N

N∑
i,j

Fi · Fj +
N∑
i

(q(F z
i )2 − pF z

i ), (6.1)

where Fi is the spin−1 observable for the ith-atom with its z-component denoted by F z
i ,

c1 is the spin-dependent interaction, which is positive for anti-ferromagnetic spinor BEC,

and p (q) denotes the linear (quadratic) Zeeman energy, respectively. For the infinite-range

coupling, the spin coupling rate is normalized as c1/(2N), so that the energy is extensive in

the thermodynamic limit, N →∞, with a finite c1.

We realize this model Hamiltonian with a BEC of N spin−1 atoms. The spatial coher-

ence over the whole BEC gives effectively infinite-range coupling between the atomic spin

operators, although the atomic collision interaction by itself is fully local. We apply single

mode approximation (SMA), c.f. Sec. 1.1.2, which decomposes the atomic field operator as

ψi (r) ∼ φ (r) ai by assuming that all spin states have the same spatial wave function φ (r)

and ai is the annihilation operator for the i-th spin component. The Hamiltonian for spin−1

BEC under SMA is thus [60,320]

H = c1
L2

2N
+

1∑
m=−1

(qm2 − pm)a†mam, (6.2)
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as already noted several times in this dissertation. Here Lµ =
∑

m,n a
†
m(fµ)mnan is the BEC’s

total spin operator (fµ is the spin−1 angular momentum matrix). Note that Eq. (6.2) is

exactly the second-quantized form of Eq. (6.1) with L ≡
∑N

i=1 Fi under the Schwinger

representation of the spin operators.

Spinor BECs have been used to study quantum magnetism, spin squeezing [60, 248,320,

321] and nonequilibrium dynamics as demonstrated in Chapter 2. Here, we use them as

an experimental platform to study DPT with an effectively infinite-range coupling model as

described by Eq. (6.1). We start from an initial state |ψ(0)〉 of the model Hamiltonian by

preparing all the atoms in the hyperfine level |F = 1,mF = 0〉 with Lz = 0, and the system

remains in the Lz = 0 subspace since the total magnetization Lz is conserved. The linear

Zeeman term thus has no contribution to the dynamics and can be neglected, c.f. Sec. 1.1.2.

The interplay between the spin-mixing term and the quadratic Zeeman term gives rise to

nontrivial dynamics [97]. We set the initial Zeeman field strength q at a value qi & c1 so

that |ψ(0)〉 is the ground state of Eq. (6.2). We then suddenly quench q to a final value

qf , c.f. Sec. 1.2. As qf is scanned continuously, a sudden change in the quench dynamics at

the phase transition point qc can be regarded as a signature of the DPT. (See Sec. 1.1.2 for

phase transition points in this model.)

Convenient detectable signals in spinor BECs are the fractional population of the spin-mF

component (ρmF = a†mF amF /N) and its average value (ρmF = 〈â†mF âmF 〉/N) derived from

repeated measurements. A widely-used quantity for characterizing the quench dynamics is

〈ρ0〉∞, the long-time average of ρ0 (t) in the wake of a quench. By assuming the quench

occurs at t = 0, we can define 〈ρ0〉∞ = limT→∞
1
T

∫ T
0
ρ0 (t) dt [201, 217], also see Sec. 1.2.3

and Chapter 2. Using 〈ρ0〉∞ as a measure, Chapter 2 showed that the model Hamiltonian

(Eq. (6.1) or Eq. (6.2)) supports a DPT at qf = 0. The quantity 〈ρ0〉∞, however, is difficult

to measure in a lab as it requires averaging over a long evolution time t (i.e., t → ∞ is

theoretically required for a system in the thermodynamic limit). For spinor BECs, a large

t inevitably leads to several challenges, such as significant atom losses and the invalidity of
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the SMA [97,322,323] all of which possibly hinder an experimental observation of DPT.

To overcome this problem, we propose to identify DPT by using different parameters

which can be directly measured within short time evolution and correlate unambiguously

with 〈ρ0〉∞. To simulate the quench dynamics, we numerically diagonalize the model Hamil-

tonian (6.2) in the Fock basis |N1, N0, N−1〉 = |n,N−2n, n〉. Following a quench from qi to qf ,

we first find ρ0 (t) displays some oscillations. We define a quantity Adip ≡ 1−ρ0(t = τdip) with

ρ0(t = τdip) being the value of ρ0 (t) at the first dip of the spin oscillations. By numerically

solving the model Hamiltonian, we demonstrate that the dip depth Adip is a good measure

of DPT. A typical simulation result extracted from the quench dynamics at N ∼ 1× 105 is

shown in Fig. 6.1 which clearly indicates that the behaviors of 〈ρ0〉∞ and Adip are strongly

correlated and they have non-analytic sudden jumps at exactly the same qf marking a first-

order DPT at qf = qc = 0. For systems with short-range couplings, the signature of DPT

only shows up in long time evolution of local quantities, as the interaction effect needs to

propagate over the system size. This argument is not valid for our model Hamiltonian as it

has effectively infinite-range all-to-all couplings. This explains why the short time quantity

Adip and the conventional long time quantity 〈ρ0〉∞ mark the DPT equally well. In contrast

to 〈ρ0〉∞, Adip can be easily and precisely measured, because the dip time τdip is short enough

to avoid detrimental changes induced by long time evolution.

The details of the experimental procedure is given in Appendix E.1 with supporting data.

6.1.2 Results

Fig. 6.2 shows the observed Adip and δρ0(t = τdip) as a function of qf following a quench from

positive qi to various negative and positive qf either crossing the dynamical transition point

qc = 0 or not, respectively. The results in Figs. 6.2(a) and 6.2(b) unambiguously confirm a

first order DPT in our experiment, with a sudden jump of Adip and δρ0 at qf = qc = 0. When

qf is positive, both Adip and δρ0 remain almost at zero. Across the dynamical transition

point at qc = 0, Adip and δρ0 jump to significant finite values and these values gradually
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Figure 6.1: The predicted Adip (depth of the first dip in spin oscillations) and the long-time
average 〈ρ0〉∞ as functions of qf/c1 for N = 1× 105 and qi = 0.5c1 (see text). It seems that
both short time Adip and long time quench dynamics 〈ρ0〉∞ can signal DPT at the same qf .

decrease with a linear scaling in |qf − qc| = |qf | when qf is pushed to the negative region.

The observed data agree very well with the theoretical prediction derived from the model

Hamiltonian up to experimental uncertainty of qf , which is about h× 2.5 Hz near q = 0 Hz.

This result demonstrates a major claim of this Section. With the measured linear scaling of

Adip in |qf | in the negative q region, its DPT scaling exponent is found to be 1, in agreement

with the result from numerical simulations. The theoretical origin of this dynamical scaling

exponent and its connection with the equilibrium critical exponents are interesting questions

worthy of further investigation in the future.

The next important observation is the occurrence time of the first dip τdip. Fig. 6.3(a)

compares the observed dip time τEdip with the theoretical τTdip, which is predicted by the model

Hamiltonian. When qf is very close to the dynamical transition point, the measured τdip is

sensitive to the experimental calibration error on qf , and there is some discrepancy between

τEdip and τTdip. Apart from this small region, the measured τdip agrees quite well with the

theoretical prediction. The theoretical dip time τTdip also exhibits an interesting power law

scaling with |qf |. To show this clearly, Fig. 6.3(b) displays τTdip as a function of |qf | in a

log-log plot. To understand the origin of the power law scaling shown in Fig. 6.3(b), we note
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Figure 6.2: The observed signature of DPT. (a) The measured Adip versus qf/c1. (b) The
standard deviation δρ0 at t = τdip versus qf/c1 at c1/h = 31 Hz. Circles with error bars denote
the experimental data and the solid lines represent the theoretical results from numerical
simulations of the model Hamiltonian (see text).

that although the quench dynamics involves the contribution of the entire energy spectrum,

there are only a few eigenstates which play a dominant role when qf is quenched across the

transition. Similar to Chapter 2.4, we define an overlap function as a measure of the matrix

element of ρ0 in the basis of the final Hamiltonian and δE as the nearest-neighbor energy gap

at the maximum off-diagonal term of this overlap function. We then numerically calculate

the main frequency component in the oscillation of ρ0, which turns out to be δE/h. The

time scale, defined by Tosc = h/δE, also shows a power law scaling with |qf |. Figure 6.3(b)

shows both Tosc and τTdip as a function of |qf |, which clearly indicates that the two log-log

curves have similar slopes. The extracted power-law scaling exponents are −0.41 for Tosc

and −0.40 for τTdip, through linear fits to the log-log curves in Fig. 6.3(b). This suggests that

the scaling properties of τdip is mainly determined by the most dominant energy gap δE in

the energy spectrum that is dictated by the initial state and the observable together.

In conclusion, this Section proposes probes originating from the transient temporal regime

to dynamically detect first-order phase transition in the antiferromagnetic spinor conden-

sates, i.e., the first dip and the associated timescale in an oscillatory nonequilibrium re-
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Figure 6.3: (a) Circles (triangles) represent the observed occurrence time of the first dip (the
corresponding theoretical results derived from numerical simulations) as a function of qf/c1

at c1/h = 31 Hz. (b) The power law scaling of the theoretical dip time τTdip and Tosc (the
inverse of the relevant energy gap) in a log-log diagram. The extracted DPT exponents for
Tosc and τTdip are respectively −0.41 and −0.40, based on linear fits (denoted by the solid
lines) to the log-log curves.

sponse. In the next Section, we will focus on the transient probes of the quantum criticality

in the TFIM that hosts second-order phase transitions, as discussed in Chapter 1.

6.2 Dynamical crossover in the transient quench dy-

namics of short-range transverse field Ising models

Dynamical detection of quantum phases and phase transitions (QPT) in quenched systems

with experimentally convenient initial states is a topic of interest from both theoretical

and experimental perspectives. Quenched from polarized states, longitudinal magnetization

decays exponentially to zero in time for the short-range transverse-field Ising model (TFIM)

and hence, has a featureless steady state regime, which prevents it from exhibiting dynamical

phase transitions of type-I. In this Section, we ask whether the transient regimes of such

nonequilibrium processes probed by single-site observables, magnetization per site, could

encode information about the underlying QPT. The decay rates of time-dependent and
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single-site observables exhibit a dynamical crossover that separates two dynamical regions,

ordered and disordered, both of which have distinct nonequilibrium responses. We construct

a dynamical order parameterlike quantity that exhibits a scaling law in the vicinity of the

crossover. Our results reveal that scaling law exponent in short times in the close vicinity of

the dynamical crossover is significantly different than the one predicted by analytical theory

for long times. When integrability is strongly broken, the crossover boundary turns into

a region that separates two other dynamical regions that act like dynamically-ordered and

-disordered regimes.

6.2.1 Introduction

The studies of dynamical criticality, phase transitions and crossovers range from dynamical

detection of equilibrium criticality [66,68–70,181,184,198,199,204,211,214] (also see Ch. 4),

to nonequilibrium phase transitions that might not necessarily originate from an equilibrium

transition [181, 197, 198, 200, 203, 210, 217, 324, 325]. A commonly applied protocol in some

of these studies is a sudden quench, which results in a nontrivial time evolution of either

an observable, e.g., an (equilibrium) order parameter (OP) [181,198,210,217], or Loschmidt

echo [198, 199, 214, 217, 326] when the system is quenched from an initial state that is not

an eigenstate of the evolution Hamiltonian. A popular choice of initial state in the current

works on quench dynamics is a polarized state, due to its relevant convenience to prepare

in quantum simulators [181,198,210,217,326]. Dynamical phase transitions of type-I (DPT-

I) is defined when the quench dynamics equilibrate either to a thermal or a prethermal

value in long times, and hence long-time average of the time-dependent observable could act

like a dynamical OP, demonstrating a phase boundary. Although DPT-I is well-defined for

magnetization of the long-range transverse field Ising model (TFIM) [217, 325], there is no

persistent dynamic order for short-range TFIM, simply because the steady state regime of

one-point observables, and likewise two-time correlators, is featureless [116, 327, 328]. The

featureless steady-state for magnetization originates from the fact that this observable decays
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exponentially in time as both analytically and numerically studied in the integrable TFIM

[116, 128, 327–330]. In fact exponential decay is also shown to exist in the XXZ model for

magnetization [331]. Therefore, one cannot dynamically detect equilibrium quantum phase

transitions (QPT) of short-range TFIM quenched from polarized states by focusing on the

steady-state regime of the magnetization dynamics.

Recently higher order observables are shown to exhibit steady-state regimes with a per-

sistent dynamic order in the quench dynamics of short-range TFIM [181, 210]. Ref. [181]

proposed measuring out-of-time-order correlators (OTOC) of an arbitrary single-site observ-

able (longitudinal magnetization per site) both for integrable and nonintegrable short-range

TFIM to access such steady-state regimes. Later Ref. [210] showed that two-point nearest-

neighbor correlators (averaged over space) could signal a dynamical phase transition in short-

range TFIM, albeit the dynamical critical point shifts to favor disorder when integrability is

broken.

Motivated by the recent research interests in finding dynamical probes of equilibrium

QPT in short-range Hamiltonians [181, 209, 210], in this Section we ask whether the tran-

sient regimes of short-range TFIM quenched from polarized states and probed by single-site

local observables, magnetization per site, could encode information about the underlying

equilibrium QPT. We stress that we focus on transient regimes of dynamics and single-

site observables, instead of steady-state regimes and global observables. Let us first note

that transient probes of QPT could prove useful in laboratory implementations of quan-

tum many-body systems, given that it might be challenging to reach steady-state regimes

in experimental setups that are naturally coupled to an environment and experiences de-

coherence (see the discussion in previous Section). Both Chapter Sec. 6.1 and Ref. [332]

utilized transient signatures of the underlying QPT in the experiments on spinor conden-

sates, e.g., the amplitude and time of the first peak/dip of an oscillatory nonequilibrium

response. Furthermore, quantum simulators are ideal testbeds to study the properties and

potential of single-site observables, which require only minimal resources for measurement
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with technologies like quantum gas microscope [195]. Ref. [181] demonstrated that OTOC

of single-site observables could be useful to probe the equilibrium QPT, however probing

OTOCs in laboratory requires sophisticated protocols such as reversing the overall sign of

the Hamiltonian to realize backward time evolution [146] (also see Ch. 3), or equally sophis-

ticated alternative methods [147,148,153].

In our work, we focus on the single-site observables in both open-boundary and closed

chains of TFIM. An open-boundary chain is experimentally more relevant, whereas the

results for a periodic TFIM could be obtained by utilizing a mapping to noninteracting

fermions. Open-boundary chain simulations are performed via time-dependent density-

matrix renormalization group (t-DMRG). Via utilizing the representation of noninteract-

ing fermions, we could easily reach hundreds of sites in the integrable TFIM, and compare

the crossover dynamics of small and large system sizes. A crossover in integrable TFIM

probed by single-site observables was analytically predicted in Ref. [116] for large times in

the space-time limit. This crossover separates two distinct nonequilibrium responses where

the observable decays exponentially without and with oscillations in the dynamically-ordered

and -disordered regimes, respectively. Here we reveal that the scaling predicted by the ana-

lytic theory for long times (β = 1/2) in the dynamically-ordered regime, significantly changes

for short times (β = 1) in the close vicinity of the crossover boundary which coincides with

the equilibrium phase boundary in the integrable TFIM, hc = 1. As one moves away from

the vicinity of the crossover, the analytically predicted exponent is recovered, which suggests

a smooth crossover between short and long time dynamics. In the dynamically-disordered

regime, we find that the analytical prediction conjectured in Ref. [116] is not the only pos-

sible description of the dynamics for short times and small system sizes, e.g., N = 48 spins.

Additionally, the angular frequency has a correction for short times and small system sizes,

while we recover the analytically predicted exponent δ = 1/2 for long times when we increase

the system size to N = 192 spins.

We also find that the scaling in the vicinity of the crossover in the dynamically-ordered
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regime can be described by a logarithmic function regardless of the system size and the

temporal regime, e.g., short or long time dynamics. We show that this is consistent with the

analytical predictions. Logarithmic form eventually becomes useful in proposing a dynamical

OP-like quantity in the vicinity of the crossover. This proposal eases the experimentation of

crossover physics discussed in the Section.

We note that the location of the crossover corresponds to the TFIM Hamiltonian that

exhibits the fastest decay in the set of all Hamiltonians H(h) across both sides of the equi-

librium phase boundary, in particular for short times. Given that observables cannot show

divergent decay in short-range interacting systems due to lightcone bounds, it is reasonable

that all decay rates are finite. Hence our data suggests a link between the fastest decay and

the equilibrium QPT, confirming Ref. [331]. We use this observation to mark the boundary

between dynamically-ordered and crossover regions in the nonintegrable TFIM. We break

the integrability by introducing next-nearest neighbor coupling to TFIM and study how the

quench dynamics for single-site magnetization behave. After modeling the quench dynamics,

we notice that three quantitatively distinct dynamical regimes emerge for the nonintegrable

TFIM. The crossover boundary of the integrable TFIM enlarges into a region around the

equilibrium QPT and separates two other dynamical regimes which act as -ordered and -

disordered regimes of the integrable TFIM. This means that the nonintegrable TFIM exhibits

a dominant trend of exponential decay in its dynamically-ordered regime; and a dominant

trend of oscillatory exponential decay in its dynamically-disordered regime. We study the

relevant decay rate and find that breaking integrability results in a smooth crossover, a min-

imum, and shifts its location from the equilibrium phase boundary to hc = 2.278 ± 0.001.

The associated scaling exponent of the dynamical order parameterlike quantity reads β ∼ 2,

consistent with the smooth crossover of the decay rates.

In the next subsection, we introduce the models and our methods, which is followed by

the dynamical crossover of the integrable and nonintegrable TFIMs, respectively.

150



6.2.2 Methods

In this Section, we work with TFIM with both nearest-neighbor (NN) and next-nearest-

neighbor (NNN) couplings,

H = −J
∑
r

σzrσ
z
r+1 −∆

∑
r

σzrσ
z
r+2 + h

∑
r

σxr , (6.3)

where σαr are spin−1
2

Pauli spin matrices. TFIM preserves its gapped long range Ising

ground state even when the interactions (or nonintegrability) ∆ are introduced, although

the transition boundary shifts to favor order as ∆ increases. For all data in this Section, we

fix J = 1 as the energy scale. Specifically we focus on the integrable model ∆/J = 0 and

nonintegrable model with ∆/J = −1.

Since an open-boundary chain is more experimentally relevant, we study the open-

boundary TFIM with matrix product states (MPS [300]). To reproduce the decay dynamics

of an arbitrary site in a periodic chain we focus on the longitudinal magnetization in the

middle of the chain σzN/2 (Appendix Sec. E.2.1). Hence the observable’s decay is similar to

the decay of total magnetization given that total magnetization is M = 1/N
∑

r σ
z
r . We also

study an arbitrary site on a periodic TFIM to utilize the mapping to noninteracting fermions

and increase the system size for the integrable TFIM. To calculate single-site dynamics in

noninteracting fermions, we make use of the cluster theorem similar to Ref. [116]. See Ap-

pendix Sec. E.2.2 for the details of the mapping in quench dynamics and the limitations due

to cluster theorem. In both open-boundary and closed chains, we focus on the single-site dy-

namics of Eq. (6.3) quenched from a polarized state |ψ0〉 = |↑↑ ... ↑〉: C(t) = 〈ψ0|σzN/2(t) |ψ0〉.

In DPT-I, one studies steady-state regime where the dynamics is expected to become

independent of the time. Since such steady-state regimes might exhibit oscillatory behavior,

typically due to finite-size effects in small systems, often times averaging over an interval

of time is employed [181, 199, 210]. Averaging over a long interval of time also makes the

dynamic OP to be less sensitive to where a temporal cutoff is applied in the steady-state
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Figure 6.4: C(t) for h/J = 0.5 upper curves with orange tones and h/J = 0.9 lower curves
with red tones. Each set of curves have system sizes between N = 24 (dots) and N = 48
(diamonds) denoted by different markers. τs and τr are separation and revival timescales
(see text). x-axis is shifted by t∗, the reference time where the exponential decay starts.

regime. This is because oscillations could alter the dynamic OP if one only uses the value

at the temporal cutoff. As a result, exact location of the temporal cutoff is not significant

in the construction of the dynamical OP based on DPT-I as long as the temporal cutoff is

in steady-state regime. A valid temporal cutoff that can be utilized in studying DPT-I is a

system-size dependent cutoff, t ∼ αN where the interval of time-averaging is proportional

to the system size [217] up to a coefficient α.

This temporal cutoff does not work for one-point observables in short-range models,

because as already mentioned before, these observables are featureless in their steady state

regimes, meaning that they decay exponentially to zero. If one were to use a cutoff t ∼ αN ,

we would simply observe a vanishing dynamic OP for one-point observables [181, 217] (see

Appendix Sec. E.2.3). This observation aligns with the fact that one cannot construct DPT-

I for magnetization in short-range TFIM. Hence, motivated on working in the transient

regime, we turn our attention to the decay rates of the initial magnetization, which is known

to exhibit a cusplike feature at the QPT for the XXZ model [331]. In order to extract

the exponential decay in the thermodynamic limit with finite-size systems, which are the
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only experimentally relevant systems, we find the lightcone bounds [44, 116, 333] on the

magnetization per site for the finite sizes under study. The dynamics that remain in the

lightcone exhibit exponential decay and show finite-size effects exponentially suppressed in

the system size [334]. Fig. 6.4 shows the open-boundary integrable TFIM dynamics for

h/J = 0.5 (orange tones) and h/J = 0.9 (red tones) for system sizes N = 24 : 6 : 48. In

the lightcone, data for different system sizes collapse on each other while each separation

point is roughly marked by τs = N/2vq where vq is the maximum quasi-particle velocity

vq = max|dε(h, k)/dk| = 2Jmin(h, 1) [116,193,333]. τs is the time for the excitations caused

by the quench to reach the end of the chain, and hence τs probes the size of the chain.

When the chosen bulk spin is not in the middle of the chain its coefficient changes τs = a/vq

where N/2 ≤ a < N . Revival timescale is marked by τr = N/vq, which is the time for the

excitations to reflect back from the boundary to the middle of the chain. The timescale t∗

is the short-distance cutoff of the temporal axis defined by the lattice constant divided by

velocity t∗ ∼ v−1
q . Here, t∗ (τs) serves as the ultraviolet (infrared) cutoff, below (above) which

the physics is dominated by non-universal microscopic details (finite-size effects). Thus, we

focus on the (intermediate) time range t∗ < t < τs, where data of different system sizes

collapse on each other and universal behavior arises as shown in Fig. 6.4 with an exponential

decay [116,128,329,330]. The time interval that remains in the lightcone effectively simulates

the decay in the thermodynamic limit.

For our periodic chain results, we are always confined to the intermediate time range due

to the application of cluster theorem (Appendix Sec. E.2.2).

6.2.3 Dynamical Crossover in the integrable TFIM

Integrable TFIM hosts a crossover at hc = 1 that separates two dynamical regimes. In the

dynamically-ordered regime, single-site observables exhibit an exponential decay in time,

whereas in the dynamically-disordered regime we observe an oscillatory exponential decay.

We will systematically study the short-time nonequilibrium response of single-site observables
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Figure 6.5: Decay rates fΦ for integrable TFIM in dynamically-ordered (hc − h)/hc > 0
and -disordered (hc − h)/hc < 0 regimes. The inset focuses on the dynamically-ordered
regime in a semilog plot. Blue-circles, red-diamonds and yellow pluses are data for system
sizes N = 48 with open boundaries (obc), periodic boundaries (pbc) and N = 192 with
periodic boundaries, respectively. Green-dotted line is the logarithmic fit function for the
data N = 48 (pbc) (see text), whereas the black-solid line is the analytic result for the
thermodynamic limit. In the disordered regime, the shaded region is the uncertainty for
system size N = 48 due to short time evolution.

in the integrable TFIM in this subsection. In the following, we focus on the dynamically-

ordered regime.

Decay rates

Bounded by the lightcone, we find the decay rates of magnetization per site around the

crossover at hc = 1. Fig. 6.5 shows how these decay rates fΦ change with the reduced

control parameter hn = (hc − h)/hc for system sizes N = 48 with both open (blue-circles)

and periodic (red-diamonds) boundary conditions and N = 192 with periodic boundary

condition (yellow-pluses). A cusplike feature is observed in Fig. 6.5, similar to the XXZ

model in Ref. [331]. The dynamically-disordered regime will be explained in a following
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subsection.

We first note that our two methods explained previously match perfectly for N = 48.

Thus, one could measure the middle spin in an open-boundary chain and reproduce the

results for an arbitrary site in a periodic chain. By increasing the system size to N = 192,

we observe a convergence to the prediction by the analytic theory for the thermodynamic

limit (black-solid) for hn > 10−2. Hence, two remarks follow: (i) Although we work with

data bounded by the lightcone, the data for small system sizes, e.g., N = 48 still experiences

finite-size effects [334], because the simulation time is restricted by the system size in the

lightcone. (ii) In the close vicinity of the crossover, hn < 10−2, even the large systems, e.g.,

N = 192 diverge from the analytic prediction (see the inset in Fig. 6.5).

The analytic prediction is calculated based on the space-time limit derivation given in

Ref. [116]. For a quench from a polarized state, the asymptotic late-time scaling reads

C(t) ∼
(

1 +
√

1− h2
)1/2

exp (tf∞Φ (h)) , (6.4)

f∞Φ (h) = − 4

π

(
h+
√

1− h2

[
arcsin

(√
1− h

2

)
− arcsin

(√
1 + h

2

)])
. (6.5)

For the numerics close to crossover, we propose a logarithmic fit function

fΦ = log(γhβn exp(−hn/Λ) + C0),

where γ and β are free parameters to be found and Λ is the exponential cutoff coefficient

which is explained below. We note that such a model for the decay rate is intuitive and

describes the data in a large interval 0 < hn . 0.4, not only in the close vicinity of the

crossover. The constant C0 points to the observation that the decay rate is never infinite,

however the largest at the crossover boundary. Hence the system thermalizes the quickest

at the crossover. Further C0 is not a free parameter, but fixed by the data itself at the

crossover. Furthermore, analytical prediction for thermodynamic limit at late times gives
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C0 = exp(−4/π). Data follows log(γhβn+C0) in the vicinity of the crossover, while introducing

an exponential cutoff [335] to the model lets us describe a bigger region of hn as well as

providing a definition for ‘vicinity of the crossover’, hn � Λ. For example, the fit parameters

for the decay rates of system size N = 48 depicted in the main panel of Fig. 6.5 (green-dotted

line) are β = 1.05 and Λ = 0.37, meaning that the vicinity of the crossover could be defined

as hn . 0.03. Indeed by using the interval of hn . 0.03, one can precisely determine the

scaling exponent as β = 1 in the fit function log(γhβn +C0) (green-dotted line in the inset of

Fig. 6.5).

We note that the logarithmic function is consistent with the analytical expression

Eq. (6.5) in the vicinity of the crossover. This can be seen from the series expansions of

Eq. (6.5) and the logarithmic fit function. The series expansion of Eq. (6.5) in the vicinity

of the crossover is,

f∞Φ (hn → 0) ∼ − 4

π
+ 2
√

2hn −
4hn
π

+ · · · , (6.6)

while the series expansion for the logarithmic fit function follows

fΦ(hn → 0) ∼ log(C0) +
γ

C0

hβn +O(h2β
n ). (6.7)

Therefore, in the close vicinity of the crossover the analytic prediction could be written as the

logarithmic fit function with the parameters of C0 = exp(−4/π), β = 1/2 and γ/C0 = 2
√

2,

resulting in γ = 2
√

2 exp(−4/π). In the next subsection, we will see the use of logarithmic fit

function in experimentation. However now let us show how it could be helpful in extracting

the scaling exponent from the numerical data in the close vicinity of the crossover.

To extract the scaling exponent in the close vicinity of the crossover, we define a decay

rate function exp(fΦ(hn)) − C0 = γhβn. Fig. 6.6 shows the decay rate function of both the

numerical data and the analytical expression (black-solid). The green-dotted line is the fit to

the analytical expression in the vicinity of the crossover with the expected scaling exponent of
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Figure 6.6: Scaling of the decay rate function exp(fΦ) − C0 for integrable TFIM in
dynamically-ordered (hc − h)/hc > 0 regime. Blue-circles, red-pluses and yellow squares
are data for system sizes N = 48, N = 192 and N = 480 all with periodic boundaries,
respectively. Black-solid line is the analytic prediction for the thermodynamic limit and late
times, whereas the green-dotted line is the fit to the analytic expression in the vicinity of
the crossover with β = 1/2. The dotted, dashed and dotted-dashed lines are the fits to the
numerical data in the close vicinity of the crossover with β = 1.
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Figure 6.7: Scaling of the decay rate function exp(fΦ) − C0 for integrable TFIM in
dynamically-ordered (hc − h)/hc > 0 regime for system size N = 480 for different κ. Blue-
diamonds, yellow-circles, green squares and red-pluses stand for κ = 2.5, 5, 7.5, 10, respec-
tively. Black-solid line is the analytic prediction for the thermodynamic limit for comparison
with the fits (dotted and dashed lines).

β = 1/2 and coefficient γ = 2
√

2 exp(−4/π). The blue-circles, red-pluses and yellow-squares

depict the data for system sizes N = 48, 192, 480 all of which exhibit a scaling exponent of

β = 1. Note that we choose the ultraviolet cutoff t∗ = κv−1
q where κ for each data set is

given in the legend. Small coefficient κ implies that we focus on early-time behaviour.

As a result, regardless of system size we observe that early-time scaling exponent β = 1

is significantly different than the late-time scaling exponent of β = 1/2 in the close vicinity

of the crossover. As we move further away from the vicinity of the crossover, the decay

rate function at any system size converges to the prediction by analytical expression. Hence

we observe a smooth crossover between different scaling exponents in Fig. 6.6, whose exact

location depends on κ. To visualize the dependence on κ, we plot Fig. 6.7 where the system

size is fixed to N = 480 for different κ. As we increase κ, we move the location of the

crossover between analytical late-time and numerical early-time behaviors, to smaller hn.
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(a) (b)

Figure 6.8: The error functions, |C(t)−Cf (t)| (solid) and |C(t)−Ca(t)| for the fit function
and the analytical expression (dotted), respectively, for a system size of N = 480 at (a)
h = 0.5 and (b) h = 9.9× 10−6. The fit function is calculated with κ = 5.

We observe that the numerical data mostly follows analytical prediction when hn is suf-

ficiently away from the crossover, resulting in a nonequilibrium response where early-time

behaviour does not really differ from the analytical prediction. Hence, one can probe ana-

lytical prediction by observing early-time behaviour. Fig. 6.8a shows the difference between

data and its fit function Cf (t) which is named as an error function |C(t) − Cf (t)| at κ = 5

for a system size N = 480, and similarly the difference between the data and its analytical

prediction |C(t)−Ca(t)| at h = 0.5. At early times t < 20/J , fit function and the analytical

expression are equally successful in predicting the data. In time interval 20/J < t < 60/J ,

fit function is slightly better than the analytical expression while for later times t > 60/J

the opposite is true, as expected.

At the other end where numerical data exhibits a distinct scaling exponent of β = 1,

crossover physics at hc = 1 take over with diverging relaxation time [68,70] and one cannot

reach late-time behavior in accessible times for any system size that we studied. Fig. 6.8b

shows the error functions at h = 9.9× 10−6 where the fit function is always better to predict

the data than the analytical expression in a time interval of t < 60/J . This suggests that

in the close vicinity of the crossover, the analytical expression fails for accessible times and
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(a) (b)

(c)

Figure 6.9: The scaling in the vicinity of the crossover for integrable TFIM with respect to
reduced control parameter hn for (a) N = 48 with open boundary condition (b) N = 48
and (c) N = 480 with periodic boundary condition. y-axis is rescaled correctly to obtain
the scaling (see text). The temporal cutoffs are (a) either fixed at tL = 2.5, 4 or parametric
with α = 5, 8; fixed at (b) tL = 2.5, 4, 5.5 and (c) tL = 3, 6, 10, 15. The solid, dotted, dashed
and dotted-dashed lines are the fits in the vicinity of the crossover, all giving β ∼ 1 for all
subfigures. Error bars are explained in Appendix Sec. E.2.6.
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likewise we observe a scaling exponent of β = 1 instead of β = 1/2.

Constructing a dynamical order parameterlike quantity in the dynamically-

ordered regime

One can measure the decay rates of magnetization at each transverse field and probe the

crossover between dynamically-ordered and -disordered regimes in TFIM. Alternatively, we

aim to find a rescaling of the decaying observable C(t) that can render the rescaled observable

a quantity that acts like a dynamical OP in the ordered regime right in the vicinity of the

crossover. One can see this procedure as a way to construct a dynamical order parameterlike

quantity with the correct rescaling that is originated from the scaling behaviour of the decay

rates in the vicinity of the crossover. In DPT-I, the observable naturally acts as a dynamical

OP in a nonzero valued steady-state. We find that for magnetization per site in short-range

TFIM one needs to correctly rescale the observable to construct a quantity alike. This, in

the end, presents an alternative way of extracting the scaling exponent in an experiment,

which is less laborious than measuring the decay rates directly.

Similar to how a dynamical OP in DPT-I is constructed by first choosing a temporal

cutoff, we consider two different temporal cutoffs applied at a time either (i) fixed tL ∼

constant or (ii) parametric tL = αv−1
q where α is chosen so that the dynamical response

remains in the lightcone, e.g., tL ≤ τs. Note that for all temporal cutoffs, tL ≥ t∗ holds.

Eventually the rescaled dynamical OP-like quantity should not depend on how we choose our

temporal cutoff. Furthermore, while one can average the observable for a time between the

ultraviolet cutoff t∗ and the temporal cutoff tL, this would complicate the functional form of

the rescaling needed and it would require more data to compute/measure. Hence, we simply

measure the observable C(t) at time tL dictated by the fixed or parametric temporal cutoff.

Let us rewrite the observable in the vicinity of the crossover by substituting the logarith-
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mic fit function for the decay rates in,

C(t) = C(t∗) exp(fΦ(t− t∗)) = C(t∗)(γhβn + C0)t−t
∗
. (6.8)

The scaling of the decay rate as a function of hn reveals a scaling for the observable in the

vicinity of the crossover. This expression points out to the correct form of rescaling for the

observable to make the procedure independent of the temporal cutoff. Hence the correct

rescaling for the observable reads,

(
C(t)

C(t∗)

)1/(t−t∗)

− C0 = γhβn, (6.9)

leading us to define a dynamical OP-like quantity,

C ′(hn) =

(
C(t)

C(t∗)

)1/(t−t∗)

− C0, (6.10)

which is strictly valid in the vicinity of the crossover. Hence, one can probe the exponent by

simply computing (C(tL)/C(t∗))1/(tL−t∗)−C0 which requires data points at cutoffs t∗ and tL

only, assuming C0 is fixed by numerical prediction.

Figs. 6.9 show how the dynamical OP-like quantity C ′(hn) constructed based on different

cutoffs scales with hn in the vicinity of the crossover for N = 48 with open boundaries

in (a), periodic boundaries in (b) and for N = 480 with periodic boundaries in (c). The

colors yellow, red and blue correspond to cutoffs chosen at fixed tL = 2.5, 4, 5.5 and at

α = 5, 8 for parametric tL = α/vq. All data at different temporal cutoffs exhibit the same

exponent β ∼ 1. The differences between different temporal cutoffs are detailed in Appendix

Sec. E.2.3. The error bars originate from the uncertainty in time (Appendix Sec. E.2.6).

Since Fig. 6.9a is measured at temporal cutoffs, while the Figs. 6.9b and 6.9c are not, there

is no error bars for Fig. 6.9a. In our data, the temporal uncertainty increases as we increase

the system size, which explains the biggest error bars in Fig. 6.9c. Therefore, by measuring
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(a) (b)

Figure 6.10: The real time dynamics for the dynamically-disordered regime at hf = 1.2 in
(a) short-times for N = 48 and (b) long-times for N = 192. (a) The short-time dynamics
is fitted with analytically predicted fΦ = −4/π (yellow-dotted) and numerically the best
match (red-solid) which keeps fΦ as a free parameter. (b) For large systems, the analytical
prediction matches the data excellently.

exactly at the temporal cutoffs these error bars tend to vanish away.

Dynamically-disordered regime

The analytical prediction for the dynamically-disordered regime reads f∞Φ = −4/π in the

nonequilibrium response

C(t) ∼ (1 + cos(2ωt+ ξ) + · · · )1/2 exp(tf∞Φ ), (6.11)

ω(h) = 2
√

1 + h2 − 2, (6.12)

where · · · means that there are subleading terms and ξ is an unknown constant. We work

with a slightly simplified version of this analytical conjecture: C(t) = γ cos(ωt) exp(tfΦ),

which also appears in Ref. [331].

We first focus on short times and small system sizes, e.g., N = 48 and observe that in

this limit, the dynamics could be equally well described by alternative expression to the

analytical prediction. Fig. 6.10a shows the dynamical response for hf = 1.2 where we fit two
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different curves to the data. The yellow-dotted line is the fit originated from the analytical

expression where we fix the decay rate to fΦ = −4/π. We let fΦ be a free parameter in

the red-solid line. Therefore the latter performs slightly better than the former, especially

for t < 4/J . We plot the scaling of the decay rates in the dynamically-disordered regime

for the latter in Fig. 6.5 which turns out to be linear both for periodic and open boundary

calculations. We also shade the area between the linear scaling and the constant line at

fΦ = −4/π to emphasize the uncertainty in the decay rates for the dynamically-disordered

regime for short times and small system sizes. The corresponding scaling for the angular

frequency ω is plotted in Fig. 6.11a which is δ ∼ 0.533 for both cases where we either fix the

decay rate fΦ = −4/π or let it be a free parameter. The shaded area in between is negligible.

When we increase the system size to N = 192, we reach longer times and the analytical

expression becomes the best fit for the general trend of the data, Fig. 6.10b, as expected.

In this case, the decay rate is constant at fΦ = −4/π as can be seen in Fig. 6.5. The

corresponding scaling for the angular frequency ω approaches to δ ∼ 0.5 as can be calculated

from the series expansion of the analytical expression Eq. (6.12) in the close vicinity of the

crossover, ω(hn → 0) ∼ 2
√

2(−hn)1/2+O((−hn)3/2). The numerical demonstration of δ = 0.5

is shown in Fig. 6.11b with system sizes N = 192, 480.

In conclusion, one observes corrections to the exponents δ∞ = 1/2 and β∞ = 0 in the

dynamically-disordered regime for short times, resulting in δ ∼ 0.533 and β ∼ 1.

6.2.4 Dynamical crossover in the nonintegrable TFIM

Having studied the dynamical crossover observed in the transient regime for a noninteracting

model, we now turn our attention nonintegrable TFIM.

We break the integrability of the model by taking ∆/J = −1 in Eq. (6.3), which hosts

an equilibrium QPT at hc ∼ 2.46 (Appendix Sec. E.2.5). Fig. 6.12a shows the sophisticated

dynamical response of this model calculated with MPS for different h values in the lighcone

determined by data ranging from N = 24 to N = 42. Lightcones are determined similarly by
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(a) (b)

Figure 6.11: Angular frequency scales with −hn with a power-law exponent of (a) δ ∼ 0.53
for small system sizes and (b) δ ∼ 0.5 for larger system sizes in the disordered regime in
the vicinity of the crossover. In (a) we plot the scaling of ω for both cases where we either
fix fΦ = −4/π (orange-squares) or let it be a free parameter (red-diamonds). The area in
between is shaded which is very negligible.

studying the separation timescales τs of different system sizes. Fig. 6.12b shows the presence

of well-defined τs timescales for a range of different system sizes at h/J = 2.

Fit function for the nonintegrable TFIM

An important difference from the noninteracting model is the oscillations existing in both

dynamically-ordered and -disordered regimes. Hence, we first aim to approximately model

the dynamical response. Since oscillations are present at every h/J , a fit function that can

reproduce the important features of the dynamics is,

C(t) = γ1 exp(fΦ,1t) + γ2 exp(fΦ,2t) cosωt. (6.13)

The dashed lines in Fig. 6.12a show how well the fit function can describe the dynamics. The

first and the second terms are analogous terms for the dynamically-ordered and -disordered

regimes of the integrable TFIM, respectively. Thus, an immediate observation is that there

seems no sharply distinct dynamical regimes as in integrable TFIM. We study the param-

165



0 1 2 3 4 5

0

0.5

1

(a)

2 4 6 8

0

0.05

0.1

0.15

0.2

(b)

1 1.5 2 2.5 3
0

0.5

1

(c)

Figure 6.12: (a) The nonintegrable TFIM with ∆/J = −1 for different h/J = 1.2, 1.95, 2.5
and dashed lines are the fit function predictions for dynamical responses. (b) Single-site
observable C(t) for the nonintegrable TFIM ∆/J = −1 at h/J ∼ 2 with respect to time for
different system sizes between N = 30 − 72. (c) The coefficients γ1 (black-circles) and γ2

(orange-diamonds) of the fit function for the dynamics of nonintegrable TFIM at ∆/J = −1.
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eters γ1, γ2 (depicted in Fig. 6.12c) fΦ,1 (depicted in Fig. 6.13a), fΦ,2 and ω (in Appendix

Sec. E.2.7) as a function of transverse field h.

By studying γ1,2, coefficients of the terms, we first notice that the non-oscillatory term

is dominant to the oscillatory term in the region h . 2.3. The opposite is true for h & 2.6.

Hence, even though there are not two distinct fit functions that describe two distinct regimes

like in integrable TFIM, there are two limits of one fit function that exhibits distinct enough

features. This behaviour seems to stem from the sharp crossover in the integrable model.

This is because, the fit function reduces to one term only where γ2 = 0 in dynamically-

ordered regime and γ1 = 0 in the -disordered regime. In this sense, with the fit function

integrable and nonintegrable models are quantitatively connected to each other. Note that

γ1,2 intersects at a location very close to the equilibrium QPT and this is where both terms

are equally significant in the nonequilibrium response. Therefore, one can separate the entire

region roughly into three: (1) h . 2.3 where the dynamics can be approximated by only the

non-oscillatory term, and hence acts like the dynamically-ordered regime in the integrable

TFIM. (3) h & 2.6 where the dynamics can be approximated by only the oscillatory term,

and hence acts like the dynamically-disordered regime in the integrable TFIM. (2) The

intermediate crossover region where both terms are important.

The fit function for the nonintegrable TFIM could be tested further with larger system

size data and hence, in longer times in the future studies. Additionally, testing the fit

function against nonintegrability strength ∆/J is an interesting direction for future studies.

In particular, it would be interesting to study how the regions (1) through (3) change in

a near-integrability model. Finally let us note that although there might be other equally

accurate models to represent the dynamics of nonintegrable TFIM, the current model has

the least amount of free parameters and is physically intuitive.
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Figure 6.13: (a) Decay rate of the first term in the fit function Eq. (6.13), fΦ,1 shows a
minimum at hc = 2.278 ± 0.001 signaling a boundary between the ordered regime (yellow-
circles) that can be modeled by logarithmic function (black-solid) and crossover region (blue-
diamonds). (b) Decay rate functions exp(fΦ,1) shown with solid flat lines and rescaled
observable data according to the method (i) (see text) around the flat lines for h/J =
1.1, 1.5, 1.8, 2.1, 2.28 with blue-dots, red-pluses, yellow-circles, purple-diamonds and green-
squares, respectively. Data accumulates around the flat lines. (c) Power-law dynamical
scaling in the vicinity of the boundary between regions (1) and (2) with an exponent of
β ∼ 2 with blue and yellow data at very early times t = 0.3, 0.5 with the rescaling method
(i) and purple data at the nodes of the oscillations motivated by the method (ii) (see text).
The black-squares are the decay rate function exp(fΦ,1)− C0.
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Dynamical crossover region and an OP-like quantity

We focus on the decay rate of the first term, fΦ1 since this is the term that governs the

exponential decay of the dynamical response, whereas fΦ2 controls the exponential decay

of the oscillations. In this sense, fΦ1 is the analogous parameter to the decay parameter in

the integrable TFIM. In addition to the observation that the system thermalizes the fastest

at the crossover boundary in the integrable TFIM, we notice that the minimum of fΦ1

roughly coincides with the boundary between the dynamically-ordered (1) and the crossover

(2) regions. Given that in the integrable TFIM, the cusplike feature emerges in short time

dynamics when the nonequilibrium response changes nature, it seems that the minimum of

fΦ1 implies a possible boundary between the regions (1) and (2). In this regard, region (1)

is where the nonequilibrium response can be approximated well enough with an exponential

decay only; and region (2) is where one cannot ignore the oscillatory term anymore.

Fig. 6.13a demonstrates this minimum for fΦ1 . We determine the location of the minimum

as hc = 2.278±0.001 which sets the boundary from dynamically-ordered (1) to the crossover

(2) regions. The decay rate in the region (1) follows previously introduced logarithmic scaling

in hn (Fig. 6.13a) giving rise Eq. (6.8) to hold for the nonintegrable model, as long as the

oscillations are taken care of. This could be performed in a couple of different ways, e.g.,

averaging over a period T = 2π/ω, working only at the nodes of the oscillations (π+2πn)/2ω

where n ∈ Z or simply rescaling the observable by substracting the oscillatory term from

the observable data. Let us briefly discuss these options.

(i) The first method employed here in the main text is simple rescaling by subtracting

the oscillatory term from C(t)→ C(t) = C(t)− γ2 exp(fΦ,2t) cos(ωt). Hence the rescaling of

the observable C(t) follows similarly to Eq. (6.9). In such an expression, γ1, γ2, fΦ,2 and ω

are free parameters. Fig. 6.13b demonstrates how well the rescaled data can be explained

by an exponential decay when the observable is rescaled according to method (i). In the

vicinity of the boundary and in early times, data coincides well with the flat lines which are

exp(fΦ,1). Overall, the exponential decay describes the general trend of the data in region
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(1).

(ii) The second method is to choose a temporal cutoff at the nodes of the oscillations.

This introduces a condition on the temporal cutoff time tL as

tL =
π + 2πn

2ω
, n ∈ Z.

For sufficiently long dynamical response, this condition is not restrictive. When the condition

is satisfied, the rescaled observable reduces to Eq. (6.9) with only one free parameter γ1.

(iii) Finally one can think of averaging the observable data over a period of T . Let us

first discuss this case for the integrable TFIM. By a time-averaging integral over a period of

T around the temporal cutoff tL, the result reads

1

T
∫ tL+T /2
tL−T /2

dt C(t∗) exp[fΦ(t− t∗)] = C(t∗) exp[fΦ(t− t∗)]sinh(fΦT /2)

fΦT /2
.

In the limit of T → 0, we recover the result with no averaging. We note that in case

of averaging, one needs to rescale the observable correctly with the averaging interval T

as well in order to construct a dynamical OP-like quantity. Although a similar procedure

can be applied for the nonintegrable model, this method requires fine-tuning of tL and the

averaging interval T based on the free parameters ω and fΦ,2 to get rid of the oscillatory

term in the fit function. Even though there happens to be infinite number of possible pairs

of temporal cutoff and averaging interval (tL, T ) in total, there are conditions for viable sets

(tL, T ) which introduces fine-tuning. Since such a method is likely to be inconvenient both

for computation and experiment, we do not discuss it further.

We plot the rescaled observable with temporal cutoff applied at t = 0.3 (blue) and

t = 0.5 (yellow) in Fig. 6.13c in addition to data at a node of the oscillation with angular

frequency ω (purple). The black-squares are the decay rate function exp(fΦ,1) − C0 where

C0 = exp(fΦ,1)|hc at the boundary between crossover and dynamically-ordered regions. All

data collapses reasonably well and can be described by a power-law scaling of β ∼ 2 in the
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vicinity hn � Λ = 0.44, which corresponds to h ∼ 2.23. The scaling exponent is consistent

with the smooth and continuous crossover boundary. The error bars mainly stem from the

fitting parameters when we model the dynamical response via the fit function Eq. (6.13)

applied on our data limited to short times.

Since a single fit function can describe the data in the nonintegrable TFIM, here the

observed physics clearly point out to different manifestations of the same quantum phase

connected by a smooth crossover. Nevertheless finite-size scaling analysis could be applied

to learn about the late-time behavior, since studying larger system sizes would provide larger

time intervals remaining in the lightcone. This in turn does not only test the fit function for

late times, but could also lead to more precise and accurate predictions on these emerging

regions of different nonequilibrium responses as a function of transverse field.

6.2.5 Conclusions

We studied the decay rates of single-site one-point observables, magnetization per site for

(non-)integrable TFIM as a function of transverse field. The integrable TFIM exhibited cusp-

like feature in the decay rates at the dynamical crossover hc = 1 between dynamically-ordered

and -disordered regimes in early times. In the dynamically-ordered regime, the observable

exponentially decays to zero, whereas the nonequilibrium response is an exponential decay

superposed with oscillations in the dynamically-disordered regime. By studying the scaling

of the decay rates in the vicinity of the crossover, we found a rescaling for the observable and

the rescaled observable exhibited a linear dynamical scaling law with β = 1 in the ordered

vicinity of the crossover in early times in contrast to β∞ = 1/2 predicted by late time an-

alytical expression. In the dynamically-disordered regime, we showed that both exponents

β = 1 and δ = 0.533 take up correction factors in early times and differ from the predictions

of analytical expression β∞ = 0 and δ∞ = 1/2.

Next we wrote down a fit function for the nonequilibrium behavior of the nonintegrable

TFIM. Three regions appeared from the model where in (1) h . 2.3 the response is dominated
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by a smooth exponential decay and hence acting like a dynamically-ordered regime; (3)

h & 2.6 the response is dominated by an oscillatory exponential decay and hence acting

like a dynamically-disordered regime; and (2) the intermediate crossover region where none

of the terms can be ignored. Hence, we observe that the point-like crossover boundary in

the integrable TFIM turns into a region in the nonintegrable model. It is an interesting

direction to test this model, its parameters and the region boundaries against different ∆/J .

Later we focused on the decay rate of the non-oscillatory term which showed a minimum at

the boundary between dynamically-ordered and crossover regions hc = 2.278 ± 0.001; and

found a dynamical OP-like quantity based on temporal cutoffs in the transient regime that

can probe this feature of the model after rescaling the observable. The rescaled observable

exhibited a dynamical scaling law exponent β ∼ 2.

Our work opens new avenues to explore nonequilibrium order, in particular with local

observables, with no need for reaching the saturation regime which might be challenging for

experiments as discussed in the first Section of the current Chapter. There are interesting

directions for future, such as (i) whether a similar dynamical OP-like quantity could be

constructed for other short-range Hamiltonians with exponential decay, e.g., the XXZ model;

and (ii) whether long-range interacting TFIM [125] could exhibit similar behavior in its

transient temporal regimes.
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Chapter 7

Dynamical Criticality in the

Quasi-Stationary Regimes

Extracting critical behavior in the wake of quantum quenches has recently been at the

forefront of theoretical and experimental investigations in condensed matter physics and

quantum synthetic matter, with particular emphasis on experimental feasibility. Here, we

investigate the potential of single-site observables in probing equilibrium phase transitions

and dynamical criticality in short-range transverse-field Ising chains. For integrable and near-

integrable models, our exact and mean-field-theory analyses reveal a truly out-of-equilibrium

universal scaling exponent in the vicinity of the transition that is independent of the initial

state and the location of the probe site so long as the latter is sufficiently close to the edge of

the chain. Signature of a dynamical crossover survives when integrability is strongly broken.

Our work provides a robust scheme for the experimental detection of quantum critical points

and dynamical scaling laws in short-range interacting models using modern ultracold-atom

setups.
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7.1 Introduction

In a global quench, the ensuing dynamics of a quantum many-body system can yield signa-

tures of dynamical criticality, such as dynamical phase transitions (DPTs). Several major

concepts of DPTs have been proposed [198, 214] with some of them converging [336]. One

such DPT is of the Landau paradigm, i.e., it is based on nonanalytic behavior in the long-time

dynamics of the local order parameter. This indicates that, in principle, such nonanalytic

behavior may be used to extract equilibrium criticality that manifests itself dynamically.

Indeed, it has been shown that this is possible through, e.g., out-of-time-ordered correla-

tors [181] (also see Chs. 4 and 5) and spin-spin correlations [204, 209, 210] in the wake of a

quench. Given that quench protocols in modern quantum synthetic matter setups are rela-

tively straightforward to implement compared to the preparation of a system in its ground

state, it is worth further investigating experimentally feasible methods aimed at extracting

equilibrium criticality through quench dynamics.

In this spirit, we show here that the dynamics of single-site observables close to the

boundary of a short-range transverse-field Ising model (TFIM) is a promising venue for

the detection of a quantum critical point (QCP). Whereas a single-site observable at an

arbitrary site of a periodic chain decays exponentially for quenches starting in the ordered

phase of the nearest-neighbor TFIM [116, 128, 328], a hard-boundary condition gives rise to

a quasi-stationary regime [337]. This allows one to probe equilibrium phase transitions and

dynamical criticality by utilizing the degrees of freedom close to the boundaries. Although

the profile of the on-site order dynamics naturally differs for each single-site observable and

depends on the initial state, we observe a universal behavior in the vicinity of the transition

for sites sufficiently close to the chain boundaries independently of the initial state.

The same behavior is also observed in a near-integrable model under mean-field theory

(MFT) analysis, which, together with the above, suggests a universal scaling exponent in

the vicinity of the transition. This observation stems from the fact that the relaxation time

to the quasi-stationary value diverges as we move towards the transition point, which is
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Figure 7.1: The nonequilibrium response Cr(t) in the TFIM with open-boundary conditions
given in Eq. (7.1) after a quench in the transverse-field strength from hi to h. (a) Results
for the integrable limit (∆ = 0) for r = 6. Lowest three colors (blue, green, red) depict
results over a range of system sizes N = 96, 480, 960, 1440 all of which collapse onto each
other. (b) In the nonintegrable limit (∆ 6= 0), five cases are considered: A1 : r = 3, ∆ =
−0.1, hi = 0, h = 0.5, N = 36, B : r = 9, ∆ = −0.5, hi = 0, h = 1, N = 42, C : r =
6, ∆ = −2, hi = 0, h = 2, N = 48, D : r = 12, ∆ = −1, hi = 0, h = 1, N = 42, and
A2 : r = 3, ∆ = −0.1, hi = 0.1, h = 0.5, N = 36.

a consequence of critical slowing down. Single-site observables at different sites approach

the quasi-stationary value in qualitatively the same way and independently of the initial

state. Therefore, the information of the precise site location is effectively washed away in

the vicinity of the transition. We determine the dynamical critical point (DCP) [210] in the

near-integrable model, which we find to be close in value to the QCP. Furthermore, time-

dependent density-matrix renormalization group (t-DMRG) calculations show a dynamical

crossover when integrability is strongly broken, albeit data is inconclusive as to whether this

is possibly a DPT due to numerical limitations on accesible evolution times.

We emphasize that we use the simplest possible probe, a single-site observable, in a

chain with hard boundaries, which is experimentally more relevant than a periodic chain.

This Chapter also forms a complementary approach to recent works on local probes in

DPT [338] and other dynamical schemes for detecting equilibrium phase transitions as shown

in Ref. [213] and Chapters 5 and 6.
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7.2 The quasi-stationary temporal regime in chains

with boundaries

The short-range TFIM with interaction strength ∆ is given by

H = −J
N−1∑
r=1

σzrσ
z
r+1 −∆

N−2∑
r=1

σzrσ
z
r+2 + h

N∑
r=1

σxr , (7.1)

where σx,zr are the Pauli spin matrices on site r, h is the transverse-field strength, N is the

length of the chain, and we fix J = 1 as the energy scale. At ∆ = 0, this model is the

integrable nearest-neighbor TFIM. Let us consider as initial state the ground state |ψ0〉 of H

at initial value hi of the transverse-field strength, and then we quench the latter to a value

h. Even though in the case of the TFIM under periodic-boundary conditions the single-site

nonequilibrium response Cr(t) = 〈ψ0|σzr (t) |ψ0〉 decays exponentially [116] (also see Ch. 6),

it has long been realized that open-boundary conditions stabilize a quasi-stationary regime

in the integrable TFIM when hi < h ≤ hc [337] where hc = 1 is the QCP. Figure 7.1a shows

the quasi-stationary regime of Cr=6(t) in the integrable TFIM for various h and systems

sizes ranging between N = 96 − 1440 with hi = 0 where the initial state is the fully z-up

product state, |ψ0〉 = |↑↑ . . . ↑〉 (c.f. Appendix F for the methods). It is straightforward

to demonstrate that this stationary regime is not thermal by simply observing the strong

dependence of the stationary value on the initial state in Fig. 7.1a when hi = 0.1. Since

the stationary value carries the initial state information, and given the fact that this regime

persists for all accessible times up to recurrences [337] at all sites r � N/2, degrees of

freedom near the boundaries do not thermalize. The origin of this boundary effect is in fact

independent of the integrability of TFIM, c.f. Fig. 7.1b for various nonintegrable cases up

to some oscillations computed via t-DMRG, confirming the quasi-stationary nature of this

temporal regime. Recurrences observed in some cases occur due to finite-size effects (see

Appendix F). The stationary value again carries the initial state information. In a similar

176



vein, this boundary effect is observed when interactions are power-law decaying long-range

interactions [339,340], also c.f. Appendix F. Therefore, our work contributes another example

of a strongly nonintegrable system exhibiting nonthermal behavior [237]. We note that this

boundary effect is robust against changing the hard boundaries to smooth ones [341], does

not originate from strong zero modes [115], and clearly is not confined to only the edge of

the chain (Appendix F). Rather, the reason is simply the geometry of the open-boundary

chain where the asymmetric location of a site r � N/2 causes destructive interference

between two signals, one of which reflects back from the closest edge much earlier than the

other moving towards the farthest edge [337]. This stabilizes a quasi-stationary nonthermal

temporal regime regardless of the integrability of the system. In the rest of our work, we

will utilize this quasi-stationary regime of single-site observables to probe equilibrium phase

transitions and dynamical criticality in the short-range TFIM. Unless otherwise specified,

we use polarized states as initial states and set hard boundaries in our discussion.

7.3 Quench dynamics in the integrable TFIM

In equilibrium, the TFIM has two phases, i) the ferromagnetically ordered phase for h < hc

and ii) the paramagnetic disordered phase for h > hc. The QCP shifts to favor order upon

introducing interactions (∆ 6= 0). The local order parameter is the magnetization averaged

over all sites, and when it is finite it indicates spontaneous symmetry breaking in the ground

state.

The dynamical order parameter is set as the time-averaged nonequilibrium response,

Cr(t) =
∫ tl
t∗
dtCr(t)/(tl − t∗) ≡ C̄r(h), where t∗ is the ultraviolet cutoff, c. f. Appendix F,

and tl is the evolution time at which the cluster theorem [116] breaks down. This breakdown

time can be estimated based on the maximal quasi-particle velocity vq: tl = ∆x/(2vq) where

∆x = N−2r+1 is the distance between two spins at r and N−r+1 that are symmetrically

located around the symmetry center of the open-boundary chain (Appendix F). For quenches
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Figure 7.2: Nonequilibrium phase diagram for ∆ = 0 (a) for different sites r = 1, 3, 6, 9, 12
depicted by triangles, circles, pluses, diamonds, and squares, respectively, at N = 1440.
Solid-black line is the analytic result for edge magnetization in thermodynamic limit. The
inset shows the same plot in semi-logarithmic scale exhibiting a discontinuous behavior at
the DCP. (b) For different system sizes, N = 500− 2000, at site r = 6. The inset shows the
system size scaling of the value Cr(t) = C̄r(hc) after a quench to the QCP hc = 1 for sites
r = 3, 6, 9, 12, in descending order, with all exhibiting scaling ∝ N−1.
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sufficiently far away from the vicinity of the DCP, Cr(t) matches the quasi-stationary value,

as then there is no diverging relaxation time. Each single-site observable in the TFIM

equilibrates around a different value in the quasi-stationary regime. This can be seen in

Fig. 7.2a that depicts Cr(t) for r = 1− 12, all of which have a different functional form of h.

The analytic expression for the value of the quasi-stationary regime at r = 1, Cqs
r=1(h) = 1−h2

[337] matches the corresponding numerical result in Fig. 7.2a. The inset in Fig. 7.2a shows

the same plot in logarithmic scale that exhibits a clear and abrupt change in C̄r(h) regardless

of the value of r. Hence, the behavior of the singularity at hc is captured by all single-site

observables r � N/2. We focus on C̄r=6(h) in Fig. 7.2b to demonstrate through finite-size

analysis the presence of a transition with system sizes ranging between N = 500 − 2000.

For h < hc the dynamic order is persistent, i.e., it has an increasing trend with increasing

system size, whereas for h ≥ hc the dynamic order vanishes, i.e., it has a decreasing trend

with increasing system size. This observation suggests that in the thermodynamic limit, we

would observe C̄r=6(h) 6= 0 for h < hc and C̄r=6(h) = 0 for h ≥ hc, the hallmark of a phase

transition. The same behavior holds for other sites r � N/2, c. f. Appendix F, and the inset

shows the system-size scaling at the QCP for different r, all of which decay as N−γ where

γ ∼ 1. This power-law decay is independent of the choice of ultraviolet temporal cutoff

and initial state, as long as hi < hc holds (Appendix F). Therefore, we demonstrate a DPT

for different sites r � N/2 that reflects the underlying ground-state phase transition. The

functional form of the dynamic order in the dynamically ordered phase varies for different r.

Nevertheless, we observe that the site information is effectively washed away in the vicinity

of the transition.

Figure 7.3a shows how the time-average C̄r(h) scales with the reduced control param-

eter hn = (hc − h)/hc for different r � N/2 for quenches to the vicinity of hc = 1.

As we move closer to the phase transition, all sites exhibit the same scaling behavior

C̄r(h) − C̄r(hc) ≡ C̄ ′r(hn) ∝ hβn where β ∼ 4/3 is obtained through fit functions (Ap-

pendix F). This is a main result of our work, indicating a possibly truly out-of-equilibrium
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Figure 7.3: Universal scaling in the integrable TFIM for quenches from hi = 0 to the vicinity
of the QCP for different sites r = 1, 3, 6, 9, 12 (in descending order) where all exhibit an out-
of-equilibrium critical exponent of ∼ 4/3. Solid-black line is the analytic expression for the
edge magnetization in the thermodynamic limit. This qualitative picture holds for different
values of hi. (b) All Cr(t) for a quench from hi = 0 to h = 0.999 for different sites collapse
onto each other, up to different oscillation frequencies, when rescaled according to the fitted
power-law in (a), hence resulting in a single envelope function where rescaling is denoted by
tilde. The black-solid and green-dotted lines stand for the time-average C̄1(h) with t∗ = 10
and the quasi-stationary value Cqs

r=1(h), respectively. All data is for N = 1440.

critical exponent, since it is not found in equilibrium. A comparison with the analytic ex-

pression of the edge magnetization in the quasi-stationary regime Cqs
r=1(h) [337] (black-solid

line in Fig. 7.3a), reveals that Cqs
r=1(h) does not describe well the time-average of the data

in the close vicinity of the transition. The origin of this discrepancy lies in the fact that

the analytic expression is strictly valid when t → ∞, whereas the relaxation time diverges

in the vicinity of the transition. This means that in practice the quasi-stationary regime

cannot be reached in the close vicinity of the transition, neither numerically nor in ex-

periments. A similar effect has been observed in the periodic TFIM in Chapter 6, where

the analytic expressions are derived in the t → ∞ limit [116]. We do not study the re-

gion hn < 10−4, because the nonequilibrium response does not show true equilibration to a

quasi-stationary state over accessible evolution times due to the diverging relaxation time

(Appendix F). Figure 7.3b displays how nonequilibrium response functions of different sites

collapse onto each other when rescaled according to the coefficients of the fit function appear-
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ing in Fig. 7.3a, e.g., C̄ ′r(hn) = arh
β
n and C̄ ′r′(hn) = ar′h

β
n and hence the scaling factor reads

C̄ ′r(hn)/C̄ ′r′(hn) = ar/ar′ , i.e., C̃r′(t) = Cr′(t)ar/ar′ . Even though the frequencies differ, all

nonequilibrium responses converge to a single envelope function when rescaled, displaying a

universal behavior in the relaxation to the quasi-stationary value. We emphasize that this

region, where scaling at all sites r � N/2 yields the critical exponent β, still describes the

critical relaxation regime to the quasi-stationary value, although it lasts for very long times,

i.e., the time-averages in Fig. 7.3b (black-solid) would not perfectly match with the value in

the quasi-stationary regime (green-dotted).

This observation can also be confirmed by the scaling change in the edge magnetization

from the analytic prediction of the quasi-stationary value Cqs
r=1(hn) = 2hn−h2

n (Appendix F).

For quenches in the vicinity of the transition, the latter scales as Cqs
r=1(hn) ∝ hn. However, our

numerical results show that a critical relaxation regime preceding the quasi-stationary state

should persist indefinitely as N → ∞ due to critical slowing down, leading to C̄ ′r=1(hn) ∝

h
4/3
n . Changing the initial state does not alter the numerically obtained scaling exponents of

the magnetization per site in the vicinity of the transition (Appendix F). As a consequence,

we demonstrate the presence of a slowed down critical relaxation regime in the vicinity of the

QCP which precedes the quasi-stationary regime and results in a dynamical critical exponent

of ∼ 4/3.

7.4 Nonintegrable TFIM

We apply MFT analysis for ∆ = −0.1 which is a near-integrable TFIM (Appendix F for

the details on MFT). This model has a QCP at hc ∼ 1.16 [210]. Figure 7.4a shows the

dynamical phase diagram for different r = 1 − 12, which looks similar to the case of the

integrable TFIM (∆ = 0) except for a shift in the QCP to favor order, hc > 1, as expected.

We notice that the quasi-stationary value of the edge magnetization, which our numerical

results access for quenches far away from the vicinity of the transition, can be fitted well with
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Figure 7.4: MFT results for ∆ = −0.1. Nonequilibrium phase diagram (a) for different sites
r = 1, 3, 6, 9, 12 in descending order at N = 1440 and solid-black line is a fit function for the
edge magnetization (see text), (b) for different system sizes N = 96 − 1440 at site r = 6,
demonstrating the singular point. (c) Nonequilibrium response in the dynamically-ordered
phase and in the vicinity of the transition at N = 1440 for r = 6. The recurrence attempts
observed here imply the breakdown of the cluster theorem (Appendix F). (d) Different sites,
r = 3, 6, 9, 12 in descending order, scale with the same exponent ∼ 4/3 in the vicinity of the
DCP at N = 1440 where hn = (hdc − h)/hdc.
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a functional form that is reminiscent of that of the integrable TFIM, Cqs
r=1(h) = α(hνdc − hν)

for h ≤ hdc and zero otherwise, where we denote the DCP as hdc. We focus on C̄r=6(h) in

Fig. 7.4b where we observe a singularity at hdc ∼ 1.144 ± 0.001 < hc whose magnetization

decreases with increasing system size (Appendix F). Meanwhile, the same (opposite) behavior

is observed in the dynamically disordered (ordered) phase, suggesting a phase transition at

hdc. In Fig. 7.4c we plot the nonequilibrium responses around the DCP for N = 1440, which

shows a qualitative change in the nonequilibrium response across the DCP. For example, up

until h = 1.144 which is denoted by the gray-dashed line in Fig. 7.4c, there is evidence of

equilibration, whereas starting at h = 1.145, which is denoted by the pink-dotted line, the

response starts to develop a low-frequency oscillatory feature seen in the downward trend of

its dynamics (see Appendix F for data on h > 1.145). This feature is captured in Fig. 7.4b as

a singularity. Based on this method, we further refine the DCP to be at hdc = 1.1437±0.0001,

which is slightly smaller than the corresponding QCP at hc ∼ 1.16. Although it is possible

that the DCP we obtain is actually the QCP and this small numerical difference is a mere

artifact of MFT, it is worth noting that MFT usually predicts a larger critical point than the

physical one since it neglects fluctuations, whereas here hdc < hc. With hdc substituted into

the fit function of the edge magnetization, we obtain α = 0.78 and ν = 1.89. It is important

to note that although the MFT treatment gives rise to a quasi-stationary regime for long

intervals of time as seen in Fig. 7.4c for quenches away from the vicinity of the DCP, this

is not conclusive evidence for infinitely long-lived nonthermal behavior in a nonintegrable

model. Indeed, MFT is not expected to adequately capture thermalization as it may neglect

fluctuations that are essential for the latter.

Next we study the close vicinity of the transition in the MFT data. Figure 7.4d reveals

an out-of-equilibrium critical exponent β ∼ 4/3 based on the fit functions in the relaxation

regime for different single-site observables r = 3− 12 (Appendix F), in congruence with the

conclusions of the integrable case. Once again, this shows how the analytic prediction for

the quasi-stationary steady state does not capture this exponent since Cqs
r=1(hn) ∼ hn as
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Figure 7.5: t−DMRG results for nonintegrable TFIM with ∆ = −J , (a) for different sites,
r = 3, 6 in descending order at N = 48 and (b) for different system sizes N = 42, 48 at site
r = 6.

hn → 0 (Appendix F). As in the integrable TFIM, a diverging relaxation time for quenches

in the vicinity of the DCP gives rise to a very long-lived critical relaxation regime where the

quasi-stationary steady state is accessible neither numerically nor in experiment.

Finally, we consider the strongly nonintegrable TFIM with ∆ = −1, whose QCP lies

at hc ∼ 2.46 (see Appendix E.2.5). At such large values of ∆, MFT is inadequate, and

we therefore employ t-DMRG. The latter is numerically exact, but within a given fidelity

threshold the accessible evolution times are limited and far shorter than those achievable for

the (near-)integrable model. Figure 7.5a shows the local order profile for r = 3 and 6 for

N = 48 spins, which exhibit behavior similar to that of our previous results. Figure 7.5b

focuses on r = 6 and exhibits the increasing trend of order with increasing system size in the

dynamically ordered phase. We apply a temporal cutoff of tl = N/3 for both to calculate

C̄r(h). Although we cannot precisely determine a DCP due to lack of data for larger times

(a constraint due to increasing bond dimension with evolution time in t-DMRG), our data

still suggests a dynamical crossover. Intricate details of this crossover, e.g., whether it is

actually a DPT if longer evolution times are available, are not possible to discern within the

limited evolution times we can achieve in t-DMRG.
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7.5 Conclusions

We have studied the quasi-stationary regime and the critical relaxation to it at sites close

to the edge in short-range TFIMs with open-boundary conditions. We have shown that

single-site observables are able to extract quantum critical points at or near integrability.

The corresponding dynamical phase transition is present independently of the measurement

location and initial state. In the vicinity of the transition, a universal scaling behavior with a

truly out-of-equilibrium exponent β ∼ 4/3 emerges in the very long-lived critical relaxation

regime to the quasi-stationary steady state.

Our setup is experimentally convenient, because (i) hard-boundary chains are a more

natural setup than their periodic counterparts in experimental realizations, (ii) single-site

observables are readily accessible in modern quantum simulators [195]. Further, since we have

shown that the physics near the edge of the chain is independent of the initial state, so long

as hi < hc, one can prepare the most convenient initial state in a lab, e.g., a polarized state.

Most theoretical works have focused on periodic chains naturally to utilize the translational

symmetry, which removes site-dependency of the dynamical order parameter within the

ordered phase [210,325,342]. In this sense, our work complements the literature via explicitly

demonstrating the potential of single-site observables in open-boundary chains. One can

reproduce the periodic chain results in the middle of an open-boundary chain as shown in

the previous Chapter and Appendix Sec. E.2.1, however most of the chain would actually

diverge from this behavior due to the boundary effects exemplified above. Our setup does

not require a precise choice of location r � N/2, yet one can probe a universal dynamical

criticality in the vicinity of the transition.
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Chapter 8

Conclusions, Outlook and Future

Directions

In this dissertation, I explored the field of quantum many-body dynamics from a range of

different perspectives, i.e., equilibration, thermalization, information scrambling, light cone

bounds and dynamical criticality in a variety of systems, i.e., Bose-Einstein condensates,

spin chains and ladders, and fermionic systems. I looked for answers to the question posed

in the beginning of the dissertation: ‘What are the signatures of quantum phases and phase

transitions in isolated interacting systems driven out-of-equilibrium?”, found signatures for

dynamical detection and determined the paths of how we can extend the quantum phase

transitions, symmetry-breaking and topological, to the nonequilibrium setting. All theoreti-

cal works that are performed in this dissertation with discovered predictions could be probed

in experiments based on quantum simulators.

After presenting the preliminaries in Chapter 1, I explored various dynamical phenomena

that are observed in spinor Bose-Einstein condensates in Chapter 2, including well-defined

quantum collapses and revivals, thermalization via Eigenstate Thermalization Hypothesis,

equilibration with no revivals despite of finite degrees of freedom in the system, and spin-

mixing oscillations. The reason behind both thermalizing and nonthermalizing behaviours
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in the same model under different initial conditions was linked to the presence of rare non-

thermal states in the spectrum. It is an interesting and intriguing direction to see whether

these rare nonthermal states could survive when the integrability of the model is broken,

i.e., by introducing magnetic field in x−direction [343], and demonstrate quantum scarring

in spinor condensates. Furthermore, I proposed a method to predict the collapse and revival

timescales in the dynamics and put forward the observation that quench dynamics can probe

both the ground state and excited state quantum phase transitions of the system. The exper-

iment on the former is presented in the first section of Chapter 6 and the related Appendix

Sec. E.1, while the latter has been recently explored in detail in the literature [332,344].

Chapter 3 focused on finding a feasible spin model to detect information scrambling in

a cold atom simulator and analyzing the scrambling properties of this model, that is the

ladder−XX model, in both clean and disordered potentials. Such properties are (i) the

decay rates of the out-of-time-order correlators which exhibited power-law; (ii) the rates of

information spread that are determined with the light cone which turned out to be sublinear,

and butterfly cone wavefronts which exhibited a range of dynamical exponents. Advanced

numerical analysis could be applied to the ladder−XX model to study these properties in

larger systems to test whether the results could be generalized to bigger system sizes and

potentially to the thermodynamic limit. In this Chapter, I also studied realistic initial state

preparation for feasibility and advanced the idea that we can use light pulses to imple-

ment the sign reversal protocol as an alternative to Feshbach resonances. The ladder−XX

model in disordered potentials has been shown to exhibit a crossover between ergodic and

many-body localized regimes via the level-statistics in this Chapter for the first time to our

knowledge. Later, these dynamical regimes along with the associated crossover [345] and in

general the localization properties [346] of the ladder−XX model have been studied in detail

in the literature. A close cousin of OTOC is spectral form factor (SFF) [347, 348], whose

time evolution has signatures of the onset of quantum chaos. Feasible methods to measure

SFF [349] and alternative paths to probe quantum chaos in quantum simulators are needed,
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as both the decay and steady-state properties of OTOCs capture more than the signatures

of quantum chaos only. As we demonstrated in this Chapter, a disordered spin model in its

ergodic regime which is determined by the energy level statistics, cannot exhibit an exponen-

tial decay for long enough times to argue for quantum chaos by OTOC. The OTOC shows

clear differences in its decay properties between ergodic and MBL regimes, differentiating

two dynamic regimes well, and in fact signaling the ergodic-MBL crossover [131]. However,

the hallmark of quantum chaos by OTOC is an exponential decay with a Lyapunovlike

exponent [144], and it is now well-known that while Floquet spin chains exhibit a robust ex-

ponential decay [162], time-independent disordered spin Hamiltonians do not, i.e. disordered

Heisenberg chain [162] and the ladder−XX quasi-1D spin chain in Chapter 3 [219] both of

which shows a robust power-law decay instead, likely due to additional symmetries. Given

such difficulties, discovering a more transparent and robust experimental probe of quantum

chaos is an important and promising direction of research.

In Chapter 4, I laid down the necessary key ingredients for out-of-time-order correlators to

probe ground state physics, and hence the quantum phase transitions. These key ingredients

followed from an analytical framework based on predicting the steady state values of OTOCs,

and this analytical framework also elucidated the numerical observations of Ref. [181]. I

applied the theory to a critical Isinglike spin chain, that is the XXZ−model, and numerically

confirmed the predictions, by also explaining why the steady-state value of OTOC is sensitive

to long-range order but not to quasi-long range order. This Chapter helped us to argue for a

universal connection between information scrambling and quantum phase transitions when

the conditions on initial state and the observables are satisfied. Later, this connection is

explored further in the literature [188, 190] as well as in Chapter 5, and is experimented

[160, 161]. Whether this analytical framework could be utilized to understand how the

connection survives following the quenches from the long-range ordered phase, instead of

using the ground state, is an interesting direction to pursue.

Chapter 5 revealed another interesting connection between information scrambling and
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the ground state physics: OTOCs of edge observables are sensitive to the presence or absence

of Majorana zero modes, even at infinite temperatures. We accurately marked down the lo-

cation of the topological phase transition via the steady-state temporal regime of OTOCs.

When integrability is broken, the competition between information scrambling and Z2 topo-

logical order led to a new timescale in the scrambling dynamics with a long-lived plateau of

partial scrambling before full scrambling in long times. We coined the term prescrambling

for this restricted scrambling of topologically-protected quantum information. These results

extend the studies on strong zero modes in the literature [115, 303, 350, 351] to the realm

of information scrambling and OTOCs. This Chapter is also the first systematic study of

the effect of Z2 symmetry on the OTOC, and in particular on its steady-state regime, in

the literature to our knowledge. While the OTOCs with no symmetries and charge con-

servation in 1D chains have been extensively studied in the literature [163, 164, 352–354],

there is much room to explore in the dynamics of OTOCs with Z2 symmetry. Additionally,

how our results in Chapter 5 can be extended to 2D fermionic systems is an interesting and

promising direction of study. There have been current experimental progress in 2D quantum

simulators [355–359], and there is a great interest in understanding how these nonequilibrium

processes, in particular information spread and scrambling, occur in two dimensions. (i) One

could study 2D topological superconductors with p−wave pairing [22] in nonequilibrium to

see whether thermalization and scrambling probes are still useful to detect the presence or

absence of Majorana zero modes in 2D. (ii) One of the most interesting physics to study in

2D is Quantum Hall Effect (QHE) [360–363] and topological insulators [364–366]. There is

a recent body of works that apply quench dynamics to paradigmatic models of topological

insulators, i.e. Haldane model, [308–313]. In particular, figuring out how the interplay be-

tween fractional QHE and information spread in nonequilibrium would play out, under what

conditions the nonequilibrium response would be affected by fractional QHE ground state

and how the scrambling properties are affected in a topological phase transition point are

only a few of the exciting questions to answer in quench nonequilibrium studies in 2D.
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In Chapter 6, I steered the focus from information scrambling back to thermalization,

however this time with the most of the focus on the paradigmatic model of dynamical phase

transitions, TFIM. While the first Section studied dynamical detection of a first-order quan-

tum phase transition in an antiferromagnetically interacting spinor Bose-Einstein condensate

both theoretically and experimentally, the second Section was exclusively on the quench dy-

namics of short-range TFIM. The unifying theme of both Sections was the use of transient

temporal probes in dynamically detecting quantum phase transitions of the ground state.

In both Sections, we revealed dynamical scaling laws in the vicinity of the transition or

crossover. I explained the origin of the exponent observed in the spinor condensates based

on the method put forward in Chapter 2. In the latter part of the Chapter, I showed that the

decay rates of the transient regime in short-range TFIM exhibit a dynamical crossover even

in short times and one could construct dynamical order parameterlike quantity with the cor-

rect scaling of the single-site observables. The exponent of the dynamical scaling law in the

vicinity of the crossover significantly differed for short times from the analytical results that

are strictly valid in infinite time limit. The origin of this observation is the critical slowing

down and the divergence of the relaxation times in the vicinity of the crossover. Break-

ing integrability strongly, transformed the sharp crossover to a smooth one. Near-integrable

models with weak integrability breaking only are very useful intermediate models in between

integrable and strongly nonintegrable models. Studying the crossover in a near-integrable

model to better understand the smoothing of the cusp in the integrable TFIM and studying

this transition from a cusp to a smoothed cusp with different types of integrability breaking

terms to test the universality of the crossover are interesting directions of study [367]. Ad-

ditionally, as shown in Chapter 7, mean-field theory could be used for the quench dynamics

of the near-integrable models, which would be useful to reach bigger system sizes and longer

simulation times than we could with numerical methods like time-dependent density-matrix

renormalization group. Eventually it is important to test further the nonequilibrium regions

appearing around the quantum critical point with integrability breaking term by accessing
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longer simulation times than what we had in this dissertation.

Finally, the Chapter 7 utilized the quasi-stationary temporal regimes that form in the

nonequilibrium responses of the single-site observables near the boundary of chains. This

dynamical behavior is significantly different than that of an arbitrary single-site observable

in a periodic chain, or the observable in the middle of an open-boundary chain. I showed

that a dynamical scaling law with a universal exponent arises in the vicinity of the transition

and the exponent does not depend on the choices of the initial state, location of the single-

site observable, temporal cutoffs and weak integrability breaking. Signature of a dynamical

crossover survives when integrability is strongly broken. Quasi-stationary temporal regime

is likely a prethermal regime for nonintegrable models before full thermalization to zero.

However this idea could not be verified or refuted with our data, because (i) our t-DMRG

data is limited to short times where we do not observe a full thermalization to zero, (ii)

although mean-field theory results reach much longer simulation times, it is not expected

that the MFT could capture full thermalization of a quantum system, as the role of quantum

fluctuations is important in quantum thermalization. Let us also remember the slight shift in

the dynamical critical point from the equilibrium quantum critical point in our results on the

near-integrable TFIM, observed with MFT. Such a shift was also observed in Ref. [210] with

MFT. Whether this shift originates from MFT or whether it can be observed with density

matrix renormalization group methods is a significant question that needs to be answered in

the future to fully understand the reliability of MFT in quench dynamics.
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Appendix A

Thermalization in the Integrable

Models

A.1 Microcanonical Window Selection

The microcanonical ensemble (MC) prediction should not depend on the size of the energy

window. This constraint prevents us to calculate the MC prediction for the cases where the

kink structure exists in the spectrum and the initial state is chosen in such a way that it

overlaps with the kink. See Figs. 2.5 and 2.6 for these regions where the MC energy interval

cannot be well-defined. This result is consistent with the condition Eq. (2.8) which does

not hold for the aforementioned cases above. However the typical eigenstates of a spinor

BEC system are thermal with high PR values and therefore we can compare the prediction

of diagonal ensemble (PDE) (or the long-time average of dynamical response) with the MC

prediction for almost any initial state. For these cases, we calculate the mean energy of the

system according to

Eo =
∑
α

|Cα|2Eα, (A.1)
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Figure A.1: The microcanonical ensemble thermal prediction with respect to different energy
intervals for [Eo − δE,Eo] (red-dashed), [Eo − δE,Eo + δE] (blue-solid) and [Eo, Eo + δE]
(black-dotted) when a sudden quench is applied from qi = −3 to qf = −0.5 for a condensate
size of N = 104.

where Eα is the energy associated with each eigenstate. Keeping in mind that the energy

window should be much smaller than the mean energy δE � Eo, we look for the threshold

window size δEth that starts to affect the MC prediction. Then any δE < δEth gives a well-

defined MC energy window. We also compare three different possibilities for the window

size as [Eo − δE,Eo], [Eo − δE,Eo + δE] and [Eo, Eo + δE]. Fig. A.1 shows an example of

this procedure.

A.2 Mapping of a Spinor Hamiltonian onto a Single

Quantum-Particle Hopping Model

Here we show how the parameters of single quantum-particle model (Eq. (2.13)) depend on

the sites of the lattice. Upon comparing with the spinor Hamiltonian Eq. (2.4), we observe

that the Zeeman field strength q modifies only the diagonal terms and hence the onsite

potential terms η. Therefore, the single particle Hamiltonian family that can produce the

dynamics in this paper consists of only different onsite potential configurations. Fig. A.2a

shows the hopping coefficients with respect to single particle lattice positions. This functional
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Figure A.2: (a) The hopping parameter J for the mapped single particle model, (b) the
onsite potential parameter η for a condensate model with Zeeman field strength q = 4.5
(blue-lower curve), q = −0.5 (black middle curve) and q = −4.5 (red upper curve) with
respect to site position i for a condensate of size N = 104.

dependence of J onto the site positions is fixed for each spin-1 BEC Hamiltonian. Fig. A.2b

shows different onsite potential configurations depending on the Zeeman field strength. The

most important observation is that onsite potentials for all cases are not random, instead they

are engineered potentials with respect to site positions. This property breaks the localization

of single particle hopping model and hence we observe thermalization of an observable that

is nonlocal for the model.
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Appendix B

Detection of Information Scrambling

in Cold Atoms

B.1 Error bars on OTOC for the disordered XX-ladder

Fig. B.1 shows the out-of-time-order correlators for different rung couplings with error bars

in the case of h = 1 [J||] random disorder strength. The error bars are significant for smaller

rung couplings where the integrable limit of the ladder-XX model resides. As the rung

coupling becomes equal to intra-leg couplings, the error bars become smaller. Therefore, the

scrambling that we observe in the chaotic limit is robust to different configurations with the

random disorder strength of h ∼ 1 [J||]. The error bars are more pronounced in the decay

compared to unity and saturation regimes. When we study the opposite regime of dimer

phase where rung coupling is much bigger than the intra-leg coupling α→∞, the error bars

do not grow significantly.

B.2 Error bounds on Haar-distributed initial states

We present the error bounds on the OTOC when Haar random states are used to mimic

the β = 0 initial state in Fig. B.2. Fig. B.2 shows the difference |F ex
i (t)− F∼i (t)| for L = 6
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Figure B.1: Error bars of the out-of-time order correlators with disorder strength of h = 1 [J||]
between two distant operators σz1 and σz7 with respect to different rung interaction strengths
α where J⊥ = αJ‖ for L = 7. The OTOC is averaged over 100 different random samples.
The curves are, α = 0.01 (blue-solid), α = 0.1 (orange-dashed), α = 0.5 (yellow-dotted),
α = 1 (purple-solid), α = 1.5 (green-solid), α = 2 (pink-dashed), α = 10 (crimson-dotted)
and α = 100 (black-dotted).

system size at h = 1 random disorder strength with only one random field configuration

when i = 6 is set. The blue line stands for the case where we take only one random initial

state, whereas the black line shows the case where we average over 100 such initial states.

The difference is slightly more than an order of magnitude. However as seen from the other

curves, the mixture of a couple of them is quite close to the case with M = 100. While using

only one random state approximates the OTOC with an error up to 10−2, one can improve

the error bound via averaging over only a few states. The results are obtained in this paper

with an average of 100 random states.

B.3 The exponential and power-law fitting parameters

Here we present the additional figures and fitting data that show the exponential and power-

law decays.

Figs. B.3a-B.3b are for L = 7 system size. The lyapunov-like exponents for L = 8
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Figure B.2: The difference |F ex
i=6(t) − F∼i=6(t)| for only one Haar-distributed random state

(blue-dashed), averaged over 40 random states (red-dashed dotted), 80 states (green-dotted)
and 100 states (black-solid). Only the real part of F∼i (t) is taken since the imaginary part
is practically zero.
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Figure B.3: (a) Semi-logarithmic plot for σz1 with σz5 (blue-pentagrams), σz6 (red-circles) and
σz7 (orange-diamonds) observables in a system size of L = 7. The lyapunov-like exponents
follow as, 1.4342 (R2 = 0.9989), 1.2507 (R2 = 0.9996) and 1.1767 (R2 = 0.9994) for σz5-
σz7 with dashed, solid and dotted lines respectively. (b) Logarithmic plot for σz1 with σz5
(blue-pentagrams), σz6 (red-circles) and σz7 (orange-diamonds) observables in a system size of
L = 7. The power-law exponents follow as 2.4335 (R2 = 0.9999), 2.6165 (R2 = 0.9991) and
2.6565 (R2 = 0.9997) for σz5-σz7 with dashed, solid and dotted lines respectively. The data is
averaged over 100 different realizations of the Hamiltonian at h = 1 [J||] for both subfigures.
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observable λ R2

σz5 1.362 0.9986
σz6 1.229 0.9992
σz7 1.09 0.9997
σz8 1.015 0.9996

Table B.1: Exponential fit parameters for the Lyapunov-like exponents at L = 8.

observable b R2

σz5 2.1865 0.9996
σz6 2.5506 0.9981
σz7 2.5751 0.9976
σz8 2.7636 0.9995

Table B.2: Power-law scaling fit parameters at L = 8.

are tabulated in Table B.1 and the relevant figure is shown in the main text. The data is

averaged over 10 different random samples all at h = 1. The interval of data used for the

exponential fitting at L = 8 extends from the time when OTOC starts to deviate from unity

to t ∼ 2 [1/J||], t ∼ 3 [1/J||], t ∼ 4 [1/J||] and t ∼ 4 [1/J||] for σz5, σz6, σz7 and σz8, respectively.

The power-law fitting is applied to data seen in Fig. 3.2b (in the main text) until t ∼ 5 [1/J||],

t ∼ 5 [1/J||], t ∼ 6 [1/J||] and t ∼ 6 [1/J||] for σz5, σz6, σz7 and σz8, respectively. Similarly, the

data used for the power-law in the clean limit, h = 0, is shown in Fig. 3.2c in the main text

(until t ∼ 10 [1/J||] for all observables). The MBL decay form is applied to all data as seen

in Fig. 3.2d in the main text.

B.4 Details on the experimental initial state prepara-

tion

Fig. B.4a plots the EON (eigenstate occupation numbers) distribution, |cβ|2, for L = 6

and L = 7 for a randomly-set initial Fock state. These distributions should be contrasted

with a uniform distribution of an infinite-temperature initial state. Even though they are
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Figure B.4: (a) The EON (eigenstate occupation number) distributions |cβ|2 with respect
to eigenenergies Eβ for L = 6 (blue) and L = 7 (orange) sizes when only one Fock state
is randomly set. (b) The scaling of the mean of the error |F ex(t) − 1

M

∑
j Fj(t)| with the

system size when we use only one randomly-sampled Fock state. Different curves are different
random realizations with the legend showing the exponent of the corresponding power-law
decay. The error bars stand for 1σ standard deviation around the mean of the error signal.

not uniform, they are still broad distributions which helps the approximation error to be

bounded. As a result, as long as the initial state has a broad distribution in the eigenbasis,

the exact shape of the distribution is not significant. Hence such an initial state could be

used to sufficiently approximate an infinite-temperature OTOC.

Fig. B.4b shows the error ε1 scales as a power-law in the system size when only one Fock

state is randomly-set. This figure focuses on five realizations that were given in the main

text in logarithmic scale. Here we plot the data in linear scale to also demonstrate the error

bars. The error bars stand for 1σ deviation around the mean of the error signal in time. Note

that the error bars increasingly become smaller as the system size increases, meaning that

our initial state approximation does not only work better on average but also throughout

the simulation time.

Finally we provide the exact fitting expressions for the exponential and power-law scalings

of the mean error in the sampling ratio M/N . The exponential scaling parameters are,

a = 0.1218, R2 = 0.9134 (N = 3), a = 0.043, R2 = 0.933 (N = 4), a = 0.0132, R2 = 0.884
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(N = 5) and a = 0.004, R2 = 0.962 (N = 6) with very close exponents b ∼ −2.5. The

power-law scaling parameters are, a = 0.0112, R2 = 0.984 (N = 3), a = 0.0037, R2 = 0.991

(N = 4), a = 8 × 10−4, R2 = 0.945 (N = 5) and a = 3.4 × 10−4, R2 = 0.981 (N = 6) with

very close exponents b ∼ −0.5.
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Appendix C

The Connection Between Information

Scrambling and Quantum Phase

Transitions

C.1 Energy-time relation and finite-size effects

Eq. 5 in the main text clearly exhibits how the OTOC can suffer from the finite-size effects.

Imagine that the finite-size lifts the degeneracy. Based on the dynamical equation of OTOC,

F (t) =
∑

α,β,γ,γ′

c∗αbβe
−i(Eβ−Eα+Eγ−Eγ′ )tW †

αγV
†
γγ′Wγ′β,

one would write the ground state contribution to the OTOC at zero temperature as

Fgs(t) ∼ |W[1,1][1,2]W[1,2][1,1]|2exp
[
−2i(E[1,2] − E[1,1])t

]
. (C.1)

Since Eq. (C.1) is the dominant contribution to the OTOC in the ordered phase, the order

will eventually be invisible to the saturation value, and it will be encoded in the frequency

spectrum of the OTOC. However since this is a finite-size effect, we expect to see finite
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Figure C.1: The OTOC saturation values for an open-boundary chain with N = 13 size and
a long-time of tJ ∼ π

4
103 at fields h/J = 0 (orange-squares: Eq. 4, purple-crosses: Eq. 6 and

h/J = 4 (blue-circles: Eq. 4, red-diamonds: Eq. 6, for σzi observable.

saturation value for all times in the thermodynamic limit. The period of the emerging

oscillation (due to degeneracy-lifting) is τ = π/(E[1,2] − E[1,1]). Then starting from t ∼ τ/2,

the order will be invisible to the saturation value. Thus, the region where the system seems

to have reached its most correlated state before the finite-size effects show up, could be

defined for t � τ/2; whereas the order will be most visible to the frequency spectrum

around t � τ/2. Further, the ground state contribution will exist in the saturation value

as a non-zero effect for a time t ∼ τ/4, where the time-averaging will reveal the order. The

relation between evolution time and energy spectrum reflects the observation that longer

the time evolution, better the resolution of the energy spectrum. This, in turn, helps us to

estimate the time interval of the corresponding dynamics simulation of the theory Eq. 5 (in

the main text), even though Eq. 5 is explicitly time-independent.

For a phase transition that involves antiferromagnetic order, due to the doubling of the

unit cell size, it is not uncommon that the finite-size contributions may oscillate as we increase

the system size, depending on whether the system is composed of odd (Fig. C.1) or even

(Fig. 2a in the main text) number of sites. For periodic boundary conditions, the systems
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with even number of sites usually show smaller finite-size effects. In our studies, though,

we observe the opposite: chains with odd number of spins experience finite-size effects less.

As far as the OTOC is concerned, stronger finite size effects are expected for systems with

even number of sites, since the key to obtain the OTOC saturation value is to sum over

all the quantum states in the ground state subspace. In an Ising-ordered phase, an exact

two-fold degeneracy is guaranteed for a chain with odd number of spins by the Kramers

degeneracy theorem, because an odd number of spin-1/2 results in a half-integer total spin.

For a system with even number of sites (i.e. integer total spin), such an exact degeneracy is

not expected and thus the degeneracy is lifted by finite size effects more strongly than chains

with odd number of spins. This explains the dramatic difference between the results of open

and periodic boundary conditions at the XY-antiferromagnet boundary. We also note that

the ground states belong to the Sz = 0 magnetization sector in the antiferromagnet, which

is the biggest sector of the Hamiltonian and hence they would hybridize with each other.

To alleviate the finite-size effects, we make use of the time-energy relation explained above

and plot the OTOC for significantly smaller interval of time, tJ ∼ π
4
10 in the main text.

This should be compared with the results of a long-time evolution tJ ∼ π
4
103 in Fig. B.3b.

This comparison is a good example of how finite-size effects could show up in scrambling,

restricting the order to short-times. We also note that even though our method is valid

at the infinite-time limit, due to the energy-time relation employed in the computations it

produces sufficiently good results for the real-time dynamics in a short-time evolution.

Fig. C.3 is the phase diagram of odd-numbered chains with phase boundaries dictated by

the Bethe ansatz for an infinite-size chain. Even though the finite-size effects for small fields

are more severe in even-numbered chains than odd-numbered chains in small systems, we note

that the transition in odd-numbered chains is ambiguous. The continuous transition between

XY- and antiferromagnetic phases due to the nature of the doubly-degenerate ground states

in odd-numbered chains (as explained above), prevents a straightforward system-size scaling

based on odd-numbered chains. Therefore we chose to focus on even-numbered chains in the
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Figure C.2: OTOC saturation value (Eq. (3), blue line) and its ground state contribution
(Eq. (5), orange line) for h/J = 0, N = 14 and for time tJ . π

4
103. The anti-ferromagnetic

order is concealed due to finite-size effects appearing in long-times.
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Figure C.3: The OTOC phase diagram (via Eq. (3)) for odd-numbered chains while the
x-axis is the spin interaction strength in the z-direction Jz/J and y-axis is the magnetic field
h/J , for N = 13 system size and σiz where the observation spin is chosen from bulk, when
open boundary conditions are set and initial state is a ground state. The time-scale where
the results are valid is tJ ∼ π

4
103.
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Figure C.4: Ground state value contribution (Eq. (5)) to OTOC for (a) odd-numbered
N = 13 and (b) even-numbered N = 14 chains with respect to Jz/J at x-axis and field h/J
at y-axis.

main text. We also note that as we compute results for bigger system sizes, the apparent

odd-even effect disappears. The difference between Bethe ansatz results and the OTOC

phase boundary for the anti-ferromagnetic to XY phase in high fields is also due to finite-

size effects. This could be seen in Figs. C.4, where we compare the ground state value in

OTOC with the exact phase boundaries. This means that the ground state contribution

similarly suffers from the finite-size effects as well. Hence the results point to the effect of

finite-size on the ground state manifold rather than the incapability of OTOC to probe the

phase transition as precisely as exact results. It is an interesting question how the system

size scaling results of OTOC and its ground state contribution would compare with the

existing methods of determining the phase boundary, e.g. Binder ratio, fidelity measures,

determining the energy gap, spatial correlation functions etc.

C.2 Operator Ansatz Demonstrated

Here we give the additional results of XXZ model on the relation between OTOCs and phase

transitions. Fig. C.5 shows the difference between the OTOC saturation values, Fig. C.3
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Figure C.5: The difference between the OTOC saturation values (via Eq. (3) in main text)
and the ground state contribution for the phase diagram while the x-axis is the spin inter-
action strength in the z-direction Jz and y-axis is the magnetic field h, for N = 13 system
size and σiz where the observation spin is chosen from bulk, when open boundary conditions
are set and the initial state is a ground state.

and the ground state contribution in these values, Fig. C.4a. The mismatch between OTOC

saturation value and ground state contribution to it is clear in XY-phase, due to the fact

that the correction term of the excitations is dominant in the XY-phase, as explained in the

text.

Fig. C.6a shows the matrix elements of the long-range order bulk observable σiz used

in the study only for a ground state |V1,α|2. Note how the observable’s matrix elements

satisfy the operator ansatz put forward in the text: in Ising-ordered phases we observe

|W[1,α][1,β]|2 � |W[1,γ][θ,γ′]|2 while in the Ising-disordered phase (XY-phase) W[1,α][1,β] ∼ 0

and |W[1,α][θ,β]|2 � 1 is satisfied. Fig. C.6b shows the participation ratio (PR) value of the

ground state in terms of spin basis. PR is defined as

Pα =

(∑
n=1

|ψαn|4
)−1

, (C.2)

where α are eigenstates and n are the reference basis. PR is a measure of fluctuations of

a state in a reference basis. We see that the ferromagnetic ground states (Jz/J < −1)

are more localized compared to anti-ferromagnetic ground states (Jz/J > 1), because of
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Figure C.6: (a) Matrix elements of observable σiz of a bulk spin for a ground state |V1,α|2
at N = 14 for various Jz: Jz/J = −2 (blue-circles), Jz/J = 0.1 (red-diamonds), Jz/J = 2
(yellow-pentagons) and Jz/J = 5 (purple-dots). (b) Participation ratio of the ground state
with respect to Jz/J for a system size N = 14, while the reference basis is spin basis. (c)
Fluctuations of a ground state at N = 15. (d) The matrix elements of observable σiz of
a bulk spin for a ground state |V1,α|2 at N = 13 (odd-numbered chains) for various Jz:
Jz/J = −2 (blue-circles), Jz/J = 0.1 (red-diamonds), Jz/J = 2 (yellow-pentagons) and
Jz/J = 5 (purple-dots).
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the subspaces that they belong to under a Sz conserving Hamiltonian. As a result, anti-

ferromagnetic ground states are more susceptible to both finite-size effects (mixing in energy

levels) and the effect of the rest of the terms in the Hamiltonian. This is also the reason

why OTOCs are better in capturing the transition from a ferromagnet to a XY-paramagnet

compared to anti-ferromagnet to XY-paramagnet. Unless Jz � J , the XX- and YY-coupling

terms cause the Neel states to slightly couple to the other states in Sz = 0 subspace.

The operator ansatz on the matrix elements can also be seen in terms of the fluctuations

in a ground state. The fluctuations of the ground state can be defined as (∆σiz)
2

= 〈(σiz)2〉−

〈σiz〉
2

where the expectation is taken over the ground state and seen in Fig. C.6c for a system

size of N = 15. Hence, we state that the fluctuations are maximized in XY-phase, causing

a dominant correction term in the OTOC saturation value. The fluctuations are zero in the

ferromagnetic phase and they approach to zero in the anti-ferromagnetic phase as Jz/J →∞.

Note that this is the case because an open boundary chain with odd-number of spins have two

ground states with different Sz quantum numbers in the anti-ferromagnetic phase. This can

be seen more explicitly in the matrix elements of an odd-numbered chain in Fig. C.6d. The

operator ansatze are satisfied as expected, however note that the main contribution comes

from the diagonal elements in the Ising-ordered phases, unlike in the even-numbered chains

in Fig. C.6a. Finally we note that the fluctuations are always maximum for the quasi-long

range observable σix.

C.3 Comparison of real-time dynamics with theory

prediction in short times

Here we share a direct comparison between real-time dynamics of OTOC in short-time and

the infinite-time saturation value that is predicted by Eq. 3 in the main text, to demonstrate

that the analytical framework to predict the saturation value (or the time-average) is robust

in finite times. Fig. C.7a shows the average of the time-signal (over a time interval of tJ = 20)
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Figure C.7: (a) The time-average of OTOC signal over a time interval of tJ = 20 (blue
circles) and the extend of the oscillations around the average with the error bars; the theory
saturation value prediction Eq. 3 in the main text (red squares). (b) The real-time dynamics
shown for Jz = −1 (blue-solid), Jz = 0.6 (red-dashed), Jz = 2 (yellow-dotted) and Jz = 4
(purple-dashed dotted). Both subfigures are for a system size of N = 13 and at a zero field
h/J = 0.

with blue circles and the extend of oscillations with the error bars around the blue circles.

Some of these real-time OTOC signals can be seen in Fig. C.7b. Even though these signals

are oscillatory and show transient features, our theory could predict the average of the signals

with a good accuracy as seen with red squares in Fig. C.7a. Therefore, our theory is not

restricted to long times. The main reason of this robustness is due to the energy-time relation

we employ in the computations, hence the saturation value Eq. 3 (in the main text) changes

with the interval of time-averaging even though the Eq. 3 is explicitly time-independent (see

Appendix C.1).

C.4 OTOC with odd number of spins and periodic

boundary conditions

We present the result for odd-numbered chain if periodic boundary condition is applied,

Fig. C.8. The low values and fluctuations in the anti-ferromagnetic region are a sign of how
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Figure C.8: OTOC saturation value (Eq. (3), blue line) and its ground state contribution
(Eq. (5), red-circles), for h/J = 0 when N = 13 is set and for time tJ . π

4
103 with periodic

boundary conditions.

OTOC is sensitive to emerging domain walls in the ground state. Domain walls are expected

in the anti-ferromagnetic ground state because of the frustration in an odd-numbered periodic

chain.

C.5 The remarks on the saturation value of OTOC

Eq. 2 in main text can show why quantum chaotic spin systems should eventually decay to

zero when ETH is evoked up to some approximations. When a system follows ETH, there

are two criteria to satisfy: (i) Vγγ′ � Vγγ, where γ 6= γ′, and (ii) Vγγ is a smooth function

of energy Eγ, f(Eγ) (Vγγ almost do not fluctuate) [40, 295]. In this case, we end up with

F (t→∞) ∼
∑

α c
∗
αbα|Vαα|3 up to some residue due to finite-size and conservation laws [297].

(We assume V = W for simplicity of the argument.) We can state,

Tr(V I) ∼ Tr(V |ψ(0)〉 〈ψ(0)|) = 〈ψ(0)|V |ψ(0)〉 (C.3)

because |ψ(0)〉 is drawn from a Haar-distributed ensemble (detailed in the next paragraph).

Then, under the assumption of Tr (V ) = 0, 〈ψ(0)|V |ψ(0)〉 =
∑

α c
∗
αbα = 0. Since Vγγ do not

fluctuate significantly via ETH’s second criteria [40] and in fact the support of distribution
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of Vγγ shrinks around the microcanonical ensemble value in the thermodynamic limit if we

assume the strong form of ETH [114], F (t → ∞) → 0 for chaotic spin systems. However,

in order to extract the rate of decaying to zero e.g. power-law in chaotic spin systems with

conserved quantities, and/or the residue due to finite-size, one needs a more rigorous analysis

where the fluctuations of the diagonal elements Vγγ around the smooth function f(E) are

included in the second assumption of ETH [297].

TrV ∼ 〈ψ |V |ψ〉 holds for a pure state |ψ〉 randomly drawn from uniform distribution

induced by Haar measure [277]. These so-called Haar-distributed random states, unlike

random product states, are close to maximally entangled states [368]. By being close to

maximally-entangled states, Haar-distributed random pure states behave as typical states

on which canonical typicality [84, 85] could emerge. Canonical typicality is defined as the

following: Consider a system U with Hilbert space dimension du, composed of a subsystem S

with dimension ds and its environment E of dimension de which is significantly larger than

the system itself de � ds. In a system with equiprobable states, the state of the system

would be ρu = I/du. Hence the subsystem would be in a canonical state, Ωs = Treρu.

Now if we take a pure typical state for the system |ψ〉 instead of ρu, the subsystem state

can be written as ρs = Tre |ψ〉 〈ψ|. Canonical typicality asserts that ρs ∼ Ωs for typical

states |ψ〉. This means that typical system state |ψ〉 is locally indistinguishable from ρu. As

stated in Ref. [84], canonical typicality emerges because of ‘massive entanglement between

the subsystem and the environment’ which is a feature of typical states. These ideas are

established in Ref. [85] and more generally in Ref. [84] via invoking Levy’s lemma [277] for

systems with constraint of energy conservation. Later studies showed that energy constraint

on the system is not required for canonical typicality to emerge [302] and it is possible

to formulate the principle for mechanical observables [296, 302]. Canonical typicality for a

mechanical observable reads [277,296]

P

[∣∣∣∣TrV − 〈ψ |V |ψ〉
∣∣∣∣ ≥ ε

]
. exp (−O(du)) , (C.4)

211



0 2 4 6 8
-1

-0.5

0

0.5

1

(a)

0 10 20 30 40
-1

-0.5

0

0.5

1

(b)

Figure C.9: Real-time dynamics of OTOC at (a) Jz/J = 0.5 and (b) Jz/J = 4 at N = 14.
(a) Blue-circles: exact diagonalization, red-pentagons: double-time steps with δ = 0.05,
yellow-diamonds: single-time steps with δ = 0.05 and purple-squares: single-time steps with
δ = 0.01. (b) Blue-circles: exact diagonalization, red-pentagons: double-time steps with
δ = 0.05, yellow-diamonds: double-time steps with δ = 0.02 and purple-squares: double-
time steps with δ = 0.01. Both subfigures are at h/J = 0.

where ε is a small parameter. Hence, the probability that 〈ψ |V |ψ〉 deviates from TrV

decreases exponentially in the system size. Therefore, for big enough many-body systems

Haar-distributed states could very well imitate an equiprobable state, ρu = I in the calcu-

lation of observable expectation values. This theory has been used in numerical studies to

compute OTOCs at infinite-temperature Ref. [130] and Chapter 3.

C.6 Density-matrix renormalization group computa-

tions

In order to compute the real-time dynamics of OTOC with MPS, we first find the ground

state of the system with DMRG where we limit our computation to maximum 10 sweeps

and set it to initial state. Then we time-evolve the initial state approximately [369]. Note

that this approach is accurate as long as the time increment δ is small enough. Fig. C.9a

compares three different methods in the calculation of the OTOC at Jz/J = 0.5 (XY-phase).
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While ED stands for exact diagonalization, single-time step means using only real time step

δ and double-time means utilizing two complex time steps at a real time step in order to

decrease the scaling of the error [369]. Fig. C.9b shows different δ values with double-time

steps in the anti-ferromagnetic phase of the XXZ model. Due to our benchmarking results,

we set δ = 0.01 for our time evolution computations. For the calculation of the ground state

contribution to OTOC as the leading-order term in the Ising-ordered phases, we compute

the first three states with lowest energies via DMRG.
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Appendix D

Topologically Induced Prescrambling

D.1 Methods Explained

To determine the degeneracy in the spectrum, we need to characterize the uncertainty in

energy, ∆E. This means that we define an energy window around each energy level with

∆E as [Em − ∆E,Em + ∆E] where we assume that the states remain in this window are

degenerate with the state whose associated energy is Em. This process defines an energy

resolution and in a way coarse-grains the energy spectrum.

As discussed in Chapter 4 and the previous Appendix Sec. C.1, the energy resolution is

related to the interval of the time-evolution. Longer time-evolution translates to finer energy

resolution, resolving the smallest energy differences in the spectrum, T ∆E ∼ 1, where T

is the total time of the evolution. Hence anytime we simulate a system with a finite time

interval, we define an energy resolution as ∆E = π
4T . In return, the parameter ∆E determines

the degenerate subspaces in the spectrum and hence helps us to determine the diagonal

contribution F̄diag in OTOC time-average. Note that this reverse relation between the time

interval and energy resolution also implies that any degeneracy lifting will be eventually

captured by a long-time evolution.

We call an equation derived by the dynamical decomposition as a framework equation.
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If the operator in the eigenbasis Wαβ can be calculated analytically for an integrable system,

that would present us the analytical expression of its OTOC saturation value. However,

one can numerically derive the matrix elements Wαβ too and use them in the framework of

dynamical decomposition. Any brute force calculation of the OTOC saturation value requires

an estimation on the time-dependent part in the dynamical Eq. (5.10), e.g. which energy

pairs are equal to each other. The energy resolution ∆E is used here to define a threshold so

that we could exert the degenerate subspaces on the OTOC calculation. Crudely speaking,

this threshold determines whether the saturation value is contributed by the found energy

set {Eα, Eβ, Eγ, Eδ}. In the end, the numerical incorporation of a finite energy resolution

into our framework equation that analytically determines the saturation value, also provides

us the time-average of OTOC over any time interval up to dramatic transient features (see

Appendix Secs. C.1 and C.3). Hence we equivalently call F̄ both for long-time saturation

value and the time-average of OTOC.

When we numerically calculate the OTOC saturation value, we do the summations in

Eq. (5.11). This introduces an approximation to the final OTOC saturation value in our

numerical result. We set a threshold where any term greater than the threshold is found

and summed over. We determine our threshold based on the dimension of the Hilbert space,

∼ 1/M2, where M is the dimension of the Hilbert space. This generally bounds the error on

the order of ∼ 10−2 (we remind the reader that |F | ≤ 1).

We utilize ITensor platform in C++ environment and MPS (matrix product states) for

DMRG computations [300]. To prepare infinite temperature states in MPS format, we

average over random product states. We restrict the bond numbers to m . 100. Since the

bond numbers increase rapidly as the system evolves in time, this results less accuracy for

the later times. Therefore, we restrict our time-evolution with MPS at infinite-temperature

to tJ . 10. The t-DMRG of OTOC in low temperatures or zero temperature present modest

bond numbers, hence we are able to simulate OTOC at zero temperature for longer times.
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D.2 Derivation of Fermionic OTOC

In order to (both analytically and numerically) solve Kitaev chain, we double the Hilbert

space of single-particles and generate the BdG Hamiltonian. This Hamiltonian gives us a

symmetric spectrum around energy E = 0 where there are two states at E = 0 when the

chain is open due to the localized Majorana fermions at two ends. Therefore, if we derive an

equation for OTOC in terms of single-particle states, via summing over only E = 0 states

(Majorana zero modes) due to Eq. (5.9), we can calculate the OTOC in the infinite-time

limit.

We work with the fermion operator in doubled space, that is, in addition to di = ci

we also have di+N = c†i , hence di has a dimension of 2N where N is the dimension of the

free fermionic system without pairing terms. Note that in addition to the familiar anti-

commutation relation
{
di, d

†
j

}
= δij, we have {di, dj+N} = δij and

{
d†i , d

†
j+N

}
= δij. Hence,

a Majorana operator can be defined as a2i−1 = ci + c†i =
(
di + d†i + di+N + d†i+N

)
/2. With

this algebra in mind, we can derive

F2i−1,2i−1(t) =
1

2N
Tr (a2i−1(t)a2i−1a2i−1(t)a2i−1) . (D.1)

After the substitution of di operators,

F2i−1,2i−1(t) =
1

22N

1

22
Tr

[
di(t)a2i−1di(t)a2i−1 + d†i (t)a2i−1d

†
i (t)a2i−1

+ di+N(t)a2i−1di+N(t)a2i−1 + d†i+N(t)a2i−1d
†
i+N(t)a2i−1

+ 2

(
di(t)a2i−1d

†
i (t)a2i−1 + di(t)a2i−1di+N(t)a2i−1

+ di(t)a2i−1d
†
i+N(t)a2i−1

)
+ 2

(
d†i (t)a2i−1di+N(t)a2i−1

+ d†i (t)a2i−1d
†
i+N(t)a2i−1 + d†i+N(t)a2i−1di+N(t)a2i−1

)]
. (D.2)
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Since the dimension of the Hilbert space is 22N , the following identities hold:

Tr
(
did
†
i + d†idi

)
= 22N → Tr

(
did
†
i

)
= 22N−1.

Tr
(
di+Nd

†
i+N

)
= Tr (didi+N) = Tr

(
d†id
†
i+N

)
= 22N−1.

Tr
(
did
†
i

(
d†idi + did

†
i

))
= 22N−1 → Tr

(
did
†
idid

†
i

)
= 22N−1.

Tr
(
di+Nd

†
i+Ndi+Nd

†
i+N

)
= Tr (didi+Ndidi+N) = Tr

(
d†id
†
i+Nd

†
id
†
i+N

)
= 22N−1.

Eq. (D.2) takes a form of

F2i−1,2i−1(t) =
1

22N

1

22

2N∑
k,l

[
(Gik(t)Gil(t) +Gi+N,k(t)Gi+N,l(t) (D.3)

+ 2Gik(t)Gi+N,l(t))Tr(dka2i−1dla2i−1) + h.c.

]
+

2

22N

1

22

2N∑
k,l

[
(Gik(t)G

∗
il(t) +Gik(t)G

∗
i+N,l(t))Tr(dka2i−1d

†
la2i−1)

+
(
G∗ik(t)Gi+N,l(t) +G∗i+N,k(t)Gi+N,l(t)

)
Tr(d†ka2i−1dla2i−1)

]
,

in terms of the matrix elements of the single-particle propagators G(t) = exp (−iHBdGt).

The term Tr(dka2i−1dla2i−1) is non-zero only when k = l = i or k = l = i + N where

in both cases Tr(dka2i−1dla2i−1) = 22N . The term Tr(dka2i−1d
†
la2i−1), on the other hand,

vanishes for k = l = i and k = l = i+N , however survives for k = l 6= i and k = l 6= i+N .

In this case, Tr(dka2i−1d
†
la2i−1) = −22N . Note that none of these terms survives if k = i, l =

i+N and vice versa. Therefore we end up with
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F2i−1,2i−1(t) =
1

22

[
(Gii(t))

2 + 2 (Gi,i+N(t))2 + (Gi+N,i+N(t))2 (D.4)

+ 2 (Gii(t)Gi+N,i(t) +Gi,i+N(t)Gi+N,i+N(t)) + c.c

]
− 1

2

2N∑
k 6=i,k 6=i+N

(
|Gik(t)|2 + |Gi+N,k(t)|2 +Gik(t)G

∗
i+N,k(t) +G∗ik(t)Gi+N,k(t)

)
.

The unitarity condition reads
∑2N

k |Gik|2 = 1, then

2N∑
k 6=i,k 6=i+N

|Gik(t)|2 = 1− |Gii(t)|2 − |Gi,i+N(t)|2. (D.5)

Furthermore, we utilize the relation
∑2N

k=1GikG
∗
i+N,k = 0 which leads to

2N∑
k 6=i,k 6=i+N

Gik(t)G
∗
i+N,k(t) = −Gii(t)G

∗
i+N,i(t) − Gi,i+N(t)G∗i+N,i+N(t). (D.6)

When these relations are utilized, one can write the final result as

F2i−1,2i−1(t) = (Re (Gii(t)) + Re (Gi,i+N(t)))2 (D.7)

+ (Re (Gi,i+N(t)) + Re (Gi+N,i+N(t)))2 − 1,

for OTOC for a Majorana fermion of type a2i−1. Given Gij(t) =
∑

α exp (−iEαt) 〈ψα,j|ψα,i〉

where ψα,i means the ith element of the eigenstate α of HBdG, this result should eventually

lead to the result stated in the main text,

F2i−1,2i−1(t) =

[
2N∑
α=1

(
|ψiα|2 + ψiαψ

∗
i+N,α

)
cos (εαt)

]2

(D.8)

+

[
2N∑
α=1

(
|ψi+N,α|2 + ψi+N,αψ

∗
i,α

)
cos (εαt)

]2

− 1.
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D.3 The relation between OTOCs and two-time corre-

lators

Eq. (5.13) shows that the saturation value of a two-time correlator will always be governed by

the diagonal elements in the operator W . Then Wαβ = 〈ψα|W |ψβ〉 can be straightforwardly

calculated in the non-interacting limit. Here, |ψβ〉 and |ψα〉 are even and odd parity states

in a doubly-degenerate subspace that is dictated by the Majorana zero modes. We note

that |ψγ〉 = d |ψα〉 = f(h)
(
γ1+iγ2√

2

)
|ψα〉, where f(h) is a function of magnetic field h and

f(h = 0) = 1/
√

2, however decreases as h → 1. The quantity that we need to calculate

becomes 〈ψα|Wf(h) (γ1 + iγ2) |ψα〉 /
√

2. The effect appears when we use edge spins, hence

W = σz1 =
(
c1 + c†1

)
= γ1 (D.9)

W = σzN =
∏
j<N

(
1− 2c†jcj

)(
cN + c†N

)
= P

(
cN − c†N

)
= iPγ2, (D.10)

where P =
∏N

j

(
1− 2c†jcj

)
is the parity operator. Eqs. D.9-D.10 show the operator W in

Ising, Dirac and Majorana bases, respectively. If we work with the operator Eq. (D.9),

〈ψα| f(h)γ1

(
γ1 + iγ2√

2

)
|ψα〉 =

2f(h)√
2
, (D.11)

where we utilized (γi)
2 = I and −iγ1γ2 |ψα〉 = − |ψα〉 since |ψα〉 is an odd-parity state.

Similarly for Eq. (D.10),

if(h) 〈ψα|Pγ2

(
γ1 + iγ2√

2

)
|ψα〉 =

2f(h)√
2
, (D.12)

where we additionally use P |ψα〉 = − |ψα〉. Given each degenerate subspace contributes

equally, we write C̄ = 2f(h)2. A simple functional form of Eq. (5.13) is calculated as

C̄ = 1− h2 for h < J and C̄ = 0 for h > J in Ref. [213]. We substitute this analytical result

into Eq. (5.13) and obtain Wαβ =
√

1− h2 for h > J in the topologically non-trivial phase.
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Figure D.1: Diagonal contribution in the Ising model and non-interacting fermionic model
after dynamical decomposition is applied. Purple-circles show the diagonal contribution
Eq. (5.12) at N = 14 in the Ising model (for a time interval tJ = π

4
10 ∼ 7.85), while the blue

right-pointing triangles (N = 14) and red left-pointing triangles (N = 100) show Eq. (5.12)
for HBdG in non-interacting fermion system at infinite-time limit. The exact form is derived
from the two-time correlators of Majorana fermions (solid-orange).

Hence we observe that the diagonal contribution of OTOC is a direct dynamical probe of

topological order, giving a non-zero Fmj
ex = (1− h2)

2
in the non-trivial phase.

To demonstrate how F̄diag of Ising model can match with Eq. (5.14) of non-interacting

fermionic system whose calculation is purely based on Majorana zero modes, we plot Fig. D.1.

Blue right-pointing triangles and orange left-pointing triangles show F̄mj
diag numerically com-

puted via Majorana zero modes from BdG Hamiltonian for system sizes of N = 14 and

N = 100, respectively. Note that F̄ is
diag of the Ising model (purple-squares) computed at

N = 14 for a time interval of tJ ∼ 8 matches well with Fmj
diag at the same size, implying that

F is
diag could be used to detect the presence/absence of Majorana zero modes. The difference

between N = 14 and N = 100 sizes of F̄mj
diag shows how finite size effects show up near the

transition point due to the divergent length scale associated with the quantum critical point.

Additionally we compare F̄mj
diag at N = 100 with the analytically derived result F̄mj

ex that is

denoted by solid-orange line in Fig. D.1 and observe that they match perfectly.

220



10
0

10
5

10
10

-1

-0.5

0

0.5

1

Figure D.2: Coherence time computation of the integrable Ising model deep in the non-
trivial phase h/J = 0.3. The coherence times exhibit exponential increase with the system
size which implies that prescrambling lasts indefinitely.

D.4 Further results on the Ising Model

Fig. D.2 shows that the prescrambling time-scale scales with the system size in the Ising

model. Hence, in the thermodynamic limit, prescrambling continues to survive, giving a

finite OTOC saturation (time-average) F̄ 6= 0 at the infinite-time limit.

Fig. D.3 shows the system-size scaling of fermionic OTOC time-average at the phase

transition point that is also determined by OTOC itself. The scaling parameters of the phase

transition point was already given in the main text. Here we provide the scaling parameters

of the OTOC amplitude with respect to system size: F∞ ∼ N−1.5452−1, meaning the OTOC

in thermodynamic limit should saturate at F∞ = −1 in the transition point.

Now we explicitly demonstrate how operator ansatz is satisfied or violated in the in-

tegrable Ising model. For this, we plot the matrix elements |Vβα|2 for various β in the

spectrum at different h values in Fig. D.4. Note that |ψβ〉 and |ψα〉 in |Vβα|2 denote states

sorted according to their energies.

The first two subfigures (a)-(b) are for an edge spin operator σz1, whereas the rest (c)-(d)

are for a bulk spin operator. We sample the ground state (a)-(c) and a state in the middle
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Figure D.3: The scaling of OTOC, F with the system size N at the transition point deter-
mined by the second derivative of the OTOC (see main text). The scaling parameters are:
F∞ ∼ N−1.5452 − 1 with R2 = 0.9994.

of the spectrum (b)-(d) in these subfigures. Deep in the topologically non-trivial phase,

h/J = 0.1, we see that the operator ansatz is satisfied |VEα=Eβ |2 � |VEα 6=Eβ |2 for an edge

spin (blue-circles). For a bulk spin, the operator ansatz is valid only in the ground state

subspace with Eα = Egs, the condition put forward by Chapter 4 for the dynamical detection

of symmetry-breaking phase transitions via OTOCs. This is how the edge spins preserve the

topological order in the OTOC throughout the spectrum, while the bulk spins can preserve

only the symmetry-breaking order. Closer to the transition point, e.g. h/J = 0.8, the order

|VEα=Eβ |2, expectantly, decreases while the off-diagonal elements |VEα 6=Eβ |2 grow, which is a

signature of integrability at this special non-interacting limit. Hence the operator ansatz,

still in the topologically non-trivial phase, breaks down explaining how the OTOC saturation

starts to be dominated by off-diagonal contribution (Fig. 3.8b where F̄ 6= F̄diag in the non-

trivial phase). Note that this breakdown of the operator ansatz in the ordered phase does

not happen for the bulk spin that is in its ground state, Fig. D.4c. The operator ansatz in

the topologically trivial phase, e.g. h/J = 1.5, continues to fail (compare orange-diamonds

with blue-circles in Figs. D.4a-D.4b). Eventually this causes a non-vanishing OTOC time-
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average F̄ 6= 0 in the trivial phase, even though this time average value has nothing to do

with topological order (Sec. 5.3.2).

D.5 Further results on the nonintegrable Ising models

We first compare the scrambling dynamics of edge (red-solid) and bulk (blue-dotted) spins in

real time, Fig. D.5 in the regimes of near-integrability ∆/J = −0.1 and far from integrability

∆/J = −0.5. The edge and bulk spins behave drastically different for significantly long times,

even though the size is considerably small, N = 14. Hence, we can still observe the effect

of zero modes in nonintegrable models, however as discussed in the main text, in a weaker

form than in integrable models.

Now we plot a dynamic phase diagram for a bulk spin in Figs. D.6-D.7 and observe it

is drastically different than of an edge spin: as we increase the system size, both F̄ and

F̄diag approach to zero for all h, and hence gets even farther away from the transition point.

Figs. D.6 and D.7 show the OTOC of bulk spins in the models with ∆/J = −0.1 and

∆/J = −0.5, respectively.

The coherence times of the edge spins at ∆/J = −2 deep in the non-trivial phase

(Fig. D.8a) exhibit exponential increase with the system size in Fig. D.8b up to an apparent

odd-even effect. All different scaling samples collapse at around ξ ∼ 1 for the exponent of

the exponential scaling. While it is highly expected that this increase should slow down with

bigger system sizes, based on our available data we cannot state that this behaviour is an

example of prescrambling, instead it looks like a finite-size effect up until N = 15 system

size. Hence it is not always easy to extract a curve collapse to demonstrate prescrambling

in systems with small sizes.

Fig. D.9 demonstrates the dependence of a dynamic phase diagram on the interval of time

averaging. The data is for the model at near-integrability. The result with blue-circles that is

computed in a short time interval of tJ = 10 converges to the OTOC of non-interacting limit,
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Figure D.4: The operator ansatz tested on the Ising model. Matrix elements |Vβα|2 are
plotted for (a) β = 1 (b) β = 2000 with respect to α for an edge operator σz1 (open boundary);
same β (c)-(d) for a bulk operator (periodic boundary) at a size N = 12. Blue-circles, red-
squares and orange-diamonds stand for field strength h/J = 0.1, h/J = 0.8 and h/J = 1.5,
respectively for all subfigures.
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Figure D.5: Real time dynamics of OTOC with both edge (red-solid) and bulk (blue-dotted)
spins in nonintegrable transverse-field Ising model at h/J = 0.3 for (a) ∆/J = −0.1 and (b)
∆/J = −0.5 with size N = 14.

Figure D.6: Nonintegrable transverse-field Ising model. OTOC time-average of bulk spins
in small integrability breaking term ∆/J = −0.1 in linear and logarithmic (inset) scales.
Red pentagrams, purple diamonds and light-blue crosses show F̄diag whereas the blue circles,
yellow squares and green triangles show F̄ for N = 12, N = 13 and N = 14, respectively.
All curves have open boundary conditions and a time interval of tJ ∼ 800.
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Figure D.7: The OTOC time-average of bulk spins in the case of ∆/J = −0.5 integrability
breaking term. F̄ and F̄diag for N = 12 (blue-circles and red-pentagrams), N = 13 (yellow-
squares and purple-diamonds) and N = 14 (green-triangles and light-blue crosses). All
curves have open boundary conditions and a time interval of tJ ∼ 800.
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Figure D.8: (a) Coherence times of the edge spins based on OTOC at ∆/J = −2, deep in the
topologically non-trivial phase h/J = 0.3 and (b) the system-size scaling of the coherence
times in (a). Note that different curves correspond to different threshold values η where we
look for the times that provide F (t) = η. ξ is the exponent in the exponential scaling and
all of them are around ξ ∼ 1.
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Figure D.9: Demonstration of the time-dependence of the phase diagram for the model
with ∆/J = −0.1 at N = 14 system size. Blue circles, orange diamonds, yellow
squares, purple triangles, green pluses, red pentagrams and black hexagrams stand for
tJ = 10, 20, 40, 60, 80, 100, 800, respectively.

while increasing the averaging time from tJ = 10 to later times causes the phase diagram to

change significantly. Hence in the short-time limit, the coherence times of the prescrambling

plateau are significantly contributed not only by the diagonal contribution, but also the

off-diagonal contribution. This additional contribution, that is specific to OTOC, in fact

survives until very long times, e.g. t & 2 × 103 (Fig. 5.8b in main text). However, farther

away from the non-interacting limit the off-diagonal contribution vanishes faster, whereas

the diagonal contribution remains for longer times.

We mark the ground state phase transition point in the model with ∆/J = −2 via (i)

minimizing the energy gap at the transition point; and (ii) Binder cumulant. We first present

(i): The scaling parameters for the transition point read hc ∼ N−1.2467 + 3.7746 where the

transition point in the thermodynamic limit is found h∞c = 3.7746 with R2 = 0.9997. The

scaling parameters for the energy gap read ∆E ∼ N−0.9775 with R2 = 0.9999. So the system-

size scaling exponent for the energy gap is close to −1. See Figs. D.10 for the scaling figures.
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Figure D.10: The scaling parameters for the ground state phase transition of the model with
∆/J = −2, calculated via DMRG. (a) The system-size scaling of the critical point, giving
h∞c = 3.7746 in the thermodynamic limit. (b) The system-size scaling of the energy gap,
giving an exponent of ∼ −1 and showing that the gap closes in the thermodynamic limit.
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Figure D.11: The Binder cumulant calculated for the Ising model with ∆/J = −2. The
system size scaling gives h∞c = 3.782.
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Figure D.12: (a) The saturation value for long times and different system sizes (N = 8 to
N = 14) are plotted for the gapless phase of the XXZ model. (b) The system size scaling
of the saturation value where the error bars show the extend of the oscillations around the
average of the signals in (a). The scaling has a form of Re(F̄ ) ∝ N−ξ where ξ ∼ 0.9.

(ii) Fig. D.11 shows the system size scaling of Binder cumulant,

U =
3

2

(
1− 1

3

〈S4
z 〉

〈S2
z 〉

2

)
, (D.13)

where Sz =
∑N

i σ
z
i , the total magnetization operator. This method marks the phase bound-

ary as h∞c = 3.782.

D.6 Further results on the XXZ model

Fig. D.12 shows long-time dynamics of OTOC in the gapless phase of the XXZ model and

how the time-average of this signal scales with the system size. We see the scaling has a

form of Re(F̄ ) ∝ N−ξ where ξ ∼ 0.9. Hence in the thermodynamic limit we expect F̄ → 0

in the gapless phase.

Fig. D.13 shows prescrambling time scales exponentially increase with the system size, a

similar figure to Fig. 5.8d in the main text, however much closer to the transition boundary.

The exponential increase in system size implies that the scrambling is a finite-size effect,
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Figure D.13: The coherence times of prescrambling in the gapped phase of the XXZ model,
Jz/J = 5 for different system sizes. The exponential increase in the prescrambling time
intervals with the system size suggests that the scrambling seen is a finite-size effect.

hence in thermodynamic limit, prescrambling plateau should persist, giving F̄ 6= 0 in the

topologically non-trivial gapped phase.
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Appendix E

Probing Criticality in the Transient

Quench Dynamics

E.1 Observation of Dynamical Quantum Phase Tran-

sitions in a Spinor Condensate

The following experimental procedure is followed by the experimentalists in Ref. [221]. They

produce a spin−1 BEC of 1.3 × 105 sodium atoms via an all-optical procedure similar to

Ref. [370]. A longitudinal polar (LP) state, c.f. Sec. 1.1.2, with ρ0 = 1 is chosen as the initial

state, because it is the ground state of the model Hamiltonian at qi/h = 42.3 Hz with h

being the Planck constant. To fully polarize atoms to |F = 1,mF = 0〉 state, they hold the

BEC under a large magnetic field gradient for 5 ms to eliminate the |mF = ±1〉 atoms [371].

They then slowly turn off the gradient in 50 ms and hold the atoms for another 300 ms to

sufficiently equilibrate the system. This method efficiently produces an LP state of up to

1× 105 atoms.

A DPT is observed after a sudden quench of the quadratic Zeeman energy q. Similar to

Ref. [250,372,373], they tune q via a microwave dressing field, i.e. q = qB + qM with qB (qM)

representing the quadratic Zeeman energy induced by a magnetic field (a microwave dressing
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Figure E.1: Quench dynamics of ρ0 in the lab and the corresponding theoretical predictions
derived from numerical simulations of the quench dynamics at three different qf/c1 (see text).
Panels (a), (b), and (c) represent the experimental results at c1/h = 31 Hz and qf/c1 = 0.65,
−0.48, and −0.97, respectively. Panels (d), (e), and (f) correspond to numerical simulations
at qf/c1 = 0.65, −0.48, and −0.97, respectively. They repeat the experiments and simula-
tions 80 times under each condition. The crosses on the background show the measurement
results from these repeated experiments (upper panel) or Monte Carlo simulations (lower
panel). The squares denote the average value ρ0(t) from these 80 measurements and the
circles denote the corresponding standard deviations.
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field). The value of qB is always positive for antiferromagnetic spin-1 sodium BECs, while

qM can be tuned to any value from −∞ to +∞ by changing the frequency or the intensity

of the applied microwave pulses [372].

To probe quench dynamic after the initial LP state preparation at qi in a fixed magnetic

field, they suddenly turn on a microwave dressing field to abruptly change qi to qf = qi+qM .

After holding the spinor gas at qf for a given time t, they measure the fractional popula-

tions ρmF via the standard Stern-Gerlach absorption imaging technique. To experimentally

determine ρ0 (t), they repeat the same experiments 80 times and measure the entire evolu-

tion ρ0 (t) for every realization. The time evolution of ρ0 from each of these 80 repeated

experiments, as well as their mean value ρ0 (t) and the standard deviations δρ0 (t) are shown

in Figs. E.1(a-c) for three typical qf . Note that the large variation of the observed ρ0 at

certain qf and t for different rounds of experiments is not due to the experimental imperfec-

tion, but it is an intrinsic feature of quench dynamics related to the DPT. At this qf and

t, the dynamical state is far from the ground state and involves a superposition of many

eigenstates of the final Hamiltonian, so ρ0 has large intrinsic quantum fluctuations. To put

this experimental result into the context, they also numerically calculate the time evolution

of the model Hamiltonian (6.2), and the corresponding results are shown in Figs. E.1(d-f).

To compare theory and experiments, they show the theoretical distribution of ρ0 under 80

repetitions of measurements using Monte Carlo sampling. Through numerically diagonaliz-

ing of the model Hamiltonian (6.2), they obtain theoretical probability distribution of ρ0,

labeled as f(ρ0) for some qf and t. They numerically sample ρ0 80 times based on f(ρ0).

This operation mimics the experimental procedure.

The time evolution of ρ0 has qualitatively different behaviors in three different regions of

qf . When qf > 0 as shown in Figs. E.1(a) and E.1(d), ρ0(t) always stays very close to 1 with a

negligible variation δρ0 (t). The experimental results appear to agree well with theory in this

region. When qf/c1 is negative but not too small (Figs. E.1(b) and E.1(e)), ρ0(t) begins to

oscillate and the ρ0 (t) distribution shows quite large fluctuations. The experimental results
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coincide with the theoretical prediction in the short time region of t . τdip, but deviates

significantly during the subsequent evolution. This can be attributed to the breakdown

of the SMA for the atomic motional state: the atoms in this case are significantly in the

excited states of the spin Hamiltonian and their energy can relax to the motional state

through the spin-dependent collisions, and thus invalidate the prediction from the single

mode Hamiltonian (6.2) in the long time dynamics. When qf/c1 becomes even more negative

(Figs. E.1(c) and E.1(f)), although the theory based on Eq. (6.2) still predicts oscillations,

the energy relaxation to the motional state dominates the measurement results. The spin

state approaches the transverse polar state, c.f. Sec. 1.1.2, with ρ0 = 0, the ground state of

the Hamiltonian at this negative qf , through the relaxation; and spin oscillations are barely

visible in quench dynamics for this case. The above observations show that it is important

to detect the DPT with short time probes, e.g. transient temporal regime, and keep qf in a

region not too far from the phase transition point at qc = 0.

E.2 Dynamical crossover in the transient quench dy-

namics of short-range transverse field Ising models

E.2.1 Periodic vs. open boundaries

In this section, we demonstrate how the spin operator (longitudinal magnetization per site)

in the middle of an open chain exhibits exponential decay comparable with a spin operator

at an arbitrary site in a periodic chain. Fig. E.2 compares the nonequilibrium responses of

these two spins and as observed, the responses match with each other until the finite-size

effects appear. This is reasonable, because a spin in the middle of the chain is equally distant

to both edges, and hence it should exhibit behavior closest to a spin in a periodic chain.

Therefore, based on this equivalence we can argue that the middle spin of an open chain

behaves similar to total magnetization in exhibiting an exponential decay. This is simply
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because the total magnetization is a sum over all spin operators σzi .
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Figure E.2: C(t) nonequilibrium response of the middle spin of an open chain N = 30, σz15

(blue-dotted) and a spin at an arbitrary location σz6 in a periodic chain N = 30 (red-solid).

E.2.2 Mapping to noninteracting fermions in quench dynamics

We map the integrable TFIM to noninteracting fermionic model in 1D via the transformation

[193] as also discussed in Chapter 5,

σzi = −
∏
j<i

(
1− 2c†jcj

)(
ci + c†i

)
, (E.1)

σxi = 1− 2c†ici,

σyi = −i
∏
j<i

(
1− 2c†jcj

)(
ci − c†i

)
,

to obtain the noninteracting Hamiltonian

H = −J
∑
i

(
c†ici+1 + c†i+1ci + c†ic

†
i+1 + ci+1ci − 2hc†ici

)
. (E.2)

One can immediately see that calculating the dynamical evolution of a bulk spin 〈σzi (t)〉 in

the noninteracting picture brings a string of operators and is not really tractable. Hence we
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instead calculate equal-time two-point correlators and invoke the cluster theorem [116],

〈
σzi (t)σ

z
i+N/2(t)

〉
∼ 〈σzi (t)〉

〈
σzi+N/2(t)

〉
. (E.3)

Cluster theorem holds in the lightcone, meaning for a time interval up until two sites i and

i+N/2 start getting correlated with each other due to operator spreading. The time when

the theorem breaks down can be estimated based on the maximum quasiparticle velocities

vq, t < ∆x/(2vq) where ∆x = N/2 is the distance between two spins that are selected

symmetrically around the symmetry center of a periodic chain in Eq. (E.3). Since each site

in a periodic chain experiences identical dynamical response due to translational symmetry,

one can write

〈σzi (t)〉 =

√〈
σzi (t)σ

z
i+N/2(t)

〉
. (E.4)

Therefore, we need to calculate equal-time two-point correlators. Via introducing auxiliary

operators Φ±i = c†i ± ci, one can write

〈
σzi (t)σ

z
i+N/2(t)

〉
= 〈C2(t)〉 = φ−i (t)

( i+N/2−1∏
j=i+1

φ+
j (t)φ−j (t)

)
φ+
i+N/2(t). (E.5)

This is, in fact, the expectation value of the so-called string order parameter (SOP)

[315]. It can be calculated by invoking Wick’s theorem, which allows one to re-express

the above expectation value as a sum over products of elementary contractions, which

in turn is the Pfaffian of an appropriately constructed antisymmetric matrix T (t) i.e.

〈C2(t)〉 = |Pf(T (t))| [116, 193]. Although this is in general a complex number, it fol-

lows from (E.3) that for t < tl we actually have (C(t))2 ∈ R so that we may compute

C(t) = |Pf(T (t))|1/2 = |
√

det(T (t))|1/2. This is advantageous since it is numerically more

efficient to calculate determinants as compared to Pfaffians. To construct the matrix T (t)

we only need to calculate all possible elementary two-point contractions 〈φpa(t)φ
q
b(t)〉 where
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p, q = ± and i ≤ a ≤ b ≤ i + N/2. Additionally we need to incorporate the mechanism of

sudden quench in this picture. For this, we mainly follow the procedure outlined in Ref. [211].

Let us briefly review this procedure here.

Since we would like to quench from a polarized state, this quench point corresponds

to hi = 0 where hi is the transverse field of the initial Hamiltonian in quench procedure.

Therefore, we first solve the initial Hamiltonian Hi,

Hi =
∑
k

Ei
kα
†
kαk, (E.6)

where Ek and αk are the single particle eigenenergies and eigenstates, respectively. The

solution reads in general terms,

 α

α†

 =

 Gi Fi

Fi Gi


 ci

c†i

 , (E.7)

where ci = (c1, c2, · · · , cN)T and similarly for the creation operator c†i . Note that one can

work in this Bogoliubov-de Gennes (BdG) basis with the size doubled similar to Chapter 5,

however here we work with the block matrices G and F [374] which is computationally more

efficient. By solving the eigensystem of

[(Ai −Bi)(Ai +Bi)]
∣∣Φi

k

〉
= (Ei

k)
2
∣∣Φi

k

〉
, (E.8)

we obtain the eigenenergies Ei
k and eigenvectors |Φi

k〉. Here Ai and Bi are the nearest neigh-

bor hopping and the pairing terms in the Hamiltonian, respectively, so that the Hamiltonian

could be written as,

Hi =

 Ai Bi

B†i −Ai

 , (E.9)
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in (c c†)T basis. Then we use the eigensystem (Ei
k, |Φi

k〉) to find

∣∣Ψi
k

〉
=

1

Ei
k

[〈
Φi
k

∣∣ (Ai −Bi)
]T
. (E.10)

Now we can calculate the Gi and Fi in terms of |Φi
k〉 and |Ψi

k〉. Noting that

Φi =
[∣∣Φi

1

〉 ∣∣Φi
2

〉
· · ·
∣∣Φi

N

〉]
,

Ψi =
[∣∣Ψi

1

〉 ∣∣Ψi
2

〉
· · ·
∣∣Ψi

N

〉]
,

The block matrices follow

Gi =
1

2

(
ΦT
i + ΨT

i

)
, Fi =

1

2

(
ΦT
i −ΨT

i

)
. (E.11)

A similar procedure follows for the final Hamiltonian Hf with

 β

β†

 =

 Gf Ff

Ff Gf


 cf

c†f

 , (E.12)

and corresponding Φf and Ψf . Based on the pairs of block matrices, we calculate the transfer

matrices,

T1 = GfG
T
i + FfF

T
i ,

T2 = GfF
T
i + FfG

T
i .

Now we want to calculate the Pfaffian matrix elements, α 〈ψ0| [φpaφ
q
b]β |ψ0〉α where subscripts

imply in which basis we have the states and the operators. Since we would like to make use

of α |ψ0〉α = 0, we write [φpaφ
q
b]β in the α basis.

[
φ±b
]
β
|ψ0〉α =

[
c†b(t)± cb(t)

]
β
|ψ0〉α =

[
(GT

f ± F T
f )
(
eiEtT1 ± e−iEtT2

)
α†
]
b
|ψ0〉α ,
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where E is a diagonal matrix with eigenenergies of the final Hamiltonian as the entries,

E = diag[Ef
1 E

f
2 · · ·E

f
N ]. Based on this formulation, we construct matrices Mq(t) in an

explicit form,

M+(t) = Φf

(
e−iEtT1 + eiEtT2

)
,

M−(t) =
(
T T1 e

iEt − T T2 e−iEt
)

ΨT
f , (E.13)

to utilize in the following contractions,

〈
φ+
a (t)φ+

b (t)
〉

= [M+(t)M+(t)†]ab,〈
φ−a (t)φ−b (t)

〉
= −[M†

−(t)M−(t)]ab,〈
φ+
a (t)φ−b (t)

〉
= [M+(t)M−(t)]ab,〈

φ−a (t)φ+
b (t)

〉
= −[M†

−(t)M†
+(t)]ab. (E.14)

Now we can construct the Pfaffian matrix T (t) at time t with the matrix elements Tks(t) =

〈φpa(t)φ
q
b(t)〉 where 1 ≤ k < s ≤ 2∆x, p = +(−) for k even(odd) and q = +(−) for s

even(odd). The relation between parameters a, b and k, s reads a = i + bk/2c and b =

i + bs/2c, because i ≤ a ≤ b ≤ i + N/2. Having constructed T (t), one can then extract

〈C(t)〉 = |
√

detT (t)|1/2, as discussed below Eq. (E.5).

E.2.3 Vanishing dynamical order for one-point observables

Here we compare the nonequilibrium responses of a one-point observable and an OTOC,

defined at the same site, middle of an open chain and quenched from a polarized state

|ψ0〉 = |↑↑ ... ↑〉. OTOC is defined as, F (t) = 〈ψ0|σzr (t)σzrσzr (t)σzr |ψ0〉.

Fig. E.3a compares F (t) and C(t) for different system sizes N computed via time-

dependent density matrix renormalization group (t-DMRG) at transverse field h/J = 0.5

in a time interval of t = N . When we apply a temporal cutoff of t = N , for OTOC, we
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Figure E.3: (a) Single-site observable C(t) and OTOC F (t), both defined at a single site,
for different system sizes N for integrable TFIM at h/J = 0.5; (b) A system-size dependent
temporal cutoff is applied to C(t) and F (t) for a time interval of t = N resulting in C̄ and
F̄ with respect to control parameter h/J .

observe that the dynamical order persists indefinitely resulting in a well-defined dynamical

phase boundary for the time-average or long-time saturation value F̄ in Fig. E.3b. Note that

at t ∼ N , F (t) in Fig. E.3a starts to demonstrate finite-size effects, illustrated with black

circles, which justifies the argument that t ∼ N is a sufficiently long-time limit t → ∞ for

chosen system sizes. With the same reasoning, one can plot C(t) in a time interval of t = N

in Fig. E.3a and observe the decay of initial magnetization which dramatically becomes more

pronounced as the system size increases, resulting in featureless long-time dynamics as well

as a vanishing DPT-I boundary for C̄ as seen in Fig. E.3b. The error bars in Fig. E.3b are

1σ standard deviation of the nonequilibrium response in time (due to oscillations) around

the average of the response.

E.2.4 Comparison between fixed and parametric temporal cutoffs

in the open chain

In this section, we plot the difference between rescaled observable values with different choices

of temporal cutoffs: (i) fixed α and parametric 2α/vq (ii) two fixed cutoffs in integrable TFIM.
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(a) (b)

Figure E.4: (a) The differences between rescaled observables with two different temporal
cutoffs, parametric 2α/vq and fixed α for different α values (see legend). (b) The difference
between the rescaled observables with two different fixed temporal cutoffs.

Even though these are clearly distinct temporal cutoffs, the differences are bounded for all

h/J values in the dynamically-ordered regime and more importantly the differences steadily

decrease as we approach the crossover boundary. Fig. E.4a demonstrates the differences

between rescaled observable values generated with two types of temporal cutoffs for different

α values. They are exactly zero in the vicinity of the crossover. This is likely because two

types of temporal cutoffs converge to each other as we approach the crossover boundary.

Fig. E.4b shows the difference between rescaled observable values for two fixed temporal

cutoffs. In Fig. 7.2 in the main text, these differences seem to be the largest. Here we

explicitly plot the difference and show that it steadily decreases as we approach the crossover

boundary.

E.2.5 Equilibrium QPT for the nonintegrable TFIM

In this section, we present the equilibrium phase transition boundary via both an analysis

of ground state energy gap and Binder ratio for the nonintegrable TFIM with ∆/J = −1.

Figs. E.5a-E.5b shows the determination of the phase boundary via energy gap analysis. We

find that the equilibrium transition happens at hc ∼ 2.463 and the scaling exponent of the
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Figure E.5: (a-b) Ground state energy gap analysis with respect to system size N to deter-
mine the equilibrium QPT. (a) The critical point is marked as h∞c = 2.463 in thermodynamic
limit via scaling analysis. (b) Energy gap ∆E closes as we approach the QPT. The scaling
exponent is ∆E = N−1. (c) Binder cumulant U for different system sizes ranging between
N = 24− 96, all crossing at h∞c = 2.477± 0.001.
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(a) (b)

Figure E.6: (a) The decay rate fΦ,2 and (b) the angular frequency ω of the fit function for
the dynamics of nonintegrable TFIM at ∆/J = −1.

energy gap closing is δ ∼ −1. Further, we compute the Binder cumulant in Fig. E.5c,

U =
3

2

(
1− 1

3

〈S4
z 〉

〈S2
z 〉

2

)
, (E.15)

where Sz =
∑N

i σ
z
i , the total magnetization operator. This method marks the phase bound-

ary as h∞c = 2.477 ± 0.001. The equilibrium transition points determined by these two

different methods are very close.

E.2.6 Error bar calculations

The error bars in Figs. 6.9b, 6.9c and 6.13c are calculated via error propagation and in

Figs. 7.3a, 6.11a and 6.13a, they are 1σ error bars computed via the confidence intervals of

the fits. C0 is fixed parameter in Eq. (6.9). In the case where one uses γ1 parameter in the

rescaling expression instead of C(t∗) data, the free parameter γ1 brings an uncertainty of ∆γ1

that can be computed via the confidence intervals of the fit. Based on the data points, one

can have an uncertainty from tL too: ∆t denotes this uncertainty which is calculated as the

difference between tL and the available data point. Hence, we can calculate the propagation
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of error as,

E2 =

(
∂OP

∂t

)2

(∆t)2 +

(
∂OP

∂γ1

)2

(∆γ1)2, (E.16)

where OP stands for rescaled observable, or in other words the dynamical OP-like quantity.

Note that if one uses the rescaling method (i) for nonintegrable TFIM, additional terms

should be added to the expression. The terms in the expression above reads

∂OP

∂γ1

= −C(t)1/t

t
γ
−1/t−1
1 .

∂OP

∂t
= −t−2

(
C(t)

γ1

)1/t

log

(
C(t)

γ1

)
.

E.2.7 The rest of the fit parameters of the nonintegrable TFIM

In this appendix section, we plot the decay rate fΦ,2 and angular frequency ω with respect

to h/J based on the fit function utilized for the nonintegrable TFIM. Fig. E.6 shows these

fit parameters. Interestingly, both plots dip around h/J ∼ 2.41. Whether these parameters

could signal crossover physics is a question for future research.
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Appendix F

Dynamical Criticality in the

Quasi-Stationary Regimes

F.1 Methods

For the method on mapping to noninteracting fermions and how we utilize cluster theorem,

see Appendix Sec. E.2.2. The only difference concerning the current Appendix is that we ap-

ply the method to open-boundary chains and spins close to boundaries, r � N/2. Therefore

the cluster theorem reads [116],

〈
σzr (t)σ

z
N−r+1(t)

〉
∼ 〈σzr (t)〉

〈
σzN−r+1(t)

〉
. (F.1)

Hence, the parameters read tl = ∆x/(2vq) where ∆x = N−2r+1 is the distance between two

spins that are equidistant from the symmetry center of an open-boundary chain in Eq. (F.1),

which is the middle of the chain. For such symmetrically placed sites, the non-equilibrium

response is the same and one can thus write

〈σzr (t)〉 =
√〈

σzr (t)σ
z
N−r+1(t)

〉
≡ 〈Cr(t)〉 . (F.2)
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Therefore, we can extract the dynamical evolution of a bulk spin at site r from the equal-time

two-point correlators of sites r and N − r + 1.

F.1.1 Mean-field theory (MFT) Analysis

The next nearest-neighbor (NNN) term in the TFIM Hamiltonian reads in the fermionic

picture as,

= ∆
∑
r

(
cr − c†r

) (
1− 2c†r+1cr+1

)(
cr+2 + c†r+2

)
,

= −∆
∑
r

(
c†r − cr

) (
1− 2c†r+1cr+1

)(
cr+2 + c†r+2

)
,

= −∆
∑
r

φ−r φ
+
r+1φ

−
r+1φ

+
r+2, (F.3)

where ∆ < 0 and φ±r stand for the auxiliary fermions of type-I or -II.

In Hartree-Fock expansion, we assume |∆| � |J | where J is the nearest-neighbor coupling

strength, and write Eq. (F.3) as

= ∆
∑
r

[ 〈
φ−r φ

+
r+1

〉
t→∞ φ

−
r+1φ

+
r+2 + φ−r φ

+
r+1

〈
φ−r+1φ

+
r+2

〉
t→∞ − φ

−
r

〈
φ+
r+1φ

−
r+1

〉
t→∞ φ

+
r+2

−
〈
φ−r φ

+
r+2

〉
t→∞ φ

+
r+1φ

−
r+1

]
. (F.4)

Here the 〈·〉t→∞ means that we calculate the free fermion problem and obtain the cor-

relators in the infinite-time limit (instead of ground state which would be for the static

problem). In our numerics we treat the largest time point allowed by the cluster theorem as

the asymptotically infinite time limit. The quench MFT formalism was previously applied

to two-point correlators in a periodic chain [210]. Note that for an open-boundary chain,

one needs to carefully take the edges of the chain into account based on Eq. (F.4). Using the

above expansion, we obtain an effective mean field Hamiltonian which has slightly stronger

nearest-neighbor (NN) coupling compared to the free problem, as well as new NNN cou-
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(a) (b)

(c)

Figure F.1: Benchmarking mean field theory (MFT) analysis. All subfigures compare the
results of MFT, t-DMRG and exact diagonalization (ED) results (see individual legends for
system size information) for Cr=3(t). The external fields are (a) h = 0.5, (b) h = 1.1 and
(c) h = 1.2. In all, the MFT nonequilibrium response matches well with the nonequilibrium
responses of the exact methods.
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plings. Further, the effective chemical potential slightly decreases, which is reasonable when

we think about how the critical point shifts to favor order, e.g. for ∆ = −0.1, hc ∼ 1.16 [210].

Based on these equations, we can calculate a quench phase diagram for the interacting

problem in the mean field picture as shown in the main text. Fig. F.1 shows comparisons

between MFT, t-DMRG and exact diagonalization (ED) results at different h = 0.5, h =

1.1 and h = 1.2, where the QCP is hc ∼ 1.16. We observe that the MFT analysis can

even capture the correct frequency of the oscillations early times and the general trend of

the nonequilibrium response successfully. However, MFT does not completely match with

the exact methods, which is expected since MFT analysis is an approximate method that

averages out the interactions.

F.1.2 t-DMRG calculations

We utilize the ITensor environment [300] to construct our matrix product states (MPS)

and Trotter decomposition for the time evolution of the MPS. We set the maximum bond

dimension as 100 of the resulting compressed MPS and the initial truncation error cutoff

for the compression of the MPS as ε ∼ 10−8. The truncation error cutoff is adaptive: As

the maximum bond dimension is reached for the resulting MPS, the error cutoff increases

systematically up until a hard error threshold of ε ∼ 10−5 to be able to access longer times.

Setting a maximum allowed bond dimension thus introduces an error which grows with

time. Consequently, we are confined to early times for which the above interval of the error

thresholds is satisfied.

F.2 The quasi-stationary regime in long-range inter-

acting TFIM

The quasi-stationary temporal regime also emerges in the long-range hard-boundary TFIM

with power-law decaying interactions. This boundary effect on the long-range TFIM has
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been previously noticed in the context of prethermalization [340]. Here we provide numerical

evidence for this boundary effect. All data presented in this section was obtained from TEBD

(time-evolving block decimation).

The Hamiltonian for the long-range TFIM reads,

H = −
∑
r,r′

J(r, r′)σzrσ
z
r′ + h

∑
r

σxr , (F.5)

where J(r, r′) = J/|r − r′|α. In the limit where α = 0, the model becomes integrable

with all-to-all interactions, e.g. LMG model; whereas in the limit of α → ∞ the model

reduces to short-range NN TFIM. When α = 10, which is effectively a short-range TFIM

with power-law decaying interactions, we reproduce the results in the main text for the

TFIM with nearest-neighbor couplings and J = 1. Fig. F.2a shows that a spin close to

the boundary develops a quasi-stationary regime whereas the spin in the middle of the

chain does not. These nonequilibrium responses are compared to the total magnetization

(green-dotted line), whose behavior in the long-time limit is not conclusive based on the

data. When α decreases to α = 4 and α = 3, the quasi-stationary regime still survives for

Cr=6(t), up to some oscillations. We note that the nonintegrable short-range TFIM also

develops such oscillations in the quasi-stationary regime, as demonstrated in the main text.

Chapter Sec. 6.2 found a decaying nonequilibrium response for the spin in the middle of

an open-boundary chain in the nonintegrable short-range TFIM with next-nearest neighbor

interactions. Similarly, it also seems that the spin in the middle of the chain tends to decay

in our results for the long-range TFIM with power-law decaying interactions. When α = 2,

the model becomes truly long-ranged and we do not observe a quasi-stationary regime in

any of the spins. In fact the spins close to the boundary and in the middle of the chain

behave quite similarly. This result points to the importance of locality in the Hamiltonian

to observe the quasi-stationary temporal regime in spins close to the boundary, confirming

the role of chain geometry rather than integrability.
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(a) (b)

(c) (d)

Figure F.2: Nonequilibrium responses of σzN/2 (spin in the middle of the chain), σz6 (spin

close to the boundary) and the total magnetization, when (a) α = 10, (b) α = 4, (c) α = 3
and (d) α = 2.
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Figure F.3: The nonequilibrium responses of Cr=6(t) for different α and different system sizes
(see legend).

To demonstrate that the quasi-stationary temporal regime is not a finite-size effect, we

show in Fig. F.3 the nonequilibrium responses of Cr=6(t), a spin close to the boundary, for

different system sizes and different α. For a given α, one can determine the time at which

finite-size effects kick in by observing when the data for different system sizes N = 32− 64

no longer overlap. Note that, for α = 10 and α = 4, the quasi-stationary regime develops

before the finite-size effects appear.

F.3 Numerical evidence on quasi-stationary regime

not being related to strong-zero modes

In this section, we plot the coherence times of edge magnetization (Fig. F.4c), as well as

the magnetization of a bulk spin σz3 (Fig. F.4a) with respect to time for different interaction

strengths ∆. An important evidence of strong zero modes is the presence of resonances, which

would result in a non-monotonous trend of the steady-state value with respect to ∆ [115].

The absence of such a behavior can be seen in Figs. F.4a and F.4c. Additionally, we provide
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(a) (b) (c)

Figure F.4: Exact diagonalization results for the coherence time of (a-b) Cr=3(t) and (c)
Cr=1(t) at a system size of N = 14. (a) and (c) depict certain nonintegrable models (see
legend), whereas (b) gives a two-dimensional color plot of the long-time value of the quasi-
stationary regime with respect to external field h and the interaction strength ∆. There is
no non-monotonic behavior in the plot, demonstrating that the quasi-stationary regime is
not caused by strong-zero modes.

a 2D plot of the long-time steady state value of Cr=3(t) with respect to the external field

strength h and the interaction strength ∆. The behavior is monotonous everywhere between

0 < h < 1 and 0 < ∆ < 2, which allows us to exclude the physics of strong zero modes as a

possible explanation of the quasi-stationary temporal regime observed in the open-boundary

chains.

We also compare the spatial profiles of the single-site magnetization at a fixed time —

determined according to the breakdown of the cluster theorem tl — with that of a Majorana

edge mode γ1 = φ+
1 (see Secs. F.1 and F.4 for the details of the temporal cutoffs in the study).

For h in the ordered phase and r � N/2, where N = 480 is set for concreteness, this time

corresponds to the quasi-stationary regime, and hence the single-site order parameter value is

compared with the probability of the edge mode being found at r. As is evident from Fig. F.5,

the spatial profiles for the magnetization decay exponentially in space, which is expected

[128]. However, we observe that the decay rate of an edge mode and of magnetization

at the same h differ by at least two orders of magnitude (red-diamonds vs. blue-circles,

respectively). Their spatial profiles coincide perfectly at r = 1, which is the boundary of the

chain, and start to differ as r increases. This is further evidence that the leakage of a zero

mode into the bulk of the chain, alone, cannot explain the presence of a quasi-stationary
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Figure F.5: The spatial profiles of the edge mode γ1 = φ+
1 at h = 0.5 (red-diamonds) and of

single-site magnetization for different h (see legend) at a fixed long time that is denoted as
tl meaning the lightcone time, which is set as the infrared cutoff, see Sec. F.4. The system
size is N = 480.

temporal regime of bulk single-site observables. Fig. F.5 also compares the spatial profiles

of magnetization at different h, showing them to decay faster for external fields close to the

DCP.

F.4 Temporal cutoffs

There are two relevant temporal cutoffs in our results: i) ultraviolet (short-time, short-

distance) cutoff and ii) infrared (long-time, long-distance) cutoff as explained in Sec. 6.2.

We set the infrared cutoff as being a parametric cutoff due to the application of the clus-

ter theorem (see Sec. F.1), and we test here whether our results depend on the choice of

ultraviolet cutoff.

The results in the main text are produced with a fixed ultraviolet (UV) cutoff of t∗ = 10

for all h. However, none of our results depend on the choice of ultraviolet cutoff: Figs. F.6,

Figs. F.7 and F.8 all show the same qualitative behavior for single-site dynamical phase

diagrams for various choices of ultraviolet cutoff. Figs. F.6 complement the t∗ = 10 data of

the main text by showing the single-site phase diagrams of the observables at r = 3, 9, 12.

Figs. F.7 exhibit another fixed temporal cutoff of t∗ = 20, whereas Figs. F.8 demonstrate the
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Figure F.6: The single-site dynamical phase diagrams with an ultraviolet temporal cutoff
of t∗ = 10 for (a) Cr=3(t), (b) Cr=9(t) and (c) Cr=12(t). (d) The system size scaling of the
single-site magnetization at the critical point hc with cutoff t∗ = 10. Downward trend can
be seen with N−γ where γ ∼ 1.
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Figure F.7: The single-site dynamical phase diagrams with an ultraviolet temporal cutoff
of t∗ = 20 for (a) Cr=3(t), (b) Cr=6(t), (c) Cr=9(t) and (d) Cr=12(t). The behavior is
qualitatively the same with the results of t∗ = 10. (e) The system size scaling of the single-
site magnetization at the critical point hc with cutoff t∗ = 20. Downward trend can be seen
with N−γ where γ ∼ 1.
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Figure F.8: The single-site dynamical phase diagrams with an ultraviolet temporal cutoff of
t∗ = 2α∆x/vq where ∆x = r − 1 with r being the single-site observable location and α is
a tuning parameter for (a) Cr=3(t), (b) Cr=6(t), (c) Cr=9(t) and (d) Cr=12(t). The behavior
is qualitatively the same with the results of other cutoffs. In all subfigures α = 2. (e)
The system size scaling of the single-site magnetization at the critical point hc with cutoff
t∗ = 2α∆x/vq and α = 2. Downward trend can be seen with N−γ where γ ∼ 1. treflect in the
plot is the same with t∗.
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obs. cutoff β cutoff β

σz1

t∗ = 10

1.2972 ± 0.0018

t∗ = 20

1.2925 ± 0.0016
σz3 1.3006 ± 0.0017 1.2948 ± 0.0016
σz6 1.3201 ± 0.0046 1.3106 ±0.0038
σz9 1.3478 ± 0.0069 1.3263 ± 0.0032
σz12 1.3331 ± 0.0056 1.3456 ± 0.0057

Table F.1: Fit parameters for the universal scaling law with different ultraviolet temporal
cutoffs, part I.

results of a parametric temporal cutoff for all studied sites. This parametric UV cut-off is

determined as follows: We roughly estimate the onset of the quasi-stationary regime as the

time required for the quasiparticles to reflect back from the closest edge to the observation

site. Therefore, the estimate can be mathematically stated as, t∗ = 2α∆x/vq where the

distance ∆x = r − 1 is the distance between the observation site, r = 3, 6, 9, 12 and the

closest edge site, r′ = 1, in our case. The parameter α is a tuning parameter, as our

analytical formula is only an estimate. In fact we find that α = 2 presents phase diagrams

qualitatively the same with others for all r that we studied.

Additionally, in all cases the single-site magnetization at the critical point hdc scales with

similar exponents in a power-law fashion, N−γ where γ ∼ 1. These fits can be seen in

Figs. F.6d, F.7e and F.8e. Although the choice of cutoff slightly affects this exponent, it

does not change the fact that there is a decreasing trend of the magnetization at hdc with

system size. This is a numerical evidence for the presence of a DCP.

Finally, we test the presence of the universal scaling in the vicinity of the transition when

we change the ultraviolet cutoff.

Tables F.1 and F.2 provides all fit parameters for the exponent β in the integrable TFIM

performed with different temporal cutoffs, either fixed or parametric, with the latter denoted

as parm in the table. All exponents are very similar and around β ∼ 4/3.
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obs. cutoff β cutoff β

σz1

parm,
α = 1

1.2931 ± 0.0018

parm,
α = 2

1.2931 ± 0.0018
σz3 1.3011 ± 0.0016 1.3024 ± 0.0016
σz6 1.3154 ± 0.0047 1.3201 ± 0.0046
σz9 1.3455 ± 0.007 1.3527 ± 0.0067
σz12 1.3359 ± 0.0053 1.3443 ± 0.0057

Table F.2: Fit parameters for the universal scaling law with different ultraviolet temporal
cutoffs, part II.

observable β

σz1 1.3092 ± 0.0059
σz6 1.3257 ± 0.0079
σz12 1.3184 ± 0.0067

Table F.3: Fit parameters for the universal scaling law with a different initial state.

F.5 Independency of the results from the initial states

In this section, we change the initial state to the ground state of an initial Hamiltonian with

hi = 0.1, and test whether any of our results depend on the initial state. Figs. F.9 show the

single-site dynamical phase diagrams computed with this initial state. We do not observe a

change in the qualitative behavior. The single-site magnetization at the critical point still

decreases with increasing system size.

We also test whether the scaling in the vicinity of the transition changes in Fig. F.10. The

fit parameters for some observables in the vicinity of the transition is given in Table F.3 all

of which demonstrates a dynamical critical exponent of β ∼ 4/3. Based on this observation,

we demonstrate in Fig. F.11 the collapse of the nonequilibrium responses of the system

at r = 6 for different initial states hi = 0 and hi = 0.1. This collapse is achieved by

utilizing the nonuniversal fit parameters in the scaling functions: C̄ ′r,hi(hn) = ar,hih
β
n and

C̄ ′r′,h′i
(hn) = ar′,h′ih

β
n and hence the scaling factor reads C̄ ′r,hi(hn)/C̄ ′r′,h′i

(hn) = ar,hi/ar′,h′i , i.e.,

C̃r(t) = Cr(t)ar,hi/ar,h′i in Fig. F.11.
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Figure F.9: The single-site dynamical phase diagrams with an initial state as the ground
state of an initial Hamiltonian with hi = 0.1 and an ultraviolet temporal cutoff of t∗ = 10
for (a) Cr=3(t), (b) Cr=6(t), (c) Cr=9(t) and (d) Cr=12(t). The behavior is qualitatively the
same as the results of hi = 0. (e) The system size scaling of the single-site magnetization
at the critical point hc with cutoff t∗ = 10. Downward trend can be seen with N−γ where
γ ∼ 1.
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Figure F.10: The scaling behavior in the vicinity of the transition for r = 1, r = 6 and
r = 12 in descending order when the initial state is the ground state of hi = 0.1. All scaling
exponents are β ∼ 4/3.

Figure F.11: Cr=6(t) for quenches from hi = 0 (blue-solid) or hi = 0.1 (dashed-red) to
h = 0.999 where the latter is rescaled to collapse on the other according to the fitted power-
laws discussed in the main text. Rescaled quantity is denoted by tilde.
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F.5.1 Analytical expression for the edge magnetization in the

vicinity of the transition

In this subsection we show that the quasi-stationary value of the edge magnetization does

not change its dynamical scaling in the vicinity of the transition. We remind the reader that

this scaling is different from the dynamical universal scaling that we numerically observed in

the vicinity of the transition. This is because of the divergent relaxation times which means

that the times accessible to computation and experiment are still within the relaxation

regime when we are in the close vicinity of the transition. The analytical expression for the

quasi-stationary value of the edge magnetization in the dynamically-ordered phase is,

Cqs
r=1(h, hi) =

(1− h2)(1− hi)1/2

1− hhi
, (F.6)

for h, hi < 1. Let us rewrite it in terms of the reduced control parameter, hn,

Cqs
r=1(hn, hi) =

(2− hn)hn(1− hi)1/2

1 + (hn − 1)hi
. (F.7)

In the vicinity of the transition, hn → 0, we can expand this expression and find up to the

third order in hn and hi

Cqs
r=1(hn → 0, hi) = a1(hi)hn + a2(hi)h

2
n + a3(hi)h

3
n + · · · , (F.8)

a1(hi) = 2 + hi +
3

4
h2
i +

5

8
h3
i + · · · , (F.9)

a2(hi) = −1− 5

2
hi −

27

8
h2
i −

65

16
h3
i + · · · , (F.10)

a3(hi) = hi +
7

2
h2
i +

55

8
h3
i + · · · . (F.11)

Therefore, one can see that Cqs
r=1(hn) ∝ hn in the vicinity of the transition, hn → 0 regardless

of the choice of initial state. The initial state only changes the coefficient in front of hn,

which is known to be nonuniversal. Based on the observation that the edge magnetization
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also exhibits β ∼ 4/3 in its relaxation regime to the quasi-stationary value, it is possible

that the rest of the single-site observables close enough to the boundary will also experience

a similar scaling ∼ 1 in their quasi-stationary regime. This is yet to be discovered, most

likely analytically.

We note that the form of the fit function for the quasi-stationary regime of the edge

magnetization is the same as Eq. (F.6), and hence the scaling in the vicinity of the transition

is the same as well. Let us show this briefly,

Cqs
r=1(hn) = α(hβdc − (hdc − hn)β), (F.12)

lim
hn→0

Cqs
r=1(hn) = αβhβ−1

dc hn −
1

2
α(β − 1)βhβ−2

dc h2
n + · · · . (F.13)

We note that for a different initial state the general trend will remain the same, but that the

coefficients α and β might change. In such a case, the scaling in the vicinity of the transition

should remain the same as well.

F.6 Nonequilibrium response in the close vicinity of

the transition

In this section we plot the nonequilibrium response in the close vicinity of the transition, to

demonstrate that the dynamics slow down critically so that the onset of a quasi-stationary

regime diverges as we move closer to the critical point. This naturally implies that the dy-

namical critical exponents that we probe in the vicinity of the transition are of nonequilibrium

type, instead of equilibrium which could have been so if we were probing the quasi-stationary

regime in the close vicinity. Fig. F.12a and F.12b show the nonequilibrium responses of edge

magnetization and bulk magnetization at r = 6, respectively. (i) The first observation is that

the nonequilibrium responses in the vicinity of the transition exhibit a very similar trend

for both cases up to different time-average values (solid-black lines). We already presented
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(a) (b)

Figure F.12: The nonequilibrium response of integrable TFIM in the vicinity of the transition
(see legend) for (a) the edge magnetization and (b) bulk r = 6 magnetization at system size
N = 1440. The solid-black lines are the time-average with a fixed UV temporal cutoff of
t∗ = 10.

the collapse of nonequilibrium responses of different sites in the main text. (ii) As we move

closer to the critical point, we observe that the onset of the quasi-stationary regime diverges:

This effect starts to be visible from h = 0.99. Therefore, the time-average of the signal no

longer matches perfectly with the magnetization value of the quasi-stationary regime, which

is beyond accessible simulation times in these figures. We note that it is also around this

value of h where we observe the onset of universal scaling appearing with β ∼ 4/3 (see

for instance Fig. 3a of the main text). We do not study the dynamical scaling closer than

hn = 10−4 (purple), as it is not completely clear whether the dynamics relax to a quasi-

stationary regime past this point due to constrained simulation time for a system size of

N = 1440. Nevertheless, the allowed parameter regime still demonstrates a robust exponent

of β ∼ 4/3. In the future, one can extend the simulation time by increasing the system size

further and thus test the dynamical critical exponent closer to the critical point.

In this section, we also plot the nonequilibrium response at the DCP which coincides with

the QCP (Fig. F.13a), as well as in the dynamically-disordered phase at h = 1.1 (Fig. F.13b).

One notices the power-law decay of the envelope of the nonequilibrium response, which
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(a) (b)

Figure F.13: The nonequilibrium response of integrable TFIM (a) at DCP h = 1 and (b) in
the dynamically-disordered phase h = 1.1 for r = 6 magnetization at various system sizes
(see legends).

suggests that there is no quasi-stationary regime appearing in the accessible times.

F.7 Details on the near-integrable model and the as-

sociated fit functions

We plot the nonequilibrium responses of our near-integrable model with ∆ = −0.1 for h

past the DCP in Fig. F.14. This plot should be compared with Fig. 4c of the main text.

One can observe the emergence of long wavelength oscillations as we pass the dynamical

critical point, which is helpful in determining the DCP. This is because, such behavior of

long wavelength oscillations is a characteristic of the disordered dynamical phase. One can

also notice that the envelope of the nonequilibrium response in the dynamically-disordered

phase decays in a power-law fashion, suggesting the absence of a quasi-stationary regime.

Similar behavior is observed in the integrable TFIM (see Sec. F.6).

Table F.4 presents the fitting parameters for the dynamical scaling law in the vicinity

of the transition for the near-integrable model for different sites r � N/2. For all sites

we find a similar exponent of β ∼ 4/3, which matches that found in the integrable model.
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Figure F.14: Mean-field nonequilibrium responses of a near-integrable model with ∆ = −0.1
past the DCP (see legend) at a system size of N = 1440.

We also study the system size scaling at the DCP with different ultraviolet cutoffs t∗, all of

which gives similar exponents C̄r(hc) ∝ N−γ where γ ∼ 0.7. Table F.5 summarizes the fit

parameters for some temporal cutoffs t∗.

When applying the cluster theorem to the MFT data of this weakly-interacting non-

integrable TFIM, one needs to estimate the lightcone (correlation) velocity of the model.

While for the integrable TFIM this velocity is analytically known, this is not true when we

introduce nonintegrability to the model. Here we approximate a quasiparticle velocity based

observable β

σz1 1.3378 ± 0.0043
σz3 1.3568 ± 0.0039
σz6 1.3537 ± 0.0038
σz9 1.3647 ± 0.0023
σz12 1.3618 ± 0.0132

Table F.4: Fit parameters for the scaling law of the near-integrable model in the vicinity of
the transition.
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cutoff σz1, γ σz3, γ σz6, γ

t∗ = 10 0.6842 ± 0.0437 0.6973 ± 0.052 0.7003 ± 0.0505
t∗ = 15 0.6957 ± 0.0449 0.6865 ± 0.0492 0.6710 ± 0.0448

Table F.5: Fit parameters for the system-size scaling of single-site observable at r = 1, 3, 6
at the DCP.

Figure F.15: Different boundary conditions are compared for the integrable TFIM at h = 0.5
and system size N = 24. One can obtain a quasi-stationary regime with smooth boundary
conditions too.

on the analytical prediction of the integrable TFIM: vq = 2h for h ≤ hc and vq = 2hc for

h > hc. Since this is only an approximation, we sometimes exceed the time when the cluster

theorem breaks down. This is because distant sites of the chain become correlated with one

another (see Sec. F.1). This time can be observed with a recurrence attempt in the figures

both in the main text and the supplementary, which is also a sign of finite-size effects.

F.8 Robustness of the quasi-stationary regime

In this section, we show that the quasi-stationary temporal regime emerges not only when we

introduce hard boundaries [337], but also smooth boundaries. A smooth boundary condition

can be applied by smoothly turning off the Hamiltonian parameters towards the edges of

the chain [341]. Fig. F.15 shows the single-site nonequilibrium responses of the integrable
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Figure F.16: The dynamic order profile of the nonintegrable TFIM with ∆ = −1 in loga-
rithmic scale.

TFIM with hard boundarieas (red-diamonds), smooth boundaries (green-solid) and periodic

boundary condition (blue-dotted). As shown in Sec. 6.2, the middle of a hard-boundary

chain (yellow triangles) acts like an arbitrary site in a periodic chain.

We thus conclude that the quasi-stationary regime is robust against altering the boundary

conditions, so long as they remain open. This provides further evidence that the stationary

regime is a result of the geometry of the chain rather than of the zero modes.

F.9 t-DMRG results in detail

Finally, in Fig. F.16 we show the data of Fig. 5b of the main text in logarithmic scale

to demonstrate why this data is insufficient to claim the presence of a dynamical phase

transition (DPT) in the nonintegrable TFIM with strong integrability breaking. We remind

the reader that the interaction strength is set to ∆ = −1 and the results are obtained via t-

DMRG (see Sec. F.1). Although the dynamic order tends to increase with increasing system

size in the dynamically-ordered regime and hence demonstrates a persistent dynamic order,

it is not clear where the transition really happens. The DCP is expected to happen either

before or at the QCP, which is at hc ∼ 2.46J for this model. Longer simulations times, with

sufficiently high precision, are needed in order to decide whether this crossover is actually a
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DPT.
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[102] M. Serbyn, D.A. Abanin and Z. Papić, Quantum many-body scars and weak breaking
of ergodicity, 2011.09486.

[103] S. Choi, J. Choi, R. Landig, G. Kucsko, H. Zhou, J. Isoya et al., Observation of
discrete time-crystalline order in a disordered dipolar many-body system, Nature 543
(2017) 221.

[104] K. Sacha and J. Zakrzewski, Time crystals: a review, Reports on Progress in Physics
81 (2017) 016401.

[105] D.V. Else, B. Bauer and C. Nayak, Prethermal phases of matter protected by
time-translation symmetry, Phys. Rev. X 7 (2017) 011026.

[106] A. Syrwid, J. Zakrzewski and K. Sacha, Time crystal behavior of excited eigenstates,
Phys. Rev. Lett. 119 (2017) 250602.

[107] R.V. Jensen and R. Shankar, Statistical behavior in deterministic quantum systems
with few degrees of freedom, Phys. Rev. Lett. 54 (1985) 1879.

275

https://doi.org/10.1103/PhysRevLett.111.127205
https://doi.org/10.1103/PhysRevLett.95.190405
https://doi.org/10.1103/PhysRevLett.92.140403
https://doi.org/10.1103/PhysRevA.72.013602
https://doi.org/10.1103/PhysRevLett.122.150601
https://doi.org/10.1103/PhysRevLett.122.150601
https://arxiv.org/abs/2011.09486
https://doi.org/10.1088/1361-6633/aa8b38
https://doi.org/10.1088/1361-6633/aa8b38
https://doi.org/10.1103/PhysRevX.7.011026
https://doi.org/10.1103/PhysRevLett.119.250602
https://doi.org/10.1103/PhysRevLett.54.1879


[108] M. Rigol, V. Dunjko, V. Yurovsky and M. Olshanii, Relaxation in a completely
integrable many-body quantum system: An ab initio study of the dynamics of the
highly excited states of 1d lattice hard-core bosons, Phys. Rev. Lett. 98 (2007) 050405.

[109] L. Vidmar and M. Rigol, Generalized gibbs ensemble in integrable lattice models,
Journal of Statistical Mechanics: Theory and Experiment 2016 (2016) 064007.

[110] T.N. Ikeda, Y. Watanabe and M. Ueda, Finite-size scaling analysis of the eigenstate
thermalization hypothesis in a one-dimensional interacting bose gas, Phys. Rev. E 87
(2013) 012125.

[111] V. Alba, Eigenstate thermalization hypothesis and integrability in quantum spin
chains, Phys. Rev. B 91 (2015) 155123.

[112] V. Dunjko and M. Olshanii, Thermalization from the perspective of eigenstate
thermalization hypothesis, in Annual Review of Cold Atoms and Molecules,
pp. 443–471, WORLD SCIENTIFIC (2013).

[113] H. Kim, T.N. Ikeda and D.A. Huse, Testing whether all eigenstates obey the
eigenstate thermalization hypothesis, Phys. Rev. E 90 (2014) 052105.
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