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Abstract 
 The brain is a complex dynamical system that is never truly “at rest”. Even in the absence of 

explicit task demands, the brain still manifests a stream of conscious thought, varying levels of vigilance 

and arousal, as well as a number of postulated ongoing “under the hood” functions such as memory 

consolidation. Over the past decade, the field of time-varying functional connectivity (TVFC) has 

emerged as a means of detecting dynamic reconfigurations of the network structure in the resting 

brain, as well as uncovering the relevance of these changing connectivity patterns with respect to 

cognition, behavior, and psychopathology. Since the nature and timescales of the underlying resting 

dynamics are unknown, methodologies that can detect changing temporal patterns in connectivity 

without imposing arbitrary timescales are required. Moreover, as the study of TVFC is still in its 

infancy, rigorous evaluation of new and existing methodologies is critical to better understand their 

behavior when applied in resting data, which lacks ground truth temporal landmarks against which 

accuracy can be assessed. 

In this dissertation, I contribute to the methodological component of the TVFC discourse. I 

propose two distinct, yet related, approaches for identifying TVFC using an informed segmentation 

framework. This data-driven framework bridges instantaneous and windowed approaches for 

studying TVFC, in an attempt to mitigate the limitations of each while simultaneously leveraging the 

advantages of both. I also present a comprehensive, head-to-head comparative analysis of several of the 
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most promising TVFC methodologies proposed to date, which does not exist in the current body of 

literature.



 

1 

Chapter 1 - Introduction 

1.1 Towards Decoding Human Thought 

 One of the most ambitious and complex scientific goals of today is understanding the 

connection between the brain and the mind. Towards this goal, a necessary component is uncovering 

the mapping between brain activity, namely localized or regional activations within the brain, and 

individual cognitive processes. Reaching a sufficiently detailed mapping of this sort could enable the 

decoding of a person’s spontaneous thoughts. In fact, in the recent book “The New Mind Readers” 

Dr. Russell Poldrack discusses the potential for this form of “mind reading” to become a scientific 

reality in the not-so-distant future largely due to the innovations in modern neuroimaging techniques, 

specifically functional magnetic resonance imaging (fMRI) (Poldrack, 2018). But is it truly possible to 

draw a direct biological map between patterns of brain activity and the full spectrum of human 

consciousness?  

 The study of the functional underpinnings of human cognition using neuroimaging began 

with the observation of brain activity during specialized tasks designed to probe specific cognitive 

processes. From these task-evoked studies, it quickly became clear that there does not exist a perfect 

one-to-one mapping of thoughts, emotions, or cognitive processes to singular brain regions—

engagement in a single cognitive process often involves activation across several brain regions, and 
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conversely, activation of a particular brain region often occurs across multiple cognitive processes. 

This lack of selectivity between cognition and regional activation poses a problem for the reverse 

inference required for cognitive decoding, i.e., inferring the engagement of a certain cognitive process 

based on the activation of a particular brain region (Poldrack, 2006). To gain further insight into the 

neural basis of cognition, researchers have focused on studying the co-fluctuation, or temporal 

coupling, of activation patterns between brain regions, known as functional connectivity (FC). The 

study of task-based FC has uncovered a great deal about the functional organization of the human 

brain, and of particular importance among these discoveries has been the formalization of several 

connectivity networks in the brain that have been shown to reliably synchronize (either through 

strong coupling or anti-coupling) in certain cognitive contexts.  

 Beyond the study of task-evoked FC, there has been rising interest in studying the intrinsic 

patterns of brain activity in the absence of task stimulus, known as the “resting state”. Studies of 

resting state fMRI were initially performed to capture baseline neural activity against which task 

activations could be compared, but it was quickly discovered that resting state FC actually captured 

important individual variation across several phenotypes, including fluid intelligence (Finn et al., 

2015), working memory (Hampson et al., 2006), and a variety of neurological and psychiatric diseases 

such as Alzheimer’s (Greicius et al., 2004) and schizophrenia (Bluhm et al., 2007). Importantly, these 

early studies of resting state FC operated on the critical assumption that FC patterns during rest are 

static, or unchanging, throughout the entire period of the fMRI scan. But how does this assumption 

of static FC reconcile with what we know about human cognition, specifically during the mind-
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wandering resting state? If FC truly encodes neural patterns of thought and cognitive processes, which 

we know from experience are not static during the stream of spontaneous thought that occurs 

throughout the wakeful rest condition, then the assumption of static resting state FC indeed seems too 

strict.  

 Accordingly, there has been a shift in focus from studying static FC to time-varying FC 

(TVFC) in the context of resting state fMRI. Generally, the TVFC paradigm aims to decompose 

resting brain activity into a set of discrete FC states that are common across individuals. It is 

hypothesized that these time-varying states may correspond to distinct cognitive processes, and that 

the patterns in which individuals transition between these brain states can be predictive of a variety of 

neurally relevant phenotypes. In fact, when reviewing the burgeoning literature regarding resting state 

TVFC, one can come away with a few major conclusions. First, an overwhelming majority of TVFC 

studies find evidence of temporally changing FC patterns within the course of a single resting state 

scanning session. Second, the convergence of evidence in favor of the TVFC view of the resting state 

was arrived at using a number of statistically distinct methodologies. Third, evidence of TVFC is 

reproduced across several populations, including healthy adult, pediatric, and clinical populations. 

Fourth, features derived from TVFC analyses have been shown to capture important individual 

variation across a spectrum of phenotypes, as well as utility for tracking spontaneous thought (Kucyi 

& Davis, 2014). Taken together, these findings suggest that viewing resting state FC through a time-

varying lens will be an integral component for innovation and progress in cognitive neuroscience, in 

particular for uncovering the mapping between brain and mind.   



 

4 

As one of the newest frontiers in the field of neuroimaging, the study of TVFC is met with 

nearly as much criticism as enthusiasm. Doubts have been cast about the origins of the dynamic FC 

patterns observed in resting state fMRI, with suggestion that these apparent dynamics could be by-

products of non-neural noise such as head motion (Laumann et al., 2017) or confounding 

physiological signals like heart beats or respiration (Cordes et al., 2001; Nguyen et al., 2016). 

Moreover, there has been a great deal of speculation as to whether the observed temporal changes in 

FC patterns are artificially produced as an artifact of the statistical TVFC methods themselves 

(Laumann et al., 2017). The natural difficulty in studying resting state FC is the absence of a “ground 

truth”, in which the time-resolved changes in cognitive states are known and against which the 

accuracy of various TVFC methods could be tested. For these reasons, development of methodologies 

capable of uncovering these “hidden” resting brain states is currently an active area of research. 

In this dissertation, I contribute to the methodological component of the TVFC discourse. I 

propose two distinct yet related approaches for identifying TVFC using an informed segmentation 

framework. This data-driven framework bridges instantaneous and windowed approaches for 

studying TVFC, in an attempt to mitigate the limitations of each while simultaneously leveraging the 

advantages of both. I also present a comprehensive, head-to-head comparative analysis of several of the 

most promising TVFC methodologies proposed to date, which does not exist in the current body of 

literature.  
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1.2 Dissertation Outline 

 In Chapter 2, I provide the necessary background information and a review of the state of the 

field of TVFC. In Chapter 3, I propose the activation-informed segmentation method, a hybrid 

TVFC approach that leverages moment-to-moment changes in whole brain functional activity to 

generate discrete, data-driven segments of stable FC, and identify significant relationships between the 

resultant discovered dynamic states and phenotypes of interest. In Chapter 4, I perform a comparative 

analysis of three popular instantaneous connectivity estimation methods: multiplication of temporal 

derivatives (MTD), edge co-fluctuation (ECF) and dynamic conditional correlation (DCC). Using 

block design task data as a natural ground truth, I compare the performance of each instantaneous 

connectivity estimator alone, as well as a base signal for the sliding window and informed 

segmentation frameworks in identifying known boundaries between functional brain states. In 

Chapter 5, I explore the use of the instantaneous state estimation approaches of co-activation pattern 

(CAP) analysis and hidden Markov models (HMMs) across both the activation and connectivity 

domains. In Chapter 6, I present a proof-of-concept experiment utilizing recurrent neural network 

architectures to learn instantaneous FC patterns and identify anomalous frames of functional 

activation. A discussion of the results as a whole and proposed future directions is presented in 

Chapter 7. A schematic representation of the methodologies used in each of Chapters 3-6 is presented 

in Figure 1.1.  

  



 

6 

1.3 Figures 

 

Figure 1.1. Schematic representation of experimental pipelines used in Chapters 3-6.  
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Chapter 2 - Background 
 The brain is a complex dynamical system that is never truly “at rest”. Even in the absence of 

explicit task demands, the brain still manifests a stream of conscious thought, varying levels of vigilance 

and arousal, as well as a number of postulated ongoing “under the hood” functions such as memory 

consolidation. This “resting state”, once regarded as a baseline or even a nuisance measurement, is now 

known to be rather cognitively rich. Considering task-unrelated thought and behavior accounts for 

nearly 50% of our waking time (Killingsworth & Gilbert, 2010) and may explain a much larger portion 

of individual neural variability than that of task-evoked cognition (Musall et al., 2019), gaining a more 

complete understanding of the functional underpinnings of resting cognition is of paramount 

importance to the field of cognitive neuroscience.  

To this end, one specific area of interest lies in uncovering temporal changes in resting state 

functional connectivity patterns, with hopes that they may serve to illuminate the mechanistic 

underpinnings of mind wandering and other processes operating in the “resting” brain. While 

important, this study of spontaneous intrinsic changes in functional connectivity is challenging from 

both a methodological and biological perspective. Methodologically, techniques capable of capturing 

dynamic functional relationships between brain regions without imposing arbitrary timescales or 

artificially inducing the appearance of changing connectivity structure are required to obtain an 

unbiased understanding of time-varying functional connectivity (TVFC) at rest. Biologically, the 
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challenge lies in disentangling the neurophysiological basis of TVFC observed from the BOLD fMRI 

signal to understand the contribution of sleep/arousal state, neuromodulatory effects and true 

interregional neural interactions. As the latter biological challenges cannot be studied before the 

former methodological considerations are sufficiently resolved, this dissertation primarily aims to 

contribute to the methodological discussion for uncovering TVFC from resting state BOLD fMRI 

data.  

2.0 Terminology 

 I begin by defining some key terminology used throughout this dissertation, to avoid 

confusion or ambiguity. Firstly, based on the suggestion in a recent work by Lurie and colleagues 

(Lurie et al., 2020), I refer to the study of changing functional connectivity patterns on the order of 

seconds as “time-varying functional connectivity” (TVFC). This phenomenon has often been referred 

to as “dynamic functional connectivity”, or dFC, but ambiguity across disciplines in the definition of 

the term “dynamic” has led to the proposed standard nomenclature of TVFC. In contrast to TVFC, I 

refer to studies of functional connectivity (FC) that operate under the assumption that FC does not 

spontaneously change as a function of time as “static FC”.   

 Secondly, throughout this dissertation I discuss different methodologies of parsing time series 

into smaller slices for TVFC analysis. To avoid confusion, I use the term “window” to describe fixed-

length and often overlapping slices of the time series, usually in the context of the sliding window 

paradigm. Conversely, I use the term “segment” to refer to tailored or variable-length slices of the time 
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series that are discrete (i.e., non-overlapping). The term “segment” is often used in the context of my 

newly proposed informed segmentation TVFC paradigm.  

 Thirdly, I often refer to “instantaneous” methodologies of estimating functional connectomes 

or functional brain states. In the context of fMRI research, it is important to discuss the meaning of 

such a term precisely. Any “instantaneous” estimate derived from fMRI is dependent on the temporal 

resolution (TR) of the fMRI scanner, i.e., the interval between each functional brain “snapshot” or 

“frame”. It is also critical to consider that fMRI is an indirect measure of functional brain activity, 

rather than a direct measure of electrical impulses generated by firing neurons, so any activity captured 

by fMRI is subject to hemodynamic lag. With this in mind, the term “instantaneous” in the context of 

FC or brain state estimates is synonymous with “pointwise” or “framewise”, meaning an estimate is 

generated at each time point or frame within the fMRI time series. 

 A list of commonly used terms and abbreviations can be found in Table 2.1. 

2.1 fMRI and Functional Connectivity 

The intricate neural interactions that give rise to human cognition have been the subject of 

curiosity and study for centuries, but in-depth observation and investigation of these functional 

connections have only become a possibility in recent decades through the advancement of modern 

neuroimaging modalities.  Though several functional neuroimaging techniques are available today, 

perhaps the most commonly used is functional magnetic resonance imaging (fMRI). fMRI is a 

method of non-invasively observing brain function using blood flow as a marker for functional 
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activation, resulting in what is known as the blood oxygen level dependent (BOLD) signal. In addition 

to its non-invasive nature, BOLD fMRI has the benefit of relatively high spatial resolution, enabling 

simultaneous imaging of activation in regions across the entire brain. This, however, comes at the 

expense of noisiness as an indirect measure of functional activation, as well as temporal resolution, 

owing to the intrinsically slow nature of the hemodynamic response. Despite its limitations, BOLD 

fMRI has become the leading modality for the study of functional connectivity (FC), defined as the 

statistical dependency of neurophysiological time series derived from individual regions or networks in 

the brain (Lurie et al., 2020).  

In its infancy, the field of FC research focused on mapping the functional networks involved 

in specific cognitive processes, achieved through the use of meticulously designed task paradigms 

(Medaglia et al., 2015). However, following the seminal study by Biswal et al. (Biswal et al., 1995), 

which showed evidence of synchrony between voxels in the primary motor cortex and other seed 

regions across the brain in the absence of explicit task demands, there has been considerable interest in 

studying FC in the resting state. The collection of resting state fMRI data is usually conducted under a 

quiet “wakeful rest” condition, where subjects are asked to either visually focus on a crosshair within 

the MRI scanner or keep their eyes closed.  While the absence of a predefined task structure precludes 

temporal alignment between subjects, the freeform mind-wandering nature of resting state fMRI 

affords a certain flexibility in analytical choices and naturally imposes fewer demands on subjects—a 

substantial benefit for collecting data from populations with cognitive or neurological impairments 

that may be unable to perform certain tasks in a standardized way in the scanner. 
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Traditionally, resting state functional connectivity (rsFC) has been viewed as a static 

phenomenon, meaning the statistical dependencies between distinct brain regions are considered 

constant and are thereby computed as an average across the entire available time series. Even under this 

somewhat stringent assumption, individual variation in static rsFC patterns have been associated with 

a variety of phenotypes. A majority of this research has focused on uncovering clinical correlates of 

static rsFC (Fox & Greicius, 2010), beginning with identification of  group-level differences in resting 

FC patterns between individuals with neurological or psychiatric disorders and healthy controls (Fox 

& Raichle, 2007; Greicius, 2008; Hull et al., 2017; Lynall et al., 2010; D. Zhang & Raichle, 2010), to 

prediction of disease state (Greicius et al., 2004; Hedden et al., 2009; S.-J. Li et al., 2002; Zeng et al., 

2018) and severity (Bluhm et al., 2007; Greicius et al., 2007; B. J. He et al., 2007) on an individual 

basis. Though static rsFC has been studied across the spectrum of clinically relevant phenotypes, the 

consistency and strength of disease-specific rsFC signatures vary from highly consistent, as in the case 

of Alzheimer’s (Greicius et al., 2004; Hedden et al., 2009; S.-J. Li et al., 2002), to somewhat 

inconsistent, as seen with schizophrenia (Bluhm et al., 2009; Jafri et al., 2008; Liang et al., 2006). 

Beyond clinical diagnoses, static rsFC has also been studied in the context of broader cognitive 

phenotypes, showing the ability to predict measures of cognitive control (Cole et al., 2012), working 

memory (Hampson et al., 2006), and even fluid intelligence (Finn et al., 2015). Static rsFC has even 

exhibited utility for encoding behavioral performance, such as measures of attention (Rosenberg et al., 

2016). As evidenced by this existing body of research, the average landscape of spontaneous brain 
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activity estimated by static measures of FC at rest captures both group-level and individual variability 

across several phenotypes of interest. 

2.2 Time-Varying Functional Connectivity (TVFC) 

Motivated by the mind-wandering nature of spontaneous thought in rest, researchers began 

studying the time-varying nature of rsFC. Researchers hypothesized that patterns of FC would be 

modulated by the changing cognitive processes associated with the undirected resting state and may 

also be temporally affected by changing levels of arousal or attention. The study of TVFC was born of 

two seminal works that were published in short succession, which presented the first evidence for 

meaningful variation in temporal patterns of rsFC (Chang & Glover, 2010; Sakoğlu et al., 2010). 

Importantly, though these studies differed in methodological design (time-frequency analysis between 

selected seed regions and whole brain sliding window analysis), as well as population (healthy adults 

only vs. a case-control schizophrenia cohort), both showed strong evidence that patterns of rsFC 

changed as a function of time. These studies opened the door for a broad array of work aimed at 

uncovering the nature and significance of TVFC in a variety of contexts and populations, which will 

be discussed in the following sections.  

When we discuss the notion of TVFC, it is important that we specify the timescale of the 

dynamics of interest. Individual changes in FC have been demonstrated across several timescales, 

ranging from changes in FC that occur on the scale of hours (Bassett et al., 2011; Sami et al., 2014) to 

changes that occur across weeks, months, and even years (Choe et al., 2015; Poldrack et al., 2015). 
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These long-range changes in FC have been attributed to factors such as learning, gene expression and 

concentrations of metabolites. While such changes are of independent interest and importance, the 

study of TVFC as discussed in this dissertation focuses on changes that occur within the timescale of a 

single fMRI scan, usually on the order of seconds to a few minutes.  

 In the decade since such short-range temporal dynamics of rsFC were first described, TVFC 

has evolved into a burgeoning field of research. The number of papers published in the field of TVFC 

has grown rapidly and exponentially, increasing from just two publications in 2010 to 105 

publications in 2018 (Lurie et al., 2020). In the following subsections, we aim to highlight key findings 

from studies of TVFC (Section 2.3), popular TVFC methodologies (Section 2.4 ), and concerns that 

have arisen about the nature of TVFC work (Section 2.5).   

2.3 Clinical and Behavioral Correlates of TVFC 

2.3.1 Cognitive and Behavioral Traits 

 One of the larger questions surrounding TVFC is the relevance of the time-varying patterns of 

FC with regard to cognition and behavior. Several studies have probed this link between neural 

dynamics and behavior, identifying several connections between the two. Broad connections have 

been identified between patterns of resting TVFC and general cognitive task performance (Jia et al., 

2014), as well as specific relationships between the temporal contribution of dorsal attention network-

dominant states and performance in attention tasks (Madhyastha et al., 2015). Studies of TVFC with 

respect to specific subnetworks have also elucidated meaningful cognitive correlates of connectivity 
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dynamics. Temporal flexibility within both the salience network (T. Chen et al., 2016) and 

posteromedial cortex (Yang et al., 2014) showed significant correlations with measures of cognitive 

flexibility and executive function.  

 Another point of interest has been in connecting features of TVFC with intelligence and 

processing speed (Vidaurre et al., 2017). A common approach in this arena is comparing the 

performance of time-varying measures of FC with those of static measures of FC in their ability to 

predict or capture the individual variation in measures of fluid intelligence (Liégeois et al., 2019; 

Vidaurre et al., 2021). The consensus of these recent works is that time-varying representations of FC 

are better predictors of fluid intelligence. This is in contrast to results from the same works that 

indicate TVFC does not provide any advantage over static FC in predicting certain facets of 

personality or self-reported measures of well-being. 

 Finally, studies of TVFC have also shown links to more abstract or subjective components of 

cognition and behavior. For example, larger variability in regional FC was connected to lowered 

frequency of positive thought (Schaefer et al., 2014) and increased connectivity strength and 

variability between the default mode network and periaqueductal gray was associated with individual 

ability to divert focus from pain (Kucyi et al., 2013). Finally, and perhaps most interestingly, time 

varying patterns of FC within and between the default mode network and other subregions was shown 

to track mind-wandering events in time (Kucyi & Davis, 2014), indicating that measures of TVFC do 

have the ability to localize spontaneous recruitment of cognitive processes within the resting state.  
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2.3.2 Demographic Phenotypes 

 In addition to the cognitive and behavioral relevance of TVFC, changing patterns of 

functional connectivity have also been associated with demographic features such as age and biological 

sex. TVFC correlates to age have been demonstrated in youth (Marusak et al., 2016), aging 

(Madhyastha & Grabowski, 2014), and throughout the lifespan (Hutchison & Morton, 2015). A 

common thread across these studies shows that increase in FC variability is associated with increased 

age. Sex-based differences in TVFC have also been reported, suggesting that males and females exhibit 

differing patterns of state occupancy in rest (Yaesoubi, Allen, et al., 2015; Yaesoubi, Miller, et al., 

2015). 

2.3.3 Clinical Phenotypes 

 Since measures of TVFC have been shown to be associated with individual variation in 

cognition and behavior, it is logical that work would build upon these associations and use TVFC to 

study brain disorders in which these processes are altered or disrupted. Moreover, conditions which are 

marked by increased variability (or stability) of thought are ideally suited for study with TVFC 

methods, as static approaches cannot capture these relevant alterations. Based on this, it is unsurprising 

that schizophrenia—characterized by highly disorganized thought, delusions, and hallucinations—was 

the first (Sakoğlu et al., 2010), and is among the most widely studied brain disorders in the context of 

TVFC. Interestingly, there is a strong concordance in the results across this wide range of 

schizophrenia TVFC studies. These works find that schizophrenia is marked by weakened cross-

network connectivity (Damaraju et al., 2014), specifically in connections both across (Rashid et al., 



 

16 

2014; Su et al., 2016) and within (Du et al., 2016) the default mode network compared to healthy 

controls. Individuals with schizophrenia also exhibited reduced dynamic flexibility, occupying a 

narrower set of meta-states (Miller et al., 2016; Yu et al., 2015), and spending more time in states 

characterized by lower connectivity overall (Damaraju et al., 2014; Du et al., 2016; Rashid et al., 2016). 

Taken together, these results provide an enhanced understanding of the functional underpinnings of 

schizophrenia that would not have been possible without studying this disorder through a time-

varying framework. 

 In contrast to the increased variability in thought associated with schizophrenia, autism 

spectrum disorder (ASD) is characterized by unusual stability of thoughts, often manifesting as 

repeated, restricted interests and hyperfixations. The results of TVFC studies in ASD show dynamic 

signatures of FC that largely oppose the characteristics found for schizophrenia (de Lacy et al., 2017). 

Namely, ASD is shown to be characterized by decreased variability in connectivity between the default 

mode network and the posterior cingulate gyrus (PCC) (C. He et al., 2018), increased within-network 

connectivity of the PCC (Y. Li et al., 2020), and increased variability in time-varying FC overall 

(Harlalka et al., 2019; Y. Li et al., 2020). Recent work in ADHD suggests that children with ADHD 

exhibit similar patterns, particularly extended dwell time in hyperconnected network states (Shappell 

et al., 2021). This similarity in TVFC characteristics between ADHD and ASD is underscored by the 

large behavioral overlap between the two conditions. 

Other works have shown that time-varying measures of FC are more informative than 

analogous static descriptions of FC in detecting disease-specific characteristics in the context of 
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Parkinson's disease (Díez-Cirarda et al., 2018), PTSD (Jin et al., 2017), Alzheimer's disease (Jones et al., 

2012), and depression (Kaiser et al., 2016). Overall, this large body of work studying TVFC in various 

brain disorders has enabled a more thorough characterization of disease and will continue to do so as 

our understanding of TVFC in healthy rest is refined. Beyond the use of TVFC for enhancing our 

understanding of underlying functional processes that give rise to brain disorders, if the time-varying 

connectivity signatures become sufficiently disease-specific, there is great potential for TVFC 

signatures to serve as biomarkers for clinical diagnoses or as prognostic indicators for measuring disease 

progression or treatment response.  

2.4 TVFC Methodologies 

2.4.1 Sliding Window Methods 

 The sliding window paradigm is undoubtedly the most popular methodology used to study 

TVFC (Allen et al., 2014; Kucyi & Davis, 2014; Madhyastha et al., 2015; Marusak et al., 2016, 2018; 

Nomi et al., 2017; Sakoğlu et al., 2010; Yaesoubi, Allen, et al., 2015). In the basic sliding window 

method, a window of fixed length is slid across the entire time series, shifted by a predefined number 

of time points (step size) each time. Within each window, the functional connectivity is computed 

across all pairs of nodes, resulting in a set of time-evolving (and often heavily overlapping) windowed 

estimates of FC.   

Importantly, there are two distinct elements of the sliding window paradigm—windowing and 

connectome estimation. These two components present several methodological choices that can be 
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mixed-and-matched to create numerous potential sliding window workflows. For example, the 

windowing step involves the definition of the size and shape of the window (Mokhtari et al., 2019; 

Shakil et al., 2016, 2018, 2015), the optimal choice of which still constitutes an active area of research. 

There are also several choices of connectivity estimators, including Pearson correlation (Allen et al., 

2014), Spearman correlation (Savva et al., 2019), instantaneous shared trajectory (Faghiri et al., 2020), 

and instantaneous phase synchrony (Pedersen et al., 2018). Each of these methods presents its own 

benefits, but Pearson correlation is generally the most commonly used connectivity estimator in 

sliding window paradigms. 

 The use of the sliding window method can vary depending on the study design and goals of 

the analysis. For example, statistics that capture the temporal variability of the FC (i.e., standard 

deviation, variance) can be computed directly across all windowed connectomes and related to 

cognitive and behavioral correlates of interest (Kucyi et al., 2016; Kucyi & Davis, 2014; Patanaik et al., 

2018). The sliding window method can also be combined with k-means clustering to segregate the 

temporal windows into a set of k discrete connectivity states (Allen et al., 2014). Each state can be 

defined by its corresponding cluster centroid and various dynamic features can be extracted on the 

individual or group level, including dwell times (i.e., the contiguous length of time spent in a single 

state) and state-to-state transition probabilities. 

 While the sliding window paradigm has proven useful for discovery of the time-varying nature 

of FC and insights into several cognitive and clinical correlates of TVFC (discussed in Section 2.3), it 

also suffers from several important limitations. First, the sliding window method relies heavily on the 
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somewhat arbitrary choice of window size, and results can differ substantially across various window 

widths (Hindriks et al., 2016; Shakil et al., 2016). Second, simulations suggest that sliding window 

methods can introduce artifactual connectivity variation even under conditions when such variation is 

known to be absent (Laumann et al., 2017; Lindquist et al., 2014a). Third, perhaps due to one or more 

of the preceding issues, the sliding window method has been found to have poor test-retest reliability 

(Choe et al., 2017). Fourth, the overlapping nature of the sliding windows precludes definitive 

segmentation of the fMRI time series into states, making interpretation of the state dynamics difficult. 

Finally, the sliding window approach requires constructing a sizable number of overlapping windowed 

connectivity matrices: with 400 timepoints and a 30 TR window, 370 distinct connectivity matrices 

are required (at a step = 1 TR = 1s). This poses serious scalability issues for relatively long or more 

temporally granular fMRI datasets.  

2.4.2 Instantaneous FC Estimators 

 Due to the limitations associated with sliding window TVFC frameworks, there has been 

increased interest in the development of “windowless” methodologies, specifically those capable of 

estimating instantaneous, or frame-wise, FC. In this section, I provide a brief overview of popular or 

promising instantaneous FC estimation methods. 

 The Multiplication of Temporal Derivatives (MTD) method (Shine et al., 2015) was 

introduced as a way to estimate functional connectivity at a higher temporal resolution than what was 

available via windowed methods. The MTD is calculated by first computing the temporal derivative 

for each region of interest (ROI) time series by applying first-order differencing, and then calculating 
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the pairwise products of all ROI temporal derivatives at each time point. For an fMRI time series 

composed of n ROIs and T time points, the MTD method will result in a series of 𝑇 − 1 connectome 

estimates of size 𝑛 × 𝑛. Intuitively, the magnitude of the MTD metric captures the degree of 

functional coupling between each pair of ROIs at each time point, whereas the sign captures the 

direction of the relationship—a positive MTD value indicates functional change in the same direction 

(either both increasing or both decreasing in fMRI amplitude), whereas a negative MTD value 

indicates anti-coupling. The MTD was shown to outperform the standard sliding window method in 

identifying changes in FC states in both simulated and real-world data (Shine et al., 2015). 

 Very recently, another approach that is formulaically related to the MTD method has been 

proposed for estimating instantaneous FC. This approach, here referred to as the edge co-fluctuation 

(ECF) metric (Esfahlani et al., 2020), is described as a “temporal unwrapping” of the Pearson 

correlation coefficient. The ECF is computed by first z-scoring each ROI time series and then 

calculating the element-wise product of the z-scored time series for all pairs of ROIs, resulting in a 

series of T connectome estimates of size 𝑛 × 𝑛. The formulation of the ECF metric is equivalent to the 

Pearson correlation across the entire time series without the averaging step, and so it follows that the 

temporal average of the ECF series is equivalent to the static FC estimated with pairwise Pearson 

correlation. In this way, each time-resolved connectivity matrix generated by the ECF can be 

interpreted as an instantaneous component of static Pearson correlation across the full time series. 

Furthermore, the MTD can be thought of as the ECF applied on the temporal derivative, rather than 

directly on the time series (more on this in Section. 4.3). The authors show that the ECF metric shows 
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inter-subject synchrony during a passive movie watching task, indicating the changing FC patterns 

captured by the ECF metric in this context may be associated with perception and processing of 

sensory information, and supporting the hypothesis that the ECF can potentially be used to track an 

individual’s changing cognitive state over time, even in the absence of task.  

 Building on the ECF, the authors also propose an edge-centric approach for estimating static 

FC, aptly named edge functional connectivity (eFC) (Faskowitz et al., 2020). The eFC metric 

computes the statistical dependency (i.e., Pearson correlation) of all pairs of edges in the ECF (also 

referred to by the authors as the nodal functional connectivity [nFC]) series, resulting in a 

𝑚 × 𝑚 edge-centric connectivity matrix, where 𝑚 =  
𝑛(𝑛−1)

2
. The resultant edge-by-edge 

connectivity matrix can be utilized to uncover overlapping communities of edges that co-fluctuate 

with one another and probe the differences in the organization of these communities under various 

cognitive conditions. While the eFC “super-connectome” is technically a measure of static FC, it 

cannot be computed without first generating an instantaneous connectivity series such as the ECF, 

making it a relevant post-processing procedure. Furthermore, the eFC has potential for use in a sliding 

window paradigm to capture time-varying edge functional connectivity and the changing underlying 

edge community structure, combining a unique perspective on FC with a familiar time-varying FC 

paradigm. 

 While the MTD and ECF are both non-parametric methods, parametric models are also 

available for estimating time-varying statistical dependencies between time series, namely those 

classically used for financial analysis. Of these the most well studied is the dynamic conditional 
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correlation (DCC) model (Engle, 2000), which is a form of a multivariate generalized autoregressive 

conditional heteroscedastic (GARCH) model. A general univariate GARCH(p,q) model estimates the 

conditional variance of a univariate time series at time t as a linear combination of q prior estimates of 

the conditional variance and p prior values of the time series itself. The DCC model generates a 

multivariate GARCH estimate using a two-step process: first, univariate GARCH models are fit to 

each of the ROI time series to estimate the time-varying variance of each ROI signal individually, and 

second, pairwise time-varying correlations are estimated using an exponentially weighted moving 

average (EWMA) scheme on the standardized residuals from the estimates in the first step. From the 

first application of DCC models to estimate TVFC in BOLD fMRI data, the authors report superior 

performance in identifying the true time-varying correlation structure across several simulated and 

real-world datasets as compared to the standard sliding window approach (Lindquist et al., 2014b). 

 Overall, instantaneous estimation of functional connectivity is a fairly new and promising 

methodological direction in the study of TVFC. The major benefit of this family of methods is the 

ability to mark changes in FC at the highest temporal granularity offered via fMRI, from one frame to 

the next. While this property can be advantageous towards the goal of precise temporal localization of 

changing FC, it is also naturally more susceptible to “noisy” time frames which are an inevitable 

outcome of fMRI acquisition. Furthermore, the generation of a connectivity matrix at each time point 

leads to an increase in dimensionality compared to the sliding window, which can potentially lead to 

issues with computational complexity in downstream analyses. However, this increase is usually 

negligible, less than or equal to the size of the window itself, and the benefits from the increased 
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temporal resolution of the connectivity estimates often outweigh the slight increase in dimensionality. 

Finally, it is important to note that instantaneous FC estimators cannot directly provide estimates of 

discrete connectivity states without the recruitment of further post-processing techniques, such as the 

k-means clustering approach commonly used in windowing methods, or other state estimation 

approaches introduced in Section 2.4.3.  

2.4.3 Instantaneous Brain State Estimators 

 In addition to instantaneous FC estimators, there exists another class of methods that aim to 

estimate the time-varying connectivity states directly, without the need for estimation of FC at each 

time point. Three popular methods in this class are co-activation patterns (CAP), temporal 

independent component analysis (tICA), and hidden Markov models (HMM).  

 The simplest of these instantaneous state estimation methods is CAP analysis (Liang et al., 

2006).  The standard CAP approach involves the choice of a seed region and the selection of an 

activation threshold for defining “high-activity” frames. For all timepoints in which activation in the 

seed region exceeds the selected threshold, activation values across all voxels or ROIs are extracted and 

aggregated across all subjects. Finally, k-means clustering is applied to this aggregated set of activation 

patterns to identify a set of k distinct CAPs, or brain states. Each distinct CAP is defined by the 

average activation signature of each timepoint in the cluster. Based on this formulation, the standard 

CAP approach is not fully instantaneous, as only a subset of high activity timepoints are considered. 

However, the CAP paradigm can be extended by applying the clustering learned from the high-

activity frames to all time points, or by omitting the framewise thresholding of the time series and 
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simply applying k-means clustering to all time points. The CAP approach has been applied in a variety 

of contexts (J. E. Chen et al., 2015; Liu et al., 2018), and certain variations on this method have been 

proposed, such as the iCAP method that includes a deconvolution step in attempts to distinguish 

between temporally overlapping CAPs (Karahanoğlu & Van De Ville, 2015). Recently, CAP analysis 

has been utilized to gain insights into the altered functional dynamics associated with ASD (Marshall 

et al., 2020). 

  While cluster analysis has been a popular method for decomposing activation or connectivity 

time series into a set of distinct FC states, it imposes a somewhat rigid requirement that each timepoint 

(or window in the case of sliding window analysis) be assigned to a single cluster, or in other words, it 

only allows for the existence of single connectivity state at any given moment. Such inflexibility could 

mistake instances of transitioning cognitive processes as a distinct state rather than a mixture of two 

existing states. For this reason, methods of instantaneous state estimation that enable the expression of 

FC at a single time point as a combination of multiple underlying connectivity states have been 

studied. One such method is tICA, which seeks to decompose the fMRI time series into a set of 

connectivity patterns that are maximally mutually temporally independent. These resultant 

connectivity patterns (i.e., states) are common across all subjects, and an individual subject 

connectivity time course can be reconstructed through linear combinations of these states. 

Independent components analysis (ICA) is commonly applied to fMRI data in the spatial dimension 

to obtain individualized parcellations of the brain into functional ROIs and subnetworks. Spatial ICA 

works well for fMRI data, which consists of tens of thousands of voxels, but applying ICA in the 



 

25 

temporal dimension is often less robust, as fMRI time series typically only contain a few hundred time 

points (S. M. Smith et al., 2012). Even so, tICA has been applied both to activation time series (S. M. 

Smith et al., 2012) as well as windowed connectivity time series (Yaesoubi, Miller, et al., 2015). By 

accounting for the simultaneous contribution of multiple connectivity states, tICA has shown utility 

for explaining gender-based differences in TVFC (Yaesoubi, Miller, et al., 2015). 

Finally, HMMs provide a probabilistic model-based approach for instantaneous state 

estimation. HMMs rely on the assumption that a sequence of observed data (i.e., BOLD fMRI signal) 

is generated by a sequence of unobserved or “hidden” underlying states (i.e., connectivity states). 

Learning HMMs in the context of TVFC involves estimation of three main components: 1) the 

distinct activation or connectivity signature of each state, 2) state-to-state transition probabilities, and 

3) state membership at each individual time point. In fact, HMMs provide a probabilistic estimate of 

instantaneous state membership, allowing for the possibility of occupying multiple states at a single 

time point and thereby affording similar advantages to those of the tICA framework. HMMs have 

been applied to both windowed estimates of connectivity states, as well as to the BOLD fMRI time 

series directly. Certain variations on the standard HMM have been proposed, including auto-regressive 

HMMs (HMM-AR and HMM-MAR) (Vidaurre et al., 2018) and hidden semi-Markov models 

(HSMMs) (Shappell et al., 2021), each providing certain contextual benefits depending on the goal of 

the analysis at hand. In healthy control studies, HMMs have provided evidence for a hierarchical 

organization of time-varying connectivity states into two distinct meta-states (Vidaurre et al., 2017). 
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HMMs have also shown utility for uncovering altered connectivity dynamics across a variety of clinical 

diagnoses including PTSD (Ou et al., 2015) and ADHD (Shappell et al., 2021).  

Instantaneous state estimation methods have several advantages and disadvantages. As 

mentioned above, each of the three approaches introduced in this section can be applied in both the 

activation and connectivity domains, indicating they can serve as stand-alone approaches or as optional 

post-processing techniques when used in conjunction with instantaneous or windowed estimates of 

FC described in Sections 2.5.1 and 2.5.2. One major disadvantage of state estimation approaches, in 

both instantaneous and windowed settings alike, is their dependence on the choice of the number of 

states to estimate. Often, this is resolved by testing a range of k values and optimizing some evaluation 

metric, such as the cluster validity index in the case of k-means clustering or the BIC criterion in the 

case of HMMs.  

2.5 Doubts about TVFC 

 Despite a large body of literature supporting TVFC and its correlates with cognition, behavior 

and disease, doubts about the underlying processes which give rise to apparent dynamics in FC have 

been reported. Initial work demonstrated evidence that some level of TVFC could still be identified in 

an anesthetized state (Hutchison, Womelsdorf, Gati, et al., 2013; Keilholz et al., 2013), suggesting that 

some portion of the variability in FC cannot be attributed to conscious cognition. A more recent 

report has challenged the idea that TVFC is cognitively meaningful, instead suggesting that temporal 

variations in FC can be mainly explained by head motion, changing arousal state and sampling 
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variability imposed by windowed approaches (Laumann et al., 2017).  This work utilized multivariate 

kurtosis of fMRI time series as a measure of stationarity and found the kurtosis of real resting fMRI 

data did not significantly differ from that of stationary-by-design simulated data, indicating the null 

hypothesis of statistical stationarity in resting state fMRI could not be rejected. However, subsequent 

analyses have presented evidence that contradicts these conclusions, particularly that known dynamic 

models, such as autoregressive frameworks and HMMs, exhibit statistical stationarity (Liégeois et al., 

2017), and that the multivariate kurtosis metric is not always a perfect indicator of stationarity (Miller 

et al., 2018). These results suggest that statistical stationarity may not be synonymous with a lack of 

meaningful time-varying structure in FC, or vice versa.  

While these doubts are valid, and even if TVFC is not fully encoding spontaneous change in 

cognitive state and cannot provide mechanistic insights into cognition or psychiatric conditions, it can 

still be valuable and useful as a potential biomarker (see evidence from Section 2.3.3 above). 

2.6 Current Gaps in Knowledge 

Considering the doubts presented in the preceding section, significant research into the 

behavior of TVFC methodologies is required to move the field forward. Since the nature and 

timescales of the underlying resting dynamics of interest are unknown, methodologies capable of 

detecting changing temporal patterns in connectivity without imposing arbitrary timescales are 

necessary. Moreover, as the study of TVFC is still in its infancy, rigorous evaluation of new and 

existing methodologies is critical to better understand their behavior when applied in resting data, 
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which lacks ground truth temporal landmarks against which accuracy can be assessed. Related to this, 

the field of TVFC is in need of standardized benchmarking practices that enable clear comparisons 

across methodologies. The work presented in the following chapters aims to systematically address 

each of these areas of need.  

2.7 Figures and Tables 

Term Definition 

Functional Connectivity (FC) Statistical dependency of neurophysiological time series derived 
from individual regions or networks in the brain 

Static Functional 
Connectivity 

Functional connectivity analysis computed under the assumption 
that FC patterns do not change as a function of time 

Time-Varying Functional 
Connectivity (TVFC) 

Functional connectivity analysis computed under the assumption 
that FC patterns change as a function of time, on the order of 
seconds 

Window Fixed-length and often overlapping slices of the time series, usually 
in the context of the sliding window TVFC paradigm 

Segment Tailored or variable-length slices of the time series that are discrete 
(i.e., non-overlapping), often used in the context of the informed 
segmentation TVFC paradigm 

ROI Region of interest, an anatomical parcel of the brain 

fMRI Functional Magnetic Resonance Imaging 

TR Temporal resolution, i.e., sampling time of fMRI scanner 

Connectome/Connectivity 
Matrix 

Square matrix containing FC estimates for all pairs of ROIs  

Table 2.1.  A glossary of common terms and abbreviations used throughout this dissertation. 
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Chapter 3 - Validating Dynamicity in Resting State fMRI 
with Activation-Informed Temporal Segmentation 

3.1 Abstract 

Confirming the presence (or absence) of TVFC states during rest is an important open question 

in the field of cognitive neuroscience. The dominant TVFC framework aims to identify dynamics 

directly from connectivity estimates with a sliding window approach, however this method suffers from 

several drawbacks including sensitivity to window size and poor test-retest reliability. We hypothesize 

that time-varying changes in functional connectivity are mirrored by significant temporal changes in 

functional activation, and that this coupling can be leveraged to study TVFC without the need for a 

predefined sliding window. Here we introduce a data-driven TVFC framework, which involves 

informed segmentation of fMRI time series at candidate FC state transition points estimated from 

changes in whole-brain functional activation, rather than a fixed-length sliding window. We show this 

approach reliably identifies true cognitive state change points when applied on block-design working 

memory task data and outperforms the standard sliding window approach in both accuracy and 

computational efficiency in this context. When applied to data from four resting state fMRI scanning 

sessions, our method consistently recovers five reliable FC states, and subject-specific features derived 

from these states show significant correlation with behavioral phenotypes of interest (cognitive ability, 

personality). Overall, these results suggest abrupt whole-brain changes in activation can be used as a 
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marker for changes in connectivity states and provides strong evidence for the existence of time-varying 

FC in rest.  

3.2 Introduction 

Over the past two decades the study of functional connectivity has emerged as a preeminent 

method in cognitive and clinical neuroscience, aiming to characterize the functional network 

organization of the brain, and to identify objective markers of neuropsychiatric diseases and clinically 

relevant phenotypes. FC describes the interconnection (often computed as temporal correlation) in 

activation patterns of spatially distinct regions of the brain, typically measured by BOLD fMRI. 

Originally, the entire field of FC was built on a critical assumption: that patterns of connectivity are 

static during any given measurement interval in a resting state, i.e., the absence of any cognitive task 

(Biswal et al., 1995). Static FC has been used to identify global differences in functional network 

organization of the brain between cognitive task states and resting state (Greicius et al., 2003), as well as 

to characterize differences in FC between healthy controls and subjects with neuro-psychiatric 

diagnoses, such as schizophrenia (Lynall et al., 2010) or autism spectrum disorder (ASD) (Hull et al., 

2017).  

Recently, however, a number of studies have questioned this assumption, instead advocating 

the “dynamic” or “time-varying” connectivity view that functional connectivity patterns exhibit 

substantial moment-to-moment changes over time, specifically within a standard fMRI measurement 

interval of five to fifteen minutes (Calhoun et al., 2014; Chang & Glover, 2010; Cohen, 2018; 
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Hutchison, Womelsdorf, Allen, et al., 2013; Lurie et al., 2019; Preti et al., 2017). These changing FC 

patterns are thought to correspond to cognitively meaningful discrete FC network configurations, or 

connectivity states, that are reproducible both within and between individual subjects. Dynamic states 

have been documented across different populations including children (Marusak et al., 2018) and adults 

(Allen et al., 2014; Cai et al., 2018; T. Chen et al., 2016; Choe et al., 2017; Liu & Duyn, 2013; D. M. 

Smith et al., 2018), and have been supported with concurrent electroencephalography (EEG) data 

(Allen et al., 2018; Chang et al., 2013; Tagliazucchi et al., 2012). Furthermore, it has been shown that 

other characteristics such as the amount of time spent in specific states and the number of transitions 

between states vary with meaningful individual differences such as age (Cabral et al., 2017; Hutchison 

& Morton, 2015; Marusak et al., 2016), sex (Mao et al., 2017; Yaesoubi, Miller, et al., 2015), or disease 

status (Cordes et al., 2018; Damaraju et al., 2014; Jones et al., 2012; Rashid et al., 2014). 

By definition, the presence of TVFC in the resting state is marked by changes in the connectivity 

structure of the fMRI time series. The prevailing sliding window framework aims to identify these 

second-order changes using functional connectivity “snapshots” obtained from time windows of fixed 

length slid across the entire fMRI time series. The resultant windowed connectomes are then flattened 

into feature vectors, concatenated across subjects, and clustered into k distinct connectivity states. 

Importantly, there are two distinct elements of the sliding window paradigm (windowing and 

connectome estimation) that present several methodological choices that can be mixed-and-matched to 

create numerous potential sliding window workflows. For example, the windowing step involves the 

choice of the size and shape of the window (Mokhtari et al., 2019; Shakil et al., 2016, 2018, 2015), the 
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optimal choice of which still constitutes an active area of research. There are also several choices of 

connectivity estimation, including Pearson correlation (Allen et al., 2014), Spearman correlation (Savva 

et al., 2019), instantaneous shared trajectory (Faghiri et al., 2020), and instantaneous phase synchrony 

(Pedersen et al., 2018). Each of these methods presents its own benefits, but Pearson correlation is 

generally the most commonly used connectivity estimator in sliding window paradigms. The sliding 

window approach represents an important advance in the study of time-varying brain connectivity, but 

it nonetheless suffers from several important limitations.  

First, the sliding window method relies heavily on the somewhat arbitrary choice of window 

size, and results can differ substantially across various window widths (Hindriks et al., 2016; Shakil et 

al., 2016). A second problem is that simulations suggest that sliding window methods can introduce 

artifactual connectivity variation even under conditions when such variation is known to be absent 

(Laumann et al., 2017; Lindquist et al., 2014b). Third, perhaps due to one or more of the preceding 

issues, the sliding window method has been found to have poor test-retest reliability (Choe et al., 2017). 

Fourth, the overlapping nature of the sliding windows precludes definitive segmentation of the fMRI 

time series into states, making interpretation of the state dynamics difficult. Finally, the sliding window 

approach requires constructing a sizable number of overlapping windowed connectivity matrices: with 

400 timepoints and a 30 TR window, 370 distinct connectivity matrices are required (at a step = 1 TR 

= 1s). This poses serious scalability issues for relatively long or more temporally granular fMRI datasets.  

Some alternatives to sliding window approaches have been proposed in recent years; however, 

these too have certain drawbacks and limitations. The dynamic conditional correlation (DCC) model is 
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a multivariate volatility model that estimates the changing covariance structure at each timepoint in the 

fMRI time series (Choe et al., 2017; Lindquist et al., 2014b). While the DCC model allows for a 

parametric approach to estimating framewise FC with robust statistical inference, it increases the 

number of connectivity matrices to consider in the final clustering step compared to the sliding window 

method, further hindering its scalability. Furthermore, the formulation of the DCC model has been 

shown to give biased results in high dimensional data (Hafner & Reznikova, 2012), which poses an issue 

for application in fMRI data with a large number of ROIs and time points. Two other recently proposed 

moment-to-moment methods, multiplication of temporal derivatives (Shine et al., 2015) and edge co-

fluctuations (Esfahlani et al., 2020), have similar formulations and are both aimed at uncovering the 

degree of functional coupling for all ROI pairs at each timepoint. Similar to DCC, these methods result 

in a higher dimensional output than that of the sliding window, and the instantaneous estimates of 

connectivity at each timepoint are highly susceptible to noise. Hidden Markov models (HMMs), which 

seek to decompose a time series into a sequence of discrete “hidden” states, are another increasingly 

popular approach for estimating connectivity dynamics (Baker et al., 2014; Quinn et al., 2018; Vidaurre 

et al., 2017; G. Zhang et al., 2020). However, HMMs rely on several strong assumptions including a 

predefined number of k hidden states that transition between one another in a Markovian fashion (state 

transitions depend solely on the state at the previous time point). Moreover, HMMs trained at the group 

level assume a single governing state-to-state transition structure across all subjects, which may be too 

strict and miss important individual variability.  
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Our focus here is on a hybrid approach that bridges windowed and instantaneous methods by 

leveraging moment-to-moment changes in activation to inform tailored time series segmentation at 

candidate FC state change points, which reduces both the dimensionality and noisiness that affects 

many other moment-to-moment TVFC methods. It is well known from the task-based fMRI literature 

that task-driven changes in activation patterns co-occur with changes in connectivity patterns (Davison 

et al., 2015; Gonzalez-Castillo et al., 2015; Shine & Poldrack, 2018; Spielberg et al., 2015; Sripada et al., 

2014; Telesford et al., 2016). This coupling of activation and connectivity changes suggests the 

possibility that changes in the activation structure of the fMRI time series, which are easily derived, can 

serve as a reasonably reliable marker for changes in the connectivity structure, which are more difficult to 

obtain in an unbiased way. Though connectivity changes may not always be accompanied by activation 

changes, as long as there is significant correspondence, we can leverage the latter (straightforwardly 

identified) to find the former (less so) without the need for sliding windows.   

In this work we leverage the coupling between activation and connectivity to present the 

activation-informed segmentation approach, a data-driven TVFC framework centered around 

informed segmentation of fMRI time series at candidate FC state change points. Moment-to-moment 

changes in functional activations have previously been utilized in the literature to investigate dynamic 

functional connectivity (Shine et al., 2015), but have yet to be used to localize connectivity state 

changepoints for dynamic time series segmentation. Our approach detects significant instantaneous 

changes in functional activation patterns and generates data-driven segments of stable connectivity 

throughout the fMRI time series. For clarity, we will use the term “segments” when referring to our 
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method and “windows” when referring to the sliding window approach. Separating the time series into 

discrete time segments rather than a set of highly overlapped sliding windows significantly improves the 

computational efficiency of TVFC analysis and enhances interpretability of results by enabling precise 

identification of state transition junctures—something the sliding window method cannot provide. We 

suggest that these FC-tailored segments provide a useful alternative to standard sliding windows in 

TVFC analyses and show that our approach significantly outperforms the sliding window paradigm in 

recovering known FC state transitions in a block-design task. Furthermore, we propose a framework for 

the comparison of connectomes derived from segments of variable length, as well as a graph embedding 

step for summarizing connectomes into low-dimensional representations that we show are better suited 

for downstream clustering and machine learning tasks than current approaches. 

3.3 Methods 

3.3.1 Data Description 

3.3.1.1 HCP Data 

In this work, we utilize the Human Connectome Project (HCP) S1200 Young Adult dataset 

made publicly available through the Washington University and the University of Minnesota HCP 

consortium (http://humanconnectome.org). It is one of the richest collections of neuroimaging data to 

date, consisting of structural and functional MRI, behavioral assessments, and genotypes for 1200 

healthy subjects ages 22-35. A full description of the acquisition protocol can be found in (Van Essen et 

al., 2013). In short, all HCP fMRI data were acquired on a modified Siemens Skyra 3T scanner using 

http://humanconnectome.org/
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multiband gradient-echo EPI (TR = 720 ms, TE = 33 ms, flip angle = 52°, multiband acceleration 

factor = 8, 2 mm isotropic voxels, FOV = 208 × 180 mm, 72 slices, alternating RL/LR phase encode 

direction). Participants completed four total resting state fMRI scanning sessions (two sessions collected 

on each of two different days). Each resultant resting state fMRI time series consisted of 1200 volumes 

sampled every 0.72 seconds, for a total acquisition time of 14 minutes and 24 seconds. During the resting 

state sessions participants were instructed to keep their eyes open and fixated on a cross hair on the 

screen, while remaining as still as possible. For clarity, we will refer to resting state data from the first 

collection day as sessions 1A (RL) and 1B (LR), and similarly sessions 2A and 2B for those collected on 

the second day.  

Though our main objective is to assess FC dynamics during rest, we also leverage the repeating 

task/rest block structure of the working memory (WM) task data available in HCP as a natural ground 

truth to test the performance of our method in identifying the known transitions between the task and 

rest conditions. The HCP WM task consists of four repeating task/rest blocks, where each block is 

structured as follows: 27.5 seconds Task 1 (0-back), 27.5 seconds Task 2 (2-back), 15 seconds rest. Using 

the same acquisition details outlined above, each WM task fMRI time series consisted of 405 volumes 

sampled every 0.72 seconds, for a total acquisition time of 4 minutes and 52 seconds. Two sessions of 

WM task fMRI were acquired back-to-back, alternating between RL and LR phase encoding directions. 

We will refer to these as WM session 1 (RL) and WM session 2 (LR).  
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3.3.1.2 Data Preprocessing 

Processed volumetric data from the HCP minimal preprocessing pipeline including ICA-FIX 

denoising were used. Full details of these steps can be found in (Glasser et al., 2013; Salimi-Khorshidi et 

al., 2014). Briefly, BOLD fMRI data were gradient-nonlinearity distortion corrected, rigidly realigned 

to adjust for motion, fieldmap corrected, aligned to the structural images, and then registered to MNI 

space with the nonlinear warping calculated from the structural images. Then FIX was applied on the 

data to identify and remove motion and other artifacts in the timeseries. These files were used as a 

baseline for further processing and analysis (e.g., 

MNINonLinear/Results/rfMRI_REST1_RL/rfMRI_REST1_RL_hp2000_ 

clean.nii.gz from released HCP data). 

Images were smoothed with a 6 mm FWHM Gaussian kernel, and then resampled to 3 mm 

isotropic resolution. This step as well as the use of the volumetric data, rather than the surface data, were 

done to allow comparability with other large datasets in ongoing and planned analyses that are not 

amenable to surface-based processing. The smoothed images then went through a number of resting 

state processing steps, including motion artifact removal steps comparable to the type B (i.e., 

recommended) stream of (Siegel et al., 2017). Further details on motion artifact removal can be found 

in (Sripada et al., 2019). Lastly, we calculated spatially averaged time series for each of the 268 ROIs 

from the parcellation given in (Finn et al., 2015). 

For our analysis, we first considered the set of 966 subjects listed in (Sripada et al., 2019) that 

met the following criteria: structural T1 and T2 data, four complete resting state fMRI sessions, and < 
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10% of resting state frames censored due to excessive motion (framewise displacement of 0.5 mm). From 

this set 922 subjects also had two complete WM task fMRI sessions, defining our final subset of subjects.  

3.3.2 The Activation-Informed Segmentation Framework 

 

Figure 3.1. Experimental pipeline.  
Briefly, peaks in the GTD series define the boundaries of our tailored, non-overlapping stable-FC segments 𝑠1 to 
𝑠𝑆 (note S can vary between subjects) for all subjects 1 −  𝑁. Next, functional connectivity is summarized using 
structural graph embeddings for each segment in the set of all segments {{𝑠1

1, 𝑠2
1, . . . }, . . . , {𝑠1

𝑁 , 𝑠2
𝑁 , . . }}. Finally, 

k-means is applied to segregate all segments into a set of k connectivity states.  
 

Here we propose a novel framework for identifying time-varying changes in functional 

connectivity in fMRI time series, termed the activation-informed segmentation method. This method 

leverages the coupling between changes in connectivity structure and changes in whole-brain activation 

patterns to produce an intuitive, interpretable, and computationally efficient alternative to the sliding 

window approach. Our framework consists of three main steps: tailored segmentation of all fMRI time 

series, summarization of the functional connectivity within each discovered segment, and finally 

segregation and characterization of a final set of connectivity states (Figure 3.1). These steps are detailed 

in Sections 3.3.2.1 - 3.3.2.3 below. 
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3.3.2.1 Activation-informed time series segmentation 

The dynamic FC paradigm suggests the presence of significant instantaneous changes in 

connectivity structure at transition points between two distinct functional states. Using this logic, we 

sought to identify potential connectivity state transition points within fMRI data and utilize them to 

perform informed segmentation of the time series as a means for assessing FC dynamics. Based on the 

phenomenon established in task-based literature (Davison et al., 2015; Gonzalez-Castillo et al., 2015; 

Shine & Poldrack, 2018; Spielberg et al., 2015; Sripada et al., 2014; Telesford et al., 2016), we 

hypothesize that changes in the activation structure of the fMRI time series, which are easily derived, can 

serve as a reasonably reliable marker for changes in the connectivity structure, which are more difficult to 

obtain in an unbiased way. To estimate the changes in functional connectivity from one time point t to 

the next, we observe changes in functional activation from one time point to the next by calculating the 

temporal derivative (dt) of each of n ROI activation time series (ts) of length T using first-order 

differencing similar to that in the multiplication of temporal derivatives (MTD) method (Shine et al., 

2015): 

𝑑𝑡𝑖(𝑡)  =  𝑡𝑠𝑖(𝑡)  − 𝑡𝑠𝑖(𝑡 − 1) (3.1) 

At this point, our method importantly diverges from the MTD method: while the MTD uses 

these ROI-wise temporal derivatives to define the connectivity between each pair of ROIs and 

ultimately generate an 𝑛 × 𝑛 connectome estimate at each time point, our method instead summarizes 

the regional temporal derivatives to provide a univariate estimate of moment-to-moment changes in 
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activation on the whole brain scale. At this point in our pipeline, the resulting n temporal derivative 

series of length T-1 are summarized by taking the L2-norm, i.e., the root sum of squares, at each time 

step t, resulting in a single vector of length T-1, which we have termed the Global Temporal Derivative 

(GTD) series: 

𝐺𝑇𝐷 (𝑡)  =  || 𝑑𝑡1:𝑛 (𝑡) ||2  = √∑𝑛
𝑖 = 1 𝑑𝑡𝑖(𝑡)2  (3.2) 

The GTD provides a univariate summarization of instantaneous changes in global brain 

activation throughout an fMRI time series, therefore peaks in the GTD series correspond to instances 

of significant moment-to-moment alterations in functional activity. In this way, the GTD is akin to the 

derivative of the global signal. Growing research suggests the global signal is not noise and carries 

meaningful information about mental states (Wong et al., 2013). Here, we build on this work to suggest 

that global signal shifts mark changes in dynamic mental states. We seek to automatedly identify these 

change points as candidate FC state transitions for the subsequent time series segmentation step. We 

begin by applying exponentially weighted moving average smoothing (window size = 15 TR, 𝛼 =

2

(𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒 + 1)
) to the GTD series to reduce noisy peaks. We then perform moving average peak 

detection (window size = 20 TR for Rest, 10 TR for WM task) on the smoothed GTD series, identifying 

points in the time series that are >=2.5 standard deviations above the moving average. To avoid 

identification of multiple points that surpass this threshold but actually correspond to a single true peak, 

we collapsed points in close proximity to one another to the local maximum (within 10 TR, 

corresponding to 7 seconds or the approximate time-to-peak of the hemodynamic response function 
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(Friston, 2003)). Furthermore, as these change points define our tailored segments for downstream 

calculation of functional connectivity, we set a minimum inter-peak distance of 25 TR to ensure 

sufficiently large segments for calculating Pearson correlation (Schönbrodt & Perugini, 2013; Thirion 

et al., 2007; Turner et al., 2018) (note: we reduce this to 15 TR for the case of WM task data to 

accommodate the shorter resting state segments we intend to capture). This final set of change points 

define the boundaries of the tailored time segments, within which we compute FC and between which 

we investigate potential dynamic FC shifts.  

3.3.2.2 Functional Connectivity Estimation 

For each tailored segment s, we compute the functional connectivity matrix 𝐶(𝑠), where the i,jth 

entry is the Pearson correlation of the activation time series of ROIs i and j within the time segment, 

𝑡𝑠𝑖(𝑠) and 𝑡𝑠𝑗(𝑠):  

𝐶𝑖,𝑗
(𝑠)

 =   
𝑐𝑜𝑣( 𝑡𝑠𝑖 (𝑠) ,𝑡𝑠𝑗 (𝑠) )

𝜎
𝑡𝑠𝑖 (𝑠)

 𝜎
𝑡𝑠𝑗 (𝑠)

 (3.3) 

We then apply the Fisher transformation followed by z-scoring on each FC matrix 𝐶(𝑠), to allow 

for better comparisons between connectivity matrices of segments of differing lengths. Connectivity 

matrices derived from shorter segments have, on average, higher correlation values than those from 

longer segments, resulting in a skewed sample distribution. Applying the Fisher transformation enforces 

an approximately normal distribution of the connectivity values within each segment (Fisher, 1915), 

and the z-score then translates these connectivity values in terms of their standard deviations from the 
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mean. While these connectome transformations are common practice in the field of FC, they are 

especially important when attempting to compare connectomes from segments of variable lengths, 

which is illustrated in Figure 3.2.  

Thresholding is another common pre-processing step in functional connectivity analysis, as it 

preserves only the high-fidelity connections within connectomes and effectively filters out noise. 

Though the Fisher transformation with z-scoring helps to align the sample distributions of connectivity 

values between longer and shorter segments, we still observed the effects of segment length when 

thresholding on z-scores alone—connectomes from shorter segments were denser (i.e., had more edges 

preserved) after thresholding than connectomes from longer segments. This segment-length 

discrepancy in connectome density with z-score thresholding had significant downstream effects in our 

pipeline, as we found the resultant FC state clusters were highly correlated with segment length. To 

avoid these segment length effects, we fix the density of all connectomes by thresholding to the top-K 

connections (or edges) in each connectome. Recent work has suggested that such rank-based schemes 

are optimal for reliability and reproducibility in FC analyses (Bridgeford et al., 2020). Here, we set top-

K = 10,000, which preserves the strongest (i.e., highest magnitude) 27.95% edges, thereby providing 

sufficient noise reduction.   

3.3.2.3 State Clustering 

The final step of our TVFC framework involves using k-means clustering to separate all 

thresholded connectomes into a discrete set of k connectivity states. This state clustering occurs on the 
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aggregated set of m connectomes, where m is the total number of time segments across all subjects in a 

single fMRI scanning session (Table 3.1). In traditional TVFC streams, this approach involves 

performing k-means clustering on the flattened upper triangular of all m connectomes, however we 

found poor performance with this method, likely due to the high dimensionality of the flattened 

connectomes (>35,000) (Supplementary Table 3.1). We address this issue of high dimensionality by 

generating low-dimensional latent representations of each thresholded connectivity matrix that 

sufficiently summarize the connectivity patterns within the time segment. Specifically, we utilize state-

of-the-art graph embedding methods, which are commonly used in the field of data mining to generate 

low-dimensional representations of graphs (i.e., networks) (Rossi et al., 2020). Connectomes are graphs 

by definition, consisting of a set of nodes (ROIs) connected by edges (z-scored correlations), so graph 

mining methods naturally extend to the connectome space. To generate our graph embeddings, we first 

apply GraphWave (Donnat et al., 2018) on the top-K-thresholded connectomes to produce a set of d-

dimensional node embeddings for each of the n ROIs per connectome. GraphWave learns structural 

node embeddings, which individually capture the structural role of each node (ROI) within its local 

network neighborhood and in aggregate provide insights into the topological organization of the 

connectome graph. We then utilize principal components analysis (PCA) to summarize the set of n d-

dimensional node embeddings, concatenated into one long node embedding vector of length n*d, into a 

single graph embedding vector by extracting the top 100 principal components (PCs). Aggregating these 

connectome graph embeddings across all time segments from all subjects results in a feature matrix of 

size 𝑚 × 100.  
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We performed k-means clustering on the resultant group-level feature matrix, varying the 

number of clusters k in the range [2-10]. To determine the optimal number of clusters we utilized the 

elbow criterion of the cluster validity index, computed as the ratio of within-cluster distance to between-

cluster distance (Allen et al., 2014). We mapped corresponding clusters across the session replicates to a 

single overall state based on shortest Euclidean distances between the cluster centroid connectomes. 

Reproducibility of FC state clusters was tested across scanning sessions (two sessions for WM task, four 

sessions for resting state). Test-retest reliability was calculated across scanning sessions between centroid 

connectomes of corresponding states using the image intra-class correlation (I2C2) (Shou et al., 2013). 

I2C2 is the generalization of the intra-class correlation (ICC) coefficient to high-dimensional 

multivariate data, such as images (or in our case, connectomes). As a brief description, let Xi(c) be the 

true, unknown connectome for state i and Wij(c) be the estimated connectome for state i during session 

j at connectome edge c.  The classical measurement error model for the connectome images across 

replication studies can then be written as  

𝑊𝑖𝑗(𝑐)  =  𝑋𝑖(𝑐)  + 𝑈𝑖𝑗(𝑐) (3.4) 

where connectomes are represented as 𝐶 × 1 vectors; Wij = {Wij(c) : c = 1, …, C} are the observed 

connectomes; Xi = {Xi(c) : c = 1, …, C} are the true connectomes, and Uij = {Uij(c) : c = 1, …, C} are the 

measurement error of the connectomes. In this framework, i = 1, …, I, where I = total states = 5, and j = 

1, …, Ji, where Ji = total sessions = 4. Connected to the classical measurement error model above and 

analogous to the standard ICC formulation, the I2C2 is defined as 
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𝐼2𝐶2 =  
𝑡𝑟𝑎𝑐𝑒(𝐾𝑋)

𝑡𝑟𝑎𝑐𝑒(𝐾𝑊)
 =  

𝑡𝑟𝑎𝑐𝑒(𝐾𝑊) − 𝑡𝑟𝑎𝑐𝑒(𝐾𝑈)

𝑡𝑟𝑎𝑐𝑒(𝐾𝑊)
=  1 − 

𝑡𝑟𝑎𝑐𝑒(𝐾𝑈)

𝑡𝑟𝑎𝑐𝑒(𝐾𝑊) 
  (3.5) 

Where KU = cov(Uij, Uij), KX = cov(Xi, Xi), and KW = cov(Wij, Wij), and both KU and KX cannot be 

estimated directly since Uij and Xi are unobserved. Therefore, the I2C2 is computed using the following 

method of moments estimators: 

𝑡𝑟𝑎𝑐𝑒(𝐾𝑈)̂  =  
1

∑𝐼
𝑖=1 (𝐽𝑖  − 1)

∑𝐼
𝑖=1 ∑𝐽𝑖

𝑗=1 ∑𝐶
𝑐 = 1 {𝑊𝑖𝑗(𝑐)  − 𝑊𝑖.(𝑐)}2 (3.6) 

𝑡𝑟𝑎𝑐𝑒(𝐾𝑊)̂  =  
1

∑𝐼
𝑖=1 (𝐽𝑖 − 1)

∑𝐼
𝑖=1 ∑𝐽𝑖

𝑗=1 ∑𝐶
𝑐 = 1 {𝑊𝑖𝑗(𝑐)  − 𝑊..(𝑐)}2 (3.7) 

Where 𝑊𝑖.(𝑐)  =  
∑

𝐽𝑖
𝑗=1 𝑊𝑖𝑗(𝑐)

𝐽𝑖
is the average connectome for state i over all sessions j, and 𝑊..(𝑐)  =

 
∑𝑖,𝑗,𝑐 𝑊𝑖𝑗(𝑐)

𝐼𝐽
is the average connectome across all states and sessions. Utilizing these estimators, I2C2 

metrics were computed in R using the package provided by the authors in Neuroconductor 

(https://rdrr.io/github/neuroconductor/I2C2/man/I2C2.html). We further characterize the resultant 

connectivity states with standard TVFC features including average dwell time and state-to-state 

transition probabilities and go on to correlate these TVFC features with neurophenotypes of interest.  

3.3.3 Evaluation against ground truth 

As described in Section 3.3.1.1, the WM task consists of four repeating task/rest blocks, where 

each block is structured as follows: 27.5s Task 1 (0-back), 27.5s Task 2 (2-back), 15s rest. This repeating 

task/rest block structure of the WM Task data serves as a natural ground truth for validation of our 

framework: if activation changes can truly be used as markers for connectivity changes, then one should 

https://rdrr.io/github/neuroconductor/I2C2/man/I2C2.html
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be able to show that the discovered activation-informed change points align well with true onsets of 

WM task conditions. In fMRI data, signals are expected to be observed shortly after the stimulus, rather 

than directly aligned to the stimulus onset, due to lag in the hemodynamic response. Furthermore, the 

nature of block-design tasks results in sustained task-related activation changes rather than 

instantaneous spikes and subjects may require an additional 1-2s after the condition onset to fully enter 

the task state and experience the full effects of the task-induced activation response. Based on this, we 

defined a state change response window of 12 TR (8.6s) to account for the hemodynamic response time 

of 10 TR (7.2s) as well as an additional buffer of 2 TR (1.4s) for subjects to fully enter the task condition 

state. All peaks identified in the GTD series were labeled as either true positives or false positives based 

on whether they fell within the state change response window following a known task condition 

transition or not. Based on these labels, we calculate the overall precision and recall of our activation-

informed change point detection, as well as the recall for transitions into each of the three task 

conditions (Task 1, Task 2, and Rest).  

3.3.4 Comparison to Sliding Window 

While the sliding window framework has been widely used to estimate dynamic FC states in 

resting fMRI where ground truth state changes cannot be known, it has not, to the best of our 

knowledge, been validated against a block-design task structure where the ground truth state changes 

are in fact known. To enable a direct comparison with the performance of our activation-informed 

segmentation method we applied the sliding window framework to the WM task data using the Group 

ICA of fMRI toolbox (GIFT) (https://trendscenter.org/software/gift/; Center for Translational 

https://trendscenter.org/software/gift/
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Research in Neuroimaging and Data Science, Atlanta, Georgia) implementation, following the 

parameterization detailed in (Allen et al., 2014) as closely as possible. Specifically, we first performed 

group-level spatial independent component analysis (gICA) (Calhoun et al., 2001) to extract 50 

independent components (ICs). IC time series then underwent a standard post-processing procedure to 

remove low-frequency trends associated with scanner drift, motion related variance and any other non-

specific “spikes” or possible noise artifacts. Next, we utilized the dFNC function in the GIFT toolbox 

to perform the sliding window analysis. As in (Allen et al., 2014), we use a tapered window created by 

convolving a rectangle (window size = 44 seconds/61 TR) with a Gaussian (σ = 3 TR) and sliding in 

steps of 1 TR, resulting in 344 total windows per WM fMRI session, and a total of 317,168 windows 

across all 922 subjects for each WM Session 1 and Session 2. Finally, the upper triangular of the 

windowed connectomes were used as feature vectors of length (50 × (49))/2 =  1225, and k-means 

clustering was applied to separate all windows into a set of k states. We utilized the ‘estimate_clusters’ 

option in the GIFT toolbox to identify the optimal value of k from the range of 2-10. Further details 

regarding the implementation of the GIFT toolbox steps can be found in the software manual 

(https://trendscenter.org/trends/software/gift/docs/v4.0b_gica_manual.pdf).   To evaluate the 

accuracy of the resultant sliding window state clustering and compare against that of our proposed 

method, we implemented the common design choice of setting the ground truth label (i.e., “task” or 

“rest”) for each window as the label assigned to the time point at the center of the window, in this case 

timepoint 31.  

https://trendscenter.org/trends/software/gift/docs/v4.0b_gica_manual.pdf
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3.4 Results 

3.4.1. The GTD Method Accurately Identified Known Transitions During a 

Working Memory Task 

Results of GTD-based peak discovery in WM task data are shown in Figure 3.3. The distribution 

of the discovered GTD peaks across all subjects showed a concentration of peaks immediately after a 

new condition onset (Figure 3.3B). In fMRI data, signals are expected to be observed shortly after the 

stimulus, rather than directly aligned to the stimulus onset, due to lag in the hemodynamic response. 

Using the true positive and false positive labels detailed earlier in Section 2.4, we found an average 

precision of 0.72 and average recall of 0.66 of all discovered change points against ground truth state 

transitions (Table 3.2). We found that Task 1 and Rest state onsets were more readily identifiable by 

our method than Task 2 onsets (Recall 0.67, 0.75, 0.57 respectively), indicating that transitions from 

task state to rest state and vice-versa elicit more significant changes in moment-to-moment activations 

than transitions from an easier 0-back WM task (Task 1) to a more difficult 2-back WM task (Task 2).  

We found the optimal number of clusters k = 3 for both WM Session 1 and WM Session 2. 

Figure 3.3A illustrates the alignment of our segments, colored by their respective clusters, to the ground 

truth WM task conditions. Overall, we found good segregation between task and rest conditions, with 

improved accuracy in later block repetitions. As observed with the change point detection, the 

separation between Task 1 and Task 2 conditions is more difficult, owing both to the similarity in 

connectivity between the two working memory task conditions and to the lack of change point 
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detection at Task 2 onset points resulting in segments that span the time frame of both Task 1 and Task 

2. Homogeneity and normalized mutual information (NMI) metrics of our discovered clusters 

compared to the known ground truth are reported in Table 3.2. As our temporal segments may not 

directly align to the ground truth task blocks, we derived ground truth labels for each discovered 

segment based on the corresponding task condition throughout the majority of the segment.  

3.4.2. In the Working Memory Task, Activation-informed Segmentation 

Performance Was Superior to Sliding Window 

We report the results of the GIFT toolbox sliding window pipeline for k = 5 states, which was 

estimated as the optimal k using the automated cluster estimation available in the GIFT toolbox. (Table 

3.2). Though the sliding window approach does capture some repeating task versus rest signal (Figure 

3.4), we found the GIFT sliding window approach had significantly decreased performance in 

segregating between known task and rest condition windows compared to our activation-informed 

segmentation approach (homogeneity = 0.037 vs. 0.280, respectively). Based on these results, we can 

conclude that our method more effectively and efficiently summarized the FC in each time segment, 

resulting in a 99.8% reduction in size of the final feature set passed to k-means compared to that of the 

sliding window approach (8740 × 100 vs. 317,168 × 1225 in WM Session 1). Furthermore, our 

method proved to be much more computationally efficient than the sliding window approach, 

completing in < 2 hours for all subjects in a single WM session while the GIFT toolbox required > 24 

hours to complete the requisite ICA and dFNC steps for the same data. Considering together the 

accuracy, data reduction and the runtime, we found our activation-informed segmentation method to 
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outperform the traditional sliding window paradigm in recovering dynamics in the context of a block-

design ground truth.  

3.4.3. The Activation-informed Segmentation Method Identified Five 

Connectivity States During Rest 

We applied our activation-informed segmentation pipeline separately on four sessions of resting 

state fMRI data. Using the elbow criterion of the cluster validity index, we consistently found the 

optimal number of clusters k = 5 across the four sessions (Figure 3.5). Though our state clusters were 

derived using the graph embedding vectors as described above, we characterized the connectivity of each 

discovered cluster using the more interpretable top-K thresholded connectomes derived upstream in 

our pipeline for all segments in each cluster. We mapped corresponding clusters across the four session 

replicates to a single overall “dynamic state” based on shortest Euclidean distances between the cluster 

centroid connectomes and found that each centroid was mapped only to one overall state by this 

criterion, indicating each state did indeed exhibit a unique connectivity signature.  

3.4.4. Connectivity States During Rest Exhibit Excellent Test-Retest Reliability 

To assess the stability of these clusters we use the I2C2 metric, which was developed to assess 

the reliability of MRI images for a set of subjects across several image acquisition sessions. The I2C2 

metric is a high-dimensional multivariate generalization of the intra-class correlation coefficient for use 

on images and other multi-dimensional data, such as connectomes (Shou et al., 2013). A brief 

description of I2C2 and its application in our case can be found in Section 3.3.2.3 above. We found very 
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high replicability of our states across the four sessions (I2C2 = 0.96), suggesting that the dynamic states 

recovered by our method are indeed persistent across subjects and time, and may also be cognitively 

meaningful.  

3.4.5. Activation Peaks Observed During Rest Closely Resemble Peaks Found 

When Transitioning In and Out of Cognitively Demanding Task States   

We found that the magnitude of the GTD peaks that correspond to our discovered FC change 

points and define our dynamic states in rest are of the same order and mirror the distribution of the 

peaks found in the WM task setting (Kullback-Leibler divergence = 0.030) (Figure 3.6). This indicates 

that the changes in functional brain activity between dynamic states in rest are as strong as those 

observed when transitioning in and out of a cognitively demanding task state. 

3.4.6. Connectivity States Involve Brain-Wide Connectivity Patterns and 

Prominently Involve Prefrontal/Sensory-Motor Coupling 

We further characterized the overall connectivity signature of each resultant dynamic state by 

averaging the corresponding cluster centroids across the four sessions. This signature connectome for 

each of the five overall dynamic states is presented in Figure 3.7. Overall, we observed states that reflect 

shifting connectivity across network modules, rather than within network modules, consistent with 

prior work (Betzel et al., 2016; Zalesky et al., 2014). In particular, we observed changing patterns of brain 

integration and segregation, prominently involving the frontoparietal network and the default mode 

network (Zalesky et al., 2014). States 1, 3, and 5 all involve sensory/motor anti-correlation with the 
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frontoparietal network and default mode network. State 1 encompassed all sensory and motor networks, 

while state 3 had greater visual network specificity and state 5 had greater motor specificity. State 2 was 

characterized by anticorrelation between frontoparietal and medial frontal network, without 

sensory/motor involvement. State 4 exhibited none of the above motifs — just the within network 

connectivity that was common to all of the states. Importantly, the five states we observed are highly 

similar to the states identified in this same HCP dataset using the classic sliding window paradigm as 

reported in (Nomi et al., 2017). 

3.4.7. Resting Connectivity States Exhibit Complex Patterns of Transitioning 

In addition to summarizing each dynamic state by its unique connectivity patterns, we also 

extracted common TVFC features including state-to-state transition probabilities, average dwell times 

per state, and number of occurrences of each state across the four resting sessions. We extracted these 

TVFC features on a per-subject basis and then averaged them to capture the general patterns for all five 

dynamic states at the group level. The average state-to-state transition matrix, average dwell times, and 

average number of occurrences per state across all subjects are depicted in Figure 3.8. Overall, we found 

the highest probabilities of transitioning into state 4 from any of the other states. Interestingly, state 4 

also exhibits the shortest dwell time of all five states, averaging a duration of 29.8 ± 2.5s, as well as the 

highest average number of occurrences. This coupled with the lower overall connectivity observed in 

state 4 suggests that this may represent a “buffer” state between the other dynamic states.  
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3.4.8. Resting Connectivity States are Predictive of Behavioral Phenotypes 

Including Cognition, Personality, and Psychopathology 

We performed a regression analysis to assess the combined relationship between subject-specific 

TVFC feature vectors, averaged across the four resting state sessions, and several neuro-relevant 

phenotypes. Specifically, we consider ten cognitive metrics: a general factor of intelligence (G; generated 

from a bifactor model as described in (Sripada et al., 2020)), processing speed (generated from factor 

modeling of three NIH Toolbox tasks as described in (Sripada et al., 2019)), the five facets of personality 

given by the Revised NEO Personality Inventory (openness to experience, conscientiousness, 

extraversion, agreeableness, and neuroticism), and the three dimensions of psychopathology given by 

the Adult Self Report Scale (Internalizing, Attention Problems, Externalizing). We also included the 

covariates of age and gender. All features (besides the binary gender marker) were z-scored prior to the 

regression analysis, so the resultant model 𝛽 values could be interpreted similarly to correlation values. 

At a Bonferroni-corrected 𝛼 = 0.005 significance threshold, we found significant relationships 

between our TVFC features and four phenotypes (G, externalizing behavior, agreeableness, and 

conscientiousness). Significant regression results are reported in Table 3.3.  

3.4.9. Resting Connectivity States are Unrelated to Head Motion 

Head motion is a serious confound in studies of functional connectivity (Power et al., 2012, 

2015; Satterthwaite et al., 2012; Van Dijk et al., 2012). Moreover, it has recently been argued that head 

motion may in fact generate the time varying connectivity observed with sliding window methods 

(Laumann et al., 2017). We thus sought to determine whether the connectivity states we detected at rest 
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with the GTD method were related to head motion. We found no significant correlation between the 

mean framewise displacement time series and the GTD series in all four resting state sessions (r = -

0.0027; 95% CI = [-0.006, 0.0007]). We report all time-lagged cross-correlations for ±10TR in each of 

the four resting state sessions in Supplementary Table 3.2. This lack of correlation between framewise 

displacement and the GTD series suggests that there is no significant contribution of head motion to 

our discovered change points, and thereby our final dynamic states in rest. Taken together, these results 

strongly support the general existence of dynamicity in the resting state and the reliability of the states 

discovered by our activation-informed framework.  

3.5 Discussion 

In this work, we introduce a new data-driven approach for assessing dynamic functional 

connectivity through informed time series segmentation. Our method, termed the activation-informed 

segmentation method, aims to derive FC states without the limitations of a predefined time scale for the 

dynamics or highly overlapped sliding windows. This framework is built upon the theory that changes 

in functional connectivity are mirrored by changes in functional activation. We validated our activation-

informed segmentation method in a working memory task setting where ground truth transitions 

between cognitive states are known. In this validation experiment we found that our method accurately 

marked known task boundaries, correctly recovered three connectivity states, and displayed a precision 

and recall profile that compared favorably to a leading sliding window approach. When applying the 

method to resting state data, we detected five connectivity states that displayed excellent test-retest 

reliability across four sessions of resting fMRI, exhibited complex transition dynamics, were correlated 
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with multiple behavioral phenotypes, and were essentially unrelated to head motion. Our work expands 

the methodological toolkit for quantifying and characterizing time-varying connectivity and provides 

some of the strongest evidence to date for the existence of distinct dynamic states during rest.  

We assessed the activation-informed segmentation method and sliding window approach head-

to-head on a block-design working memory task to test whether these methods detect connectivity state 

changes where ground truth is known. Laumann et al. performed a test of the opposite issue: They 

examined a task with extended blocks where connectivity is assumed to be stable and found sliding 

window methods inappropriately found changing connectivity states where such changes are assumed 

to be absent (Laumann et al., 2017). In our test, the activation-informed segmentation method 

performed well. We observed an average precision of 0.72, meaning that 72% of activation changes 

detected by our algorithm corresponded to true changes in functional connectivity. Furthermore, the 

recall of true state transition points by our method averaged 0.66 and reached as high as 0.77 depending 

on the strength of the functional connectivity changes, indicating that a majority of known connectivity 

transitions are indeed marked by changes in global functional activation. In contrast, the GIFT sliding 

window method precludes the calculation of such precision and recall statistics due to the highly 

overlapping nature of the resultant windows. When considering the accuracy of the final state 

clustering, our method indeed performed ~75% better than the sliding window method in separating 

blocks of true task from true rest. As far as we know, this is the first such test of the sliding window 

method in task data where ground truth is known. The fact that the sliding window has only fair 



 

56 

accuracy in finding changes in connectivity state suggests there is room for improvement and reinforces 

our claim that further methods innovation in the study of time varying FC would be beneficial. 

The activation-informed segmentation method found five states at rest and these states showed 

excellent test-retest reliability. These states appear to be broadly consistent with those reported in the 

previous literature in terms of number of states as well as connectivity patterns (Nomi et al., 2017). 

Furthermore, the mean dwell times are similar in duration. We also found these states are linked to a 

number of behavioral phenotypes – with the magnitudes of relationships similar to those reported in 

prior studies (Nomi et al., 2017). Taken together, these results suggest that there is some continuity in 

our results with the results from sliding window approaches. Nonetheless, some key differences remain. 

First, the states identified here have much higher test-retest reliability. Second, the method to identify 

them is intuitive, computationally efficient, and appears not to be driven by artifactual causes (e.g., head 

motion).  

A key assumption of our method is that activation changes can serve as a marker of changes in 

connectivity states. Several lines of evidence support this assumption. First, there is a substantial set of 

studies (discussed in the Introduction) that document connectivity patterns that arise during distinct 

task conditions. Importantly, these task conditions are antecedently known to produce distinct 

distributed activation profiles so that transitions into the relevant task conditions would produce 

activation shifts. Second, in the present study, we observed GTD peaks during the N-back working 

memory task when subjects shift task conditions, and we observed distinct connectivity states in the 

segments flanked by these GTD peaks. Third, if our main assumption were false, that is, if activation 
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shifts fail to mark changes in connectivity states, then we should not have found large activation shifts 

during rest that are associated with distinct, highly test-retest reliable connectivity states. The fact that 

we did observe these results from rest provides further support that there is in fact a link between 

activation shifts and connectivity state changes. Finally, as we noted in the previous paragraph, the states 

identified have similarities along multiple dimensions with states identified through traditional sliding 

window methods. If our activation-informed segmentation approach can find connectivity states that 

are broadly similar to those found by sliding window approaches, this can only be explained if activation 

changes do indeed serve as a marker of connectivity changes. 

In a somewhat unexpected finding, we observed GTD peaks during rest (corresponding to state 

change points) that were similar in magnitude to those seen during a working memory task. This finding 

is notable because the N-back working memory task is highly cognitively demanding and produces 

vigorous activations across a distributed “task-positive network” (Cabeza & Nyberg, 2000; Cole & 

Schneider, 2007; Mazoyer et al., 2001; Niendam et al., 2012). Rest, in contrast, is assumed to be a state 

of substantially reduced cognitive demands (Andrews-Hanna et al., 2010; Buckner et al., 2008; 

McKiernan et al., 2003). It is thus remarkable that we observed GTD peaks during the resting state on 

par with those that occur in response to transitions in and out of a cognitively demanding task. The fact 

that resting GTD peaks are so large provides additional support for our framework, which is based on 

the idea that easy-to-detect GTD peaks can be leveraged to identify hard-to-detect changes in 

connectivity states—large GTD peaks are particularly easy to detect. But critically, large GTD peaks 

during rest should be of independent interest to the field. That is, irrespective of their link to changes in 
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connectivity states (which has been our focus in this study), the fact that there are regular and robust 

GTD peaks during rest is itself a phenomenon that needs follow up investigation and explanation.  

There has been some skepticism in the field about the reality of time varying connectivity. A 

sizable portion of this debate centers on the sliding window methodology for demonstrating varying 

connectivity states (Laumann et al., 2017; Lindquist et al., 2014a). It is claimed that this method 

generates artifacts, finds changes where none exist, etc. An important advance of the present study is 

that it demonstrates time-varying FC during rest without reliance on sliding window methods. 

Moreover, the associated connectivity states exhibit excellent test-retest reliability. Therefore, we believe 

that the present study offers some of the strongest evidence to date for the reality of time-varying 

connectivity at rest. More specifically, we suggest that the state transition points identified by our 

framework actually represent a lower bound of the “true” dynamic state changes in rest. This is because 

there is likely only an imperfect relationship between activation shifts and connectivity state changes: 

the former may be sufficient but not necessary for the latter. Thus, there may be at least some 

connectivity state changes that are not preceded by prominent (and thus easy-to-detect) GTD peaks, 

and our method will fail to detect the presence of such connectivity states. One such example is the 

transition between Task 1 and Task 2 conditions in the WM task experiment, in which we observed 

lower recall for the GTD peak detection at these points, indicating these particular connectivity state 

changes are more subtle and nuanced than transitions from rest to task states and do not result in strong 

whole brain activation changes. Future work should seek to extend the change point detection scheme 

developed here to enable identification of these “connectivity-only” transitions. Such a method could 
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be formulated as an extension of existing instantaneous connectivity estimation methodologies (i.e., 

MTD, ECF, DCC), aimed at identifying significant moment-to-moment changes in multivariate 

connectivity rather than univariate activation. It is also possible these requirements can be fulfilled 

through the use of deep learning approaches, specifically recurrent neural network architectures, which 

are designed to learn complex, non-linear patterns in multivariate time series data (H. Li & Fan, 2018).  

This study has several limitations. First, we rely on a key assumption that activation shifts, more 

specifically those activation shifts that are strong enough to be observed at the whole-brain scale, can 

serve as a marker for changes in connectivity states. We acknowledge that the relationship is likely 

imperfect, and our method may underestimate the true number of states. The strength of our method, 

nonetheless, is simplicity and transparency, enabling the method to yield notably strong evidence for 

dynamic states at rest. Second, our peak detection scheme is reliant on several empirically tuned 

parameters as well as an exponentially weighted moving average operation that may be subject to similar 

criticism as the sliding window Pearson correlation approach. However, it is important to note that the 

identification of local maxima in a univariate signal (i.e., GTD) is not as sensitive to window size as 

computation of multivariate cross-correlations - the strongest peaks will survive across a variety of 

moving average window lengths. Additionally, we note that there are methods available for peak 

detection that do not rely on moving averages that can be substituted into our pipeline, and future work 

can explore these approaches. Third, unlike sliding window methods that impose a uniform length on 

windowed connectivity matrices, the activation-informed segmentation method is sensitive to the 

duration of states. We mitigated this in multiple ways, including Fisher transformation and z-scoring of 
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Pearson correlation-based connectivity matrices, as well as employing a top-K thresholding to control 

connectome density across both short and long segment lengths. Fourth, the meaning and importance 

of the dynamic states uncovered by the GTD method is unclear. We showed activation shifts are large 

(comparable to transitions in and out of a working memory task). We also presented initial data that 

connectivity states are linked to phenotypes of interest. But additional work is needed to establish what 

psychological processes are reflected in these time-varying states, and whether quantifying these 

transient states will yield significant theoretical and practical insights in psychology and neuroscience.  

In sum, we introduce here a novel method for identifying dynamic states in fMRI that generates 

data-driven segments of stable FC, validate the method in task data where ground truth is known, and 

demonstrate that the method finds strong evidence--likely among the strongest to date--for the presence 

of dynamic states at rest. 
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3.6 Figures and Tables 

 

 

Figure 3.2. Preprocessing Effects. 
Effects of (A) no transformation, (B) z-score transformation, (C) Fisher transformation and (D) z-scored(Fisher) 
transformation on the distribution of Pearson correlation-based connectivity values in short (< 25 TR) and long 
(> 35 TR) segments.  
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Figure 3.3. Results of the activation-informed segmentation for all subjects in structured WM task 
data.  
(A) Temporal alignment of our discovered segments colored by their corresponding state labels given by k-means 
clustering shows good alignment to known ground truth conditions (onsets marked by vertical lines: dashed for 
Task 1 onset, dotted for Task 2 onset, solid for Rest onset). (B) Histogram of discovered GTD peak locations 
show strong alignment to known condition onsets.  
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Figure 3.4: Results of GIFT toolbox-based sliding window framework for all subjects in structured 
WM task data.  
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Figure 3.5: Temporal alignment of activation-informed segments and their corresponding state labels 
given by k-means in all four resting state fMRI sessions.  
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Figure 3.6. Histograms of GTD magnitudes at discovered peaks for 9700 change points in WM Session 
1 and a size-matched random sample of change points in Rest Session 1A show similar distributions 
(Kullback-Leibler divergence = 0.030). 
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Figure 3.7. Connectivity signatures for each of the five discovered resting FC states.  
Connectivity signatures are defined by the centroid (i.e., average) of all connectomes belonging to each state 
cluster. Glass brain views show the top 0.5% of connections (360 edges) for each state.  
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Figure 3.8. Group average TVFC features. 
Average transition probabilities of moving from State A (along rows) to State B (along columns) (A), dwell times 
(B), and number of occurrences (C) across all subjects and resting state fMRI sessions. 
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Symbol Meaning Value 

FC Functional connectivity - 

TVFC Time-varying functional connectivity - 

WM Working memory - 

ROI Region of interest - 

GTD Global temporal derivative - 

N Number of subjects N = 922 

𝑛 Number of ROIs 𝑛 =  268 

𝑑𝑡 Temporal derivative - 

𝑡𝑠𝑖  Time series of ROI 𝑖 - 

𝑇 Length of time series 𝑇𝑊𝑀  =  405, 𝑇𝑅𝐸𝑆𝑇  =  1200 

𝑡 Time point t - 

s, S Time segment s and total number of segments S, 
respectively 

- 

𝐶(𝑠) Functional connectivity matrix for time segment s - 

𝑡𝑠𝑖 (𝑠) Time series of ROI i in time segment s - 

𝐾 Number of edges retained in top-K thresholding 𝐾 =  10,000 

𝑘 Number of clusters in k-means clustering 𝑘 =  (2 −  10) 

 
𝑚 

Total number of time segments/connectomes across all 
subjects in a single fMRI scanning session 

𝑚𝑊𝑀1  =  8740, 𝑚𝑊𝑀2  =  9052 
𝑚𝑅𝐸𝑆𝑇1𝐴  =  16,104, 𝑚𝑅𝐸𝑆𝑇1𝐵  

=  16,015 
𝑚𝑅𝐸𝑆𝑇2𝐴  =  15,420, 𝑚𝑅𝐸𝑆𝑇2𝐵  

=  16,062 

𝑑 Dimensionality of graph embedding 𝑑 =  100 

Table 3.1. Symbols and abbreviations 
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Pipeline Step Metric Activation-Informed 
Segmentation 

Sliding Window  

  WM 
Session 1 

WM 
Session 2 

Avg WM 
Session 1 

WM 
Session 2 

Avg 

Change Point 
Discovery 

Precision 0.74 0.70 0.72 - - - 

Recall 
    Task 1 
    Task 2 
    Rest 

0.67 
    0.72 
    0.54 
    0.77 

0.64 
    0.62 
    0.59 
    0.73 

0.66 
    0.67 
    0.57 
    0.75 

- - - 

 
Clustering 

Optimal k 3 3 3 5 5 5 

Homogeneity 0.327 0.233 0.280 0.037 0.037 0.037 

NMI 0.231 0.159 0.195 0.018 0.018 0.018 

Table 3.2. Performance of our activation-informed segmentation method and the standard sliding 
window method in recovering ground truth dynamic state changes in WM task data.  
The change point discovery step is unique to our framework and unable to be reported for the sliding window 
method.  
 

 Feature 𝛽 coefficient p-value 

Dependent variable = G; Model p-value = 0.000306 

 Gender 0.30 0.000 

State 1 to State 3 
Transition Probability 

-0.144 0.041 

Dependent variable = Externalizing Behavior; Model p-value = 1.56e-05 

 Gender 2.87 0.000 

 State 3 to State 1 
Transition Probability 

-2.57 0.008 

 State 3 to State 2 
Transition Probability 

-3.38 0.008 
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 Probability of 
Remaining in State 3 

-2.08 0.025 

 State 3 to State 4 
Transition Probability 

-3.45 0.011 

 State 3 to State 5 
Transition Probability 

-3.24 0.004 

 State 5 to State 1 
Transition Probability 

-1.23 0.050 

 State 5 to State 3 
Transition Probability 

-2.01 0.014 

 Probability of 
Remaining in State 5 

-1.40 0.010 

 Occurrence of State 5 1.20 0.039 

 Age -0.22 0.006 

Dependent Variable = Agreeableness; Model p-value = 1.94e-06 

 Gender -1.91 0.000 

 State 1 to State 5 
Transition Probability 

0.82 0.030 

Dependent Variable = Conscientiousness; Model p-value = 0.00127 

 Gender -1.21 0.003 

 Probability of 
Remaining in State 1 

0.66 0.031 

 Dwell Time State 5 -0.73 0.005 

Table 3.3. Ordinary least squares regression results for significantly predicted phenotypes (Bonferroni-
corrected 𝜶 =  𝟎. 𝟎𝟎𝟓).  
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3.8 Supplementary Information 

Method Optimal k Homogeneity NMI 

 WM 
Session 1 

WM 
Session 2 

WM 
Session 1 

WM 
Session 2 

WM 
Session 1 

WM 
Session 2 

Connectome 
Vectorization 

3 3 0.036 0.037 0.025 0.025 

PCA Decomposition 3 3 0.033 0.035 0.024 0.024 

Supplementary Table 3.1. Clustering performance of traditional FC summarization methods in our 
activation-informed segments.  
Connectome vectorization involves flattening the upper triangular of each connectome into a single vector of 
length 35,778. To test whether the difference in performance between our structural graph embedding approach 
and the classic connectome vectorization approach was due to the difference in dimensionality of the feature 
vectors, we applied PCA decomposition on the set of vectorized connectomes, retained the top 100 PCs to match 
the final dimensionality of our approach, and applied k-means clustering on this low-dimensional feature set.  
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Session  Lag  Mean 
Correlation 

 95% CI Lower 
Bound 

 95% CI Upper 
Bound 

REST1B -10 -0.0063 -0.0100 -0.0025 

REST1B -9 -0.0089 -0.0127 -0.0052 

REST1B -8 -0.0126 -0.0164 -0.0088 

REST1B -7 -0.0174 -0.0213 -0.0135 

REST1B -6 -0.0221 -0.0262 -0.0181 

REST1B -5 -0.0259 -0.0301 -0.0217 

REST1B -4 -0.0272 -0.0315 -0.0229 

REST1B -3 -0.0260 -0.0304 -0.0216 

REST1B -2 -0.0228 -0.0273 -0.0184 

REST1B -1 -0.0189 -0.0233 -0.0145 

REST1B 0 -0.0152 -0.0195 -0.0109 

REST1B 1 -0.0133 -0.0176 -0.0090 

REST1B 2 -0.0135 -0.0178 -0.0093 

REST1B 3 -0.0149 -0.0192 -0.0107 

REST1B 4 -0.0160 -0.0202 -0.0118 

REST1B 5 -0.0152 -0.0195 -0.0110 

REST1B 6 -0.0122 -0.0164 -0.0080 

REST1B 7 -0.0071 -0.0112 -0.0029 

REST1B 8 -0.0009 -0.0049 0.0031 

REST1B 9 0.0050 0.0010 0.0090 

REST1B 10 0.0095 0.0054 0.0135 

REST1A -10 0.0039 0.0008 0.0071 

REST1A -9 0.0035 0.0004 0.0067 

REST1A -8 0.0028 -0.0003 0.0060 

REST1A -7 0.0021 -0.0010 0.0052 

REST1A -6 0.0016 -0.0015 0.0047 
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REST1A -5 0.0014 -0.0017 0.0045 

REST1A -4 0.0018 -0.0013 0.0050 

REST1A -3 0.0022 -0.0009 0.0053 

REST1A -2 0.0021 -0.0010 0.0052 

REST1A -1 0.0018 -0.0013 0.0049 

REST1A 0 0.0016 -0.0015 0.0048 

REST1A 1 0.0014 -0.0018 0.0045 

REST1A 2 0.0010 -0.0021 0.0041 

REST1A 3 0.0008 -0.0023 0.0038 

REST1A 4 0.0008 -0.0022 0.0038 

REST1A 5 0.0013 -0.0017 0.0043 

REST1A 6 0.0020 -0.0010 0.0049 

REST1A 7 0.0027 -0.0002 0.0057 

REST1A 8 0.0035 0.0006 0.0064 

REST1A 9 0.0040 0.0011 0.0069 

REST1A 10 0.0042 0.0013 0.0071 

REST2B -10 0.0029 -0.0001 0.0060 

REST2B -9 0.0028 -0.0002 0.0059 

REST2B -8 0.0028 -0.0003 0.0059 

REST2B -7 0.0027 -0.0004 0.0058 

REST2B -6 0.0024 -0.0006 0.0055 

REST2B -5 0.0020 -0.0010 0.0051 

REST2B -4 0.0017 -0.0013 0.0047 

REST2B -3 0.0013 -0.0018 0.0043 

REST2B -2 0.0005 -0.0026 0.0036 

REST2B -1 0.0000 -0.0031 0.0031 

REST2B 0 -0.0001 -0.0031 0.0030 

REST2B 1 0.0001 -0.0030 0.0031 
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REST2B 2 0.0001 -0.0030 0.0032 

REST2B 3 0.0000 -0.0030 0.0030 

REST2B 4 -0.0001 -0.0031 0.0029 

REST2B 5 -0.0001 -0.0030 0.0029 

REST2B 6 0.0000 -0.0030 0.0029 

REST2B 7 0.0002 -0.0028 0.0031 

REST2B 8 0.0005 -0.0025 0.0035 

REST2B 9 0.0007 -0.0022 0.0037 

REST2B 10 0.0007 -0.0022 0.0037 

REST2A -10 0.0009 -0.0021 0.0038 

REST2A -9 0.0009 -0.0021 0.0039 

REST2A -8 0.0013 -0.0017 0.0042 

REST2A -7 0.0015 -0.0014 0.0044 

REST2A -6 0.0018 -0.0011 0.0047 

REST2A -5 0.0019 -0.0010 0.0048 

REST2A -4 0.0020 -0.0009 0.0049 

REST2A -3 0.0021 -0.0009 0.0050 

REST2A -2 0.0020 -0.0010 0.0050 

REST2A -1 0.0022 -0.0008 0.0053 

REST2A 0 0.0029 -0.0002 0.0059 

REST2A 1 0.0035 0.0004 0.0065 

REST2A 2 0.0038 0.0007 0.0068 

REST2A 3 0.0040 0.0010 0.0070 

REST2A 4 0.0041 0.0011 0.0071 

REST2A 5 0.0043 0.0014 0.0073 

REST2A 6 0.0046 0.0016 0.0075 

REST2A 7 0.0048 0.0019 0.0078 

REST2A 8 0.0050 0.0021 0.0080 
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REST2A 9 0.0050 0.0020 0.0080 

REST2A 10 0.0048 0.0018 0.0078 

Supplementary Table 3.2. Relation to head motion. 
Mean correlation and 95% confidence interval (CI) between GTD and framewise displacement time series at lags 
ranging from (-10, 10) TR for four sessions of resting state fMRI. 
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Chapter 4 - Data-Driven Segmentation of Instantaneous 
Connectivity Estimates Reveals a Highly Stable Set of Time-

Varying States in Resting fMRI 

4.1 Abstract 

 As the field of TVFC continues to expand, the methodological toolkit for identifying time-

varying changes in resting state connectivity expands with it. One of the most promising classes of 

TVFC methods are those which generate instantaneous estimates of FC at each timepoint in the 

BOLD fMRI time series. This class of instantaneous FC estimators include the edge co-fluctuations 

(ECF), multiplication of temporal derivatives (MTD) and dynamic conditional correlations (DCC) 

methodologies. Though each of these methods have been independently tested against the baseline 

sliding window approach, they have not been tested against one another. In this chapter, I conduct a 

comprehensive comparative analysis between the ECF, MTD and DCC instantaneous FC estimators 

using block-design working memory task data as a natural ground truth for assessment. I test a variety 

of post-processing choices to estimate changing connectivity states from the instantaneous FC 

estimates, including a newly introduced connectivity-informed segmentation framework to derive data 

driven, non-overlapping segments of stable FC. Overall, the combination of ECF and connectivity-

informed segmentation best recovers the original task structure of the working memory fMRI data. 

When applied in resting state fMRI, this ECF + connectivity-informed segmentation framework 
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detected five states that were highly stable across four distinct scanning sessions and closely resembled 

states derived from our previously described activation-informed segmentation approach. The 

convergence of results across these distinct, yet analogous, methods underscores the significance of the 

resultant time-varying states and provides further evidence in support of TVFC during rest.  

4.2 Introduction 

Resting state functional connectivity (rsFC) is defined by the statistical dependence structure 

(usually computed as Pearson correlation) in the activity of distinct regions of interest (ROIs) 

throughout the brain, as measured via neuroimaging modalities, most commonly via blood oxygen 

level dependent (BOLD) functional magnetic resonance imaging (fMRI). Classically, studies of rsFC 

have focused on static connectivity, which relies on the assumption that the statistical dependence 

structure in the resting state does not fluctuate as a function of time. While the static view of rsFC has 

uncovered several compelling associations with individual variations across a variety of phenotypes 

including cognition, clinical diagnoses and age, recent interest has shifted towards a dynamic or time-

varying view of rsFC (Hutchison, Womelsdorf, Allen, et al., 2013; Lurie et al., 2020; Preti et al., 2017). 

The prevailing method in the study of time-varying functional connectivity (TVFC) is the 

sliding window paradigm, wherein connectivity snapshots are extracted from temporal windows of a 

given size and shape that are iteratively shifted along the entire length of the fMRI time series.  While 

these sliding window approaches have served an important role in providing some of the earliest 

evidence for the existence of TVFC (Allen et al., 2014; Chang & Glover, 2010; Sakoğlu et al., 2010), 
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they are accompanied by several important limitations. Paramount among these limitations is the 

inability of sliding windows to localize changes in FC on a truly moment-to-moment basis—the 

sliding window operation serves as a low-pass filter, resulting in a blurred and overly-smooth 

approximation of the changing functional connectivity over time. This temporal blurring poses issues 

for the interpretability of sliding window connectivity when paired with the common k-means 

clustering approach for FC state estimation. For example: How does one interpret the case where FC 

estimates from two adjacent windows that necessarily contain ~95% of the same data are clustered into 

two separate states? Additionally, it has been suggested that the sliding window approach may 

artificially induce the appearance of changing connectivity, even in time series that are stationary by 

design (Laumann et al., 2017).  

Due to the limitations associated with sliding window TVFC frameworks, there has been 

increased interest in the development of “windowless” methodologies, especially those capable of 

estimating instantaneous connectivity. More specifically, instantaneous FC methods estimate an 

𝑛 × 𝑛  functional connectivity matrix for each time point in the fMRI time series, where n is the 

number of ROIs.  

The Multiplication of Temporal Derivatives (MTD) method (Shine et al., 2015) was 

introduced as a way to estimate functional connectivity at a higher temporal resolution than what was 

available via windowed methods. Intuitively, the magnitude of the MTD metric captures the degree of 

functional coupling between each pair of ROIs at each time point, whereas the sign captures the 

direction of the relationship—a positive MTD value indicates functional change in the same direction 
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(either both increasing or both decreasing in fMRI amplitude), whereas a negative MTD value 

indicates anti-coupling. The MTD was shown to outperform the standard sliding window method in 

identifying connectivity changes in both simulated and real-world data (Shine et al., 2015). 

 Very recently, another approach that is formulaically related to the MTD method has been 

proposed for estimating instantaneous FC. This approach, here referred to as the edge co-fluctuation 

(ECF) metric (Esfahlani et al., 2020) (but sometimes referred to as “node functional connectivity” 

[nFC]), is described as a “temporal unwrapping” of the Pearson correlation coefficient. The 

formulation of the ECF metric is equivalent to the Pearson correlation across the entire time series 

without the averaging step, and so it follows that the temporal average of the ECF series is equivalent 

to the static FC estimated with pairwise Pearson correlation. In this way, each time-resolved 

connectivity matrix generated by the ECF can be interpreted as an instantaneous component of static 

Pearson correlation across the full time series. The authors show that the ECF metric shows inter-

subject synchrony during a passive movie watching task, indicating the changing FC patterns captured 

by the ECF metric in this context may be associated with perception and processing of sensory 

information, and supporting the hypothesis that the ECF can potentially be used to track an 

individual’s changing cognitive state over time, even in the absence of task.  

 While the MTD and ECF are both non-parametric methods, parametric models are also 

available for estimating time-varying statistical dependencies between time series, namely those 

classically used for financial analysis. Of these the most well studied is the dynamic conditional 

correlation (DCC) model (Engle, 2000), which is a form of a multivariate generalized autoregressive 
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conditional heteroscedastic (GARCH) model. A general univariate GARCH(p,q) model estimates the 

conditional variance of a univariate time series at time t as a linear combination of q prior estimates of 

the conditional variance and p prior values of the time series itself. From the first application of DCC 

models to estimate TVFC in BOLD fMRI data, the authors report superior performance in 

identifying the true time-varying correlation structure across several simulated and real-world datasets 

as compared to the standard sliding window approach (Lindquist et al., 2014b). 

 While each of these instantaneous FC estimation frameworks seems promising on its own, 

there has not been any study which compares the performance of the MTD, ECF or DCC methods 

against one another. Furthermore, though each of these methods has been validated in one way or 

another, none of these instantaneous FC estimators has been rigorously evaluated against block-design 

task data, specifically in the context of recovering structured changes in functional connectivity that 

accompany the onsets of alternating cognitive tasks. Here, we provide a comprehensive head-to-head 

comparison between these three methodologies of instantaneous FC estimation in conjunction with 

multiple popular approaches for state estimation from FC time series. As part of this comparative 

analysis, we propose a novel connectivity-informed segmentation framework, an extension of our 

previous work on the analogous activation-informed segmentation approach (Duda et al., 2020). We 

evaluate all methodologies against fMRI data collected during a block-design working memory (WM) 

task, quantify the accuracy of each distinct framework in recovering the original task structure, and go 

on to apply the best performing framework in rest to decompose the resting state fMRI data into a set 

of discrete TVFC states.  



 

81 

4.3 Methods 

4.3.1 Data Description 

4.3.1.1 HCP Data 

In this work, we utilize the Human Connectome Project (HCP) S1200 Young Adult dataset 

made publicly available through the Washington University and the University of Minnesota HCP 

consortium (http://humanconnectome.org). It is one of the richest collections of neuroimaging data to 

date, consisting of structural and functional MRI, behavioral assessments, and genotypes for 1200 

healthy subjects ages 22-35. A full description of the acquisition protocol can be found in (Van Essen et 

al., 2013). In short, all HCP fMRI data were acquired on a modified Siemens Skyra 3T scanner using 

multiband gradient-echo EPI (TR = 720 ms, TE = 33 ms, flip angle = 52°, multiband acceleration 

factor = 8, 2 mm isotropic voxels, FOV = 208 × 180 mm, 72 slices, alternating RL/LR phase encode 

direction). In this work, we leverage the repeating task/rest block structure of the working memory 

(WM) task data available in HCP as a natural ground truth to test the performance of each considered 

method in identifying the known transitions between the task and rest conditions. The best performing 

method was then applied in resting state fMRI to extract TVFC states.  

The HCP WM task consists of four repeating task/rest blocks, where each block is structured 

as follows: 27.5 seconds Task 1 (0-back), 27.5 seconds Task 2 (2-back), 15 seconds rest. Using the 

acquisition details outlined above, each WM task fMRI time series consisted of 405 volumes sampled 

every 0.72 seconds, for a total acquisition time of 4 minutes and 52 seconds. Two sessions of WM task 

http://humanconnectome.org/
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fMRI were acquired back-to-back, alternating between RL and LR phase encoding directions. We will 

refer to these as WM session 1 (RL) and WM session 2 (LR).  

Participants completed four total resting state fMRI scanning sessions (two sessions collected 

on each of two different days). Each resultant resting state fMRI time series consisted of 1200 volumes 

sampled every 0.72 seconds, for a total acquisition time of 14 minutes and 24 seconds. During the resting 

state sessions participants were instructed to keep their eyes open and fixated on a cross hair on the 

screen, while remaining as still as possible. For clarity, we will refer to resting state data from the first 

collection day as sessions 1A (RL) and 1B (LR), and similarly sessions 2A and 2B for those collected on 

the second day.  

4.3.1.2 Data Preprocessing 

Processed volumetric data from the HCP minimal preprocessing pipeline including ICA-FIX 

denoising were used. Full details of these steps can be found in (Glasser et al., 2013; Salimi-Khorshidi et 

al., 2014). Briefly, BOLD fMRI data were gradient-nonlinearity distortion corrected, rigidly realigned 

to adjust for motion, fieldmap corrected, aligned to the structural images, and then registered to MNI 

space with the nonlinear warping calculated from the structural images. Then FIX was applied on the 

data to identify and remove motion and other artifacts in the timeseries. These files were used as a 

baseline for further processing and analysis (e.g. 

MNINonLinear/Results/rfMRI_REST1_RL/rfMRI_REST1_RL_hp2000_ 

clean.nii.gz from released HCP data). 
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Images were smoothed with a 6 mm FWHM Gaussian kernel, and then resampled to 3 mm 

isotropic resolution. This step as well as the use of the volumetric data, rather than the surface data, were 

done to allow comparability with other large datasets in ongoing and planned analyses that are not 

amenable to surface-based processing. The smoothed images then went through a number of resting 

state processing steps, including motion artifact removal steps comparable to the type B (i.e., 

recommended) stream of (Siegel et al., 2017). Further details on motion artifact removal can be found 

in (Sripada et al., 2019). Lastly, spatially averaged time series were calculated for each of the 268 ROIs 

from the parcellation given in (Finn et al., 2015). 

For our analysis, we first considered the set of 966 subjects listed in (Sripada et al., 2019) that 

met the following criteria: structural T1 and T2 data, four complete resting state fMRI sessions, and 

<10% of resting state frames censored due to excessive motion (framewise displacement of 0.5 mm). 

From this set 922 subjects also had two complete WM task fMRI sessions, defining our final subset of 

subjects.  

4.3.2 Instantaneous FC Estimators 

 The goal of this work was to provide a comprehensive comparative analysis of the three most 

popular instantaneous functional connectivity estimators that have been proposed in the TVFC 

literature to date: edge co-fluctuations (ECF), multiplication of temporal derivatives (MTD) and 

dynamic conditional correlations (DCC). We provide a detailed description of the formulation of each 

method in the following subsections.  
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4.3.2.1 Edge Co-fluctuations (ECF) 

 The ECF metric is described as a “temporal unwrapping” of the Pearson correlation (Esfahlani 

et al., 2020), which is widely considered the most popular measure of FC. For a pair of ROIs i,j, the 

ECF metric is computed by first z-scoring (i.e. subtracting its mean, μ, and normalizing by its standard 

deviation, 𝜎) each of the ROI time series (ts) and then computing the element-wise product of the two 

z-scored time series. The 𝑡𝑡ℎ value in this element-wise product series thereby represents the ECF 

connectivity estimate between ROIs 𝑖 and 𝑗 at time 𝑡.  

𝐸𝐶𝐹𝑖,𝑗(𝑡)  =  𝑧𝑖(𝑡)  × 𝑧𝑗(𝑡) (4.1) 

where 𝑧𝑖  =  
𝑡𝑠𝑖(𝑡)−𝜇𝑖

𝜎𝑖
 and 𝑧𝑗  =  

𝑡𝑠𝑗(𝑡)−𝜇𝑗

𝜎𝑗
. 

 Repeating this procedure for all pairs of ROIs results in a ECF tensor of dimensions 

𝑇 × 𝑛 × 𝑛, representing a pairwise estimate of whole brain functional connectivity at each time point 

in the fMRI time series. To formalize the ECF metric as a “temporal unwrapping” of the Pearson 

correlation, we can formulate the Pearson correlation as follows: 

𝑟𝑖,𝑗  =  
1

𝑇−1
∑ [ 𝑧𝑖(𝑡)  × 𝑧𝑗(𝑡) ]𝑡  =  

1

𝑇−1
∑ [ 𝐸𝐶𝐹𝑖,𝑗(𝑡) ]𝑡  (4.2) 

 Based on this formulation, ECF can be interpreted as a calculation of the Pearson correlation 

that omits the averaging step, essentially preserving the frame-wise components of FC that define the 

overall static measure of FC between two regions.  
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4.3.2.2 Multiplication of Temporal Derivatives (MTD) 

 The MTD metric is another method developed for estimation of functional connectivity at 

any given time point within an fMRI time series (Shine et al., 2015). Briefly, the MTD is computed by 

first calculating the temporal derivative (dt) of each of n ROI time series (ts) using first-order 

differencing. 

𝑑𝑡𝑖(𝑡)  =  𝑡𝑠𝑖(𝑡)  − 𝑡𝑠𝑖(𝑡 − 1) (4.3) 

 Each temporal derivative series dt is then normalized by dividing the entire time course by its 

standard deviation (𝜎). Next, at each time point t the connectivity between each pair of ROIs i,j is 

defined as the product of their corresponding temporal derivative series (𝑑𝑡𝑖 , 𝑑𝑡𝑗) at time point t: 

𝑀𝑇𝐷𝑖𝑗(𝑡) =  
𝑑𝑡𝑖(𝑡) × 𝑑𝑡𝑗(𝑡)

𝜎𝑖 × 𝜎𝑗
 (4.4) 

 Computing the MTD metric for all pairs of ROIs at a given time point yields an instantaneous 

estimate of FC across the whole brain at that time t. Owing to the first-order differencing step, the 

resulting MTD time series has dimension 𝑇 − 1 × 𝑛 × 𝑛, in contrast to the ECF and DCC methods, 

which both result in FC time series of dimension 𝑇 × 𝑛 × 𝑛. From the formulations given in 

Equations 4.1 and 4.4, it follows that the MTD metric can be interpreted similarly to the ECF metric 

as computed in the temporal derivative space.  
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4.3.2.3 Dynamic Conditional Correlation (DCC) 

 In addition to the non-parametric ECF and MTD methods described above, parametric 

methods for instantaneous estimation of connectivity matrices at each fMRI frame have also been 

described, namely the dynamic conditional correlation (DCC) model (Choe et al., 2017; Lindquist et 

al., 2014a). DCC is a variation on a multivariate generalized autoregressive conditional heteroscedastic 

(GARCH) model, which have been popularly used in the field of finance to understand the statistical 

dependency between stocks (Engle, 2000). The DCC model estimates the time-varying correlation 

structure of multivariate time series using a two-step process: first, a univariate GARCH model is fit to 

each of the independent time series individually to estimate the conditional variance, and second, the 

time-varying correlation matrix is estimated from the standardized residuals from step one using an 

exponentially weighted moving average (EWMA) approach.  

The formulation of the DCC model begins with the formulation of the univariate 

GARCH(1,1) model. We can represent a given a univariate process as  

𝑦𝑡 = 𝜎𝑡𝜖𝑡  (4.5) 

where 𝜖𝑡  is a N(0,1) random variable and 𝜎𝑡  is the conditional variance we wish to model. The 

GARCH(1,1) model would estimate the conditional variance term as follows: 

𝜎𝑡
2  =  𝜔 + 𝛼𝑦𝑡−1

2  +  𝛽𝜎𝑡−1
2  (4.6) 
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where 𝜔 > 0, 𝛼, 𝛽 ≥ 0, and 𝛼 + 𝛽 < 1. In this formulation, the 𝛼 term weights the impact of prior 

values of the time series itself, while the 𝛽 term weights the impact of estimates of the conditional 

variance at previous time points in estimating the conditional variance at the present time point t. It is 

worth noting that more general GARCH(p,q) models can also be defined, which consider p previous 

values of the time series and q previous estimates of the condition variance in the estimate of 𝜎𝑡. 

Using the formulation of the univariate GARCH(1,1) as a basis, we illustrate the following 

bivariate example of the DCC(1,1) model. Let 𝒚𝒕 = 𝜖𝑡  represent a BOLD fMRI time series of two 

ROIs and 𝛴𝑡  be the conditional covariance matrix we wish to model. The DCC(1,1) model is defined 

as follows: 

𝜎𝑖,𝑡
2 = 𝜔𝑖 + 𝛼𝑖𝑦𝑖,𝑡−1

2  +  𝛽𝑖𝜎𝑖,𝑡−1
2  for 𝑖 = 1,2 (4.7) 

𝐷𝑡 = 𝑑𝑖𝑎𝑔{𝜎1,𝑡 , 𝜎2,𝑡} (4.8) 

𝜖𝑡 = 𝐷𝑡
−1𝑒𝑡 (4.9) 

𝑄𝑡 =  (1 − 𝜃1 − 𝜃2)𝑄  + 𝜃1𝜖𝑡−1𝜖𝑡−1
′  +  𝜃2𝑄𝑡−1  (4.10) 

𝑅𝑡  =  𝑑𝑖𝑎𝑔{𝑄𝑡}−1/2𝑄𝑡 𝑑𝑖𝑎𝑔{𝑄𝑡}−1/2  (4.11) 

𝛴𝑡 =  𝐷𝑡𝑅𝑡𝐷𝑡    (4.12) 

The first step of the DCC algorithm consists of fitting a GARCH(1,1) model to each of the two ROI 

time series in yt individually (Eq. 3.7) and then used to compute the standardized residuals, 𝜖𝑡(Eqs. 

3.8, 3.9). The second step involves the application of an EWMA scheme to the standardized residuals 
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from the first step to compute the time-varying correlation (𝑅𝑡) and covariance (𝛴𝑡) matrices (Eqs. 

3.10, 3.11, 3.12), . The model parameters (𝜔1, 𝛼1, 𝛽1, 𝜔2, 𝛼2, 𝛽2, 𝜃1, 𝜃2) are estimated in a two-stage 

approach using a quasi-maximum likelihood method.  

 In the present study, the DCC model was implemented in R utilizing the packages rugarch 

(https://cran.r-project.org/web/packages/rugarch/index.html ) and rmgarch (https://cran.r-

project.org/web/packages/rmgarch/rmgarch.pdf ). Theoretically, the DCC model should be able to 

scale to estimate the time-varying correlation structure between an arbitrarily large number of time 

series (Engle, 2000). However, in practice, we found the model estimation became intractable when 

the number of time series used exceeded 50. In fact, many previous applications of DCC in the TVFC 

literature only considered 5 ROI time series (Lindquist et al., 2014b; Syed et al., 2017).  In another use 

of the DCC TVFC framework that considered 50 ROI time series, a “massively bivariate” approach is 

suggested, where a separate bivariate DCC model is fit for each unique ROI pair in the time series, in 

an effort to better enable parallelization as the number of ROIs increases (Choe et al., 2017). While 

this may be feasible with tens of ROIs, it quickly becomes intractable for the 268-ROI parcellation 

utilized here. To put this in perspective, estimating the time-varying correlation structure of a single 

time series would require the fitting of 35,778 bivariate DCC models, and to apply this framework to 

both WM fMRI time series across all 922 subjects would total nearly 66 million distinct bivariate 

DCC models. Furthermore, even if each model fitting only took one second, fitting the full set of 

required DCC models would require over 763 days of computational time, so even with heavy 

parallelization, such a study would be infeasible. With these considerations in mind, we first reduced 

https://cran.r-project.org/web/packages/rugarch/index.html
https://cran.r-project.org/web/packages/rmgarch/rmgarch.pdf
https://cran.r-project.org/web/packages/rmgarch/rmgarch.pdf


 

89 

the dimensionality of the data by transforming the ROI time series into subnetwork time series. 

Specifically, for each of the 8 subnetworks defined in (Finn et al., 2015) we computed the mean and 

variance time series across all ROIs included in each subnetwork, reducing the spatial dimensionality 

of the data from 268 to 16. This reduced subnetwork-level time series helped strike the balance 

between preserving the spatial and functional specificity of the data while also enabling the analysis to 

run in a reasonable amount of time.  

4.3.3 Post-processing Strategies 

 

Figure 4.1. Experimental pipeline.  
For each of the three instantaneous FC estimators, we apply three post-processing workflows for state 
estimation: pointwise clustering, sliding window clustering, and connectivity-informed segmentation. Each 
workflow culminates in the application of k-means clustering for characterization of k final states.   
 

While instantaneous FC estimators are valuable for providing a temporally granular view of 

the changing connectivity landscape, additional post-processing steps are necessary to translate the 
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time-resolved FC estimates into connectivity states. Here, we compared three post-processing schemes 

for state estimation (Figure 4.1). First, we applied pointwise k-means clustering, similar to the CAP 

approach, to group individual time points into a set of discrete FC states based on their instantaneous 

FC signatures. While this approach preserves the temporal granularity of the instantaneous FC 

estimations, it is the most susceptible to pointwise noise that can occur with instantaneous FC 

estimations and comes at a cost of higher dimensionality compared to the other windowing or 

segmentation approaches tested.  

Second, we applied a sliding window + k-means approach, computing the average FC estimate 

within each window in an effort to induce smoothness on the otherwise potentially noisy 

instantaneous FC methods. We tested the effect of window size on the accuracy of the state 

predictions by implementing sliding windows of three different lengths: 15 TR, 25 TR, and 35 TR. 

These choices of window size are comparable to those utilized in other sliding window TVFC 

paradigms and are also compatible with the length of the ground truth cognitive processes we attempt 

to uncover in the WM task structure (38 TR for task conditions and 21 TR for rest conditions). The 

averaging nature of the sliding window procedure helps reduce instantaneous noise, but the highly 

overlapped windows create issues for interpretation of resultant states.  

Finally, we applied two variants of an informed segmentation framework, here termed the 

connectivity-informed segmentation, inspired by the activation informed-segmentation approach 

described in Section 3.3.2 and (Duda et al., 2020). The goal of the informed segmentation paradigm is 

to identify moments of significant instantaneous change in functional connectivity (or activation) and 
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to use these change points as boundaries for the creation of tailored, non-overlapping temporal 

segments. Informed segmentation serves as a hybrid approach, utilizing the time-resolved estimates of 

FC to generate data-driven boundaries between connectivity states while reaping similar averaging and 

smoothing benefits from the tailored segmentation as obtained from windowing approaches. 

Furthermore, as the resultant segments are discrete (i.e., non-overlapping), offering the added benefits 

of improved interpretability and reduced dimensionality over the sliding window approach.  

The first connectivity-informed segmentation variant, similar to the activation-informed 

segmentation, involves the calculation of a temporal connectivity derivative (dC) via first-order 

differencing: 

𝑑𝐶𝑖,𝑗(𝑡)  =  𝐶𝑖,𝑗(𝑡)  − 𝐶𝑖,𝑗(𝑡 − 1) (4.13) 

where 𝐶𝑖,𝑗(𝑡)denotes the FC estimate between ROIs i and j at time t for the instantaneous FC 

estimator C. The resultant dC tensor has dimension 𝑇 − 1 × 𝑛 × 𝑛 where T is the total length of the 

instantaneous FC time series and n is the total number of ROIs. Analogous to the relationship 

between the temporal activation derivative dt and the GTD in the activation-informed segmentation 

framework (Section 3.3.2), the multivariate connectivity derivative dC is simplified to a univariate, 

whole-brain summary of connectivity change, here termed the Frobenius global connectivity 

derivative (GCDF), by applying the Frobenius matrix norm to the dC matrix at each time point t.  

𝐺𝐶𝐷𝐹(𝑡)  =  ||𝑑𝐶1:𝑛,1:𝑛 (𝑡) ||𝐹  =  √∑ ∑ |𝑑𝐶𝑖,𝑗(𝑡)|2𝑛
𝑗=1

𝑛
𝑖 = 1   (4.14) 
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The variant of the connectivity-informed segmentation framework that utilizes the GCDF series will 

be referred to as the Frobenius variant. 

 The second connectivity-informed segmentation variant combines the first-order differencing 

and the univariate summarization into a single step utilizing cosine similarity. Recently, cosine 

similarity has been proposed as a metric for measuring the change in connectivity configuration from 

one time point to the next (Fu et al., 2021). The cosine similarity 𝜃 between two square 𝑛 × 𝑛 

matrices, X and Y, can be formulated as: 

𝜃(𝑋, 𝑌)  =  
𝐽(𝑋∘𝑌)𝐽𝑇

||𝑋||𝐹||𝑌||𝐹
 (4.15) 

where J is a 1 × 𝑛 vector of ones, ∘ is the Hadamard product and || ||F is the Frobenius norm. 

Computing the cosine distance (i.e. 1 − 𝜃) at each step in the instantaneous FC time series C results in 

the cosine variant of the global connectivity derivative (GCDcos), another univariate summarization of 

instantaneous whole-brain change in connectivity.  

𝐺𝐶𝐷𝑐𝑜𝑠(𝑡)  = 1 − 𝜃( 𝐶(𝑡), 𝐶(𝑡 − 1) )  (4.16) 

The variant of the connectivity-informed segmentation framework that utilized the GCDcos series will 

be referred to as the cosine variant.  

Analogous to the GTD, peaks in each GCD series denote moments of significant 

instantaneous change in global, i.e., whole brain, functional connectivity. We apply peak detection to 

identify these FC change points. As described in Section 3.3.2.1, we begin by applying exponentially 
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weighted moving average smoothing (window size = 15 TR, 𝛼 =
2

(𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒 + 1)
) to the GCD series 

to reduce noisy peaks. We then perform moving average peak detection (window size = 10 TR) on the 

smoothed GCD series. Using a subset of 10% (n=92) subjects, we optimized the moving average peak 

detection parameters to maximize the average precision and recall of discovered peaks against ground 

truth transition points and perform peak detection using the resultant optimum parameters on the 

remaining 90% of subjects (n=830). As a post-processing procedure, peaks in close proximity to one 

another (within 10 TR, corresponding to 7 seconds or the approximate time-to-peak of the 

hemodynamic response function (Friston, 2003)) were collapsed to the local maximum, and a 

minimum inter-peak distance of 15 TR was applied to ensure sufficiently large segments for 

calculating Pearson correlation (Schönbrodt & Perugini, 2013; Thirion et al., 2007; Turner et al., 

2018).   

This final set of peaks served as the boundaries for tailored time series segmentation. Within a 

given segment, FC was summarized by the mean instantaneous FC estimates of all time points within 

that segment. Finally, k-means clustering was applied to the aggregated set of segment connectomes 

across all segments and subjects.  

4.3.4 Experimental Design 

 We applied ECF, MTD, and DCC approaches as described above to fMRI time series data 

from WM Sessions 1 and 2 for all 922 subjects in our HCP dataset. Within each session dataset, 

instantaneous FC time series are concatenated across the entire set of 922 subjects. The resultant 
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dimensionality for each method was as follows: 373,410 × 35,778 for ECF, 372,488 × 35,778 for 

MTD and 373,410 × 120 for DCC. In addition to the point-wise connectivity estimates, sliding 

window and informed segmentation post-processing procedures were also applied to each of the three 

instantaneous FC estimation results at the subject level, and then similarly concatenated at the group 

level. Before employing the k-means clustering step, we performed PCA dimensionality reduction to 

reduce the spatial dimension for both ECF and MTD datasets at all levels of post-processing (since the 

DCC data was already reduced to the subnetwork level, PCA dimensionality reduction was not 

necessary). Previous work suggests 50-150 PCs are sufficient for capturing robust inter-individual 

differences in functional connectivity (Sripada et al., 2019). Aligned with this recommendation, we 

generated low-dimensional representations of FC by retaining the top 100 principal components in 

each dataset. We then applied k-means clustering on each of the PCA-reduced pointwise, windowed, 

and segmented measures of FC to generate state estimates at each respective level of temporal 

granularity. We repeated the k-means clustering procedure for values of k in the range [2-10] and 

selected the optimal value of k for each dataset using the elbow criterion of the cluster validity index, 

computed as the ratio of within-cluster distance to between-cluster distance (Allen et al., 2014). 

 We evaluated the accuracy of the state estimation against the ground truth task condition for 

each combination of instantaneous FC estimator and post-processing technique using three common 

cluster evaluation metrics: homogeneity, completeness and NMI. Homogeneity is a measure of how 

homogeneous each cluster is given the ground truth labelling—a perfectly homogenous cluster would 

only contain samples from a single ground truth class. The completeness metric is essentially the 
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inverse of the homogeneity metric—perfect completeness would indicate all samples from a given 

ground truth class were members of a single cluster. Finally, NMI is a metric that measures the mutual 

dependence between two labelings of the same data, (U, V), given by: 

𝑁𝑀𝐼(𝑈, 𝑉)  =  ∑ ∑
𝑀|𝑈𝑖∩𝑉𝑗|

∑ 𝑈 ∑ 𝑉
𝑙𝑜𝑔

𝑀|𝑈𝑖∩𝑉𝑗|

|𝑈𝑖||𝑉𝑗|

|𝑉|
𝑗=1

|𝑈|
𝑖=1  (4.15) 

where |𝑈𝑖|, |𝑉𝑗| are the number of samples in clusters 𝑈𝑖 , 𝑉𝑗, respectively, and M is the total number of 

samples in the data. Each of these metrics ranges from 0-1, where 1 indicates perfect correspondence 

between the clustering and the ground truth labels. For the pointwise clustering the ground truth 

labelling is quite straightforward—each time point is labelled by the task condition at that instant. For 

sliding window clustering the ground truth for each window is defined by the task condition at the 

midpoint of the window. Finally, for informed segmentation clustering the ground truth of each 

segment is defined by the task condition active during a majority of time points in the segment. 

4.3.5 Baseline Measures 

 In addition to the comparison across instantaneous FC estimators, we also present a 

comparison of other TVFC approaches as baselines for comparison. Namely, we test against the 

popular sliding window framework and the hybrid activation-informed segmentation paradigm.  

4.3.4.1 Sliding Window Pearson Correlation  

 The sliding window Pearson correlation framework was implemented using the GIFT toolbox 

and applied as described in Section 3.3.4. 
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4.3.4.2 Activation Informed Segmentation  

 The activation-informed segmentation framework was applied as described in Section 3.3.2. 

4.3.6 Application in Resting State fMRI 

 After identifying the best-performing instantaneous FC pipeline in the WM task experiments, 

we apply this top pipeline to each of the four resting state fMRI scans (REST1A, REST1B, REST2A, 

REST2B) across the full set of 922 subjects. The optimal number of clusters is tuned by varying the 

value of k in the range [2,10] during k-means clustering and identifying the elbow point of the cluster 

validity index across this range. The FC signature for each of the k resultant states is defined by the 

cluster centroid connectivity matrix. Subsequently, clusters are matched across experimental replicates 

(i.e. scanning sessions) based on shortest Euclidean distances between the cluster centroid 

connectomes, and the reliability of the state centroids across these replicates is computed using the 

I2C2 metric (Section 3.3.2.3). We further characterize the resultant connectivity states with standard 

TVFC features including average dwell time (i.e., the amount of time spent uninterrupted in a given 

state), total occurrences of a given state, and specific state-to-state transition probabilities. 

4.3.7 Connection to Phenotypes 

 We performed a regression analysis to assess the combined relationship between subject-

specific TVFC feature vectors, averaged across the four resting state sessions, and several neuro-

relevant phenotypes. Specifically, we consider ten cognitive metrics: a general factor of intelligence 

(G),  generated from a bifactor model as described in (Sripada et al., 2020), processing speed, generated 
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from factor modeling of three NIH Toolbox tasks as described in (Sripada et al., 2019), the five facets 

of personality given by the Revised NEO Personality Inventory (openness to experience, 

conscientiousness, extraversion, agreeableness, and neuroticism), and the three dimensions of 

psychopathology given by the Adult Self Report Scale (Internalizing, Attention Problems, 

Externalizing). We also included the covariates of age and gender. All features (besides the binary 

gender marker) were z-scored prior to the regression analysis, so the resultant model 𝛽 values could be 

interpreted similarly to correlation values. We used a Bonferroni-corrected 𝛼 = 0.005 significance 

threshold to identify significant relationships between our TVFC features and the ten cognitive 

phenotypes.  

4.4 Results 

4.4.1 Informed Segmentation Offers Improved Noise Reduction Over Sliding 

Window Smoothing 

In all frameworks utilizing ECF and MTD, we applied dimensionality reduction by extracting 

the top 100 PCs prior to the k-means clustering step. The percentage of the total variance of the data 

that is explained by these top 100 PCs in each instance is listed in Table 4.1. The percentage of 

variance explained (PVE) in the pointwise frameworks provide the baselines for comparison of the 

various windowing and segmentation approaches tested for both ECF and MTD pipelines. When the 

number of PCs extracted is constant across various treatments of the data, the change in the PVE can 

be observed to understand the effect of that treatment on the original data—an increase in PVE would 
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indicate a reduction in noise, whereas a decrease in PVE would suggest the unintentional introduction 

of noise compared to the original data.  

In the case of ECF, the PVE increases compared to the pointwise baseline for all windowing 

and segmentation schemes, suggesting these treatments result in a reduction in noise. We found that 

the largest sliding window size of 35 TR provided the largest boost in PVE of the three sliding window 

schemes compared to the pointwise framework; however, the maximum PVE observed across all ECF 

pipelines was attained by applying the cosine variant of the connectivity-informed segmentation 

framework. This treatment resulted in an increase of PVE from 28.42% to 33.73% and 28.30% to 

32.78% compared to the pointwise baseline for WM Session1 and Session 2, respectively. In contrast 

to ECF, we observed a slight decrease in PVE when applying sliding window operations to MTD in 

relation to the pointwise framework, suggesting this type of fixed-window averaging does not provide 

effective noise reduction for instantaneous MTD estimates. While the cosine variant of the 

connectivity-informed segmentation framework also yielded the maximum PVE in the top 100 PCs 

across all MTD frameworks, this increase compared to the baseline pointwise framework was 

negligible, only amounting to 0.10-0.22%.  

4.4.2 ECF-Derived Estimates Best Summarize Changing FC Patterns 

 In total, we tested the performance of 18 distinct connectivity-based TVFC pipelines (six state 

estimation schemes across three instantaneous FC estimators) at recovering the ground truth task 

structure of a block-design working memory task-based fMRI. The accuracies of these pipelines (as 

measured by homogeneity, completeness and NMI) as applied to both WM Sessions 1 and 2 are listed 
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in Table 4.2. To evaluate the ability of each of the three instantaneous FC estimators to identify true 

changes in connectivity structure on their own, we first consider the performance of the pointwise 

clustering. State-time plots showing the temporal alignment of the states identified via pointwise 

clustering of ECF, MTD and DCC estimates is presented in Figure 4.2.  

 We found k=3 was optimal across all pointwise clustering experiments. States were matched 

across experiments to enable direct comparisons. From the pointwise clustering results, we found that 

ECF estimates outperformed the MTD and DCC estimates in recovering the ground truth states 

(Table 4.2). By observing the ECF state-time plot in Figure 4.2, we find that State 3 has a strong 

correspondence to the Rest condition segments, State 2 shows moderate correspondence to the onsets 

of Task 1 and Task 2 conditions but is also found throughout the Task 1 and Task 2 segments, and 

State 1 corresponds broadly to the general WM task positive condition. In the MTD pointwise 

clustering, we find a similar correspondence of State 1 to the general WM task-positive condition, with 

State 2 showing less specificity for any certain experimental condition. In contrast to the ECF-based 

results, State 3 shows strong correspondence to the onset of the Task 1 condition, as well as moderate 

correspondence with the onset of the Rest condition. This result is particularly noteworthy, as the 

transitions from a task-positive condition to a rest condition and vice-versa evoke the strongest changes 

in cognitive demands within the WM paradigm. The DCC pointwise clustering results are 

comparatively noisy. We observe both States 1 and 2 distributed throughout the WM task-positive 

condition, with some minor specificity of State 2 to the Task 2 onsets. State 3 aligns to the Rest 

condition and extends through the onset of the Task 1 condition.  
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4.4.3 ECF + Connectivity-Informed Segmentation Framework Best Recovers 

Ground Truth Task Structure 

 In addition to the pointwise clustering, we applied three variations of the sliding window 

framework (window size 15 TR, 25 TR and 35 TR; Figure 4.3) as well as two variations of the 

connectivity-informed segmentation framework (Frobenius-variant and cosine-variant; Figure 4.4) for 

state estimation from each of the three baseline instantaneous FC time series. The accuracies of the 

sliding window and connectivity-informed segmentation frameworks are listed in Table 4.2.  

 In accordance with the PVE results in Table 4.1, we observe an increase in clustering accuracy 

when sliding window or connectivity-informed segmentation frameworks are applied compared to the 

baseline pointwise clustering accuracy across all instantaneous FC time series (Table 4.2). In the sliding 

window framework, state correspondences remained largely consistent with those observed in the 

pointwise clustering experiments, with various degrees of blurring depending on the size of the sliding 

window smoothing applied (Figure 4.3). Again, ECF exhibited the best specificity of discovered states 

to ground truth task conditions, which is reflected in the clustering evaluation metrics (Table 4.2). 

Additionally, we observed that the connectivity-informed segmentation framework yielded improved 

(in the case of ECF and MTD) or similar (in the case of DCC) performance compared to the sliding 

window pipeline.  The state-time plots for the connectivity-informed segmentation frameworks 

illustrate the improved performance of the cosine-variant over the Frobenius-variant across all 

frameworks, with the best performance exhibited when paired with the ECF instantaneous FC base 

time series (Figure 4.4).  
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Due to the explicit change-point identification step in the connectivity-informed 

segmentation pipelines, the accuracy of identifying boundaries between ground truth states can be 

calculated with precision and recall statistics. In this context, precision can be interpreted as the 

percentage of discovered change-points that correspond to ground truth state transitions, and recall 

can be understood as the percentage of ground truth change-points that are identified by the 

discovered peaks. Transition-dependent recalls can also be calculated to assess the specificity of the 

informed-segmentation algorithm in identifying each type of onset (i.e., Task 1 → Task 2; Task 2 → 

Rest; Rest → Task 1). Precision and recall statistics for all connectivity-informed segmentation 

experiments are presented in Table 4.3. The ECA + connectivity-informed segmentation (cosine-

variant) significantly outperforms all other connectivity-informed segmentation pipelines in change-

point accuracy, exhibiting an average precision of 0.59 ±0.13 and average recall of 0.66 ±0.14. We 

found this framework to be fairly well suited to identify all three transition types, with slightly 

improved performance in the identification of Task 2 → Rest transitions (recall: 0.70±0.23). Taken 

together, these results point to the ECF + connectivity-informed segmentation (cosine-variant) as the 

best overall pipeline for instantaneous FC + state estimation (Table 4.2).  

4.4.4 Comparison to Baseline Approaches 

 We considered two baseline frameworks that operate in the activation domain for 

comparison—the standard sliding window Pearson correlation approach as implemented in the GIFT 

toolbox, as well as the GTD-based activation-informed segmentation framework. Results for these 

baselines are reported in Table 4.4. We found that sliding window smoothing of the connectivity-
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based frameworks tested here generally outperform the standard sliding window Pearson correlation 

frameworks, with the exception of the MTD + sliding window clustering framework. Notably, the 

best-performing instantaneous FC framework (ECF + cosine-based connectivity-informed 

segmentation) did not outperform the analogous activation-informed segmentation, both in 

homogeneity of clustering and overall accuracy of change-point detection; however, we did observe 

certain improvements afforded by the connectivity-informed segmentation over the activation-centric 

baseline segmentation. Namely, we note an increase in recall of Task 2 boundaries compared to the 

activation-informed segmentation approach, which correspond to the smallest change in cognitive 

demands in the context of the WM task, as well as a similar overall trend of specificity (i.e., higher 

recall) for Rest condition onsets compared to the task-positive onsets.  

4.4.5 ECF + Connectivity-Informed Segmentation Framework Detects Five 

High-Fidelity Resting States  

 We applied the ECF + connectivity-informed segmentation (cosine-variant) to data from four 

distinct runs of resting state fMRI. Using the elbow criterion of cluster validity index, we identified 

k=5 as the optimal number of clusters in all four resting replicates (Supplementary Figure 4.1). 

Discovered states were matched across the four experimental replicates and characterized by the 

average cluster centroids across the four resting sessions (Figure 4.5). We found these states to be 

highly reliable across experimental replicates (I2C2=0.90). 
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 Overall, we observed states that reflect shifting connectivity across network modules, rather 

than within network modules, consistent with prior work (Betzel et al., 2016; Zalesky et al., 2014). In 

particular, we observed changing patterns of brain integration and segregation, prominently involving 

the frontoparietal, medial frontal, and default mode networks (FPN, MF and DMN, respectively) 

(Zalesky et al., 2014). States 1, 3, and 5 all involve sensory/motor anti-correlation with the FPN, MFN 

and DMN. Interestingly, in the context of this motif the MFN and DMN exhibit some degree of 

coupling that appears to be anti-coupled with the FPN—the anticorrelations with the motor/visual 

subnetworks in States 1 and 3 shows specificity for both MFN/DMN, whereas the anticorrelations 

with the motor/visual subnetworks in State 5 show specificity for the FPN. Conversely, States 2 and 4 

are characterized strictly by positive correlations. Specifically, State 2 is characterized by a high degree 

of segregation (i.e., cross-network connectivity) and a moderate degree of integration (i.e., within-

network connectivity). Sate 4 is mainly characterized by patterns of integration and exhibits an overall 

lowered degree of connectivity, namely within the subcortical cerebellum network. Importantly, the 

five states we observed are highly similar to the states identified in this same HCP dataset using the 

classic sliding window paradigm as reported in (Nomi et al., 2017) and those resulting from the 

activation-informed segmentation framework presented in Chapter 3. Overall, we observed no 

temporal alignment of states within or between subjects (Figure 4.6) 

4.4.6 Discovered Resting States are Predictive of Personality Traits 

 Lastly, we extracted TVFC features including state-to-state transition probabilities, dwell times 

and state occurrences for each subject and performed a regression analysis to identify significant 
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relations between our discovered states in rest and 10 neuro-relevant phenotypes (Group average 

metrics shown in Figure 4.7). At a Bonferroni-corrected ɑ=0.005 threshold, we identified significant 

relationships for three cognitive metrics: G, agreeableness, and openness to experience (Table 4.5). 

Specifically, we observed moderate relationships between the State 2 to State 4 transition probability 

and G (𝛽 = 0.043; p-value = 0.041), and the State 5 to State 4 transition probability and agreeableness 

(𝛽 = 0.052; p-value = 0.012). Conversely, we found relatively strong relationships between the 

occurrence of State 1 (𝛽 = -0.332; p-value = 0.020) and all transition probabilities from State 3 to all 

other states (𝛽-values = 0.284 - 0.421; p-values = 0.011 - 0.036) and NEO personality inventory 

measure of openness to experience. In addition to the comparatively strong 𝛽-values in these 

relationships, it is notable that gender does not appear as a significant predictor in the openness to 

experience regression model, whereas it consistently appears as the strongest predictor in the other 9 

models. This result indicates that the combined effects from the TVFC features listed above outweigh 

the effects of gender in predicting this facet of personality.  

4.5 Discussion 

 In this work, we performed a comprehensive comparative analysis of instantaneous functional 

connectivity estimation approaches for assessing TVFC. Specifically, we tested three distinct 

instantaneous FC estimators (ECF, MTD and DCC) in combination with three methods of state 

estimation: pointwise clustering, sliding window clustering, and our newly proposed connectivity-

informed segmentation framework. We validated each combination of FC and state estimators in a 

working memory task setting where ground truth transitions between cognitive states are known. 
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Across this set of validation experiments, we observed that 1) the ECF estimates of instantaneous FC 

best approximated the changing connectivity structure governed by the WM task structure, 2) the 

cosine-variant of the data-driven connectivity-informed segmentation approach offered the best noise 

reduction on the baseline pointwise FC estimates, and 3) the ECF + connectivity-informed 

segmentation framework (cosine variant) best recovered the underlying task structure of the WM 

fMRI time series. When applied to resting state data, this ECF + connectivity-informed segmentation 

framework detected five connectivity states that displayed excellent test-retest reliability across four 

sessions of resting fMRI, exhibited complex transition dynamics, and were highly consistent with the 

states uncovered by the activation-informed segmentation approach described in Chapter 3. Our work 

provides a head-to-head evaluation of the foremost methods in the class of instantaneous FC 

estimators in the context of a structured ground truth, proposes a novel approach for data-driven 

segmentation of connectivity time series and presents converging evidence for a highly stable set of 

time-varying resting states.  

This work is the first to conduct a direct comparison between these popular instantaneous FC 

methods and, to the best of our knowledge, is also the first attempt to quantify accuracy of these 

frameworks against the natural ground truth of structured, block-design task fMRI. The lack of 

inherent ground truth in the resting state is one of the largest challenges in the development of TVFC 

methods. Often, validation studies are performed on simulated data, but such simulations can be 

susceptible to pitfalls such as oversimplification or over-exaggeration of connectivity changes 

compared to true spontaneous FC in rest. Thus, evaluating the performance of TVFC methods in 
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structured block-design task fMRI is advantageous, as it provides naturalistic examples of changing FC 

and is accompanied by well-defined temporal labels that can serve as a ground truth progression of 

cognitive states against which accuracy statistics can be measured.  

We observed moderate success in recovering the ground truth task structure when MTD-

based estimates of FC were used. In the baseline MTD experiments using pointwise clustering we 

observed two key findings: 1) the MTD appeared to identify instantaneous onsets of changing 

connectivity states rather than unique patterns of sustained FC, and 2) the MTD method similarly 

clustered onsets of the Task 1 condition and Rest condition, transitions that are both associated with 

the strongest changes in cognitive load. Considering these results in conjunction with formulation of 

the MTD, which computes instantaneous correlations in activation changes rather than in activations 

directly (as in the ECF), it is logical that the MTD would be more selective for changes in connectivity 

rather than sustained governance of a single FC state. Furthermore, the lack of specificity between the 

Task 1 and Rest condition onsets indicates that there may be some induced lack of directionality 

stemming from the computation of correlations in the temporal derivative space, as these transitions 

are effectively opposites (Task-positive → Rest vs. Rest → Task-positive), but the net connectivity 

effects of the associated activation changes appear to be similar.  

The effects of the first-order differencing involved in the MTD may also be relevant in light of 

the formulation of the informed segmentation approach. We observed relatively poor performance of 

both the cosine- and Frobenius-variants of our proposed connectivity-informed segmentation pipeline 

on the MTD-estimated FC time series compared to the other instantaneous FC estimators. Since both 



 

107 

the MTD and the GCD, the series on which the connectivity-informed segmentation relies, compute 

temporal derivatives, the combination of these methods layers these first-order differencing operations. 

Such treatment of the data can be effectively similar to computing a second derivative and 

demonstrates decreased utility in identifying true changes in FC, as evidenced by the results of the 

MTD + connectivity-informed segmentation approaches. One potential future direction that merits 

further exploration would be applying peak detection directly to the MTD series itself as a method of 

informed segmentation, thereby omitting the redundant temporal derivative operations.  

We also tested the utility of the parametric DCC model for TVFC analysis. Our work adds to 

the DCC-based TVFC literature in two important ways. First, ours is the first attempt to apply the 

DCC framework to fMRI data with a relatively high spatial resolution, here n=268 ROIs. Previous 

works have only considered fMRI data with spatial dimensions ranging from 5 ROIs (Lindquist et al., 

2014b; Syed et al., 2017) to 50 ROIs (Choe et al., 2017). Each of these works comments on the 

theoretical ability of the DCC framework to scale to an arbitrarily large number of ROIs, however 

practical applications of DCC at these larger scales and computational considerations required to 

complete such experiments are notably missing from the current TVFC literature. Even the use of a 

“massively bivariate” implementation of DCC, as suggested in (Choe et al., 2017) would be 

computationally infeasible on our in-house compute cluster, despite the reduction in memory 

requirements and potential for parallelization offered by this strategy compared to the multivariate 

DCC alternative. Our work provides valuable direct commentary on these computational 

considerations that is thus far missing from the literature. Second, our results strongly support the 
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utility of the DCC framework for accurately estimating the changing connectivity structure from 

fMRI time series. To circumvent the computational issues encountered at the full spatial granularity 

of our data, we generated coarse subnetwork-level time series rather than the granular ROI-level time 

series that are generally used. Somewhat surprisingly, we observed fair performance of this application 

of the DCC method in recovering the ground truth task structure of the WM fMRI. Even with this 

substantially simplified time series as input, the DCC generates FC estimates that capture the differing 

connectivity signatures between the task and rest conditions and merits further study in the context of 

TVFC. Based on our experimental results, we suggest the DCC model be used in conjunction with 

coarser spatial parcellations of the fMRI data, those on the order of tens of ROIs rather than 

hundreds. Specifically, we suggest that the combination of parametric DCC with data-driven spatial 

ICA methods (Calhoun et al., 2001) would provide informative time-resolved estimates of TVFC, 

however subsequent validation in similar block-design task experiments is needed to first evaluate the 

accuracy of such an approach. 

Finally, we found that the instantaneous FC estimates derived from the ECF framework best 

approximated the changing connectivity structure underlying the progression of cognitive conditions 

in the WM task, evidenced by its superior clustering accuracy compared to the other instantaneous FC 

estimators across all treatments of the data. As formulated, the FC time series estimated by the ECF is 

described as a “temporal unwrapping” of the static Pearson correlation. The Pearson correlation is the 

most common metric for defining FC (Preti et al., 2017), and accordingly one of the most robust. 

Therefore, it follows that a mathematically exact decomposition of the Pearson correlation into its 
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temporal components would be similarly robust for capturing changing connectivity signatures. 

Furthermore, we identified the ECF + connectivity-informed segmentation as the best instantaneous 

FC framework overall. This result complements the findings in our previous work, where we found 

that data-driven segmentation approaches that result in discrete, non-overlapping segments of stable 

connectivity outperform the rigid and highly overlapping sliding windows.  

In addition to a head-to-head comparison, this work presents two important innovations in 

TVFC methodology. First, we propose a framework for the data-driven segmentation of instantaneous 

FC time series to derive a time-resolved progression of functional brain states. This connectivity-

informed segmentation framework is based on the analogous activation-informed segmentation 

pipeline presented in our previous work, extending this data-driven temporal segmentation paradigm 

to the connectivity domain. As consensus has not yet been reached in the field as to the “best” or 

“most informative” method for defining time-varying brain states at rest (Lurie et al., 2020), testing 

methods that operate across different domains of the fMRI data will be crucial for moving the field 

forward. Second, in addition to the framework utilizing the Frobenius-norm method of summarizing 

multivariate temporal derivative series into a univariate series of instantaneous changes in activation 

(or connectivity) proposed in our previous work, we also suggest an alternative framework that utilizes 

cosine distances to quantify the change in connectivity between estimates of FC at consecutive time 

points. Recently, the use of cosine distances has been proposed as a metric for quantifying the degree 

functional connectivity network reconfiguration between adjacent time points (Fu et al., 2021). We 

build on this work with the introduction of the cosine variant of the connectivity-informed 
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segmentation framework, which adds elements of change-point identification and data-driven 

segmentation to their baseline approach. Furthermore, the considerable boost in performance 

observed with the cosine-variant compared to the Frobenius-variant suggests that the cosine distance is 

indeed a superior metric for summarizing changes between connectivity matrices than the Frobenius 

norm.  

Perhaps the most consequential result of this work is the convergence of the time-varying 

states discovered with the ECF + connectivity-informed segmentation pipeline and those discovered 

via activation-informed segmentation, reported in our previous work. While the two methods are 

indeed analogous, it is important to consider that they are not only derived from different domains of 

the data (activation time series vs. connectivity time series), but also reliant on univariate time series 

computed via two distinct distance metrics (L2-norm vs. cosine distance). The consequence of such 

divergent approaches resulting in such closely related states is two-fold: first, it lends support to the 

informed-segmentation paradigm as a whole, and second, it suggests that this set of five resting states, 

that are highly stable across fMRI sessions and methodologies, are meaningful and merit further study. 

In addition to the convergence across our analogous informed-segmentation pipelines, these states also 

resemble those discovered via classic sliding window approaches in the same HCP dataset (Nomi et al., 

2017), providing further support for this set of resting states specifically, and the larger idea of resting 

TVFC in general.  

 This work has a few key limitations that must be considered. First, instantaneous estimation of 

FC necessarily results in a high-dimensional output, on the order of 𝑇 × (
𝑛(𝑛−1)

2
) (T: length of time 
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series, n: number of ROIs) when only the upper triangulars of the connectivity matrices are retained. 

Further concatenation of these FC series across a large number of subjects for state estimation 

necessitates dimensionality reduction techniques for feasibility of k-means clustering. While we find 

our PCA-based strategy for dimensionality reduction sufficient in practice, we acknowledge that there 

may be room for further improvement in this aspect of our methods, as only about ~30% of the 

variance in the original data is retained in the reduced set of 100 PCs. Second, while we improved our 

peak detection strategy from our prior work to include a parameter optimization step, this aspect of 

our connectivity-informed segmentation pipeline is still reliant on the exponentially weighted moving 

average operation that may be subject to similar criticism as the sliding window Pearson correlation 

approach. However, it is important to note that the identification of local maxima in a univariate 

signal (i.e., GCD) is not as sensitive to window size as computation of multivariate cross-

correlations—the strongest peaks will survive across a variety of moving average window lengths. 

Additionally, we note that there are methods available for peak detection that do not rely on moving 

averages that can be substituted into our pipeline, and future work can explore these approaches. 

Finally, while converging evidence across methodologies suggests the discrete set of states described in 

this work are meaningful, the exact importance of the time-varying states uncovered by the ECF + 

connectivity-informed segmentation method is unclear. We showed that changes in ECF connectivity 

align well with known changes in cognitive state (as evoked by alternating WM task conditions) and 

that the set of five resting states are highly reliable across replicate sessions of resting state fMRI. We 

also presented initial data showing that TVFC features extracted from these connectivity states are 
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linked to phenotypes of interest. But additional work is needed to establish what psychological 

processes are reflected in these time-varying states, and whether quantifying these transient states will 

yield significant theoretical and practical insights in psychology and neuroscience.  

 Finally, in addition to the future directions specified for both the MTD and DCC methods 

above, we recognize another avenue of potential future exploration related to the ECF, which we have 

shown as the best of the three methods. The authors of the ECF metric have also proposed an edge-

centric approach for estimating static FC, aptly named edge functional connectivity (eFC) (Faskowitz 

et al., 2020). The eFC metric computes the statistical dependency (i.e., Pearson correlation) of all pairs 

of edges in the ECF (also referred to by the authors as the nodal functional connectivity [nFC]) series, 

resulting in a 𝑚 × 𝑚 edge-centric connectivity matrix, where 𝑚 =  
𝑛(𝑛−1)

2
. The resultant edge-by-

edge connectivity matrix can be utilized to uncover overlapping communities of edges that co-

fluctuate with one another and probe the differences in the organization of these communities under 

various cognitive conditions. It may be useful to explore the utility of the eFC “super connectome” to 

characterize the functional connectivity within each tailored segment (rather than the average ECF 

matrix) to capture time-varying edge functional connectivity and the changing underlying edge 

community structure. However, the large dimensionality and associated high computational cost of 

generating the eFC metric may preclude its use in TVFC studies.  

 In summary, we have conducted a comprehensive comparative analysis of three instantaneous 

FC estimators (ECF, MTD and DCC) in conjunction with several state estimation techniques. We 

introduce a novel connectivity-informed segmentation framework for assessing TVFC via data-driven 
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segmentation of connectivity time series. Using this newly proposed framework, we identify five 

distinct time-varying states in rest that are highly stable across fMRI replicates and correspond well 

with states identified previously via activation-informed segmentation and classic sliding window 

paradigms.  
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4.6 Figures and Tables 

 

Figure 4.2. Temporal alignment of states discovered in WM via pointwise clustering of FC estimates 
derived by the ECF, MTD and DCC methods.  
Onsets of task conditions are marked by vertical lines: dashed for Task 1 onset, dotted for Task 2 onset, and 
solid for Rest onset.  
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Figure 4.3. Temporal alignment of states discovered via sliding window clustering applied to pointwise 
FC estimates derived by the ECF, MTD and DCC methods.  
Three different window sizes (SW 15: w = 15 TR; SW 25: w = 25 TR; SW 35: w = 35 TR) are reported. Onsets 
of task conditions are marked by vertical lines: dashed for Task 1 onset, dotted for Task 2 onset, and solid for 
Rest onset.  
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Figure 4.4. Temporal alignment of states discovered via informed segmentation applied to pointwise 
FC estimates derived by the ECF, MTD and DCC methods.  
Two variations of informed segmentation (Frobenius and cosine) are presented. Onsets of task conditions are 
marked by vertical lines: dashed for Task 1 onset, dotted for Task 2 onset, and solid for Rest onset.  
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Figure 4.5.  Connectivity signatures for each of the five resting states discovered by the ECF + 
connectivity-informed segmentation framework.  
For each of the four resting state experiments, the connectivity signature for each state is defined by the centroid 
of the corresponding k-means cluster, and the mean is computed across the four session replicates to generate 
overall state connectivity signatures. Connectivity signatures for each of the four resting fMRI scanning sessions 
are provided in the Supplementary Material. (Subnetwork Abbreviations—MF: Medial Frontal Network; FPN: 
Frontal Parietal Network; DMN: Default Mode Network; SC: Subcortical Cerebellum Network; Mot: Motor 
Network; Vis1: Visual 1 Network; Vis2: Visual 2 Network; VA: Visual Association Network).  
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Figure 4.6. Temporal decomposition of resting state fMRI data with respect to states discovered by the 
ECF + connectivity-informed segmentation framework across four resting state scanning sessions.  
As expected, there are no clear temporal patterns within or between subjects at rest.   

 
Figure 4.7. TVFC features extracted from resting states discovered by the ECF + connectivity-informed 
segmentation framework.  
Average A) transition probabilities of moving from State X (along rows) to State Y (along columns), B) dwell 
times, and C) number of occurrences, computed across all 922 subjects and four resting state fMRI sessions. 
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State Estimator ECF MTD 

 WM1 WM2 WM1 WM2 

Pointwise Clustering 0.2842 0.2830 0.2339 0.2329 

SW 15 Clustering 0.3010 0.3072 0.2334 0.2334 

SW 25 Clustering 0.3170 0.3122 0.2302 0.2304 

SW 35 Clustering 0.3231 0.3168 0.2305 0.2304 

Informed Segmentation (Frobenius) 0.3221 0.3116 0.2299 0.2275 

Informed Segmentation (Cosine) 0.3373 0.3278 0.2349 0.2351 

Table 4.1 Percent variance explained (PVE) by the top 100 PCs across all treatments of ECF and MTD 
instantaneous FC estimates.  
In both cases, the cosine-variant of the connectivity-informed segmentation approach retains the highest PVE in 
the top 100 PCs.  
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State Estimator Instantaneous FC Estimator 

 ECF MTD DCC 

 WM1 WM2 WM1 WM2 WM1 WM2 

Pointwise Clustering 
Homogeneity 
Completeness 

NMI 

 
0.040 
0.075 
0.055 

 
0.023 
0.044 
0.032 

 
0.013 
0.027 
0.019 

 
0.006 
0.011 
0.008 

 
0.009 
0.011 
0.010 

 
0.011 
0.013 
0.012 

SW 15 Clustering 
Homogeneity 
Completeness 

NMI 

 
0.071 
0.107 
0.087 

 
0.048 
0.058 
0.072 

 
0.028 
0.042 
0.035 

 
0.013 
0.019 
0.016 

 
0.032 
0.033 
0.032 

 
0.044 
0.045 
0.045 

SW 25 Clustering 
Homogeneity 
Completeness 

NMI 

 
0.102 
0.137 
0.118 

 
0.071 
0.092 
0.081 

 
0.032 
0.046 
0.037 

 
0.017 
0.023 
0.020 

 
0.055 
0.054 
0.054 

 
0.068 
0.068 
0.068 

SW 35 Clustering 
Homogeneity 
Completeness 

NMI 

 
0.115 
0.142 
0.127 

 
0.076 
0.094 
0.085 

 
0.034 
0.042 
0.038 

 
0.020 
0.024 
0.022 

 
0.057 
0.056 
0.056 

 
0.061 
0.060 
0.060 

Informed Segmentation 
(Frobenius)  

Homogeneity 
Completeness 

NMI 

 
 
0.152 
0.173 
0.163 

 
 
0.089 
0.104 
0.096 

 
 
0.055 
0.064 
0.059 

 
 
0.021 
0.024 
0.023 

 
 
0.052 
0.052 
0.052 

 
 
0.068 
0.067 
0.067 

Informed Segmentation 
(Cosine) 

Homogeneity 
Completeness 

NMI 

 
 
0.138 
0.197 
0.165 

 
 
0.093 
0.131 
0.110 

 
 
0.042 
0.054 
0.047 

 
 
0.022 
0.028 
0.025 

 
 
0.052 
0.052 
0.052 

 
 
0.068 
0.068 
0.068 

Table 4.2. Clustering accuracy for all combinations of instantaneous FC estimation and state extraction 
applied in data from WM Session 1 (WM1) and Session 2 (WM2).   
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 Metric Informed Segmentation (Frobenius) Informed Segmentation (Cosine) 

  WM 1 WM 2 WM 1 WM 2 

ECF Precision 
Recall 

Recall Task 1 
Recall Task 2 

Recall Rest 

0.46 (0.16) 
0.39 (0.14) 

0.29 (0.10) 
0.39 (0.19) 
0.67 (0.24) 

0.45 (0.14) 
0.42 (0.14) 

0.30 (0.11) 
0.46 (0.22) 
0.66 (0.23) 

0.59 (0.13) 
0.66 (0.14) 

0.65 (0.24) 
0.61 (0.23) 
0.74 (0.22) 

0.58 (0.12) 
0.65 (0.14) 

0.65 (0.24) 
0.65 (0.24) 
0.66 (0.23) 

MTD Precision 
Recall 

Recall Task 1 
Recall Task 2 

Recall Rest 

0.23 (0.12) 
0.20 (0.11) 

0.26 (0.05) 
0.36 (0.17) 
0.30 (0.12) 

0.25 (0.12) 
0.21 (0.10) 
0.27 (0.07) 
0.34 (0.15) 
0.32 (0.13) 

0.30 (0.12) 
0.33 (0.13) 

0.35 (0.16) 
0.38 (0.18) 
0.40 (0.19) 

0.30 (0.12) 
0.32 (0.13) 

0.35 (0.16) 
0.37 (0.17) 
0.39 (0.18) 

DCC Precision 
Recall 

Recall Task 1 
Recall Task 2 

Recall Rest 

0.42 (0.12) 
0.51 (0.15) 

0.56 (0.23) 
0.53 (0.23) 
0.50 (0.26) 

0.42 (0.12) 
0.51 (0.15) 

0.56 (0.23) 
0.53 (0.23) 
0.50 (0.26) 

0.43 (0.12) 
0.51 (0.15) 

0.55 (0.23) 
0.51 (0.23) 
0.52 (0.23) 

0.42 (0.12) 
0.51 (0.15) 

0.55 (0.23) 
0.51 (0.23) 
0.52 (0.23) 

Table 4.3. Precision and recall of informed segmentation approaches across the ECF, MTD and DCC 
time series. Results are reported in mean (standard deviation) format.  
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Metric Activation-Informed 
Segmentation 

Sliding Window  

 WM 1 WM 2 WM 1 WM 2 

Homogeneity 
NMI 

0.327 
0.231 

0.233 
0.159 

0.037 
0.018 

0.037 
0.018 

Precision 
Recall 

Recall Task 1 
Recall Task 2 

Recall Rest 

0.74 
0.67 

    0.72 
    0.54 
    0.77 

0.70 
0.64 

    0.62 
    0.59 
    0.73 

N/A N/A 

Table 4.4. Performance of the baseline activation-domain frameworks in recovering ground truth 
dynamic state changes in WM task data.  
The change point discovery step is unique to our framework and unable to be reported for the sliding window 
method.  
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Feature 𝛽 coefficient p-value 

Dependent variable = G; Model p-value = 9.83e-05 

Gender 0.348 0.000 

State 2 to State 4 Transition Probability 0.043 0.041 

Dependent variable = Agreeableness; Model p-value = 6.17e-05 

Gender -0.351 0.000 

Age 0.069 0.041 

State 5 to State 4 Transition Probability 0.052 0.012 

Dependent Variable = Openness to Experience; Model p-value = 7.22e-05 

Age -0.079 0.020 

Occurrence of State 1 -0.332 0.020 

State 1 to State 5 Transition Probability 0.071 0.015 

State 2 to State 4 Transition Probability 0.046 0.028 

State 3 to State 1 Transition Probability 0.284 0.036 

State 3 to State 2 Transition Probability 0.323 0.028 

Probability of Remaining in State 3 0.193 0.014 

State 3 to State 4 Transition Probability 0.421 0.031 

State 3 to State 5 Transition Probability 0.349 0.011 

State 4 to State 1 Transition Probability -0.063 0.029 

Table 4.5. Ordinary least squares regression results for significantly predicted phenotypes (Bonferroni-
corrected significance threshold at 𝜶 =  𝟎. 𝟎𝟎𝟓). 
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4.8 Supplementary Material 

 

Supplementary Figure 4.1. Cluster validity index (CVI) as a function of k in k-means clustering of ECF 
+ connectivity-informed segmentation-derived states across four replicate resting fMRI scanning 
sessions. 
In all experiments, the elbow point falls at k = 5, suggesting decomposition into 5 states to be optimal.  
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Supplementary Figure 4.2. Replication of resting states discovered by the ECF + connectivity-informed 
segmentation framework across four sessions of resting state fMRI.  
For each of the four resting state experiments, the connectivity signature for each state is defined by the centroid 
of the corresponding k-means cluster. (Subnetwork Abbreviations—MF: Medial Frontal Network; FPN: 
Frontal Parietal Network; DMN: Default Mode Network; SC: Subcortical Cerebellum Network; Mot: Motor 
Network; Vis1: Visual 1 Network; Vis2: Visual 2 Network; VA: Visual Association Network).  
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Chapter 5 - Comparative Analysis Between Data-Driven and 
Model-Based Instantaneous State Estimation Approaches in 

Activation and Connectivity Domains 

5.1 Abstract 

 While one goal of TVFC analysis is to simply determine the presence or absence of statistically 

significant changes in functional connectivity over time, another area of interest within the field of 

TVFC is to decompose the fMRI time series into a progression through a discrete set of meaningful 

FC states. Co-activation pattern (CAP) analysis is one such approach, which identifies clusters of time 

points marked by similar instantaneous patterns activation (or connectivity) via k-means clustering. 

Another popular state estimation framework utilizes hidden Markov modeling (HMM), a generative 

probabilistic approach that operates under the assumption that a sequence of observed variables (here 

BOLD fMRI time series) is generated by a sequence of hidden internal states. CAP analysis and 

HMMs represent two very different means to the same end—a time series labeled by instantaneous 

membership in a given brain state.  Despite their overlapping use-case, these methods have not been 

directly compared to one another, nor have they been tested in the context of recovering known 

transitions in cognitive state associated with the implementation of a block-design cognitive task. We 

provide these direct comparisons and evaluations against task-based ground truth in this work. We 

found that the use of instantaneous FC time series improved the accuracy of HMM-predicted states; 
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however, the data-driven CAP approach applied to the activation domain resulted in the best 

approximation of the changing ground truth cognitive states overall. When applied in resting state, 

this CAP framework detected four brain states that exhibited unique signatures of both activation and 

connectivity, and subject’s characteristic progressions through these states were found to be predictive 

of individual variation in cognitive, behavioral and personality traits.  

5.2 Introduction 

Resting state functional connectivity (rsFC) is a measure of the functional coupling between 

spatially distinct regions in the brain in the absence of explicit task demands. It has been shown that 

task-unrelated thought and behavior accounts for nearly 50% of our waking time (Killingsworth & 

Gilbert, 2010) and may even explain a much larger portion of individual neural variability than that of 

task-evoked cognition (Musall et al., 2019). For this reason, gaining a more complete understanding of 

the functional underpinnings of resting cognition is of paramount importance to the field of cognitive 

neuroscience. Without explicit stimuli to evoke a neural response, rsFC was traditionally thought of as 

“static” or unchanging throughout the entire fMRI scanning session. However, recent evidence 

suggests that rsFC may be decomposed into a set of meaningful and reproducible dynamic states 

(Chang & Glover, 2010; Sakoğlu et al., 2010), catalyzing the growth of the field of time-varying 

functional connectivity (TVFC).  

The classic method of time-varying state estimation centers around the use of a sliding window 

for estimating changing FC as a function of time, paired with k-means clustering to decompose the 
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series of time-progressing connectivity matrices into a set of k discrete brain states (Allen et al., 2014). 

While this method has proven useful for initial study of FC states, the sliding window paradigm is 

known to have several limitations, moving the field in the direction of windowless methodologies 

(Laumann et al., 2017; Lindquist et al., 2014b). 

One such windowless approach is the study of co-activation patterns (CAPs), which instead 

produces an instantaneous (i.e., pointwise) estimate of changing FC states. The standard CAP 

approach involves the choice of a seed region and the selection of an activation threshold for defining 

“high-activity” frames. For all timepoints in which activation in the seed region exceeds the selected 

threshold, activation values across all voxels or ROIs are extracted and aggregated across all subjects. 

Finally, k-means clustering is applied to this aggregated set of activation patterns to identify a set of k 

distinct CAPs, or brain states. Each distinct CAP is defined by the average activation signature of each 

timepoint in the cluster. Based on this formulation, the standard CAP approach is not fully 

instantaneous, as only a subset of high activity timepoints are considered. However, the CAP 

paradigm can be extended by applying the clustering learned from the high-activity frames to all time 

points, or by omitting the framewise thresholding of the time series and simply applying k-means 

clustering to all time points. The CAP approach has been applied in a variety of contexts (J. E. Chen et 

al., 2015; Liu et al., 2018), and certain variations on this method have been proposed, such as the iCAP 

method that includes a deconvolution step in attempts to distinguish between temporally overlapping 

CAPs (Karahanoğlu & Van De Ville, 2015). Recently, CAP analysis has been utilized to gain insights 

into the altered functional dynamics associated with ASD (Marshall et al., 2020). 
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While CAP analysis represents a purely data-driven approach, hidden Markov models 

(HMMs) provide a model-based alternative for instantaneous state estimation from fMRI time series 

data. The key assumption of HMMs is that a series of observed data are generated by an underlying 

progression of latent (i.e., “hidden”) states, which take on the form of a first-order Markov chain. 

Once model parameters (i.e., initial state probabilities and state-to-state transition probabilities) are 

estimated, the highest-likelihood progression of states under that model can be calculated. In the 

context of TVFC, BOLD activation time series serve as the observed data and the progression of 

underlying FC states is what the model seeks to estimate. Certain variations on the standard HMM 

have been proposed, including auto-regressive HMMs (HMM-AR and HMM-MAR) (Vidaurre et al., 

2018) and hidden semi-Markov models (HSMMs) (Shappell et al., 2021), each providing certain 

contextual benefits depending on the goal of the analysis at hand. In healthy control studies, HMMs 

have provided evidence for a hierarchical organization of time-varying connectivity states into two 

distinct meta-states (Vidaurre et al., 2017). HMMs have also shown utility for uncovering altered 

connectivity dynamics across a variety of clinical diagnoses including PTSD (Ou et al., 2015) and 

ADHD (Shappell et al., 2021). 

Until recently, BOLD activation signals were among the only available time series upon which 

instantaneous state estimators could operate. As part of the progression towards windowless TVFC 

methodologies several methods for estimating instantaneous functional connectivity have also been 

proposed, including edge co-fluctuation (ECF) (Esfahlani et al., 2020), multiplication of temporal 

derivatives (MTD) (Shine et al., 2015) and dynamic conditional correlations (DCC) (Lindquist et al., 
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2014b). Each of these methods derives an 𝑛 × 𝑛 functional connectivity matrix at each time point in 

the fMRI time series. In theory, state estimation approaches can be applied to such FC series to 

uncover the underlying progression of functional states responsible for the observed data in the 

connectivity domain, rather than the activation domain. However, to date such an analysis has not 

been performed, neither with an adapted CAPs approach, nor with HMMs. In the past, HMMs have 

been applied to time-varying state estimates of changing FC states derived from a sliding window + k-

means framework, but to the best of our knowledge HMMs have not been applied to time-varying 

functional connectivity data directly.  Beyond this, the existing instantaneous state estimation 

literature does not provide any analysis aimed at directly comparing the CAP and HMM approaches. 

Understanding the concordance of the data-driven CAP and probabilistic HMM state estimates 

would provide valuable contextualization of these methods in the larger field of TVFC; however, the 

lack of knowledge regarding the timings of functional state changes in resting data to serve as ground 

truth makes impartial comparisons of such methods difficult.  

In this work, we conduct a comparative analysis between the CAP and HMM approaches for 

instantaneous state estimation, using data from a block-design working memory task as a naturalistic 

ground truth. We apply CAP and HMM methods in both the activation and connectivity domains, 

using ECF, MTD and DCC estimates of FC as the baseline connectivity time series. We then apply the 

best-performing model to resting fMRI data to generate a set of discrete rsFC states, comment on the 

replicability of these states across scanning sessions within the same population and compare the 

resultant functional characterization of each state to results from prior rsFC decomposition studies. 
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5.3 Methods 

5.3.1 Data Description 

5.3.1.1 HCP Data 

In this work we utilize the Human Connectome Project (HCP) S1200 Young Adult dataset 

made publicly available through the Washington University and the University of Minnesota HCP 

consortium (http://humanconnectome.org). It is one of the richest collections of neuroimaging data to 

date, consisting of structural and functional MRI, behavioral assessments, and genotypes for 1200 

healthy subjects ages 22-35. A full description of the acquisition protocol can be found in (Van Essen et 

al., 2013). In short, all HCP fMRI data were acquired on a modified Siemens Skyra 3T scanner using 

multiband gradient-echo EPI (TR = 720 ms, TE = 33 ms, flip angle = 52°, multiband acceleration 

factor = 8, 2 mm isotropic voxels, FOV = 208 × 180 mm, 72 slices, alternating RL/LR phase encode 

direction). In this work, we leverage the repeating task/rest block structure of the working memory 

(WM) task data available in HCP as a natural ground truth to test the performance of each considered 

method in identifying the known transitions between the task and rest conditions. The best performing 

method was then applied in resting state fMRI to extract TVFC states.  

The HCP WM task consists of four repeating task/rest blocks, where each block is structured 

as follows: 27.5 seconds Task 1 (0-back), 27.5 seconds Task 2 (2-back), 15 seconds rest. Using the 

acquisition details outlined above, each WM task fMRI time series consisted of 405 volumes sampled 

every 0.72 seconds, for a total acquisition time of 4 minutes and 52 seconds. Two sessions of WM task 

http://humanconnectome.org/
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fMRI were acquired back-to-back, alternating between RL and LR phase encoding directions. We will 

refer to these as WM session 1 (RL) and WM session 2 (LR).  

Participants completed four total resting state fMRI scanning sessions (two sessions collected 

on each of two different days). Each resultant resting state fMRI time series consisted of 1200 volumes 

sampled every 0.72 seconds, for a total acquisition time of 14 minutes and 24 seconds. During the resting 

state sessions participants were instructed to keep their eyes open and fixated on a cross hair on the 

screen, while remaining as still as possible. For clarity, we will refer to resting state data from the first 

collection day as sessions 1A (RL) and 1B (LR), and similarly sessions 2A and 2B for those collected on 

the second day.  

5.3.1.2 Data Preprocessing 

Processed volumetric data from the HCP minimal preprocessing pipeline including ICA-FIX 

denoising were used. Full details of these steps can be found in (Glasser et al., 2013; Salimi-Khorshidi et 

al., 2014). Briefly, BOLD fMRI data were gradient-nonlinearity distortion corrected, rigidly realigned 

to adjust for motion, fieldmap corrected, aligned to the structural images, and then registered to MNI 

space with the nonlinear warping calculated from the structural images. Then FIX was applied on the 

data to identify and remove motion and other artifacts in the timeseries. These files were used as a 

baseline for further processing and analysis (e.g., 

MNINonLinear/Results/rfMRI_REST1_RL/rfMRI_REST1_RL_hp2000_ 

clean.nii.gz from released HCP data). 
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Images were smoothed with a 6 mm FWHM Gaussian kernel, and then resampled to 3 mm 

isotropic resolution. This step as well as the use of the volumetric data, rather than the surface data, were 

done to allow comparability with other large datasets in ongoing and planned analyses that are not 

amenable to surface-based processing. The smoothed images then went through a number of resting 

state processing steps, including motion artifact removal steps comparable to the type B (i.e., 

recommended) stream of (Siegel et al., 2017). Further details on motion artifact removal can be found 

in (Sripada et al., 2019). Lastly, spatially averaged time series were calculated for each of the 268 ROIs 

from the parcellation given in (Finn et al., 2015). 

For our analysis, we first considered the set of 966 subjects listed in (Sripada et al., 2019) that 

met the following criteria: structural T1 and T2 data, four complete resting state fMRI sessions, and 

<10% of resting state frames censored due to excessive motion (framewise displacement of 0.5 mm). 

From this set 922 subjects also had two complete WM task fMRI sessions, defining our final subset of 

subjects.  

5.3.2 Instantaneous State Estimators 

5.3.2.1 Co-activation Patterns (CAPs) 

 CAP analysis is a form of instantaneous state estimation that defines states with whole-brain 

activation patterns at each individual time point via k-means clustering. CAP analysis was first 

proposed with an initial temporal thresholding step involving the choice of both a seed region and 

activation threshold, and in this formulation only time points with suprathreshold BOLD signal in the 

chosen seed region were considered in the clustering step (Liu & Duyn, 2013). Subsequent analyses 
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have suggested omitting this initial thresholding step (Liu et al., 2013) as a means of decomposing the 

entire fMRI time series, rather than just a subset of high-activity frames, into a set of discrete states. 

Here, we employ the latter approach to generate state estimates at each time point and to allow for 

direct comparison of the CAP framework to all other tested approaches across the entire fMRI time 

series.  

 While the CAP approach was initially proposed for clustering of similar activation patterns, an 

analogous approach can be defined for clustering similar connectivity patterns. To achieve this, we 

apply k-means clustering to time series of instantaneous (i.e., pointwise) estimates of functional 

connectivity matrices.  

5.3.2.2 Hidden Markov Models (HMMs) 

  Let 𝑌𝑖1, . . . , 𝑌𝑖𝑇  denote the fMRI time series data, where each vector 𝑌𝑖𝑡 ∈ ℝ1×𝑛 represents the 

BOLD signal amplitude for each of n ROIs at time point t for subject i. Each 𝑌𝑖𝑡  is assumed to follow a 

multivariate Guassian distribution 𝑌𝑖𝑡 ∼ 𝑁(𝜇𝑠=𝑘 , 𝛴𝑠=𝑘), where the mean 𝜇 and covariance 𝛴 depend 

on the current state k at time point t. Let 𝑆𝑖𝑇  denote the latent (i.e., hidden) state at time point t for 

subject i. We denote the total set of fMRI time series data across all subjects and time points, 

𝑌𝑖1, . . . , 𝑌𝑖𝑇, by �̃� and the full series of accompanying state estimates by �̃�.  

 As with most traditional HMMs, our HMM framework makes the following assumptions: 1) 

Transitions between hidden states are assumed to take on the form of a first order Markov chain, 

meaning the state at time t depends only on the state at time t-1, and 2) the observed BOLD fMRI 
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signal vectors at each time point t are conditionally independent given the latent state process. In our 

framework, we fit one HMM model using the observed fMRI data across all subjects, �̃�. The number 

of states, k, that are fit by the HMM must be defined a-priori. In the WM experiments, with 

knowledge of the underlying ground truth structure of the cognitive task progressions, we fit each 

HMM to model k=3 states.  

 We fit all HMM models using the hmmlearn Python package 

(https://hmmlearn.readthedocs.io/en/stable/#). To generate the series �̃�, we concatenate the ROI 

time series across all subjects, resulting in a matrix of dimension (𝑇 ⋅ 𝑁) × 𝑛, where T is the total 

number of time points (T=405), N is the total number of subjects (N=922) and n is the total number 

of ROIs (n=268). All models were fitted using an iterative version of the Expectation-Maximization 

algorithm, in this context referred to as the Baum-Welch algorithm (Baum et al., 1970). Once all 

model parameters were estimated, the highest likelihood sequence of latent states was generated using 

the Viterbi algorithm (Forney, 1973).  

5.3.3 Instantaneous FC Time Series 

 We tested the utility of the CAP and HMM approaches when applied in both the activation 

and connectivity domains of fMRI time series.  Testing these methods in the activation domain is 

quite straightforward, as the methods are applied directly to the ROI activation time series. To test the 

performance of each state estimator in the connectivity domain, we compare across three 

instantaneous FC estimators: edge co-fluctuations (ECF), multiplication of temporal derivatives 

https://hmmlearn.readthedocs.io/en/stable/
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(MTD) and dynamic conditional correlations (DCC). Full descriptions of the ECF, MTD and DCC 

metrics can be found in Sections 4.3.2.1, 4.3.2.2, and 4.3.2.3, respectively.  

Briefly, each instantaneous FC estimator generates a connectivity matrix at each time point in 

the fMRI time series. The ECF can be interpreted as a calculation of the Pearson correlation that omits 

the averaging step, essentially preserving the frame-wise components of FC that define the static 

measure of FC between two regions computed over the entire fMRI time series. The MTD metric is 

formulaically similar to the ECF but operates on the temporal derivative, capturing the degree of 

functional coupling between pairs of regions at each fMRI time step. Lastly, the DCC is a variation of 

the multivariate GARCH model, which estimates the conditional correlation matrix at a given time 

point in the fMRI time series in terms of prior estimates of the conditional correlation as well as prior 

values of the time series itself. As described in Section 4.3.2.3, spatial dimensionality reduction was 

required to achieve computational feasibility of fitting the DCC models to each time series. 

Specifically, for each of the 8 subnetworks defined in (Finn et al., 2015) we computed the mean and 

variance time series across all ROIs included in each subnetwork, reducing the spatial dimensionality 

of the data from 268 to 16. This reduced subnetwork-level time series helped strike the balance 

between preserving the spatial and functional specificity of the data while also enabling the DCC 

model fitting to run in a reasonable amount of time.  
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5.3.4. Experimental Design 

 

Figure 5.1. Experimental pipeline.  
CAP analysis and HMMs were applied to the activation time series, as well as to each of the ECF, MTD, and 
DCC connectivity time series.  
 

We applied ECF, MTD, and DCC approaches as described above to fMRI time series data 

from WM Sessions 1 and 2 for all 922 subjects in our HCP dataset. Within each session dataset, 

instantaneous FC time series are concatenated across the entire set of 922 subjects. The resultant 

dimensionality for each method was as follows: 373,410 × 35,778 for ECF, 372,488 × 35,778 for 

MTD and 373,410 × 120 for DCC. Before employing the instantaneous state estimation 

procedures, we performed PCA dimensionality reduction to reduce the spatial dimension for both 

ECF and MTD datasets at all levels of post-processing (since the DCC data was already reduced to the 

subnetwork level, PCA dimensionality reduction was not necessary). Previous work suggests 50-150 
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PCs are sufficient for capturing robust inter-individual differences in functional connectivity (Sripada 

et al., 2019). Aligned with this recommendation, we generated low-dimensional representations of FC 

by retaining the top 100 principal components in each dataset. For the CAP approach, we applied 

pointwise k-means clustering on each of the activation and PCA-reduced (or subnetwork-reduced) 

connectivity time series. We repeated the k-means clustering procedure for values of k in the range [2-

10] and selected the optimal value of k for each dataset using the elbow criterion of the cluster validity 

index, computed as the ratio of within-cluster distance to between-cluster distance (Allen et al., 2014). 

HMMs were also fit to each of the activation, PCA-reduced ECF, PCA-reduced MTD and 

subnetwork-reduced DCC time series, and the most likely state progressions were estimated using 

HMM model parameters for each subject time series. HMM models were trained in WM Session 1 

data and applied to both WM Sessions 1 and 2 data, to evaluate the model’s ability to approximate 

ground truth state progressions (Session 1) as well as its generalizability to new data (Session 2). The 

experimental pipeline is depicted in Figure 5.1.  

 We evaluated the accuracy of the state estimation against the ground truth task condition for 

each combination of instantaneous state estimator and baseline time series using three common cluster 

evaluation metrics: homogeneity, completeness and NMI. Homogeneity is a measure of how 

homogeneous each cluster is given the ground truth labeling—a perfectly homogenous cluster would 

only contain samples from a single ground truth class. The completeness metric is essentially the 

inverse of the homogeneity metric—perfect completeness would indicate all samples from a given 
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ground truth class were members of a single cluster. Finally, NMI is a metric that measures the mutual 

dependence between two labelings of the same data, (U, V), given by: 

𝑁𝑀𝐼(𝑈, 𝑉)  =  ∑ ∑
𝑀|𝑈𝑖∩𝑉𝑗|

∑ 𝑈 ∑ 𝑉
𝑙𝑜𝑔

𝑀|𝑈𝑖∩𝑉𝑗|

|𝑈𝑖||𝑉𝑗|

|𝑉|
𝑗=1

|𝑈|
𝑖=1  (4.15) 

where |𝑈𝑖|, |𝑉𝑗| are the number of samples in clusters 𝑈𝑖 , 𝑉𝑗, respectively, and M is the total number of 

samples in the data. Each of these metrics ranges from 0-1, where 1 indicates perfect correspondence 

between the clustering and the ground truth labels.  

5.3.5 Application in Resting State 

After identifying the best-performing instantaneous state estimation pipeline in the WM task 

experiments, we apply this top pipeline to each of the four resting state fMRI scans (REST1A, 

REST1B, REST2A, REST2B) across the full set of 922 subjects. The functional signature for each of 

the k resultant states is defined by the cluster centroid activation pattern or connectivity matrix, 

depending on the method identified. Subsequently, clusters are matched across the four experimental 

replicates (i.e., scanning sessions) based on shortest Euclidean distances between the cluster centroids, 

and the reliability of the state centroids across these replicates is computed using the I2C2 metric 

(Section 3.3.2.3). We further characterize the resultant connectivity states with standard TVFC 

features including average dwell time (i.e., the amount of time spent uninterrupted in a given state), 

total occurrences of a given state, and specific state-to-state transition probabilities. 
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5.3.6 Connection to Phenotypes 

 We performed a regression analysis to assess the combined relationship between subject-

specific TVFC feature vectors, averaged across the four resting state sessions, and several neuro-

relevant phenotypes. Specifically, we consider ten cognitive metrics: a general factor of intelligence 

(G), generated from a bifactor model as described in (Sripada et al., 2020), processing speed, generated 

from factor modeling of three NIH Toolbox tasks as described in (Sripada et al., 2019), the five facets 

of personality given by the Revised NEO Personality Inventory (openness to experience, 

conscientiousness, extraversion, agreeableness, and neuroticism), and the three dimensions of 

psychopathology given by the Adult Self Report Scale (Internalizing, Attention Problems, 

Externalizing). We also included the covariates of age and gender. All features (besides the binary 

gender marker) were z-scored prior to the regression analysis, so the resultant model 𝛽 values could be 

interpreted similarly to correlation values. We used a Bonferroni-corrected 𝛼 = 0.005 significance 

threshold to identify significant relationships between our TVFC features and the ten cognitive 

phenotypes.  

5.4 Results 

5.4.1 Instantaneous Co-Activation Patterns are More Informative Than Co-

Connectivity Patterns in CAP analysis 

 We applied CAP analysis on ROI activation time series, as well as ECF-, MTD- and DCC-

derived functional connectivity time series. Resulting state-time plots are presented in Figure 5.2 and 
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accuracy measures computed against the ground truth states at each time point are reported in Table 

5.1. We observed that clustering of pointwise co-activation patterns was overall more informative than 

clustering of pointwise co-connectivity patterns. Specifically, CAP analysis performed on activation 

patterns resulted in about a three-fold increase in accuracy metrics over the next-best performing CAP 

pipeline operating on the ECF-derived FC time series (average homogeneity/completeness/NMI = 

0.122/0.123/0.123 vs. 0.032/0.060/0.044, respectively).  We found that the activation-based CAP 

analysis resulted in a clustering that not only segregated resting time points (State 3) from task-positive 

time points (States 1 and 2) exceptionally well, but that also discriminated between landmarks within 

the task condition, namely onests of Task 1 and 2 (State 2) conditions and points throughout the 

duration of the task. 

5.4.2  Connectivity Time Series Improve HMM State Estimation 

 We also fit HMM models to each of the activation and connectivity time series from WM 

Session 1 and used the fitted models to derive the highest-likelihood state progressions in both WM 

Session 1 and 2 data. This enabled evaluation of both the accuracy of the HMM predictions (in 

Session 1) and their generalizability to new data (in Session 2). Resulting state-time plots are presented 

in Figure 5.3 and accuracy measures computed against the ground truth states at each time point are 

reported in Table 5.1. We observed three main takeaways from the HMM results. First, we found that 

HMM state predictions on ECF estimates of instantaneous FC best recover the ground truth WM task 

structure. Second, we observed that HMM-derived states better approximated the ground truth state 

progressions than the corresponding CAP-derived states across all three instantaneous FC time series. 
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Finally, we found that all four HMM models generalize fairly well to new data, evidenced by the 

performance in the WM Session 2 data. Overall, our results indicated that the CAP procedure applied 

to the ROI activation time series yielded the best approximation of the ground truth structure of the 

WM task data and was therefore used as the analysis framework for the remaining resting state 

experiments.  

5.4.3 CAP Analysis Reliably Detects Four Distinct Brain States 

 We applied the CAP analysis pipeline to BOLD activation data from four distinct runs of 

resting state fMRI. Due to the increased number of time points in the resting state (1200 vs. 405 in 

WM), the dramatically increased dimensionality of the group-level dataset (1,106,400 × 268) 

precluded the generation of a full distance matrix required to compute the cluster validity index (CVI). 

Instead, we implemented the following procedure to identify the optimal number of states. We began 

with k=5, informed by the optimal number of clusters identified by the CVI in our prior analyses 

(Chapter 3, Chapter 4), and performed state matching across the four resting state replication 

experiments based on shortest Euclidean distances between the cluster centroids. The clustering at k=5 

did not yield a 1:1 match across session replicates, so we similarly tested the clustering at k=4, which 

did yield a 1:1 match across states. Moreover, visual inspection of the cluster centroids across session 

replicates indicated a unique activation signature for each state that was highly reliable across 

replicates, lending further support for the optimal clustering at k=4 (Supplementary Figure 5.1). This 

reliability was underscored by the high I2C2 score across session replicates (I2C2 = 0.97). Figure 5.6 

illustrates the temporal decomposition of the resting state data with respect to these four states.  
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Each state was characterized by the average cluster centroid across the four resting state sessions 

(Figure 5.4). As the CAP approach was applied on BOLD activation time series, cluster centroids 

correspond to activation patterns, rather than connectivity patterns. We found States 1 & 2 exhibited 

opposing activation patterns, where State 1 was characterized by increased activation across most 

networks and decreased activations in the default mode and medial frontal networks, and State 2 what 

characterized by lower overall activity across subnetworks and increased activity in the default mode 

and medial frontal networks. A similar relationship was seen between States 3 & 4: State 3 exhibited 

low amplitude BOLD signals throughout, with high amplitude signals in the sensory networks, 

especially the visual 1 network, and State 4 showed the opposite pattern—high activity overall and low 

activity in the visual 1 network.  

To enable direct comparison with the CAPs-derived states and the connectivity states derived 

in our prior analyses, we also generated connectomes to characterize each of the four resultant brain 

states. To do this, we identified all instances of five or more consecutive time points assigned to the 

same state, generated functional connectomes via Pearson correlation within these consecutive 

segments, and averaged the connectomes within each state. To emphasize the unique connectivity 

signature of each state, we subtracted the mean group connectome from each mean state connectome, 

characterizing each state by its deviation from the mean connectivity (Figure 5.5). State 1 was 

characterized by increased connectivity within and across the frontoparietal, medial frontal and default 

mode networks, as well as increased connectivity between the default mode/medial frontal networks 

with sensory/motor networks, in parallel with decreased connectivity between frontoparietal and 
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sensory/motor networks. State 2 was marked by decreased connectivity within the default mode 

network, and across the default mode network and the medial frontal, frontoparietal and subcortical 

cerebellar networks. State 3 was characterized by increased connectivity between the frontoparietal 

network and visual networks, whereas State 4 was marked by decreased connectivity between the 

visual networks and the frontoparietal, default mode and subcortical cerebellar networks. Notably, 

States 1 & 2 showed little characterization within the largest subcortical cerebellum network, whereas 

State 3 was marked by increased integration within this network, and State 4 was conversely marked by 

decreased integration (i.e., within-network connectivity) of the subcortical cerebellum. Overall, we 

observed repeated connectivity motifs that marked states derived by our activation- and connectivity-

informed segmentation frameworks in prior work (Chapter 3, Chapter 4), including seemingly 

coupled connectivity between the medial frontal and default mode networks that appear to oppose 

connectivity patterns of the frontoparietal network, as well as characteristic patterns of coupling/anti-

coupling between the frontoparietal/medial frontal/default mode networks and the sensory/motor 

networks. Importantly, these four states are also highly similar to the states identified in this same 

HCP dataset using the classic sliding window paradigm as reported in (Nomi et al., 2017). 

5.4.4 Discovered Resting States are Predictive of Cognitive, Behavioral, and 

Personality Traits 

 Lastly, we extracted TVFC features including state-to-state transition probabilities, dwell times 

and state occurrences for each subject (Figure 5.7) and performed a regression analysis to identify 

significant relations between our discovered states in rest and 10 neuro-relevant phenotypes. At a 
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Bonferroni-corrected ɑ=0.005 threshold, we identified significant relationships for five cognitive 

metrics: G, processing speed, attention problems, externalization, and agreeableness (Table 5.2). 

Specifically, we observed moderate relationships between the State 1 to State 3 transition probability 

and G (𝛽 = 0.061; p-value = 0.024), the State 1 to State 3 and State 1 to State 4 transition probabilities 

and processing speed (𝛽 = 0.071, 0.046; p-value = 0.004, 0.017, respectively), and State 2 to State 3 

transition probabilities and attention problems (𝛽 = 0.063; p-value = 0.024). Conversely, we found 

relatively strong relationships between the State 3 to State 1 and State 4 to State 3 transition 

probabilities and processing speed (𝛽 = 0.284, 0.323; p-value = 0.015, 0.042, respectively), the 

occurrence of State 3 and externalization (𝛽 = -0.212; p-value = 0.010), and both the dwell time and 

occurrence of State 1 with agreeableness (𝛽 = 0.303, -0.299; p-value = 0.005, 0.002, respectively).  

5.5 Discussion 

 In this work, we performed a comparative analysis of instantaneous brain state estimation 

approaches for assessing TVFC. Specifically, we compared the data-driven CAPs framework with the 

model-based HMM approach in both the activation and connectivity domains, through the use of 

three instantaneous FC estimators (ECF, MTD and DCC). We validated each combination of state 

estimator and baseline time series in a working memory task setting where ground truth transitions 

between cognitive states are known. Across this set of validation experiments, we observed that 1) 

data-driven clustering of instantaneous activation patterns enabled better approximation of the 

changing connectivity structure governed by the WM task structure than the alternative instantaneous 

connectivity patterns, 2) conversely, the accuracy of the HMM state predictions improved when 
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models were fit using instantaneous FC time series (estimated via ECF), rather than BOLD activation 

time series, and 3) overall, the activation-based CAP framework best recovered the underlying task 

structure of the WM time series. When applied to resting state data, this CAP framework detected 

four connectivity states that displayed excellent test-retest reliability across four sessions of resting 

fMRI, exhibited complex transition dynamics, and were highly consistent with the states uncovered by 

the activation- and connectivity-informed segmentation approaches described in Chapter 3 and 

Chapter 4. Our work provides a head-to-head evaluation of the foremost methods in the class of 

instantaneous state estimators in the context of a structured ground truth and presents converging 

evidence for a highly stable set of time-varying resting states across diverse methodologies.  

 This work is the first to conduct a direct comparison between the popular instantaneous state 

estimation methods of CAP analysis and HMMs, and, to the best of our knowledge, is also the first 

attempt to quantify accuracy of these frameworks against the natural ground truth of structured, 

block-design task fMRI. While HMMs were applied to data from a finger tapping motor task in prior 

work (Vidaurre et al., 2016), this prior study was performed in a much smaller sample (N=8 subjects), 

only attempted to localize discrete finger tapping events rather than sustained FC state changes and did 

not explicitly report any accuracy statistics for recovering expected ground truth state transitions. For 

these reasons, it is unclear how these results translate to the accurate detection of transient cognitive 

(rather than motor) states, as we expect in the resting state. Thus, evaluation of the performance of 

TVFC methods in structured block-design task fMRI as presented herein is advantageous, as it 

provides naturalistic examples of changing FC and is accompanied by well-defined temporal labels that 
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can serve as a ground truth progression of cognitive states against which accuracy statistics can be 

measured.  

 Importantly, this work is also the first application of HMMs in the connectivity domain. The 

use of HMMs in the study of TVFC is not new—HMMs have been used to decompose neuroimaging 

time series into sets of underlying brain states, and even to connect variations in the resultant state 

progressions to clinical diagnoses (Baker et al., 2014; Shappell et al., 2021; Vidaurre et al., 2017, 2018). 

However, all of these applications have been applied directly on the activation time series (both fMRI 

and MEG), rather than in the connectivity domain. We note that in one recent study, HMMs were 

paired with sliding window estimates of time-varying FC, but in that work the HMMs were applied to 

the state progressions derived from a sliding window + k-means approach rather than directly to the 

sliding window connectivity estimates themselves (Ou et al., 2015). Considering this context, our 

work represents an important new branch in the HMM-based TVFC literature.  

 This work further meets the moment of current TVFC literature by incorporating the very 

recently proposed ECF method (Esfahlani et al., 2020) in addition to more established instantaneous 

FC estimation methods (DCC (Lindquist et al., 2014a) and MTD (Shine et al., 2015)). In our 

previous work, the moment-to-moment estimates of FC generated by the new ECF framework were 

found to outperform the more established instantaneous FC estimators (Chapter 4), and we found 

this pattern continued in the current work. This result further underscores the utility of the ECF 

framework, a mathematically exact “temporal unwrapping” of the Pearson correlation metric. 

Moreover, we found the ECF to be computationally efficient and easy to implement, with the 
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additional advantages of being highly interpretable and familiar, due to its connection to the well-

known and commonly utilized Pearson correlation. Taken together, the performance, efficiency, and 

interpretability of the ECF suggests that future work aiming to localize instantaneous changes in 

functional connectivity should consider incorporation of this method.  

 Beyond the standard Gaussian HMM utilized in this work, other variations of the HMM 

framework have been applied in TVFC analyses. Early HMM-based studies of TVFC combined 

HMM and multivariate auto-regressive (MAR) models to define the HMM-MAR approach 

(Vidaurre et al., 2016, 2018). More recently, the hidden semi-Markov model (HSMM) has been 

proposed, which is analogous to the standard HMM with the added step of explicitly modeling dwell 

times for each state. HSMM analyses have shown utility for deriving brain states that capture 

attention-based differences in individuals (Shappell et al., 2019, 2021). Future studies may build on the 

work presented here by evaluating the accuracy of such variants of the HMM framework against 

block-design WM tasks and comparing to the baselines reported herein.  

 Despite the increase in performance afforded by the ECF in the context of HMMs, we found 

that the activation-based CAP approach best approximated the ground truth structure of the WM 

task overall. Specifically, we noted that this approach resulted in the best separation between Task 1 

and Task 2 (representing 0-back and 2-back working memory tasks, respectively), not only of the 

methods reported here, but of any of the methods evaluated within this dissertation. This result is not 

entirely surprising—Task 1 and Task 2 probe the same cognitive process, but to varying degrees of 

difficulty, therefore should evoke the same pattern of functional activity, but with varying strengths 
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(i.e., BOLD signal amplitudes). Such a pattern would be better recognized in the activation domain, 

rather than the connectivity domain, and this is consistent with the results presented across our 

varying analyses.  

There are a few key limitations to this work. Firstly, the dimensionality of the pointwise data 

precluded generation of a full distance matrix in order to utilize the CVI for selection of k. To work 

around this, we manually set k = 3 in the WM task experiments, based on knowledge of the ground 

truth structure of the data. For the application of CAP in rest, we used the optimal value of k selected 

by prior experiments utilizing the CVI (k=5) and decreased the value of k until a 1:1 matching of states 

was identified across the four experimental replicates, resulting in the selection of k=4. We found this 

approach to work well in practice, yielding states with unique connectivity signatures that exhibited 

high reliability across experiments (I2C2 = 0.97). Future work may consider other approaches for 

selecting the best value of k when the dimensionality of the data is exceedingly large. Secondly, the 

results of CAP and HMM analysis in the connectivity domain are affected by the limitations of the 

MTD and DCC methodologies discussed in Section 4.5. To reiterate those limitations here, the DCC 

results are limited by the necessary subnetwork-level summarization required to make the DCC 

estimation process computationally feasible. It may be useful to repeat these DCC analyses with a 

lower-dimensional brain parcellation, perhaps derived via the data-driven spatial ICA method. In CAP 

analysis of MTD, we observe that MTD estimates of instantaneous FC showed greater specificity for 

identifying transitions in FC states rather than distinguishing between sustained occupancy in a given 
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state. Thus, using MTD as a baseline time series for HMM state detection can lead to similarly lowered 

accuracy. 

In sum, we have provided a comparison of two popular methodologies for instantaneous brain 

state estimation from fMRI data—CAP analysis and HMMs. We apply these methods in the standard 

activation domain, as well as in the previously unexplored connectivity domain. We provide evidence 

that measures of instantaneous FC, specifically the ECF metric, improve HHM-derived state 

estimations, and observe that activation-centric CAP analysis best recovers changes FC evoked by 

changing cognitive task demands.  
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5.6 Figures and Tables 

 
Figure 5.2. Temporal alignment of states discovered via CAP analysis applied to fMRI BOLD activation 
time series and pointwise FC estimates derived by the ECF, MTD and DCC methods.  
Onsets of task conditions are marked by vertical lines: dashed for Task 1 onset, dotted for Task 2 onset, and 
solid for Rest onset.  
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Figure 5.3. Temporal alignment of states discovered via HMMs applied to fMRI BOLD activation time 
series and pointwise FC estimates derived by the ECF, MTD and DCC methods.  
Onsets of task conditions are marked by vertical lines: dashed for Task 1 onset, dotted for Task 2 onset, and 
solid for Rest onset.  
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Figure 5.4. Activation signatures for each of the four resting states discovered by the CAP approach.  
For each of the four resting state experiments, the activation signature for each state is defined by the centroid of 
the corresponding k-means cluster, and the mean is computed across the four session replicates to generate 
overall state activation signatures. Activation signatures for each of the four resting fMRI scanning sessions are 
provided in the Supplementary Material. (Subnetwork Abbreviations—MF: Medial Frontal Network; FPN: 
Frontal Parietal Network; DMN: Default Mode Network; SC: Subcortical Cerebellum Network; Mot: Motor 
Network; Vis1: Visual 1 Network; Vis2: Visual 2 Network; VA: Visual Association Network).  
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Figure 5.5. Connectivity signatures for each of the four resting states discovered by the CAP approach.  
For each of the four resting state experiments, connectomes are computed within consecutive runs of a given 
state (i.e. k-means cluster) and subsequently averaged across all subjects and again across all sessions. Here, the 
plotted connectivity signatures for each state show the deviation of the mean state connectivity from the mean 
connectivity across all subjects and sessions, computed by subtracting the average overall connectome from the 
average state connectome. (Subnetwork Abbreviations—MF: Medial Frontal Network; FPN: Frontal Parietal 
Network; DMN: Default Mode Network; SC: Subcortical Cerebellum Network; Mot: Motor Network; Vis1: 
Visual 1 Network; Vis2: Visual 2 Network; VA: Visual Association Network).  

 

 

Figure 5.6. Temporal decomposition of resting state fMRI data with respect to states discovered by the 
CAP framework across four resting state scanning sessions.  
As expected, there are no clear temporal patterns within or between subjects at rest, and due to the pointwise 
nature of the CAP analysis, state durations (i.e. dwell times) are short.  
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Figure 5.7. TVFC features extracted from resting states discovered by the CAP framework.  
Average A) transition probabilities of moving from State X (along rows) to State Y (along columns), B) dwell 
times, and C) number of occurrences, computed across all 922 subjects and four resting state fMRI sessions. 
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Baseline  
Time Series 

CAP HMM 

WM1 WM2 WM1 WM2 

Activation 
Homogeneity 
Completeness 

NMI 

 
0.122 
0.125 
0.124 

 
0.121 
0.121 
0.121 

 
0.038 
0.038 
0.038 

 
0.029 
0.029 
0.029 

ECF 
Homogeneity 
Completeness 

NMI 

 
0.040 
0.075 
0.055 

 
0.023 
0.044 
0.032 

 
0.054 
0.054 
0.054 

 
0.028 
0.028 
0.028 

MTD 
Homogeneity 
Completeness 

NMI 

 
0.013 
0.027 
0.019 

 
0.006 
0.011 
0.008 

 
0.019 
0.019 
0.019 

 
0.013 
0.013 
0.013 

DCC 
Homogeneity 
Completeness 

NMI 

 
0.009 
0.011 
0.010 

 
0.011 
0.013 
0.012 

 
0.026 
0.032 
0.028 

 
0.027 
0.033 
0.030 

Table 5.1 Clustering accuracy for CAP and HMM instantaneous state estimation approaches across all 
baseline time series applied in data from WM Session 1 (WM1) and Session 2 (WM2).   
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Feature 𝛽 coefficient p-value 

Dependent variable = G; Model p-value = 1.09e-06 

Gender 0.396 0.000 

State 1 to State 3 Transition Probability 0.061 0.024 

Dependent Variable = Processing Speed; Model p-value = 0.00054 

Gender 0.193 0.008 

State 1 to State 3 Transition Probability 0.071 0.004 

State 1 to State 4 Transition Probability 0.046 0.017 

State 3 to State 1 Transition Probability 0.284 0.015 

State 4 to State 3 Transition Probability 0.323 0.042 

Dependent variable = Attention Problems; Model p-value = 0.00145 

Gender 0.251 0.001 

State 2 to State 3 Transition Probability 0.063 0.024 

Dependent variable = Externalization; Model p-value = 2.62e-06 

Gender 0.275 0.000 

Age -0.093 0.006 

Occurrence of State 3 -0.212 0.010 

Dependent variable = Agreeableness; Model p-value = 2.38e-07 

Gender -0.297 0.000 
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State 1 Dwell Time 0.303 0.005 

Occurrence of State 1 -0.299 0.002 

Table 5.2. Ordinary least squares regression results for significantly predicted phenotypes (Bonferroni-
corrected significance threshold at 𝜶 =  𝟎. 𝟎𝟎𝟓). 
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5.8 Supplementary Material 

 
Supplementary Figure 5.1. Replication of resting states discovered by the CAP framework across four 
sessions of resting state fMRI.  
For each of the four resting state experiments, the activation signature for each state is defined by the centroid of 
the corresponding k-means cluster. (Subnetwork Abbreviations—MF: Medial Frontal Network; FPN: Frontal 
Parietal Network; DMN: Default Mode Network; SC: Subcortical Cerebellum Network; Mot: Motor 
Network; Vis1: Visual 1 Network; Vis2: Visual 2 Network; VA: Visual Association Network).  
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Supplementary Figure 5.2. Replication of connectivity signatures across resting states discovered by 
the CAP framework across four sessions of resting state fMRI.  
For each of the four resting state experiments, connectomes are computed within consecutive runs of a given 
state (i.e. k-means cluster) and subsequently averaged across all subjects. Here, the plotted connectivity 
signatures for each state show the deviation of the mean state connectivity from the mean connectivity across all 
subjects, computed by subtracting the average session connectome from the average state connectome. 
(Subnetwork Abbreviations—MF: Medial Frontal Network; FPN: Frontal Parietal Network; DMN: Default 
Mode Network; SC: Subcortical Cerebellum Network; Mot: Motor Network; Vis1: Visual 1 Network; Vis2: 
Visual 2 Network; VA: Visual Association Network).   
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Chapter 6 - Exploration of Spatiotemporal Informed 
Segmentation with Deep Learning 

6.1 Abstract 

 In Chapters 3 and 4, we have shown that data-driven informed segmentation approaches have 

significant utility for identifying time-varying changes in functional connectivity in both resting and 

task-evoked fMRI. Moreover, evidence presented across Chapters 3, 4, and 5 suggests that changes in 

the activation domain can accurately recover the boundaries between changing cognitive states, even 

more so than analogous changes in the connectivity domain. To date, most TVFC frameworks 

designed to operate in the activation domain rely mainly on linear relationships between regional 

activations and/or highly summarized measures of global activation change. Here, we propose a 

framework for spatiotemporal-informed segmentation. This proposed framework utilizes deep 

learning models, specifically recurrent neural networks, to generate future BOLD activation 

“snapshots” based on historical fMRI volumes and defines change points as predicted frames that 

deviate from the ground truth connectivity pattern significantly more than baseline. In this chapter, 

we describe the proposed method, include some preliminary proof-of-concept results, and present 

future directions for rigorous evaluation of this framework in line with that of our prior studies.  
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6.2 Introduction 

 Deep neural networks are a promising avenue of exploration for development of methods to 

objectively assess FC dynamics. The key advantage of deep learning in this context is its ability to 

automate extraction of complex, non-linear features from high-dimensional data. Currently, TVFC 

methods mainly consider linear correlations between ROIs over time, which could be a severe 

oversimplification of the actual functional integration of connected brain regions. Investigation of a 

neural network’s learned FC patterns can provide insights into these potentially complex functional 

relationships. Furthermore, specialized recurrent neural network architectures enable the retention of 

long-range temporal patterns, something that is not often explored by other TVFC methodologies. 

Another advantage of deep neural networks is that they allow for the integration of spatial 

relationships between the ROIs in addition to their temporal BOLD activation signatures.  

Recurrent neural networks (RNNs) are specialized deep learning architectures designed to 

handle sequential data, such as time series. RNNs perform the same task for every element of a 

sequence, where the output at each step is dependent on the “memory” from the previous steps. Long 

short-term memory (LSTM) networks are further specialized cases of RNNs that allow for long term 

dependencies, or in other words allow the “memory” of learned patterns at previous time points to 

persist across longer sequences, or likewise be methodically “forgotten” when they no longer serve 

predictions in the current instant (Hochreiter & Schmidhuber, 1997). Recently, an LSTM model 

(PredNet) was proposed for the computer vision task of predicting future video frames based on the 

current and previous frames (Lotter et al., 2017). Accurate automation of this prediction task is 
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especially relevant in the application of autonomous driving, in which the system must anticipate its 

surroundings in the next instant based on the current surroundings of the vehicle. Similarly, a system 

built to anticipate the next instant of FC over an fMRI time course can provide insights into neural 

dynamics.  

The objective of this work is to assess TVFC using a novel application of this deep learning 

approach. We hypothesize that dynamic shifts in FC will correspond to significant drops in next-frame 

prediction accuracy, reflected as a rise in the framewise mean squared error (MSE). When next-frame 

prediction accuracy is stable, one can infer that the resting state activations in the brain are following a 

pattern that is predictable, i.e., a single connectivity state is maintained. However, if there are true 

underlying dynamics in FC patterns during rest, one would expect a sudden departure from the 

model’s learned activation pattern when there is a distinct shift in connectivity states, resulting in a 

sudden increase in prediction error. Analyzing these patterns of volume-to-volume prediction errors 

will provide a robust approach for assessing TVFC with the highest possible temporal granularity. 

Specifically, we propose to integrate the resultant MSE series into our informed segmentation 

paradigm as an alternative approach for generating data-driven segments of stable connectivity in the 

spatiotemporal domain. Further, the convolutional layers of our RNN model can fully leverage the 

spatial resolution uniquely offered by fMRI, in contrast to the “spatially unaware” connectivity 

matrices that are classically used to study FC dynamics.  
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6.3 Methods 

 

Figure 6.1. Proposed experimental pipeline. 
Next-frame predictions will be generated across the fMRI activation time series using a variant of the PredNet 
LSTM model. The error series (MSE) associated with these predictions will be used for informed time series 
segmentation. 
 

PredNet was originally designed to handle natural videos, i.e., series of two-dimensional (2D) 

frames over time. Though theoretically fMRI time series can be thought of as 3D-analogs of these 

video data, several important considerations separate fMRI from natural image sequences. Videos are 

dominated by smooth transitions between frames whereas the time-evolving synchronization between 

brain regions, combined with the significantly increased framerate of fMRI acquisition (TR = 0.72), 

may cause these framewise transitions to be less smooth in fMRI. Furthermore, the localization of 

information and relationships between data points differs considerably between fMRI and natural 

images—a car in one area of a video may have no relationship with a tree in a separate area, however 

spatially distinct brain regions may be highly related to one another.  

With these considerations, we adapt the PredNet architecture to this domain-specific 

application. Namely, the architecture was adapted to not only handle 4D input (3D frames over time) 

but also expanded with 3D convolution, enabling the detection of functional activation patterns 

across all spatial axes of the fMRI volumes. We utilize the code base provided by the authors of 
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PredNet (https://github.com/coxlab/prednet) as the base architecture in this work, adjusting as 

necessary to fit our data and purposes. A full depiction of the proposed pipeline is provided in Figure 

6.1. 

6.4 Preliminary Results 

 The original PredNet model performed well on videos from dashboard-mounted car cameras 

(dash-cams), indicating the model is capable of learning complex temporal features. Following this 

example, the dynamic transition from FC state to FC state in fMRI is analogous to a concatenated 

series of distinct dash-cam videos. However, considering the fact that the hemodynamic response is 

intrinsically slow, state transitions may more closely resemble fading between unique videos in the 

sequence rather than an abrupt splicing. A preliminary analysis on both spliced (Figure 6.2a) and faded 

(Figure 6.2b) sequences of distinct dash-cam video clips indicates that PredNet prediction behaves as 

expected in both cases—the next-frame MSE spikes at the transition point and returns to baseline after 

exposure to 2-3 frames of the new scene. Across 83 pairs of randomly concatenated dash-cam videos, 

both the spliced and faded transitions had distributions of next-frame MSEs that significantly differed 

from that of stationary videos (Figure 6.2c).  

As a preliminary examination of the performance of PredNet on real resting fMRI data, we 

trained and tested the out-of-the box 2D PredNet architecture on windowed connectomes (window 

size = 30 TR) derived from HCP data. The resultant patterns of next-frame MSEs are somewhat 

unstable, likely stemming from the fact that transitions between windowed connectomes are not 

https://github.com/coxlab/prednet
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smooth (as they usually are between frames of a video), however, some evidence for connectivity state 

dynamics still exists in the form of MSE peaks (Figure 6.3). These results suggest TVFC transitions will 

be identifiable via patterns of PredNet next-frame prediction MSEs. 

Finally, we utilized the extended 3D-PredNet model to perform a preliminary experiment 

using only 43s (60 volumes) of resting state fMRI data from a subset of 100 subjects and trained the 

model over only 50 epochs. Our results show that even this modest training intermediate of our 

model, learned from a small fraction of the available data, can capture temporal FC patterns in fMRI 

data (Figure 6.4). 

6.5 Discussion and Future Directions 

 In this chapter, we present the intuition and preliminary results for a spatiotemporal-informed 

segmentation framework. This spatiotemporal-informed segmentation approach is analogous to our 

previously described activation- and connectivity-informed segmentation frameworks in that it 

leverages instantaneous data to identify connectivity change points, which ultimately define the 

boundaries of data-driven segments of the time series, but it has the additional benefit of leveraging 

information about the spatial orientation of the ROIs as well. LSTM architectures have been applied 

to fMRI time series for the purpose of change point detection in the past (Li and Fan, 2018), but these 

studies have not gone on to study the reliability or behavioral/cognitive significance of group-level 

states derived from this method. This previously demonstrated utility of LSTMs in this context, as 

well as the results from our preliminary experiments, suggest that the spatiotemporal-informed 
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segmentation approach will be useful for studying TVFC in rest and may generate new insights into 

the non-linear patterns of connectivity dynamics.  

 In future work, we plan to train models on the full set of HCP data, as outlined in the 

preceding chapters. Specifically, we plan to train a model on the WM Session 1 data and apply that 

model to both WM Session 1 and 2 data, as was done in the HMM approach described in Chapter 5. 

This serves as a sort of cross-validation method, enabling us to evaluate both the general performance 

of the model in identifying known state changes as well as its generalizability to new data. After 

evaluating model performance against the WM ground truth, we plan to similarly train a resting state 

model on the full set of subjects from Rest Session 1A and apply this model in all four resting state 

sessions. One major methodological challenge of this approach is the computational cost associated 

with training and testing of deep neural network models—even the preliminary model trained using 

only 100 subjects (~10% of all subjects) and 60 frames (5% of the entire resting state time series) 

required over 12 hours of training on a GPU-accelerated desktop (Nvidia GeForce GTX TITAN X). 

For this reason, we will use Amazon Web Services Cloud Computing to train the full models in a high-

performance computing environment. Beyond this, we propose long-term future work in this space 

exploring the use of transformer models (Vaswani et al., 2017), which have been shown to model 

sequential data more effectively than RNN architectures with the added benefit of lower training 

time.  
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6.6 Figures and Tables 

 

Figure 6.2. Patterns of next-frame prediction accuracies in dynamic video data. 
 Examples of next-frame predictions for spliced (a) and faded (b) video transitions show expected patterns of 
prediction MSEs. In samples of 83 videos the distribution of MSEs for both types of dynamic transitions were 
shown to significantly differ from that of stationary videos (KS test) (c). 
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Figure 6.3. PredNet prediction accuracies on windowed connectome frames.  
Predictions are relatively unstable as transitions between windowed connectomes are not smooth, however 
some evidence for connectivity state dynamics still exists (MSE peak). 
 

 

Figure 6.4. True and predicted brain activity.  
Preliminary results from training the 3D extension of the PredNet architecture on only 43 seconds of resting 
fMRI data.  
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Chapter 7 - Discussion 

7.1 Summary of Main Findings 

 In this dissertation, we introduce the informed segmentation framework—a novel approach 

for uncovering time-varying changes in functional connectivity in resting state functional 

neuroimaging time series. Broadly, this newly proposed approach centers around tailored 

segmentation of fMRI time series at candidate FC state change points, which are informed by various 

instantaneous representations of functional activation and connectivity.  The informed-segmentation 

framework serves as a data-driven alternative approach that bridges instantaneous and windowed 

methods for studying TVFC, in an attempt to mitigate the limitations of each while simultaneously 

leveraging the advantages of both.  

This dissertation also serves as a compendium of instantaneous, windowed, and segmentation-

based methodologies for assessing TVFC in resting state fMRI data. We apply rigorous evaluation of 

the accuracy of each TVFC approach against a standardized framework, which centers around the use 

of block-design task data as a naturalistic ground truth. As such, this work serves as the largest head-to-

head comparative study of existing TVFC methodologies to date.  

In Chapter 3, we present the activation-informed segmentation framework that is built upon 

FC state transition points estimated from changes in whole-brain functional activation. We found that 
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the activation-informed segmentation outperformed the conventional sliding window approach in 

accurately recovering time-varying connectivity structure evoked by changing cognitive task demands. 

When applied in resting state, the activation-informed segmentation method detected five brain states 

that exhibited distinct connectivity signatures, were highly reliable across experimental replicates, and 

were shown to be associated with individual variation in facets of cognition, behavior, and personality.  

In Chapter 4, we conduct an extensive comparative analysis of three instantaneous FC 

estimators (ECF, MTD and DCC), and further combine each instantaneous FC method with state 

estimation approaches, including two distinct variants of our newly proposed connectivity-informed 

segmentation framework. Our results suggest that ECF-generated estimates of instantaneous FC 

captured changing connectivity evoked by known cognitive processes better than those of the MTD 

or DCC methods, and that combining the ECF with our novel connectivity-informed segmentation 

paradigm provided the best reconstruction of the underlying WM task structure overall. When applied 

in the resting state, this ECF + connectivity-informed segmentation framework detected five recurring 

brain states that largely recapitulated those identified via activation-informed segmentation. This 

convergence in resting brain states detected via parallel, yet distinct, methodologies underscores the 

utility of informed segmentation paradigms, and similarly points to these states as being cognitively 

meaningful.  

In Chapter 5, we present a comparative analysis between data-driven and model-based 

approaches for instantaneous estimation of brain states, represented by the CAP and HMM 

approaches, in both the activation and connectivity domains. We observed that applying HMMs in 
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the connectivity (rather than activation) domain, specifically in conjunction with ECF-derived 

estimates of instantaneous FC, improved the prediction of underlying brain states. Conversely, we 

found that co-activation patterns outperformed co-connectivity patterns in discriminating between 

known cognitive states in the WM task, likely due to the nature of the increasing task difficulty, rather 

than cognitive task switching, in this specific task design. By applying CAP analysis in resting state, we 

identified four brain states that were characterized by short dwell times and fast oscillations, as well as 

similar connectivity motifs as states identified via informed segmentation approaches.  

 Finally, in Chapter 6, we introduce plans for a spatiotemporal-informed segmentation 

approach, which leverages recurrent neural network architectures to identify anomalous time points 

within the fMRI time series and generate tailored segments at these boundaries. We provide some 

initial proof-of-concept results supporting the future exploration of this framework.  

7.2 Emerging Themes 

7.2.1 Converging Evidence Across Diverse Methodologies Supports the 

Existence of TVFC During Rest 

 In this dissertation, we describe the results of three distinct TVFC pipelines, each with 

differing methodological considerations and baseline treatments of the fMRI data, that converge on a 

set of four to five recurring connectivity states within the resting condition. Across these 

methodologies, the resultant connectivity states exhibit several characteristic connectivity motifs. First, 

we find that most states are largely characterized by coherence or anti-coherence between the set of 
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medial frontal, frontoparietal or default mode networks and the visual/motor networks. This theme 

extended from the connectivity space (Chapter 3 and Chapter 4) to the activation space (Chapter 5). 

Second, we observed that many of these states were marked by a characteristic coupling in the patterns 

of default mode connectivity with motor/sensory networks and the medial frontal connectivity with 

motor/sensory networks, which appeared to oppose the connectivity patterns of the frontoparietal 

network with the motor/sensory networks. This motif was most evident in the ECF + connectivity-

informed segmentation framework (Chapter 4) but was also evident to lesser extents in the results 

from the other two approaches. Finally, we observe that many of the discovered resting states are 

characterized by changing patterns of brain integration (i.e., within-network connectivity) and 

segregation (i.e., cross-network connectivity).  This feature is predominantly observed in the 

connectivity states derived from the activation- and connectivity-informed segmentation frameworks, 

however, evidence for such patterns exists in the CAP-derived resting states as well.  

 Not only do we see a convergence across the methodologies tested within these collected 

works, but we also see convergence with states derived from sliding window approaches (Calhoun et 

al., 2014; Nomi et al., 2017) and HMM modeling (Shappell et al., 2021). The consequence of such 

divergent approaches resulting in such closely related states is multifaceted. First, it lends support to 

the informed segmentation paradigm as a whole. One of the main advantages of our proposed 

framework is its ability to significantly reduce the temporal dimensionality of the data compared to 

leading windowed and instantaneous approaches while still accurately localizing state change points in 

the fMRI time series. Demonstrating that the states derived by our informed segmentation approaches 
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mirror those generated by higher dimensional methods supports the claim that our proposed 

framework accurately and efficiently summarizes the data in a way that is relevant for uncovering 

changing connectivity states. Second, this convergence also suggests that the set of four to five resting 

states uncovered in this work, that are shown to be highly stable across fMRI sessions and TVFC 

methodologies, are meaningful and merit further study. This claim is underscored by the associations 

of our discovered states across a variety of behavioral and cognitive phenotypes. Finally, the 

convergence of results across divergent methodologies as well as across various domains of the fMRI 

time series provide compelling evidence for the existence of true time-varying functional states in the 

resting condition.  

7.2.2 Block-Design Task Data Can Serve as a Natural Ground Truth for 

Testing TVFC Performance 

 Another main theme throughout this dissertation is the importance of the evaluation of 

TVFC methods in the context of ground truth. In true resting state fMRI, the timings of changing 

functional states or cognitive processes cannot be known as they are not tied to any exogenous 

stimulus, therefore evaluation of TVFC methodologies remains a challenge. Many works describing 

new TVFC frameworks choose to evaluate their proposed methodology against simulated data, where 

the underlying connectivity structure can be controlled across time. While simulation studies provide 

some evaluational utility, it is difficult to clearly understand how performance in simulations translates 

into the resting state, wherein many factors about the underlying functional dynamics are still 

unknown and therefore impossible to mimic in structured simulations. Beyond this, simulation 
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parameters (i.e., simulated TR, length of time series, temporal scale of dynamic changes, strength of 

state transitions, occupancy in multiple states, stark or blurred state boundaries, etc.) can vary 

drastically from study to study, making it difficult to evaluate the performance of comparable TVFC 

methodologies directly.  

 In this work, we suggest the adoption of structured, block-design task-evoked fMRI as a 

natural ground truth for evaluation of TVFC methods. Here, we utilized the WM task from the HCP 

dataset, as we found several design elements of that task structure to be advantageous for our purposes. 

First, the length of the task and rest blocks (27.5 and 15 seconds, respectively) were sufficiently long 

and resembled previously reported timescales of time-varying states in rest (Allen et al., 2014; Nomi et 

al., 2017). Moreover, the inclusion of both 0-back and 2-back working memory task blocks in addition 

to resting blocks enabled the evaluation of the specificity of each method for identification of certain 

types of state changes, such as fundamental changes in cognitive state (Task → Rest junctures), as well 

as more nuanced transitions that represent changing strength of underlying cognitive processes (Task 

1 → Task 2 junctures). Specifically, we evaluated the accuracy of the final state predictions of each 

method considered throughout this work against the underlying ground truth task condition, and 

additionally evaluated the precision and recall of the change point analysis step of our activation- and 

connectivity-informed segmentation frameworks in identifying true junctures between known 

cognitive states. Finally, the entire HCP dataset is collected at a single site using a single scanner, 

preventing possible artifacts due to scanner calibration, and removing the need to control for site- or 

scanner-related variability. 
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Encouragingly, all methodologies tested throughout this work are shown to capture the 

changing connectivity structure of the WM task to some degree (Figures 3.3, 3.4, 4.2, 4.3, 4.4, 5.2, 

5.3). This result suggests that 1) changes in underlying cognitive processes elicit substantial changes in 

activation and connectivity structure of the BOLD fMRI data, and 2) such changes are identifiable via 

a variety of parallel TVFC approaches.  

A substantial contribution of this dissertation that we wish to highlight is the publication of 

standardized performance benchmarks for several of the top TVFC methodologies in one of the 

richest, publicly available neuroimaging datasets currently available. We encourage the use of such 

benchmarks for new methods proposed in the future to provide better contextualization of the 

proposed approach within the methodological landscape of TVFC, which is vast and continually 

evolving, as we’ve shown throughout this dissertation.  

7.3.3 Data-Driven Informed Segmentation Approaches Outperform Purely 

Instantaneous and Rigid Windowing Approaches  

 In this dissertation, we have presented an extensive set of comparative analyses between several 

established classes of TVFC methods, namely instantaneous FC/state estimators and sliding window 

methodologies, and our newly proposed informed segmentation framework, which serves as a hybrid 

between noisy instantaneous methods and rigid windowing approaches. Across these extensive 

benchmarking studies, the informed segmentation consistently outperformed both instantaneous and 

sliding window-based methods. This held true across several metrics, ranging from the percent 
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variance explained by a fixed number of principal components to accuracy of state predictions and 

precision/recall of task condition onset points.  

We found the activation-informed segmentation had the best performance overall, with an 

average precision of 0.72, average recall of 0.66, and average homogeneity/NMI between the resultant 

state predictions and ground truth labels of 0.280/0.195. The connectivity-informed segmentation 

framework exhibited slightly lowered performance compared to the activation-informed 

segmentation, with an average precision of 0.58, average recall of 0.66, and average homogeneity/NMI 

between the resultant state predictions and ground truth labels of 0.116/0.140. Interestingly, though 

the overall performance of the connectivity-informed segmentation method was lower compared to 

the activation-informed segmentation, we observed an increase in recall of Task 1 to Task 2 transitions 

from 0.57 in the activation-informed segmentation to 0.63 in the connectivity-informed segmentation 

framework. This result suggests that connectivity-informed segmentation approaches may be better 

suited than activation-informed segmentation approaches for identifying nuanced changes in 

cognitive processes. Further discussion on the difference in performance between activation- and 

connectivity- analyses is discussed in Section 7.3.4. In both cases, informed segmentation prevailed 

over the other comparable methods in their respective analyses.  
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7.3.4 Activation-Centric Methods Prevail Over Analogous Connectivity-Based 

Approaches 

 In a somewhat unexpected finding, we observed that activation-based methods outperformed 

the analogous connectivity-based approaches in two of three analyses. Specifically, we found that 

activation-informed connectivity outperformed connectivity-informed segmentation, and activation-

based CAP clustering outperformed the analogous connectivity-based pointwise clustering. Only in 

the context of HMMs did the inclusion of instantaneous connectivity estimates improve the state 

prediction of the framework overall.  

This result could potentially be attributed to the change in dimensionality when moving from 

the activation space (n = 268 ROIs) to the connectivity space (n = 35,778 edges). In the case of 

informed segmentation, summarizing global changes in moment-to-moment functional connectivity 

requires averaging over a much larger number of edge-specific values to generate the GCD series 

compared to the summarization over the ROI-specific activation changes to generate the analogous 

GTD. As such, strong changes across a small number of edges may not be as readily identifiable by our 

informed segmentation approach in the connectivity domain as a similar change in activations across a 

small number of ROIs would be in the activation domain.  

Beyond the change point identification within the informed segmentation, this discrepancy in 

dimensionality has implications in the way the activation and connectivity time series are represented 

for the CAP and HMM approaches. We found the dimensionality of n=268 ROIs in the activation 
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space to be manageable for both k-means clustering and multivariate HMM fitting, so activation time 

series were not dimensionality reduced. Conversely, we utilized PCA-based dimensionality reduction 

to make clustering and HMM fitting in the connectivity domain computationally feasible. In Chapter 

4, we report that the PCA-reduced feature set utilizing the top 100 PCs only captured ~30% of the 

total PVE across all instantaneous connectivity estimators. While initial experimentation did not show 

a significant decrease in performance in the clustering accuracy between the PCA-reduced data and 

the full vectorized connectome upper triangular, it is possible that this dimensionality reduction step 

had downstream effects that were not present in the unreduced activation data. Future work may 

consider testing other methodologies for reduced representations of connectivity matrices, including 

graph embedding approaches such as GraphWave.  

7.3.4 ECF Shows Promise for Instantaneous FC Estimation 

Though the activation-centric methods generally produced better reconstructions of 

underlying state structure in the WM evaluations, this is not to say that instantaneous connectivity 

time series are not useful as well. In fact, our evidence points to the contrary, especially in the context 

of HMMs. One clear theme that existed in the results from Chapters 4 & 5 was that ECF appeared to 

be the most promising methodology for estimating instantaneous FC. This assessment was not only 

based on the performance of the ECF across our studies, but also due to its computational simplicity, 

scalability to a large number of ROIs and direct connection to the popular and familiar metric of 

Pearson correlation. Taken together, the performance, efficiency, and interpretability of the ECF 
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suggests that future work aiming to localize instantaneous changes in functional connectivity should 

consider incorporation of this method. 

7.3 Broader Limitations 

 In addition to the specific limitations discussed in each chapter, there exist several limitations 

that apply to the whole of this dissertation that we wish to address. First, all clustering analyses in this 

work rely on the standard implementation of k-means clustering based on Euclidean distances. Prior 

work has suggested the use of alternative methods, including hierarchical clustering (Ou et al., 2015, 

2013) or k-means clustering paired with city-block distances (Allen et al., 2014). Early testing in our 

analyses did not point to increased accuracy in clustering when incorporating such methods and 

considering the number of moving parts already incorporated into our study designs, we chose not to 

introduce further degrees of freedom.  

Furthermore, we were limited by the availability of public data, specifically for block-design 

task fMRI to serve as our evaluation set. For this reason, all our benchmarks are computed exclusively 

with respect to the WM task of the HCP data. While this task contained several design elements that 

were advantageous for our purposes (Section 7.2.2), our performance benchmarks are limited to 

interpretation within the context of this task only. Adding benchmarks in the context of other tasks in 

future studies would serve to bolster our results, as well as provide a more specific understanding of the 

kinds of cognitive transitions each method is capable of detecting. However, care must be taken in the 

kinds of tasks utilized for performance benchmarking, as task changes on a timescale much shorter 
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than that of the WM data may be 1) difficult to identify reliably with the currently available 

methodologies and 2) may not translate well to true FC states within rest.  

Finally, all the analyses presented in this dissertation were computed with respect to the 

functional parcellation defined in (Finn et al., 2015). This had implications for the dimensionality of 

the data and the possible characterizations of the resultant states, which were limited by the 

subnetworks defined within this parcellation. Future work may explore how our results relate to those 

in similar pipelines that use other functionally derived parcellations, or data-driven alternatives such as 

spatial ICA (Calhoun et al., 2001).  

7.3 Impacts 

There are several important impacts of the work presented throughout this dissertation. Most 

consequentially, our work addresses several areas of need in the field of TVFC as presented in Section 

2.6. We have proposed two distinct, yet related, approaches for assessing TVFC within the larger 

framework of informed segmentation, which operate in both the activation and connectivity domains. 

This method enables data-driven identification of change points in the time series and results in 

tailored, variably sized segments of stable FC, enabling the identification of temporally changing 

patterns of connectivity without imposing rigid and arbitrary time scale demands. We also conduct a 

systematic assessment of the major existing methodologies for studying TVFC, which provides 

performance benchmarks and examines the strengths and weaknesses of each approach, both 

methodologically and based on their observed performance. Finally, we provide recommendations for 
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standardized benchmarking practices that will enable clear and fair comparisons across methodologies. 

We hope that researchers in the field of TVFC will utilize our newly developed informed segmentation 

framework in their own analyses to continue the robust validation of our methods, as well as to extract 

novel insights about time-varying patterns of rsFC in typical and atypical cognition. We believe that 

the results of our comparative analysis may help inform design choices in future TVFC studies, and 

hope that the standardized benchmarking approaches, such as the block-design task data utilized here, 

will be widely adopted in future assessments of both new and existing TVFC methodologies.  

7.4 Future Directions 

There are several branching paths for future research stemming from the results presented 

within this dissertation. Many of these have been discussed within their relevant chapters, so here we 

focus on a few remaining “high-level” directions. Broadly, these remaining directions can be 

categorized into two branches: methodological directions and experimental directions.  

7.4.1 Methodological Directions 

 In Chapter 6, we provide a brief introduction to preliminary work on an extension of our 

informed segmentation framework in the spatiotemporal domain of fMRI data. Specifically, we 

propose the use of a recurrent neural network to generate pointwise estimates of 3-dimensional fMRI 

frames at time t, using information extracted from time point t-1 and prior. Informed segmentation 

can then be performed on the resultant prediction error series, under the assumption that peaks in the 

prediction error correspond to a sudden change in the connectivity structure governing the data from 
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the model’s learned connectivity pattern to something new. While preliminary results suggest that 1) 

true changes in the connectivity structure of the data would elicit such behavior in the error series and 

that 2) the model can capture complex underlying connectivity patterns with some baseline degree of 

accuracy, more extensive applications of this framework are required to fully evaluate its performance. 

Immediate future directions in this space involve training and testing of deep learning models in WM 

data and evaluating the accuracy of change point detection with respect to ground truth changes in 

task condition. Beyond this, future work may also adapt and test more recent state-of-the-art deep 

learning models for handling sequence data, such as transformer architectures (Vaswani, 2017).   

7.4.2 Experimental Directions 

 As mentioned above, one of the overarching limitations of this work is the singular use of the 

HCP WM task data as a ground truth for evaluation of the methodologies considered throughout. 

While we have reiterated why the design of this particular block-design task is especially suitable for 

our purposes, validation of our results across a variety of changing cognitive processes and contexts is 

required to gain a holistic understanding of the benefits and limitations of each approach. One 

promising avenue for continued evaluation of these methods is in the context of passive naturalistic 

stimuli, such as watching a movie or listening to an audio recording (Betzel et al., 2020).  The use of 

these naturalistic stimuli provides the benefit of temporal alignment between subjects without 

imposing any explicit task demands, thereby more closely mimicking the kinds of cognitive variations 

(and associated connectivity changes) one might expect in a task-free resting state scan.  
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Thought probes provide another naturalistic framework that may be useful for testing the 

methodologies presented throughout this work. The thought probe framework can be implemented 

using experience sampling (Kucyi & Davis, 2014) or stream of thought narration (Sripada & Taxali, 

2020) within the otherwise standard resting state setting. The benefit of these approaches is their 

ability to localize spontaneous thought in time, and though they may not exactly replicate the stream-

of-consciousness progression that occurs in “pure” unprobed rest, they likely provide a closer 

approximation of resting state dynamics than other block-design tasks and would be worth exploring. 

The main caveat to the thought probe and passive movie watching frameworks is that these types of 

datasets are usually proprietary, and consist of only tens of subjects, compared to the almost 1000 

subjects publicly available in the HCP.  

Finally, another beneficial future direction of this work would be to apply the informed 

segmentation frameworks in resting state data from clinical populations. Such a study could examine 

the differences in the resultant states between patients and healthy controls, which we have shown 

through our HCP experiments exhibit highly reliable and replicable connectivity signatures. Not only 

would this provide further validation of our method, but it would also enable us to draw further 

insights into the clinical correlates of TVFC.  

 



 

187 

7.5 Conclusions 

 In this dissertation, we introduce a new data-driven approach for identifying time-varying 

functional connectivity in resting state fMRI data. This novel framework, termed the informed 

segmentation framework, bridges the existing instantaneous and windowed classes of methods, in an 

attempt to mitigate the limitations of each while also leveraging the advantages of both. We performed 

systematic and rigorous comparative analyses to evaluate the performance of our proposed framework 

against several existing TVFC frameworks and showed that our informed segmentation method 

outperformed existing methodologies in identifying known transitions between cognitive states in 

task. The activation- and connectivity-informed segmentation frameworks detected a convergent set of 

five time-varying connectivity states at rest that exhibited high reliability across experimental replicates 

and significant associations with various facets of human behavior and cognition. This work not only 

expands the methodological toolkit for the detection of TVFC in rest, but also provides valuable 

performance benchmarks across several popular classes of existing TVFC approaches that we 

anticipate will help shape the design of future TVFC studies.  
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