
Refactorings and Technical Debt for Docker
Projects

Emna Ksontini, Marouane Kessentini, Thiago do N. Ferreira and Foyzul Hassan
University of Michigan-Dearborn, Dearborn, MI, USA

{emna, marouane, thiagod, Foyzul}@umich.edu,

Abstract—Software containers, such as Docker, are recently
considered as the mainstream technology of providing reusable
software artifacts. Developers can easily build and deploy their
applications based on the large number of reusable Docker
images that are publicly available. Thus, a current popular trend
in industry is to move towards the containerization of their appli-
cations. However, container-based projects compromise different
components including the Docker and Docker-compose files, and
several other dependencies to the source code combining different
containers and facilitating the interactions with them. Similar to
any other complex systems, container-based projects are prone
to various quality and technical debt issues related to different
artifacts: Docker and Docker-compose files, and regular source
code ones. Unfortunately, there is a gap of knowledge in how
container-based projects actually evolve and are maintained.

In this paper, we address the above gap by studying refac-
torings, i.e., structural changes while preserving the behavior,
applied in open-source Docker projects, and the technical debt
issues they alleviate. We analyzed 68 projects, consisting of 19,5
MLOC, along with 193 manually examined commits. The results
indicate that developers refactor these Docker projects for a vari-
ety of reasons that are specific to the configuration, combination
and execution of containers, leading to several new technical debt
categories and refactoring types compared to existing refactoring
domains. For instance, refactorings for reducing the image size
of Dockerfiles, improving the extensibility of Docker-compose
files, and regular source code refactorings are mainly associated
with the evolution of Docker and Docker-compose files. We also
introduced 24 new Docker-specific refactorings and technical debt
categories, respectively, and defined different best practices. The
implications of this study will assist practitioners, tool builders,
and educators in improving the quality of Docker projects.

Index Terms—Docker, containers, refactoring, technical debt,
maintenance

I. INTRODUCTION

The containerization of software applications has recently
becoming popular in software industry to improve the reusabil-
ity, modularity, portability, security and costs of systems and
their development [45], [9]. Among containerization frame-
works, Docker is the main containerization framework in
the open-source community [9] and industry as 79% of IT
companies use it [37]. Indeed, Docker enables packaging an
application with its dependencies and execution environment
into a standardized, self-contained unit, which can be used
for software development and to increase the portability of
the applications [9]. The contents of a Docker container are
defined in a Dockerfile. The Docker-compose is a tool for
running multi-container applications on Docker and it is de-
fined by a Compose file format to orchestrate their execution.

Source code repositories of Docker projects contain Docker
and Docker-compose files, as well as regular source code files
written in a traditional programming language, such as Java,
to implement the app hosting the containers and facilitate their
execution and synchronization with other features.

Similar to any other complex systems, container-based
projects are prone to various quality and technical debt issues
related to different artifacts: Docker and Docker-compose files
and regular source code ones. Unfortunately, there is a gap
of knowledge in how container-based projects actually evolve
and are maintained. Few recent studies focused mainly on the
detection of the quality issues related to the Dockerfiles in
terms of the violation of the basic shell scripts practices [19],
[18]. However, there is no holistic understanding of the
quality issues of Docker projects that could affect different
artifacts beyond just the shell scripts in the Dockerfiles.
Furthermore, the correction of these issues via refactorings,
defined as changes to improve the structure while preserving
the behavior, is still not yet explore in the literature unlike
other refactoring domains [1]. As Docker projects become
more complex and expensive to maintain [9], it is critical to
understand the refactorings that developers would apply.

In this paper, we address the above gap by conducting
an empirical study on refactorings, i.e., structural changes
while preserving the behavior, applied in open-source Docker
projects. The new knowledge out of the empirical study
includes the discovery of (a) the types of technical debt
addressed and whether they are specific to Docker projects, (b)
the refactoring types that are common in the different artifacts
of Docker projects, and (c) new generalizable Docker-specific
refactorings and technical debt categories, if any.

Studying the refactoring types and technical debt categories
that are typically found within Docker projects can lead to
new automated Docker-specific refactoring techniques, quality
issues detection tools for Docker and Docker-compose files
and associated source code, and automated Docker-specific
refactoring mining tools and techniques. The implications of
the empirical study of this paper will help to (i) understand
how and why quality issues and technical debts appear in
Docker projects and how refactorings would address those
issues, (ii) design new automated tools to integrate novel
Docker-specific refactorings, (iii) provide guidelines for best
practices, and anti-patterns/bad smells for practitioners in
evolving effectively Docker projects, and (iv) assist educators
in teaching quality issues related to Docker projects.

We analyzed 68 projects, consisting of 19,5 MLOC, along
with 193 manually examined commits that include refactor-
ings. The analyzed refactorings were labeled as being per-
formed in Docker and Docker-compose files or regular code
files, and related to the Docker-specific debt they alleviated.
For the regular code refactorings, we used RefMiner [43]
to detect the refactorings in Java files. With the identified
refactorings in Docker projects, we developed a refactoring
taxonomy. The results indicate that developers refactor these
Docker projects for a variety of reasons that are specific to
the configuration, combination, and execution of containers,
by leading to several new technical debt categories and refac-
toring types compared to traditional source-focused refactor-
ing domains. For instance, the reduction of the image size
particularly involved refactorings of Dockerfiles, improving
the extensibility is one of the main reasons for refactoring
the Docker-compose, and regular source code refactorings
are mainly associated with the evolution of Dockerfiles and
Docker-compose. Our study indicates that (i) improving the
build time, maintainability and reducing the image size are the
main quality issues addressed in Dockerfiles, (ii) increasing the
reusability, understandably and extensibility are driven most of
the applied refactoring applied to Docker-compose files, and
(iii) the evolution of the Docker and Docker-compose files
resulted in various refactorings applied to the source code
related to the Docker projects.

The main contributions of this paper can be summarized as
follows:

• Based on the manual analysis of 68 Docker projects,
we propose a rich taxonomy of generic and Docker-
specific refactorings. Furthermore, this study provides to
the community the first dataset on refactorings in Docker
projects.

• We also introduce 24 new refactorings and 7 new tech-
nical debt categories specific to Docker projects.

• We propose recommendations, best practices, and anti-
patterns for the evolution of Docker and Docker-compose
files from our in-depth analysis of Docker projects.

Replication Package. All material and data used in our
study are available in our replication package [6].

II. BACKGROUND

A. Docker and Container-based Projects
Docker [12], is the most popular container virtualization

technology [9], [37]. It aims on packaging application’s code
and dependencies into a light-weight, standalone and portable
execution environment. Thus, deploying containerized appli-
cations is an agile process. Docker container images are built
using Dockerfile, a document containing a sequence of
instructions used for creating the computational environment,
following the notion of Infrastructure-as-Code(IaC) [21].

Listing 1 illustrates an example of Dockerfile. It starts
from a previously existing base image defined by the FROM
instruction which acts as a starting point from which the
Docker image will inherit infrastructure definitions. This par-
ent image can be an official Docker image (e.g., alpine) or

1 FROM node:argon
2 # Create app directory
3 WORKDIR /usr/src/app
4 # Install app dependencies
5 COPY package*.json /usr/src/app/
6 RUN npm install
7 # Bundle app source
8 COPY . /usr/src/app
9 # Expose the app to the outside world

10 EXPOSE 8080
11 CMD ["npm", "start"]

Listing 1: Dockerfile example.

any other existing image (e.g., with a pre-installed software).
In order to suit the application needs and to create the desired
environment, Dockerfile offers a list of setup instructions
which can be listed in Table I.

TABLE I: Dockerfile setup instructions.

Instruction Description
ENV Setting the environment variables
ARG Defining variables that can be set at build time

WORKDIR Setting working directory for all subsequent instructions
COPY Copying files from host to the Docker image

ADD
Similar to COPY instruction but supports two additional tricks. It
supports the use of URL instead of a local file and can recognize
the archive format and extract it directly into the destination

LABEL Key value pairs, indicating image metadata
RUN Executing any command

EXPOSE Informs Docker that the container is exposing a particular port

CMD
Setting a command and/or parameters, that executes when the
container is starting and which can be overwritten at build time

ENTRYPOINT
Setting executable that will always run when the container is
initiated and cannot be overwritten.

In the Docker paradigm, each container captures one par-
ticular component of the software (e.g., database). Thus,
when creating multi-component application using Docker, it is
unavoidable to combine multiple software components (con-
tainers) into an intricate workflow. To tackle this challenge,
containers need to be instantiated and properly integrated.
Docker-compose [13], can be used to mitigate this challenge
by providing a unified setup routine that deploys several
containers using a YAML configuration file, as known as,
Docker-compose.yml (or just Docker-compose).

1 version: "3.7"
2 services:
3 server:
4 build: .
5 ports:
6 - 8080:4040
7 environment:
8 - DB_ADDRESS=database-mongo
9 - DB_PORT=27017

10 - PORT=4040
11 depends_on:
12 - database
13 database:
14 image: mongo:latest
15 volumes:
16 - mydata:/data/db
17 volumes:
18 mydata:

Listing 2: Docker-compose example.

An example of a Docker-compose file is available
in Listing 2. The example shows that the Docker-compose

file is composed of two components/containers (SERVER and
DATABASE). The SERVER component is represented by a
local image (built from a Dockerfile, for instance that
one available in Listing 1) and the DATABASE component is
created from the “mongo” image, hosted in DockerHub [14]
(an online registry for Docker Images). Docker-compose file
also provides a list of setup attributes which can be listed
in Table II.

TABLE II: Docker-compose setup attributes.

Attribute Description
BUILD Setting path to the build context
IMAGE Setting the image to start the container from
PORTS Specify ports binding

ENVIRONMENT Setting environment variables
DEPENDS_ON Expressing dependency between services

VOLUMES Setting volume bindings (host paths or named volumes)

Any typical Docker project includes the above files along
with source code files written in a typical programming
languages, such as Java, to host the containers and enable their
executions and synchronization with other features of the app
that may not be containerized.

B. Technical Debt and Refactoring

Software technical debt reflects the implied cost of addi-
tional rework caused by choosing an easy (limited) solution
now instead of using a better approach that would take longer
when designing and evolving software systems [8].

To deal with technical debt, refactorings are widely used
practice [10]. Martin Fowler [15] defines refactoring as “a
change made to the internal structure of software to make it
easier to understand and cheaper to modify without changing
its observable behavior”. This implies that refactoring is a
method that reconfigures code structures, without altering its
behavior, to improve code quality in terms of maintainability,
extensibility, and reusability. Different refactoring types are
defined in the literature including Move Method, Extract
Method, Move Class, Move Attributes, etc. A full list of
typical code refactoring types can be found in [32], [2],
[3]. Recent empirical studies on refactoring show that these
refactorings are widely used in open-source projects [41], [1],
[38]. However, refactoring is still under-explored for Docker
and containerization unlike other paradigms, such as object-
oriented programming, web services, etc.

III. METHODOLOGY

Based mainly on manual analysis, we investigated the com-
mon refactorings in Docker projects. This study may present
an empirical foundation for new refactoring types for the
different artifacts of Docker projects to support practitioners
in addressing Docker related technical debts.

A. Projects Selection

The proposed study includes a total of 68 open-source
Docker projects as described in Table III. They differ sig-
nificantly in their size and their popularity. These projects are
comprising a total of 19+ MLOC with an average evolution

history of 6+ years per project. We first selected Docker
projects from the public GitHub archive on BigQuery [11],
where our initial list included 2,342 open-source Docker
projects. Then, we eliminated non-existing projects since
BigQuery’s last update was in 2019 and removed repositories
forked from other repositories to avoid biasing our study, as
large and popular projects are forked frequently.

We applied a selection criterion aiming to have at least one
commit message mentioning the keywords REFACTOR and
DOCKER, and at least one part of the project must include
Docker. The number of commits having the required keywords
was initially 4,469 commits with a maximum of 73 commits
per repository. In our final selection, we focused mainly on
a total of 68 Docker projects that were mostly written in
Java for the code beyond the Docker and Docker-compose
files, as it is a popular programming language to develop
apps hosting containers [47]. However, we still also considered
Docker projects with significant evolution written in other
languages including C++. To support the manual analysis of
the Java code, we used an assisting tool, RefMiner [43], but
we note that most of the manual investigation efforts were
mainly on the Docker and Docker-compose files to identify
relevant Docker-specific refactorings beyond the traditional
object-oriented refactoring.

The above selection mechanism yielded a total of 193
commits having the required keywords, ranging from 1 to 12
commit per project (column KWS) and a total of 611 Docker-
specific file changes (column DFC). We manually examined
the changes associated with these commits to find patches rep-
resenting possible refactoring and addressed technical debts.

B. Commits Mining

To extracted commits that include refactorings from
BigQuery achieve, we used the SQL query presented
in Listing 3.

1 SELECT * FROM
2 "bigquery-public-data.github_repos.commits"
3 WHERE (message LIKE '%refactor%')
4 AND (message LIKE '%docker%')

Listing 3: SQL instructions for BigQuery.

The keywords were queried via the SQL like operator,
where the % sign was used to represent zero, one, or multiple
characters. The expression %REFACTOR% matches strings
containing the word refactor (.e.g., refactoring, refactored) and
the expression %DOCKER% matches strings containing the
word docker (e.g., dockerfile, docker-compose).

C. Refactorings Identification

Since it is the first study about Docker-specific refactorings,
it was necessary to manually inspect commits for refactoring
identification. The keywords matching commits were chosen
for manual examination to find patches in Dockerfile and
Docker-compose files representing one or more possible refac-
toring, which required not only non-trivial efforts but also
deep knowledge of the domain. Three of the authors have

TABLE III: Studied projects.

Subject KLOC DFC KWS
alebabai/linden-honey 4.8 8 8
all-of-us/workbench 350.7 2 1
amazeeio/lagoon 253.9 56 6
Artemkaaas/indy-sdk 352.5 6 4
aspuru-guzik-group/mission_control 87.3 2 1
Asqatasun/Contrast-Finder 23.8 16 1
bagage/cadastre-conflation 19.9 2 2
benbromhead/cassandra-operator 27.4 4 1
blobor/skipass.site 13.4 3 2
bookbrainz/bookbrainz-site 134.6 11 8
BSWANG/denverdino.github.io 618.4 1 1
BuiltonDev/pipeline 2800 11 2
byran/cyber-dojo-web 37.6 1 5
cdietrich/che 1200 4 1
cgi-eoss/ftep 1400 1 1
cloudfoundry-incubator/diego-release 1300 24 1
CogStack/CogStack-Pipeline 53.2 9 3
collinbarrett/FilterLists 1100 28 6
CrunchyData/crunchy-containers 39.5 4 2
CrunchyData/crunchy-postgresql-manager 447.4 22 3
CrunchyData/postgres-operator 105.7 3 2
cyber-dojo-languages/image_builder 2.2 13 3
cyber-dojo-retired/storer 7 10 6
cyber-dojo/commander 5.4 1 12
di-unipi-socc/DockerFinder 28.4 5 1
drasko/mainflux 915.6 2 4
duderoot/generator-jhipster 218.9 3 1
eclipse/repairnator 400.8 4 2
ethereum/hive 22.2 2 2
gchq/stroom 1300 3 1
geotrellis/geodocker-cluster 2.9 8 2
go-ggz/ggz 8 18 2
harvard-vpal/bridge-adaptivity 12.2 2 1
hexagonkt/hexagon 33.8 6 6
HumanExposure/factotum 515.6 23 7
InnovateUKGitHub/innovation-funding-service 816.8 8 1
instructure/straitjacket 183.4 4 1
ITISFoundation/osparc-lab 459.2 1 2
kr1sp1n/node-vault 6.3 2 1
kuzzleio/kuzzle 143.9 2 2
labsai/EDDI 103.3 8 1
lixiaocong/lxcCMS 7.1 4 2
lockss/laaws-metadataservice 4.5 1 1
luismayta/dotfiles 479.8 6 4
macarthur-lab/matchbox 85 1 1
mars-lan/datahub 79.3 17 5
Martin2112/trillian 119.2 3 1
MetaBarj0/carrier 13.1 6 1
mondediefr/mondedie-chat 10.9 6 6
muccg/rdrf 709 9 2
openpitrix/openpitrix 174 2 2
openzipkin/zipkin 111 20 3
ory-am/hydra 188.5 2 1
outlierbio/ob-pipelines 7.8 16 1
overture-stack/SONG 54.1 2 1
rackerlabs/blueflood 76.6 18 1
rancher/mesos-catalog 3.1 1 1
reportportal/service-api 55 10 9
RichardKnop/go-oauth2-server 9.8 7 1
robymes/OrdinglcDocker 42.7 24 10
scalableminds/webknossos 304.4 6 6
simonsdave/cloudfeaster 15 1 5
SKA-ScienceDataProcessor/integration-prototype 67.2 16 1
Soluto/tweek 74.2 8 2
stafli-org/stafli.stack.php 12.4 3 1
unbalancedparentheses/docker-erlang 5 69 1
vietj/vertx-pg-client 95.7 1 1
xhochy/arrow 1200 9 4
Total 19560.4 611 193

extensive expertise in refactoring, technical debt, and empirical
software engineering. Another author is an expert in Docker
and continuous integration including build repairs. Each of the
four authors analyzed separately all the considered commits
to identify the refactorings and later their rationale. They also
discussed the identified refactoring at the end of the process

(and not before to avoid any bias) to solidify the results
especially when there are disagreements among the authors.

Cohen’s Kappa coefficients [44] for refactoring identifi-
cation and related commits, including Docker and Docker-
compose files and regular source code files, were 0.92, 0.83,
and 0.88, respectively, which indicates a high confidence of
agreement. Since the authors may not be very knowledgeable
about the code of the projects as they are not their original
developers, they marked the refactorings and their associated
commits only when they are very confident that the changes
are actual refactorings. The authors also used commit mes-
sages and comments in the code whenever available to confirm
their decisions, which is a common practice [28].

D. Refactoring Classification

After the refactoring identification phase and in order to
understand the refactoring types performed in Docker projects,
we analyzed the code changes within the selected list to deter-
mine the refactoring types and their rationale (e.g., technical
debts), whether the refactoring was applied in a Dockerfile or
a Docker-compose file or regular source code file (e.g., Java).

Discovered refactorings were then organized into a hi-
erarchy based on the addressed technical debts. Hence, a
few categories were grouped beneath distinctive parent cat-
egories within the hierarchy, i.e., change-sets containing a
few interconnected refactorings were assembled into more
common parent categories. A few of the refactorings were
more disconnected, i.e., change-sets comprising one sort of
refactoring and difficult to generalize.

Since the identified refactoring types of Dockerfile and
Docker-compose may impact the regular source of the ap-
plication hosting the containers, we have also manually in-
vestigated the selected commits in this study to look at the
introduced code changes of Java/C++ files, within the same
commit, whenever a Docker-specific refactoring is detected.
To support the manual identification of refactoring, we used
RefMiner [43] to confirm our manual findings.

Finally, an inter-rater agreement analysis was used to
develop a classification scheme to categorize the identified
refactorings under different technical debt categories. We also
applied the Cohen’s kappa coefficient [44] by reaching 0.86 as
result between all the authors, which indicates high confidence
of agreement. The few cases of disagreement were discussed
between the authors at the end of the process and we were
able to find a consensus for all of them.

IV. RESULTS

A. Quantitative Analysis

We manually examined 193 unique commits from the dif-
ferent projects listed in Table III. The identification of refactor-
ings in these commits and analyzing is a very labor-intensive
manual task due to the lack of automated tools support. We
found that 44 commits have Dockerfile-related refactoring, 51
commits have Docker-compose related refactorings, and 55
commits of regular code refactorings (e.g., Java, C++, etc.)
due to changes in Dockerfile or Docker-compose. We observed

TABLE IV: Discovered Docker-specific refactoring types

Refactoring Type Artifact Description
Extract stage Dockerfile Extract multi-stage building from a single-stage Building
Inline stage Dockerfile Aggregate multi-stage building into a single stage
Move stage Dockerfile Move a stage from a multi-stage context into another single stage context in a different Dockerfile
Sort Instructions Dockerfile Order Instructions sequence from the least frequently changing to the most frequently changing
Replace ADD Instruction
with COPY Instruction Dockerfile Replace ADD instruction with COPY Instruction when files/directories need to be only copied from host to

container
Extract Run Instructions Dockerfile Extract Run instructions commands into a separate script file
Inline Run Instructions Dockerfile Inline Run instructions into a single RUN instruction using && operator
Remove Run Instruction
including mv command Dockerfile Delete RUN instruction with mv command and use previous COPY or ADD instructions to set the correct path

Update Base Image Dockerfile Avoid using unnecessary heavy image, replace base image with a lighter one

Dockerfile Avoid building and downloading dependencies on top of base image, replace base image with a larger one; if
dependencies are fixed and a similar image exits in public or private repo,use an existing Image

Rename Image Docker-compose Set a relevant Name and TAG including the necessary information of your image (version, software..)
Dockerfile Add or rename Image alias

Update RUN Instruction Dockerfile Reformat RUN instruction commands; split commands into multiple lines where each line represents a single
option/argument, order option/argument alphabetically, use backslash ...

Update Base Image TAG Dockerfile DRY principle, set a dynamic TAG using ARG instruction to avoid creating a new Dockerfile when TAG is
only changing

Dockerfile Change TAG value or Replace latest TAG with an explicit TAG

Add ENV variable Dockerfile Add ENV variables to store useful system-wide valuesDocker-compose

Add ARG instruction Dockerfile DRY principle, set dynamic instructions using ARG instruction to avoid creating a new Dockerfile for similar
images

Extract Ports Attribute Docker-compose Extract ports attribute into an override Docker-compose file
Extract Volume Attribute Docker-compose Extract volume attribute into an override Docker-compose file
Extract ENV Attribute Docker-compose Extract ENV attribute into an override Docker-compose file or use .env file
Move Service Docker-compose Extract service into an override Docker-compose file
Rename Service Docker-compose Set a relevant Name for the service
Rename Container Docker-compose Set a relevant Name for the container
Rename Volume Docker-compose Set a relevant Name for the volume
Add Extends attribute Docker-compose Add Extends attribute to inherit configuration from an existing service thus avoiding duplication
Reorder Services Docker-compose Order services based on their dependency order
Update Image TAG Docker-compose Change TAG value or Replace latest TAG with an explicit TAG

a total of 43 commits containing false-positive (22%). The
false-positive commits (i.e., keywords matching commits that
did not include any refactorings), occurred due to different
reasons, including (i) the keyword refactor was used in
non-refactoring commit messages to highlight the needs for
future refactorings; (ii) refactoring occurred out of Docker-
specific context; or (iii) the lack of knowledge about the
domain as Docker-specific refactorings are a new concept and
were not explored before in the literature; thus some commit
messages described regular changes that alternate the behavior
as refactoring.

The identified Docker-specific technical debts are listed
in Table V. For Dockerfiles, we found 6 technical debt cate-
gories related to Image size, Build Time, Duplication, Main-
tainability, Understandability and Modularity. For Docker-
compose files, 3 out of these 6 Dockerfile categories are
also applicable: Duplication, Maintainability, and Understand-
ability. Furthermore, we found that Extensibility is another
technical debt addressed by developers in Docker-compose
files.

1) Docker-specific Technical Debts: Maintainability was
a major technical debt target for applied refactorings in
Docker projects representing 55 occurrences (38%) and found
in Dockerfile and Docker-composed files. Indeed, container-
based technologies are meant to provide the possibility to

apply central modifications with having them rolled out over
the system with small endeavors and no downtime. Further-
more, this technical debt was mainly associated mainly with
the excessive usage of environmental variables (27 commits)
and TAG updates (21 commits) in both Dockerfile and Docker-
compose files.

Understandability is the major refactorings target in Docker-
compose files. In this category, 75% of the refactorings were
performed to improve naming. The observed renaming had
variety of motivation, such as avoiding the usage of irrelevant
names (e.g., using app as a service name), including software
information (e.g., software version) in the image and TAG
names, as well as keeping naming consistency throughout the
project. Renaming was also present in Dockerfile (6 commits).

Build Time was among the least addressed debts in
Dockerfile (0.14%). In fact, the order of the Dockerfile in-
structions highly matters when re-building, because when a
step’s cache is invalidated by changing files or modifying lines
in the Dockerfile, subsequent steps of their cache will break.
Thus, ordering steps from least to most frequently changing,
is something to keep in mind when creating a Dockerfile in
order to optimize caching.

Regarding to Modularity, we found 7 occurrences address-
ing only Dockerfiles where they try to apply multi-stage
building by separating the build from the run-time environ-

TABLE V: Discovered Docker-specific technical debt categories.

Technical Debt Artifact Goal Situation Consequence

Image size Dockerfile Refactorings are used to reduce the final image
size

Adding new/changing components
requires huge modifications and
may lead to unexpected behaviors

Huge disk space, difficult to upload
and a huge attack surface

Build Time Dockerfile Refactorings are used to reduce the build or re-
build time

Docker engine takes a lot of time
to build the final image

Evolving and changing the image be-
came difficult process

Extensibility Docker-
compose

Refactorings are performed to increase the level
of abstractions and improve the reusability of
the Dockerfile and Docker-compose files.

Adding new components require
duplication Duplication

Duplication Docker-
compose

Refactorings are introduced to fix duplicated
fragments in Dockerfile and Docker-compose. Duplicated fragments Adding new/changing existing com-

ponents is difficult and error-prone

Maintainability Both
Refactorings are performed to ease the modifi-
cation as well as preventing large impact/spread
of future bugs/unexpected behavior

Adding new/changing components
requires modifying existing files

Modifications and upgrades require
huge endeavors and conceivable
downtime

Understandability Both Refactorings are applied to reduce the effort to
understand code, e.g., renaming elements Huge efforts to understand code Slight and simple modifications will

become time consuming

Modularity Dockerfile Refactorings are used to reduce image complex-
ity by breaking image into various stages. Complex image Adding new/changing existing com-

ponents is difficult and error-prone

ment, which helps avoiding the inclusion of unnecessary build
dependencies in the final image.

2) Docker-specific Refactoring Types: We organized the
different refactoring types into a hierarchy based on the
technical debt they addressed. Figure 1 shows the proposed
taxonomy of the refactorings and their rationale. We have
also highlighted the number of occurrence of these refactoring
types in the analyzed commits. The gray square represents
the refactoring type along with the number of occurrences,
the blue ellipse represents the artifact (Dockerfile or Docker-
compose), and the purple hexagon represents the technical
debts which the detected refactoring addressed.

We categorized true-positive refactorings by manually clas-
sifying them into 24 new unique refactoring types. Table IV
shows the lists of refactorings that were identified among the
analyzed commits. We defined a total of 14 new Dockerfile-
related refactoring types and 12 new Docker-compose ones
as described in Table IV. The overall number of refactorings
identified in the manual commits analysis is 146 to address
the aforementioned technical debts.

We found three extra Dockerfile-related refactoring types
performed to improve Maintainability, namely, Update Base
Image (3 commits), Extract RUN Instructions (3 commits) and
Replace ADD Instruction with COPY Instruction (4 commits).
The first refactoring type consists of using existing images
whenever it is possible, to avoid building and downloading
dependencies on top of the base image. This will reduce main-
tainability efforts as all required installations are done and best
practices are probably applied especially when using official
images. The second refactoring type consists in extracting
a shell script for a specific subsequent RUN instructions in
Dockerfile. This refactoring types does not only shrinks the
image size but also groups commands in a much more cleaner,
simpler, and portable format. Finally, the third refactoring
operation embraces in using COPY instruction instead of ADD
instruction when files/directories need to be only copied from
host to container.

It is important to notice that the ADD instruction supports
other functionalities, such as the use of URL instead of

a local files and it can also recognize the archive format
and extract it directly into the destination. This additional
functionalities might be considered as tricky in practice, as
ADD instruction may behave extremely unpredictable. The
result of such unreliable behavior often came down to copying
when we want to extract and extracting when we want to copy.
Unsurprisingly, a large proportion of the analyzed refactorings
in Dockerfile aimed at reducing the image size (36%).

Regarding Image Size, we found five possible refactorings
composed of Extract RUN Instructions (3 commits), Inline
RUN Instructions (4 commits), Remove RUN Instruction in-
cluding MV command (3 commits), Update Base Image (12
commits) and Extract stage (7 commits) were also included
in this category. Remove RUN Instruction including MV
command, in particular, aims at reducing layers number in
attempt to shrinking the image size by removing the RUN
instruction with MV command and using previous COPY or
ADD instructions to set the correct path, if possible.

We also found several refactorings applied to make the
Dockerfile less confusing and more modular. Such changes
involved the improvement of structural aspects. For example,
Update RUN Instruction (6 commits) in Dockerfile which
consists in formatting commands within RUN instructions
(e.g., splitting commands into multiple lines where each line
represents a single option/argument) and Reorder Services (4
commits) in Docker-compose where developers reordered the
services sequence based on their dependency order.

Unlike Extract Stage, Inline Stage (4 commits) and Move
Stage (3 commits) aims at aggregating multi-stage building
into a single stage when multi-staging is unnecessary (i.e., no
significant dependencies) and extracting a stage from a multi-
stage context into a new single-stage context (e.g., extracting
test stage into a new Dockerfile), respectively. The reason
behind these refactorings is to improve the build time when
multi-staging can be avoided. As multi-staging requires build-
ing intermediary images that significantly affects the build
time.

We also found in Dockerfile commits 10 refactorings aimed
at improving code design by avoiding duplication and fostering

8

6

6

8313 17

2

7

6

7 1 1 83

1

3

8

10 1 12 3 2 1 2 2 4

Rename
Image

Update RUN
Instruction

Understandability

Duplication Add ARG
instruction

Replace ADD
Instruction with
COPY Instruction

Update Base
Image

Add ENV
Variable

Update Base
Image TAG

Extract RUN
Instructions Dockerfile

Rename
Service

Rename
Container

Rename
Volume

Reorder
Services

Rename
Image

Understandability

Docker-compose

Extract
Stage

Inline
Stage

Move
Stage

Sort
Instructions

Add
EXTENDS
Attribute

Add ENV
Variable

Update
Image TAG

4

Inline RUN
Instructions

Remove RUN
Instruction including

MV command

Update Base
Image

7

Extract
Stage

Extract RUN
Instructions

Extract PORT
Attributes Move Service

Extract
VOLUME

Attributes

Extract ENV
Attributes

Image size

Build Time

Modularity

Maintainability

Maintainability Duplication

Extensibility

Fig. 1: Docker specific refactorings taxonomy.

the reuse of the code fragments. Add ARG instruction (7
commits) in Dockerfile involves adding arguments using the
ARG instruction to define common identifiers (e.g., software
version and file/directories paths), that can be later used inside
other instructions such as COPY, ADD and RUN, leading
to a dynamically changing Dockerfile, as these identifiers
can be affected at build time. Besides, a total of 8 other
Docker-compose related refactorings were found to make the
configuration code more generalizable (3 commits), reusable
(3 commits), and inter-operable (2 commits), by moving
attributes to an override Docker-compose file. Such practice
helps developers to reuse a single Docker-compose file across
development and production while being able to run different
services.

on the vertical axis and regular code refactorings are rep-
resented on the horizontal axis. Each cell in the heatmap
indicates the number of occurrences of a Docker-specific
refactoring type along with a regular code refactoring type.
Darker colored cells indicates a strong co-occurence frequency
while a lighter color signifies a weaker co-occurence. The
observed refactorings included 22 regular code refactoring
types along with 9 Docker-specific refactorings types, 3 for
Docker-compose (a) and 6 for Dockerfile (b). It is clear that
Update Image TAG, Update Base Image and Extract Stage
are associated with extensive code refactoring of the hosting
application involving almost all the refactoring types. In fact,
those Docker-specific refactorings directly impact the code
hosting the containers as they introduce significant changes
in the Image or the Stage(s) which are typically called from
the hosting code similar to functions in APIs in other contexts.

B. Qualitative Analysis
The qualitative analysis aims at obtaining and analyzing

some examples of commits where the Docker-specific refac-
torings were found to address the most common/important
technical debt issues discussed in the previous section.

1) Dockerfile Technical Debt and Refactoring Examples:
Several of analyzed refactorings aimed at improving maintain-

Add ENV variable

Update Image TAG

Rename Service

Re
na

me V
ar

iab
le

Mov
e A

ttr
ibu

te

Ex
tra

ct
Cla

ss

Re
na

me M
et
ho

d

Re
na

me C
las

s

Ch
an

ge
 P
ar

am
et
er

 T
yp

e

Ex
tra

ct
Su

pe
rcl

as
s

Ex
tra

ct
Met

ho
d

In
lin

e V
ar

iab
le

Pu
ll U

p
Met

ho
d

Mov
e C

las
s

In
lin

e M
et
ho

d

Re
na

me P
ar

am
et
er

Pu
ll U

p
At

tri
bu

te

Mov
e M

et
ho

d
 0

 1

 2

 3

(a) Docker-compose.

Extract Stage
Update Base Image

Add ARG Instruction
Update Base Image TAG

Sort Instructions
Add ENV Variable

Ex
tra

ct
Su

bc
las

s

Re
na

me V
ar

iab
le

Mod
ify

 P
ar

am
et
er

 A
nn

ot
at
ion

Mov
e A

ttr
ibu

te

Ex
tra

ct
Cla

ss

Ex
tra

ct
At

tri
bu

te

Re
na

me M
et
ho

d

Re
na

me C
las

s

Mod
ify

 A
ttr

ibu
te
 A

nn
ot
at
ion

Pu
sh

 D
ow

n
Met

ho
d

Ch
an

ge
 P
ar

am
et
er

 T
yp

e

Ex
tra

ct
Su

pe
rcl

as
s

Ch
an

ge
 R

et
ur

n
Ty

pe

Ex
tra

ct
Met

ho
d

In
lin

e V
ar

iab
le

Pu
sh

 D
ow

n
At

tri
bu

te

Pu
ll U

p
Met

ho
d

Mov
e C

las
s

Re
na

me P
ar

am
et
er

Mov
e M

et
ho

d
 0

 1

 2

 3

(b) Dockerfile.

Fig. 2: Refactorings co-evolution: regular code refactorings
and Docker-specific refactorings.

ability from several perspectives. Let us consider the example
of the Update Base Image refactoring shown in Listing 4.
In this listing, openjdk was initially used as a base image
(Line 5) and Dockerize software was installed using RUN
instructions (Lines 7–12). However, the official Dockerize
image already exists with the required version v0.6.1 and it
can be easily pulled from DockerHub to act as a starting point
of the Dockerfile (Line 6). This can save a lot of time spent
on maintenance because all the installation steps are done and
official images can be highly trusted.

Build time is another critical technical debt in Docker
projects. When working on evolving and changing the image,
build time is considered a dead time. The Sort Instructions

1 diff --git Dockerfile
2 --- a/docker/elasticsearch/Dockerfile
3 +++ b/docker/elasticsearch/Dockerfile
4 @@ -1,17 +1,12 @@
5 -FROM openjdk:8
6 +FROM jwilder/dockerize:0.6.1
7 -RUN apt-get update && apt-get install -y wget
8 - && apt-get install -y curl
9 -ENV DOCKERIZE_VERSION v0.6.1

10 -RUN wget https://github.com/jwilder/docke[...]
11 - && tar -C /usr/local/bin -xzvf docker[...]
12 - && rm dockerize-linux-amd64-$DOCKERIZ[...]

Listing 4: Commit 4f221f9 from datahub: Refactored
Dockerfile to reduce the number of pushed layers on a re-
build.

refactoring presented in Listing 5 can address build time
issues. In this example, a simple recompile of the app will
change the app.jar file (Line 5) leading to a non-valid
caching step when rebuilding the image, and the subsequent
steps of the cache will then break (Lines 6–9). Ordering
instructions from the least frequently changing to the most
frequently changing will be highly efficient in such scenario.
As mentioned in the commit message, the goal was to “reduce
the amount of pushed layers on a simple recompile” leading
to an optimize caching and a faster build time.

1 diff --git Dockerfile
2 --- [...]/src/main/docker/Dockerfile
3 +++ [...]/src/main/docker/Dockerfile
4 @@ -11,9 +11,10 @@
5 -ADD ifs-data-service-1.0-SNAPSHOT.jar app.jar
6 -RUN sh -c 'touch /app.jar'
7 -ENTRYPOINT ["java",[...],"-jar","/app.jar"]
8 -CMD curl -f http://localhost:8080/monito [...]
9 HEALTHCHECK --interval=10s --timeout=3s \

10 +CMD curl -f http://localhost:8080/monito [...]
11 +RUN sh -c 'touch /app.jar'
12 +ENTRYPOINT ["java",[...],"-jar","/app.jar"]
13 +ADD ifs-data-service-1.0-SNAPSHOT.jar app.jar

Listing 5: Commit f7b5921 from innovation-
funding-service: Refactored Dockerfile to reduce
the number of pushed layer on re-build.

Image Size is the second most frequent category of technical
debts in Dockerfile besides Maintainbility. Indeed, Docker
projects are prone to image size increases due to layer
based structure of the image. In general, the smaller the
image, the quicker it is uploaded, and the faster it can scale.
Besides, small images are considered to have less vulnera-
bilities. The Update Image refactoring shown in Listing 6
can used to fix issues related to the Image Size. In this
example, ubuntu:14.10 base image was replaced with
phusion/baseimage and the subsequent RUN instructions
(Lines 6–11) were extracted in a separate shell script called
install.sh. This new base image is also an ubuntu based
image, but it includes modifications for Docker-friendliness.
Therefore, as each RUN instruction represents a unique and
single layer, this refactoring can shrink the image by reducing
the number of layers. Besides, the goal of this refactoring was
also described in the commit message “refactor of Dockerfile
to generate images that occupy less space”.

1 diff --git Dockerfile
2 --- a/17.0-rc1/Dockerfile
3 +++ b/17.0-rc1/Dockerfile
4 -FROM ubuntu:14.10
5 +FROM phusion/baseimage
6 -RUN cd /usr/src \
7 - && tar xf otp_src_${ERLANG_VERSION}.tar.gz\
8 - && cd otp_src_${ERLANG_VERSION} \
9 - && ./configure \

10 - && make \
11 - && make install
12 +RUN /build/install.sh
13 diff --git install.sh
14 --- /dev/null
15 +++ b/17.0-rc1/install.sh

Listing 6: Commit 9787e1a from docker-erlang: Refac-
tored Dockerfile to generate a smaller image.

2) Docker-compose Technical Debt and Refactoring Ex-
amples: Regarding to Docker-compose files, Extensibility is
a common and frequent technical debt as described in the
quantitative analysis. In general, the Docker-compose file’s
extensibility should be improved when both development and
production environments are located in the same file. Move
Services refactoring shown in Listing 7 can be used to improve
the extensibility of Docker compose files. In this example
developers moved benchmark_resin services (Lines 9–
12) to a new override file (Line 16). Therefore, they were
able to reuse a single Docker-compose file while being able
to run different services.

1 diff --git docker-compose.yaml
2 --- a/docker-compose.yaml
3 +++ b/docker-compose.yaml
4 @@ -24,22 +24,3 @@ services:
5 -benchmark_resin:
6 - build: {[...]}
7 - depends_on: [...]
8 - ports: [...]
9 diff --git/hexagon_benchmark/docker-compose.yaml

10 --- /dev/null
11 +++ b/hexagon_benchmark/docker-compose.yaml

Listing 7: Commit 99109b6 from hexagon: Refactored
Docker-compose file to make “benchmark services“ optional.

We have also found that the inheritance was mainly im-
proved in Docker-compose files to remove Duplication. The
Add Extends Attribute refactoring presented in Listing 8 is
a common refactoring type for Docker-compose to address
duplication issues. This refactoring helped to solve the con-
figuration duplication issue by using the extends attribute
(Line 12) and specifying the parent service db(from the parent
Docker-compose file).

V. IMPLICATIONS AND DISCUSSIONS

A. Refactorings Co-Evolution

We found that several refactoring types when applied to
Dockerfile and Docker-compose files impact the source code
of the project that should be also refactored using regular
refactorings as well. This co-evolution process is currently
performed manually by developers and there is no semi-
automate tool to support them. Thus, there are significant

1 diff --git a/docker-compose-jasper.yml
2 --- a/docker-compose-jasper.yml
3 +++ b/docker-compose-jasper.yml
4 @@ -1,105 +1,61 @@
5 db:
6 - image: muccg/postgres-ssl:9.4
7 - environment:
8 - - POSTGRES_USER=rdrfapp
9 - - POSTGRES_PASSWORD=rdrfapp

10 - ports:
11 - - "5432"
12 + extends:
13 + file: docker-compose-common.yml
14 + service: db

Listing 8: Commit f7d2b4d from rdrf: Refactored Docker-
compose file to remove duplicated configuration.

costs that can be associated with Docker-specific refactorings
which can make developers reluctant to apply them. This
study identified the most common co-evolution patterns that
we found in multiple commits and then a semi-automated tool
can be designed to recommend code refactorings based on the
applied Docker-specific refactorings.

B. Docker-specific Refactorings and Technical Debt

We observed in Section IV that, in practice, software devel-
opers applied several refactoring types at the Dockerfile and
Docker-compose levels. Currently, all the identified refactoring
types are manually applied due to the lack of any semi-
automated tool support. With this proposed empirical study,
we described the scientific foundations required to enable the
implementation of the refactoring types identified for Docker-
files and Docker-compose files. The same observation apply to
the technical debt categories for Docker projects. Thus, tool
builders can use the definition and symptoms discovered in
this empirical foundation to define, validate, and implement
detection rules to automatically identify the quality issues in
Dockerfile and Docker-compose files. Such tools could not
only save developers effort and time, but could also bring
a discipline toward refactorings of Docker projects within a
software development team.

Although we do not expect practitioners to fix all the
detected technical debts independently from the context, we
expect them to judge which quality issues in Dockerfiles
and Docker-compose files are more relevant and adequate for
their specific context. Team-leads can work with developers
to establish customized guidelines from this study for dealing
with technical debts in Docker projects. These guidelines could
also trigger developers to capture the impact and the rationale
of their Docker changes appropriately for each situation, by
developing beneficial habits and long-lasting projects.

Our results can also provide a common ground for doc-
umenting, discussing, and assessing refactorings and their
impact on Docker projects. This common ground will help
educators to disseminate multiple dimensions of refactorings
in Docker projects. Further, they could encourage the practice
of refactoring continuously based on the examples and data
provided in this empirical study.

C. Optimizing Docker Performance

It is not surprising that the main rationale of refactoring
Docker projects is to optimize the usage of resources (e.g.,
memory, CPU, etc.) needed to execute the containers via
reducing the image size, removing duplication and reducing
the build time. Indeed, Docker projects are recently used
extensively in cyber-physical systems including automotive
industry and smart manufacturing [35], [29]. The hardware
resources are typically limited, thus refactoring may play a
bigger role in optimizing the size and performance of Docker
projects once semi-automated tools are available based on the
scientific foundation of this study.

VI. THREATS TO VALIDITY

In this study, we selected 68 Docker projects to identify
refactoring types and technical debt categories but they may
not be representative to the very large number of Docker
projects on GitHub. To address this threat, we ensured that
the selected projects are diverse in domains, sizes and realistic
in terms of the evolution history and popularity. Thus, we
used various GitHub metrics including the number contributor,
users, stars, commits, etc. to evaluate their popularity and
diversity. Despite Java was the dominant language on appli-
cations hosting containers (selected to facilitate the manual
analysis of the regular code refactoring), around 30% of the
projects are written in C++. Indeed, the refactoring types (and
their rationale) in object-oriented programming are almost the
same, thus the impact of our selection criteria are limited to
the generalizability of the co-evolution results between Docker
and Docker-compose refactorings, and regular code ones.

The manual identifications and classification of refactoring
types and technical debt categories can be subjective. To miti-
gate this threat, four experts evaluate all the selected commits
separately and the agreement coefficient score between all
of them was high for all the identification and classification
results as discussed in Section III. For the few cases of
disagreement, the different experts discussed the commit(s)
after submitting their results to avoid any bias. Our study
also involved many hours of manual inspection and analysis
to understand and categorize the Docker-specific refactorings.
To mitigate these threats, the four experts used the commit
messages, pull-requests descriptions and comments in the code
to better understand the context of the changes and they only
marked the refactorings and their rationale when they are very
confident about them. For the regular code refactorings (co-
evolution study), RefMiner [43] was used to confirm and aid
the manual inspection of the refactoring types, even though all
commits were manually inspected carefully for any potential
false positives.

VII. RELATED WORK

A. Docker Smells

Few studies investigated quality issues in Docker projects
and they are all limited to Dockerfile. Similar to traditional
configuration code smells [39], Docker smells are indicators
of certain designs flaws and weaknesses in the Dockerfile.

Without being actual bugs, these smells potentially affect the
image in a negative way. Although Docker’s documentation
provides a list of best practices1 to fix different kind of smells,
developers are still violating these recommendations. Yiwen et
al. [46] divided Dockerfile smells into two major categories:
DL-smells (referring to the violation of the official Dockerfile
best practices rules) and SC-smells (referring to the violation
of the basic shell scripts practices). They described Dockerfile
smells occurrence by proposing an empirical study in open-
source projects and they found that nearly 84% of these
projects have smells in their Dockerfile code. Further, they
found that DL-smells appear way more than SC-smells.

Some other studies focused on building automated and
semi-automated tools to help the detection of bad practices in
Dockerfile. Hadolint (Haskell Dockerfile Linter)2, is a smart
Dockerfile linter that can be used to help developers to build
the best practice into the Docker images. The linter parses
the Dockerfile into an AST and performs rules on top of
the AST in order to detect DL-smells based on ShellCheck3

to lint the Bash code inside RUN instructions for the SC-
smells detection. Henkel et al. [19] proposed a tool (similar
to Hadolint) named Binnacle, which performs rule mining
over 178,000 Dockerfiles collected from GitHub. However,
this tool mainly focused on bash related rules. Xu et al. [20]
defined a new type of smell named TF-smell which stands for
“Temporary file smell” it indicates a careless use of temporary
file in image building process that may cause temporary file
left in the image, which increases the image size and affects
the distribution.

All above-mentioned studies focus on detecting bad prac-
tice/smells on Dockerfiles. None of them worked on sug-
gesting possible refactorings or the technical debt categories,
including smells, for Docker-compose files or the regular code
refactoring observed in Docker projects.

B. Refactoring and Design Flaws

Our work is mainly related to 1) approaches identifying
design flaws and recommending how to fix them; and 2) empir-
ical studies on refactoring. Several approaches have been pro-
posed to automatically detect design flaws (i.e., anti-patterns,
code smells, etc.). We only discuss a few representative works
and refer the interested reader to the recent survey by Sharma
and Spinellis [40] for a complete overview. Marinescu [31]
proposes a metric-based mechanism to capture deviations
from good design principles and heuristics, called “detection
strategies”. Such strategies are based on the identification of
symptoms characterizing a particular smell and metrics for
measuring such symptoms. Moha et al. [33] exploit a similar
idea in their DECOR approach, proposing a Domain-Specific
Language (DSL) for specifying smells using high-level ab-
stractions. Besides metrics exploiting structural information
extracted from the code, Palomba et al. [36] provide evidence

1https://docs.docker.com/develop/develop-images/dockerfile_best-practices
2https://github.com/hadolint/hadolint
3https://github.com/koalaman/shellcheck

that historical data can be successfully exploited to identify
code smells.

A lot of effort has been devoted to the definition of ap-
proaches supporting refactorings. One representative example
is JDeodorant, a tool proposed by Tsantalis and Chatzigeor-
giou et al. [42] able to detect and refactor the code to fix four
code smells (i.e., State Checking, Long Method, God Classes,
and Code clones). We point the interested reader to the survey
by Bavota et al. [7] for an overview of approaches supporting
code refactoring.

Empirical studies on software refactoring mainly aim to
investigate software developers’ refactoring habits and the re-
lationship between refactorings and code quality. Murphy-Hill
et al. [34] investigated how developers perform refactorings.
Examples of the exploited datasets are usage data from 41
developers using the Eclipse environment and information ex-
tracted from versioning systems. Among their several findings,
they show that developers often perform floss refactoring,
namely they interleave refactorings with other programming
activities, confirming that refactorings are rarely performed
in isolation. Kim et al. [27] present a survey of software
refactoring with 328 Microsoft’s engineers to investigate when
and how they refactor code and the developers’ perception
towards the benefits, risks, and challenges of refactoring [27],
[25], [26], [17], [22], [16], [24], [30], [4], [23], [5]. They show
that the major risk factor perceived by developers with regards
to refactoring is the introduction of bugs and one of the main
benefits they expect is to have fewer bugs in the future, thus
indicating the usefulness of refactoring for code components
exhibiting high fault-proneness.

To the best of our knowledge, this paper presents the first
study on refactoring for Docker projects since most of the
existing studies focus on traditional paradigms, such as object-
oriented programming. Several of the aforementioned studies
can be adopted to transfer the knowledge into this paradigm,
but a first step is to provide an empirical foundation to define
refactoring types for the Docker domain.

VIII. CONCLUSION

We proposed a study to advance the knowledge of Docker
refactorings and technical debts, which are under-explored
in the literature. We have manually investigated and defined
specific refactoring types and technical debt categories for
Docker projects. We have also studied the co-evolution be-
tween applying those Docker-specific refactorings and regular
refactorings on the code of the app hosting the containers.
A taxonomy of refactorings in Docker projects was proposed
including 14 new Dockerfile-related refactorings, 12 Docker-
compose related refactorings and 7 technical debt categories.

In the future, we will use the scientific foundations of
this study to build new tools for refactorings detection and
recommendation for Docker projects.

REFERENCES

[1] C. Abid, V. Alizadeh, M. Kessentini, T. do Nascimento Ferreira, and
D. Dig. 30 years of software refactoring research:a systematic literature
review. IEEE Transactions on Software Engineering, 1(1), 2020.

https://docs.docker.com/develop/develop-images/dockerfile_best-practices
https://github.com/hadolint/hadolint
https://github.com/koalaman/shellcheck

[2] V. Alizadeh and M. Kessentini. Reducing interactive refactoring effort
via clustering-based multi-objective search. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineer-
ing, pages 464–474, 2018.

[3] V. Alizadeh, M. Kessentini, W. Mkaouer, M. Ocinneide, A. Ouni,
and Y. Cai. An interactive and dynamic search-based approach to
software refactoring recommendations. IEEE Transactions on Software
Engineering, 2018.

[4] R. Almhana, W. Mkaouer, M. Kessentini, and A. Ouni. Recommend-
ing relevant classes for bug reports using multi-objective search. In
2016 31st IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 286–295. IEEE, 2016.

[5] E. A. AlOmar, M. W. Mkaouer, A. Ouni, and M. Kessentini. On
the impact of refactoring on the relationship between quality attributes
and design metrics. In 2019 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM), pages 1–
11. IEEE, 2019.

[6] Anonymous Author(s). Study appendix, 2020. https://sites.google.com/
view/ase21-docker-refactorings.

[7] G. Bavota, A. De Lucia, A. Marcus, and R. Oliveto. Recommending
refactoring operations in large software systems. In M. P. Robillard,
W. Maalej, R. J. Walker, and T. Zimmermann, editors, Recommenda-
tion Systems in Software Engineering, pages 387–419. Springer Berlin
Heidelberg, 2014.

[8] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim,
A. MacCormack, R. Nord, I. Ozkaya, R. Sangwan, C. Seaman, K. Sul-
livan, and N. Zazworka. Managing technical debt in software-reliant
systems. In Proceedings of the FSE/SDP Workshop on Future of
Software Engineering Research, FoSER ’10, page 47–52, New York,
NY, USA, 2010. Association for Computing Machinery.

[9] J. Cito, G. Schermann, J. E. Wittern, P. Leitner, S. Zumberi, and H. C.
Gall. An empirical analysis of the docker container ecosystem on github.
In Proceedings of the IEEE/ACM 14th International Conference on
Mining Software Repositories (MSR ’17), pages 323–333, 2017.

[10] Z. Codabux and B. Williams. Managing technical debt: An industrial
case study. In 4th International Workshop on Managing Technical Debt
(MTD 2013), 2103.

[11] B. P. Datasets, 2020. https://cloud.google.com/bigquery/public-data.
[12] Docker, 2020. https://docker.com.
[13] Docker Compose, 2020. https://github.com/docker/compose.
[14] DockerHub, 2020. https://hub.docker.com.
[15] M. Fowler. Refactoring: Improving the Design of Existing Programs.

Addison-Wesley Professional, 1 edition, 1999.
[16] A. Ghannem, G. El Boussaidi, and M. Kessentini. Model refactoring us-

ing examples: a search-based approach. Journal of Software: Evolution
and Process, 26(7):692–713, 2014.

[17] A. Ghannem, M. Kessentini, and G. El Boussaidi. Detecting model
refactoring opportunities using heuristic search. In Proceedings of the
2011 Conference of the Center for Advanced Studies on Collaborative
Research, pages 175–187, 2011.

[18] F. Hassan, R. Rodriguez, and X. Wang. Rudsea: recommending updates
of dockerfiles via software environment analysis. In Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software
Engineering, pages 796–801, 2018.

[19] J. Henkel, C. Bird, S. K. Lahiri, and T. Reps. Learning from, under-
standing, and supporting devops artifacts for docker. In Proceedings of
the 42nd International Conference on Software Engineering (ICSE ’20),
2020.

[20] iwei Xu, Y. Wu, Z. Lu, and T. Wang. Dockerfile tf smell detection
based on dynamic and static analysis methods. In Proceedings of the
43rd IEEE Annual Computer Software and Applications Conference
(COMPSAC ’19), 2019.

[21] Y. Jiang and B. Adams. Co-evolution of infrastructure and source code
- an empirical study. In Proceedings of the 12th Working Conference
on Mining Software Repositories, 2015.

[22] S. Kalboussi, S. Bechikh, M. Kessentini, and L. B. Said. Preference-
based many-objective evolutionary testing generates harder test cases
for autonomous agents. In International Symposium on Search Based
Software Engineering, pages 245–250. Springer, Berlin, Heidelberg,
2013.

[23] M. Kessentini and A. Ouni. Detecting android smells using multi-
objective genetic programming. In 2017 IEEE/ACM 4th International
Conference on Mobile Software Engineering and Systems (MOBILE-
Soft), pages 122–132. IEEE, 2017.

[24] M. Kessentini, A. Ouni, P. Langer, M. Wimmer, and S. Bechikh. Search-
based metamodel matching with structural and syntactic measures.
Journal of Systems and Software, 97:1–14, 2014.

[25] M. Kessentini, H. Sahraoui, and M. Boukadoum. Example-based model-
transformation testing. Automated Software Engineering, 18(2):199–
224, 2011.

[26] M. Kessentini, M. Wimmer, H. Sahraoui, and M. Boukadoum. Gen-
erating transformation rules from examples for behavioral models.
In Proceedings of the Second International Workshop on Behaviour
Modelling: Foundation and Applications, pages 1–7, 2010.

[27] M. Kim, T. Zimmermann, and N. Nagappan. An empirical study of
refactoringchallenges and benefits at microsoft. IEEE Transactions on
Software Engineering, 40(7):633–649, July 2014.

[28] P. S. Kochhar and D. Lo. Revisiting assert use in github projects. In
Proceedings of the 21st International Conference on Evaluation and
Assessment in Software Engineering (EASE ’17), pages 298–307, 2017.

[29] R. Lovas, A. Farkas, A. C. Marosi, S. Ács, J. Kovács, Á. Szalóki, and
B. Kádár. Orchestrated platform for cyber-physical systems. Complexity,
2018, 2018.

[30] U. Mansoor, M. Kessentini, P. Langer, M. Wimmer, S. Bechikh, and
K. Deb. Momm: Multi-objective model merging. Journal of Systems
and Software, 103:423–439, 2015.

[31] R. Marinescu. Detection strategies: Metrics-based rules for detecting
design flaws. In Proceedings of the International Conference on
Software Maintenance (ICSM ’04), pages 350–359. IEEE, 2004.

[32] W. Mkaouer, M. Kessentini, A. Shaout, P. Koligheu, S. Bechikh, K. Deb,
and A. Ouni. Many-objective software remodularization using NSGA-
III. ACM Transactions on Software Engineering and Methodology
(TOSEM), 24(3):17:1–17:45, 2015.

[33] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. L. Meur. Decor: A
method for the specification and detection of code and design smells.
IEEE Transactions on Software Engineering, 36(1):20–36, 2010.

[34] E. Murphy-Hill, C. Parnin, and A. P. Black. How we refactor, and how
we know it. IEEE Transactions on Software Engineering, 38(1):5–18,
2011.

[35] A. D. Neal, R. G. Sharpe, P. P. Conway, and A. A. West. smaRTI-
a cyber-physical intelligent container for industry 4.0 manufacturing.
Journal of Manufacturing Systems, 52:63–75, 2019.

[36] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, D. Poshyvanyk, and
A. De Lucia. Mining version histories for detecting code smells. IEEE
Transactions on Software Engineering, 41(5):462–489, 2015.

[37] Portworx. 2017 annual container adoption survey: Huge growth in con-
tainers, 2020. https://portworx.com/2017-container-adoption-survey/.

[38] N. Rachatasumrit and M. Kim. An empirical investigation into the
impact of refactoring on regression testing. In Software Maintenance
(ICSM), 2012 28th IEEE International Conference on, pages 357–366.
IEEE, 2012.

[39] T. Sharma, M. Fragkoulis, and D. Spinellis. Does your configuration
code smell? In Proceedings of the IEEE/ACM 13th Working Conference
on Mining Software Repositories (MSR ’16), pages 189–200. IEEE,
2016.

[40] T. Sharma and D. Spinellis. A survey on software smells. Journal of
Systems and Software, 138:158 – 173, 2018.

[41] D. Silva, N. Tsantalis, and M. T. Valente. Why we refactor? confessions
of github contributors. In Proceedings of the 2016 24th acm sigsoft
international symposium on foundations of software engineering, pages
858–870, 2016.

[42] N. Tsantalis and A. Chatzigeorgiou. Identification of move method
refactoring opportunities. IEEE Transactions on Software Engineering,
35(3):347–367, 2009.

[43] N. Tsantalis, M. Mansouri, L. M. Eshkevari, D. Mazinanian, and D. Dig.
Accurate and efficient refactoring detection in commit history. In Pro-
ceedings of the 40th International Conference on Software Engineering,
ICSE ’18, pages 483–494, New York, NY, USA, 2018. ACM.

[44] A. J. Viera, J. M. Garrett, et al. Understanding interobserver agreement:
the kappa statistic. Fam med, 37(5):360–363, 2005.

[45] Y. Wang, Y. Sun, Z. Lin, and J. Min. Container-based performance
isolation for multi-tenant saas applications in micro-service architecture.
Journal of Physics: Conference Series, 1486(5):052032, 2020.

[46] Y. Wu, Y. Zhang, T. Wang, and H. Wang. Characterizing the occurrence
of dockerfile smells in open-source software: An empirical study. IEEE
Access, 2020.

https://sites.google.com/view/ase21-docker-refactorings
https://sites.google.com/view/ase21-docker-refactorings
https://cloud.google.com/bigquery/public-data
https://docker.com
https://github.com/docker/compose
https://hub.docker.com
https://portworx.com/2017-container-adoption-survey/

[47] L. Zhang, D. Tiwari, B. Morin, B. Baudry, and M. Monperrus. Auto-
matic observability for dockerized java applications. arXiv, 248:1–14,
2019.

	Introduction
	Background
	Docker and Container-based Projects
	Technical Debt and Refactoring

	Methodology
	Projects Selection
	Commits Mining
	Refactorings Identification
	Refactoring Classification

	Results
	Quantitative Analysis
	Docker-specific Technical Debts
	Docker-specific Refactoring Types

	Qualitative Analysis
	Dockerfile Technical Debt and Refactoring Examples
	Docker-compose Technical Debt and Refactoring Examples

	Implications and Discussions
	Refactorings Co-Evolution
	Docker-specific Refactorings and Technical Debt
	Optimizing Docker Performance

	Threats to validity
	Related Work
	Docker Smells
	Refactoring and Design Flaws

	Conclusion
	References

