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Abstract 

Well-prepared data for predictive modeling often yields better performance, but 

preparing data is time-consuming and requires domain expertise. This is especially true 

in early warning systems, or time-series prediction tasks, where a model is designed to 

issue predictions at regular intervals even though the underlying data elements are 

collected at irregular intervals. One general approach to addressing this challenge, which 

has been adopted by multiple disciplines, is to transform the unevenly collected data into 

regular intervals and then use data from each time step to predict the outcome in the 

following time step. Broadly, this is referred to as discrete time survival analysis in 

statistics; in machine learning, this is called sequence modeling; and in econometrics, this 

is termed autoregression. 

Although much of the emphasis on time-series modeling in the literature is on 

algorithm selection, data preparation is an equally critical step because clinicians’ ability 

to understand a model’s predictions requires at minimum an understanding of the 

underlying predictors. Although several naive methods exist to convert irregularly 

collected data into regular data, such as carrying forward the most recent value, recent 

literature suggests that incorporating multiple summary statistics (e.g., mean, minimum, 

maximum) and expert-informed lookback periods (e.g., values from the past 6 hours) can 

help achieve state-of-the-art performance in early warning systems. Transforming data in 

this fashion is tedious and time-consuming but careful consideration of not only the 

variables’ perceived relevance but also the relevant time points can lead to optimal model 

performance. 

However, there is not a single correct way to prepare time-series data, and the 

process is heavily reliant on information known only to domain experts. Translating 

domain expert knowledge into code that can prepare data for modeling is both time-

consuming and error-prone due to its highly manual nature. Even when modeling code is 

published accompanying scientific manuscripts in the literature, data preparation code is 
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often omitted or not applicable across institutions. This barrier, essentially a design 

problem, has held up progress in numerous clinical domains where early warning systems 

are otherwise widely adopted. One such area is maternal care, where simple rule-based 

early warning systems are widely adopted despite poor performance. 

In this work, I first describe the current landscape of maternal early warning 

systems and survey commonly used data preparation tools in the R language ecosystem. 

I then examine the current state-of-the-art models for detecting postpartum hemorrhage, 

a complication consisting of excessive bleeding following childbirth. Finding state-of-the-

art models to perform poorly, I describe a “grammar” that translates key design decisions 

into an R package named wizard, which is short for windowed summarization for 

autoregressive data preparation. I demonstrate how wizard can be used to replicate 

prediction tasks in a widely used de-identified dataset, MIMIC-III, which contains clinical 

data from over 40,000 patients admitted to critical care units of the Beth Israel Deaconess 

Medical Center between 2001 and 2012. Lastly, I apply wizard to the problem of 

postpartum hemorrhage, using domain expert knowledge to train models that outperform 

state-of-the-art models that do not take repeated measurements into account. 
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Chapter 1 

Introduction 

1.1 The Daunting Task of Data Preparation 

Data preparation for developing clinical predictive models can consume a great 

deal of manual time and effort [1], [2]. How data are prepared can affect the patterns 

detected and subsequently model performance [3], [4], but are dependent on clinical 

application, knowledge of the underlying data, and modeling approach. This body of work 

takes a design science approach by first describing existing data preparation tools for 

time-series modeling, and then providing a new grammar to relate common components 

of time-series data preparation tasks to human-readable functions, akin to the grammar 

of graphics [5]–[7]. Datasets containing multiple variables and repeated measures are 

often ill-structured for prediction modeling and require transformation. Existing 

frameworks and preprocessing software have limitations when applied to clinical data. 

 In this body of work, I explore data science for clinical modeling from a design 

perspective. I evaluate existing tools and solutions intended for clinical data preparation 

and identify the need for a design interface layer for time-series data analysis. I introduce 

a design grammar, and a software implementation called wizard, to guide the co-

development of structured data for modeling, leveraging expertise from clinicians and 

data scientists. This grammar captures commonly desired attributes in time-series 

modeling and uses them as human-readable parameters used to build time-based feature 

sets. I demonstrate how to use this grammar to engineer features using a well-known and 

widely used de-identified dataset. I then apply the grammar framework to the prediction 

of postpartum hemorrhage, a severe complication of childbirth, using domain knowledge 

from clinical experts in obstetrics and obstetric anesthesiology. 



 2 

1.2 Area of Application 

Time-series models are commonly used as components of early warning systems, 

in which alerts are generated in response to patients exceeding a specified level of risk. 

In clinical care, one prominent area in which early warning systems are widely used is in 

the care of patients admitted to the hospital for childbirth, a time during which life-

threatening complications can occur. Despite the widespread use of early warning 

systems in maternal care, such systems generally rely on simple rules to generate alerts, 

a decision rooted in their historical calculation using pen and paper. 

Recent research suggests that such rule-based systems have a low positive 

predictive value and thus may subject users to excessive alerts, which can lead to alert 

fatigue [8], [9]. As a result, maternal early warning systems have much to gain through 

application of a time-series predictive modeling approach. 

With this as the primary rationale, prediction of postpartum hemorrhage, or 

excessive bleeding following childbirth, was selected as the area of focus for the data 

preparation design work described herein. Postpartum hemorrhage (PPH) is 

characterized by significant blood loss after childbirth. Maternal death attributed to PPH 

is among the most preventable causes of maternal mortality [10]. The cornerstone of high-

quality care for PPH is early detection and timely intervention [11]. Predicting PPH more 

accurately than current state-of-the-art systems may be possible but will require 

preparation of temporal EHR data and application of predictive modeling approaches that 

consider several factors as compared to only a handful considered by current systems. 

1.3 A Designed Approach 

Working with clinical domain experts and scientific literature pertaining to PPH, we 

identify an initial set of clinically relevant predictors for training a model to predict PPH. 

We then categorize these sets of predictors into 3 categories: baseline predictors, time-

varying predictors, and cumulative predictors. Through further elucidation from clinical 

domain experts, we identify key issues related to the timing of the predictors. 

Using this information, we then develop an integration layer, which we term a 

grammar framework, to facilitate collaboration between an analytical expert who 
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understands the raw data and a clinician with domain expertise. This framework is 

intended to constrain the menu of the data preparation options and accelerate the process 

of data preparation. This is accomplished by supporting a shared understanding of the 

available data preparation options between data and clinical domain experts through a 

software package developed in the R programming language. Descriptors used to create 

structured modeling variables are transparent, and this framework supports 

reproducibility of methods across projects and institutions. 

Additionally, the software package supports both small- and large-scale hardware. 

When computers have multiple cores and sufficient memory to hold multiple copies of 

that data, parallel processing can be used to speed up data analysis. In the presence of 

computational constraints, particularly limited memory, our software package supports 

chunking to partition the raw data into smaller chunks that can be processed serially. 

Additionally, chunking can be combined with parallel processing when the number of 

computational cores outpace the requisite memory required to hold multiple copies of the 

data. 

1.4 Contribution to Science 

The key contribution is the development of a design framework, referred to as 

wizard and implemented in an R software package, that facilitates time-series data 

preparation using a standardized grammar. This makes predictor descriptors more easily 

transportable across institutions, allows for rapid prototyping and reproducibility, and can 

reduce seemingly complex predictor descriptions to a simple set of options, easily 

understood by collaborating domain experts. 

I demonstrate the use of this framework on a de-identified dataset to show that it 

can achieve similar performance to existing frameworks using very little code and clear 

predictor definitions while handling a large number of predictors. I then apply this to 

inpatient maternal care to evaluate how much state-of-the-art models can be improved 

upon. The resulting model outperforms contemporary early warning systems using only 

EHR data after data preparation performed with input from clinical domain experts using 

the wizard software package.  
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1.5 Overview 

In Chapter 2, I describe the relevant background for this project. Complexities in 

clinical decision-making contribute to the cognitive burden faced by clinicians. Health 

information systems have emerged to reduce the cognitive burden by distilling large 

volumes of data into clinically actionable information. Maternal care at a hospital is a 

unique experience because it represents one of the rare times that healthy adults are 

admitted for around-the-clock care. Because constant monitoring is required, maternal 

early warning systems have proliferated as a safety net to alert clinicians of potential 

adverse events. These alert systems largely rely on rule-based thresholds that only 

consider the most recent data elements, which can cause them to generate alerts in the 

presence of a single abnormal value. These systems are often highly sensitive, meaning 

that they can detect patients who will go on to experience a bleed, but not highly specific, 

leading to false alarms and consequently alert fatigue. Clinical prediction modeling is a 

subfield of machine learning that focuses on developing models that synthesize multiple 

data elements to predict clinical outcomes. Following expert-informed data preparation, 

the application of clinical prediction modeling to maternal care may yield better models. 

Chapters 3, 4, and 5 are standalone scientific manuscripts that describe different 

aspects of this project. Thus, each contains an introduction that expands upon the 

information in this introduction (Chapter 1) and the background (Chapter 2). Each also 

includes a list of co-authors who assisted with revisions and will be listed as co-authors 

on resulting manuscripts. 

In Chapter 3, I evaluate state-of-the-art models from the literature for predicting 

postpartum hemorrhage to serve as a benchmark for subsequent work. These models 

are intended to predict postpartum hemorrhage at a single point in time, when a patient 

is first admitted to the labor and delivery ward. We find that these state-of-the-art models, 

which performed well in clinical data from a decade ago, do not work well in our 

contemporary patient population at Michigan Medicine. 

In Chapter 4, I describe the motivation and development of a novel software 

package written in the R programming language and known as wizard, short for windowed 

summarization for autoregressive data preparation. Retrospective clinical data is often 

collected at irregular intervals, contains implicit missingness, and different types of 
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variables. Transforming these data into features while capturing changes over time can 

be time-consuming and complex. We introduce a framework to parameterize a shared 

understanding between clinical experts and analysts. This framework uses easily 

understandable verbs to transform database data into a data structure ready for algorithm 

application such as statistical and machine learning methods. We apply this framework 

to a deidentified public clinical dataset, MIMIC-III, to evaluate performance. 

In Chapter 5, I build on recent work in the area of predicting postpartum 

hemorrhage to develop early warning system models. I use the wizard data grammar 

framework from Chapter 4 to build a dataset where each row captures a patient’s state in 

twenty-minute time steps continuously over each patient encounter. Informed by domain 

experts, we apply a gradient boosting machine algorithm to predict postpartum 

hemorrhage throughout each patient encounter, finding that postpartum hemorrhage can 

be predicted more accurately when the model can incorporate information from after 

delivery as it becomes available. 

The discussion (Chapter 6) summarizes our overall findings, the contribution to 

science, the strengths and limitations of our approach, as well as potential future 

directions for the development and application of the wizard software package. 
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Chapter 2 

Background 

2.1 Clinical Early Warning Systems 

Early warning systems (EWS) are used to predict the risk of an adverse outcome 

for an individual at multiple time points during an at-risk period. When early warning 

systems use clinical prediction models to generate these predictions, we refer to these as 

EWS models. EWS models stand to be beneficial in clinical settings where the outcome 

is missed by clinicians due to either having a rapid onset, such as when patients are not 

under direct evaluation by a clinician when the outcome occurs, or slow onset where 

clinicians may not recognize a gradual decline in clinical status. EWS models have shown 

good model performance in predicting sepsis [12]–[21], acute kidney injury [22]–[26], and 

other acute conditions that are challenging to identify in a timely manner [27], [28]. 

Despite these advances in EWS modeling approaches for identifying clinical 

deterioration and organ failure, most have not been translated to maternal care. Though 

many early warning systems may be expected to be collinear to some degree—failure of 

one bodily organ (e.g., liver) often is a risk factor for failure of others (e.g., heart and 

kidneys)—pregnancy is a unique physiological state in which the usual clinical cues do 

not apply. Outside of elective surgery, delivery of a baby is one of the few times a 

generally healthy adult arrives at the hospital for inpatient care. Pregnancy-related 

complications include hemorrhage, sepsis, pre-eclampsia, and eclampsia, which are 

serious though rarely lead to death. Because of physiological changes related to 

pregnancy, pregnant women on average have a higher resting heart rate, lower blood 

pressure, and a higher respiratory rate as compared to non-pregnant adults [29]. Thus, 

vital signs and laboratory results that may be considered abnormal in non-pregnant 

patients may represent normal physiology in pregnancy. 
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The primary reason that advances in other clinical areas have not been translated 

to maternal care is that the development of EWS models requires complex, time-

consuming data preparation work that is not easy to transport between clinical domains. 

Unlike computer code used to train predictive models, which is often published alongside 

scientific manuscripts, code used to prepare data is rarely shared. The lack of widely 

available data preparation code has been identified as a threat to the reproducibility of 

artificial intelligence-driven diagnostic systems more generally [30]. Perhaps more 

importantly, lack of this code means that each EWS modeling project must rely on custom 

code, which means that the amount of work required by the programmer to represent a 

given variable may substantially impact the way in which variables are ultimately 

represented. 

2.2 Early Warning Systems in Maternal Care 

 Because of the high worldwide incidence of postpartum (after delivery) 

complications attributed to delayed recognition, maternal care has been a major focus 

area for early warning systems over the past decade. The National Partnership for 

Maternal Safety (NPMS, based in the United States) and the Confidential Enquiry into 

Maternal and Child Health (CEMACH, based in the United Kingdom) have helped 

facilitate the early detection of maternal morbidity through their endorsement of early 

warning systems. In 2012, CEMACH endorsed a modified early obstetric warning system 

(MEOWS) [31] and in 2014, the NPMS recommended the adoption of the Maternal Early 

Warning Criteria (MEWC) [32]. MEOWS and MEWC both consist of simple rules that flag 

abnormalities in the underlying clinical variables. These variables include vital signs, pain 

assessment, physical exam findings, and laboratory values (Table 2.1). Abnormalities in 

any of these components are considered an early warning of postpartum complications 

and thus represent a stopping point at which a patient must be assessed by a clinician 

(Figure 2.1). 

The simplicity of these EWS criteria has advantages. The criteria are readily 

interpretable by clinicians and relatively easy to implement within the electronic health 

record (EHR). In 2018, the University of Michigan implemented an automated notification 

system based on the MEWC in response to the national guidelines [9]. Based on the 
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finding that the original MEWC criteria resulted in an alert every 9 minutes [8], which is 

untenable in terms of the workload imposed on clinical care, the original criteria were 

modified and implemented using a technology named AlertWatch Obstetrics (AWOB). 

However, even in the AWOB criteria, the underlying notion remains; an alert is triggered 

by a single sustained abnormal value. As a result, the simplicity of criteria-based early 

warning systems comes at the cost of a low positive predictive value, where many of the 

alerts represent false positives. Despite threshold adjustments to reduce frequent alerts, 

these models still demonstrate low positive predictive values. Excessive alarms are 

known to cause fatigue, increased workload, and can contribute to ignoring alarms 

altogether [33]. This added workload without the added benefit can cause mistrust in 

automated systems. 

2.3 A Comparison of Existing Rule-Based Maternal Early Warning 

Systems 

 Maternal early warning systems were originally implemented using clinical rules to 

identify patients in need of further clinical evaluation. A modified early obstetric warning 

system (MEOWS) was one of the first implementations of a maternal early warning 

system [31], which was adopted by institutions in a form requiring scores to be calculated 

using pen and paper. This was followed by the maternal early warning criteria (MEWC) 

[34], which was introduced as a simpler successor to MEOWS as a bedside calculation. 

Instead of requiring a composite calculation, MEWC simplified the criteria to trigger  

evaluation by meeting only one of several criteria. Recognizing computerized tools with 

more complex criteria could be implemented without the need for clinicians to initiate 

them, in 2018 AlertWatch Obstetrics (AWOB) was designed and implemented at the 

University of Michigan to notify clinicians immediately if the predefined criteria were met 

[9]. Considered one of the first of its kind, it coupled the afferent ability of detection with 

the efferent ability for notification using in-house, pre-existing pager systems to notify 

clinicians of high-risk patients in real-time. While data are limited to support the 

widespread implementation of electronic early warning systems, prior works suggests 

they may play a role in maternal care [35]. 
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 Differences between input variables across maternal EWSs are shown in Table 

2.1. MEOWS used measures readily available in a nursing assessment including 

respiratory rate, blood oxygen level, temperature, blood pressure, heart rate, pain 

assessment, and neurological status. MEWC then introduced oliguria (abnormal urine 

output volume) and removed temperature and pain score. AWOB used a combination of 

the measurements used in the previous two systems but introduced lab results and shock 

index. 

 

Table 2.1: Comparison of input variables 

 MEOWS, 
2012 

MEWC, 
2014 

AWOB, 
2018 

Respiratory Rate X X X 

SPO2 X X X 

Temperature X  X 

Systolic BP X X X 

Diastolic BP X X X 

Heart Rate X X X 

Pain Score X   

Neurologic Status X X  

Oliguria  X X 

Shock Index   X 

Hematocrit   X 

Glucose   X 

Platelets   X 

 

Figure 2.1 shows the ranges used for each of the systems and how they identify 

increased risk. MEOWS uses a three tier color-coded system for most of the variables. A 

single red marker or two yellow markers trigger evaluation. MEWC thresholds were 

simplified to using only a two-color coding so any individual measurement could trigger 

evaluation if found outside the ideal range. AWOB, because it was automated, was able 

to reintroduce additional complexities, with a three-color system but adjusting the 

individual thresholds due to an increase in triggers [9]. Conditional logic was introduced 
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to add requirements of magnesium infusion for oliguria triggers. Additionally, a shock 

index of ≥ 1.3 accompanied by low systolic blood pressure would trigger an alert. These 

systems show a progression from complex to simple, and then complex again as the 

infrastructure matured and enabled automation. While these systems have been 

generally well-accepted, they leave room for improvement when compared against 

advances in early warning systems found in other inpatient areas due to their low 

specificity. 

 

Figure 2.1: Maternal EWS variable thresholds 

 
Note: RR = respiratory rate, SPO2 = pulse oxygen saturation, Temp = body temperature, SBP = systolic blood pressure, 
DBP = diastolic blood pressure, HR = heart rate, pain = pain score, Neuro = neuropathy, Olig = oliguria, SI = shock 
index 
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 A drawback of criteria-based alerting systems is the lack of consideration for 

differences in physiology between patients. Differences in baseline vital signs and 

laboratory values means that a heart rate that would be considered abnormal for one 

patient may be within the expected range for another patient. These thresholds, selected 

through expert consensus in the field, also suffer from low positive predictive values. In 

comparison, more advanced mathematical models may perform better if the training data 

can be constructed effectively and with input from clinical domain experts. 

2.4 Data Preparation Methods 

In recent years, researchers developing maternal early warning systems have 

focused their attention on identifying better predictors of maternal morbidity with 

mathematical modeling techniques [36]–[38] while incorporating the automated 

notification of risk to care providers [9]. Postpartum hemorrhage represents one of the 

most preventable forms of maternal morbidity and mortality. An increase in data collection 

has made more complex approaches to prediction modeling feasible in maternal care. 

Preparing data to develop prediction models is a time-consuming but necessary step in 

prediction modeling [39], [40], but well-prepared data can often lead to better results [41], 

[42]. Despite this, standardized implementations of data preparation methods are not 

widely available [43]. 

Clinical data commonly contain unevenly spaced data, repeated measurements, 

and sparse data. These characteristics require special attention to data preparation when 

applied to early warning systems. While the transformed representation of predictors 

largely depends on domain expertise, outcome relevance, and algorithm requirements, 

authors who publish their transformation methods describe a broad range of methods 

[13], [14], [22], [23], [25]–[28]. 

Several factors need to be considered when preparing clinical data. In EWS 

models, domain experts must determine when to start and stop making predictions 

relative to the at-risk period. They must also determine at what interval to make 

predictions based on the available infrastructure (e.g., how frequently does the 

infrastructure allow scores to be recalculated on eligible patients) as well as the lead time 

required for timely intervention.  
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The relevant amount of time in the past, or lookback period, must be considered 

as well as how to break this lookback period into smaller sections using windows to 

describe smaller periods of time. For example, Tomasev et al. captured data up to five 

years in the past but split it up into 48 hours, 6 months, and > 6 months [22], while Lee et 

al. identified 8 significant points throughout the hospitalization to serve as markers for 

splitting windows of time [26]. 

 Window transformations, when reported, can also differ greatly from model to 

model and are commonly used when there are repeated measures within one or more 

windows. For example, Delahanty et al. chose to capture the first, last, mean, minimum, 

max and trajectory for each window [14], while Koyner et al. used maximum values for 

some variables and number of occurrences within each window for others [25]. 

When preparing data, implicit missingness often becomes explicit, which 

depending on the algorithm or outcome, may require application of imputation methods. 

For example, Delahanty et al. imputed all missing numeric measures with -9999 to 

indicate they were missing [14]; this approach, while problematic in regression models, 

can work in tree-based models because it introduces the possibility of splitting criteria that 

introduce missing values on one side and non-missing values on the other. Harutyunyan 

et al. on the other hand chose “normal” baseline values [27], which makes the assumption 

that if a value is not recorded it must be normal. Koyner, Deist, and Lee chose to impute 

medians for continuous measures and modes for categorical variables [25], [26], [28]. 

Additionally, Lee et al. specifically designated variables that were 1-5% missing to be hot-

deck imputed, a process that selects random values from existing values [26]. 

Based on the outcome, domain experts must determine a lookahead period, or 

amount of time into the future to evaluate for a specific event. Tomasev chose 48 hours 

[22], while Koyner chose 12 hours ahead [25], Mohamadlou chose 12-72 hours [23], all 

to detect acute kidney injury (AKI) while Downing chose 48 hours [12], Nemati chose 

between 4 and 12 hours [13], and Delahanty chose 1 to 24 hours [14]  for suspected 

infection. This broad range of lookahead values is indicative of the imprecise nature of 

such a determination as well as differences across clinical outcomes. 
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There are many data design decisions involved in preparing data for modeling. 

While there are similarities in approaches, many methods used remain unpublished or 

highly specific to variables used in model development.  

2.5 Maternal Care Machine Learning Models 

There have been two large-scale studies published recently to predict adverse 

outcomes in maternal care. Venkatesh et al. developed multiple models to predict 

postpartum hemorrhage with EHR data available at the time of admission [36]. This model 

was developed using a de-identified dataset with high discriminative performance of up 

to 0.93. The other large-scale study authored by Escobar et al. focused not only on 

postpartum hemorrhage but multiple maternal adverse events [37]. However, it failed to 

identify patients with postpartum hemorrhage. These studies lend to the notion that 

training more sophisticated models should be possible. 

2.6 Data Preparation Tools 

Some major challenges in developing machine learning models are the inability to 

readily prepare data for modern early warning systems. As described in Section 2.4, 

authors developing machine learning models must reinvent the wheel for each institution 

to prepare EHR data. As described further in Section 4.5, existing time-based data 

preparation tools in R fall along a spectrum of two extremes; low-level feature extraction 

tools that focus on representing time-series or lagged variables and forecasting packages 

that primarily aim to model trends in a single variable over time (e.g. stock market) rather 

than separate predictions for separate patients. 

2.7 Algorithms 

There are many algorithms to choose from when developing a prediction model 

using binary outcomes. An algorithm is a set of instructions which generate a set of rules 

based on data processed through it. They can vary from simple statistical algorithms like 

logistic regression to more complex algorithms like neural networks, each having their 

own advantages and disadvantages.  
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2.7.1 Linear Models 

 Logistic regression [44], which is the most commonly used statistical algorithm is 

an extension of the generalized linear model (GLM). Like linear regression, an outcome 

is fitted to a linear combination of predictors, except with logistic regression a logit function 

restricts predictions to between zero and one. Coefficients for the predictors can then be 

interpreted as the difference in predicted values--either log-odds for raw coefficients or 

odds ratios for exponentiated coefficients--for each unit change in the predictor variable. 

The model predictions are calculated in terms of the probability of the outcome occurring. 

 Variations of logistic regression include ridge and lasso regression. They both use 

penalization methods to adjust coefficients of the model. Ridge, also known as ridge 

regression, reduces collinearity of variables and variables that do not have an association 

with the outcome by “shrinking” coefficients. Coefficients for collinear variables share the 

weight as they are penalized, and coefficients approach zero as more penalty is applied. 

Lasso (least absolute shrinkage and selection operator) regression takes a different 

approach to this problem. While coefficients in ridge regression can approach zero, lasso 

can actually set them to zero as more penalty is applied. By zeroing out coefficients and 

thus eliminating certain variables, lasso regression serves as a variable selection method 

on top of being a prediction method. Lasso commonly handles collinearity of variables by 

selecting a single variable within collinear group of variables and setting the others’ 

coefficients close to or at zero. Thus, a major difference between these methods with 

respect to collinear variables is that ridge regression places weight more equally on 

collinear variables and less weight on any given variable, while in lasso regression, 

coefficients are disproportionately assigned to a subset of collinear variables while 

eliminating others. 

 Support vector machines, when applied to binary outcomes, are closely related to 

logistic regression and classify outcomes by dividing a dataset into two classes using a 

hyperplane [45]. A hyperplane is a multidimensional line that maximizes the margin 

between training points in each class and the hyperplane. While SVM is related to 

regression, it is often extended through the use of kernel transformations (a set of 

mathematical functions) to form non-linear boundaries between classes. 
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2.7.2 Non-linear Models 

 K-nearest neighbors is a clustering algorithm designed to classify observations into 

groups [46]. It works by assigning a class to unclassified points based on the proximity 

(defined in a few different ways) to points which are already classified. Based on a number 

of neighboring points, K, a majority vote based on already classified points are calculated 

which determine the class of an unclassified points. This can be computationally 

expensive to calculate as the numbers of observations and dimensionality increases. 

The rule-based maternal early warning systems in Section 2.3 are in fact decision 

trees applied on only a few predictors and determined by expert consensus, however, 

tree-based algorithms can be used to build a model through a process where optimal 

variables and splits are selected using computational criteria (e.g., Gini gain). Tree-based 

algorithms are essentially a chain of if-else statements strung together as rules. Each rule 

split is chosen based on cut-offs which produce maximum separation between subgroups 

and minimum variability with consideration of the outcome. Variables with the largest 

separation are at the top followed by others in order of the most separation. The algorithm 

stops when subgroups reach a minimum size or there is no further improvement in 

performance following additional splits.  Each terminal node uses the distribution of 

outcomes in the training set to determine predictions. Trees are prone to overfitting so a 

process known as cost-complexity tuning prunes branches of the tree by using tree 

complexity as a penalization measure [47]. 

A random forest algorithm is an extension of decision trees in that it uses an 

ensemble of decision trees to build more robust models less prone to overfitting compared 

to simple decision trees [48], [49]. The random forest algorithm works by created many 

decision trees using a random subset of predictors on bootstraps (i.e., random samples 

with replacement) of the data. Predictions are then averaged to provide a final summative 

prediction.  

While random forest builds a series of independent trees, boosting machines build 

trees that are trained in an interdependent manner. Trees are built in a successive order, 

applying more weight on observations which were difficult to classify and reducing weight 

on observations which were easy to classify forcing the algorithm to focus on them in 

subsequent trees [50]–[52]. Boosting trees do not require imputation; instead they select 
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decision splits based on the branch that most closely resembles an existing value using 

other variable splits. Hyperparameters provide flexibility for model tuning but can heavily 

influence performance, which often makes a large grid search necessary for optimal 

performance. 

Neural networks produce a nonlinear model using intermediary hidden layers 

expressed as linear combinations of the original predictors (or the previous layers if there 

are multiple hidden layers). Neural network without hidden layers are simply logistic 

models [53]; thus, the hidden layers are responsible for representing non-linearity through 

modeling of interactions between variables. Similar to gradient boosting machines, neural 

networks can progressively learn from poor predictions. However, instead of using 

boosting to accomplish this, neural networks rely on backpropagation to progressively 

learn from errors. 

Which modeling approach to choose can depend on the outcome prevalence, the 

underlying data, and the level of complexity required. Linear methods may be preferred 

to prevent overfitting when the number of observations is inadequate to use a non-linear 

approach. Non-linear models may be preferred when variables interact with one another 

or may not be expected to have a linear relationship. For example, as age increases, 

patients may tend to have more comorbidities, and this can be accounted using methods 

that implicitly handle interactions or by explicitly including the interactions in a linear 

model. Similarly, considering human anatomy as a system of systems, one organ system 

may impact another in a crescendo of events. For example, when blood pressure drops, 

heart rate often rises to compensate. A common practice is to use multiple modeling 

approaches to determine what the optimal performance would be and choosing the model 

with the right mix of performance and transparency. In a broad application of algorithms 

on a large number of datasets, boosted trees, random forests, bagged trees, support 

vector machines, and neural nets outperformed many other algorithms used [54]. When 

specifically looking at clinical data, support vector machines were the most commonly 

used algorithm, while random forest was found to be best performing across the studies 

which published the results using more than one algorithm [55]. 
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Chapter 3 

External Validation of Postpartum Hemorrhage Prediction 

Models Using Electronic Health Record Data 

 

This chapter was co-authored with Alissa Carver, Hyeon Joo, Kartik K. Venkatesh, J. 
Eric Jelovsek, Thomas Klumpner, and Karandeep Singh. 

 

3.1 Introduction 

Postpartum hemorrhage (PPH) is the leading cause of severe maternal morbidity 

and among the most preventable causes of maternal death in the United States [10]. 

Delayed recognition and inadequate response to clinical warning signs contributes to a 

majority of these deaths [11]. Although many risk factors for PPH have been well-

characterized [56], contemporary maternal early warning systems have generally relied 

upon simple rules (e.g., elevated heart rate) to identify women at risk of PPH. Such 

alerting systems have been shown to be highly nonspecific because alerts flagging 

patients with elevated heart rate, for example, can occur for reasons unrelated to PPH 

such as uncontrolled pain [8], [9]. Thus, future alerting systems will need to rely on 

prediction models that consider several contextual factors beyond individual vital signs. 

Recently, Venkatesh and colleagues developed models to predict PPH using the National 

Institute of Child Health and Human Development (NICHD) U.S. Consortium for Safe 

Labor (CSL) dataset [36]. Using a combination of statistical and machine learning 

methods, four models were trained to predict PPH upon admission, defined as estimated 

blood loss ≥1000 mL within 24 hours of delivery, using data from 152,279 deliveries 

between 2002 and 2008. The CSL models had high discriminatory ability, with C-statistics 

between 0.87 and 0.93 across the consortium. If these models prove to be effective in 
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contemporary settings when implemented within the electronic health record (EHR), they 

have the potential to reduce maternal morbidity when linked to targeted interventions. 

Since the CSL models were developed, several changes related to the 

measurement of PPH have emerged that may affect their implementation. The 

prevalence of PPH has increased in the U.S. from 2010 to 2014, even after adjusting for 

known risk factors [10]. This mirrors similar increases in PPH prevalence from the 1990s 

[56], and taken together, the rising prevalence suggests improved recognition of PPH as 

well as a higher risk population of pregnant women. Spurred by recent recommendations 

by the American College of Obstetrics and Gynecology that recognize quantitative blood 

loss (QBL) as a more accurate method for measuring blood loss, the rising adoption of 

QBL has led to much higher estimates of PPH [11], [57], [58]. 

QBL methods may classify milder cases as PPH that would previously not have 

met criteria, and these differences in measurement may adversely affect the performance 

of models that were originally developed to predict EBL when applied to a setting using 

QBL. The change in model performance due to changes in case-mix and outcome 

definitions has been broadly termed as “dataset shift” [59]. Dataset shift can occur for a 

multitude of reasons [60], and its occurrence can lead to lower performance during 

external validation [61]. This has been recognized as a threat to the deployment of 

machine learning models in a recent Food and Drug Administration action plan [62]. Our 

objective was to externally validate the CSL models in a contemporary setting using 

predictors derived from the EHR and PPH measured by QBL methods. Due to known 

differences between the CSL data and our study cohort, we further compared the original 

CSL models against models that were refit using our EHR data. 

3.2 Methods 

3.2.1 Study Cohort 

The University of Michigan Von Voigtlander Women’s Hospital is a tertiary care 

academic women’s hospital with approximately 4,600 deliveries per year. Our study 

cohort included women aged 18 or older who delivered an infant between February 1, 

2019 and May 11, 2020 (Figure 3.1). Deliveries were excluded if the estimated gestational 
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age at birth was less than 22 weeks, if quantitative blood loss data was not documented, 

or if no prenatal records were available. Women without prenatal records were excluded 

because the model would have insufficient information to make accurate predictions. 

EHR data collected for this study included delivery information, maternal 

characteristics, medication administrations, vital signs data, and laboratory results. Data 

were collected for the time period between the estimated date of conception and the first 

collection of vital signs on the labor and delivery unit. This was to ensure sufficient time 

for conditions present on admission to be observable in the EHR. Diagnostic data, 

including comorbidity data, was identified using International Classification of Diseases-

10 (ICD-10) codes, which replaced ICD-9 codes at the University of Michigan in 2015.  

Postpartum hemorrhage was defined as the documentation of QBL of ≥ 1000 mL 

in the 24 hours following delivery [63]. In February 2019, the University of Michigan 

implemented a protocol to quantify blood loss routinely for all deliveries. This study was 

approved by the University of Michigan Institutional Review Board (IRB), which waived 

the requirement for informed consent. 

3.2.2 Model Validation 

We used a three-step process to externally validate the original CSL model in our 

dataset [61]. We first evaluated the extent to which the original development cohort was 

related to our study cohort. Second, we evaluated the performance of the original CSL 

models in our cohort. And third, we refit models using the CSL variables in our study 

cohort to evaluate the extent to which the models could be improved in our cohort. 

Step 1. Assessing the relatedness of the CSL cohort and our study cohort 

We evaluated the relatedness of the cohorts qualitatively by comparing the 

distribution of predictors and outcomes. Although quantitative methods have been 

proposed to compare cohorts, these rely on having access to both cohorts [61]. Because 

we did not have access to the development cohort, we opted to compare cohorts 

qualitatively. 
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Step 2. External validation of the CSL models in our study cohort 

Details regarding the original CSL prediction models and the CSL cohort have 

been published previously [36], [64]. We mapped the 55 predictors from Appendix 5 used 

in the original CSL prediction models to our EHR data [36]. This mapping process was 

performed in collaboration with the original study authors to ensure high fidelity of our 

predictors with the original CSL model definitions. To examine the plausibility of our 

mappings, we further compared the observed risk factor prevalence derived from our 

EHR data with published national estimates. Our final variables and how they were 

identified within our data set can be found in Supplemental Table 3.8. 

We assessed discrimination using the C-statistic, which estimates the probability 

with which a model correctly distinguishes between higher and lower risk patients [65]. 

We qualitatively evaluated model calibration by comparing a loess curve comparing 

continuous predicted probabilities to the observed risks. A well calibrated model is one 

that does not over- or underestimate risk across the full range of predictions [66], [67]. 

Step 3. Refitting CSL models using our study cohort 

To evaluate the extent to which the differences in the CSL development cohort and 

our study cohort could affect model performance, we compared the original CSL models 

against refit models using our study data. We used the same algorithms used in the CSL 

models: logistic regression with and without lasso penalty, random forests (RF), and 

gradient boosting machines (GBM). To evaluate the out-of-sample performance of the 

refit models, we used 10-fold cross-validation. The dataset was randomly divided into 10 

folds. A model was developed using 90% (9 out of 10 folds) of the data and evaluated in 

the remaining 10% (1 out of 10 “evaluation folds”). This process was carried out 10 times 

until each of the folds was used for evaluation. In aggregate, the performance in the 

evaluation folds was used to estimate out-of-sample performance for the refit models. We 

assessed both model discrimination and calibration for the refit models. 

3.2.3 Missing Data 

Bagged tree models were used to non-parametrically impute missing values for 

continuous variables [68]. Education, which was a required predictor in the CSL models 
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but missing in a large proportion of our patients, was imputed with the median value. 

Binary variables, such as the presence or absence of diagnoses during pregnancy, were 

considered absent if not documented in the EHR. 

3.2.4 Sensitivity Analyses 

Our academic hospital’s incidence of PPH, assessed by QBL, is higher than that 

reported in other cohorts, which could affect the performance of the CSL models. To 

evaluate the impact of differing thresholds on the prediction of PPH, we carried out 

sensitivity analyses that considered alternate definitions of PPH based on thresholds of 

1500 mL, 2000 mL, and 2500 mL of QBL. 

3.2.5 Statistical Software 

R 4.0 was used to conduct all analyses [69]. We used the h2o package (v3.30) for 

the refit prediction models [70]. Discrimination, calibration, and threshold performance 

were visualized using the runway package [71]. C-statistic confidence intervals and 

comparisons were calculated with bootstrapping (1,000 replicates for 95% CI and 2,000 

replicates for comparison) using the pROC package [72]. Our code is publicly available 

on GitHub [73]. 

3.3 Rationale for Study Design 

Electronic health record data collected at unevenly intervals often contains 

repeated measurements, duplicate sources, and vague predictor descriptions (e.g., 

“baseline”). This can lead to ambiguity in descriptions of the data preparation techniques 

and requires clarification when replicating findings. This section describes study design 

decisions, in a detailed narrative form, from data acquisition through modeling intended 

to provide a thorough understanding of why specific choices were made around study 

design when a subjective lens was required for task completion. 

3.3.1 Data Acquisition 

Data was sourced from the Research Data Warehouse (RDW) hosted by Michigan 

Medicine using Structured Query Language (SQL) through both Microsoft Database 
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Management Studio and R packages DBI and dbplyr, which provide support for Open 

Database Connectivity (ODBC) connections within R and thus allow most of the data 

preparation code to remain within the R code repository. 

The cohort date range was selected based on the implementation of quantitative 

blood loss (February 2019) and ended based on the current data available at the time 

minus thirty days to account for billing delays (May 2020). Hospitalizations were filtered 

based on the requirement that a patient’s age was 18 or older and at least one 

measurement of QBL was captured. This decision was made on an assumption drawing 

from knowledge from clinical domain experts that even a normal delivery is accompanied 

by some degree of blood loss. Thus, if no QBL was recorded in the chart, this was most 

likely because the person involved in the delivery may not have been trained to calculate 

and record QBL, such as a midwife, rather than being a marker of insignificant blood loss. 

Hospitalizations were also removed if there were no data recorded between admission 

and one year prior because if there were no prenatal records for a patient, the model 

would have had insufficient information to make accurate predictions at the time of 

admission. Finally, hospitalizations were excluded if the gestational age of the fetus was 

less than 22 weeks, the minimum gestational age at which neonatal resuscitation is 

offered at our institution. 

Based on input from a database analyst and clinical experts on the research team, 

candidate variables from database tables were identified. In some cases, there were 

duplicate sources for some variables (e.g. Group B Streptococcus [GBS] colonization was 

present in both diagnoses and lab results). Some variables of interest were extracted from 

more than one source (e.g. GBS colonization from both diagnoses and labs, vitals from 

both flowsheets and Physiobank). These variables were selected, and in some cases 

combined, based on the guidance of clinical experts. For example, vital signs are first 

collected in Physiobank and only become accessible from within electronic health record 

flowsheets after verified by a nurse. In a review, prior cases of women experiencing 

severe postpartum hemorrhage at our institution, abnormal vital signs were often not 

recorded in flowsheets because adverse events occurred shortly after the collection of 

vital signs (in Physiobank) but before they could be verified (in flowsheets). Thus, we 

opted to use vital signs from Physiobank to give models timely data, even if it carried the 
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potential to be unreliable because it had not been verified by a nurse. Database tables 

that were identified to contain variables needed for predictor development were extracted 

for the cohort specified above, including all data from one year prior to admission up until 

discharge. Tables retrieved included demographics, encounters, insurance, BMI, 

perioperative case times, diagnoses, clarity social history, lab results, medication 

administrations, procedures, clarity flowsheets, Physiobank, Charlson comorbidities, and 

Elixhauser comorbidities. 

3.3.2 Preparation 

Patients can either arrive at the hospital experiencing signs of spontaneous labor 

or they can be scheduled for induction, usually in the early evening. In our research 

database, arrival time, which is the variable closest to the beginning of the hospitalization, 

could be prior to the admission time if patients go through triage (e.g., in spontaneous 

labor) or are checked in early for induction, or it could be following the admission time if 

patients are late for their induction. To be sure the model would capture sufficient 

information to make accurate predictions, we opted to capture the first vitals which 

occurred after the earlier of two time points (i.e., either arrival to the hospital or admission). 

 The dichotomous outcome was calculated by summing QBL from delivery to 24 

hours after delivery, also known as primary postpartum hemorrhage. In addition to the 

primary outcome ≥ 1000mL, bleeding of ≥ 1500, 2000, and 2500mL were calculated as 

part of a sensitivity analysis (Section 3.2.4). Because the proportion of patients 

experiencing postpartum hemorrhage at our institution is substantially higher than other 

public reports of PPH, one likely explanation is that our use of QBL overestimates PPH 

(or other reports underestimate PPH). To account for potential systematic overreporting 

of PPH in our data (or systematic underreporting in other sources), we evaluated the PPH 

models using a higher threshold of PPH to see if the models could reliably identify more 

extreme cases of PPH.  

After the initial predictor mappings were established with our core team, we 

contacted the authors of the Venkatesh et al. study to obtain access to the original models 

and to check our variable mappings. Given the use of clinical descriptions to describe the 

temporal aspects variables (e.g., “baseline”), we additionally required clarification of the 
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timespan for variables included in the model. Based on conversations with the original 

study team, we learned that variables in the original cohort from which the models were 

constructed had a flag indicating whether a value was “available upon admission.” Any 

value containing this flag was considered eligible for inclusion in the model. However, 

many of these values were manually abstracted using information from the clinical 

documentation, up to and including the “History and Physical,” an intake note recorded 

by the obstetrician. Because the documentation may occur several hours after a laboring 

patient is admitted to the hospital, information may be considered as “available upon 

admission” even if it actually became available after admission. This is in contrast to the 

mechanism we used to determine which values were eligible for inclusion, which was 

based on a comparison of timestamps from when information was recorded with the time 

of arrival to the hospital. Additionally, disclosure text available for the original study in 

which the models were developed mentions that there was no precise definition for any 

of the predictors used, suggesting that the predictor design methods were left up to the 

participating institutions across all 10 sites. 

The core research team met every week for two years to discuss topics including 

cohort selection and exclusion criteria, variable to predictor mappings, and appropriate 

descriptions for the predictors used in the original study based on a combination of 

perceived clinical relevance to the outcome (PPH) at the point of admission and literature 

or organizations describing generally accepted definitions of variables such as 

reVITALize [63]. In cases of subjective or ill-defined terms (e.g., pre-eclampsia and pre-

eclampsia without severe features), definitions were selected based on a consensus of 

clinical experts on the team. Cases in which there was no source data present was 

documented for each data table collected. We opted to exclude patients with missing 

prenatal records because models would not be expected to make accurate predictions 

when key data elements were absent. 

The diagnoses table was split into two temporal groups: pre-pregnancy and from 

the time of pregnancy to admission. This was determined by the estimated date of 

gestation recorded in the database. In cases where the estimated gestational age was 

unknown, it was imputed to 280 days (40 weeks). This table was further divided into 

sources: active problem summary, resolved problem summary, deleted problem 
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summary, present-on-admission billing, billing, medical history, and visit diagnosis. Based 

on reliability factors determined by clinical expert consensus, criteria were determined for 

what was considered past medical history and present conditions. History consists of 

`Resolved Problem Summary`, `Medical History`, `Visit Diagnosis` prior to admission. 

Present (to pregnancy) conditions include `Active Problem Summary`, `Billing` between 

22 weeks after the estimated date of conception (EDC) and admission or `Present on 

Admission` and recorded between admission and discharge. The latter was to match the 

original study as closely as possible despite a lag likely present between condition onset 

and observation. The diagnoses were then filtered based on the criteria present in 

Supplemental Table 3.7 for both ICD-10 codes, regular expression, or a combination of 

both, which were the result of clinical expert guidance to match labels present in the 

original study as closely as possible. 

The BMI table was used to engineer both weight and BMI at both the pre-

pregnancy an admission. Pre-pregnancy predictors were defined by estimated 

gestational age of less than 20 weeks and admission weight was defined as any weight 

collected between 7 days prior to admission and the delivery date. The median value of 

all variables was calculated when repeated measures were present. 

The only variables used for this study from the labs table was the results of the 

Group B Streptococcus (GBS) test and hemoglobin. The last value prior to admission was 

used as a predictor for GBS colonization. A significant complication in capturing this 

predictor was the way it was collected in the database. Instead of a simple positive or 

negative value indicating its presence, it is a categorical portion followed by text within 

the same field. To accurately measure whether GBS colonization was present, regular 

expression was used to capture several different parts of the column value to confirm 

positive matches for the lab test. Hemoglobin was captured if present between arrival and 

delivery to ensure inclusion of any hospital intake values only relevant to the delivery 

admission. Both results from internal and external labs were used to capture this 

predictor. A hemoglobin of < 10 was later used in combination with diagnoses to capture 

anemia of a patient using two different data sources. 
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Antepartum hospitalizations, described as admissions prior to the delivery 

admission, were captured by looking at the encounter table and filtering to inpatient visits 

between the estimated gestation start and arrival time for delivery admission. 

Medications used in the model were antenatal steroids and magnesium sulfate 

prior to when the first vitals were taken on a patient, which was a time point used to identify 

admission intake. Use of antenatal steroids was defined by capturing any administration 

of betamethasone or dexamethasone using regular expression of the medication name. 

Magnesium sulfate was captured in a similar way, however, the only text needed to 

describe this administration is ‘magnesium sulfate’. 

Insurance was captured at the encounter level by collecting the primary insurance 

plan present prior to the first vital signs being collected. 

Education was captured by looking at the last temporal value per patient prior to 

delivery. However, this variable was both highly missing, with only ~10% of patients 

having entries and was likely collected as a text field or a combination of sources given 

that some entries were ordinal numeric while others were ordinal text (e.g. sophomore). 

As this was a required variable in the original models, we needed to supply a value to 

validate the model. Only the numeric values were captured, and any missing values were 

imputed to the median under the assumption that anyone who hadn’t provided their 

education would be reflected as a normal value instead of an outlier. 

Cases which were missing any values of the outcome (QBL), social history, 

diagnoses data, labs, medications, prior appointments, or all demographic data were 

excluded from the model. The rationale for this is that the model would have insufficient 

data to make accurate predictions.  

Maternal GBS colonization was captured by combining both sources, using the 

ICD-10 diagnosis codes from the diagnoses table as well as a positive lab for GBS from 

the labs table within the timeframe described in Section 3.3.2. 

Multiple gestation was captured using both the ICD-10 code for the encounter and 

gestational period found in the diagnoses table as well as data collected from Stork, the 

database used to capture maternal care data. 

The recipes R package was used to impute values. An important concern of model-

based imputation in this study was cross-contamination of information between models 
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because each algorithm was provided a different subset of predictors (Supplemental 

Table 3.8). To avoid predictors not used inadvertently leaking information into predictors 

which were used, each subset of predictors was handled independently. All numeric 

predictors were imputed using bagged trees [68] separately for all four data subsets. 

There are generally two categories for imputation which can depend on the 

intended representation. Single value imputation has computational advantages (e.g. 

median, mode) but assumes that any values that are missing are normal, identical, and 

uncorrelated with other variables. Model-based imputation assumes that the missingness 

of each variable is partially systematic and depends on available information from other 

variables. Examples of model-based imputation methods are linear regression (e.g., as 

used in multivariate imputation with chained equations), K-nearest neighbors, decision 

trees, and ensembles of trees (using bagging or boosting). 

Bootstrap aggregated trees, or bagged trees, are one type of tree ensemble used 

commonly for model-based imputation. Bootstrapping refers to the random selection with 

replacement of an observations equal to the number of total samples in a dataset. In an 

ensemble of bagged trees, each bootstrapped dataset is used fit a decision tree to impute 

missing values for each variable using other variables. Each tree is used to generate a 

prediction on new observations, and the final probability is averaged. Bagged trees 

generally only need about 25-50 trees per predictor to converge, which is why they are 

preferred over random forests [74]. Related to bagging, boosting is used to improve 

algorithm performance by increasing weights of observations that were difficult to classify 

and reducing weights for observations that were easy to classify [50], [75]. 

The original study did not dummy code categorical predictors (marital status, 

insurance, race, and site id). While this would not have a large impact on flexible models 

like random forest and gradient boosting machines because they can handle misordered 

ordinal variables, statistical models would interpret them as numeric values and fit a 

regression model inappropriately. For this reason, all categorical predictors were 

converted to numeric to match the original model but dummy coded in refit models to 

follow analytical standards of practice. Missing categorical values were assigned a new 

category of “unknown or other.” 
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Race differed slightly in our data from those described in Appendix 2 of the original 

study [36]. Value comparisons can be reviewed in Table 3.1. This data was taken from 

the demographics table, only the primary most recent entry prior to delivery was captured. 

In cases where race was missing, Other was imputed in its place. Seizure disorder and 

fetal macrosomia were based solely from ICD-10 diagnosis codes so were assumed to 

be negative if they were missing. 

Table 3.1: Categorical data mappings 

Variable Our Validation 
Study Data 

Original Study 

Seizure 
Disorder 

Missing No 

Yes Yes 

Not Assigned Unknown 

Fetal 
Macrosomia 

Missing No 

Yes Yes 

Not Assigned Unknown 

Race Caucasian White 

African American Black 

Not Assigned Hispanic 

Asian, Other 
Pacific Islander 

Asian/Pacific 
Islander 

Other, American 
Indian, Alaska 

native 

Multi-racial 

Insurance Private Private 

Medicaid, 
Medicare, Other 
Governmental 

Insurance 

Public 

Workers 
Compensation 

Self pay 

Other Other 

Unknown Unknown 

Marital Status Married Married 

Not Assigned Not Married; 
Divorced/Widowed 

Unmarried Not Married; 
Single 

Missing Unknown 

 

Since the original models we were evaluating chose two statistical models (logistic 

and lasso regression) and two machine learning models (random forest and gradient 

boosting machines), our study used the same algorithms in our evaluation. 

3.4 Results 

We identified 6,153 deliveries during the study period, of which 5,261 deliveries 

met the inclusion criteria (Figure 3.1). In comparing the CSL model development cohort 
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with our validation cohort, we identified several differences. The rate of postpartum 

hemorrhage was much higher in our validation cohort: 25% (1,321/5,261) in the validation 

cohort as compared to 4.8% (7,279/152,279) in the original CSL cohort. Compared to the 

CSL population, our validation cohort was older, had more comorbidities including chronic 

hypertension and pregestational diabetes, and greater maternal weight differences both 

pre-pregnancy and on admission (Table 3.2). There were also similarities among the 

cohorts. In both, patients who experienced PPH were more likely to have used assisted 

reproductive technology, have placenta previa, and have multiple gestation 

(Supplemental Table 3.6). 

 

Figure 3.1: Cohort inclusion/exclusion criteria 
Flow diagram of the inclusion and exclusion criteria applied to the study 
cohort. The electronic health record was queried to identify women aged 18 
or older who delivered an infant. Exclusion criteria were then applied. 

 

Table 3.2: Population cohort, stratified by data source 

Characteristic Consortium for Safe Labor 
Cohort,  

N = 228,438a 

University of Michigan Validation 
Cohort, N = 5,261a 

Age 29 (24, 30) 31 (27, 34) 

Vaginal or cesarean 
deliveries at Von 
Voigtlander Women's 
Hospital, 18+, 2/1/2019 to 
5/11/2020 

n = 6,153 

Total Exclusions, n = 891  
Estimated Gestation < 22 weeks 
  n = 32  
Missing QBL or No Prenatal Records 
  n = 860 

Eligible deliveries 
n = 5,261 

QBL < 1000mL 
3,940 (75%) 

QBL ≥ 1000mL 
1,321 (25%) 

QBL = quantitative blood loss 
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Pre-pregnancy weight (kgb) 63.5 (56.2, 75.8) 71 (61, 84) 

Missing 67,294 (29.4%) 899 (17%) 

Admission weight (kgb) 79.3 (70.0, 91.1) 83 (73, 96) 

Missing 35,984 (15.7%) 158 (3.0%) 

Gravidity Not Reported 2 (1, 3) 

Missing 0 (0.0%) 1 (0.0%) 

Parity 1 (0, 2) 1 (0, 1) 

Missing 0 (0.0%) 1 (0.0%) 

Gestational age 39w (38w, 40w)c 39w2d (38w2d, 40w3d)c 

Missing 0 (0.0%) 19 

Anemia 23,057 (10.4%) 812 (15%) 

Missing 7,877 (3.4%) 0 (0.0%) 

Assisted reproductive technology 1,101 (0.9%) 236 (4.5%) 

Missing 107,479 (47.0%) 0 (0.0%) 

Temperature 98.0 ± 0.81d 98.10 ± 0.50d 

Missing 47,977 (21.0%) 1 (0.0%) 

Cesarean delivery 65,990 (28.8%) 1,677 (32%) 

Fetal macrosomia 1,858 (1.5%) 187 (3.6%) 

Missing 102,247 (44.7%) 0 (0.0%) 

  Gestational diabetes 11,999 (5.2%) 423 (8.0%) 

  Gestational hypertension 6,286 (2.7) 547 (10%) 

  Multiple gestation 5053 (2.2%) 162 (3.1%) 

Placenta previa 1,647 (0.7%) 226 (4.3%) 

Prior cesarean delivery 31,321 (14.5%) 960 (18%) 

Missing 13,219 (5.7%) 0 (0.0%) 

Spontaneous labor 122,673 (53.7%) 107 (2.0%) 

Systolic pressure 124.1 (14.89%) 125 (116, 134) 

Missing 52,766 (23%) 0 (0.0%) 

Trial of labor 192,074 (84%) 155 (2.9%) 

Outcome: postpartum hemorrhage 7,279 (4.7%) 1,321 (25%) 
aStatistics presented: median (IQR); n (%) 
b”kg” kilograms 
c”w” weeks; “d” days 
dStatistics presented: mean ± SD 
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Table 3.3: Population characteristics stratified by outcome 

Characteristic Overall, N = 5,261 QBL < 1000mL, N = 

3940 (75%)a 

QBL ≥ 1000mL, 

N = 1321 (25%)a 

p-valueb 

Age 31 (27, 34) 31 (27, 34) 31 (28, 35) <0.001 

Pre-pregnancy weight 
(kgc) 

71 (61, 84) 70 (61, 84) 73 (63, 87) <0.001 

Missing 899 675 224   

Admission weight 
(kgc) 

83 (73, 96) 82 (73, 95) 86 (75, 100) <0.001 

Missing 158 132 26   

Gestational diabetes 423 (8.0%) 286 (7.3%) 137 (10%) <0.001 

Gestational 

hypertension 
547 (10%) 383 (9.7%) 164 (12%) 0.006 

Gravidityd 2 (1, 3) 2 (1, 3) 2 (1, 3) <0.001 

Missing 1 1 0   

Parity 1 (0, 1) 1 (0, 1) 0 (0, 1) <0.001 

Missing 1 1 0   

Gestational Age 39w 2d (38w 2d, 
40w 3d)e 

39w 2d (38.43, 40w 
3d)e 

39w 1d (38, 40w 
3d)e 

0.046 

Missing 19 19 0   

Anemia 812 (15%) 582 (15%) 230 (17%) 0.024 

Assisted reproductive 

technology 
236 (4.5%) 122 (3.1%) 114 (8.6%) <0.001 

Temperature 98.1 (97.9, 98.4) 98.1 (97.9, 98.3) 98.1 (97.9, 98.4) 0.058 

Missing 1 1 0   

Cesarean Deliveryd 1,677 (32%) 1,023 (26%) 654 (50%) <0.001 

Fetal macrosomia 187 (3.6%) 122 (3.1%) 65 (4.9%) 0.003 

Multiple gestation 162 (3.1%) 80 (2.0%) 82 (6.2%) <0.001 

Placenta previa 226 (4.3%) 138 (3.5%) 88 (6.7%) <0.001 

Prior cesarean 

delivery 
960 (18%) 663 (17%) 297 (22%) <0.001 

Spontaneous labor 107 (2.0%) 81 (2.1%) 26 (2.0%) >0.9 

Systolic pressure 125 (116, 134) 124 (116, 133) 127 (117, 136) <0.001 

Trial of labor 155 (2.9%) 114 (2.9%) 41 (3.1%) 0.8 
aStatistics presented: median (IQR); n (%) 
bStatistical tests performed: Wilcoxon rank-sum test; chi-square test of independence. Values <0.05 are in bold. 
c”kg” kilograms 
dNot included in models 
e”w” weeks; “d” days 
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Table 3.4: Model performance, with C-statistics and 95% confidence intervals 

Model Original study Validation set using 
original modelsa 

Validation set using refit 
modelsa 

p-valueb 

Logistic Regression 0.87; 
95% CIc 0.86-0.87 

0.54; 
95% CIc: 0.52-0.55 

 

0.63; 
95% CIc: 0.61-0.65 

 

<0.001 

Lasso Regression 0.87; 
95% CIc 0.86-0.88 

0.55; 
95% CIc: 0.53-0.57 

 

0.63; 
95% CIc: 0.61-0.65 

 

<0.001 

Random Forest 0.92; 
95% CIc: 0.91-0.92 

0.53 
95% CIc: 0.51-0.55 

 

0.64 
95% CIc: 0.62-0.65 

 

<0.001 

Gradient Boosting 0.93; 
95% CIc: 0.92-0.93 

0.57; 
95% CIc: 0.55-0.59 

 

0.62; 
95% CIc: 0.61-0.64 

 

<0.001 

aValidation set confidence interval was calculated using 2000 stratified bootstrap replicates (n = 5,261). 

bSignificance test comparing original models and refit models in the validation set using 2000 stratified bootstrap 
replicates (n = 5,261). 
c”CI” confidence interval 
 

3.4.1 External Validation of the CSL Models 

The CSL models had poor discrimination in our validation cohort, with C-statistics 

of 0.54, 0.55, 0.53, and 0.57 for logistic regression (LR), lasso regression, random forests 

(RF), and gradient boosting machines (GBM), respectively (Table 3.4). The models were 

poorly calibrated, with the LR, lasso, and GBM models underestimating risk in the lower 

range of predicted risk and overestimating risk in the upper range of predicted risk. The 

RF model’s predicted probabilities most closely matched the observed risk, though the 

predictions were tightly clustered together. 

3.4.2 Refitting CSL Models Using Our Study Cohort 

The refit models achieved better discrimination, with cross-validated C-statistics of 

0.63 (LR), 0.63 (lasso), 0.64 (RF), and 0.62 (GBM), which were all statistically significant 

with p < 0.001 when compared to the original models (Table 3.4). Calibration was also 

improved for the refit models (Figure 3.3). A summary of the sensitivities, specificities, 

positive predictive values, and negative predictive values across the entire range of 

thresholds is shown in Supplemental Figure 3.4.  
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Figure 3.2: Comparison of the receiver operating characteristic curves 
Comparison of the receiver operating characteristic curves for the original models (A) and refit 
models (B) in our study cohort. The refit models have a higher area under the receiver operating 
characteristic curve (i.e., C-statistic) as compared to the original models. 

 

 

Figure 3.3: Calibration plots comparing predicted versus observed risk  
Calibration plots comparing predicted versus observed risk for the original models (A) and refit models (B) in our 
study cohort. The dotted line demonstrates ideal calibration, and the calibration curves and 95% confidence 
intervals are calculated using loess smoothing [66], [67]. 

3.4.3 Sensitivity Analyses 

Of the 5,261 deliveries, 569 (11%) met a QBL of ≥1500 mL, 249 (4.7%) met a QBL 

of ≥ 2000 mL, and 116 (2.2%) met a QBL of ≥2500 mL. The model performance did not 
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substantially improve (Table 3.5). The best-performing models achieved C-statistics of 

0.59 (QBL ≥ 1500mL), 0.60 (QBL ≥ 2000 mL), and 0.61 (QBL ≥ 2500 mL). 

 

Table 3.5: Sensitivity analysis 

Model ≥1000mL 
(1321/5261; 25.1%) 

≥1500mL 
(569/5261; 10.8%) 

≥2000mL 
(249/5261; 4.7%) 

≥2500mL 
(116/5261; 2.2%) 

Logistic 

Regression 

0.54; 

95% CI: 0.52-0.55 

0.54; 

95% CI: 0.51-0.56 

0.57; 

95% CI: 0.53-0.61 

0.59; 

95% CI: 0.53-0.65 

Lasso 

Regression 

0.55; 

95% CI: 0.53-0.57 

0.55; 

95% CI: 0.52-0.57 

0.57; 

95% CI: 0.53-0.61 

0.61; 

95% CI: 0.55-0.66 

Random 

Forest 

0.53; 

95% CI: 0.51-0.55 

0.53; 

95% CI: 0.51-0.56 

0.48; 

95% CI: 0.44-0.51 

0.52; 

95% CI: 0.47-0.57 

Gradient 

Boosting 

0.57; 

95% CI: 0.55-0.59 

0.59; 

95% CI: 0.57-0.62 

0.60; 

95% CI: 0.56-0.63 

0.61; 

95% CI: 0.56-0.67 

3.5 Discussion 

Overall, we found that the CSL models, which were highly accurate in the 

prediction of PPH in a geographically diverse development cohort across the U.S. 

involving 152,279 deliveries between 2002 and 2008, did not perform as well in our 

contemporary cohort of 5,261 deliveries when the outcome was defined using QBL.  

The difference in model performance was quite substantial, with the best-

performing model’s C-statistic deteriorating from 0.93 in the original study to 0.57 in our 

cohort. Compared to the model development cohort, our validation cohort had a nearly 5-

fold higher incidence of PPH (25% vs. 4.8%), was older, and had more chronic 

comorbidities. Refitting the models in our validation cohort mildly improved the model 

performance resulting in a cross-validated C-statistic of 0.64, which is lower than that 

observed in the original study. 

The most likely explanation for the difference in model performance is due to how 

the outcomes were measured in both cohorts. Whereas the CSL study cohort defined 

PPH based on EBL, our study cohort relies on QBL, which is more accurate [58]. The 

incidence of PPH when assessed using the same ≥1000 mL threshold of blood loss is 

several-fold higher when measured by QBL as compared to EBL [57], suggesting that 

EBL may only be identifying severe hemorrhage whereas QBL may also be capturing 
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less severe bleeding. Unsurprisingly, severe hemorrhage may be easier for a model to 

predict and result in a higher C-statistic. 

The difference in PPH incidence as well as measurement alone does not explain 

the deterioration in model performance. While models transported from a lower risk to a 

higher risk setting are commonly found to be miscalibrated, changes in baseline risk do 

not typically affect model discrimination (C-statistic). This has been demonstrated in 

multinational validation studies, where high-performing models often need to be 

recalibrated despite maintaining a high C-statistic [76]. The most extreme form of 

recalibration involves refitting the model on the new dataset [77]. When we refit models 

in our cohort, the improvement in model performance was modest, suggesting that the 

deterioration model performance cannot be attributed solely to higher PPH incidence, 

suggesting that there may be some differences in predicting EBL versus QBL outcomes. 

It is also possible that the original CSL models overestimated model performance 

because of the way that the underlying data were collected. The CSL dataset was 

constructed two decades ago, when electronic health record (EHR) systems were in their 

infancy. In this context, there may have been under ascertainment of both predictors and 

PPH due to incomplete data capture. Additionally, in the CSL dataset, comorbidities were 

flagged as present on admission based on billing codes from the labor and delivery 

encounter. Since the CSL data were deidentified, it was not possible to confirm whether 

these comorbidities would have been accessible to a prediction model within the 

electronic health record (EHR) at the time of admission. Because of this [78], we limited 

billing codes in our cohort to those available during the prenatal period. 

Strengths of our study include the use of a contemporary cohort, the use of QBL 

to measure PPH, and close coordination with the authors of the original CSL modeling 

study to ensure consistent variable definitions between the studies. The primary limitation 

of our study is that the data are drawn from a single tertiary care center while the original 

CSL models were developed from a multi-center U.S. cohort involving academic and 

community-based hospitals. Given known issues with EHR data quality, including missing 

data, some degree of model deterioration is expected simply due to the data source and 

differences in case-mix. We attempted to mitigate these concerns by comparing our EHR-

derived predictors with national estimates, finding our predictors to generally be within the 
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expected range. Our center’s PPH incidence is higher than other cohorts, which is a 

limitation of our study. Although this could be due to systematic overreporting of QBL, 

alternate definitions of PPH did not improve the performance of the CSL models, and thus 

the CSL models’ lower performance in our cohort is not explained only by the choice of 

PPH definition. 

 Despite these limitations, our study has national implications for the 

implementation of prediction models for postpartum hemorrhage. Although predicting 

PPH by EBL appears highly feasible based on prior work [36], [37], predicting QBL 

appears to be quite difficult, likely because QBL identifies milder bleeds. As hospitals shift 

towards quantitative methods to assess bleeding severity, prediction models may be 

severely impacted. Whether bleeding identified by QBL confers the same risk of maternal 

morbidity and mortality as bleeding identified by EBL remains unknown. Improved 

understanding of the relationship between QBL and EBL is needed to better define the 

utility of prediction models predicting PPH. Our findings underscore the importance of 

external validation, particularly when data collection methods and outcome 

measurements evolve due to changes in clinical practice. 

3.6 Supplemental Tables 

Supplemental Table 3.6: Population characteristics by outcome (expanded) 

Characteristic Overall,  

N = 5,261 

QBL < 1000mL,  

N = 3940 (75%)a 

QBL ≥ 1000mL,  

N = 1321 (25%)a 

p-valueb 

Admission height 164 (160, 168) 163 (160, 168) 165 (160, 170) 0.089 

Missing 158 132 26   

Admission weight (Kg) 83 (73, 96) 82 (73, 95) 86 (75, 100) <0.001 

Missing 158 132 26   

Age at Admission 31 (27, 34) 31 (27, 34) 31 (28, 35) <0.001 

Anemia 812 (15%) 582 (15%) 230 (17%) 0.024 

Antenatal steroids 619 (12%) 443 (11%) 176 (13%) 0.048 

Antepartum 

hospitalizations 

877 (17%) 607 (15%) 270 (20%) <0.001 

Antepartum vaginal 

bleeding 

150 (2.9) 109 (2.8) 41 (3.1) 0.59 

Assisted reproductive 

technology 

236 (4.5%) 122 (3.1%) 114 (8.6%) <0.001 
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Asthma/active airway 

disease 

417 (7.9%) 299 (7.6%) 118 (8.9%) 0.13 

BMI on Admission 31 (27, 36) 31 (27, 35) 32 (28, 37) <0.001 

Missing 158 132 26   

BMI Pre-pregnancy 26 (23, 31) 26 (23, 31) 27 (23, 32) <0.001 

Missing 899 675 224   

Body Temperature 98.10 (97.90, 

98.40) 

98.10 (97.90, 98.30) 98.10 (97.90, 98.40) 0.058 

Missing 1 1 0   

Breech/abnormal lie 522 (9.9%) 365 (9.3%) 157 (12%) 0.007 

Cesarean delivery 1,677 (32%) 1,023 (26%) 654 (50%) <0.001 

Chorioamnionitis on 

admission 

61 (1.2%) 39 (1.0%) 22 (1.7%) 0.066 

Chronic hypertension 579 (11%) 401 (10%) 178 (13%) 0.001 

Chronic renal disease 65 (1.2%) 45 (1.1%) 20 (1.5%) 0.4 

dataset       >0.9 

train 2,750 (52%) 2,064 (52%) 686 (52%)   

tune 687 (13%) 510 (13%) 177 (13%)   

test 1,824 (35%) 1,366 (35%) 458 (35%)   

Depression 541 (10%) 398 (10%) 143 (11%) 0.5 

Diastolic Pressure 77 (70, 84) 77 (70, 84) 78 (71, 86) <0.001 

Eclampsia 2 (<0.1%) 0 (0%) 2 (0.2%) 0.063 

QBL 631 (374, 1,002) 494 (305, 706) 1,419 (1,176, 1,850) <0.001 

Ethnicity       0.8 

Hispanic or Latino 85 (4.4%) 57 (4.1%) 28 (4.9%)   

Non-Hispanic or 

Latino 

1,834 (94%) 1,303 (94%) 531 (94%)   

Patient Refused 6 (0.3%) 4 (0.3%) 2 (0.4%)   

Unknown 25 (1.3%) 19 (1.4%) 6 (1.1%)   

Missing 3,311 2,557 754   

Fetal demise 46 (0.9%) 32 (0.8%) 14 (1.1%) 0.5 

Fetal macrosomia 187 (3.6%) 122 (3.1%) 65 (4.9%) 0.003 

Gastrointestinal 

disease 

665 (13%) 499 (13%) 166 (13%) >0.9 

Gestational age 

(weeks) 

39w 2d (38w 2d, 

40w 3d)c 

39w 2d (38w 3d, 

40w 3d)c 

39w 1d (38w, 40w 

3d)c 

0.046 

Missing 19 19 0   

Gestational diabetes 423 (8.0%) 286 (7.3%) 137 (10%) <0.001 

Gestational 

hypertension 

547 (10%) 383 (9.7%) 164 (12%) 0.006 
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Gestational age (days) 275 (268, 283) 275 (269, 283) 274 (266, 283) 0.046 

Missing 19 19 0   

Gravidity 2 (1, 3) 2 (1, 3) 2 (1, 3) <0.001 

Missing 1 1 0   

Heart disease 224 (4.3%) 171 (4.3%) 53 (4.0%) 0.7 

Hemoglobin 345 (6.6%) 253 (6.4%) 92 (7.0%) 0.5 

History of preterm 

labor 

140 (2.7%) 106 (2.7%) 34 (2.6%) 0.9 

History of seizures 177 (3.4%) 129 (3.3%) 48 (3.6%) 0.6 

Illicit drug use during 

pregnancy 

617 (12%) 482 (12%) 135 (10%) 0.053 

Missing 14 12 2   

Insurance       0.041 

Medicaid 790 (24%) 610 (25%) 180 (22%)   

Medicare 16 (0.5%) 8 (0.3%) 8 (1.0%)   

Other 9 (0.3%) 6 (0.2%) 3 (0.4%)   

Other Governmental 

Insurance 

16 (0.5%) 9 (0.4%) 7 (0.8%)   

Private Insurance 2,465 (74%) 1,832 (74%) 633 (76%)   

Workers 

Compensation 

15 (0.5%) 11 (0.4%) 4 (0.5%)   

Missing 1,950 1,464 486   

Intrauterine growth 

restriction 

707 (13%) 517 (13%) 190 (14%) 0.3 

Large for gestational 

age 

15 (0.3%) 10 (0.3%) 5 (0.4%) 0.5 

Length of stay 2.00 (2.00, 3.00) 2.00 (2.00, 3.00) 3.00 (2.00, 4.00) <0.001 

Magnesium sulfate 300 (5.7%) 206 (5.2%) 94 (7.1%) 0.013 

Marital status       0.039 

Married 2,315 (60%) 1,698 (59%) 617 (62%)   

Unmarried 1,572 (40%) 1,200 (41%) 372 (38%)   

Missing 1,374 1,042 332   

Maternal GBS 

colonization 

1,163 (22%) 871 (22%) 292 (22%) >0.9 

Multiple gestation 153 (2.9%) 73 (1.9%) 80 (6.1%) <0.001 

Multiple gestation 162 (3.1%) 80 (2.0%) 82 (6.2%) <0.001 

Non-gestational 

diabetes 

137 (2.6%) 90 (2.3%) 47 (3.6%) 0.016 

Parity 1 (0, 1) 1 (0, 1) 0 (0, 1) <0.001 

Missing 1 1 0   
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Placenta accreta 

spectrum 

19 (0.4%) 8 (0.2%) 11 (0.8%) 0.002 

Placenta previa 226 (4.3%) 138 (3.5%) 88 (6.7%) <0.001 

Placental abruption 59 (1.1%) 33 (0.8%) 26 (2.0%) 0.001 

Polyhydramnios 177 (3.4%) 110 (2.8%) 67 (5.1%) <0.001 

Pre-pregnancy height 164 (160, 168) 164 (160, 168) 165 (160, 170) 0.020 

Missing 899 675 224   

Pre-pregnancy weight 

(Kg) 

71 (61, 84) 70 (61, 84) 73 (63, 87) <0.001 

Missing 899 675 224   

Preeclampsia with 

severe features 

147 (2.8%) 93 (2.4%) 54 (4.1%) 0.001 

Preeclampsia without 

severe features 

147 (2.8%) 85 (2.2%) 62 (4.7%) <0.001 

Premature rupture of 

membranes 

599 (11%) 474 (12%) 125 (9.5%) 0.013 

Preterm labor 81 (1.5%) 60 (1.5%) 21 (1.6%) >0.9 

Prior cesarean delivery 960 (18%) 663 (17%) 297 (22%) <0.001 

Race       0.6 

African American 639 (12%) 482 (12%) 157 (12%)   

Asian 448 (8.5%) 328 (8.3%) 120 (9.1%)   

Caucasian 3,679 (70%) 2,768 (70%) 911 (69%)   

Other 495 (9.4%) 362 (9.2%) 133 (10%)   

Seizure disorder 51 (1.0%) 33 (0.8%) 18 (1.4%) 0.13 

Spontaneous labor 107 (2.0%) 81 (2.1%) 26 (2.0%) >0.9 

Superimposed 

preeclampsia 

44 (0.8%) 29 (0.7%) 15 (1.1%) 0.2 

Systolic Pressure 125 (116, 134) 124 (116, 133) 127 (117, 136) <0.001 

Thyroid disease 497 (9.4%) 348 (8.8%) 149 (11%) 0.010 

Tobacco use during 

pregnancy 

432 (8.2%) 339 (8.6%) 93 (7.1%) 0.080 

Missing 14 12 2   

Trial of labor 155 (2.9%) 114 (2.9%) 41 (3.1%) 0.8 

Years of education 16.0 (14.0, 18.0) 16.0 (14.0, 18.0) 16.0 (15.0, 18.0) >0.9 

Missing 4,756 3,565 1,191   

aStatistics presented: median (IQR); n (%) 
bStatistical tests performed: Wilcoxon rank-sum test; chi-square test of independence; Fisher's exact test 
c”w” weeks; “d” days 
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Supplemental Table 3.7: Feature definitions 

Label ICD-10 definition 

Timepoint(s) 

Included 

Expected 

Incidence Reference 

Admission diastolic blood pressure  

Admission 

intake   

Admission systolic blood pressure  

Admission 

intake   

Admission temperature  

Admission 

intake   

Admission weight  

Admission 

intake   

Age  

Admission 

intake   

Anemia 

O99.0|D50.|D51.|D52.|D53.|D55.|D5

6.|D57.|D58.|D59.|D60.|D61.|D62.|D

63.|D64.; excludes text matches to 

"anemia of pregnancy" and "sickle 

cell trait" Intra-pregnancy 2% ACOG 

Antenatal steroids 

text matching 

"betamethasone|dexamethasone" Intra-pregnancy   

Antepartum hospitalization  Intra-pregnancy   

Antepartum vaginal bleeding 

O20.|O46.|O44.31; excludes text 

matching "subchorionic 

hemorrhage", "subchorionic 

hematoma", "bloody show and 

cramping" prior to admission Intra-pregnancy 15-25% ACOG 

Assisted reproductive technology 

O09.81; excludes O30.009, "twin 

pregnancy" Intra-pregnancy 1.50% ACOG 

Asthma/active airway disease J44.|J45. Intra-pregnancy 4-8% ACOG 

Breech presentation/abnormal lie 

O32.1|O32.2|O32.8|O64.1|O80.1|O8

3.0|O83.1 Intra-pregnancy 3-4% ACOG 

Chorioamnionitis on admission O41.1 Intra-pregnancy 2-5% ACOG 

Chronic hypertension O10., O16. 

Pre-pregnancy, 

Intra-pregnancy .9-1.5% ACOG 

Chronic Renal disease 

N02.2|N03.|N04.|N05.|N08.|N17.1|N

17.2|N18.|N25|O26.82|O26.83; 

excluded nephrolithiasis, kidney 

stone, calculus Intra-pregnancy .02-.12% 

Edipidis 

2011 (DOI: 

10.1111/ao

gs.13751) 

Depression 

099.34|F32.9; excludes anxiety 

unless "anxiety and depression" Intra-pregnancy 9% ACOG 

Drug use  Intra-pregnancy   

Eclampsia O15. Intra-pregnancy   

Education status Years of education Intra-pregnancy   

Fetal demise O36.4 Intra-pregnancy 0.60% ACOG 

Fetal macrosomia O36.6 Intra-pregnancy 7.80% ACOG 
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Gastrointestinal disease 

K20.|K21.|K22.|K23.|K24.|K25.|K26.|

K27.|K28.|K29.|K30.|K31.|K35.|K36.|

K37.|K38.|K50.|K51.|K52.|K55.|K56.|

K57.|K58.|K59.|K60.|K61.|K62.|K63.|

K64.|K70.|K71.|K72.|K73.|K74.|K75.|

K76.|K77.|K80.|K81.|K82.|K83.|K84.|

K85.|K86.|K87.|K90.|K91.|K92.|K93.|

K94.|K95. Intra-pregnancy   

Gestational age  

Admission 

intake   

Gestational diabetes O24.4|O24.9 Intra-pregnancy 7% ACOG 

Gestational hypertension O13. Intra-pregnancy 2-8% ACOG 

Heart disease 

I05.|I06.|I07.|I08.|I09.|I34.|I35.|I36.|I3

7.|I38.|I39.|I50.0|I20.|I25.|Q20.|Q21.|

Q22.|Q23.|Q24.|Q25.|Q26.|O99.4 Intra-pregnancy 1-4% 

ACOG 

(DOI: 

10.1111/ao

gs.13749) 

History of preterm birth Z87.51 Pre-pregnancy   

History of seizures G40. Pre-pregnancy   

Illegal Drug Use during Pregnancy  Intra-pregnancy   

Insurance status  

Admission 

intake   

Intrauterine growth restriction O36.59 Intra-pregnancy 3-5% 

Romo 

2008 

Large for gestational age  Intra-pregnancy   

Magnesium sulfate text matching "magnesium sulfate" Intra-pregnancy   

Marital status  

Admission 

intake   

Maternal GBS colonization (dx) 

O99.820|B95.1 or A49.1 and "GBS" 

or R82.71|O23.40|O09.89|O09.29 

and "GBS|GROUP B 

STREPTOCOCCAL" Intra-pregnancy 10-30% 

Shabayek 

2018 

Maternal GBS colonization (lab) positive strep group b results Intra-pregnancy   

Multiple gestation (dx) O30.|O31.8|O32.5|O84.8 

Admission 

intake .1-3% ACOG 

Multiple gestation (stork)  

Admission 

intake   

Non-gestational diabetes O24.0|O24.1|O24.2|O24.3 Intra-pregnancy 1-2% ACOG 

Parity  

Admission 

intake   

Placenta accreta spectrum O43.2 Intra-pregnancy .29-.38%  

Placenta previa O44. Intra-pregnancy 0.50% Durst 2018 

Placental abruption O45. Intra-pregnancy 7.4-11.9% 

Ananth 

2015 

Polyhydramnios O40. Intra-pregnancy   

Pre-pregnancy BMI  Pre-pregnancy   
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Pre-pregnancy weight  Pre-pregnancy   

Preeclampsia with severe features O14.1|O14.2 Intra-pregnancy   

Preeclampsia without severe 

features 

O14.; anything not captured under 

"preeclampsia with severe features" Intra-pregnancy   

Premature rupture of membranes O42. Intra-pregnancy 8%  

Preterm labor O60. Intra-pregnancy   

Prior cesarean delivery O34.21|O34.29 Pre-pregnancy   

Race  

Admission 

intake   

Seizure disorder G40. on admission Intra-pregnancy .3-.7% Ruth 2013 

Spontaneous labor O60.1|O80.|O84.0 Intra-pregnancy   

Superimposed preeclampsia O11. Intra-pregnancy   

Thyroid disease 

E00.|E01.|E02.|E03.|E04.|E05.|E06.|

E07.; excluded E08. (Diabetes 

mellitus) Intra-pregnancy   

Tobacco use  Intra-pregnancy   

Trial of labor 

O75.7|O66. or text matching "trial of 

labor|TOLAC" Intra-pregnancy   

Outcome: Primary Postpartum 

Hemorrhage  

Delivery 

encounter   

 

Supplemental Table 3.8: Predictor inputs 

 Statistical Models Machine Learning Models 

Variable  
Lasso 

Regression 
Logistic 

Regression 

Extreme 
Gradient 
Boosted 

Random 
Forest 

Admission diastolic blood pressure  X X X X 

Admission systolic blood pressure  X X X X 

Admission temperature  X X X  

Admission weight  X X X  

Age  X X X X 

Anemia  X X X  

Antenatal steroids  X X X X 

Antepartum vaginal bleeding  X X X X 

Assisted reproductive technology  X X X X 

Asthma  X X   

Breech presentation  X X X X 

Chorioamnionitis on admission  X X X X 

Chronic hypertension  X X X  

Depression  X X   

Drug use  X X   

Ecclampsia  X X   
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Education status  X X X  

Fetal demise  X X   

Fetal macrosomia  X X X X 

Gastrointestinal disease  X X   

Gestational age at delivery  X X X X 

Gestational diabetes  X X X  

Gestational hypertension  X X   

Heart disease  X X   

History of prior cesarean delivery  X X X  

History of prior preterm birth  X X   

History of seizures  X X   

Insurance status  X X X  
Large for gestational age, antenatal 
diagnosis  X X X X 

Magnesium sulfate  X X   

Marital status  X X X  

Maternal GBS colonization  X X   

Maternal race  X X X X 

Multiple gestation  X X X  

Non-gestational diabetes  X X   

Parity  X X X  

Placenta accreta  X X X X 

Placenta previa  X X X X 

Placental abruption  X X X X 

Polyhydramnios  X X X  

Pre-pregnancy BMI  X X X  

Pre-pregnancy weight  X X X  

Preeclampsia with severe features  X X X  

Preeclampsia without severe features  X X X X 

Premature rupture of membranes  X X X  

Prior antepartum hospitalization  X X X  

Renal disease  X X   

Seizure disorder  X X X X 

Site Number   X  
Small for gestational age, antenatal 
diagnosis  X X X X 

Spontaneous labor  X X X X 

Superimposed preeclampsia  X    

Threatened preterm labor  X X X X 

Thyroid disease  X X   
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Tobacco use  X X   

Trial of labor  X X X X 

 

3.7 Supplemental Figures 

 
Supplemental Figure 3.4: Threshold performance plot 
This plot compares (A) original model performance to (B) refit model performance. 

 

 
Supplemental Figure 3.5: Variable importance 
A comparison of relative variable importance between (A) original models and (B) refit models.
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Chapter 4 

wizard for R: Windowing and Summarization for 

Autoregressive Data Preparation  

 

This chapter was co-authored with Karandeep Singh. 

4.1 Introduction 

Preparing data for the purpose of developing prediction models is a time-

consuming but necessary step [39], [40], but well-prepared data can often lead to better 

results [41]. Data preparation requires many design decisions to be made with respect to 

which variables to include and how to represent them. Effective decision-making ensures 

that prediction models perform as well as possible while the underlying predictors remain 

interpretable to clinicians. These design decisions typically evolve through repeated 

conversations between domain experts (clinicians) and data experts. They often occur 

implicitly because clinicians are imprecise when discussing clinical concepts (e.g., 

“baseline value”), and data analysts do not have a framework capturing the different ways 

in which clinical knowledge can be represented for modeling. 

While data preparation is challenging for all clinical prediction models, this is 

especially true of early warning system (EWS) models, which refer to a class of prediction 

models that estimate an individual’s risk of an adverse outcome at multiple time points 

during an at-risk period such as a hospitalization. When a patient’s risk exceeds a 

specified threshold, an alert is sent to a clinician to institute a specific action. Such models 

are widely used in the detection of sepsis (a severe inflammatory response to infection) 

and clinical deterioration, such as the need for intensive care unit-level care. 

In EWS models, each patient’s at-risk period begins at a specific time point (e.g., 

admission to the hospital and ends at a specific time point (e.g., discharge from the 
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hospital). For the duration of the at-risk period, risk is reassessed at regular intervals (e.g., 

every hour). For the purpose of prediction modeling, each row of data prepared for use in 

an EWS model represents a patient’s clinical state at a specific point in time based on 

characteristics that are fixed through the hospitalization (e.g., biological sex) and those 

that are time-varying (e.g, vital signs or laboratory values). 

When prior values are used to predict future values at regular intervals, this is 

referred to as “discrete time survival modeling” in the statistical literature, as “auto-

regression” in the economics literature, and as “sequence modeling” in the machine 

learning literature. Because clinical data elements are collected at irregular intervals, 

including clinical elements as predictors in models requires summarization over multiple 

values (e.g., mean or exponentially weighted moving average), and in some cases, 

windowing (e.g., separate sets of mean vital signs for each of the last 3 nursing shifts). 

Clinical domain experts have access to explicit and tacit knowledge that can inform how 

clinical information is represented, a practice commonly referred to as “feature 

engineering,” but communicating and incorporating this knowledge into the data 

preparation process requires substantial analytical effort and custom code development. 

In this paper, we present a case study of maternal early warning systems to 

highlight how implicit clinical knowledge can be made explicit through engagement with 

domain experts (clinicians). We consider the implications in more detail as they pertain to 

the bounds and frequency of predictions, baseline predictors, time-varying predictors, and 

the conversion of vague clinical concepts into precise mathematical ones. We discuss the 

challenges of converting unevenly spaced data into evenly spaced data. We then provide 

an overview of commonly used tools for preparing time-series data for modeling in the R 

ecosystem, with a focus on why existing tools lack the expressivity to handle common 

use cases in clinical domain areas. Finally, we present the wizard R package, a software 

program that encodes a grammar of data preparation for EWS models through windowing 

and summarization for auto-regressive data preparation. Using wizard, analysts can 

effectively and efficiently prepare electronic health record (EHR) data for EWS modeling 

through a framework that is expressive and can directly leverage domain expertise. 
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4.2 Methods 

Wizard was created out of a need to partially automate the data transformation 

process in a structured way while maintaining design controls over the result, which in the 

context of this body of work, we refer to as domain-expert-informed predictors. This 

section describes, in a qualitative manner, how components of wizard were developed 

and iterated over. 

Over the course of two years, I met weekly with a team of domain experts to 

discuss the use of a time-series approach to predict postpartum hemorrhage using 

electronic health record data with the intent to design a model for early warning systems. 

The team consisted of two clinical domain experts, of which one was an expert in obstetric 

anesthesia and another in obstetrics and gynecology, and a physician with expertise in 

clinical prediction modeling. I led the discussion, conducted the analysis, and worked with 

a database analyst to identify the correct data elements and extract the data. Topics of 

discussion were predictors to be used in our modeling approach, the timespan or 

timespans that would be clinically relevant, and how to summarize each timespan of data. 

Based on feedback received from clinicians, we iteratively developed features of this 

package to accommodate a multitude of use cases for the transformation of electronic 

health record data guided by domain expertise. 

Early in the work, I found that the domain experts and I lacked a common and 

consistent vocabulary to describe predictors with a time aspect, and that this hindered 

productivity. Over the course of our discussions, we started establishing design elements 

which we could then map to the conversations (Figure 4.1). We further realized that 

although initially we had only planned to use information from a fixed number of hours in 

the past (Section 4.6.10), recalculating these predictors at each new step was 

computationally expensive. Some of this complexity was likely unnecessary because it 

involved information collected prior to the at-risk period where no predictions are made. 

This warranted the need to differentiate timespans relative to the at-risk period, We 

determined that the first at-risk prediction was the fulcrum around which we chose to 

differentiate these timespans. 

Complementary to baseline predictors, we found that there are variables that are 

only collected during the at-risk period. For example, blood loss is likely only collected 
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during a hospitalization and therefore would introduce sparsity and complexity to the 

model by creating additional predictors from timespans that didn’t exist. Our solution was 

to introduce growing predictors (Section 4.6.9), which start at the first prediction and are 

recalculated at each new time step. 

 

Figure 4.1: Clinical/data conversation 

 

With respect to outcomes, we started by looking at a rolling outcome use case (Section 

4.6.12) in which a model makes predictions for a certain amount of time in the future. We 

found that training a model with a fixed outcome (Section 4.6.11) that reflect whether a 

patient ever experiences the outcome during the at-risk period. We found a slight 

performance boost in using a fixed outcome, likely due to the way the algorithm trains the 

model. By having a persistent outcome for all predictions, the algorithm can focus on 

differences which occur between patients who do and do not experience the outcome 

rather than changes that occur when the rolling outcome changes within individuals. 

We found other efficiencies in reducing the complexity of the data by splitting 

temporal from non-temporal data, the latter were termed fixed data. Fixed data is not 

expected to change throughout the course of an at-risk period, and the benefits of 

maintaining persistence between predictions outweighs the complexity of using a 

temporal approach (e.g., an age of 30 years 1 day old, 30 years 2 days old, etc.).  

We started to look at summarization methods used in similar approaches. The 

initial implementation supports dplyr verbs but can be extended to accept custom 

functions. This allows basic statistics like the minimum, maximum, median, mode, but 

“Lowest creatinine from prior 365 
days up to time of admission” 

“What do you mean by baseline?” 

variable: creatinine 
 
 
 
 

time start reference: before admission 

 
 
 
 
time end reference: prior 365 days 
statistic: lowest 

“I’d like to use baseline creatinine” 

“Creatinine before admission” 

“How far before admission?” 
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also introduces the first and last value. Custom functions allow the ability to introduce 

more sophisticated calculations like slope or net change. 

While we attempted to incorporate a broad use case for this work, there are still 

functions that have not been introduced. For example, in some cases when temporal data 

does not vary substantially (e.g., a type and screen lab test collected throughout a 

hospitalization), the information may be better served as fixed data rather than in the 

temporal data. Similarly, we have not yet implemented a function to calculate the duration 

from an event, such as the amount of time since surgery began. 

4.3 Case Study: Maternal Early Warning Systems for Detecting 

Postpartum Hemorrhage 

 Maternal early warning systems are commonly used to detect adverse outcomes 

experienced by women during hospitalizations for labor and delivery. When the adverse 

events occur after delivery, they are referred to as being “postpartum.” One of the most 

common sources of material morbidity and mortality during the postpartum period is 

excessive bleeding (or “hemorrhage”). Thus, timely prediction of postpartum hemorrhage 

(PPH) is an ideal use case for an EWS model. We developed a model to predict 

postpartum hemorrhage among females (i.e., inclusive of women and trans men) 

admitted to the labor and delivery ward of a large academic medical center with direct 

input from an obstetrician and an obstetric anesthesiologist. In Table 4.1, we describe 

examples of the questions we asked them to elicit domain knowledge as well as the 

answers they provided and resulting implications. 

 

Table 4.1: Examples of questions to elicit domain knowledge for data preparation 

Questions Answers Implications 

When does the risk of PPH begin? Immediately after delivery, either 
through vaginal birth or a cesarean 
section (C-section). 

The first row of data for each patient 
should be generated at the time of 
delivery. 

When is a person no longer at risk 
of PPH? 

After discharge from the hospital or 
7 days after delivery has occurred if 
still hospitalized. 

The final row of data for each 
patient should be generated at the 
time of hospital discharge or 7 days 
after delivery, whichever happens 
first. 

How often should the risk of PPH be Vital signs are checked every 20 A new row is needed for each 
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reassessed? minutes, so it would be important to 
reassess the risk every 20 minutes. 

patient every 20 minutes that 
captures the patient’s state at that 
point in time. 

What are predictors of PPH we 
should include in our model? 

Whether the delivery was a C-
section or vaginal delivery makes a 
big difference. C-section generally 
puts women at higher risk. 
 
Pre-pregnancy body mass index is 
important. But we should also 
include the body mass index from 
each of the trimesters. 
 
We should also include systolic 
blood pressure in the model 
because a low value can be an early 
indicator for PPH. 

C-section is a “fixed” predictor for 
each patient after delivery has taken 
place (but would be considered 
time-varying if the at-risk period 
included the prepartum period) 
 
“Pre-pregnancy” and “during each of 
the trimesters” is not precise 
because each can refer to multiple 
values. The date of conception is 
not always accurately known and is 
often estimated. 
 
Systolic blood pressure is checked 
frequently. This statement is not 
precise enough to know which time 
period matters (e.g., last 48 hours) 
and what matters (e.g., mean value, 
minimum value, or slope). 

4.3.1 The Bounds and Frequency of Predictions 

 By asking a clinician when the at-risk period begins (at delivery), how often 

predictions should be made (every 20 minutes), and when the at-risk period ends (at 

discharge or 7 days after delivery), the analyst can derive a grid of time points for each 

patient that will represent rows in the modeling data. Because the delivery time is different 

for each patient, the grid will need to be anchored to the respective patient’s delivery time. 

Because each patient’s at-risk period may be of a different length (e.g., 2 days versus 7 

days), patients will not be equally represented in the data in terms of the number of rows. 

This complexity, which is a common source of errors, is known to the analyst but not easy 

to communicate to clinicians. 

4.3.2 Baseline Predictors 

 As expressed in Table 4.1, the risk of PPH begins at the time of delivery. This has 

important implications because data elements available prior to (and up to the time of) 

delivery can be considered as fixed or baseline information, whereas subsequent data 

could be represented in a variety of ways. Whether a data element is definitively fixed 

depends on the format in which it has been made available to an analyst. When a data 

element is expressed at the level of the hospitalization in a “wide” dataset (Table 4.2), it 
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must be considered as fixed because it is only available at the hospitalization-level and 

thus cannot change during the course of the hospitalization. For example, each 

hospitalization can have at most one value of Delivery Type and Delivery Time in Table 

4.2 because each row represents a single hospitalization. 

 

Table 4.2: Example of fixed data expressed in “wide” format 

Hospitalization 
ID 

Age Delivery Type Admission Time Delivery Time Discharge Time 

1 29 C-section June 2, 2021 
7:00 PM 

June 3, 2021 
4:10 PM 

June 7, 2021 
11:50 AM 

2 35 Vaginal June 6, 2021 
6:30 AM 

June 6, 2021 
3:02 PM 

June 8, 2021 
1:05 PM 

 

Baseline information can also be present in a temporal or time-varying format as 

expressed in Table 4.3. In this “long” format where each row represents a single 

observation, Delivery Type is still only represented once per patient. However, this 

constraint is not enforceable by the data structure itself. If Delivery Type were being 

extracted from multiple data sources, it is possible that an individual hospitalization could 

have two or more rows describing this information, potentially in conflicting ways. 

 

Table 4.3: Example of temporal (or time-varying) data expressed in “long format” 

Hospitalization 
ID 

Timestamp Variable Value 

1 June 2, 2021 9:19 PM Systolic blood pressure 130 

1 June 3, 2021 5:30 AM Systolic blood pressure 150 

1 June 3, 2021 4:10 PM Delivery Type C-section 

2 June 6, 2021 8:05 AM Systolic blood pressure 100 

2 June 6, 2021 8:20 AM Systolic blood pressure 110 

2 June 6, 2021 3:02 PM Delivery Type Vaginal 

 

Thus, an analyst faced with these two different datasets may readily pick up on the 

fact that Delivery Type is a fixed variable in Table 4.2 but not in Table 4.3 even though a 

clinician seeing data in either format will have a mental model for which predictors are 

actually fixed or time-varying, which will inform how they are represented. 
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4.3.3 Time-varying Predictors 

Leveraging longitudinal EHR data in a meaningful way has long been a strategy 

absent in clinical prediction modeling. A systematic review revealed only around 9% of 

clinical models used time-varying repeated measures [79]. Recent clinical prediction 

models have shown that capturing predictors over time can improve performance [22], 

[37]. How a given time-varying predictor is best incorporated into a modeling dataset 

depends on domain knowledge about the potential causal mechanism or pace at which 

a predictor affects an outcome. While variation in body mass index is clinically relevant at 

the granularity of trimesters, blood pressure changes occurring in the span of minutes 

may signal imminent or early hemorrhage. If a medication is known to increase or 

decrease the risk of an adverse outcome, information about its half-life and dose-

response may be biologically important factors that determine how far back in time the 

analyst needs to look (from the current time) to see if the medication was administered, 

or how the dose should represented (e.g., total dose, mean dose). Thus, the way in which 

time-varying predictors are represented will differ between clinical variables. Importantly, 

the time-related components (e.g., a trimester is 13 weeks) may be entirely unrelated to 

the frequency at which predictions will be made (e.g., every 20 minutes). 

4.3.4 Conversion of Vague Clinical Concepts into Precise Mathematical Ones 

Clinical concepts are often expressed in terms that, while generally understood by 

clinician practitioners, are typically too imprecise for analysts. As in the example in Table 

4.1, clinicians may desire pre-pregnancy body mass index (BMI) to be included as a 

predictor. There is no variable in the electronic health record (EHR) that directly captures 

the pre-pregnancy BMI—only BMI in general. Even the date of conception may not be 

recorded in the EHR, so which values of BMI to consider pre-pregnancy may not be 

obvious to analysts. However, knowing trimesters are 13 weeks long (based on domain 

knowledge), the date of conception is commonly estimated to occur 39 weeks (13 x 3 = 

39) prior to the date of delivery. Thus, pre-pregnancy BMI can be thought of as referring 

to a patient’s weight in the period preceding 39 weeks prior to the date of delivery. 

In practice, even this definition is not precise enough to implement. Patients may 

have multiple values of BMI recorded during the pre-pregnancy period. Thus, one may 
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need to condense several eligible values of BMI into a single value by applying a 

“summary function.” Reasonable options to apply here could be the mean BMI value, the 

median BMI value, or the most recent BMI value among the series of eligible values. 

4.4 The Challenge of Unevenly Spaced Data 

4.4.1 Unevenly Spaced Data 

A patient’s state of health and subsequently the data collected are often observed 

at unevenly spaced time intervals (Figure 4.2) and different patients observed at different 

points in time. Without transformation, sequences at the multivariable or multi-subject 

level become out of phase in relation to each other which would exclude the application 

of many time-series modeling techniques. This often leaves two methods to convert 

unevenly spaced data into evenly spaced data: direct value interpolation of clinical state 

at regular time periods, and window-based segmentation. 

 

Figure 4.2: Unevenly spaced and sparse data 
Note: Single-patient example with tick marks representing variable presence and color representing different 
variables. 

 

In direct value interpolation (DVI), values are estimated as the mean of the value 

before and after a given time point at a designated interval. If no such value is present at 

a prediction interval, the interpolation may be based solely on information after the 

prediction, and thus cause leakage. While interpolation of the current value could be 

performed using only previous values, interpolation is commonly performed using linear 

regression, whose assumptions will need to be checked and may commonly be violated. 

4.4.2 Aggregating Repeated Measures 

Aggregation solves the problem of unevenly spaced data but as data are 

downsampled (multiple observations summarized as one value), information is lost and 

6/2 6/3 6/4 6/5 6/6 October December February April 
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approaches white noise [80]. Consider a scenario where all prior values of a variable 

(e.g., body mass index [BMI]) are summarized by a single value, expressed as a mean. 

If there are important trends in the BMI, such as those that occur during pregnancy, this 

solution will result in loss of important information. This can be overcome by dividing the 

lookback period (e.g., 12 months) into smaller intervals (e.g., 3 months) to capture state 

change, where each of the prior three 3-month periods represents a trimester of 

pregnancy, and the prior value represents pre-pregnancy values. Data can be further 

summarized for each interval by calculating multiple summary statistics (e.g., minimum, 

maximum, first, last) within each window. 

 

Figure 4.3: Methods for converting unevenly spaced data into evenly-spaced data 
Let Tn be the prediction interval and let the window be the period between each interval 
inclusive of Tn. Real values are denoted as black circles and derived values are denoted by 
white circles. On the other hand, window-based segmentation converts unevenly spaced 
data into evenly-spaced data by dividing time into fixed-length windows, and then calculating 
summary statistics (e.g., mean, median, minimum, and/or maximum) for each window, as 

depicted in Figure 4.3. 
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4.4.3 Aggregation of Statistics as a Hierarchy 

 

Figure 4.4: Temporal hierarchy 

 

Temporal data can be thought of in terms of a time-based hierarchy (Figure 4.4). 

Assuming a prediction occurs at the right-most point, a timespan is the amount of time 

prior to the prediction to include information. Within that timespan, information can then 

be split into intervals assuming there is reason to do so (i.e. repeated measurements). 

From there, each interval can then be summarized using standard statistical methods like 

minimum, maximum as well as data order based methods like first or last within an interval 

to better capture trajectory (Figure 4.5). Since there is a single spike which trails off, it 

would be difficult to identify the relevant timespan if the entire block was statistically 

summarized given an acute outcome event. This would be even more pronounced for 

dichotomous variables since diagnoses in the distant past contribute albeit to a lesser 

extent than more recent diagnoses that may be more relevant to the outcome.  
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Figure 4.5: Hypothetical predictor highlighting variability 
This figure highlights the advantage of breaking a time-series into chunks in 
order to summarize. 

 

4.5 Existing Time-Series Preparation Tools 

Existing time-based data preparation tools in R fall along a spectrum of two 

extremes; low-level feature extraction tools that focus on representing time-series or 

lagged variables and forecasting packages that primarily aim to model trends in a single 

variable over time (e.g. stock market) rather than separate predictions for separate 

patients. The tsibble package in R is intended to represent time-series data in a “tidy” 

format through time-based indexing. The slider, and runner R packages provide low-level 

functionality for creating different types of lagged predictors, with some functionality for 

summarizing multiple values. Only runner includes the concept of creating a “grid” of time 

points for each set of observations within a group (e.g., separately for each 

hospitalization) with the “at” argument, but this does not account for varying length of 

hospitalizations. 

Several forecasting packages exist in R, including fable, forecast, and modeltime, 

but these are generally designed to model time-varying components by decomposing 

data into different components (e.g., overall trends, seasonality, etc.). While these may 

be useful for modeling signals with a high degree of regularity and/or seasonal 

components (e.g., stock market). 
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The closest software package for preparing time-series patient data to our 

intended use case is FIDDLE (in Python) [4], which aims to automate data preparation 

with minimal parameters, approaching parameterless functionality [81]. A parameterless, 

data-driven approach has its own advantages with respect to ease of use. The resulting 

dataset, however, may not have face validity to domain experts due to not taking into 

account important domain-specific information (such as medication half-life as described 

above). Inpatient care is inherently complex, and while a data-driven approach alleviates 

human-decision making, ignoring attributes in the underlying data can lead to loss of 

important information. 

Despite the importance of data preparation on the results, it is uncommon for code 

used to generate features to be publicly shared as this is written specifically for a given 

dataset, and so not viewed as generalizable, and because it is often deemed as less 

important than the underlying modeling itself. Thus, there is a need for reproducible, 

domain expert-driven data preparation methods that can be readily reproduced and 

shared. 

4.6 The wizard Package 

In this paper we present wizard, an R package intended to transform clinical data 

into a modeling-ready dataset. Our primary design goal to simplify the data preparation 

process was to embrace clinical and data expertise through a shared grammar language. 

While this can be contrasted to data driven approaches in frameworks of similar purpose, 

our approach sought to preserve interpretability in data preparation and modeling 

decisions. The grammar is conceptualized using verb-like functions with easily 

interpretable parameters for both predictors and outcomes. It then builds a data structure 

in time sequence relative to an anchor point common in every observation (i.e. 

admission). It supports both single occurrence outcomes (i.e. mortality) as well as rolling 

outcomes which can occur multiple times throughout the observable period. Wizard builds 

on concepts related to discrete-time survival analysis commonly used to make multiple 

predictions based on updated information, autoregression focusing on a sequence of 

measurements, and statistical summaries used to represent a span of time. 
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Clinical prediction modeling often starts as a conversation between domain and 

data experts with a common goal of turning raw data into predictors known to have a 

relationship with an outcome. Approaching data structure as a design problem can 

alleviate this problem of translating time-based features derived from expert clinical 

knowledge to human-readable features. Wizard aims to capture that conversation 

between clinicians and modeling designers, distilling components into interpretable 

arguments at a precision level not achievable with current autonomous pipeline tools. 

In wizard, we identify common feature engineering techniques for both predictors 

and outcomes and distill them to a consistent and human-readable set of components 

that can be used as parameters through a shared language. We first identify timespan 

based techniques with examples on how they can be useful. We then identify concepts 

related to left-censoring data we call lookback which informs the model how far into the 

past to include measurements. We then identify the interval with which predictors are to 

be aggregated to allow multiple sequential summarizations which can hypothetically 

capture a state-based trajectory. And finally, we support multiple summarization 

techniques. 

Wizard provides a suite of functions intended to transform clinical data. Data 

collected at different intervals and periods may have distinct relevance to the current 

patient state. To account for variabilities, predictors can be timespan defined as 1) 

baseline, preceding any predictions and can be described as historical data; 2) rolling, 

which only includes a certain period in the past moving forward with updated predictions; 

or 3) growing, which starts at the first prediction and continues to expand when new 

information is received. Each timespan can then optionally be subdivided into intervals, 

focusing on a state-based representation of individual predictors. For example, a baseline 

predictor which goes one year in the past can be subdivided into three-month intervals 

which can preserve the progression of a condition. Finally, each timespan can then be 

summarized by using standard statistical methods such as min, max, mean and order-

based methods such as first and last to capture trajectory. Embracing principles which 

support reusable and interpretable data structures has proven successful in other 

frameworks and in this work we aim to bridge tidy data principles with time-series data 

structure [82].  
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4.6.1 Wiz Frame Object: A Data Structure for Fixed and Time-Series Data 

The wiz_frame() function 

The wiz_frame function creates a wiz_frame object. The object contains a copy of 

fixed data (in “wide” format as in Table 4.2) which contain time-invariant data that are 

used persistently for every prediction. These are typically data which do not change over 

the series of individual observations (i.e. age, sex). It also contains the temporal data (in 

“long” format as in Table 4.3) using a subject identifier, timestamp (as a date-time or a 

number), and a variable name and value (either categorical or numeric). Additional 

columns such as category can be used to capture related groups of variables (e.g., all 

vital signs). 

 

wiz_frame = function(fixed_data, 
                  temporal_data, 
                  fixed_id = 'id', 
                  fixed_start = NULL, 
                  fixed_end = NULL, 
                  temporal_id = 'id', 
                  temporal_time = 'time', 
                  temporal_variable = 'variable', 
                  temporal_value = 'value', 
                  temporal_category = temporal_variable, 
                  step = NULL, 
                  max_length = NULL, 
                  output_folder = NULL, 
                  create_folder = FALSE, 
                  save_wiz_frame = TRUE, 
                  chunk_size = NULL, 
                  numeric_threshold = 0.5) 

 

4.6.2 fixed_start: Anchor Point 

The wiz_frame keeps track of when the first prediction takes place, T0 (Figure 4.6). 

This can be a specific event timestamp or index and the default is the early data available. 

It is used as the reference point for the rest of the variables.  
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Figure 4.6: Fixed start 

4.6.3 fixed_end: The Final Prediction 

End_time identifies when the final prediction should be Tn (Figure 4.7). For survival 

analysis, it should be the early of either time of event or when the last prediction desired 

should be (i.e. discharge). 

 

Figure 4.7: Fixed end 

4.6.4 Step: Prediction Time Interval 

The step is the time step expressed in either time (i.e. hours) or absolute numbers 

describing how often new predictions should be made (Figure 4.8). 

 

Figure 4.8: Prediction time step 

4.6.5 Initial Processing of Data by wizard Upon Creation of a wiz_frame 

Wizard converts timestamps to an index anchoring at either the first value per 

subject or a specific timestamped event found in fixed_data and based on the prediction 

interval (step). Wizard then summarizes measurements grouped by index into either 

statistical or order representations (Figure 4.9). Wizard then borrows methods from 

discrete-time analysis in which data are temporally separated into person-period steps. 

Each step can be considered a separate prediction so there can be multiple predictions 

 

T0 Tn 

 

Tn T0 T1 T2 T... 

 

Tn T0 T1 T2 T... 
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per subject [83]. However, Figure 4.10 shows when transforming the data from long 

(database format) to wide (person-period) we lose information in previous prediction 

observations or “states” of the subject. A solution to this is incorporating autoregressive 

techniques which group column descriptors both by variable and sequence. This method 

allows multiple states to be observed per prediction observation (each row).  

 

Figure 4.9: Raw data transformation 
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Subject Time Label Value 

2 0 Systolic BP 120 

2 0 Diastolic BP 80 

2 0 Respiratory Rate 12 

2 1 Systolic BP 130 

2 1 Diastolic BP 95 

2 1 Respiratory Rate 20 

2 2 Systolic BP 129 

2 2 Diastolic BP 100 

2 2 Respiratory Rate 21 

2 3 Systolic BP 131 

2 3 Diastolic BP 92 

2 3 Respiratory Rate 20 

 

 

Subject Time SBP DBP RR 

2 0 120 80 12 

2 1 130 95 20 

2 2 129 100 21 

2 3 131 92 20 

Figure 4.10: Long to wide format data transformation 

 

Subject Time SBP_1 DBP_1 RR_1 SBP_2 DBP_2 RR_2 SBP_3 DBP_3 RR_3 

2 1 130 95 20 
      

2 2 130 95 20 129 100 21 
   

2 3 130 95 20 129 100 21 131 92 20 

Figure 4.11: Autoregressive transformation 

4.6.6 Categorical Dummy Coding 

wiz_dummy_code = function(wiz_frame = NULL, 
                       numeric_threshold = 0.5, 
                       variables = NULL, 
                       save_wiz_frame = TRUE) 

 
This function automatically converts categorical variables of type character to 

dummy coding. In effect, it creates a binary variable for every category in each variable. 

By default this function saves the results back to the wiz_frame RDS file stored on disk. 

Variables can either be defined or wizard will automatically dummy code all non-numeric 

variables as defined by the data dictionary. 
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4.6.7 Feature Types 

Predictors can be defined by invoking add_predictor(), add_baseline_predictor(), 

or add_growing_predictor() with a “wiz_” prefix. The difference between the three relates 

to their use of left and/or right censoring which can be described as temporal data filtered 

prior to the desired timespan (left censoring) or temporal data filtered after the desired 

timespan (right censoring). Predictor spans can then be broken into smaller components 

(window) which capture different states of a patient. 

4.6.8 Adding Baseline Predictors 

wiz_add_baseline_predictors = function(wiz_frame = NULL, 
                                    variables = NULL, 
                                    category = NULL, 
                                    lookback = lubridate::hours(48), 
                                    window = lookback, 
                                    offset = lubridate::hours(0), 
                                    stats = c(mean = mean, 
                                              min = min, 
                                              max = max), 
                                    impute = TRUE, 
                                    output_file = TRUE, 
                                    log_file = TRUE, 
                                    check_size_only = FALSE, 
                                    last_chunk_completed = NULL) 

 
Baseline predictors are variable measurements which occur prior to the first 

prediction (Figure 4.12). This has a computational advantage over other predictor types 

because they are calculated once for the duration of predictions. Parameters include 

lookback period which is the timespan into the past from the first prediction (T0) to include. 

Lookback can also be optionally divided into smaller pieces via window. Offset can be 

used to move the timespan to the left of the first prediction (T0). 

 

Figure 4.12: Baseline predictors 

4.6.9 Adding Growing Predictors 

wiz_add_growing_predictors = function(wiz_frame = NULL, 

T
0
 T

n
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                                    variables = NULL, 
                                    category = NULL, 
                                    stats = c(mean = mean, 
                                              min = min, 
                                              max = max), 
                                    output_file = TRUE, 
                                    log_file = TRUE, 
                                    check_size_only = FALSE, 
                                    last_chunk_completed = NULL) 

 
 

Figure 4.13: Growing predictors 

 
Growing predictors can be seen as a complement to baseline predictors (Figure 

4.13). They start at the first prediction and continue to expand with each prediction interval 

to include new data points.  

4.6.10 Adding Rolling Predictors 

wiz_add_predictors = function(wiz_frame = NULL, 
                           variables = NULL, 
                           category = NULL, 
                           lookback = lubridate::hours(48), 
                           window = lookback, 
                           stats = c(mean = mean, 
                                     min = min, 
                                     max = max), 
                           impute = TRUE, 
                           output_file = TRUE, 
                           log_file = TRUE, 
                           check_size_only = FALSE, 
                           last_chunk_completed = NULL) 

 
Rolling predictors have a fixed width timespan while stepping forward with each 

new prediction (Figure 4.14). Lookback period is the timespan into the past of the first 

and all subsequent predictions. The lookback window can be further divided into smaller 

intervals using the window parameter. Carry forward imputation is used by default but can 

be disabled. 
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Figure 4.14: Rolling predictors 

4.6.11 Adding Fixed Outcomes 

An outcome that occurs at a time in the indefinite future either once (i.e. death) or 

only the first occurrence is of interest (i.e. shock). In these outcomes, data after the 

outcome has occurred must be censored so no subsequent predictions are made. While 

the event in question may be predicted more than once, a repeated event cannot be 

predicted like it can with a rolling outcome. Fixed outcomes can be included directly in the 

fixed_data, and if no predictions should be made after the outcome has occurred, the 

timestamp for the outcome can be taken into account when setting the fixed_end 

argument in wiz_frame(). 

4.6.12 Adding Rolling Outcomes 

wiz_add_outcomes = function(wiz_frame = NULL, 
                         variables = NULL, 
                         category = NULL, 
                         lookahead = lubridate::hours(48), 
                         window = lookahead, 
                         stats = c(mean = mean, 
                                   min = min, 
                                   max = max), 
                         impute = FALSE, 
                         output_file = TRUE, 
                         log_file = TRUE, 
                         check_size_only = FALSE, 
                         last_chunk_completed = NULL) 

 

Outcomes behave in a similar fashion to predictors except instead of looking prior 

to the prediction, it considers the future timespan defined by lookahead. Wizard supports 

multiple outcomes and can be used for survival analysis in which the outcome can occur 

at most once or a rolling outcome in which the lookahead slides forward along with 

subsequent predictions (Figure 4.15).  
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Figure 4.15: Rolling outcomes 

4.6.13 Predictor Type Overview 

Choosing the right predictor type can depends on the clinical relevance of the 

variable and timespan. Figure 4.16 illustrates each predictor type and how they are 

related to the initial at-risk or first prediction period, T0. 

 

Figure 4.16: Predictor type comparison 

4.6.14 Statistical Summaries 

Statistical summaries for each of the previously mentioned functions can be used 

to override defaults of mean, min, and max. Additional options include median, length 

(count of occurrences), as well as first and last values found in the summarize function of 

the dplyr package (e.g. dplyr::first or dplyr::last) [84]. 
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4.7 Evaluating wizard on Public Benchmarks 

4.7.1 Data Source 

To demonstrate performance of our framework we identified an existing data 

pipeline framework applied to a de-identified openly accessible clinical dataset. We found 

the FIDDLE framework created by Tang et al. to closely resemble our framework in 

purpose: to transform long form clinical data into a dataset ready for supervised machine 

learning [4]. Among the demonstrations Tang et al. published, they used the MIMIC-III 

dataset to predict a group of commonly tested outcomes [85]. We used a portion of the 

code published on GitHub by Tang et al. to build the cohort datasets which took place 

prior to FIDDLE transformation [86]. 

4.7.2 Study Cohort 

We chose to exclusively use data from MIMIC collected using MetaVision (2008-

2012), similarly to the FIDDLE implementation, because of its more recent collection than 

CareVue (2001-2008). We divided the cohort into train, tune, and test cohorts by patient 

first and then by ICU admission to preserve patient separation between cohorts. The 

resulting task cohorts were between 14,355 and 21,044 ICU encounters and XX and XX 

total patients. Encounters were excluded for subjects under 18, when the subject died 

prior to the prediction of interest, and if the outcome occurred prior to the prediction of 

interest (Figure 4.17). 
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Figure 4.17: MIMIC-III case study cohort 

4.7.3 Outcomes 

A total of three outcomes and five outcome tasks were conducted. A single 

prediction was calculated for each outcome task at a fixed time following admission to the 

ICU using predictors collected between ICU admission and the time of prediction. 

Outcome tasks conducted were acute respiratory failure (ARF) for the next 4 and 12 hours 

(Invasive Ventilation, Non-invasive Ventilation, or PEEP set), shock described as the use 

of vasopressors (Norepinephrine, Epinephrine, Dopamine, Vasopressin, Phenylephrine), 

and in-hospital mortality at 48 hrs following ICU admission for the remainder of admission.  
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4.7.4 Predictors 

While similar cohorts were used, RARS used a different transformation 

methodology to prepare predictors. Although only benchmark values are tested and 

reported, predictions were made every four hours and recursively used to train the model. 

Imputation was not conducted because h2o supports missingness by making decision 

splits based on the branch that most closely resembles an existing value using other 

variable splits. Predictors were excluded from analysis when there was less than 5% 

prevalence among patients. Numeric predictors were split into binary (two or less unique 

values) and non-binary (more than two unique values). Categorical predictors were 

dummy coded. Numeric non-binary variables were summarized at a four hour interval 

capturing minimum, maximum, median, and length (count of occurrences). Numeric 

binary and categorical variables were dummy coded when necessary, summarized at a 

four hour interval and summarized by length, capturing both the presence and number of 

occurrences (Table 4.4). 

 

Table 4.4: wizard parameters 

Variables timespan Lookback Stats 

Continuous growing NA first, last, min, max, median 

Continuous, Dichotomous, Categorical growing NA length 

 

4.7.5 Model Development 

Gradient boosting machine (GBM) was used due to its ability to make corrections 

based on previous predictions made and its performance using imbalance outcomes. 

Since our transformation methods include recursion, a strength is including variable 

summaries from previous predictions, generally described as autoregression. We used 

the train and tune cohorts including all recursive predictors up to and including the time 

points of interest. This allowed previous predictions to be used in model corrections. We 

used the test cohort filtered to the prediction and outcome specific to each task. We used 

1000 trees, a learning rate of 0.01, and AUC as the stopping metric. 
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4.7.6 Model Validation 

Discrimination was calculated using a single prediction per hospitalization 

occurring at time T hours following ICU transfer or admission. Model calibration was 

assessed using a calibration curve comparing deciles of all predictions to the observed 

risk. 

4.7.7 Statistical Software 

R 4.0 was used to conduct all analyses. We used the h2o R package (v3.30) for 

the gradient-boosting decision tree and the wizard R package to transform the data. 

Discrimination, calibration, and threshold performance were visualized using the runway 

R package. In addition to statistical software used, Yottabyte research cloud, Great Lakes 

(HPC Cluster), and ARMIS (HIPAA-aligned Slurm Cluster) were used for computational 

needs [87]–[89]. 

4.7.8 Results 

Three outcomes including five prediction tasks were conducted using wizard to 

prepare the data and GBM to build the models (Table 4.5). We found AUCs for each task: 

in-hospital mortality, 0.879, ARF at 4 hours, 0.786, ARF at 12 hours, 0.717, shock at 4 

hours, 0.814, and shock at 12 hours, 0.781.  AUC values for FIDDLE and MIMIC-Extract 

are ranges reported from Tang et al. for all algorithms used [4], [90].  

 

Table 4.5: Outcome prevalence, cohort size, and discrimination comparison across outcomes 

Outcome 
(Prevalence) 

Cohort 
Size 

Prediction 
Task: ICU 
Admit + T 

AUC 

wizard FIDDLE MIMIC-Extract 

Mortality (8.7%) 21,011 48hr 0.879 0.814-0.886 0.837-0.859 

ARF (18.2%) 15,943 4hr 0.786 0.817-0.827 0.777-0.821 

ARF (9.5%) 14,122 12hr 0.717 0.757-0.771 0.700-0.747 

Shock (14.9%) 19,395 4hr 0.814 0.809-0.831 0.796-0.824 

Shock (7.7%) 17,601 12hr 0.781 0.773-0.792 0.741-0.778 

Note: ARF: acute respiratory failure; AUROC: area under the receiver operating characteristics curve; RARS: Recursive 

Autoregressive Summarization; FIDDLE: Flexible Data-Driven Pipeline. 
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4.8 Discussion 

Trust has long been a subject of contention in machine learning models. While 

machine learning models often outperform statistical or rule-based models, transparency 

often comes as the trade-off.  However, a distinction must be made about where the focus 

is commonly placed in the predictive modeling process. There are in fact two separate 

trust issues: trust in the modeling input, often referred to as prepared data, and the output 

or model itself. As models get more complex, they get harder to understand and therefore 

harder to trust. However, our work does not apply to that as it is intended to be model 

agnostic, from simple linear regression to neural networks. 

It is equally important to establish trust in the data used for modeling. Many 

approaches make data transformation decisions that make the predictors 

incomprehensible before even applying an algorithm to them (e.g., log transformation, 

normalization, tensors). We, on the other hand, are helping clinicians understand what a 

given predictor means. Our goal is that the results can be used in any modeling approach 

and an extension of this work would allow more transparency in the model as this is a 

prerequisite to establishing trust. Therefore, by focusing on a model’s input, we believe 

we are addressing one of the two problems related to trust in predictive modeling. 

Our framework has shown favorable results transforming data intended for early 

warning systems to predict postpartum hemorrhage. However, we expect that it would be 

helpful to apply it to more kinds of problems beyond just maternal care. Additionally, we 

intend to expand use cases beyond what is currently contained in the package to include 

more preprocessing steps with framework improvements. This includes visualization tools 

to help decide to represent the data as well as automated techniques when domain 

expertise isn’t available using statistical analysis. 

4.9 Conclusion 

The wizard R package is a software program that encodes a grammar of data 

preparation for EWS models through windowing and summarization for auto-regressive 

data preparation. Using wizard, analysts can effectively and efficiently prepare electronic 

health record data for EWS modeling through a framework that directly leverages domain 
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expertise. Wizard provides a framework with interpretable parameters and human-

readable output ready for use with any prediction modeling algorithm. Wizard supports 

parallel processing using the future package and can process data in chunks to reduce 

the need to keep the entire temporal dataset in-memory when used on systems with 

limited resources. 

Application of wizard to MIMIC-III data was intended to be a proof of concept with 

the goal of making sure it worked on a large dataset without any prior extensive 

exploratory analysis often required in manual data preparation. Whether the results are 

statistically significant or not is immaterial to the fact that wizard was able to successfully 

transform the MIMIC-III data effectively with performance in close-range of those of 

previous attempts using automated data preparation tools. 
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Chapter 5 

Continuous Prediction of Postpartum Hemorrhage Using 

Time-Series Machine Learning Models 

 

This chapter was co-authored with Alissa Carver, Hyeon Joo, Thomas Klumpner, and 
Karandeep Singh. 

5.1 Introduction 

In the United States, postpartum hemorrhage is a leading cause of preventable 

maternal mortality, which is often due to delayed or inadequate response to clinical 

warning signs [10], [91], [92]. While postpartum hemorrhage is commonly diagnosed by 

methods to quantify blood loss, bleeding may be concealed [93], [94]. Therefore, vital 

sign surveillance is an important mechanism by which postpartum hemorrhage is 

identified [95], [96]. To facilitate early detection of maternal morbidity like postpartum 

hemorrhage, the National Partnership for Maternal Safety has recommended institutions 

adopt maternal early warning systems, which use a set of vital sign thresholds as triggers 

to escalate care [97]. Simplifications of these systems, like the Maternal Early Warning 

Criteria, have been endorsed to facilitate recognition of actionable conditions at the 

bedside [97]. Unfortunately, simplified systems such as these lack important patient-

specific and contextual information that should probably alter notification thresholds. For 

example, some vital sign abnormalities may be the result of more benign conditions like 

maternal expulsive efforts [8], [9]. In addition, proper use of these systems requires a lack 

of hesitation to escalate care, good judgment, and is subject to other cognitive biases 

[35]. Even if a vital sign abnormality is registered by the bedside monitor, the bedside 

provider must recognize its severity and escalate care without reservation. 

 These limitations have led to efforts to both identify better predictors of maternal 

morbidity using mathematical modeling techniques [37], [98], and also to automate 
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notification of providers using risk scores [9]. A model was recently developed by 

Venkatesh et al to predict postpartum hemorrhage using data available at the time of 

admission [98]. However, this model does not appear to generalize to contemporary 

practice settings that quantify blood loss using QBL. More recently, Escobar et al. [37], 

described the development of a model to predict a wide range of adverse maternal and 

fetal outcomes using an early warning system. While the model performed well (C-statistic 

0.79), virtually all alerts were generated in the antepartum period, highlighting its limitation 

as a system for capturing postpartum hemorrhage. Finally, we have previously described 

the development of an automated maternal early warning system which while widely 

accepted by providers [99], has a positive predictive value of only 5.1% for the detection 

of severe postpartum hemorrhage and does not account for patient-specific baseline risk 

factors, other than stage of labor, when issuing an alert [8]. 

 Recognizing these shortcomings, and the unique challenges inherent in detecting 

postpartum hemorrhage, we sought to develop a continuous prediction model focused 

solely on the early identification of postpartum hemorrhage using a novel time-series 

machine learning approach.  

5.2 Materials and Methods 

5.2.1 Data Source 

The University of Michigan Von Voigtlander Women’s Hospital is a tertiary care 

academic women’s hospital with approximately 4,600 deliveries per year.  

5.2.2 Study Cohort 

Our study included women aged 18 or older, hospitalized for delivery between 

February 1, 2019, and May 11, 2020, including deliveries for fetal loss. Deliveries were 

excluded if the estimated gestational age was less than 22 weeks, the minimum 

gestational age at which neonatal resuscitation is offered at our institution. This study was 

approved by the University of Michigan Institutional Review Board (IRB), which waived 

the requirement for informed consent. 
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Maternal demographics, comorbidities, and delivery data were collected from the 

electronic health record (EHR). Time-varying data were also collected from the EHR, 

including obstetric care (e.g., Cesarean section versus vaginal delivery), nursing 

flowsheets, telemetry data, lab results, active problem lists, and medication 

administration. Data collected spanned from one year prior to delivery admission to the 

time of discharge. 

The primary outcome was defined as postpartum hemorrhage with a cumulative 

quantitative blood loss (QBL) of ≥ 1000 mL occurring between delivery and discharge. 

Blood loss prior to delivery was not included in this calculation. We selected 105 variables 

based on those with known relationships to postpartum hemorrhage led by clinical 

experts. Data was sourced from multiple clinical information systems and merged based 

on advice from clinical domain experts. For example, data from the anesthesia 

information management system were combined with inpatient data with input from 

authors T.K. (an anesthesiologist) and A.C. (an obstetrician). Data were divided into three 

temporal categories: time-invariant, described as variables which are unlikely to change 

over the course of admission (i.e. age, biological sex, marital status, gravidity parity), 

baseline variables, which are collected prior to the first prediction (i.e. diagnostic 

conditions, body max index (BMI), weight), and growing predictors, or events for whom 

all values were considered from the first prediction up until discharge or the event, 

whichever occurred first (i.e. medication administration, lab results, and vital signs). A full 

list of predictors and their temporal properties captured can be found in Supplemental 

Table 5.5. 

5.2.3 Model Development 

The wizard R package was used to transform row-level patient data into windowed 

summaries (Chapter 4). This method of data transformation builds indices from time 

stamped data around the first prediction of interest, in this case, the delivery time. The 

indexed data are then grouped and summarized in autoregressive windows of time. 

Recursive observations are calculated for each prediction so that each subsequent 

hospitalization prediction contains the data from the previous observations. Windows with 
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repeated numeric measures were then summarized using the first, last, minimum, 

maximum, mean, median, and number of occurrences within each window. 

Deliveries between February 1st, 2019 and November 15th, 2019 consisting of 

64% were used to train the model. Deliveries between November 16th, 2019 and 

February 1st, 2020 were used to tune the model, and the remaining 20% which occurred 

between February 2nd, 2020 and May 11th, 2020 were used to test the model.  

Gradient boosting machine (GBM) was used due to its ability to make corrections 

based on previous predictions made and its performance using imbalanced outcomes 

[75]. Since our transformation methods recursively use information from prior time points 

to predict outcomes at future time points, this approach is a generalization of the discrete 

time survival analysis approach. We used the train and tune cohorts including all recursive 

predictors up to and including the time points of interest. This allowed previous predictions 

to be used in model corrections. We used the test cohort filtered to the prediction and 

outcome specific to each task. We used 1000 trees, a learning rate of 0.01, and AUC as 

the early stopping metric. 

The model was trained on an outcome to predict whether postpartum hemorrhage 

would occur anytime later in the hospitalization, referred to as the hospitalization-level 

outcome. This allowed decision trees to focus on the differences in overall outcomes 

between patients (hospitalization-level outcome) rather than solely focusing on changes 

within individual patients (rolling outcome), which can lead to overemphasis on time-

varying predictors and an underemphasis on baseline risk factors. We predicted 

postpartum hemorrhage starting at the delivery timestamp, T0, and every 20 minutes 

ending at the time of discharge.  

5.2.4 Model Validation 

Area under the receiver operating characteristic curve (AUROC) and calibration 

were used to assess model performance. AUROC, also known as discrimination, is the 

ability for the model to classify risk groups across all thresholds [100]. Calibration is the 

comparison of predicted and actual risk probabilities [66], [67].  

Model performance was first tested as the data were presented to the algorithm. 

This consisted of multiple predictions per patient with the last consisting of the entire 
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hospitalization right-censored to the outcome, also called the person-period prediction 

level described in discrete-time survival analysis. This measure cannot be compared 

across studies because it is dependent on the number of predictions made across 

hospitalizations (e.g. prediction interval, first prediction timepoint, and duration of 

hospitalizations). The second method consisted of the first high-risk alert per 

hospitalization in relation to the outcome. This is more comparable across studies as long 

as the outcome is the same. Other performance measures used to determine a threshold 

are sensitivity, specificity, positive predictive value (PPV), number needed to evaluate 

(1/PPV), and number willing to evaluate which can be used as a way to assess whether 

a model is a good fit over no model at all in a practical setting. 

A lead time analysis was conducted to assess the distribution of hypothetical alert 

lead time prior to the outcome. In this assessment, the first prediction in the test set which 

exceeded the high-risk threshold (probability ≥ 10%) for each encounter was used to 

calculate the time difference between when the selected prediction occurred and when 

the patient experienced PPH. 

5.2.5 Missing Data 

 Missing values were handled directly by the gradient-boosting decision tree 

algorithm. During model training, optimal binary splits were determined by minimizing the 

error using non-missing data. After a variable split was determined, missing values for 

that variable were assigned to the direction minimizing the error. When generating 

predictions, missing values followed the assigned direction [101]. 

5.2.6 Statistical Software 

R 4.0 was used to conduct all analyses. We used the h2o R package (v3.30) for 

training the gradient-boosting decision tree models. Discrimination and threshold 

performance were visualized using the runway R package. C-statistic confidence intervals 

and comparisons were calculated with bootstrapping (2,000 replicates for 95% 

confidence intervals) using the pROC R package. Calibration was calculated using the 

rms R software package [102]. In addition to statistical software used, Yottabyte research 
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cloud and ARMIS (HIPAA-Aligned Slurm Cluster) were used for computational needs 

[87], [88]. 

5.3 Rationale for Study Design 

5.3.1 Data Acquisition 

Data acquired for this study is the same source data used in Chapter 3. See 

Section 3.3.1 for details on methodological decisions and the rationale supporting those 

decisions. 

5.3.2 Preparation 

The primary differences between our validation study in Chapter 3 is taking a time-

series approach to clinical prediction modeling. This consisted of careful consideration 

around what constituted the at-risk period as well as the interval with which to make 

predictions. We determined the at-risk period to start at the point of delivery because 

postpartum hemorrhage can only occur after delivery. While another option was to start 

predictions at the time of admission, which was the single prediction point for our 

validation model, we found that performance was similar between using admission and 

delivery as the starting point, and the predictors between admission and delivery added 

complexity to the model. Moreover, the actionability of predictions made prior to delivery 

are not clinically intuitive and less likely to be useful as predictions issued during the 

postpartum period. 

The highest frequency with which to make predictions could be every time a new 

measurement was collected. This would likely be infeasible because no mechanism 

exists in our current electronic health record infrastructure to run a model only when new 

information becomes available. We chose a twenty-minute time step because Klumpner 

et al. found in that the median time between an alert and intervention was for the most 

severe PPH cases was 48 minutes [8]. To ensure adequate lead time to act, we chose to 

divide this amount of time in half and round down to regularize the interval, for example, 

so alerts would be fired at the same time on the hour. If the selected time step was too 

long, there likely would not be enough time to take action for a severe PPH case. This 
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approach is fundamentally different from the approach taken by Venkatesh et al. where 

only one prediction was issued at admission. 

Over the course of two years, I filled the role as lead data scientist throughout this 

project. Our research team included three clinical experts who met on a weekly basis to 

discuss potential predictors to be used in the model. We also discussed in an iterative 

manner as to what the different options and determined how to optimally represent each 

variable included in the model. 

We discussed the parameters to be used with the wizard framework in terms which 

could be communicated and understood by the entire team (Supplemental Table 5.5). 

For example, we determined that billing data would be best considered as baseline 

predictors that would only be considered prior to the first prediction. We also wanted to 

separate recent from historical events, so we approximated the third trimester into a 90-

day lookback and split it into 30-day increments. We then summarized each window of 

time by calculating the number of occurrences which served two purposes: measuring 

the presence of a diagnosis as well as the number of occurrences. 

There were other variables that required a different approach. For example, vital 

signs data were split into baseline and growing predictors because vital signs can change 

rapidly during postpartum hemorrhage. Identifying these changes as they evolve in the 

context of their normal values is clinically relevant. This meant summarizing all baseline 

values to establish a normal range of measurements on each patient. This also required 

using other methods to capture the “high frequency” component of vital signs 

interpretation using statistical and order summarizations (i.e., minimum, maximum, 

median, last, and first value) for each prediction window. 

5.3.3 Measuring Performance 

Another important consideration was the method in which we represented the 

outcome which can affect model performance. Performance may be measured at the 

encounter level in which model performance is evaluated based on the highest probability 

during the encounter. For patients who do not experience the outcome, a single high 

prediction will bring down the encounter-level performance even if the majority of 
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predictions are accurate (i.e., low). Therefore, at the encounter level, model performance 

is penalized if patients who do not experience the outcome ever generate an alert. 

An alternative is to evaluate every prediction independently, in this case in twenty-

minute increments. Since each prediction is considered in the calculation of model 

performance, one inaccurate prediction will not substantially affect performance. Both 

methods are relevant but different ways to measure model performance, and the 

differences between them can indicate gaps in model performance. From a clinical 

standpoint, the first alert may be the most important as clinicians will perceive subsequent 

alerts on the same patient as a false positive and are less likely to comply. Therefore, the 

encounter-level prediction likely matters most in the context of clinical practice. 

5.3.4 Algorithms 

There are many options to take into consideration when choosing which 

algorithm(s) to develop a model (summarized in Section 2.7). To take advantage of the 

flexibility non-linear modeling approaches have to offer we opted to use gradient boosting 

machines (GBM). GBM performs well when benchmarked against other algorithms [54]. 

GBMs work by creating decision trees iteratively with each subsequent tree focused on 

observations that were poorly predicted. They can perform well with a full grid search 

where hyperparameters, or options affecting algorithm behavior, (i.e., learning rate, tree 

depth, variable sampling rate) are tuned to find optimal settings, but this can be 

computationally expensive. GBM models were also chosen because, compared to linear 

models, they reduce the number of underlying assumptions about model data. 

5.3.5 Assessing Performance 

The definition of the outcome, rolling or persistent, can also affect performance. 

Using the same dataset, we initially benchmarked performance based on how the model 

was trained and tested. Table 5.1 shows how cross-testing models can result in differing 

levels of performance based on whether the training set and test set had the same or 

different representations of the outcome (rolling or persistent). Although difficult to 

discern, it is likely the algorithm is increasing importance of events which happen 

throughout the hospitalization leading to the outcome when persistent. Alternatively, using 
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a rolling outcome could force the algorithm to put greater weights on events which happen 

in the short term or immediately following delivery since predictions would continue 

beyond when a patient first experienced PPH.  

To evaluate the differences when comparing outcome methods, discrimination 

was calculated using two models. The first used a rolling outcome across the entire 

dataset (A), and the second used the hospitalization outcome which was censored when 

the outcome occurred, or the patient was discharged (B). Each test set was then trained 

on both models on a rolling basis (2,3), a single prediction at the time of delivery indicating 

detection for postpartum hemorrhage on delivery (1), and the maximum prediction for 

each hospitalization which occurred prior to outcome or discharge (4). 

 

Table 5.1: Model training benchmark 

Dataset 
 

A) Rolling outcome 
trained GBM 

B) Hospitalization 
outcome trained GBM 

Rolling outcome 
test set (24 hour 
lookahead) 

Primary 
PPH1  
(n = 2,030) 

0.6302 
95% CI: 0.6007-
0.6594 

0.6371 
95% CI: 0.6083-
0.6662 

Rolling 
prediction2  
(n = 276,604) 

0.9325 
95% CI: 0.9241-
0.9415 

0.7506 
95% CI: 0.7434-
0.7577 

Hospitalization 
outcome test set 
(right censored at 
outcome/discharge) 

Rolling 
prediction3  
(n = 195,207) 

0.7205 
95% CI: 0.7107-
0.7303 

0.8551 
95% CI: 0.8499-
0.8602  

Maximum 
probability4  
(n = 2,030) 

0.649 
95% CI: 0.6217-
0.6761 

0.693 
95% CI: 0.6664-
0.7214 

1single prediction at the time of delivery for 24 hours following (n = 2,030) 
2each prediction is the probability of PPH in the next 24 hours (n = 276,604) 
3each prediction is the probability of PPH anytime during hospitalization (n = 195,207) 
4highest probability before outcome or discharge (n = 2,030) 

 

The amount of time between when the first alert fired and when a patient 

experienced the outcome was calculated, also known as a lead-time analysis to assess 

hypothetical performance of the model. While this analysis is based on a specific high-

risk threshold, its merit can only be validated using a prospective analysis.  

Calibration was also evaluated. Calibration is a comparison of predicted probability 

of a set of points against the observed probability [66], [67]. This is commonly conducted 

by dividing probability distributions up into deciles. Each probability decile is considered 
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a sample of data. Assuming there are 10 points in the sample, let’s assume that 70% of 

those samples experienced the outcome. Therefore, the fraction of positive points would 

be 0.7 (observed probability or y-axis). This means that samples within this range have a 

70% probability of experiencing the outcome. Now plot the average of the probability 

estimates predicted by the model (predicted probability or x-axis) for each of those decile 

ranges in observed probability. In a well calibrated model, we would expect these values 

for each probability to be close. 

5.4 Results 

We identified 6,153 deliveries during the study period, of which 6,000 deliveries 

met the inclusion criteria (Figure 5.1). Out of the included deliveries 4,486 (75%) did not 

experience PPH and 1,514 (25%) experienced PPH. In comparing the temporally 

separated train, tune, and test cohorts, we found no significant differences between their 

baseline characteristics (Supplemental Table 5.3). In comparing across outcome groups, 

patients who experienced PPH had a higher prevalence of cesarean delivery, longer labor 

duration, higher rate of multiple gestation, and had more comorbidities including chronic 

hypertension and preeclampsia (Supplemental Table 5.4). 
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Figure 5.1: Cohort selection criteria 
Out of 6,153 deliveries between 2/1/2019 and 5/11/2020, 6,000 contained 
the minimum amount of time-based data points to conduct a time-series 
analysis. From the 6,000 eligible deliveries, 1,514 (25%) experienced 
PPH while 4,486 did not experience PPH. 

 

Area under the receiver operating curve (AUROC) was calculated using four 

methods but one training dataset/model (Table 5.2), (1) each prediction occurring at 

twenty-minute intervals was considered independently and (2) the patient’s maximum risk 

was captured prior to the outcome or discharge. Method (1) yielded an AUC of the interval 

prediction in that predictions at each interval were considered until either when the 

outcome first occurs or the patient is discharged, 0.975 (95% CI: 0.972-0.977). The 

second method of evaluation was calculated by using the maximum risk predicted prior 

to when the hospitalization outcome first occurs or when the patient is discharged, 0.694 

(95% CI: 0.659-0.727).  

Two additional methods of discrimination calculations were conducted to evaluate 

(3) primary postpartum hemorrhage by definition occurring within 24 hours of delivery, 

0.645 (95% CI: 0.607-0.682), and (4) a rolling outcome predicting postpartum 

hemorrhage for the next 24 hours at each prediction interval, 0.975 (95% CI: 0.972-

0.977).  

Vaginal or cesarean 
deliveries at Von 
Voigtlander Women's 
Hospital, 18+, 2/1/2019 
to 5/11/2020  

n = 6,153 Total Exclusions, n = 153 
Estimated Gestation Missing 
 n = 34 
Estimated Gestation < 22 Weeks 
  n = 31 
Missing Admit and Discharge Dates 
 n = 153 

Eligible deliveries  
n = 6,000 

QBL < 1000mL  
4,486 (75%) 

QBL ≥ 1000mL 
1,514 (25%) 

QBL = quantitative blood loss 
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Table 5.2: Model discrimination 

Evaluation Method AUROC 95% CI 

Persistent Outcome1 0.954 0.948-0.961 

Maximum Probability2 0.694 0.659-0.727 

Primary PPH3 0.645 0.607-0.682 

Rolling Outcome4 0.975 0.972-0.977 

1PPH occurring anytime following delivery to 
discharge 
2Highest risk of PPH between delivery and either 
the outcome occurrence or discharge 
3PPH occurring within the first 24 hours of delivery 
4PPH occurring in the next 24 hours at each 
prediction interval 

Note: Discrimination measured using the area under 
the receiver operating characteristic curve (AUROC) 
on the test set, accompanied by the 95% confidence 
interval (CI). 
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Calibration for the primary analysis was visualized using predictions at the interval 

level (Figure 5.2). Predictions at probabilities below 0.17 are being under predicted while 

probabilities above 0.17 are being over predicted.  

 

Figure 5.2: Interval level calibration plot 
This plot compares predicted versus observed risk. The thick grey line indicates 
ideal calibration while the dotted line indicates observed nonparametric 
calibration. 

 

 
 

  



 86 

A lead-time analysis based on the first alert was conducted on patients in the test 

set who exceeded a risk probability of 0.10 (Figure 5.3) and experienced postpartum 

hemorrhage. A threshold of  0.10 was chosen which is equal to approximately 20% 

specificity with consideration of the highest alert threshold during the encounter. However, 

determining a probability threshold cutoff is largely dependent on the context with which 

the model is used [103, Sec. 16.4]. The first alert which exceed the threshold of 0.10 was 

60 minutes prior to postpartum hemorrhage on average (Figure 5.4), the median lead-

time was 39 minutes, and interquartile range of 32 minutes. 

 

Figure 5.3: Threshold performance plot, maximum probability per 
hospitalization 
Plot showing the relationship between the probability threshold and 
the sensitivity, specificity, positive predictive value (PPV), and 
negative predictive value (NPV), with a histogram demonstrating the 
distribution of maximum probability per patient. 
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Figure 5.4: Distribution of alert times 
Alert times are based on exceeding the high-risk threshold with a probability 
≥ 10. Selected predictions from the test set accounted for 273 total 
encounters, with a mean high-risk alert time of 60.1 minutes, a median high-
risk alert time of 39.2 minutes. Note: Each alert time represents a hypothetical 
alert; no actual alerts were generated. 
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Variable importance was calculated for the GBM using h2o [104], [105]. Relative 

variable importance shows that time, relative to the time of delivery, is the most important 

variable followed by cumulative QBL and then delivery method (Figure 5.5). Variable 

names are concatenated into the variable type, variable name, variable value, summary 

method, and lookback (if applicable). Baseline variables can be described as predictors 

which occur prior to or at the time of delivery while growing predictors occur at the time 

of delivery up to the current prediction interval. Summary methods are relative to either 

the lookback period for baseline variables, which in most cases is 2880 minutes (48 

hours) or within the interval itself (20 minutes). More details on how the framework works 

can be found in Section 4.6.8. 

 

Figure 5.5: Relative variable importance 

5.5 Discussion 

In this study we developed a model to predict postpartum hemorrhage defined as 

≥ 1000 mL quantitative blood loss using 6,000 delivery hospitalizations. Using 105 

predictors we were able to predict PPH with strong time-horizon discrimination with an 
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AUC of 0.97 at the interval prediction level and a moderate AUC of 0.69 when considering 

the maximum probability per hospitalization.  

 Existing predictive models are not useful for predicting PPH in a real-time clinical 

setting. We believe this model to be useful in a clinical setting because previously 

published models either only made a single prediction at the time of admission or were 

not generalizable to institutions using QBL methods to estimate blood loss after delivery. 

One other model made multiple predictions per hospitalization using an outcome which 

included PPH, however, 99.9% of alerts were issued antepartum with many alerts soon 

after admission [37]. Our model uses parameterized methods for capturing information 

prior to delivery at a lower frequency. We chose the time of delivery as the first prediction 

for several reasons. An antepartum alert for postpartum hemorrhage may be difficult to 

interpret and act upon. Anchoring the first prediction to the time of delivery focuses the 

model on time varying predictors in the postpartum period, while still allowing 

incorporation of the patient’s care up to the point of delivery into the model. This potentially 

increases the actionability of any alerts.  

 The frequency with which predictions are made is important in relation to the 

outcome event because PPH can occur rapidly. In a previous study, Klumpner et al. found 

the time to intervention for severe postpartum hemorrhage from delivery was less than 

an hour in 45.8% (55/120) of cases of severely morbid PPH [8]. Therefore, predictions 

must be issued at least more frequently than every hour. In order to capture the outcome 

prior to the lag, a prediction interval of less than half the median lead time is needed, or 

at least every 24 minutes. Escobar et al. included PPH in their composite outcome with a 

prediction interval every hour but only 0.1% of alerts were postpartum with no true 

positives eliminating any effectiveness in predicting postpartum hemorrhage after delivery 

[37]. Escobar et al. also discovered that the median time from admission to the first 

prediction was 1.6 hours (at threshold probability of 4.1% for logistic model) and median 

time from admission to delivery was 10.8 hours. Even if an intrapartum alert for PPH was 

a true positive, the clinical intervention of an alert that occurs 9 hours before an event as 

acute as PPH is not well-defined.  

Given that PPH is commonly an acute event which occurs in a short amount of 

time with little warning, a more realistic lead time allows more reactionary measures to be 
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taken, like preparing an operating room or ordering blood products in preparation to treat 

hemorrhage. Our study found an average lead time of 60 minutes, a median lead time of 

39 minutes, and an interquartile range of 32 minutes for patients who both met the 

outcome and exceeded the probability of 10% prior to that outcome. This lead time would 

hypothetically trigger an alert to the clinician for further evaluation within an actionable 

timeframe. However, further analysis must be conducted to understand how this would 

affect clinician workflow in terms of frequency of alerts as well as multiple alerts for each 

patient. 

This study has several limitations. The most significant assumption we made is 

that QBL is calculated and entered in real-time. A lag in documentation could greatly 

affect the performance in a prospective study as relative time since delivery was deemed 

the most important variable. Our prevalence for PPH was very high (25%) in comparison 

with the Venkatesh model (4.7%) and the Escobar model (0.32%). Possible explanations 

for the difference in prevalence are that being a tertiary care center, our hospital is more 

likely to care for patients with a higher rate of comorbidity and difference in clinical practice 

patterns. Both studies we compared our model to define PPH based on EBL [36], [37], 

but our study cohort relies on QBL, which is more accurate [58]. The incidence of PPH 

when assessed using the same ≥1000 mL threshold of blood loss is higher when 

measured by QBL as compared to EBL [57], suggesting that EBL may only be identifying 

severe hemorrhage whereas QBL may also be capturing less severe bleeding. 

Unsurprisingly, severe hemorrhage may be easier for a model to predict and result in a 

higher AUROC. 

Despite these limitations in our model, we are the first, to our knowledge, to 

introduce a model capable of solely predicting PPH with reasonable discrimination using 

a multiple prediction approach. We believe this is the first step to incorporating this into 

clinical practice. We anticipate future studies will focus on prospective validation of this 

model to assess its effectiveness in real-time. If prospective validation is successful, then 

a clinical trial would be the next step to evaluate its potential to make a clinical impact. 
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5.6 Supplemental Tables 

 
Supplemental Table 5.3: Patient characteristics, stratified by development/validation sets (expanded) 

Characteristic 
Overall, N = 

6,000 
train, N = 3840 

(64%)¹ 
tune, N = 960 

(16%)¹ 
test, N = 1200 

(20%)¹ p-value² 

age_at_admission 
31.0 (27.0, 34.0) 31.0 (27.0, 34.0) 

31.0 (27.0, 
34.0) 

31.0 (27.0, 
34.0) >0.9 

anemia 
1,674 (28%) 1,053 (27%) 281 (29%) 340 (28%) 0.5 

antepartum_vaginal_bleeding 
1,248 (21%) 830 (22%) 181 (19%) 237 (20%) 0.11 

assisted_reproductive_technol
ogy 302 (5.0%) 198 (5.2%) 54 (5.6%) 50 (4.2%) 0.3 

asthma_active_airway_disease 
1,157 (19%) 742 (19%) 200 (21%) 215 (18%) 0.2 

bmi 
31 (27, 35) 31 (27, 35) 31 (27, 36) 31 (27, 35) 0.4 

  Missing 
43 31 3 9  

breech_abnormal_lie 
1,149 (19%) 755 (20%) 195 (20%) 199 (17%) 0.031 

carboprost 
    0.4 

  0 
5,986 (100%) 3,833 (100%) 956 (100%) 1,197 (100%)  

  250 
14 (0.2%) 7 (0.2%) 4 (0.4%) 3 (0.2%)  

cesarean_delivery 
1,741 (29%) 1,072 (28%) 293 (31%) 376 (31%) 0.041 

chorioamnionitis_on_admission 
317 (5.3%) 206 (5.4%) 48 (5.0%) 63 (5.2%) >0.9 

chronic_hypertension 
665 (11%) 403 (10%) 119 (12%) 143 (12%) 0.14 

chronic_renal_disease 
154 (2.6%) 110 (2.9%) 12 (1.2%) 32 (2.7%) 0.009 

depression 
1,351 (23%) 840 (22%) 227 (24%) 284 (24%) 0.3 

eclampsia 
15 (0.2%) 9 (0.2%) 4 (0.4%) 2 (0.2%) 0.5 

epis_gravida_count 
2.00 (1.00, 3.00) 2.00 (1.00, 3.00) 

2.00 (1.00, 
3.00) 

2.00 (1.00, 
3.00) 0.3 

  Missing 
15 9 4 2  

epis_para_count 
1.00 (0.00, 1.00) 1.00 (0.00, 1.00) 

1.00 (0.00, 
1.00) 

1.00 (0.00, 
2.00) 0.072 

  Missing 
15 9 4 2  

fetal_demise 
135 (2.2%) 88 (2.3%) 16 (1.7%) 31 (2.6%) 0.4 

fetal_macrosomia 
311 (5.2%) 201 (5.2%) 51 (5.3%) 59 (4.9%) >0.9 

gastrointestinal_disease 
1,774 (30%) 1,124 (29%) 300 (31%) 350 (29%) 0.5 

gbs_colonization 
1,620 (27%) 1,069 (28%) 240 (25%) 311 (26%) 0.14 

genital_tract_laceration 
64 (1.1%) 35 (0.9%) 5 (0.5%) 24 (2.0%) 0.003 
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gestation_days_on_admit 
275 (268, 283) 275 (268, 283) 275 (268, 283) 275 (267, 283) 0.7 

  Missing 
27 15 4 8  

gestational_diabetes 
600 (10%) 395 (10%) 92 (9.6%) 113 (9.4%) 0.6 

gestational_hypertension 
1,165 (19%) 731 (19%) 207 (22%) 227 (19%) 0.2 

heart_disease 
349 (5.8%) 222 (5.8%) 59 (6.1%) 68 (5.7%) 0.9 

height_height 
165 (160, 170) 163 (160, 169) 165 (160, 170) 165 (160, 168) 0.3 

  Missing 
4,562 2,979 727 856  

illegal_drug_use 
552 (9.2%) 396 (10%) 79 (8.2%) 77 (6.4%) <0.001 

initial_labor_status 
    0.005 

  Induction 
2,081 (43%) 1,297 (42%) 377 (48%) 407 (43%)  

  Labor 
2,746 (57%) 1,811 (58%) 405 (52%) 530 (57%)  

  Missing 
1,173 732 178 263  

instrumental_vaginal_delivery 
106 (1.8%) 66 (1.7%) 19 (2.0%) 21 (1.8%) 0.8 

insurance 
    >0.9 

  Medicaid 
1,656 (28%) 1,071 (28%) 255 (27%) 330 (28%)  

  Medicare 
25 (0.4%) 15 (0.4%) 4 (0.4%) 6 (0.5%)  

  Other 
13 (0.2%) 7 (0.2%) 2 (0.2%) 4 (0.3%)  

  Other Governmental 
Insurance 43 (0.7%) 29 (0.8%) 8 (0.8%) 6 (0.5%)  

  Private Insurance 
4,185 (70%) 2,675 (70%) 680 (71%) 830 (70%)  

  Workers Compensation 
55 (0.9%) 36 (0.9%) 6 (0.6%) 13 (1.1%)  

  Missing 
23 7 5 11  

international_normalized_ratio 
1.00 (0.90, 1.00) 1.00 (0.90, 1.00) 

0.90 (0.90, 
1.00) 

1.00 (0.90, 
1.00) 0.3 

  Missing 
4,910 3,147 781 982  

intrauterine_growth_restriction 
1,086 (18%) 645 (17%) 161 (17%) 280 (23%) <0.001 

labor_duration 
15 (7, 24) 15 (8, 24) 16 (8, 27) 15 (7, 26) 0.027 

  Missing 
1,173 732 178 263  

last_labor_status 
    0.001 

  Ante 
85 (1.5%) 57 (1.6%) 9 (1.0%) 19 (1.7%)  

  C/S 
1,082 (19%) 666 (18%) 195 (21%) 221 (19%)  

  Forcep 
1 (<0.1%) 1 (<0.1%) 0 (0%) 0 (0%)  

  Induction 
1,850 (32%) 1,171 (32%) 319 (34%) 360 (32%)  
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  Labor 
2,545 (44%) 1,674 (46%) 380 (41%) 491 (43%)  

  Loss/Ind 
33 (0.6%) 19 (0.5%) 1 (0.1%) 13 (1.1%)  

  Loss/Labor 
21 (0.4%) 11 (0.3%) 3 (0.3%) 7 (0.6%)  

  Loss/PP 
1 (<0.1%) 0 (0%) 0 (0%) 1 (<0.1%)  

  NSVD 
28 (0.5%) 11 (0.3%) 8 (0.9%) 9 (0.8%)  

  Obs 
11 (0.2%) 6 (0.2%) 2 (0.2%) 3 (0.3%)  

  Tr-Fall/trauma 
1 (<0.1%) 0 (0%) 0 (0%) 1 (<0.1%)  

  Tr-r/o labor 
26 (0.5%) 16 (0.4%) 4 (0.4%) 6 (0.5%)  

  Tr-r/o ROM 
5 (<0.1%) 2 (<0.1%) 3 (0.3%) 0 (0%)  

  Triage 
30 (0.5%) 26 (0.7%) 1 (0.1%) 3 (0.3%)  

  Vbac 
2 (<0.1%) 0 (0%) 1 (0.1%) 1 (<0.1%)  

  Missing 
279 180 34 65  

large_for_gestational_age 
74 (1.2%) 53 (1.4%) 9 (0.9%) 12 (1.0%) 0.5 

large_uterine_fibroids 
214 (3.6%) 144 (3.8%) 31 (3.2%) 39 (3.2%) 0.7 

magnesium_level 
1.80 (1.60, 2.00) 1.80 (1.60, 2.00) 

1.90 (1.60, 
2.10) 

1.80 (1.60, 
2.00) 0.4 

  Missing 
5,387 3,446 855 1,086  

magnesium_sulfate 
0.00 (0.00, 2.00) 0.00 (0.00, 2.00) 

0.00 (0.00, 
2.00) 

0.00 (0.00, 
2.00) 0.3 

  Missing 
5,479 3,513 874 1,092  

maternal_gbs_colonization 
867 (14%) 570 (15%) 119 (12%) 178 (15%) 0.2 

median_height_cm 
164 (160, 168) 163 (160, 168) 164 (160, 168) 165 (160, 168) 0.3 

  Missing 
43 31 3 9  

median_weight_kg 
83 (73, 95) 82 (72, 95) 83 (73, 95) 83 (73, 95) 0.2 

  Missing 
43 31 3 9  

multiple_gestation 
224 (3.7%) 141 (3.7%) 42 (4.4%) 41 (3.4%) 0.5 

nifedipine 
    0.01 

  0 
50 (23%) 22 (16%) 14 (40%) 14 (32%)  

  10 
63 (29%) 47 (34%) 6 (17%) 10 (23%)  

  20 
23 (11%) 17 (12%) 2 (5.7%) 4 (9.1%)  

  30 
54 (25%) 33 (24%) 6 (17%) 15 (34%)  

  60 
23 (11%) 15 (11%) 7 (20%) 1 (2.3%)  

  90 
4 (1.8%) 4 (2.9%) 0 (0%) 0 (0%)  
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  Missing 
5,783 3,702 925 1,156  

non_gestational_diabetes 
169 (2.8%) 112 (2.9%) 29 (3.0%) 28 (2.3%) 0.5 

number_of_fetuses 
    0.4 

  0 
1 (<0.1%) 1 (<0.1%) 0 (0%) 0 (0%)  

  1 
5,731 (98%) 3,677 (97%) 899 (97%) 1,155 (98%)  

  2 
132 (2.2%) 91 (2.4%) 20 (2.2%) 21 (1.8%)  

  3 
11 (0.2%) 5 (0.1%) 4 (0.4%) 2 (0.2%)  

  Missing 
125 66 37 22  

other_puerperal_infection 
4 (<0.1%) 4 (0.1%) 0 (0%) 0 (0%) 0.6 

placenta_accreta_spectrum 
41 (0.7%) 24 (0.6%) 7 (0.7%) 10 (0.8%) 0.6 

placenta_previa 
213 (3.5%) 137 (3.6%) 31 (3.2%) 45 (3.8%) 0.8 

placental_abruption 
143 (2.4%) 95 (2.5%) 18 (1.9%) 30 (2.5%) 0.6 

polyhydramnios 
242 (4.0%) 154 (4.0%) 36 (3.8%) 52 (4.3%) 0.8 

pph 
1,514 (25%) 952 (25%) 263 (27%) 299 (25%) 0.3 

preeclampsia_with_severe_fea
tures 359 (6.0%) 214 (5.6%) 60 (6.2%) 85 (7.1%) 0.2 

preeclampsia_without_severe_
features 425 (7.1%) 270 (7.0%) 68 (7.1%) 87 (7.2%) >0.9 

premature_rupture_of_membra
nes 1,406 (23%) 912 (24%) 208 (22%) 286 (24%) 0.4 

preterm_labor 
197 (3.3%) 118 (3.1%) 36 (3.8%) 43 (3.6%) 0.4 

prior_cesarean_delivery 
1,072 (18%) 667 (17%) 161 (17%) 244 (20%) 0.043 

prior_pph 
1,852 (31%) 1,152 (30%) 288 (30%) 412 (34%) 0.014 

r_bmi_bmi_calculated 
32 (28, 38) 32 (28, 38) 32 (28, 37) 32 (28, 37) >0.9 

  Missing 
4,719 3,084 752 883  

respirations_resp 18.00 (16.00, 
18.00) 

18.00 (16.00, 
18.00) 

18.00 (16.00, 
18.00) 

18.00 (16.00, 
18.00) 0.009 

  Missing 
328 225 37 66  

seizure_disorder 
74 (1.2%) 47 (1.2%) 12 (1.2%) 15 (1.2%) >0.9 

sp_o_2 
99.00 (98.00, 

100.00) 
99.00 (98.00, 

100.00) 
99.00 (98.00, 

100.00) 
99.00 (98.00, 

100.00) 0.026 

  Missing 
402 257 57 88  

spontaneous_labor 
312 (5.2%) 208 (5.4%) 47 (4.9%) 57 (4.8%) 0.6 

superimposed_preeclampsia 
99 (1.7%) 63 (1.6%) 14 (1.5%) 22 (1.8%) 0.8 
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temperature_temp 98.20 (97.90, 
98.60) 

98.20 (98.00, 
98.60) 

98.20 (97.90, 
98.50) 

98.20 (97.90, 
98.50) <0.001 

  Missing 
327 227 39 61  

thyroid_disease 
773 (13%) 486 (13%) 144 (15%) 143 (12%) 0.081 

tobacco_use 
311 (5.2%) 203 (5.3%) 45 (4.7%) 63 (5.2%) 0.8 

trial_of_labor 
459 (7.6%) 277 (7.2%) 81 (8.4%) 101 (8.4%) 0.2 

um_ip_r_magnesium_sulfate_
weight_magnesium_sulfate_do
se_weight     0.2 

  0 
5,922 (99%) 3,782 (98%) 950 (99%) 1,190 (99%)  

  2000 
78 (1.3%) 58 (1.5%) 10 (1.0%) 10 (0.8%)  

um_ip_r_pulse_pressure_pulse
_pressure_systemic 49 (41, 57) 49 (42, 57) 49 (41, 57) 49 (41, 55) 0.088 

  Missing 
241 170 22 49  

um_ip_r_urine_output_output_
m_l 250 (125, 450) 250 (125, 450) 250 (138, 425) 200 (120, 400) 0.017 

  Missing 
3,306 2,114 524 668  

um_r_oxygen_flow_rate_o_2_fl
ow_rate_l_min 10.0 (10.0, 10.0) 10.0 (10.0, 10.0) 

10.0 (10.0, 
10.0) 10.0 (1.0, 10.0) 0.02 

  Missing 
5,792 3,679 938 1,175  

um_r_oxytocin_volume_volum
e_m_l 18 (6, 43) 18 (6, 42) 19 (6, 46) 18 (7, 42) >0.9 

  Missing 
4,553 2,952 723 878  

um_r_pain_scale_numeric_1_p
ain_rating 5.0 (2.0, 7.0) 5.0 (2.0, 7.0) 6.0 (2.0, 8.0) 5.0 (2.0, 7.0) 0.003 

  Missing 
3,497 2,220 551 726  

um_stk_r_qbl_calculated_qbl_
calculated_qbl_m_l 90 (30, 201) 88 (30, 168) 112 (71, 133) 108 (46, 300) 0.4 

  Missing 
5,887 3,765 950 1,172  

um_stk_r_qbl_running_total_q
bl_running_total 128 (66, 292) 124 (58, 286) 118 (71, 243) 197 (74, 355) 0.7 

  Missing 
5,885 3,763 950 1,172  

urine_output_urine 
225 (150, 400) 238 (150, 400) 250 (150, 400) 200 (150, 394) 0.084 

  Missing 
4,125 2,810 673 642  

urine_protein_creatinine_ratio 
0.13 (0.09, 0.23) 0.13 (0.09, 0.22) 

0.14 (0.09, 
0.24) 

0.13 (0.09, 
0.24) 0.7 

  Missing 
3,968 2,569 626 773  

weight_scale_weight 
84 (74, 98) 84 (74, 98) 84 (75, 98) 84 (75, 97) 0.6 

  Missing 
2,921 1,876 451 594  
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white_blood_cell_count 
5 (2, 14) 5 (2, 15) 5 (1, 13) 5 (2, 13) 0.4 

  Missing 
4,557 2,942 700 915  

¹Statistics presented: median (IQR); n (%) 

²Statistical tests performed: Kruskal-Wallis test; Fisher's Exact Test for Count Data with simulated p-value (based on 
2000 replicates) 

 

 
Supplemental Table 5.4: Patient characteristics, stratified by the outcome (expanded) 

Characteristic 
Overall, N = 

6,000 
No PPH, N = 4486 

(75%)¹ 
PPH, N = 1514 

(25%)¹ p-value² 

age_at_admission 
31.0 (27.0, 34.0) 31.0 (27.0, 34.0) 

31.0 (28.0, 
35.0) <0.001 

amb_r_bp_diastolic_diastolic 
73 (65, 81) 72 (65, 80) 74 (66, 82) <0.001 

  Missing 
241 199 42  

amb_r_bp_systolic_systolic 
122 (112, 131) 121 (111, 131) 124 (114, 133) <0.001 

  Missing 
241 199 42  

anemia 
1,674 (28%) 1,206 (27%) 468 (31%) 0.003 

antepartum_vaginal_bleeding 
1,248 (21%) 910 (20%) 338 (22%) 0.092 

assisted_reproductive_technology 
302 (5.0%) 162 (3.6%) 140 (9.2%) <0.001 

bmi 
31 (27, 35) 30 (27, 35) 32 (28, 37) <0.001 

  Missing 
43 35 8  

breech_abnormal_lie 
1,149 (19%) 774 (17%) 375 (25%) <0.001 

cesarean_delivery 
1,741 (29%) 943 (21%) 798 (53%) <0.001 

chorioamnionitis_on_admission 
317 (5.3%) 197 (4.4%) 120 (7.9%) <0.001 

chronic_hypertension 
665 (11%) 455 (10%) 210 (14%) <0.001 

delivery_type 
   <0.001 

  C-SECTION LOW VERT 
13 (0.2%) 6 (0.1%) 7 (0.5%)  

  C-SECTION, CLASS 
60 (1.0%) 31 (0.7%) 29 (1.9%)  

  C-SECTION, LOW TRANS 
1,685 (28%) 889 (20%) 796 (53%)  

  MEDICAL TERMINATION 
4 (<0.1%) 3 (<0.1%) 1 (<0.1%)  

  SPONTANEOUS LOSS 
9 (0.2%) 9 (0.2%) 0 (0%)  

  VAGINAL, FORCEPS 
38 (0.6%) 23 (0.5%) 15 (1.0%)  

  VAGINAL, SPONTANEOUS 
3,857 (65%) 3,250 (73%) 607 (40%)  

  VAGINAL, VACUUM (EXTRACTOR) 
61 (1.0%) 53 (1.2%) 8 (0.5%)  
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  VBAC, FRCPS 
1 (<0.1%) 1 (<0.1%) 0 (0%)  

  VBAC, SPONTANEOUS 
239 (4.0%) 191 (4.3%) 48 (3.2%)  

  VBAC, VACUUM 
6 (0.1%) 5 (0.1%) 1 (<0.1%)  

  Missing 
27 25 2  

eclampsia 
15 (0.2%) 8 (0.2%) 7 (0.5%) 0.072 

epis_gravida_count 
2.00 (1.00, 3.00) 2.00 (1.00, 3.00) 

2.00 (1.00, 
3.00) <0.001 

  Missing 
15 14 1  

epis_para_count 
1.00 (0.00, 1.00) 1.00 (0.00, 2.00) 

1.00 (0.00, 
1.00) <0.001 

  Missing 
15 14 1  

fetal_demise 
135 (2.2%) 104 (2.3%) 31 (2.0%) 0.6 

fetal_macrosomia 
311 (5.2%) 203 (4.5%) 108 (7.1%) <0.001 

gestation_days_on_admit 
275 (268, 283) 275 (268, 283) 274 (266, 283) 0.012 

  Missing 
27 27 0  

gestational_diabetes 
600 (10%) 410 (9.1%) 190 (13%) <0.001 

gestational_hypertension 
1,165 (19%) 831 (19%) 334 (22%) 0.003 

hemoglobin 12.00 (11.10, 
12.80) 12.00 (11.10, 12.80) 

11.90 (11.00, 
12.80) 0.074 

  Missing 
17 14 3  

initial_labor_status 
   <0.001 

  Induction 
2,081 (43%) 1,535 (41%) 546 (50%)  

  Labor 
2,746 (57%) 2,205 (59%) 541 (50%)  

  Missing 
1,173 746 427  

insurance 
   0.002 

  Medicaid 
1,656 (28%) 1,292 (29%) 364 (24%)  

  Medicare 
25 (0.4%) 14 (0.3%) 11 (0.7%)  

  Other 
13 (0.2%) 7 (0.2%) 6 (0.4%)  

  Other Governmental Insurance 
43 (0.7%) 31 (0.7%) 12 (0.8%)  

  Private Insurance 
4,185 (70%) 3,080 (69%) 1,105 (73%)  

  Workers Compensation 
55 (0.9%) 41 (0.9%) 14 (0.9%)  

  Missing 
23 21 2  

international_normalized_ratio 
1.00 (0.90, 1.00) 1.00 (0.90, 1.00) 

1.00 (0.90, 
1.00) 0.8 
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  Missing 
4,910 3,739 1,171  

labor_duration 
15 (7, 24) 14 (7, 22) 21 (11, 32) <0.001 

  Missing 
1,173 746 427  

large_uterine_fibroids 
214 (3.6%) 137 (3.1%) 77 (5.1%) <0.001 

median_weight_kg 
83 (73, 95) 82 (72, 94) 86 (75, 100) <0.001 

  Missing 
43 35 8  

nibp_systolic 
122 (111, 133) 122 (111, 132) 124 (112, 135) <0.001 

  Missing 
156 136 20  

non_gestational_diabetes 
169 (2.8%) 110 (2.5%) 59 (3.9%) 0.005 

number_of_fetuses 
   <0.001 

  0 
1 (<0.1%) 0 (0%) 1 (<0.1%)  

  1 
5,731 (98%) 4,316 (99%) 1,415 (95%)  

  2 
132 (2.2%) 58 (1.3%) 74 (4.9%)  

  3 
11 (0.2%) 5 (0.1%) 6 (0.4%)  

  Missing 
125 107 18  

oxytocin 
4 (0, 10) 6 (0, 10) 0 (0, 10) <0.001 

  Missing 
1,737 1,317 420  

placenta_accreta_spectrum 
41 (0.7%) 22 (0.5%) 19 (1.3%) 0.003 

placenta_previa 
213 (3.5%) 149 (3.3%) 64 (4.2%) 0.11 

placental_abruption 
143 (2.4%) 91 (2.0%) 52 (3.4%) 0.003 

platelet_count 
220 (184, 261) 221 (186, 261) 217 (181, 260) 0.01 

  Missing 
22 17 5  

polyhydramnios 
242 (4.0%) 158 (3.5%) 84 (5.5%) <0.001 

preeclampsia_with_severe_features 
359 (6.0%) 211 (4.7%) 148 (9.8%) <0.001 

preeclampsia_without_severe_features 
425 (7.1%) 264 (5.9%) 161 (11%) <0.001 

premature_rupture_of_membranes 
1,406 (23%) 1,103 (25%) 303 (20%) <0.001 

prior_cesarean_delivery 
1,072 (18%) 692 (15%) 380 (25%) <0.001 

prior_pph 
1,852 (31%) 1,373 (31%) 479 (32%) 0.5 

pulse_pulse 
89 (79, 101) 89 (78, 100) 90 (80, 102) <0.001 

  Missing 
220 186 34  

r_bmi_bmi_calculated 
32 (28, 38) 32 (28, 37) 33 (29, 38) 0.003 
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  Missing 
4,719 3,593 1,126  

superimposed_preeclampsia 
99 (1.7%) 65 (1.4%) 34 (2.2%) 0.046 

temperature_temp 98.20 (97.90, 
98.60) 98.20 (97.90, 98.60) 

98.20 (98.00, 
98.60) <0.001 

  Missing 
327 268 59  

terbutaline 
   0.005 

  0 
1,177 (90%) 664 (88%) 513 (93%)  

  0.25 
122 (9.4%) 85 (11%) 37 (6.7%)  

  1 
3 (0.2%) 3 (0.4%) 0 (0%)  

  250 
2 (0.2%) 1 (0.1%) 1 (0.2%)  

  Missing 
4,696 3,733 963  

trial_of_labor 
459 (7.6%) 319 (7.1%) 140 (9.2%) 0.009 

um_ip_r_pulse_pressure_pulse_pressure_syste
mic 49 (41, 57) 49 (41, 56) 50 (42, 58) <0.001 

  Missing 
241 199 42  

um_r_oxytocin_volume_volume_m_l 
18 (6, 43) 16 (6, 37) 24 (8, 55) <0.001 

  Missing 
4,553 3,487 1,066  

um_stk_r_qbl_calculated_qbl_calculated_qbl_m
_l 90 (30, 201) 70 (18, 129) 130 (60, 266) 0.001 

  Missing 
5,887 4,420 1,467  

um_stk_r_qbl_running_total_qbl_running_total 
128 (66, 292) 100 (31, 251) 197 (100, 414) 0.004 

  Missing 
5,885 4,419 1,466  

urine_protein_creatinine_ratio 
0.13 (0.09, 0.23) 0.13 (0.09, 0.20) 

0.15 (0.09, 
0.29) <0.001 

  Missing 
3,968 3,071 897  

weight_scale_weight 
84 (74, 98) 83 (73, 96) 88 (76, 102) <0.001 

  Missing 
2,921 2,274 647  

¹Statistics presented: median (IQR); n (%) 

²Statistical tests performed: Wilcoxon rank-sum test; Fisher's Exact Test for Count Data; Fisher's Exact Test for Count 
Data with simulated p-value 
(based on 2000 replicates) 

 

 
Supplemental Table 5.5: Variable temporal definitions 

Category Variable Timespan Type Lookback Window Stats 

diagnoses anemia baseline dichotomous days(90) days(30) length 
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diagnoses antepartum_vaginal_bleeding baseline dichotomous days(90) days(30) length 

diagnoses 
assisted_reproductive_technol
ogy baseline dichotomous days(90) days(30) length 

diagnoses 
asthma_active_airway_diseas
e baseline dichotomous days(90) days(30) length 

diagnoses breech_abnormal_lie baseline dichotomous days(90) days(30) length 

diagnoses 
chorioamnionitis_on_admissio
n baseline dichotomous days(90) days(30) length 

diagnoses chronic_hypertension baseline dichotomous days(90) days(30) length 

diagnoses chronic_renal_disease baseline dichotomous days(90) days(30) length 

diagnoses depression baseline dichotomous days(90) days(30) length 

diagnoses eclampsia baseline dichotomous days(90) days(30) length 

diagnoses fetal_demise baseline dichotomous days(90) days(30) length 

diagnoses fetal_macrosomia baseline dichotomous days(90) days(30) length 

diagnoses gastrointestinal_disease baseline dichotomous days(90) days(30) length 

diagnoses genital_tract_laceration baseline dichotomous days(90) days(30) length 

diagnoses gestational_diabetes baseline dichotomous days(90) days(30) length 

diagnoses gestational_hypertension baseline dichotomous days(90) days(30) length 

diagnoses heart_disease baseline dichotomous days(90) days(30) length 

diagnoses intrauterine_growth_restriction baseline dichotomous days(90) days(30) length 

diagnoses large_for_gestational_age baseline dichotomous days(90) days(30) length 

diagnoses large_uterine_fibroids baseline dichotomous days(90) days(30) length 

diagnoses maternal_gbs_colonization baseline dichotomous days(90) days(30) length 

diagnoses multiple_gestation baseline dichotomous days(90) days(30) length 

diagnoses non_gestational_diabetes baseline dichotomous days(90) days(30) length 

diagnoses other_puerperal_infection baseline dichotomous days(90) days(30) length 

diagnoses placenta_accreta_spectrum baseline dichotomous days(90) days(30) length 

diagnoses placenta_previa baseline dichotomous days(90) days(30) length 

diagnoses placental_abruption baseline dichotomous days(90) days(30) length 

diagnoses polyhydramnios baseline dichotomous days(90) days(30) length 

diagnoses 
preeclampsia_with_severe_fe
atures baseline dichotomous days(90) days(30) length 

diagnoses 
preeclampsia_without_severe
_features baseline dichotomous days(90) days(30) length 

diagnoses 
premature_rupture_of_membr
anes baseline dichotomous days(90) days(30) length 
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diagnoses preterm_labor baseline dichotomous days(90) days(30) length 

diagnoses prior_cesarean_delivery baseline dichotomous days(90) days(30) length 

diagnoses prior_pph baseline dichotomous days(90) days(30) length 

diagnoses seizure_disorder baseline dichotomous days(90) days(30) length 

diagnoses spontaneous_labor baseline dichotomous days(90) days(30) length 

diagnoses superimposed_preeclampsia baseline dichotomous days(90) days(30) length 

diagnoses thyroid_disease baseline dichotomous days(90) days(30) length 

diagnoses trial_of_labor baseline dichotomous days(90) days(30) length 

flowsheets amb_r_bp_diastolic_diastolic baseline continuous   
min, max, median, 
first, last 

flowsheets amb_r_bp_systolic_systolic baseline continuous   
min, max, median, 
first, last 

flowsheets height_height baseline continuous   min, max, last 

flowsheets pulse_oximetry_sp_o_2 baseline continuous   
min, max, median, 
first, last 

flowsheets pulse_pulse baseline continuous   
min, max, median, 
first, last 

flowsheets r_bmi_bmi_calculated baseline continuous   min, max, last 

flowsheets r_map_map_mm_hg baseline continuous   
min, max, median, 
first, last 

flowsheets respirations_resp baseline continuous   
min, max, median, 
first, last 

flowsheets temperature_temp baseline continuous   
min, max, median, 
first, last 

flowsheets 

um_ip_r_magnesium_sulfate_
weight_magnesium_sulfate_d
ose_weight baseline dichotomous   sum 

flowsheets 
um_ip_r_pulse_pressure_puls
e_pressure_systemic baseline continuous   

min, max, median, 
first, last 

flowsheets 
um_ip_r_urine_output_output
_m_l baseline continuous   sum 

flowsheets um_r_fio_2_fi_o_2 baseline continuous   min, max, last 

flowsheets 
um_r_oxygen_flow_rate_o_2_
flow_rate_l_min baseline continuous   min, max, last 

flowsheets 
um_r_oxytocin_volume_volum
e_m_l baseline continuous   sum 

flowsheets 
um_stk_r_qbl_calculated_qbl_
calculated_qbl_m_l baseline continuous   sum 

flowsheets 
um_stk_r_qbl_running_total_q
bl_running_total baseline continuous   sum 

flowsheets urine_output_urine baseline continuous   
min, max, median, 
first, last 

flowsheets weight_scale_weight baseline continuous   min, max, last 
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flowsheets amb_r_bp_diastolic_diastolic growing continuous   
min, max, median, 
first, last 

flowsheets amb_r_bp_systolic_systolic growing continuous   
min, max, median, 
first, last 

flowsheets height_height growing continuous   last 

flowsheets pulse_oximetry_sp_o_2 growing continuous   
min, max, median, 
first, last 

flowsheets pulse_pulse growing continuous   
min, max, median, 
first, last 

flowsheets r_bmi_bmi_calculated growing continuous   last 

flowsheets r_map_map_mm_hg growing continuous   
min, max, median, 
first, last 

flowsheets respirations_resp growing continuous   
min, max, median, 
first, last 

flowsheets temperature_temp growing continuous   
min, max, median, 
first, last 

flowsheets 

um_ip_r_magnesium_sulfate_
weight_magnesium_sulfate_d
ose_weight growing dichotomous   sum 

flowsheets 
um_ip_r_pulse_pressure_puls
e_pressure_systemic growing continuous   

min, max, median, 
first, last 

flowsheets 
um_ip_r_respiratory_effort_de
pth_resp_effort_depth growing categorical   last 

flowsheets 
um_ip_r_urine_output_output
_m_l growing continuous   sum 

flowsheets um_r_fio_2_fi_o_2 growing continuous   last 

flowsheets 
um_r_oxygen_flow_rate_o_2_
flow_rate_l_min growing continuous   last 

flowsheets 
um_r_oxytocin_volume_volum
e_m_l growing continuous   sum 

flowsheets 
um_stk_r_qbl_calculated_qbl_
calculated_qbl_m_l growing continuous   sum 

flowsheets 
um_stk_r_qbl_running_total_q
bl_running_total growing continuous   sum 

flowsheets urine_output_urine growing continuous   
min, max, median, 
first, last 

flowsheets weight_scale_weight growing continuous   last 

ht_wt_bmi bmi baseline continuous   min, max, last 

ht_wt_bmi median_height_cm baseline continuous   min, max, last 

ht_wt_bmi median_weight_kg baseline continuous   min, max, last 

labor_categ
orical delivery_type baseline categorical   length 

labor_categ
orical initial_labor_status baseline categorical   length 

labor_categ
orical labor_status baseline categorical   length 
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labor_durati
on labor_duration baseline continuous   max 

labs creatinine baseline continuous   
min, max, median, 
last 

labs fibrinogen baseline continuous   
min, max, median, 
last 

labs gbs_colonization baseline dichotomous days(30)  length 

labs hemoglobin baseline continuous   
min, max, median, 
last 

labs international_normalized_ratio baseline continuous   
min, max, median, 
last 

labs magnesium_level baseline continuous   
min, max, median, 
last 

labs neutrophil_number baseline continuous   
min, max, median, 
last 

labs partial_thromboplastin_time baseline continuous   
min, max, median, 
last 

labs platelet_count baseline continuous   
min, max, median, 
last 

labs urine_protein_creatinine_ratio baseline continuous   
min, max, median, 
last 

labs white_blood_cell_count baseline continuous   
min, max, median, 
last 

labs creatinine growing continuous   last 

labs fibrinogen growing continuous   last 

labs hemoglobin growing continuous   last 

labs international_normalized_ratio growing continuous   last 

labs magnesium_level growing continuous   last 

labs neutrophil_number growing continuous   last 

labs partial_thromboplastin_time growing continuous   last 

labs platelet_count growing continuous   last 

labs urine_protein_creatinine_ratio growing continuous   last 

labs white_blood_cell_count growing continuous   last 

labs creatinine rolling continuous hours(12)  last 

labs fibrinogen rolling continuous hours(12)  last 

labs hemoglobin rolling continuous hours(12)  last 

labs international_normalized_ratio rolling continuous hours(12)  last 

labs magnesium_level rolling continuous hours(12)  last 

labs neutrophil_number rolling continuous hours(12)  last 

labs partial_thromboplastin_time rolling continuous hours(12)  last 
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labs platelet_count rolling continuous hours(12)  last 

labs urine_protein_creatinine_ratio rolling continuous hours(12)  last 

labs white_blood_cell_count rolling continuous hours(12)  last 

meds betamethasone baseline continuous hours(48)  sum 

meds carboprost baseline dichotomous hours(48)  sum 

meds dexamethasone baseline continuous hours(48)  sum 

meds indomethacin baseline continuous hours(48)  sum 

meds magnesium_sulfate baseline continuous hours(48)  sum 

meds methylergonovine baseline dichotomous hours(48)  sum 

meds misoprostol baseline continuous hours(48)  sum 

meds nifedipine baseline continuous hours(48)  sum 

meds oxytocin baseline continuous hours(48)  sum 

meds terbutaline baseline continuous hours(48)  sum 

meds betamethasone growing dichotomous   sum 

meds carboprost growing dichotomous   sum 

meds dexamethasone growing continuous   sum 

meds indomethacin growing dichotomous   sum 

meds magnesium_sulfate growing continuous   sum 

meds methylergonovine growing dichotomous   sum 

meds misoprostol growing continuous   sum 

meds nifedipine growing continuous   sum 

meds oxytocin growing continuous   sum 

meds terbutaline growing dichotomous   sum 

physiobank heart_rate baseline dichotomous   
min, max, median, 
first, last 

physiobank nibp_dias baseline continuous   
min, max, median, 
first, last 

physiobank nibp_diastolic baseline dichotomous   
min, max, median, 
first, last 

physiobank nibp_mean baseline dichotomous   
min, max, median, 
first, last 

physiobank nibp_pulse_ox baseline continuous   
min, max, median, 
first, last 

physiobank nibp_pulse_rate baseline continuous   
min, max, median, 
first, last 

physiobank nibp_systolic baseline continuous   
min, max, median, 
first, last 
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physiobank shock_index baseline dichotomous   
min, max, median, 
first, last 

physiobank sp_o_2 baseline continuous   
min, max, median, 
first, last 

physiobank sp_o_2_quality_index baseline dichotomous   
min, max, median, 
first, last 

physiobank heart_rate growing continuous   
min, max, median, 
first, last 

physiobank nibp_dias growing continuous   
min, max, median, 
first, last 

physiobank nibp_diastolic growing continuous   
min, max, median, 
first, last 

physiobank nibp_mean growing continuous   
min, max, median, 
first, last 

physiobank nibp_pulse_ox growing continuous   
min, max, median, 
first, last 

physiobank nibp_pulse_rate growing continuous   
min, max, median, 
first, last 

physiobank nibp_systolic growing continuous   
min, max, median, 
first, last 

physiobank shock_index growing continuous   
min, max, median, 
first, last 

physiobank sp_o_2 growing continuous   
min, max, median, 
first, last 

physiobank sp_o_2_quality_index growing continuous   
min, max, median, 
first, last 

social_hx illegal_drug_use baseline dichotomous   last 

social_hx tobacco_use baseline dichotomous   last 

stork cesarean_delivery baseline dichotomous   length 

stork instrumental_vaginal_delivery baseline dichotomous   last 

stork cesarean_delivery growing dichotomous   last 
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5.7 Supplemental Figures 

 
Supplemental Figure 5.6: Calibration of maximum 
probability per hospitalization 
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Supplemental Figure 5.7: Decision curve analysis 
Decision curve analysis refers to the net benefit assessment for predictive models. More appropriate for a clinical setting 
where there are costs and benefits associated with treatment, net benefit assesses this balance which justifies 
treatment in the face of uncertainty [106], [107]. 
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Supplemental Figure 5.8: Patient with highest overall risk who experienced outcome 

 

 
Supplemental Figure 5.9: Patient with highest overall risk who did not experience outcome 
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Supplemental Figure 5.10: Random patient who experienced outcome (1) 

 

 
Supplemental Figure 5.11: Random patient who experienced outcome (2) 
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Supplemental Figure 5.12: Random patient who did not experience outcome (1) 

 

 
Supplemental Figure 5.13: Random patient who did not experience outcome (2) 

 



 111 

Chapter 6 

Discussion 

 

Chapters 3-5 identify the need for a time-series approach, introduce a novel 

methodological framework for structuring clinical time-series data, and apply this 

framework on preparing data for prediction of postpartum hemorrhage with a real-world 

dataset. This chapter summarizes the findings of these chapters, identifies implications 

and limitations of this work, and provides recommendations for future research. 

6.1 Summary of Findings 

In this work we set out to build a machine learning model to predict postpartum 

hemorrhage. Along the way we realized that a time-series approach may improve model 

performance but was more difficult to accomplish than we had anticipated. We discovered 

that data transformation was the most significant inhibitor to progress and this became 

the focus of the work. We found that contemporary frameworks used to pre-process 

clinical data are not ideal to build predictors with expert knowledge. I recognized this as 

the problem over the progress of this body of work and this became the design problem 

we attempted to solve. 

Chapter 3 evaluated existing state-of-the-art models to predict postpartum 

hemorrhage at a single point, admission, in order to make two determinations. We wanted 

to know (1) if models developed elsewhere could be validated at our institution and (2) if 

a time-series approach was necessary. We found that these models did not perform well 

with data at our institution when compared to refit models, which also performed relatively 

poorly. Since these models did not generalize to our institution, we explored a time-series 

approach that would incorporate new information collected from the EHR and update risk 

predictions accordingly. 
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We discovered that, in addition to the analytical challenges inherent in team-based 

predictive modeling, a communication gap exists when incorporating domain expertise 

into data preparation techniques. In order to solve this problem, we developed an 

interface layer to communicate the important concepts of a time-series approach to 

clinical prediction modeling taking into account the common language used in team-

based analytical studies. We sought to develop a framework which could design data 

preparation steps required for predictive modeling. 

Our general approach was to informally study data preparation methods of recent 

predictive models intended for use in early warning systems. In a review of literature, 

recent inpatient prediction models were trained with methods which went unpublished or 

were difficult to easily generalize. Methods in transformation of time-series data remains 

an understudied area of research. We explored the possibility of condensing this 

knowledge into an easily readable format. We explored the inherent complexity in 

multivariate time-series and discovered a common language used in time-series data 

analysis which could be used as descriptors to build predictors for modeling.  

Based on our findings, we designed and developed a framework focused on the 

communication aspect of time-series analysis, which we call a grammar language. This 

framework mirrors similar frameworks which break a data process down into intuitive 

elements such as the grammar of graphics. Our framework sought to require enough 

details to make accurate predictor descriptions while being simple enough that the 

combination of terminology can be used and understood by clinical domain experts. 

We used a combination of autoregression, statistical summarization, and recursion 

techniques to transform source data using the grammar framework into a model-ready 

dataset capable of both single-point and interval-based prediction modeling. We then 

applied this approach to both a publicly available clinical dataset as well as a dataset 

sourced from our own research data warehouse. The intent of this application was to 

demonstrate a proof of concept and with a minimum amount of code, were able to achieve 

performance close to those attempted by other data preparation tools. 

Addressing the original clinical problem of interest, we then applied our framework 

to domain expert selected predictors, preparing the data for an interval-based prediction 

model intended for maternal early warning systems to predict postpartum hemorrhage. 



 113 

We found that our model outperforms existing early warning systems intended to predict 

postpartum hemorrhage. We also found that on average, we were able to obtain early 

warnings approximately 60 minutes prior to hemorrhage based on a specified risk 

threshold of greater than 10%. These findings indicate that a time-series approach to this 

clinical problem is likely more advantageous than a single-point prediction approach. 

6.2 Implications 

6.2.1 Maternal Early Warning Systems 

Our model shows promising improvements in performance over existing early 

warning systems which predict postpartum hemorrhage. Despite being well accepted by 

institutions who implement trigger based systems, MEOWS, MEWC, and AWOB use 

thresholds based on general consensus [9], [31], [34]. The thresholds were determined 

by a consensus of domain experts on only a small number of variables. While this seems 

counterintuitive to our argument, given we are in support of domain expertise, to be clear, 

it is more advantageous to develop models which make a distinction between variables 

deemed to be important by domain experts from models developed using machine 

learning. Instead of risk determined by threshold, we take a hybrid approach using input 

from domain experts and literature and output using machine learning algorithms to 

determine risk.  

This could lead the way to a shadow implementation running in the background 

while assessing its performance using streamed data and using existing notification 

systems both built within and outside the EHR system. Considering the two contemporary 

models already published, our time-series approach is likely more applicable to use in an 

early warning system for prediction of postpartum hemorrhage and more generalizable to 

other institutions with a similar patient population than the model proposed by Venkatesh 

et al. and Escobar et al. [37], [108].  

While the model proposed by Escobar et al. evaluated multiple outcomes related 

to maternal care, the dataset had a very low prevalence of postpartum hemorrhage with 

virtually no alerts actually occurring postpartum [37]. This could be an indication that while 

performance may be acceptable at the composite level, for general maternal 
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comorbidities, it is unlikely to be effective specifically for postpartum hemorrhage which 

by definition is an acute condition which can only occur postpartum. Therefore, their 

model is unlikely to be generalizable to our institution with the sole purpose of predicting 

PPH. 

A valid concern is the inability for our model to generalize to other institutions as 

we found in Chapter 3. While it is unclear whether the model is able to generalize at other 

institutions, the predictor mapping using wizard is quite detailed and allows other 

institutions to use similar time-series data preprocessing methods to refit local models 

calibrated to local data. 

6.2.2 Opportunities to Improve Time-Series Modeling 

 Time-series modeling introduces many challenges, especially in the area of 

communication. Our framework is intended to not only enhance communication with a 

common language used to prepare data for modeling but allow this language to improve 

transportability of methods. The ability to use high performance computing can speed up 

processing time immensely as well as allow rapid prototyping to improve model 

performance. 

6.3 Domain-informed predictors 

While it is not known if using domain-informed predictors outperforms automated 

predictors, using them can improve the trust and credibility in the resulting model [109]. 

While this is largely dependent on the data collected and the outcome predicted, it may 

be difficult to determine if the domain experts do not know what good predictors are or if 

the outcome is not predictable by domain experts when modeling performance is poor.  

Often in other disciplines the next step is to use critical thinking skills to conduct a 

root cause analysis. Some of this may be observed indirectly in the data through chart 

reviews of cases where patients experience the outcome to find predictors such as 

reviewing operating room reports, unverified vitals, nursing flowsheets etc. But sometimes 

the root cause is not captured in a secondary data source and often requires additional 

data gathering such conducting interviews or observational shadowing with clinicians to 

find clues. With consideration of postpartum hemorrhage, it may be beneficial to shadow 
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stakeholders to determine if there are considerations which are not directly observable in 

the data but may be revealed in behavioral observations. For example, alerts may be 

ignored during nursing shift change causing more bleeds in certain intervals or clinicians 

may be more accommodating to patients in their care choices which can lead to a higher 

likelihood of adverse events. 

6.4 Limitations 

This body of work has limitations related to existing theoretical work in this area of 

research. There is currently no evidence to suggest that domain expert-informed data 

preparation techniques, in favor of interpretability, commonly outperform automated 

preparation tools. Our data preparation framework can be used to create expert-informed 

predictors which are more interpretable, it's not known as to whether they commonly lead 

to better models. While we tested our framework on both a de-identified and proprietary 

dataset using feedback from experts throughout the project, validation of our framework 

performance has yet to be done on a large scale. 

It is unclear whether wizard improves communication with domain experts or 

reduces human-spent hours on manual data preparation. While this tool was developed 

to meet the needs of the scientific research community, a large-scale qualitative analysis 

on user testing on user experience and user interface was outside the scope of work. As 

we did not perform a qualitative analysis to interpret domain experts' interactions with 

wizard, this may be an area of future work. 

6.5 Critical appraisal and Reflection 

I led weekly meetings over the course of two years with domain in experts in 

Obstetrics Anesthesia as well as Obstetrics and Gynecology to develop modeling 

predictors and interpret the results. While we found favorable performance using a time 

series approach over predictions made at a single point in time, we do not know how well 

these predictions stack up against existing rule-based models. I did not meet with nurses 

or patients following delivery to gain insight on how our work would affect clinical practice, 

and it is possible that this knowledge could have impacted our approach. We also did not 
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clinically implement the model, so it is unknown as to how well it would work in clinical 

practice prospectively. 

In considering what I would do differently and to inform future doctoral students 

interested in analytical work in the clinical domain, I would advocate for transparency not 

only in methodological applications but also transparency in the rationale for decisions 

that are made because the context of a problem matters. Transparency in analytical 

methods is an important topic and one that I am passionate about, which is hopefully 

perceived in this body of work as transparency in methods that goes beyond simply 

sharing code. It can also be captured in a narrative form, which is what I have tried to 

elaborate on in the rationale for study design, capturing not only the decisions we made 

as a team but also the reason behind those decisions, which is often lost or only found in 

a domain niche. 

There is also a tension when writing for a clinical audience (e.g., clinical journal) 

as opposed to an analytical audience (e.g., informatics journal). One of the drawbacks of 

targeting Chapters 3-5 for a clinical journal is that clinical journals often underemphasize 

the importance of methodological decisions so long so as the selected methods are 

reasonable.  

I believe it is important to follow basic practice of the discipline to maintain structure 

and clarity in writing but allow that writing to deviate when necessary to incorporate details 

which make a research project unique. Writing about the domain experts’ rationale serves 

as a narrative which can explain not only to future researchers the reason certain 

analytical decisions were made, but also to preserve this work for your future self to reflect 

upon. It is easier to remove detail than to resurrect it from code or a design journal.  

6.6 Recommendations for Future Research 

Our PPH prediction model, despite showing better performance with contemporary 

early warning systems, is still only a small part of what is required to improve maternal 

postpartum care. Stakeholder buy-in has often been shown to be the biggest roadblock 

to any broad implementation strategy of machine learning models [110]. This means 

cooperation and input from doctors, nurses, support staff, and patients alike in the search 

for an early warning system that communicates the right information to the right person 
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at the right time in order to take action. Additional research needs to be done to 

understand how clinicians are expected to interact with the model. Further work 

investigating how to respond to an alert by this model, what an appropriate risk threshold 

with consideration of workload (patients willing to evaluate), and what kind of clinical 

response is expected compared to currently utilized systems. 

Our PPH model is the result of a transparent method of data preparation, which 

improves transparency for front-end to users (i.e., bedside providers). Future work should 

continue to improve model transparency by adequately communicating to care providers 

why the model made its predictions. The ability to predict postpartum hemorrhage is only 

part of the equation in clinical decision making. Another important aspect of clinical 

decision-making is supporting the clinician’s ability to make informed decisions. This can 

be supplanted with a method to calculate Shapley values [111], which calculates variable 

importance at the individual prediction instead of the across the entire model such is the 

common practice and coincidentally the method we used in our work. Shapley values are 

calculated by comparing what a model predicts based on the feature presence and 

absence. It is done in every possible order to overcome limitations in the order of how the 

model sees these features. 

Our grammar framework, wizard, is the result of collaboration and critical thinking 

among clinicians and data scientists but the challenges in time-series prediction modeling 

are not unique to clinical data. While the demonstrated applications have been in the 

clinical domain, the potential for application is intended to be broad for any type of data 

which is unevenly spaced and requires data transformation for supervised prediction 

modeling. A broader use of the framework could establish common practice for a time-

series approach in certain types of data for clinical prediction modeling. 
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