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Abstract—In this paper, we propose intelligent change oper-
ators and integrate them into an evolutionary multi-objective
search algorithm to recommend valid refactorings that address
conflicting quality objectives such as understandability and
effectiveness. The proposed intelligent crossover and mutation
operators incorporate refactoring dependencies to avoid creating
invalid refactorings or invalidating existing refactorings. Further,
the intelligent crossover operator is augmented to create offspring
that improve solution quality by exchanging blocks of valid
refactorings that improve a solution’s weakest objectives. We
used our intelligent change operators to generate refactoring
recommendations for four widely used open-source projects. The
results show that our intelligent change operators improve the
diversity of solutions. Diversity is important in genetic algorithms
because crossing over a homogeneous population does not yield
new solutions. Given the inherent nature of design trade-offs in
software, giving developers choices that reflect these trade-offs is
important. Higher diversity makes better use of developers time
than lots of incredibly similar solutions. Our intelligent change
operators also accelerate solution convergence to a feasible
solution that optimizes the trade-off between the conflicting
quality objectives. Finally, they reduce the number of invalid
refactorings by up to 71.52% compared to existing search-based
refactoring approaches, and increase the quality of the solutions.
Our approach outperformed the state-of-the-art search-based
refactoring approaches and an existing deterministic refactoring
tool based on manual validation by developers with an average
manual correctness, precision and recall of 0.89, 0.82, and 0.87.

Index Terms—refactoring dependencies, intelligent change op-
erators, multi-objective refactoring recommendation.

I. INTRODUCTION

Even for the most competent organizations, building and
maintaining high performing software applications with high
quality is a challenging and expensive endeavor [55]. Working
in fast-paced environments that demand frequent releases
across several products and deployment environments often
forces developers to compromise high quality standards in
favor of meeting deadlines [33]. As software systems continue
to grow in size and complexity, their maintenance continues
to become more challenging and costly [24], [13]. To improve
the quality and maintainability of software systems, developers
take advantage of refactoring as a means to improve the
structure of code without affecting its external behavior [18].

Manual refactoring is generally a labor-intensive, ad hoc,
and potentially error-prone process [42]. To improve this gap,
a wide range of work has focused on automating refactoring
recommendations using a variety of techniques that include

template/rule-based tools [54], [53], static and lexical anal-
ysis [9], [14], and search-based software engineering [35].
Recent surveys show that search-based software engineering
has been increasingly used to find refactoring recommenda-
tions [41], [35] to address the trade-offs among conflicting
quality metrics and the large search space of potential refac-
toring strategies. For instance, O’Keeffe et al. [52] compared
different local search-based algorithms such as hill climbing
and simulated annealing to generate refactoring recommen-
dations that improve static quality metrics [8]. Harman et
al. [23] proposed using multi-objective search for refactorings
that improve coupling and reduce cohesion. Ouni et al. [50]
and Mkaouer et al. [40] proposed multi-objective and many-
objective techniques to balance conflicting quality metrics
when finding refactoring recommendations. Hall et al. [21]
and Alizadeh et al. [4] improved the state-of-the-art of search-
based refactoring by enabling interaction with developers
and learning their preferences. More detailed descriptions of
existing search-based refactoring studies can be found in the
following surveys [35], [41]. Despite the promising results
of search-based refactoring on both open-source and industry
projects, several limitations that reduce their effectiveness
remain unaddressed. While these limitations apply, in general,
in most applications of search-based reasoning approaches to
software engineering problems [2], [22], [51], we focus on
search-based refactoring in this paper.

Existing refactoring recommendation tools, including those
that use non-search-based approaches, routinely generate so-
lutions that include invalid refactorings because they do not
account for dependencies among refactorings. Manually apply-
ing a sequence of refactorings is common practice in existing
tools [11], [42], [10], however these tools treat each refactoring
in the sequence in isolation. For instance, Cinnéide et al. [43]
investigated the impact only of individual refactorings on
quality attribute metrics, such as using Move Method to reduce
the coupling of a class, without studying the impact of a
sequence of refactorings. Figure 1 shows an example of the
refactoring recommendations generated by JDeodorant [57]
where, similar to other refactoring recommendation tools, the
dependencies between the refactorings are not apparent, thus
leaving the challenging task of dealing with invalid refac-
torings to developers. Consequently, developers often prefer
manually applying refactorings to using such tools. A key
contributor to this problem is that search-based refactoring



approaches employ random change operators (e.g., crossover
and mutation) to evolve solutions without considering the
dependencies among refactorings. Without detecting which
refactoring dependencies exist, the change operators used by
algorithms routinely invalidate solutions by breaking refactor-
ing dependencies or introducing refactorings whose dependen-
cies are not satisfied. Furthermore, refactoring dependencies
provide clues that could be exploited in more intelligent
crossover operations to improve decisions on which part(s)
of solutions to exchange to produce higher quality offspring.

Fig. 1: Sample refactoring recommendations from JDeodorant.

In this paper, we propose intelligent change operators
and integrate them into a multi-objective search algorithm,
based on NSGA-II [15], to recommend valid refactorings
that address conflicting quality objectives such as Reusability,
understandability, and effectiveness. The proposed intelligent
crossover and mutation operators use: i) the dependencies
detected among refactorings to decompose a solution into
blocks of refactorings; and ii) the effects of these blocks on
objectives to identify good genes from parents to generate
high-quality offspring. A refactoring dependency exists when
one refactoring cannot be successfully applied without first
applying another. Partitioning refactorings into blocks such
that no dependencies span blocks allows change operators
to use blocks as the unit of change to avoid invalidating
refactorings. Our tool calculates the effect of each block within
a solution on the objectives and uses this data to select which
blocks to exchange between solutions to improve the first
solution’s weaknesses (e.g. the objective with smallest values).

We applied our intelligent change operators to generate
refactoring recommendations for four widely used open-source
projects and compared this approach to five existing refac-
toring techniques in terms of the diversity of the solutions,
number of invalid refactorings, and the quality of generated
solutions. We also conducted a survey with 14 developers
to evaluate the correctness and relevance of the refactorings
generated by the different algorithms for these projects.

The results show that our technique performed signifi-
cantly better than the four existing search-based refactoring
approaches [39], [23], [52], [48] and an existing refactoring
tool not based on heuristic search, JDeodorant [56], with an
average manual correctness, precision and recall of 0.89, 0.82,
and 0.87, respectively. We used these five refactoring tools
and open source projects because: i) they are representative
of automated multi-objective search-based refactoring recom-
mendation techniques; ii) they are publicly available (including

the non search-based tool); and iii) the familiarity of the
participants with these open source systems.

Replication Package. All material and data used in our
study are available in our replication package [7].

II. DEPENDENCY-AWARE REFACTORING
RECOMMENDATION SYSTEM

A. Background: Multi-Objective Refactoring Using NSGA-II

Multi-objective optimization has been widely applied to
refactoring problems to find trade-offs when searching for so-
lutions. Non-Dominated Sorting Genetic Algorithm II (NSGA-
II) [15] (Algorithm 1) is the dominant multi-objective opti-
mization algorithm that has been used in search-based software
engineering, including for search-based refactoring [23], [52],
[50], [3], [4], [40]. NSGA-II is designed to find a set of non-
dominated solutions (a Pareto-front) in which each solution is
a sequence of refactorings that provides a compromise among
conflicting objectives (e.g., quality metrics).

Algorithm 1: NSGA-II algorithm.
Input: System to evaluate and list of refactoring types
Output: Non-dominated refactoring solutions

1 Generate a random population P and evaluate the objectives;
2 while the stopping condition is not reached do
3 Select individuals M from P using Binary Tournament

Selection;
4 Apply crossover operation on M to generate the offspring

population O;
5 Apply mutation operation on O;
6 Update P by combining the parent and offspring populations;
7 end
8 return P ;

Initially, a starting population P is created using a random
procedure. These solutions then undergo crossover and muta-
tion, producing offspring O, and the process is repeated until
the stopping condition is reached (in our case, a maximum
number of generations). The objective values of the solutions
are computed and change operators are applied to create the
next generation. In most of existing adaptations, including this
paper, the algorithm finds non-dominated solutions balancing
several conflicting objectives, such as the six QMOOD quality
metrics [8]. The different objectives can be normalized if they
have different scales. Each objective can be written as follow:

Objectivei =
Qafter

i −Qbefore
i

Qbefore
i

(1)

where Qbefore
i and Qafter

i are the values of the
quality_metricsi before and after applying a solution
(or sequence of refactorings), respectively.

The search space explored by NSGA-II consists of differ-
ent refactoring operations applied to different code locations
where each operation is represented by a refactoring type (e.g.,
Move Method) and its parameters (e.g., source class, target
class, attributes). In this paper, we selected 14 refactoring
types that are frequently used in practice based on existing
studies [31], [42], [12]: Encapsulate Field, Decrease Field
Security, Decrease Method Security, Increase Field Security,



Increase Method Security, Pull Up Field, Pull Up Method,
Push Down Field, Push Down Method, Extract Sub Class,
Extract Super Class, Extract Class, Move Field, and Move
Method. A vector in which each element represents a refactor-
ing operation is used to represent a solution. Each refactoring
operation must satisfy a set of pre- and post-conditions defined
by Opdyke [46] to maintain the behavior of the system.

The most common change operators used in search-based
refactoring approaches are the random crossover and muta-
tion operators. In these operators, refactorings are selected
randomly from solutions for exchange or replacement with
others, which can generate invalid refactorings or invalidate
other refactorings (e.g., by removing a refactoring another one
depends on). We developed three components to improve the
change operators used in the NSGA-II algorithm: i) a refactor-
ing dependency detection algorithm; ii) an intelligent crossover
that factors in dependency correctness and the implications
of collections of refactorings on fitness functions; and iii) a
dependency-aware mutation. Finally, we note that the proposed
approach, as described later, can be integrated for both NSGA-
II and NSGA-III as they are using the same change operators.
The difference between them is that NSGA-III uses a set of
reference directions (identified via a nitching function), while
NSGA-II uses a more adaptive scheme through its crowding
distance operator for the same purpose. This difference does
not affect our goal of comparing the impact of our intelligent
change operators on the final Pareto-front.

B. Refactoring Dependency Theory

Our dependency-aware refactoring recommendation tech-
nique relies on an ordering dependency between pairs of
refactorings. Specifically, an ordering dependency (rf2 7→
rf1) between two refactorings (rf1 and rf2) exists when rf2
can only be successfully applied after rf1 has been applied.
That is, rf1 makes a change to code that is necessary in
order to apply rf2. This condition can be evaluated based on
the combination of pre- and post-conditions of the types of
refactorings involved and the parameters of each refactoring.
For example, to apply Move Method (a type of refactoring)
to move method m1 from class c1 to class c2 (m1, c1, and c2
being the parameters of the refactoring), several pre-conditions
must hold (e.g., m1, c1, and c2 must all exist and m1 must
be defined on c1). The pre- and post-conditions of each type
of refactoring are described in our online appendix [7] and
were extensively validated for correctness and completeness
in current literature [49], [44], [17], [36].

Figure 2 shows a simplified example of a refactoring so-
lution that is composed of refactoring operations that depend
on each other. Three of the refactorings (#3, #4, #5) depend
on another refactoring (#2) because the Extract Super Class
refactoring (#2) creates a new class (Client), on which refac-
torings #3, #4, and #5 operate. If the new class is not created
first, then refactorings #3, #4, and #5 will fail. Thus, there
exists an ordering dependency from each of #3, #4, #5 to #2.

Refactoring solutions have traditionally been represented
as a sequence, likely originating with the common vector

#1
MoveField
username
BooleanList

[b]
[]

#3
MoveField

Client
EventObject

[fieldDelimiter]
[]

#4
PullUpField
CreditCard

Client
[textDelimiter]

[]

#5
PullUpMethod
CreditCard

Client
[]

[readCategoryDataset]

#2
ExtractSubClass

CreditCard
Client

[fieldDelimiter]
[extractRowKeyAndData]

Refactoring

Dependency

Fig. 2: A simplified example of refactorings that depend on
each other.

representation used in many genetic algorithms. In some cases,
a solution could be appropriately represented as a set of
sequences, but only if the refactoring graphs are simplistic
enough. A refactoring graph is a weakly connected directed
acyclic graph composed of refactoring vertices and ordering
dependency edges. In practice, there are many examples where
a sequence vs. graph representation is misleading. For exam-
ple, if two refactorings (rf2 and rf3) both depend on a common
refactoring (rf1), we have a graph for which a sequence
representation would be misleading. rf1 must precede rf2 and
rf3, but there is no dependency between rf2 and rf3. <rf1, rf2,
rf3> would be as acceptable as <rf1, rf3, rf2>. A sequence
representation indicates an ordering, and the choice of a graph
over a sequence allows us to unambiguously indicate only
“real” dependencies. As for the initial refactoring sequence, it
is true that the order in that sequence does shape the original
graphs. However, the initial sequence is generated randomly
for each solution in the population, much as if random graphs
were generated.

Using the ordering dependencies as the basis for forming
refactoring graphs, Algorithm 2 results in a set of graphs with
the following traits:
• Each refactoring in a solution is an element of exactly

one refactoring graph.
• Some graphs contain a single refactoring because that

refactoring is independent of all others. We call these
trivial graphs.

• The remaining graphs contain multiple refactorings, each
of which is part of one or more dependencies. We call
these non-trivial graphs.

• Each refactoring graph is independent of every other
graph in the solution.

The dependencies, as described in Algorithm 2, are detected
based on comparisons between pre- and post-conditions of
refactorings. The algorithm takes a list of refactorings as input
and generates a set of refactoring graphs as output.

Line 1 initializes the lists of refactorings (nodes, V )
and refactoring dependencies (edges, E). Then, the post-
conditions of each refactoring of the solution C (collection of
refactorings) are evaluated for matching with the remaining
refactorings in C (Lines 2–12). Specifically, the algorithm
looks for any match between predicates of pre- and post-
conditions. That is, if any predicate of the post-condition of
one refactoring (any element of P ) matches any predicate of



Algorithm 2: Dependency Detection Algorithm.
Input: Refactoring solution C = {r1, r2, r3, . . . , rn}
Output: Set of refactoring graphs F = {f1, f2, f3, . . . , fm}

1 V ← ∅, E ← ∅;
2 foreach ri ∈ C do
3 V ← V ∪ ri;
4 P ← post_conditions(ri);
5 foreach rj ∈ C | j > i do
6 Q ← pre_conditions(rj );
7 M ← P ∩ Q;
8 if |M | 6= 0 then
9 E ← E ∪ {rj , ri};

10 end
11 end
12 end
13 G← (V,E);
14 F ← partition(G);
15 return F

the pre-condition of another refactoring (any element of Q),
then a dependency has been detected and an edge is added to
the graph between those refactorings (Lines 4–11). We repeat
this process until all the refactorings have been visited.

C. Proposed Intelligent Change Operators

1) Dependency-aware Crossover: We developed a baseline
dependency-aware crossover that only preserves the dependen-
cies among refactorings (e.g., without fixing the weaknesses of
refactoring solutions). This version, as shown in Algorithm 3,
reduces the occurrence of invalid refactorings in solutions
because it preserves refactoring dependencies.

Algorithm 3: Dependency-Aware Crossover
Algorithm.

Input: population S = {s1, s2, s3, . . . , sn} and a probability P

Output: offspring population S
′
= {s′1, s

′
2, s

′
3, . . . , s

′
n}

1 S
′ ← ∅;

2 for i← 1 to |S|/2 do
3 {sa, sb} ← select random solutions from S;
4 if random_number ≤ P then
5 Ba ← group refactorings of sa into blocks;
6 Bb ← group refactorings of sb into blocks;
7 {s′a, s

′
b} ← apply single point crossover on {Ba, Bb};

8 S
′ ← S

′ ⋃{s′a, s′b};
9 else

10 S
′ ← S

′ ⋃{sa, sb};
11 end
12 end
13 return S

′
;

We start by randomly selecting two solutions, sa and sb,
as parents for new offspring (Line 3). Then, we group the
refactorings of sa and sb into blocks (Lines 5–6) based
on the dependencies detected by Algorithm 2. Each block
contains a single trivial or non-trivial graph. We then perform
a single-point crossover (Line 7) that exchanges blocks of
refactorings rather than individual refactorings, which avoids
invalidating refactorings because all dependencies are isolated
within blocks. This results in two offspring, each with genetic
information from both parents.

2) Intelligent Crossover: Our intelligent crossover operator
is an improvement over random crossover in two ways: it uses
refactoring dependencies to reduce the occurrence of invalid
refactorings and it chooses blocks of refactorings for exchange
that will improve a solution’s weaknesses, producing higher
quality offspring. The pseudo-code of our proposed intelligent
crossover operator is presented in Algorithm 4.

Algorithm 4: Intelligent Crossover Algorithm.
Input: Population S = {s1, s2, s3, . . . , sn} and a probability P

Output: Offspring population S
′
= {s′1, s

′
2, s

′
3, . . . , s

′
n}

1 S
′ ← ∅;

2 for i← 1 to |S|/2 do
3 {sa, sb} ← select random solutions from S;
4 if random_number ≤ P then
5 sbest ← higher quality solution of sa and sb;
6 sworst ← lower quality solution of sa and sb;
7 Bbest ← group refactorings of sbest into blocks;
8 Bworst ← group refactorings of sworst into blocks;
9 Wbest ← get all weaknesses of sbest;

10 if Wbest = ∅ then
11 Wbest ← get the objective that improves the least

with sbest;
12 end
13 I ← sort the blocks of Bworst based on potential

improvement to Sbest;
14 I′ ← select the blocks from I that improve Sbest;
15 n← select random number between 0 and |I′|;
16 {s′best, s

′
worst} ← apply single point crossover,

exchanging n blocks between Bbest and I;
17 S

′ ← S
′ ⋃{s′best, s′worst};

18 else
19 S

′ ← S
′ ⋃{sa, sb};

20 end
21 end
22 return S

′
;

In essence, the intelligent crossover operator mixes the best
genes of the weaker solution with random genes of the better
solution (Figure 3). First, we randomly select two solutions,
sa and sb (Line 3). We then determine the better solution by
computing how much each solution improves the objectives
(using a weighted sum) of the project to be refactored (Lines
5–6). As before, we group refactorings of both solutions into
blocks (Lines 7–8) to preserve refactoring dependencies during
crossover. We then determine which objectives are considered
the weaknesses of the better solution Sbest (Lines 9–12) (part
a in Figure 3). Any objectives that are worse after applying
the better solution are considered weaknesses (e.g. objective 2
in Figure 3 part a). If no objectives are worse after applying the
better solution, we select the objective that improves the least
after applying the solution as the sole weakness. Then, we sort
the blocks of the weaker solution Bworst based on how each
would impact the objectives (using a weighted sum) of the
better solution Sbest (Line 13) (part b in Figure 3). In part c
of Algorithm 4, We pick a random number between 1 and the
number of blocks in the weaker solution that would improve
the better solution (Line 15) to determine the number of blocks
for crossover. Finally, we create two offspring using single
point crossover (Line 16) that moves the n blocks from the
weaker solution with the best impact on the stronger solution’s



objectives to the stronger solution and n random blocks from
the stronger solution to the weaker solution.

3) Dependency-aware Mutation: Our proposed
dependency-aware mutation operator is defined in
Algorithm 5 and illustrated in Figure 4. We modified
the random mutation operator to preserve refactoring
dependencies. For each solution S, we randomly select a
floating-point value. If this value is less than the mutation
probability (Line 1), we detect refactoring dependencies (Part
a in Figure 4) and identify mutable refactorings (Line 2) (Part
b in Figure 4). A mutable refactoring must satisfy at least
one of the following:
• it does not participate in any dependencies (e.g., E and
C in Figure 4).

• it is part of a non-trivial graph, but no other refactorings
depend on it (e.g., G, I and H in Figure 4).

• it is part of a non-trivial graph, but it has an unsatisfied
pre-condition and is already invalid (e.g., A in Figure 4).

Then, we chose a random number between 1 and the number
of mutable refactorings (Line 3). This number represents the
number of refactorings that we will mutate in refactoring
solution S. Finally, we replace N refactorings in S with
random refactoring operations and parameters (Line 4–7) (Part
c in Figure 4).

Algorithm 5: Dependency-aware Mutation Algorithm.
Input: Solution S = {r1, r2, r3, . . . , rn} and a probability P
Output: Mutated solution S

1 if random_number ≤ P then
2 M ← detect mutable refactorings from S;
3 N ← random number between 1 and |M |;
4 for i← 0 to N by 1 do
5 rj ← random refactoring from M ;
6 replace rj in S with a random refactoring;
7 end
8 end
9 return S;

III. EMPIRICAL STUDY

A. Research Questions

The following research questions guide the evaluation of
our proposed approach:

RQ1. Correctness. To what extent can our approach re-
duce the number of invalid refactorings compared to
other multi-objective refactoring recommendation tech-
niques?

RQ2. Quality. To what extent can our approach generate
refactoring solutions with better diversity, convergence,
and quality improvement compared to other multi-
objective refactoring techniques?

RQ3. Relevance. How do developers evaluate the impact of
our approach in practice?

To answer item RQ1, we chose the algorithm proposed by
Mkaouer et al. [39] based on NSGA-III, because it outper-
forms the existing multi-objective techniques [23], [52], [48]

that use random change operators. Please note that NSGA-
II and NSGA-III are using the same change operators as
explained in the previous section. We also considered two
operation-variants of NSGA-II that optimize the same quality
objectives as summarized in Table I.

TABLE I: The three operation-variants of the NSGA-II
algorithm.

Algorithm Definition

NSGA-II NSGA-II with random Single Point crossover and Bit
Flip mutation (Mkaouer et al. [39])

Dep-NSGA-II NSGA-II with dependency-aware change operators
(Sections II-C1 and II-C3)

Intel-NSGA-II NSGA-II with intelligent crossover and dependency-
aware mutation (Sections II-C2 and II-C3)

We selected four open-source Java projects (show
in Table II) that were used in the work of Mkaouer et al. [39].
These projects are from different domains and have different
sizes along with a significant number of contributors over more
than 10 years. Furthermore, the selected projects are widely
used and extensively involved over time which may justify the
need for refactoring.

Also, we checked the validity of pre- and post-conditions
of all refactorings in all solutions in each generation for all
three algorithms on the four projects. We measured the total
number of conflicts for each generation as the percentage of
invalid refactorings among all refactorings in all solutions in
that generation. We also measured the percentage of invalid
refactorings per solution in each generation to see the distri-
bution of invalid refactorings across solutions.

TABLE II: Open-source projects studied.

System Release # of Classes KLOC
ArgoUML v0.3 1358 114
JHotDraw v7.5.1 585 25

GanttProject v1.11.1 245 49
Apache Ant v1.8.2 1191 112

To answer item RQ2, we compared the three algorithms
in terms of execution time, performance indicators, and im-
provement in quality metrics of the Pareto-front solutions.
Due to the stochastic and non-deterministic nature of meta-
heuristic algorithms, different runs of the same algorithm
solving the same problem typically give different outcomes.
For this reason, we performed 30 runs for each algorithm
on each project to make sure that the results are statistically
significant.

Finally, to answer item RQ3, we conducted a survey with
a group of 14 active developers to identify and manually
evaluate the relevance of the refactorings generated by our
approach. At the top of the criteria mentioned above, the
projects used for answering item RQ1 were selected since
the participants are familiar with them so they can provide
relevant feedback given their knowledge.

B. Evaluation Metrics

We validate our results using the following metrics.
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For item RQ1, we want to estimate the correctness of
the solutions generated by the three algorithms. For that, we
compute the percentage of invalid refactorings in each gen-
eration by inspecting the validity of pre- and post-conditions
of each refactoring operation. These conditions are discussed
by Opdyke et al. [46]. The exhaustive list can be found in
the online appendix [7]. We also computed the percentage of
invalid refactorings per refactoring solution generated by the
three algorithms at each generation.

For item RQ2, we use the following three metrics as
performance indicators to evaluate the quality of solutions
generated by the three algorithms:
• Contributions (IC) [16] measures the proportion of solu-

tions that lie on the reference front (RS) [38]. The higher
this proportion, the better the quality of solutions.

• Inverted Generational Distance (IGD) [58] is a conver-
gence measure that corresponds to the average Euclidean
distance between the approximate Pareto-front provided
by an algorithm and the reference Pareto-front. Small
values are desirable.

• Hypervolume (IHV ) [62] measures the volume covered
by members of a Pareto-front in objective space delimited
by a reference point. An important feature of this metric
is its ability to capture diversity and convergence of
solutions. A higher hypervolume value is desirable.

We also calculated another metric based on QMOOD that
estimates the quality improvement for the project by compar-
ing the quality before and after refactorings generated by the
three algorithms. For each refactoring solution S, the quality
improvement after applying S is estimated as:

QS =

6∑
i=1

Qqi where Qqi = q′i − qi (2)

where qi and q′i represent the value of QMOOD quality
attribute i before and after applying S, respectively. For
each algorithm, we average the normalized quality improve-
ments across solutions in the Pareto-front generated by each
algorithm and we compare them. In addition, we compute the
execution time of each generation using the three algorithms.

Finally, for item RQ3, we validated the generated refactor-
ing solutions quantitatively and qualitatively. For qualitative
assessment, we compared our solutions to a baseline of solu-
tions generated by other multi-objective techniques [23], [52],
[48], [39] and by JDeodorant [56], a tool not based on heuristic
search. All the search-based refactoring techniques are based
on multi-objective search, but each uses different objectives
and solution representations. All use the same random change
operators, which helps to confirm whether good recommenda-
tions result from using our intelligent change operators. The



current Eclipse plug-in version of JDeodorant identifies some
types of design defects using quality metrics and proposes
a list of refactorings to fix them. For the comparison with
JDeodorant, we limited the comparison to the same refactor-
ing types supported by both our approach and JDeodorant.
For the quantitative assessment, we calculated precision and
recall scores by comparing the refactorings recommended by
each of the multi-objective algorithms and JDeodorant with
those refactoring manually suggested by the participants (the
expected refactorings).

Precision =
Recommended Refactorings ∩ Expected Refactorings

Recommended Refactorings
(3)

Recall =
Recommended Refactorings ∩ Expected Refactorings

Expected Refactorings
(4)

After the developers manually suggested refactorings for the
projects, we asked them to evaluate the tools’ recommenda-
tions since their suggestions may not be the only reasonable
solution. We asked the participants to assign 0 or 1 to
every refactoring solutions generated by the multi-objective
algorithms and JDeodorant. A 0 means that the refactoring
is not relevant or invalid, and 1 means that the refactoring is
meaningful and relevant.

We computed manual correctness as the number of mean-
ingful refactorings divided by the total number of recom-
mended refactorings. Meaningful refactorings were identified
by considering the majority opinion across participants for
each refactoring.

Manual Correctness =
|Meaningful Refactorings|
|Recommended Refactorings| (5)

C. Parameters Tuning

In order to fairly compare the results among the three
algorithms in Table I and the multi-objective algorithms used
in our survey [23], [52], [48], [39], we performed the same
number of evaluations per run (3k) and used the same initial
population size (100). We used the maximum number of
evaluations as our stopping criterion. The crossover and mu-
tation probabilities are set to 0.95 and 0.02 respectively. The
minimum and maximum number of refactorings per solutions
are set to 100 and 200, respectively.

D. Subjects

We evaluated our approach with 14 active industry devel-
opers who volunteered to participate in our survey as part
of an industry-sponsored research collaboration. We selected
individuals with extensive experience applying refactorings in
industry and using the selected open source projects in their
work. Each filled out a pre-study survey that collects back-
ground information, such as their programming experience and
their role within their companies.

We divided the participants into four groups balancing
skill level and familiarity with the open source projects. The

details of the participants and the projects they evaluated are
found in Table III. We gave participants a two-hour lecture
about software quality assessment and refactoring. During
the two-hour lecture, we did not reveal to the participants
which refactorings were generated by which app to avoid
any possible bias. We provided general knowledge regarding
refactoring and showed them how to read and interpret the
refactoring solutions and focused on explaining the required
steps to complete the survey.

We assessed their knowledge on the open source projects
and their performance in evaluating and suggesting refactoring
solutions. The participants were asked to assess the correctness
and relevance of the refactorings recommended by the multi-
objective algorithms [23], [52], [48], [39] and JDeodorant [56]
on all four projects. They were shown refactoring recommen-
dations per project without knowing where the recommenda-
tions came from.

Since the multi-objective algorithms generate many refac-
toring solutions in the Pareto-front, it was not feasible to
ask the participants to evaluate all the solutions. Therefore,
to perform meaningful and fair comparisons for each project
and algorithm, we selected the solution using a knee-point
strategy [60]. The knee point corresponds to the solution with
the maximal trade-off among the objectives, which could be
seen as the mono-objective solution with equally weighted
objectives if the objectives do not conflict. Thus, we selected
the solution with the median hypervolume IHV value. The
average number of refactorings evaluated by each participant
is 58. We ensured that each refactoring was evaluated by two
developers, and we considered it relevant if both agreed (the
overall Cohen’s kappa was 0.91).

TABLE III: Participant Details.

System # of
Subjects

Avg. Prog.
Experience (Years)

Refactoring
Experience

ArgoUML 4 10 High
JHotDraw 3 11.5 Very High
GanttProject 3 10.5 High
Apache Ant 4 12 Very High

E. Results

1) RQ1: Correctness: Figure 5 shows the percentage of
invalid refactorings across all solutions in each generation for
each algorithm for each open source project. All algorithms
have 100 non-dominated solutions in the final Pareto-front.

The highest percentages of invalid refactorings for all
projects was produced by NSGA-II, though it does reduce
the percentage of invalid refactorings by a negligible amount
as generations progress. Dep-NSGA-II reduces the percentage
of invalid refactorings compared to regular NSGA-II [39] by
44.34%, 34.42%, 39.77%, and 37.29% for Ant, ArgoUML,
Gantt, and JHotDraw, respectively. Intel-NSGA-II, however,
outperformed the other algorithms and reduces the percentage
of invalid refactorings compared to NSGA-II [39] by 71.52%,
61.15%, 67.43%, and 61.95% for Ant, ArgoUML, Gantt,
and JHotDraw, respectively. Intel-NSGA-II also reduces the
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Fig. 5: Percentage of invalid refactorings across all solutions per generation for NSGA-II, Dep-NSGA-II, and Intel-NSGA-II.
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Fig. 6: Percentage of invalid refactorings in refactoring solutions using NSGA-II, Dep-NSGA-II, and Intel-NSGA-II.

percentage of invalid refactorings more quickly than the other
algorithms at the population level.

Also, Figure 5 reveals that NSGA-II generates a roughly
constant percentage of invalid refactorings equal to or greater

than 25%. By introducing the dependency-aware change op-
erators, Dep-NSGA-II reduced the number of invalid refac-
torings to roughly 15% in the 30th generation. Figure 5 also
reveals a major decrease in the number of invalid refactorings



caused by Intel-NSGA-II in the first 12 generations; then it
becomes roughly constant and equal to less than 10%. Thus,
the number of generations to reach a stable fraction of invalid
refactorings is almost the same per algorithm independently
from the evaluated project.

Finally, we examined the impact of our proposed change
operators at the solution level. Figure 6 shows the distribution
of the percentage of invalid refactorings within solutions. Intel-
NSGA-II achieves the lowest percentage of invalid refactorings
in solutions across all generations for all projects followed by
Dep-NSGA-II and NSGA-II, respectively.

¤ Key findings: Intel-NSGA-II reduces the percentage
of invalid refactorings in the population and refactoring
solutions by an average of 65.51% and 43.71% compared
to NSGA-II [39] and Dep-NSGA-II, respectively.

TABLE IV: Performance indicators results for NSGA-II, Dep-
NSGA-II, and Intel-NSGA-II.

System Algorithm IC IGD IHV

ArgoUML
NSGA-II 0.0172 0.0343 ± 0.0342 0.0222 ± 0.0205

Dep-NSGA-II 0.3172 0.0303 ± 0.0081 0.0349 ± 0.0186
Intel-NSGA-II 0.6655 0.0262 ± 0.0078 0.0801 ± 0.0855

Ant
NSGA-II 0.0041 0.0242 ± 0.0049 0.0176 ± 0.0205

Dep-NSGA-II 0.1632 0.0205 ± 0.0047 0.0329 ± 0.0119
Intel-NSGA-II 0.8326 0.0122 ± 0.0035 0.1080 ± 0.0555

GanttProject
NSGA-II 0.0036 0.0205 ± 0.0027 0.0218 ±0.0111

Dep-NSGA-II 0.1749 0.0193 ±0.0037 0.0302 ± 0.0209
Intel-NSGA-II 0.8215 0.0103 ± 0.0024 0.1191 ± 0.0536

JHotDraw
NSGA-II 0.1044 0.0253 ± 0.0050 0.0266 ± 0.0214

Dep-NSGA-II 0.0413 0.0225 ± 0.0040 0.0349 ± 0.0175
Intel-NSGA-II 0.8544 0.0136 ± 0.0036 0.1341 ± 0.0635

2) RQ2: Quality: Table IV shows the average IC , IGD, and
IHV of the 30 runs of the three algorithms. The values in bold
are the best values achieved for each performance indicator per
project. Intel-NSGA-II achieved the highest IHV and IC and
the lowest IGD for all projects. Dep-NSGA-II was able to
improve the IHV , IC , IGD compared to NSGA-II by up to
86.93%, 4758.33%, and 15.28%, respectively. Intel-NSGA-II
was able to improve the IHV , IC , IGD compared to NSGA-
II by up to 513.63%, 22719.44%, and 49.75%, respectively.
This shows that Intel-NSGA-II produces better convergence
and diversity than the other algorithms.

Table V shows the average quality improvement of solu-
tions, as well as their standard deviations. The bold values are
the best values obtained for each metric for each project. Intel-
NSGA-II produced the best quality improvement in almost all
cases. NSGA-II produced the lowest quality improvement in 18
out of 24 cases. Dep-NSGA-II was able to improve the Effec-
tiveness, Extendibility, Flexibility, Functionality, Reusability,
and Understandability compared to NSGA-II by an average of
13.31%, 51.89%, 5.61%, 2.07%, 2.28%, 9.54%, respectively.
Intel-NSGA-II was able to improve the Effectiveness, Ex-
tendibility, Flexibility, Functionality, Reusability, and Under-
standability compared to NSGA-II by an average of 17.86%,
46.94%, 83.96%, 64.94%, 57.87%, and 3.54%, respectively.

This demonstrates that our intelligent crossover strategy that
targets fixing a solution’s weaknesses leads to higher quality
solutions in the final Pareto-front. There is, however, a per-
formance penalty for the extra work performed by intelligent
change operators; on average, execution time doubled. In most
cases, this is a more than acceptable trade-off for higher quality
refactoring recommendations.

We noticed that NSGA-II never produced the best quality
improvement in any cases, which means that the dependency-
aware change operators play a significant role in improving
the quality of the Pareto-front. In addition, whenever Intel-
NSGA-II does not produce “the best quality improvement”,
the difference between the quality values of Intel-NSGA-II and
Dep-NSGA-II is very small. Indeed, the quality improvements
rate depends on the number of code smells, size and evolution
of the analyzed projects. In our future work, we are planning
to validate our approach using more projects to have a clearer
understanding of when and why Intel-NSGA-II does not
produce “the best quality improvement”.

¤ Key findings: Intel-NSGA-II outperforms the other
algorithms in terms of diversity, convergence, and quality
improvement of the Pareto-front using the different evalu-
ation metrics IC , IGD, and IHV by at least 50% with a
modest sacrifice in execution time.

3) RQ3: Relevance: Figure 7 presents the results of man-
ual correctness, precision, and recall for our Intel-NSGA-II
algorithm and state of the art refactoring techniques. The
detailed responses of the 14 participants can be found in our
appendix [7]. Intel-NSGA-II achieved better manual evaluation
scores than [39] and existing approaches in all the metrics for
all projects. Indeed, the average manual correctness, precision
and recall of our algorithm compared to that of Mkaouer
et al. [39] are 0.89, 0.82, and 0.87 to 0.67, 0.56, and 0.67
respectively and much better than the remaining tools. Thus,
the participants found our refactoring recommendations appli-
cable and consistent with the source code and their design
issues. All participants agreed on the benefits of considering
dependencies among refactorings when generating refactoring
solutions. They mentioned that Intel-NSGA-II increases their
trust in refactoring tools and would save them time and effort
on filtering out invalid refactorings.

¤ Key findings: Intel-NSGA-II provided more relevant
and meaningful refactorings than state of the art refactoring
recommendation techniques based on manual evaluation of
recommended refactorings.

IV. THREATS TO VALIDITY

Conclusion validity. We used Design of Experiments
(DoE) [32] to mitigate the threat related to parameter tuning.
DoE is a methodology for systematically applying statistics
to experimentation and is one of the most efficient techniques
for tuning parameter settings of evolutionary algorithms. Each
parameter has been uniformly discretized in intervals. To
mitigate the stochastic nature of the search algorithms, we



TABLE V: Average quality improvement of the solutions generated by NSGA-II, Dep-NSGA-II, and Intel-NSGA-II.

System Algorithm Effectiveness Extendibility Flexibility Functionality Reusability Understandability

ArgoUML
NSGA-II 0.0557 ± 0.0147 0.1484 ± 0.0335 0.0077 ± 0.0077 0.0077 ± 0.0042 0.0130± 0.0051 0.0260± 0.0099

Dep-NSGA-II 0.0615 ± 0.0112 0.1639 ± 0.0297 0.0109 ± 0.0084 0.0082 ± 0.0045 0.0129 ± 0.0054 0.0255 ± 0.0098
Intel-NSGA-II 0.0646 ± 0.0174 0.1798 ± 0.0332 0.0094 ± 0.0104 0.0115 ± 0.0045 0.0206 ± 0.0035 0.0302 ± 0.0095

Apache Ant
NSGA-II 0.0177 ± 0.0049 0.0296 ± 0.0112 0.0073 ± 0.0088 0.0070 ± 0.0046 0.0086 ± 0.0021 0.0125 ± 0.0074

Dep-NSGA-II 0.0214 ± 0.0050 0.0362 ± 0.0098 0.0086 ± 0.0085 0.0083 ± 0.0046 0.0099 ± 0.0020 0.0136 ± 0.0072
Intel-NSGA-II 0.0230 ± 0.0054 0.0338 ± 0.0098 0.0164 ± 0.0111 0.0123 ± 0.0055 0.0139 ± 0.0022 0.0119 ± 0.0083

GanttProject
NSGA-II 0.0285 ± 0.0077 0.0677 ± 0.0168 0.0045 ± 0.0093 0.0059 ± 0.0048 0.0080 ± 0.0029 0.0098 ± 0.0080

Dep-NSGA-II 0.0340 ± 0.0077 0.0775 ± 0.0166 0.0046 ± 0.0107 0.0067 ± 0.0052 0.0094 ± 0.0026 0.0124 ± 0.0095
Intel-NSGA-II 0.0335 ± 0.0097 0.0710 ± 0.0195 0.0120 ± 0.0153 0.0123 ± 0.0073 0.0147 ± 0.0033 0.0093 ± 0.0124

JHotDraw
NSGA-II 0.0451 ± 0.0074 0.1028 ± 0.0175 0.0138 ± 0.0109 0.0122 ± 0.0047 0.0141 ± 0.0028 0.0126 ± 0.0117

Dep-NSGA-II 0.0463 ± 0.0079 0.1058 ± 0.0191 0.0084 ± 0.0102 0.0085 ± 0.0054 0.0109 ± 0.0040 0.0132 ± 0.0084
Intel-NSGA-II 0.0487 ± 0.0111 0.1062 ± 0.0193 0.0169 ± 0.0176 0.0154 ± 0.0084 0.0180 ± 0.0041 0.0136 ± 0.0137
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Fig. 7: Manual evaluation of refactoring recommendations
generated by the existing multi-objective techniques [23], [52],
[48], [39] and the JDeodorant Eclipse plugin [56]).

performed 30 runs per project and algorithm and analyzed the
mean results along with the appropriate statistical tests using
the Wilcoxon test with a 95% confidence level (α < 5%).

Internal validity. Validation exercise participants had dif-
ferent programming skills and familiarity with refactoring
tools. To counter this, we assigned developers to groups
according to their experience to reduce the gap between the
groups and we adopted a counter-balanced design. Asking the
participants to evaluate the refactoring recommendations for
all projects would be too much work for them and would
reduce the quality of the survey responses. For this reason, we
divided the participants into four groups balancing skill level
and familiarity with the open-source projects and we asked
each one of them to evaluate a single project. We grouped
the participants based on their familiarity with the projects
to be evaluated. Indeed, it is critical that the participants are
knowledgeable about the code of the evaluated projects so
they can make accurate judgment about the recommended

refactorings. Also, the relatively small number of participants
could also be considered a threat to validity. We selected 14
developers to participate in our validation, targeting developers
with knowledge of the studied projects. In-depth interviews
with a relatively small number of developers familiar with
the studied projects yields deep, quality insights that are more
useful than those extracted using an online survey with random
participants who are not familiar with the studied projects.

Construct validity. Developers might have different opin-
ions about the relevance of recommended refactorings, which
may impact our results. Some might think that it is important
to refactor, while others might think otherwise. To mitigate
this threat, we ensured that each refactoring was evaluated by
two developers, and we considered it relevant if both agreed.
The overall Cohen’s kappa was 0.91 which confirms that there
is a significant consensus among developers.

External threats. External threats concern the generaliza-
tion of our findings. Our validation includes only four projects.
One reason for this is to attract more quality responses from
survey participants. The more tedious the task that participants
must complete, the lower the quality of their responses. The
second reason is that running all of the algorithms on all of
the projects 30 times takes considerable time.

V. RELATED WORK

A. Search-Based Software Refactoring

Many studies have used search-based techniques to au-
tomate software refactoring by optimizing different sets of
quality metrics [23], [22], [43], [52], [48], [39], [29], [30],
[20], [25], [19], [28], [34], [5], [27], [6]. Kessentini et al. [26]
proposed a single-objective combinatorial optimization using
a genetic algorithm to find the best sequence of refactoring
operations that improve the quality of the code by minimizing
as much as possible the number of design defects in the source
code. Harman and Tratt [23] were the first to use the concept
of Pareto optimality in search-based software refactoring to
address conflicting quality objectives such as coupling and
cohesion. They showed that their multi-objective technique
generates better results than a mono-objective approach. Cin-
néide et al. [43] also proposed multi-objective search-based
refactoring to conduct an empirical investigation to explore



relationships between several structural metrics. They used
different search techniques, such as Pareto-optimal search and
semi-random search guided by a set of cohesion metrics. Ouni
et al. [47] presented a multi-objective refactoring approach to
minimize the number of detected defects and maximize the
semantic similarity of code elements.

All the above studies used traditional random change op-
erators (e.g. 1-point crossover, random mutation, etc.) that
can destroy relevant patterns inside good refactoring solutions
when applied randomly, as illustrated in the validation section.

B. Refactoring Dependencies

Chavez et al. [12] investigated how refactoring types affect
five quality attributes based on the version history of 23
open source projects. They found that 94% of refactorings are
applied to code with at least one low quality attribute value,
with 65% of refactorings improving attributes and 35% of all
refactorings being neutral on the system. Similarly, Cinnéide et
al. [43] studied the impact of individual refactorings on quality
attributes, such as using Move Method to reduce the coupling
of a class. None of these studies considered the impact of a
sequence of refactorings on quality attributes.

Bibiano et al. [11] analyzed batch refactoring characteristics
and their effects on code smells in open and closed source
projects and concluded that 57% of batches/patterns are simple
compositions of only two types of refactorings. They high-
light lack of tool support to automatically detect refactoring
dependencies as a barrier. However, this study is based on
the assumption that refactorings are only related if applied to
the same code location, which often is not the case for types
of refactorings that modify multiple code fragments. Mens
et al. [37] analyzed dependencies at the model-level working
with UML. Our work is at the code-level working directly with
transformations on the code rather than on UML models where
the type of refactorings are different and simplified when
compared to the code-level refactorings. Overall, existing stud-
ies mainly define what might be better considered similarity
relations, such as a collection of refactorings that have similar
effects (fixing a code smell) or similar context (applied by
the same developer or to the same code location) [36], [59].
None of the existing studies rigorously define refactoring
dependencies to integrate them into recommendation tools,
including search-based refactoring.

C. Genetic Operators in Search-Based Software Engineering

Search-based software engineering studies proposed few
studies on improving the change operators in order to optimize
the performance and convergence of search algorithms as well
as the quality of generated solutions. However, none of them
addressed the refactoring problem or designed new change
operators to deal with the issues of solution correctness or
the impact of random change operators on solution quality.
Oliveira et al. [45] propose a reformulation of program repair
operators such that they explicitly traverse three subspaces that
underlie the search problem (i.e. Operator, Fault Space, and

Fix Space). They implemented new crossover operators that
respect the subspace division.

Zhu et al. [61] propose two mechanisms to avoid premature
convergence of genetic algorithms: i) dynamic application of
crossover and mutation operators; and ii) population partial
re-initialization. They implemented two crossover and two
mutation operators and, dynamically choose one crossover and
one mutation operators to apply in each generation, based on
a selection probability that is dependent on average progress.
Abido et al. [1] propose improved crossover and mutation
algorithms to directly devise feasible offspring chromosomes.

VI. CONCLUSION
To improve the correctness and quality of refactoring rec-

ommendations and increase developer trust in search-based
refactoring recommendation tools, we proposed a dependency-
aware multi-objective refactoring approach with intelligent
change operators that find a balance among quality objec-
tives while reducing the number of invalid refactorings. We
evaluated this approach on four open-source projects. We
compared our results to existing refactoring techniques that use
random change operators, as well as to a dependency-aware
technique, to understand the impact of considering refactoring
dependencies and fixing quality weaknesses in refactoring
solutions. The comparisons show that our proposed approach
performs significantly better than the baselines in terms of
convergence, diversity, and correctness with a reasonable cost
in terms of increased execution time. The survey with 14
practitioners confirmed the relevance of our approach.

For future work, we plan to validate this study with ad-
ditional programming languages, developers, and projects to
generalize our results. We also plan to implement an intel-
ligent mutation operator that targets fixing quality objectives
in refactoring solutions. Also, we intend to investigate how
many refactoring operations actually depend on each other and
how many operations can be executed independently. Another
research direction could be to explore further techniques to
implement the change operators and compare them with each
other. In fact, there are multiple ways of how we choose the
refactorings that participate in the mutation and the crossover
processes as well as how we perform the change opera-
tors. There is a practical balance to study between smarter
mutations (more expensive, but more reliable) vs. simpler,
more error prone mutations (faster, but not guaranteed). This
operation shows benefits from introducing modest constraints
in the selection of mutable refactorings. There are certainly
other variants that explore different trade-offs between speed
and error reduction and that is just for mutating a single
refactoring at a time.
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