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1. Introduction

Computers nowadays feature a well-
established memory hierarchy, usually
including solid-state drives enabled by
floating-gate transistors for nonvolatile data
storage, off-chip dynamic random-access
memory (DRAM), and on-chip caches
and register files such as those based on
static random-access memory (SRAM).
The reason for such a hierarchy is the per-
formance gap between floating-gate tran-
sistors, DRAMs, and SRAMs. The
nonvolatile floating-gate transistor has slow
speed and high energy consumption in
programming, in addition to the very
limited endurance. The volatile DRAM is
relatively speedy and energy saving in pro-
gramming. The volatile SRAM is the fastest
and the most energy efficient among the
three but at the cost of a large footprint.
An ultimate pursuit of the memory commu-
nity is to come up with a unified memory
solution that is nonvolatile like a floating-
gate transistor, featuring fast and low-energy
programming like an SRAM. Such memory
is not yet commercially available.

The emergence of memristors with potential applications in data storage and
artificial intelligence has attracted wide attentions. Memristors are assembled in
crossbar arrays with data bits encoded by the resistance of individual cells.
Despite the proposed high density and excellent scalability, the sneak-path
current causing cross interference impedes their practical applications.
Therefore, developing novel architectures to mitigate sneak-path current and
improve efficiency, reliability, and stability may benefit next-generation storage-
class memory (SCM). Moreover, conventional digital computers face the von-
Neumann bottleneck and the slowdown of transistors’ scaling, imposing a big
challenge to hardware artificial intelligence. Memristive crossbar features colo-
cation of memory and processing units, as well as superior scalability, making it a
promising candidate for hardware accelerating machine learning and neuro-
morphic computing. Herein, first, crossbar architecture is introduced. Then, for
storage, the origin of sneak-path current is reviewed and techniques to mitigate
this issue from the angle of materials and circuits are discussed. Computing wise,
the applications of memristive crossbars in both machine learning and neuro-
morphic computing are surveyed, focusing on the structure of unit cells, the
network topology, and the learning types. Finally, a perspective on future
engineering and applications of memristive crossbars is discussed.
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Another limitation of digital computers is the von Neumann
architecture, where the physically separated memory and com-
puting units incur large latency and high energy consumption
due to data shuttling.[1–5] This is more evident in machine learn-
ing and neuromorphic computing due to frequent transfer of
massive network parameters. In contrast, our brain computes
in a drastically different way, in which the information is proc-
essed and stored at the same place, thanks to the massively inter-
twined neurons and synapses.[6–13] Numerous efforts have been
made to build an electronic brain using traditional complemen-
tary metal�oxide�semiconductors (CMOS).[14–16] However, no
digital computing systems can simultaneously parallel the intel-
ligence and efficiency of a human brain yet.[9,10,17] This is further
intensified by the slowdown of Moore’s law, because the size of
transistors is approaching their physical limit.[9,15] Therefore,
fundamental changes to the computing paradigm are required.

A memristor, revealed as the fourth passive electronic ele-
ment, is a tunable resistor with memory as conceived by
Professor Chua[18,19] and demonstrated by researchers from
Hewlett-Packard (HP) lab.[20] The HP memristor is essentially
a resistive switch which consists of a dielectric layer sandwiched
by two electrodes. The unique feature of memristors is that the
conductance depends on historical electrical signals, making
them capable of working as nonvolatile memory. In addition,
memristors may store multibit information with continuously
tunable conductance, in contrast to binary states “0” and “1”
in traditional digital storage systems, equipping them with
higher bit density. Nonvolatility, fast programming, low

programming energy, and compact footprint[21–23] make
memristors a promising solution for the next-generation
embedded memory, which may combine the advantage of
SRAM and floating-gate transistors. In addition to memory
and storage, memristors intrinsically mimic the dynamic
behaviors of synapses and neurons, thanks to the bias-history-
dependent conductance, which has led to various memristor-
based artificial and spiking neural networks (SNNs).[24–28]

The simple two-terminal metal�insulator�metal (MIM)
structures of memristors make them capable of being integrated
into dense crossbar arrays.[29,30] As shown in Figure 1a, a typical
crossbar array consists of parallel metal lines, termed word lines
and bit lines, respectively, as the top and bottom electrodes that
are perpendicular to each other. The two-terminal memristors
are formed at the intersections of word and bit lines. The red
cylinder represents a selected cell during the operation to read
its conductance (the black solid line). In this readout process,
as shown in Figure 1a, a sneak path, represented by the red solid
line, carries unwanted current, which is equivalent to series resis-
tors that are parallel to the selected memristor, as shown in
Figure 1b. Such sneak paths would lead to extra energy consump-
tion from unselected cells, which also degrades the read margin
and thus limits the size of arrays. It shall be noted that the sneak
current issue, which is prominent in sequential read-and-write
isolated memristors in crossbar arrays, would have a less critical
impact on both machine learning and neuromorphic comput-
ing.[31] So far, extensive research has been reported
to address this sneak-path leakage current in resistive

Figure 1. Crossbar architecture and the potential issues on sneak-path current, as well as the potential solutions. a) Schematic illustration of the
crossbar memory array architecture, with normal and sneak current paths, respectively. b) The equivalent electric circuit of sneak current is involved
in the crossbar array. c�i) Seven types of possible solutions to solve the sneak-path current issue, including 1T1R, 1BJT1R, CRS, 1D1R, 1S1R, SRC, and
SSC, respectively.
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random-access memory (RRAM) and phase-change memory
(PCM) arrays. Such solutions include engineering the unit cells,
such as introducing an access element to the 1-memristor (1R)
cell to form composite cells like one-transistor-one memristor
(1T1R), one diode-one memristor (1D1R), one selector-one
memristor (1S1R), self-rectifying memristors, etc.[32–35] The
introduction of the access device not only improves
energy efficiency during array programming, but may also assist
memristors in implementing synaptic plasticity, thus
enabling novel analog machine learning and neuromorphic com-
puting.[36–40]

In this Review, we explore the low-dimensional
materials for memristive arrays, which are promising as the
next-generation computing technology. In particular, with the
recently reported study on the wafer-scale growth ability of
low-dimensional materials,[41–43] a complete Review on the
recent works including research on both low-dimensional mate-
rials and traditional materials-based memristive arrays for infor-
mation storage and neuromorphic computing becomes essential.
Moreover, we present a comprehensive Review of the memory
unit cell design for RRAMs and PCMs to resolve the sneak-path
current issue, including 1S1R, 1T1R, 1D1R, one-bipolar-junction
transistor (BJT)-one memristor (1BJT1R), self-selective cell
(SSC), self-rectifying cell (SRC), and complementary resistive
switching (CRS) cell, as schematically shown in Figure 1c�i.
The types of bias schemes and the influence of wire resistances
on the read/write operations are discussed. Some of the recently
reported devices with staircase output electrodes and pillar input
electrodes have been proposed, which should be noted as well.[44]

Finally, we survey the literature on how 1R and 1T1R arrays phys-
ically accelerate machine learning and neuromorphic comput-
ing, for example, how they implement different types of
neural network topologies and how they perform different types
of learning (e.g., supervised, unsupervised, and reinforcement
learning, which is either implemented offline or online).

2. RRAM Writing/Reading Voltage Schemes in
the Crossbar Arrays

To avoid programming interference, different bias schemes, as
shown in Figure 2, have been proposed to bias the unselected
cells with a fraction of the selected cell voltage.[45–48] Despite
the pursuit of memristors with ultralow “off” current/conduc-
tance for memory cells in the crossbar arrays, the choice of bias
scheme for writing/reading processes could be helpful to miti-
gate the sneak-path current issue. The voltage schemes could
be classified based on the voltages applied to the unselected
bit and word lines when the selected cell is always kept under
full voltage bias. As shown in Figure 2a,d, the floating scheme
leaves all the unselected word and bit lines floating. The read
margin of the floating scheme could be much lower than that
of the 1/2V scheme because all the sneak currents of the unse-
lected cells will flow toward V if they cannot be suppressed appro-
priately. In other words, if the sneak current issue in the floating
scheme is successfully handled, the crossbar RRAM in the float-
ing scheme can exhibit better energy efficiency while achieving
an extremely high density, which is mainly determined by its
read margin. In the 1/2V bias scheme, as shown in Figure 2b,
e, the selected word line and selected bit line are applied with
full voltage and 0 V, respectively, and the unselected word lines
and bit lines are applied with 1/2V. Thus, the selected cell (red
circle) is under V bias, half-selected cells (green and yellow
circles) are under 1/2V, and the unselected cells (blue circles)
are under 0 V. However, for the 1/3V bias scheme, shown in
Figure 2c,f, the selected word line and selected bit line are
applied with full voltage and 0 V, respectively, same as the situa-
tion of 1/2V. The unselected word lines are applied with 1/3V,
whereas the unselected bit lines are applied with 2/3V. Thus,
the selected memory cell (red circle) is under V bias, half-selected
memory cells (green and yellow circles) are under 1/3 V bias, and
the unselected memory cells (blue circles) are under �1/3V bias.

(b) 1/2 Voltage Bias Scheme 1/3 Voltage Bias Scheme
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Figure 2. Three typical types of bias voltage (V) schemes. a) The floating bias scheme. b) The one-half voltage (1/2V) bias scheme. c) The one-third
voltage (1/3 V) bias scheme. d�f ) The equivalent electric circuits corresponding to the three types of voltage biasing schemes, as shown in (a�c).
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Therefore, developing nonlinear I�V curves with a large on/off
ratio and ultralow off-state current would be promising to
decrease the energy consumption.

3. Solutions to the Sneak-Path Current Problem
in Crossbar Arrays

3.1. 1S1R Cell and Crossbar Array

1S1R cell, a two-terminal circuit consisting of one selector and
one memristor in series, as shown in Figure 3a, could lead to
high-density integration, thanks to 3D stacking ability.[49–52]

1S1R device structure is considered as the most preferable
scheme for high-density 3D integration of RRAM.[34,35,53–55]

The ideal selector should have high conductance at a large voltage
(on state) and small current (off state) at low voltage simulta-
neously or a highly nonlinear I�V characteristic,[56–58] as well
as a small variation of threshold voltage and hold voltage.[59,60]

Moreover, the selectors should be compatible with the memory
cell, in terms of operating current and voltage ranges, to ensure
limited sneak-path current from the unselected memory ele-
ments during both read and write operations,[34,35] as well as
enough current to “set” and “reset” memristors. The selectors
should also be fast enough to avoid slowing down the operation
of memory devices and have high reliability with cycling endur-
ance, array yield, and device variability comparable with that of
the memristors.[34,35]

Compared with unit cells and transistors,[61,62] which are very
challenging to be stacked vertically, and thus have limited ulti-
mate density,[49] the selector is actually a bidirectional highly non-
linear resistor and is promising for high-density integration.
Various material systems showing the function of selectors have
been intensively studied, like silicon-based selectors,[63–66] MIM-
based selectors,[67–72] ovonic threshold switching selectors,[73–78]

metal�insulator transition (MIT)-based selectors,[79–84] field-
assisted superlinear threshold selectors,[85,86] and mixed ionic�
electron conduction selectors.[87–91] Each of them has its merits
and demerits, which have been discussed in detail by Aluguri
et al.[35] Moreover, to avoid the hard breakdown of materials used
for selectors, self-compliance with great nonlinearity properties
is desirable for high-density crossbar array applications.[92,93]

Figure 3b shows a typical nonlinear I�V curve measured from
an integrated 1S1R cell with an MIM-based selector. The selector
enables the low off current at around 10�12 A and the memory
window around four orders of magnitude. In this particular case,
the selector turns to on-state at around 0.7 V, and the memory
cell turns to on-state at 1.3 V. The following positive sweep veri-
fies the low-resistance state (LRS) of the integrated unit. For the
negative voltage sweep, the selector turns to on state at about
�0.7 V and the resistance of the united cell goes back to an
off state. Figure 3c–e shows the details of the nonlinear I�V
curves from the selector, resistive memory, and their integrated
cell, respectively, giving a direct impression of how to generate
the nonlinear I�V curve with a 1S1R device structure from the
separated selector and memory device. The device structure of

Figure 3. Electrical performance and typical features of 1S1R memory cell. a) Schematic illustration of the 3D crossbar array and the inset showing the
structure of the memory cell with the integration of 1S and 1R. b) I–V curves of the 1S1R memory cell integrating the Cu/HfO2/Pt memory and a discrete-
defect graphene selector under 500 μA compliance current level. The inset shows the typical electrical characterization of the Cu/HfO2/Pt memory device.
Reproduced with permission.[52] Copyright 2018, Wiley-VCH. c) Continuous bidirectional threshold switching of the individual Pd/Ag/HfOx/Ag/Pd selec-
tor. d) Repeated bipolar I–V switching curves of the individual memristor with the structure of Pd/Ta2O5/TaOx/Pd memristor. e) DC I–V curves of the
integrated selector and memristor vertically. Reproduced with permission.[51] Copyright 2017, Wiley-VCH.
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the selector opens another general method for designing a
selector device using a structurally symmetric Pd/Ag/HfOx/
Ag/Pd stack.

3.2. 1T1R Cell and Crossbar Array

1T1R cell structure remains the most popular choice for RRAM
or PCM arrays. The 1T1R crossbar architecture shares a large
similarity with that of DRAM. Figure 4a,b shows the schematic
of a typical 1T1R structure and the corresponding I�V curve.[94]

The transistor not only allows flexible selection of memory cells
but also facilitates the programming for computing-in-memory
applications. For 1T1R RRAM crossbars, the cells can either be of
an electrochemical metallization type (relying on the electro-
chemical dissolution and deposition of an active electrode metal
to perform the resistive switching operation) or valence-change
type (modification of the valence state of anions to induce
changes in electrical conductivity, driven by underlying ion trans-
port and redox processes). The former type was developed by
Otsuka et al., reporting a 4Mb 1T1R RRAM macro that builds
on the 180 nm process of Sony. The RRAM cell consists of
CuTe-based conductive material and a thin GdOx layer as the
host dielectric. The macro has demonstrated a 2.3 Gb s�1 read
throughput and a 216Mb s�1 write throughput.[95] The same
RRAM device was used by Fackenthal et al. in a test chip of
16 Gb 1T1Rs using the 27 nm process of Micron, achieving a

similar read throughput of 1 Gb s�1 and a write throughput of
200MB s�1.[96]

In contrast, more works have been conducted in regard to the
valence-change 1T1R RRAM crossbars, as valence-change
RRAMs usually have a larger activation energy of ion migration
and thus better reliability. Some of the widely reported material sys-
tems with valence change, such as Hf, Ti, and Ta-based transition
metal oxides, have been paired with planar transistors. For example,
for Hf-based RRAMs, Sheu et al. reported a 4Mb 1T1Rmacro built
on the 180 nm process of TSMC, with a TiN/Ti/HfO2/TiN RRAM
structure that has a cross section of 640 nm�640 nm. The same
RRAM also revealed four-level conductance that can encode multi-
ple bits per cell.[97] A similar RRAM material stack was reported by
Ho et al. in 1T1R arrays built on Winbond 90 nm process, showing
improved reliability and high-temperature compatibility.[98] In addi-
tion, Chou et al. from TSMC reported an 11MbHfOx-based RRAM
1T1Rmacro, which was produced using the 40 nm logic process for
embedded memory applications. The macro featured a RRAM pro-
gramming scheme that balanced the data retention and program-
ming energy/time, which also showed robust switching behavior in
a wide range of temperatures.[99] For Ti-based cells, Chang et al.
designed a 4Mb RRAM macro for embedded memory application
based on TSMC 64 nm technology. The macro was equipped with
on-chip low-voltage current sense amplifiers, which worked with
TiN/TiON/SiO2/Si RRAMs.[100] The same RRAM stack was also
integrated with TSMC 28 nm high-κ MG CMOS process to build
a 1Mb 1T1R RRAMmacro. The advanced technology node reduced

Figure 4. Nonvolatile memory based on one-transistor-one-resistor structure. a) Schematic of a typical 1T1R structure using a standard 0.13 μm logic
process and integrated with memory cell based on a Cu/HfOx/Pt structure. Reproduced with permission.[94] Copyright 2014, IEEE. b) The corresponding
I–V curve for the 1T1R cell is shown in (a) in drain voltages (Vd) sweeping mode. c) The cross-sectional TEM image of 40 nm Ir/Ta2O5/TaOx/TaN resistive
memory. Ir and TaN are top and bottom electrodes, respectively. d) The image of a 2 Mbit memory array with 40 nm 1T1R TaOx-based RRAM. Reproduced
with permission.[103] Copyright 2015, IEEE. e) The schematic of the 32� 32 1T1R array based on Cu/HfO2/Pt structure reported by Lv et al. The gates of
the regularly arranged transistors and the top electrodes of the memory cells were connected by the word line and bit line, respectively. f ) The cor-
responding cross-sectional TEM image of 1T1R structure. The transistor was fabricated with the same processes as shown in (a). g) The test conditions
of the ECM cell. Reproduced with permission.[108] Copyright 2015, Nature Publishing Group. h) The partial cross section of the memory cell in the 1 Mb-
embedded RRAM macro. i) The zoom-in image of the memristive cell. Reproduced with permission.[109] Copyright 2017, IEEE.
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the size of the RRAM down to 0.0308 μm2 cell�1. The macro also
featured improved sensemargin and a low-energy RRAM program-
ming scheme.[101] For Ta-based RRAMs, Hawahara et al. from Sony
reported a 512 Kb 1T1R RRAM macro consisting of Ir/Ta2O5/
TaOx/TaN RRAM cells. The macro was fabricated using the
180 nm process, which also consisted of a special two-step forming
scheme that could better control the filament size and thus lead to
improved endurance (107).[102] The same RRAM device was used in
a 2Mb 1T1R RRAM macro using both 28 and 40 nm process by
Hayakawa et al., which used a special process to confine the fila-
ment position to the center of the RRAM to improve reliability
for embedded system applications (Figure 4c,d).[103]

For 1T1R PCM crossbars, the mature Ge2Sb2Te5 cells are
widely reported. In addition, developing special material combi-
nations that can enhance reliability is also a hot research topic.
For example, Close et al. reported a 4Mbit 1T1R PCM macro
built on a 90 nm process. The PCM cells were based on
doped-Ge2Sb2Te5 that showed multilevel conductance operation
capability.[104] A similar 4Mb 1T1R PCM macro was reported by
Sandre et al., which also used a 90 nm process and Ge2Sb2Te5
PCMs, featuring a 1Mb s�1 write throughput.[105]

In addition to planar transistors, valence-charge RRAM 1T1R
also shows good compatibility with fin field-effect transistor
(FinFET) technology, which is suitable for embedded memory
applications at advanced nodes. For example, Pan et al. demon-
strated the first FinFET 1T1R RRAM crossbar array using a
16 nm process of TSMC. The HfOx RRAM was realized using
a similar process as that of the gate stack of a FinFET, with a
cell size as small as 0.07632 μm2.[106] Jain et al. from Intel showed
a case of 3.6Mb 1T1R RRAM macro using the 22 nm FinFET
process. It has achieved one of the largest device densities
and the shortest sense time, as well as a low bit-error rate in
RRAM programming across a wide range of temperatures.[107]

The failure and cycled retention loss in HfO2-based electrochem-
ical metallization memory (ECM) cell device with 1T1R structure
was systematically investigated by Lv et al. using a 1 Kbit device
array (Figure 4e�g), which paves the way for understanding the
mechanism of endurance and retention failure.[108]

The 1T1R fabrication cost can also be minimized by engineer-
ing the device’s structure design. For RRAM, as reported by Lv
et al., a 1Mb 1T1R macro, using transition metal oxide-based
RRAM, was developed using a 28 nm Semiconductor
Manufacturing International Corporation (SMIC) process with
a single extra mask for the integration of RRAMs at small fabri-
cation cost, as shown in Figure 4h,i. The macro shows decent
switching performance and high-temperature stability for embed-
ded memory applications.[109] For PCM, Wu et al. demonstrated
that only two extra masks were needed for 1T1R PCM integration,
which also allows extra footprint shrinking in a 1Mb 1T1R PCM
macro using TSMC 40 nm process. The shrinkage and electrode
material engineering lead to low-write current and good resis-
tance control with applications for computing-in-memory.[110]

3.3. 1D1R Cell and Crossbar Array

Similar to 1S1R, the 1D1R structure consists of a diode and a
unipolar memristor. They could achieve a footprint of 4F2, like
that of 1R or 1S1R, and may further increase the structure

density to n/4F2.[111–114] Due to the self-rectifying function of
the diode, the reading error could be avoided as the current
mainly passes through the selected memory cell itself.[115–117]

Thus, 1D1R crossbar arrays feature better 3D stack ability
thanks to the simple structure and CMOS process compatibility
of the diode selectors. The International Technology Roadmap
for Semiconductors (ITRS) also suggested that the combination
of a diode and transistor with a resistor in a single chip is indis-
pensable for the prevention of this undesired sneak-path cur-
rent issue.[118] The architecture of 1D1R or 1T1R can
improve reading accessibility in an integrated memory array
structure,[112,119–121] whereas the 1D1R architecture is preferred
in terms of integration because it occupies less area, and the
design and fabrication of 1D1R devices are simpler than that
for 1T1R devices.

Based on the types of materials for fabricating diodes, the
reported 1D1R could be classified as Si-based diodes,[122–124]

organic diodes, and oxide diodes. Each of them has its own
advantages and disadvantages. For example, Si-based diodes
require a high-temperature process for dopant activation or
enhanced contact properties, risking the rest of the fabrication
processes, particularly that of memristors. Organic diodes could
not be fully compatible with conventional semiconductor pro-
cesses due to their vulnerability to high-temperature treat-
ment.[125–128] Oxide-based diodes have no CMOS compatibility
issue. They can also be fabricated with relatively low-temperature
processes; [114,123,124,129–133] for example, Yoon et al. reported a
1D1R crossbar array shown in Figure 5a using physical vapor
deposition methods at low temperature.[134] The top-view and
cross-sectional scanning electron microscopy (SEM) images
are shown in Figure 5b, showing the device structure consisting
of Ti/TiO2/Pt/SiOx/Pt. The corresponding initial I�V curve of
the fabricated 1D1R device is shown in Figure 5c and its rectifi-
cation ratio at V¼ 2 V is around 4� 105. The endurance test with
set/reset/read voltages at 8/15/2 V, respectively, is shown in
Figure 5d as well. However, this 1D1R configuration has not fully
met the requirements of large rectification, high on/off resis-
tance ratios, and low power consumption needs.

So far, there have been some 1D1R memristive arrays
reported with a large-scale capacity based on oxide-based diodes.
For example, Kawahara et al. from Panasonic reported an 8Mb
RRAM macro made of two-layer 3D-stacked 1D1R crossbars
using 180 nm technology. Each 1D1R cell consists of an
Ir/Ta2O5/TaOx/TaN RRAM paired with a bidirectional TaN/
SiNx/TaN diode, with a writing throughput up to
443Mb s�1.[135] The density of the storage can be further
increased with an advanced technology node. Hsieh et al. dem-
onstrated a three-layer 1D1R RRAM crossbar using TSMC 28 nm
HKMG CMOS Cu line process. The material stack of the RRAM
is Ta/TaN/TaON/Cu, which is paired with a TaOx diode, as
shown in Figure 5e.[136] Liu et al. unveiled a 32 Gb 1D1R
RRAM test chip, which is one of the largest capacity RRAM chips
developed so far. The chip has two-layer stacked metal oxide
RRAM and diodes, fabricated using the 24 nm technology of
Sandisk and Toshiba.[137]

However, due to the rectifying characteristic of the diode,
almost all 1D1R arrays use unipolar memristors, because bipolar
memristors demand both positive and negative voltage polarities
for switching.[116,138–141] Further, the device performance of
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bipolar memristors is generally better and more reliable com-
pared with unipolar memristors.[142,143] Another factor is that
the diode cannot provide self-compliance without a complicated
device structure, like the structure of Ni/AlOy/nþ-Si-TiN/HfOx/
Ni reported by Liu et al.[144]

Thus, the development of high-density-integrated 1D1R is
greatly limited. Li et al. reported that the integrated structure
of Ni/TiOx/Ti diode and Pt/HfO2/Cu bipolar RRAM cell could
demonstrate a self-compliance bipolar resistive switching behav-
ior to suppress the undesired sneak current in a crossbar
array,[145] which paves the way to designing a highly integrated
1D1R crossbar array with the elimination of inherent obstacles of
1D1R. Thus, designing diodes with high forward current density,
high self-rectifying ratio, low-temperature fabrication, and easy
integration with memory cell would be the key parameters that
should be considered further.

3.4. 1BJT1R Cell and Crossbar Array

BJT has been widely reported as the selecting devices for PCM
crossbar arrays. Seravalli and Villa et al. demonstrated a 1 Gb
PCM test chip based on 1BJT1R crossbar arrays. The chip is man-
ufactured using a 45 nm process of Humonyx. Each cell has a
vertical PNP�BJT selector and a Ge2Sb2Te5 PCM cell. The chip
offers a 266Mb s�1 read throughput and a 9Mb s�1 write
throughput.[146,147] For the RRAM, due to the limitations of
CMOS processes and planer structures of transistors, it is diffi-
cult to utilize the metal�oxide�semiconductor field-effect tran-
sistors (MOSFETs) to satisfy all requirements of low-voltage
operations, high scalability, and large current drivability with
one single cell. Hua et al. reported a new logic-compatible
BJT with a vertically formed stack underneath the resistive
stacked film of TiN/Ti/HfO2/TiN as a high-performance current

Figure 5. 1D1R crossbar array based on low-temperature-processed SiOx. a) Schematic illustration and photograph of the 1D1R SiOx memory device.
The zoom-in schematic shows the device structure of one memory cell including Ti/TiO2/SiOx/Pt. b) SEM images showing the top-view and
cross-sectional view of the fabricated 1D1R device. c) The representative I–V curves of the fabricated 1D1R device. d) Endurance performance of
the fabricated 1D1R device. The set, reset, and read voltages are 8, 15, and 2 V, respectively. Reproduced with permission.[134] Copyright 2018,
Wiley-VCH. e) Illustration of large-scale industrial crossbar arrays. Cross-sectional SEM view of 28 nm TaON-based cross-point 3D via RRAM and
the zoom-in TEM image of a 3D via RRAM (30 nm� 30 nm) in (e) with a stacked TaOx diode in 28 nm Cu single damascene process. Reproduced
with permission.[136] Copyright 2013, IEEE.
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driver and bit-cell selector, as shown in Figure 6a.[148] The cor-
responding 3D RRAM array arrangement with BJT structure is
shown in Figure 6b. The shallow and tiny n-type lightly doped
domain (NLDD) acts as the bit line in connection with the
RRAM film and the very thin and self-aligned p-pocket implant
works as the word line (Figure 6c). Such a new 3D RRAM cell
could be easily implemented in advanced CMOS logic platforms
for the ultrahigh-density and very-low-voltage non-volatile
memory (NVM) applications due to its area-saving device
structure and efficient operation driven by the high-gain BJT
with a low voltage of 2 V for reset and 1.5 V for the set
processes (Figure 6d).

3.5. CRS Memory Cell and Crossbar Array

CRS provides another way to avoid sneak-path current without
extra access elements, at the cost of duplicating the number
of memristors. Each CRS cell usually has two antiserially con-
nected bipolar memristors in a back-to-back way.[149–152] As they
share a common electrode, when one of the memristors is pro-
grammed into LRS, the other will be programmed into a high-
resistance state (HRS).[149] To achieve the stability on a window, a
series resistor is normally required for entertaining an asymme-
try for the set and reset device voltages, making a level read oper-
ation possible, as shown in Figure 7a.[150] So far, most CRS cells
reported previously could be classified into two groups: 1) CRS
using two symmetric memory cells. Lee et al. exhibited a CRS cell

in the oxide-based RRAM device based on the inverse materials
order (Pt/ZrOx/HfOx/metal/HfOx/ZrOx/Pt) of two symmetric
memory cells,[153] where the oxygen ion motion between the
ZrOx and HfOx oxides contributed to resistive switching.
Wang et al. reported a CRS device consisting of two symmetric
memory cells based on Ti/TiOx/Cu/TiOx/Ti structure, as shown
in Figure 7b.[154] Other reports of symmetrically connected pair
of memory cells have been demonstrated, like Pt/BTO/LSMO/
BTO/Pt,[155] Au/a-C/CNT/a-C/Au,[156] Pt/TiOx/TiOy/TiOx/
Pt.[157] 2) CRS using two asymmetric memory cells. As the for-
mer one with two same memory cells connected usually have the
fixed operation voltages and thus limited operation voltage win-
dows, Lee et al. demonstrated a CRS cell with a structure of
W/ZrOx/HfOx/TiN connected with TiN/Ir/TiOx/TiN, consist-
ing of two asymmetric memory cells, as shown in Figure 7c.[158]

The set/reset switching is positive/negative for HfOx-based
memory cell, which is opposite to the switching of TiOx-based
memory device. Both of them show larger reset voltage than
the set voltage, and a wide voltage-operating window in the posi-
tive-bias region has been achieved from the superimposed I�V
feature of two merged cells. Similar results have been observed
in Al/Al2O3/Au/GO/ITO

[159] and ITO/GO/graphene/GO/Al.[152]

Although the CRS with two antiserially connected memory
cells can effectively solve the sneak-path current, the integration
complexity due to extra fabrication steps, rapid degradation of the
common active internal electrode, etc. prohibits the implemen-
tation of large-scale CRS crossbar memory. A potential solution

Figure 6. 3D vertical BJT RRAM cell. a) Schematic of a vertical NPN BJT formed vertically under RRAM film. b) 3D RRAM array arrangement with BJT
structure. c) The layout of the memory cell with vertical NPN BJT in 3D RRAM structure. d) DC curves of 3D RRAM for set/reset and forming operations.
Reproduced with permission.[148] Copyright 2010, IEEE.
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is a truly single memristor instead of two that can exhibit CRS.
Nardi et al. proposed a CRS device based on a single memory
device with the structure of TiN/HfOx/TiN.

[160] However, CRS
could only be observed with a uniform Hf concentration profile
within the HfOx active layer.[160] Yang et al. have reported the
CRS in Pd/Ta2O5�x/TaOy/Pd memory cells with two designed
different stoichiometric TaOx layers: an oxygen-rich layer and
an oxygen-deficient layer, and the exchange of oxygen vacancies
between two layers with the gradient of oxygen composition plays
a vital role in the implementation of CRS (Figure 7d).[161]

Similar structures have also been reported in Au/BaTiO3/
NiO/Pt,[162] W/Nb2O5�x/NbOy/Pt,

[163] Al/GO/ITO,[164] IrOx/
GdOx/Al2O3/TiN,

[165] Pt/HfAlOx/TiN,
[166] Pt/HfOx/TiN,

[167]

and Pt/TiO2�x/TiNxOy/TiN,
[168] etc.

Although there are many preliminary works on different CRS
cells, several issues should be addressed before developing a
high-density CRS RRAM array. In CRS, the read operation for
one of the HRS involves a set transition, which requires a
solution to limit the high programming current. Although
the proper operation of a CRS crossbar memory array could
be ensured by connecting each memory cell in series to a

selector/transistor,[138,169–172] that defeated the motivation of
CRS that is selector free. A typical approach is to embed a “series
resistor” into the CRS memory cell, which would limit the
increase in current with the formation of a conducting filament
in the switching layer.[173–176] Tappertzhofen et al. reported a
novel method to realize a nondestructive readout based on a
CRS cell consisting of two memory cells with similar switching
properties and distinguishably different capacities.[177] Another
issue is the narrow read voltage window of CRS. To our best
knowledge, most of the reported RRAM devices with CRS char-
acteristics generally exhibit a narrow read margin (�0.5 V),
like Pt/SiO2/GeSe/Cu/SiO2/Pt,

[178] Pd/Ta2O5�x/TaOy/Pd,
[161]

W/Nb2O5�x/NbOy/Pt, and
[163] TiN/HfOx/TiN.

[160]

Pt/ZrOx/HfOx/TiN/HfOx/ZrOx/TiN
[153] andW/ZrOx/HfOx/

TiN/Ir/ZrOx/TiN.
[158] To address this limitation, Zhang et al.

proposed a new approach with ITO/HfOx/TiN memristor to
enlarge the difference between the set and reset voltages, relying
on the inherent asymmetry in the O-ion exchange processes
between interfaces because of the different reactivities of metal
electrodes.[179] This work solves the key challenge of demonstrat-
ing array-level CRS.

Figure 7. Nanocrossbar memory array with CRS structures to avoid the sneak current. a) Top panel: ECM-based CRS device connected serially
with a resistor. Bottom panel: ECM-based CRS device without the series resistor. Reproduced with permission.[150] Copyright 2013, Nature
Publishing Group. b) I–V curves of the symmetry-connected cells with the structure of Ti/TiOx/Cu/TiOx/Ti. Reproduced with permission.[154]

Copyright 2016, IOP Publishing. The left top inset shows the schematic of the CRS device and the right lower inset shows the endurance performance
of the CRS device at 0.5 V. c) A simple scheme of heterodevice CRS device having these two RRAMs and simple illustrations of device states. Reproduced
with permission.[158] Copyright 2012, IEEE. d) The device structure of the Pd/Ta2O5�x/TaOy/Pd memory devices, and the I–V curve of Pd/Ta2O5�x/3%-
TaOy/Pd device showing bipolar resistive switching. The inset shows the same I–V curve on a logarithmic scale. Reproduced with permission.[161]

Copyright 2012, AIP Publishing.
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3.6. SRC and Crossbar Array

The aforementioned solutions to alleviate the sneak-path current
issue using an additional selector, diode, or transistor would
increase the complexity of the fabrication process and the cost,
increase the read/write voltage, degrade the stability of memory,
as well affect the scaling limitation because of the complicated
device structures. Self-rectifying resistive memory could avoid
the issues addressed earlier without extra rectifying devices.

The typical structure of a self-rectifying RRAM is metal�
insulator�insulator�metal (MIIM) or MIM. The large work
function difference between the top and bottom electrodes is
essential for the asymmetric effective barrier seen in the top
and bottom electrodes to enable the rectifying feature. So far,
the self-rectifying memory devices with such bilayer device struc-
tures have been intensively studied, for example, NiSi/HfOx/
TiN,[180] Ge/HfOx/Ni,

[181] He-LiNbO3/Pt/SiO2/LiNbO3,
[182] Pt/

Ta2O5/HfO2�x/TiN,
[183] Ni/HfO2/SiO2/Si diode,[184] Pt/TaOx/

n-Si,[185] Al/MoOx/Pt,
[186] (ITO)/InGaZnO/ITO,[187] Pt/

HfO2�x/TiN,
[188] Pt/amorphous In�Ga�Zn�O (a-IGZO)/

TaOx/Al2O3/W,[189] Ti/SiOxNy/AIN/Pt,
[190] Pd/HfO2/WOx/

W,[191] Ag/a-Si/pþ-Si,[192] Au/ZrO2:nc-Au/n
þSi,[193] Au/

Li�ZnO/ZnO/Pt,[194] Ni/SiN/HfO2/Si,
[195] Pd/HfO2/TaOx/

Ta,[196] Ni/Al2O3/p-Al doped GaN (p-AlGaN),[197] Si3N4/SiO2/
Si,[198] Pt/Ta2O5/HfO2�x/Hf,[199] Ti/GaOx/NbOx/Pt,

[200] Ti/
NiOx/Al2O3/Pt,

[201] etc. Li et al. reported a p-Si/SiO2/n-Si mem-
ristor. The optical images and the cross-sectional transmission
electron microscope (TEM) image are shown in Figure 8a�c,
and the typical nonlinear I�V curve with unipolar behavior is
shown in Figure 8d. Such a novel SRC exhibits repeatable uni-
polar resistance switching with a rectifying ratio of 105 and on/off
ratio of 104 (Figure 8e) and the retention time up to 2� 105.[202]

Moreover, the authors also demonstrated the 3D crossbar array
of up to five layers of 100 nm memristors using fluid-supported
silicon membranes and experimentally confirmed the successful
suppression of both intra- and interlayer sneak-path currents
through the built-in diodes. Kim et al. reported a forming-free
memristive system based on the stacked Pt/NbOx/TiOy/NbOx/
TiN with a 30 nm contact, showing a programming current as
low as 10 nA and 1 pA for the set and reset switching, respec-
tively.[203] The self-rectifying ratio is about 105. This work
revealed that the programming power can be decreased to
8.0% of power consumption of a conventional biasing scheme
when the device is used in a 1000� 1000 crossbar array with
the asymmetric voltage scheme (AVS), and a power consumption
reduction could be decreased possibly to 0.31% of the reference
value if the AVS is combined with a nonlinear selector. This kind
of low-voltage operation of the memristive device is of strong
potential to be used for low-power applications such as embed-
ded memory of low voltage or power-restricted chips.

To satisfy the strict requirements of SCM, Hsu et al. reported a
forming-free and self-compliance bipolar Ta/TaOx/TiO2/Ti
RRAM cell with extremely high endurance over 1012 cycles.[204]

The self-rectification ratio achieved in this work could be up to
105 required for ultrahigh-density 3D vertical RRAM. In addition,
the multiple-level-per-cell capability, room-temperature pro-
cesses, and fabrication-friendly materials demonstrated in this
memristive system make its potential promising to realize
high-density and high-performance SCM.

Normally, the growth of bilayer dielectric structure increases
the cost and complexity of manufacturing. Therefore, low-
temperature compatible processes should be developed. Oh
et al. reported a forming-free and self-compliance resistive
switching device based on Au/Ni/FeOx�GO/Si3N4/n

þ-Si

Figure 8. 3D crossbar array integrated with self-rectifying Si/SiO2/Si memristors. a) Top-view picture of an 11� 8 memristor array with high fabrication
yield of a single cross-point device. Scale bar: 100 μm. b) The zoom-in picture of a single device shown in (a), with 5 μm� 5 μm cross-point device. Scale
bar: 50 μm. c) Cross-sectional TEM image of the device with vertically stacked Si/SiO2/Si layers, clearly showing the crystalline structure of the top and
bottom Si layers and the 5 nm SiO2 as the middle amorphous layer. Scale bar: 2 nm. d) The representative unipolar I–V resistive switching curves. The top
p-Si layer was applied with bias voltage and the bottom n-Si layer was grounded. The set and reset voltages are 7.5 and 4.5 V, respectively. The turquoise
curve is the first setting voltage with almost the same voltage, indicating the formatting-free feature of the device. e) The bias voltage-dependent on/off
ratio conductance ratio and the rectifying ratio. f ) Retention behaviors test at room temperature. The conductance states could be maintained for more
than 2� 105 s. Reproduced with permission.[204] Copyright 2017, Nature Publishing Group.
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structure with an excellent resistive switching ratio (greater than
104) and a rectification ratio higher than 104.[205] The solution-
processed FeOx�GO active layer showed comparable perfor-
mance with those devices fabricated using vacuum deposition
processes, making possible the lower fabrication cost of self-rec-
tifying memory devices.

Although the typical bilayer dielectric layer structure has been
investigated successfully for developing self-rectifying resistive
switching, developing a single material with concurrent high-
performance switching and self-rectification would decrease the
fabrication complicity and increase the integration level.
Recently, Yao et al. reported a RRAM device based on a chiral
metal�organic framework (MOF) FJU-23-H2O with switched
hydrogen bond pathway within its channels, exhibiting an ultralow
set voltage (�0.2 V), a high ON/OFF ratio (�105), and a high rec-
tification ratio (�105).[206] Its resistive switching behavior originated
from the turn on/off of the switched hydrogen bond pathway under
the stimulus of DC voltages. This work is not only the first MOF
with voltage-gated proton conduction but also the first single
material showing both rectifying and resistive switching effects.

3.7. SSC and Crossbar Array

To date, most solutions like 1S1R, 1D1R, 1T1R, SRC, and CRS
are achieved by connecting two MIM cells in series. Each solu-
tion has its unique advantage that cannot be combined with that
of alternative solutions, thus unable to completely resolve the
sneak-path current issue. For example, 1) the 1S1R AND
1D1R cell cannot be integrated with a high capacity due to com-
plex fabrication (including etching issue), 2) the SRC cannot pro-
vide sufficiently low sneak currents, which are essential for large
integration, and 3) the CRS cell exhibits destructive read opera-
tion and high sneak currents due to its intrinsic device struc-
ture.[48] All the former solutions are stuck at an integration
capacity of megabit (106 bits). Indeed, a conceptually new mem-
ory cell has to be developed.

The concept of self-selective resistive switching in a single cell
offers a new strategy to overcome the sneak-path current issue of
a memory device in the crossbar array structure without addi-
tional stacking of active devices. By integrating two oxide layers
as an insulating layer, it exhibits a selective functionality with an
engineered nonlinearity. Other candidates like vanadium oxide
(VOx),

[207] with self-selecting resistive switching performance
for crossbar memory array was demonstrated by Myungwoo
et al. due to the first-order MIT property. The nanoscale VOx

device exhibited self-selective switching and memory switching
after electroforming. Ma et al. reported other self-selective resis-
tive switching memory cells with a thermal-oxidized HfOx layer
in combination with a sputtered Ta2O5 layer configured as an
active stack,[208] which represents high-on-state half-bias nonlin-
earity of �650, a sub-μA operating current, and high on/off
ratios above 100�. Kwon et al. reported a selector-less memris-
tor for high uniformity and low power consumption using the
structurally engineered nanoporous Ta2O5�x and achieved ultra-
low power consumption (�2.7� 10�6W).[209] Wang et al. uti-
lized a VO2/TaOx bilayer structure to realize the volatile
threshold switching and multilevel nonvolatile resistive switch-
ing and applied such hybrid self-selective switching to the self-

activation neural network.[210] Xu et al. reported a TiN/TiOx/
HfO2/Ru self-selective device formed by a self-aligned tech-
nique, with the off-state leakage current as low as 0.1 pA and
operating current below 1 μA.[211] The LRS exhibits high nonlin-
earity (103). The programming and erasing speeds are 100 and
400 ns, respectively, and the excellent endurance shows 107

cycles. A 4� 8� 32 3D vertical RRAM array was further dem-
onstrated with a sufficient read margin up to 10Mb. Eight-layer
3D vertical RRAM with excellent scalability toward SCM was
reported by Luo et al. from the same group.[212] This work suc-
cessfully extended the SSC design into the eight-layer 3D array
and explored the scaling limit of this architecture of 5 nm cell
size and 4 nm pitch in the vertical dimension demonstrated
experimentally. Recently, Sun et al. realized fast and energy-
efficient 2D self-selective memory cells using a high-quality
van der Waals heterostructure of h-BN and graphene, as shown
in Figure 9a, which is compatible with an integrated capacity of
1012.[48] A current of 10 fA at a low voltage bias (<3 V) and
abruptly a current of 10mA at a high voltage bias in a stable
memory device was achieved (Figure 9b). The atomically sharp
and chemically inert interface between the h-BN and graphene
layers created a rapid reading/writing process with a time con-
stant of tens of nanoseconds (rising time: �50 ns and falling
time:�15 ns), as shown in Figure 9c, outperforming the current
flash memory technology. The origin of such a memristive
behavior is that Ag ions migrate through the h-BN layer during
the memory operation and their further migration is blocked by
the strongly bonded graphene; then, the boron vacancies con-
tribute to the conductive path in another h-BN layer with the
continuously increased voltage.[48] The endurance and retention
behaviors of the involved three resistance states are shown in
Figure 9d,e up to 106 switching cycles and 106 s, respectively.
Such a new conceptual memory device based on a novel 2D
heterostructure will open up a new research field, low-
dimensional nanomaterials-based memory and neuromorphic
computing.

3.8. Comparison of Various Architectures

In this part, we compare the strengths and weakness of each
architecture. 1) For the 1T1R architecture, it is compatible with
basic operations for in-memory logic, machine learning, and
neuromorphic computing, featuring mature process flow
derived from DRAM technology. However, it has a relatively
small device areal density due to the large footprint of planar
FETs, and the device density is further limited by the difficulty
to integrate 1T1Rs in 3D. 2) For the 1BJT1R architecture, it is
compatible with basic operations for in-memory logic, machine
learning, and neuromorphic computing, which has a smaller
footprint compared with planar FETs with the use of vertical
BJTs and a lower fabrication cost compared with FETs.
However, BJT selectors are of lower input impedance and cur-
rent gain compared with FET selectors and tend to show lower
switching frequency compared with FET selectors. 3) For CRS
architecture, it features large device areal density when it is inte-
grated in 3D, which is also compatible with operations for
in-memory logic. However, CRS reading may be destructive,
incurring extra rewriting energy, and suffer from integration
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complexity due to extra fabrication steps. It is also vulnerable
to the rapid degradation of the common active internal elec-
trode. 4) For SSC and 1D1R architecture, both of them feature
large device areal density when they are integrated in 3D. In
addition, 1D1R-based storage has been commercialized by
Intel and Micron, branded as Optane memory. However, both
SSC and 1D1R are less compatible with basic operations for in-
memory logic, machine learning, and neuromorphic comput-
ing. 5) For SSC and 1S1R architecture, they feature large
device areal density when they are integrated in 3D. Their bidi-
rectional nonlinearity in their I�V characteristics allows them
to work with bipolar memristors but faces the same issue sim-
ilar to SSC and 1D1R.

To clearly compare the performances of the discussed archi-
tectures in this Review, we summarize with key parameters like
on current, on/off ratio, Vset/Vreset, polarity, operation tempera-
ture, retention, and endurance in Table 1.

4. Impact of Wire Resistance

In large crossbar arrays, the current passing through the metal
wires would lead to significant voltage degradation, decreasing
the voltage drop on the farthest cell in the crossbar array, and
this finally results in write failure, which is also known as the
“IR drop” issue. Such resistance affects both memory readout
margin and the precision of vector-matrix multiplications. The
latter poses a technical challenge to applications such as machine
learning and signal processing in the analog domain.

To illustrate the impact of the wire resistance, Hu et al. use the
mapping of a discrete cosine transformation matrix as an exam-
ple and assume that the 64� 64 discrete cosine transformation
matrix is linearly mapped to the conductance of a memristor
array in the range [0, 1 mS].[213] In case that there is no wire resis-
tance, the voltages are constants along red row electrodes and
blue column electrodes. The transformation from the forced

Figure 9. Self-selective crossbar memory array based on van der Waals heterostructures. a) Schematic figure of the van der Waals heterostructure inte-
grated with crossbar memory array architecture. b) I–V curve of a typical memory cell in the memristor array. The four numbers represent four different
resistance states of the memory cell. The selectivity of this one-body self-selective memory cell is 1010, and the memory window is around 104. The Au
electrode was kept in connection with the ground. c) The switching speed of the self-selective memory cell is about tens of nanoseconds. d) Endurance of
switching behavior of the involved three resistance states, with voltage pulse trains of 106 measurement cycles. e) Retention behaviors of the three
resistance states at a time of 106 s. Reproduced with permission.[48] Copyright 2019, Nature Publishing Group.

Table 1. Comparison of key parameters and functions among different device structures.

Types On current [A] On/Off ratio Operation polarity Operation temperature [K] Retention [s] Endurance Refs

1S1R 5� 10�4 109 Biploar — — 106 [52]

1T1R 10�3 108 Unipolar 300 105 108 [108]

1D1R �10�4 108 Unipolar 473 �105 104 [112]

1BJR1T �10�5 �10 Unipolar — 103 105 [148]

CRS 10�2 102–103 Biploar �360 104 �2� 102 [152]

SRC 10�4 �104 Unipolar 573 �2� 105 �102 [202]

SSC 10�4 1010 Biploar 450 106 106 [48]
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input voltage vector~V to the sensed output current vector Itarget
��!

is

governed by the vector-matrix multiplication Itarget
��! ¼ Gtarget

~V
where Gtarget is the conductance matrix of the memristor array.
In case the electrodes are of nonzero resistance, such as 1Ω/
block, the currents flowing through the electrodes produce volt-
age drops. As a result, the memristor that is far from the voltage
sourcing and/or current-sensing edge receives reduced bias. The

effect of the wire resistance can be absorbed by Ieff
�! ¼ Geff

~V,
where Geff is the effective conductance matrix that is clearly dif-
ferent from Gtarget, as shown in Figure 10, particularly the mem-
ristors far from the voltage sourcing and/or current-sensing
edge. In addition, as shown in Figure 10, the increase in the wire
resistance, for example, to 10Ω/block, will lead to a larger devia-
tion between Geff and Gtarget, which further degrades the preci-
sion of the vector-matrix multiplication.

The wire resistance impact can be tackled by engineering the
conductance range of the memristors. For example, a large ratio
between the wire and memristor conductance can reduce the
voltage drops across the wires. In addition, circuit and
algorithm-level techniques have been invented to mitigate the
impact of the wire resistance for machine learning. Hu et al.
proposed a conversion method to compute the actual memristor
crossbar conductance matrix that can approximate a targeting
conductance matrix, based on numerically solving the
Kirchhoff equations.[213] In addition, Jeong et al. developed a
compact analytic compensation scheme that rescales each ele-
ment of the sensed current vector by a constant. The scheme

is based on the observation that the majority of the current devi-
ation can be accounted by a model assuming constant input volt-
age and conductance.[214] Liao et al. demonstrated diagonal
matrix regression, where two diagonal matrices approximate
the impact of row and column wire resistance, which can balance
the computational complexity and the accuracy of vector-matrix
multiplication.[215] There are some other circuit techniques to
deal with the voltage drop issue, by adding write drivers at both
sides of bitlines, as written by Zhang et al.[216]

Another factor is that the crossbar line capacitance could add
both read/write delay time and extra current sneak paths,[48,217–219]

which will further degrade the performance of the memory array.
Thus, in real application with consideration of line resistance,
the position of the selected cell will have a significant influence
on the voltage margin.

5. Applications in Machine Learning and
Neuromorphic Computing

In addition to storage class and embedded memory, 1R- and
1T1R-type resistive memory crossbars are frequently applied
to machine learning and neuromorphic computing.

So far, 1R and 1T1R crossbars have been used for machine
learning by hardware implementation of ANNs. In addition, they
are also used in neuromorphic computing or the SNNs which
mimic how our brain works. As schematically shown in
Figure 11, the SNN is a bioinspired neural network, consisting
of two types of building blocks, the neurons and the synapses.

Figure 10. The equivalent circuit of a memristor crossbar array with parasitic wire resistance. The color maps illustrate the effective conductance matrix
Geff that gradually deviates from the targeting conductance matrix Gtarget (discrete cosine transformation matrix mapped to [0, 1 mS] with increasing wire
resistance.

Figure 11. Illustration of 1R and 1T1R cells for being used as synapses in both SNNs and artificial neural networks (ANNs). In an SNN, the neurons
communicate in spikes, which are modulated by synapses interfacing neurons. The neuron integrates incoming spikes and fires its own spike if the
stimulation exceeds a threshold. In an ANN, the neurons and synapses are abstracted to nodes and arrows of computational graphs, representing
weighted summation followed by activation and scalar(scalar multiplication, respectively. Reproduced with permission.[40] Copyright 2018, AAAS.
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The latter are junctions interfacing two neurons, which can mod-
ulate the signal transmission strength between neurons, forming
the basis of our memory. Each neuron accumulates incoming
spikes from upper-stream neurons through synapses. Once
the stimulation exceeds a threshold, the neuron fires its own
spike or action potential that propagates along its axon to reach
the downstream neurons. Resistive 1 R and 1T1R cells have been
widely reported for their potential to serve as compact hardware
synapses, by mapping the signal transmission strength to their
conductance.[12,13,220–230] In addition, chemical synapses own the
capability to change connection strength depending on the his-
toric signal that has transmitted through them. This could be rep-
licated using ionic or electronic switching dynamics of 1 R or
1T1R resistive memory cells, which exhibit various short- and
long-term synaptic plasticities. Such plasticity is the foundation
of the learning capability of biocreatures. In contrast, ANN is an
abstraction of SNN, essentially a computational graph where
arrows usually represent scalar�scalar multiplications, whereas
nodes stand for summation followed by nonlinear activation
functions. (see the left panel of Figure 11) The cascaded

nonlinear transformations endow ANNs with the capability to
approximate arbitrary functions, provided the size and depth
of the network are sufficiently large.[231] Likely in SNNs the
1R and 1T1R cells can serve as the synapses in ANNs. As the
current flowing through a 1R or 1T1R is governed by Ohm’s
law, the multiplication of its conductance and voltage can be nat-
urally mapped to the multiplication of the synaptic weight and
the value of the upper-stream node. In addition, the summation
can be automatically fulfilled by Kirchhoff ’s current law in cross-
bars, as will be discussed in the next paragraph.

Either an SNN or ANN usually consists of a stack of assorted
layers. Typical layer topologies that 1R and 1T1R crossbars have
implemented comprise a fully connected layer, convolutional
layer, and recurrent layer. As shown in Figure 12a, in a fully con-
nected layer, each input neuron (node) is connected to all output
neurons. Therefore, ~y ¼ W~x, where ~x and ~y are the vectors of
input and output neurons, respectively. For simplicity, bias
and activation are ignored here. W denotes the weights of all
the black arrows in the form of a matrix, for example,Wi,j stands
for the connection strength between the i-th input neuron and

Figure 12. Different topologies of neural network layers that have been implemented by 1 R and 1T1R crossbars. a) Fully connected layer. In a fully
connected layer, each input neuron connects to all output neurons. The output neuron vector is the multiplication between the input neuron vector
and the weight matrix which can be mapped to the conductance of a 1R or 1T1R crossbar. b) Convolutional layer. An input image is scanned by a
convolution window. The pixels within the window are element-wise multiplied with a set of kernels before accumulation. The flattened kernels can
be mapped to the conductance of a 1R or 1T1R crossbar. c) Recurrent layer. Here an example of a long short-term memory (LSTM) layer is used.
An LSTM node has its internal state that is updated by four gates. The vector-matrix multiplications of LSTM nodes can be physically implemented
by two 1R or 1T1R subarrays, one for the external input and the other one for recurrent input.
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j-th output neuron. Therefore, the weight matrix W can be con-
veniently mapped to the conductance matrix of a 1R or 1T1R
crossbar. By doing so, the vector-matrix multiplication (or
weighted summation) will be physically carried out by Ohm’s
law for multiplication and Kirchhoff ’s current law for summa-
tion in one computational cycle, regardless of the dimension
of the matrix. This may offer a large throughput and efficiency
boost over conventional digital systems, as the data are both
stored and processed on the same resistive memory element,
which avoids the frequent data shuttling between physically sep-
aratedmemory and processing units in conventional digital hard-
ware that incurs large latency and energy consumption.[1,28,232–238]

In addition to the fully connected layer, a convolutional layer
is shown in Figure 12b, which is mostly famous for its applica-
tions in computer vision. The input such as a 2D image will be
scanned by a convolution window that is outlined by the green
box. The subarray of the input falling to the window will be mul-
tiplied element wise with a set of kernels, followed by kernel-wise
summation, which completes a stride of the convolution. As flat-
tened kernels can be concatenated as a matrix and mapped to the
conductance of a 1R or 1T1R crossbar, such a convolutional
stride again becomes a vector-matrix multiplication that can
be physically accelerated by crossbars like a fully connected layer.
Moreover, Figure 12c shows an LSTM layer, a widely used recur-
rent layer with nodes that connect to themselves via feedback
loops. Such looped connections make a recurrent layer a dynamic
system, which has an internal state, which can remember the
historic inputs, with wide applications in temporal information
processing. Here, each LSTM node consists of four gates, which
adds and removes information from its internal state at each time
step. The vector-matrix multiplication involved in LSTM can be
conveniently mapped to a 1R or 1T1R crossbar with two subar-
rays. One of the subarrays is multiplied with an external input
vector at each time step, whereas the other subarray handles

the recurrent input that depends on the output of the crossbar
at the last time point.

The associated learning of the 1R and 1T1R crossbars can be
offline, online, or a hybrid. As shown in Figure 13a, in the pro-
cess of offline learning, the parameters/weights of a neural net-
work are first learnt on an alternative computing system, such as
a digital computer, before being converted to the conductance of
1Rs or 1T1Rs and physically programmed into the crossbars. The
crossbar will then be able to work with unseen data or the infer-
ence dataset. This approach features the least frequent program-
ming of 1R or 1T1R crossbars, but it has difficulty adapting to the
hardware nonidealities, such as bad devices of the crossbar, and
is unable to undertake learning in real time. As shown in
Figure 13b, online learning refers to the process where the con-
ductance of 1R and 1T1R crossbars is updated during the course
of learning, which is considerably challenging as there are con-
current requirements on the programming linearity, precision,
energy, and speed.

The learning can also be classified according to the available
information. For example, as shown in Figure 13c, the learn-
ing can be supervised with example input�output pairs, and
the neural network will be able to learn a mapping between the
input and output. In case the input data is not labeled, as
shown in Figure 13d, the learning can be unsupervised, which
understands the internal structure of the dataset that is fre-
quently used to cluster data. Figure 13e shows the scenario
of reinforcement learning, where a learning agent interacts
with an unknown environment. The agent receives some
information about the environment (so-called state) and a
reward signal at each time point. The agent learns the strategy
to apply an action to the environment to maximize the accu-
mulated reward signal. Such learning has triumphed over
human players in games that were believed humans would
long dominate.[239,240]

Figure 13. Different types of learnings that have been implemented on 1R or 1T1R crossbars. a,b) In terms of where the neural network parameters are
optimized, the learning can be offline, as shown in (a). The optimization is done on a digital platform before converting the parameters to conductance
and crossbar programming. In contrast, the learning can be online, as shown in (b), where the crossbar conductance is updated along the course of
learning. c–e) In terms of the available information, the learning can be supervised, given the data with paired labels, and the learning aims to find out the
mapping between them. Or the learning can be unsupervised if the input data is not labeled, which discovers the structure of the data, for example, by
clustering them. Or the learning can be reinforcement, where an agent interacts with an unknown environment to find out a strategy to maximize the
accumulated reward.
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We would like to point out that different cell structures are
mainly used to mitigate the sneak-path currents in reading
and programming a single device. This may be less compatible
with the parallel programming operations required by logic-in-
memory, such as the IMPLY[241] and MAGIC[241] protocols, as
well as the parallel reading used in vector-matrix multiplica-
tions[242–244] for both machine learning and neuromorphic com-
puting. Thus, we discuss the required performance one by one as
follows for data storage applications.

ON/OFF ratio and/or Nonlinearity: The ON/OFF ratio or
current�voltage nonlinearity of selecting devices dictates the
storage capacity or the size of the memristor array.[245–249] An
ideal selecting device would possess infinite resistance when it
is unselected (e.g., biased at Vhalf-select) and zero resistance when
it is selected (e.g., biased at Vselect). In contrast, a small ON/OFF
ratio will clearly impact both read margin during reading[249] and
voltage/current delivery during programming.[247]

Retention: Threshold resistive switching selectors, such as
those based on MIT,[82,250] ovonic switching,[251] and metal-fila-
ment formation/rupture,[51] feature nonzero delay of relaxing
their conductance back to OFF states upon the cease of selecting
signals. Therefore, the retention time affects the read/write
throughput, particularly if the reading or writing is conducted
in a row-by-row or column-by-column fashion. Diode and tunnel-
ing [252] selectors ideally have zero retention, although, in reality,
the time to establish the proper bias will be dependent on the
parasitic capacitance.

Endurance: Like retention, for those selectors based on thresh-
old resistive switching, they usually exhibit finite endurance or a
number of switching cycles before the breakdown of the perma-
nent dielectric layer, which limits the lifespan of the underlying
data storage system. Record high endurance of 1012 has been
demonstrated on NbO2 MIT selectors.[253] Up to 108 cycles have
also been observed on ovonic[251] and metal-filament formation/
rupture selectors.[51] In contrast, diodes and tunneling selectors
ideally have no limit on their lifespan as no resistive switching is
needed.

6. Example of 1R Crossbars

ANNs at UCSB: The team of Professor Dimitri Strukov is among
the first in demonstrating fully connected and recurrent ANNs
using RRAM 1R crossbars, which applied to both offline and
online supervised learning in pattern classification and optimi-
zation. Alibart et al. reported the first single-layer fully connected
ANN made of TiO2�x RRAM crossbars to learn 3� 3 binary pat-
terns, via both offline and online supervised learning,[254]

whereas a larger Al2O3/TiO2�x RRAM crossbar was built by
Prezioso et al. to classify similar patterns.[242] A two-layer fully
connected network was developed by Bayat et al. to classify
4� 4 patterns with a crossbar of similar RRAMs, using offline
supervised learning. The crossbar was paired with analog-hidden
neurons to get rid of the tedious analog�digital conversions.[255]

In addition to fully connected ANNs, a restricted Boltzmann
machine, a recurrent stochastic network, has been realized on
a 20� 20 RRAM 1 R crossbar by Mahmoodi et al.[256] The key
feature is the tunable stochasticity using external noisy current
injection. As the amplitude of the injected noise can be correlated

with the “thermal fluctuation” in an Ising model, a Hopfield net-
work made of 64� 64 RRAM 1 R crossbar was used by
Mahmoodi et al. to implement stochastic simulated annealing,
chaotic simulated annealing, as well as exponential annealing,
which shows fast convergence to the global energy minimum
than the case without noise injection.[257]

ANNs at GIST: The team of Professor Byung-Geun Lee devel-
oped a RRAM 1 R crossbar made of Pr0.7Ca0.3MnO3 (PCMO)
RRAMs in collaboration with POSTECH. Using 192 PCMO cells,
Park et al. implemented a single-layer fully connected ANN to
classify electroencephalography signals via offline supervised
learning.[258]

ANNs and SNNs at UMich: Professor Wei Lu’s group devel-
oped various RRAM 1 R crossbars that have pioneered many
novel applications of ANNs and SNNs.

ANN-wise, dimensionality reduction was conducted by Choi
et al. using online unsupervised learning on a TaOx RRAM
1R crossbar for principal component analysis of the breast cancer
dataset.[259] A similar crossbar used by Jeong et al. was for the
classification of the IRIS dataset, which implemented unsuper-
vised K-means clustering through online learning.[260] In addi-
tion, Sheridan et al. creatively found sparse representations
via a locally competitive algorithm on an offline learnt dictionary
physically mapped to a 32� 32 WOx RRAM 1R crossbar.[261]

Moreover, Cai et al. developed the first integrated RRAM com-
puting system that comes with a 108� 54 RRAM 1R crossbar
array with on-chip sourcing and sensing circuitry as well as a
reduced instruction set computer (RISC) processor built on a
180 nm technology node.[3] Moreover, for optimization tasks,
Shin et al. solved a 2D spin-glass problem by mapping the cou-
pling matrix to TaOx RRAM crossbars. The total energy was min-
imized by flipping a random spin if it reduces the total energy or
was decided by a stochastic Cu-based RRAM.

In terms of SNNs, a liquid-state machine, a special SNN is
rooted on the concept of reservoir computing, which has been
demonstrated by Du et al., Moon et al., and Zhu et al., using
the short-term memory of RRAM. Such systems have revealed
their advantages in online supervised learning of temporal sequen-
ces, with applications in spoken number recognition,[262] chaotic
series prediction,[263] and neural firing pattern classification.[25]

SNNs at Southampton: The group of Professor Themis
Prodromakis creatively devised a scheme to simulate synaptic
plasticity using the switching dynamics of TiO2 RRAMs. Serb
et al. demonstrated a simple fully connected SNN with hard-
ware-encoded spike-timing-dependent plasticity (STDP) for
online unsupervised learning of pattern clustering.[264]

ANNs from Polimi: Professor Daniele Ielmini’s team imple-
mented linear and logistic regressions for the first time with
RRAM 1R crossbars. Sun et al. reported the training of both lin-
ear and logistic regressions on an RRAM 1R crossbar with feed-
back configuration, which can fast optimize the output layer of an
ANN.[265]

7. Examples of 1T1R Crossbars

ANNs and SNNs from IBM: Dr. Geffory Burr, Dr. Evangelos
Eleftheriou, Dr. Abu Sebastian, and their colleagues from
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IBM have advanced ANNs and SNNs based on PCM 1T1R
crossbars.

In terms of ANNs, Burr et al. first used 165 000 cells of a PCM
1T1R crossbar with an integrated peripheral circuit to build a
three-layer fully connected ANN, which classified the modified
national institute of standards and technology (MNIST) dataset
using online supervised learning.[266] To resolve the program-
ming linearity and symmetry challenges in online learning,
Ambrogio et al. developed a novel hardware synapse by pairing
PCM cells with three-transistor-one-capacitor structures, leading
to accurate classification of the MNIST dataset with four-layer
fully connected ANN and CIFAR-10/100 datasets with a convolu-
tional ANN.[243] Besides online learning, using a novel offline
supervised learning, including noise injection and adaptive batch
normalization, Joshi et al. classified CIFAR-10 and ImageNet
datasets with a ResNet, which makes it powerful enough to han-
dle the very challenging ImageNet with the PCM 1T1R cross-
bars.[267] In addition to fully connected and convolutional
networks, recurrent networks, such as LSTM, were used for off-
line supervised modeling of language, such as the Penn
Treebank dataset, by Tsai et al.[268] Moreover, Karunaratne
et al. reported hyperdimensional computing where one PCM
1T1R crossbar stores the high-dimensional correspondents of
low-dimensional symbols and computes n-grams using in-
memory logic, whereas the other works as an associative memory
for inverse-hamming distance, for one-shot supervised learning
of language classification.[269]

PCM 1T1R crossbars have also been used to implement SNNs.
Kim et al. reported a 256� 256 2T1R crossbar built on 90 nm
CMOS technology equipped with hardware-encoded leaky-
integrate-and-fire (LIF) neurons and STDP-capable synapses
for autoassociative memory.[270] An upgraded version, consisting
of 1.4Mb PCMs in 6T2R (a variant of 1T1R) units, was reported
by Ishii et al. using the same technology node, which physically
practiced STDP with asynchronous stochastic CMOS LIF neu-
rons and which experimentally implemented a spiking restricted
Boltzmann machine for MNIST classification.[39] In addition,
SNNs were used to detect spatiotemporal correlations by
Pantazi et al. and Sebastian et al., using either single-layer fully
connected SNN on PCM 1T1R crossbar[271] or PCM neurons in
the same crossbar,[272] respectively. In addition, Wozniak et al.
invented a spiking neural unit characterized by its internal inte-
gration dynamics, with applications in both ANNs and SNNs. A
fully connected network on PCM 1T1R crossbars paired with
such spiking neural units predicted music using online super-
vised learning.[273]

ANN from ASU: Teaming up with Tsinghua, Professor
Shimeng Yu reported a 16 Mb computing-in-memory macro that
accommodates integrated TaOx/HfOx RRAM 1T1R crossbars
and sourcing/sensing circuits using 130 nm CMOS process,
which conducted offline and online training of a fully connected
ANN for MNIST classification.[274] In addition, convolutional
kernels were simulated based on another computing-in-memory
macro developed by Professor Jae-sun Seo’s team. The chip con-
sists of a 128� 64 RRAM 1T1R crossbar with on-chip sourcing/
sensing circuitry, as reported by Yin et al, showing a large energy
efficiency in classifying the CIFAR-10 dataset with offline super-
vised learning.[275]

ANNs and SNNs from Tsinghua: Professor Huaqiang Wu,
Professor He Qian, Professor Jianshi Tang, and Professor Bin
Gao’s team explored various applications using ANNs and
SNNs based on RRAM 1T1R crossbars.

For fully connected ANNs, Yao et al. used 1T1R crossbars
made of HfAlyOx RRAMs to build a single-layer fully connected
ANN to classify the Yale face database using online supervised
learning.[276] They also teamed up with National Tsinghua in
developing a computing-in-memory RRAM macro consisting
of a 158.8 Kb 1T1R crossbar fabricated on a 130 nm process,
using TaOx analog RRAM and achieving energy efficiency of
78.4 tera operations per second per watt (TOPS/W) (1 bit
input/output) in offline supervised learning of MNIST classifica-
tion. The chip also features innovative sign-weighted 2T2R cells
that can largely mitigate the impact of parasitic wire resis-
tance.[277] Such fully connected networks, combined with
RRAM crossbar-based finite impulse response (FIR) filters,
can recognize epilepsy-related signals using offline supervised
learning.[24] Besides supervised learning, Lin et al. demonstrated
online unsupervised training of a generative adversarial network
on a 1 Kb 1T1R crossbar to generate digits that are like those of
the MNIST dataset.[278] For convolutional ANNs, the same team
also implemented supervised hybrid learning, a mixture of off-
line learning and online learning, on a LeNet-5 convolutional net-
work to classify MNIST datasets with duplicated convolutional
kernels that further speed up the convolution operation.[244]

Recurrent network wise, Zhou et al. conducted image recon-
struction with a Hopfield network implemented on a 128� 8
1T1R crossbar.[279] Probabilistic models such as Bayesian neural
networks have been realized on a 160 Kb RRAM crossbar by Lin
et al., thanks to the tunable Gaussian distributions of the read
noise of multiple RRAM cells, which classified MNIST handwrit-
ten digits.[280]

For SNNs, Li et al. experimentally developed a novel bioreal-
istic SNN chip that possesses artificial dendrites made of TaOx/
AlOδ RRAMs. These dendrites are paired with HfOx RRAM
crossbar synapses and NbOx RRAM artificial somas. The intro-
duction of the dendrite enables hierarchical processing of post-
synaptic signals in SNNs.[27] In addition, Liu et al. used RRAM
crossbars to parallelly encode the multichannel neural signals,
thanks to the nonlinear resistive switching of RRAMs to extract
amplitude and variation of inputs as the conductance changes of
RRAM 1T1R crossbars.[281]

ANNs and SNNs from HPE-UMass: Dr. John Paul Strachan
and Dr. Miao Hu from HPE, together with Professor Joshua
Yang and Professor Qiangfei Xia from UMass, have codeveloped
a 128� 64 RRAM 1T1R crossbar. The system has been used to
implement offline and online learning in ANNs and SNNs,
which explores different network topologies and types of
learning.

ANN wise, supervised and reinforcement learning have been
implemented on the fully connected networks. Hu et al.[282] and
Li et al.[283] implemented single-layer and two-layer networks to
classify MNIST datasets, using offline and online supervised
learning, respectively. In addition to supervised learning,
Wang et al. demonstrated online reinforcement learning with
three-layer fully connected networks on the same 1T1R crossbar
to solve classical control problems, including cart-pole and
mountain-car.[2] For convolutional networks, Wang et al.
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implemented a LeNet-5-like network that classified the MNIST
dataset using online supervised learning.[284] Recurrent network
wise, Li et al.[285] and Wang et al.[286] implemented LSTM and
convolutional LSTM, respectively, to classify human walking gait
extracted from the USF-NIST gait dataset and small synthetic vid-
eos, respectively. For the optimization task, Cai et al. used the
intrinsic random telegraph noise as a random signal source in
a similar RRAM 1T1R crossbar, which translates to tunable tem-
perature in simulated annealing via tuning the signal-to-noise
ratio.[286] Li et al. further downsized RRAMs to nanoscale in a
computing-in-memory macro using TSMC 180 nm technology
node.[287]

In addition to accelerating SNNs, Wang et al. developed dif-
fusive memristors that feature spontaneous filament rupture
due to minimization of interfacial energy.[13] Such devices have
been integrated with 1T1R crossbars to perform autonomous
online learning using simplified synaptic plasticity to cluster
patterns[61] and used as spiking neurons in a liquid-state machine
to classify MNIST.[288]

ANNs by Panasonic: Mochida et al. have developed two com-
puting-in-memory RRAM macros, one with 2 Mb 1T1R cross-
bars whereas the other with 4 Mb, using 180 and 40 nm
technology node, respectively. These macros classified the
MNIST dataset while revealing an energy efficiency up to 66.5
TOPS/W.[289]

SNNs from Polimi: Professor Daniele Ielmini’s group
invented a novel solution to address the stochasticity of
RRAM in reliably implementing a supervised variant of STDP
rule using RRAM 1T1Rs, as reported by Wang et al. The SNN
powered by 1T1R synapses has been applied to spatiotemporal
pattern detection and sound localization.[40]

ANNs from National Tsinghua: A series of computing-in-
memory RRAM macros have been developed by the team of
Professor Marvin Chang from National Tsinghua University
using TSMC CMOS and RRAM technology, including 1Mb
1T1R crossbars macro using a 65 nm process,[290,291] 1 Mb
1T1R crossbars macro using a 55 nm process,[292] and 2Mb
1T1R crossbars macro using a 22 nm process.[293] All the
reported macros have been experimentally benchmarked in
accelerating either fully connected ANNs or convolutional
ANNs for pattern recognition via offline supervised learning,
such as ResNet for the CIFAR-100 dataset, with a record high
energy efficiency up to 121.38 TOPS/W (1 bit input)
demonstrated.[293]

SNNs from Duke: Professor Hai Li and Professor Yiran
Chen’s team has pioneered architecture design and algorithms
for resistive memory crossbars in machine learning and neuro-
morphic computing.[294,295] Recently, with joint efforts from
National Tsinghua University, their team developed a 64 Kb
RRAMmacro based on TiN/Ti/HfO2/TiN RRAM crossbars built
on TSMC 150 nm process, as reported by Yan et al.[296] This
macro has hardware spiking LIF neurons, which lead to energy
efficiency of 16.9 TOPS/W in offline supervised learning of clas-
sifying CIFAR-10 images.

SNNs from CAS and Fudan: Professor Qi Liu, Professor
Hangbing Lv, Professor Shibing Long, Professor Dashan
Shang, Professor Ming Liu, and their colleagues have made
important contributions to RRAM mechanisms,[297] electrical
property engineering,[52,298,299] and novel material crossbars,[300]

which have also led to innovations in SNNs based on 1T1R
crossbars.

For example, Zhang et al. reported a single-layer ANN-to-SNN
conversion enabled by compact NbO2 RRAM spiking neurons,
which implemented rectified linear units (ReLUs).[301] The neu-
rons are paired with a 640� 10 RRAM 1T1R crossbar to classify
theMNIST dataset using offline supervised learning. Besides off-
line training, Zhang et al. developed a hybrid analog�digital
spiking neuron powered by Ag-RRAMs, which not only realized
LIF neural function but also enabled hardware-encoded synaptic
plasticity in a two-layer fully hardware SNN that practiced online
unsupervised learning for pattern clustering.[302] To further
explore the efficiency of SNN, Zhang et al. engineered a
NbO2-based neuron circuit with a controllable refractory period.
Then, combining such neurons with a 512� 5 RRAM 1T1R
array, they experimentally demonstrated a temporal coding
SNN with offline learning for recognizing Olivetti face patterns,
achieving energy efficiency up to 20.1 TMACS/W. In addition,
Wu et al. reported a single-layer SNN that features LixSiOy

RRAM synapses. Such synapses revealed habituation behaviors
upon identical stimulations that can actively filter synaptic
inputs. Together with Ag-based RRAM neurons, the SNN
planned the path for a robot by avoiding obstacles.[303] Also, to
make the SNN interact with the environment, the same group
demonstrated an artificial spiking afferent nerve based on a
NbO2 device for converting sensed analog signals to spiking fre-
quency processed by SNN, which paves the way to building a self-
aware SNN machine.[26]

ANNs from NJU: Professor Feng Miao and Professor Shijun
Liang’s group invented an integrated sensing�processing sys-
tem consisting of retinomorphic sensors made of WSe2/h-
BN/Al2O3 heterostructure and Pt/Ta/HfOx/Pt RRAM 1T1R
crossbars, which implement a fully connected ANN and a recur-
rent ANN for letter recognition and object tracking.[304]

ANNs from UPenn and CEA-Leti: Professor Jing Li’s team
worked together with CEA-Leti on the development of liquid sili-
con, the codename of a hybrid digital�analog processor that con-
tains HfO2 RRAM 1T1R crossbars built on the 130 nm CMOM
process. As reported by Zha et al., the processor achieved a 60.9
TOPS/W energy efficiency in conducting a binary ANN infer-
ence. It also comes up with a compilation framework that inter-
faces with high-level programming language while optimizes
hardware resources.[305]

In addition to deterministic models, the stochastic program-
ming of HfO2 crossbars has been used by Dalgaty et al. to imple-
ment Markov chain Monte Carlo, specifically the
Metropolis�Hasting algorithm. They physically sampled the
posterior distribution of a Bayesian model using the conductance
of the 1T1R crossbar, with applications in online reinforcement
learning.[305]

ANNs and SNNs from Stanford: The work of Professor Philip
Wong’s team has a long-lasting impact on the advancement of
PCM and RRAM technology, as well as their computing
applications.[306,307]

In terms of ANNs and 3D integration, Li et al. reported one-shot
learning to classify European language with high-dimensional
computing, where multiplication�addition�permutation are
experimentally carried out by four-layer 3D 1T1R crossbars.[308]

In addition, the joint efforts between Professor Subhasish
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Mitra and Professor Philip Wong led to the birth of the first 3D
nanosystem, which consists of a vertically stacked RRAM crossbar
layer, carbon nanotube transistor layers, as well as a digital logic
layer, which is of interleaved sensing, computing, and data storage
with dense connections across layers.[309] Yang et al. demonstrated
the integration of 2D molybdenum disulfide (MoS2) transistors
with RRAMs into a 1T1R memory cell, which has low fabrication
temperature and is suitable for monolithic 3D integration.[310]

They have further integrated 2D MoS2 transistors with RRAMs
into ternary content-addressable memory (TCAM) cells, which
are suitable for parallel in-memory search of massive data.[311]

Moreover, Feng et al. reported a fully printed flexible MoS2 mem-
ristive artificial synapse with femtojoule switching energy, show-
ing its potential ability of demonstrating energy-efficient artificial
neuromorphic computing,[312] and Chen et al. proposed an ideal
memristive device based on 1 T-phase MoS2 nanosheets, exhibit-
ing a unique memristive behavior due to voltage-dependent resis-
tance change.[313]

In terms of recurrent SNNs, Eryilmaz et al. reported a
Hopfield network consisting of a 10� 10 PCM 1T1R crossbar,
which implemented Hebbian plasticity for associative learning
of simple patterns.[314] In collaboration with National
Tsinghua, the team reported a computing-in-memory RRAM
macro built on the 130 nm technology node. A unique feature
of this macro, as reported by Wan et al., is that there are
16� 16 subcores, where each subcore possesses a 16� 16
1T1R crossbar and an associated CMOS LIF neuron, on a recon-
figurable communication fabric allowing flexible dataflow. It
demonstrated an energy efficiency of 74 TMACS/W in
implementing a restricted Boltzmann machine for image
reconstruction.[315]

ANNs and SNNs from PKU: Professor Yuchao Yang and
Professor Ru Huang’s team and Professor Jinfeng Kang’s team
have not only advanced the resistive switching mecha-
nisms[316,317] and materials,[317,318] but also ANNs and SNNs
made of RRAM crossbars.

For fully connected ANNs, Jiang et al. reported a single-layer
network that interfaces with a digital camera through an FPGA
for offline supervised learning to recognize printed digits.[320] In
addition, Zhou et al. developed a 1 Kb TaOx/HfOx RRAM cross-
bar using a 130 nm technology node, which can implement
online supervised training of a binary multilayer fully connected
ANN for MNIST recognition.[321] A new scheme of this binary
network is its capability to mitigate the RRAM stochasticity in
encoding weights, where the weights are determined by the com-
parison of conductance between a pair of 1T1R cells. The same
crossbar has been applied to convolutional ANNs, as reported by
Zhang et al., using a digital propagation module in addition to
the RRAM crossbars and extra circuit-level techniques to mitigate
the RRAM stochasticity.[322] For recurrent ANNs, Yang et al.
devised a novel Hopfield network to conduct chaotic simulated
annealing. The network is mapped to Ta/TaOx/Pt RRAM cross-
bars. A unique feature is that the diagonal RRAMs were pro-
grammed along the course of optimization and the nonlinear
conductance evolution would enlarge the probability of finding
global optimum, while achieving fast convergence, with applica-
tions in problems like Max-cut.[323]

In addition to ANN, Duan et al. reported a fully RRAM-based
SNN, consisting of NbOx-based RRAM neurons with unique

spatiotemporal integration capability and neural gain, which
leads to online supervised learning of simple pattern classifica-
tion and coincide detection.[324]

8. Conclusions and Perspective

Memristive device represents a promising solution for next-
generation SCM due to its simple device structure, excellent scal-
ability, fast programming, large program/erase endurance, long
retention, and good compatibility with CMOS process. To
address the sneak-path current issue, different unit cell designs
including 1S1R, 1T1R, 1D1R, 1BJT1R, CRS, SRC, and SSC have
been systematically surveyed. Each unit cell design has its own
ceiling and cannot simultaneously offer all aforementioned mer-
its of resistive memory at the same time. For example, 1T1R and
1BJT1R lose the advantage of high-density crossbar arrays
because of the additional space required for the transistor and
complicated high-temperature fabrication processes. CRS inevi-
tably results in a destructive reading issue. 1D1R and SRC can
only be paired with the unipolar memories in most cases, limit-
ing their applications. 1S1R needs further optimization of non-
linearity, on/off ratio, etc. Therefore, the search for novel
material systems, device structures, and electrical operation
schemes to completely unleash the potential of resistive switch-
ing memory would be of ultimate importance for high-density
storage memories.

On the one hand, the same set of electrical properties of
memristors are critical for in-memory machine learning and
neuromorphic computing, which has the potential to solve
the von-Neumann bottleneck and the scaling issue of transis-
tors. 1Rs or 1T1Rs have been used as building blocks to physi-
cally implement hardware ANNs and SNNs. 1R crossbar arrays
possess better scalability compared with 1T1R crossbar arrays,
although the programming is usually more expensive in terms
of time and energy due to the presence of sneak-path currents.
In contrast, transistors in 1T1R crossbar arrays can impose cur-
rent compliance, which benefits the forming process and ana-
log programming of resistive switches, improving the array
yield. Moreover, transistors together with memristors have
implemented complicated synaptic plasticity on a large scale.
These advantages have lead to the flourish of 1T1R crossbar
array-based computing.

However, the high energy consumption due to the high
current, larger-than-expected cell size due to the transistors,
and device stochasticity are the main obstacles that hinder the
commercialization of this technology. To address such
issues, novel resistive switching materials such as low-
dimensional materials, new device structures for synapses
and neurons, as well as innovative circuit and algorithm
designs, are promising to be the next transformative comput-
ing technology.
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