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Abstract
Dynamic prediction methods incorporate longitudinal biomarker information
to produce updated, more accurate predictions of conditional survival proba-
bility. There are two approaches for obtaining dynamic predictions: (1) a joint
model of the longitudinal marker and survival process, and (2) an approximate
approach that specifies a model for a specific component of the joint distri-
bution. In the case of a binary marker, an illness-death model is an example
of a joint modeling approach that is unified and produces consistent predic-
tions. However, previous literature has shown that approximate approaches,
such as landmarking, with additional flexibility can have good predictive per-
formance. One such approach proposes using a Gaussian copula to model the
joint distribution of conditional continuous marker and survival distributions.
It has the advantage of specifying established, flexible models for the marginals
for which goodness-of-fit can be assessed, and has easy estimation that can be
implemented in standard software. In this article, we provide a Gaussian copula
approach for dynamic prediction to accommodate a binary marker using a con-
tinuous latent variable formulation. We compare the predictive performance of
this approach to joint modeling and landmarking using simulations and demon-
strate its use for obtaining dynamic predictions in an application to a prostate
cancer study.
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1 INTRODUCTION

Obtaining individualized patient predictions for the risk of a future event is becoming increasingly important in clin-
ical practice. Often survival models are trained using only covariate information collected at a pre-defined clinical
time point, such as diagnosis or treatment. However, it is often of interest to obtain predictions at subsequent times
and incorporate changing patient information that is collected during follow-up. Dynamic prediction methods use
longitudinally collected marker information to produce personalized risk predictions not only at baseline, but also
at future time points. There is much literature on developing methods for dynamic prediction, which differ based
on the modeling assumptions, structuring of data, and method and computational burden of estimation. The two
most common methods for dynamic prediction include joint modeling of the longitudinal and survival data,1-3 and
landmarking.4
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Joint modeling approaches for dynamic prediction involve specifying a model for the longitudinal biomarker (eg,
a linear mixed model), a model for the survival outcome (eg, Cox proportional hazards) and a method for linking the
two (eg, using shared random effects).1,2 This method provides a single, comprehensible model that models the marker
process from which we can obtain dynamic predictions for a variety of prediction times. However, it can require restric-
tive assumptions about the behavior of the marker and survival processes, and computationally intensive techniques for
estimation and prediction.

Standard landmarking involves estimating a prediction model at each prediction time point for the sample of
subjects who are still at risk at that time.5 These prediction models are traditionally Cox models, and they incor-
porate the subject’s last available longitudinal information at the prediction time using an imputation method (eg,
last-observation-carried-forward) with administrative censoring applied at the prediction window of interest. Landmark-
ing does not require assumptions about the marker distribution, is easily implementable in standard software, and does
not pose a computational burden. However, since it does not provide a comprehensive probability model, predictions are
not consistently defined over time and landmarking represents an approximate approach for dynamic prediction.6 There
are several extensions that have been proposed within the landmarking framework that improve prediction but increase
computational complexity.3,7

In Suresh et al,8 we propose an approximate approach for dynamic prediction that uses a Gaussian copula to model
the joint distribution of a continuous marker and survival time conditional on the prediction time. This method does not
constitute a joint model, but allows for predictions to be obtained for any prediction time and window, is not computa-
tionally intensive, and provides a greater level of consistency by specifying a single model for the event time distribution.
Under several scenarios, we demonstrated that the predictive performance of this method was similar or superior to
standard landmarking. This copula method can be thought of as an intermediate approach between landmarking and
joint modeling. Joint modeling specifies a stochastic process for the marker, landmarking does not make any distribu-
tional assumption about the marker, while the copula approach just specifies the marginal distribution of the marker
at each time without explicitly specifying a longitudinal process. Landmarking requires a different survival model at
each time of interest, whereas joint modeling and the copula approach each have a single model for the event time
distribution.

Much of this presented literature for dynamic prediction focuses on the situation of a continuous marker, whose
changing values over time can influence survival. However, during follow-up we may instead collect information on a
binary marker that can change during the patient’s follow-up, such as an indicator of the occurrence of an intermediate
event. In our motivating data set, patients with clinically localized prostate cancer were treated with radiation therapy.
During the patient’s follow-up, the clinician can detect metastatic clinical failure (binary marker) that can affect the
patient’s risk of mortality. By incorporating this new information, clinicians can obtain a current, more accurate prediction
of a patient’s survival to make important medical decisions for the patient, such as additional/modified treatment or
increased monitoring frequency.

If the longitudinal marker is a binary variable that can only change from 0 to 1, but not from 1 to 0, then the joint
model between the longitudinal marker and the survival outcome can be described by an illness-death model.9,10 Within
the class of multi-state models, under the Markov assumption we can directly obtain the dynamic prediction probabilities
by applying the Aalen-Johansen formulas.11 However, in more realistic and complex situations, obtaining predictions
is much more difficult and may require approximation through simulation.12 In van Houwelingen and Putter,13 they
demonstrate that landmarking methodology can be used as an alternative to multi-state modeling with similar results
and easier computation of prediction probabilities.

In previous work,14 we compared the performance of the illness-death model and landmarking with a binary marker
under both Markov and semi-Markov assumptions and found that with additional components to make it more flexible,
the performance of an approximate approach, such as landmarking, was similar to that of the simple joint model. Thus,
based on the advantages provided by the Gaussian copula approach for dynamic prediction with a continuous marker,8
we explore extending this copula based approach to incorporate a longitudinal binary biomarker.

A Gaussian copula is applicable only when linking two continuous outcomes; however, we are interested in model-
ing the relationship between a binary marker and the continuous time-to-event outcome. Joint modeling strategies for
mixed outcomes using a copula approach were explored by Song et al.15 We use an extension of their model proposed by
de Leon and Wu16 for mixed polychotomous and continuous outcomes. Using a latent variable formulation of the dis-
crete outcome we transform it into a continuous one, after which we use a Gaussian copula to model the time-varying
association between the two continuous outcomes. The advantage of this copula approach is that it allows us to model
the marginal distributions of the marker data and time-to-event process and their association separately. This allows us
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to fit models for the marginals using well-known classes of models and standard goodness-of-fit techniques, and specify
a flexible association structure to capture their dependence.

In this article, we aim to extend a Gaussian copula method for dynamic prediction shown to have good predictive
performance and low computational burden to accommodate a longitudinally collected binary marker. In Section 2, we
describe the Gaussian copula method for dynamic prediction with mixed outcomes. Using a simulation study, in Section
3 we explore the predictive performance of our method. We demonstrate the use of our method for our motivating data
example of metastatic clinical failure in prostate cancer patients in Section 4. To conclude, in Section 5 we present a
discussion and future directions.

2 METHOD

Consider a survival time distribution T and a marker process Z(t), where T is a continuous outcome and Z(t) is a
time-varying marker that is expected to have an influence on the time-to-event outcome. The observed data is given by
 = {T∗

i ,Δi,Zi,Xi; i = 1, … ,n}, where for individual i, Ti is the true event time, Ci is the censoring time, T∗
i = min(Ti,Ci)

is the observed event time, Δi = 1(Ti ≤ Ci) is the censoring indicator, Xi is the baseline covariate vector, and Zi is an
ni × 1 vector observed from the individual’s marker process Zi(t), such that the jth element is given by zij = Zi(𝜏ij) for
measurement times 𝜏ij, j = 1, … ,ni.

We are interested in obtaining the dynamic prediction of survival for a new individual k from the same population for
a prediction window s, conditional on the individual’s up-to-date marker information and that the individual has survived
up to time 𝜏, which is given by

pk(𝜏, s) = Pr(Tk ≥ 𝜏 + s|Tk > 𝜏,Xk,Zk(𝜏)) (1)

where Zk(𝜏) is the history of the marker process for individual k up to time 𝜏, and can be given by the set of longitudinal
measurements collected up to time 𝜏 or, as we assume in this article, a scalar of the most recent measurement at time 𝜏,
Zk(𝜏).

Since this dynamic prediction is a conditional survival probability that conditions on surviving up to time 𝜏 and the
marker measurement at time 𝜏, we can instead write it as

pk(𝜏, s|Xk,Zk(𝜏) = z) = Pr(Tk ≥ 𝜏 + s,Zk(𝜏) = z|Tk > 𝜏,Xk)
Pr(Zk(𝜏) = z|Tk > 𝜏,Xk)

=
Pr(T𝜏k ≥ 𝜏 + s,Z𝜏k = z|Xk)

Pr(Z𝜏k = z|Xk)

where we define T𝜏 = T|T > 𝜏 as the conditional survival time distribution and Z𝜏 = Z(𝜏)|T > 𝜏 as the cross-sectional
marker data at time 𝜏. The subscript 𝜏 denotes conditioning on T > 𝜏. Details for this derivation are given in Supple-
mentary Material A. We assume T𝜏i ∼ FT𝜏

and Z𝜏i ∼ FZ𝜏
for individual i. FT𝜏

, and FZ𝜏
are the marginal distributions for

the time-to-event outcome and the binary marker data, respectively, conditional on being alive at time 𝜏. Both of these
marginals can be conditional on baseline covariates X, which shall be omitted from model specification for brevity.
The dynamic prediction is then given by p(𝜏, s) = FT𝜏 ,Z𝜏

(𝜏 + s, 𝜏)∕FZ𝜏
(𝜏), and we can compute this probability from the

marginal distribution FZ𝜏
and the joint distribution FT𝜏 ,Z𝜏

. In a joint model, we would specify the full joint distribution
of Z and T, and derive the conditional distributions of interest for our prediction. We propose an alternative approxi-
mate approach in which we specify marginal distributions for FZ𝜏

and FT𝜏
and use a Gaussian copula to give the joint

distribution of T𝜏i and Z𝜏i , from which p(𝜏, s) can be obtained.

2.1 Mixed bivariate copula model and dynamic prediction

Consider our specific situation where the marker process Z(t) is a discrete outcome that can take on only two values at
each time 𝜏, that is, Z(𝜏) = 0 or 1. Thus, T𝜏 is continuous and Z𝜏 is discrete. By Sklar’s theorem,17 a copula is unique if and
only if its components are continuous random variables. Thus, we introduce Z∗ ∼ FZ∗ , to be an unobserved continuous
latent process underlying the discrete marker process Z.16 The observed Z is related to Z∗ through

Z(𝜏) =

{
0, if Z∗(𝜏) ∈ (−∞, 0)
1, if Z∗(𝜏) ∈ [0,∞)
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We denote FZ∗
𝜏

as the distribution of Z∗
𝜏 = Z∗(𝜏)|T > 𝜏, that is, the cross-sectional distribution of Z∗ at 𝜏 conditional on

surviving up to time 𝜏. The joint distribution at 𝜏, FT𝜏 ,Z∗
𝜏
, is then defined by a Gaussian copula as

FT𝜏 ,Z∗
𝜏
(t, z) = Φ2

(
Φ−1 {FT𝜏

(t)
}
,Φ−1 {FZ∗

𝜏
(z)

}
; 𝜌𝜏

)
(2)

where Φ is the standard normal distribution, Φ2 is the standard bivariate normal distribution, and 𝜌𝜏 = 𝜌(𝜏) is the corre-
lation, which is specified as a smooth function of 𝜏 and baseline covariates X. In this formulation, the marginals FT𝜏

and
FZ∗

𝜏
are absolutely continuous distributions.
The dynamic prediction of interest at time 𝜏 for surviving the prediction window s can then be derived from

Equation (2), the details for which are given in Supplementary Material A. We present separate dynamic prediction
formulas conditioning on Z(𝜏) = 0 and Z(𝜏) = 1, respectively. In our latent variable formulation, this is equivalent to
conditioning on Z∗(𝜏) < 0, and Z∗(𝜏) ≥ 0, and are given as

Pr(T ≥ 𝜏 + s|T > 𝜏,Z(𝜏) = 0) = Pr(T ≥ 𝜏 + s|T > 𝜏,Z∗(𝜏) < 0)

=
FZ∗

𝜏
(0) − FT𝜏 ,Z∗

𝜏
(𝜏 + s, 0)

FZ∗
𝜏
(0)

(3)

Pr(T ≥ 𝜏 + s|T > 𝜏,Z(𝜏) = 1) = Pr(T ≥ 𝜏 + s|T > 𝜏,Z∗(𝜏) ≥ 0)

=
[1 − FZ∗

𝜏
(0)] − FT𝜏

(𝜏 + s) + FT𝜏 ,Z∗
𝜏
(𝜏 + s, 0)

1 − FZ∗
𝜏
(0)

(4)

2.2 Copula components

The components of the copula are specified using flexible, but possibly misspecified, models that aim to provide a good
approximation to the true distributions. We select marginal models from well-established survival and regression families
for which there are established goodness-of-fit techniques and standard software available. We specify a flexible, para-
metric form for the association function and use a Gaussian copula due to its tractable nature, allowing us to perform
easy estimation with a likelihood-based approach.

2.2.1 Modeling the binary marker data

For each time 𝜏 we specify a simple, flexible model, for the distribution of the marker value where the mean is a func-
tion of time 𝜏 and baseline covariates X. We can define the latent variable model Z∗

𝜏 = 𝜇(𝜏,X, 𝜸) + 𝜖𝜏 where 𝜸 is a
vector of regression coefficients, 𝜇(𝜏,X, 𝜸) is a function of time 𝜏, baseline covariates, and regression coefficients, and
𝜖𝜏 is an error term that is independently, and identically distributed. We do not estimate parameters in the distribution
of 𝜖𝜏 due to identifiability, so the marginal parameters to be estimated for FZ∗

𝜏
are given by 𝜽1 = 𝜸. Special examples

include,

• If 𝜖𝜏 is normally distributed N(0, 𝜎2), then Z∗
𝜏 ∼ N(𝜇(𝜏,X, 𝜸), 𝜎2) and Z𝜏 is a probit model, where 𝜎2 = 1 for identifia-

bility.
• If 𝜖𝜏 has a logistic distribution, then Z𝜏 will be a standard logistic regression.
• If 𝜖𝜏 is non-standardized Student t-distributed t(0, 1, v) (mean 0, scale 1, and df v), then Z∗

𝜏 ∼ t(𝜇(𝜏,X, 𝜸), 1, v), where
we fix unit scale for identifiability.

There are a number of possible data generating models for a longitudinally measured binary marker. If the binary
variable can only change from 0 to 1 then we can describe the joint distribution of the marker and survival process
with an illness-death model. Under such an illness-death data generating process Z(t) is a binary indicator of the occur-
rence of an intermediate event prior to the terminal event, and we can write out the distribution of the marker value
at 𝜏 as
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Pr(Z(𝜏) = 0|T > 𝜏,X) = Pr(Z(𝜏) = 0,T > 𝜏|X)
Pr(T > 𝜏|X)

= e−∫
𝜏

0 𝜆01(u|X)+𝜆02(u|X) du

e−∫
𝜏

0 𝜆01(u|X)+𝜆02(u|X) du + ∫ 𝜏

0 e−∫
v

0 𝜆01(u|X)+𝜆02(u|X) du𝜆01(v|X)e−∫
𝜏

v 𝜆12(u|X) du dv

Pr(Z(𝜏) = 1|T > 𝜏,X) = 1 − Pr(Z(𝜏) = 0|T > 𝜏,X)

where 𝜆ij(t|X) represents the hazard of transitioning from state i to state j (0: Healthy, 1: Ill, 2: Dead), with
transition-specific baseline covariate effects. The details of these derivations are given in Supplementary Material A.
Notice that the form of this marginal distribution of Z(𝜏) as a function of X does not correspond to a known distribu-
tion. If the true joint distribution between the marker and the survival process are more complex, we can expect that this
would also be the case. If the binary variable can change from both 0 to 1 and from 1 to 0, then a possible longitudinal
model is a generalized linear mixed model, such as logit(Pr(Zi(𝜏) = 1)) = ai + bi𝜏 + 𝛽f (Xi, 𝜏), where ai and bi are random
effects. Combining this model with a model for the hazard of the event it is feasible to calculate the marginal distribution
Pr(Z(𝜏) = 1|T > 𝜏,X), but it will also have a complicated functional form as a function of 𝜏 and X. Thus, the alternative
we described above, using the flexible latent variable model is a misspecified model for the observed marker data that can
serve as a good approximation of the true distribution of Z(𝜏) at each 𝜏 but allows for easy estimation in standard software.

2.2.2 Modeling the failure time data

We model the time-to-event outcome T using a semiparametric (Cox) or parametric survival model, and consider addi-
tional flexibility by allowing for non-proportional hazards or time-varying effects. Thus, we specify the hazard as h(t) =
h0(t) exp{d(t,X, 𝝂)}, where t is time from baseline, h0(t) is the baseline hazard, 𝝂 is a vector of regression coefficients,
and d(t,X, 𝝂) is a function of baseline covariates, regression coefficients and possibly time to allow for non-proportional
hazards and time-varying covariate effects. We note that this model does not include Z. The marginal distribution for
the failure time data is then FT(t) = 1 − exp{−∫ t

0 h(u) du}. We compute the conditional survival from this model as
FT𝜏

(t) = [FT(t) − FT(𝜏)]∕[1 − FT(𝜏)]. Thus, we use a unified single survival model from which we derive the conditional
survival distribution at each time 𝜏. The parameters to be estimated are 𝜽2 = {𝝂,H0(t)}, where H0(t) = ∫ t

0 h0(u) du is the
cumulative baseline hazard.

2.2.3 Modeling the association

Once the marginal models for T𝜏 and Z∗
𝜏 are specified, we use the Gaussian copula in Equation (2) to describe the joint

distribution between the marker value at 𝜏 and failure time process, conditional on surviving up to time 𝜏. The correlation
between the marginals is described by the association function 𝜌𝜏 , which by definition of the Gaussian copula is restricted
to the range (−1, 1). Thus, we reparametrize using Fisher’s z-transformation to define 𝜌𝜏 = [exp(2𝜂𝜏) − 1]∕[exp(2𝜂𝜏) +
1], where we specify 𝜂𝜏 = 𝜂(𝜏,X,𝜽𝜌) as a function of time 𝜏, baseline covariates X, and association parameters 𝜽𝜌. The
association function 𝜌𝜏 provides us with information about the magnitude and direction of the correlation between the
cross-sectional marker value and the failure time process conditional on being at risk, and whether that relationship
changes with time 𝜏 or baseline covariates.

2.3 Estimation

Let  be the observed data as defined above. Let 𝜽 be the parameter vector containing the respective marginal parameters
𝜽1 and 𝜽2 of FT𝜏

and FZ∗
𝜏
, and the association parameters 𝜽𝜌. We aim to model the association between the marker and

time-to-event processes but consider the correlation due to repeated measurements on the same individual a nuisance.
Thus, we assume working independence between measurements taken on each individual at each time and construct a
pseudo-likelihood given by

PL(𝜽) =
n∏

i=1

ni∏
j=1

Pr (T𝜏ij = ti,Z𝜏ij = 0;𝜽)1(Z(𝜏ij)=0)Δi ⋅ Pr (T𝜏ij ≥ ti,Z𝜏ij = 0;𝜽)1(Z(𝜏ij)=0)(1−Δi)

⋅ Pr (T𝜏ij = ti,Z𝜏ij = 1;𝜽)1(Z(𝜏ij)=1)Δi ⋅ Pr (T𝜏ij ≥ ti,Z𝜏ij = 1;𝜽)1(Z(𝜏ij)=1)(1−Δi)
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=
n∏

i=1

ni∏
j=1

Pr (T𝜏ij = ti,Z∗
𝜏ij
< 0;𝜽)1(Z∗(𝜏ij)<0)Δi ⋅ Pr (T𝜏ij ≥ ti,Z∗

𝜏ij
< 0;𝜽)1(Z∗(𝜏ij)<0)(1−Δi)

Pr (T𝜏ij = ti,Z∗
𝜏ij
≥ 0;𝜽)1(Z∗(𝜏ij)≥0)Δi ⋅ Pr (T𝜏ij ≥ ti,Z∗

𝜏ij
≥ 0;𝜽)1(Z∗(𝜏ij)≥0)(1−Δi) (5)

where the likelihood contribution is given by one of the following for an individual at measurement time 𝜏 who:

• Has the event at time t and Z(𝜏) = 0

Pr(T𝜏 = t,Z∗
𝜏 < 0;𝜽) = 𝜕

𝜕t
FT𝜏 ,Z∗

𝜏
(t, 0;𝜽) = Φ2

(
q2(0;𝜽2) − 𝜌𝜏(𝜽𝜌)q1(t;𝜽1)√

1 − 𝜌𝜏(𝜽𝜌)2

)
fT𝜏

(t;𝜽1)

• Is alive or censored at time t and Z(𝜏) = 0

Pr(T𝜏 ≥ t,Z∗
𝜏 < 0;𝜽) = FZ∗

𝜏
(0;𝜽2) − FT𝜏 ,Z∗

𝜏
(t, 0;𝜽)

• Has the event at time t and Z(𝜏) = 1

Pr(T𝜏 = t,Z∗
𝜏 ≥ 0;𝜽) = 𝜕

𝜕t
[FT𝜏

(t;𝜽1) − FT𝜏 ,Z∗
𝜏
(t, 0;𝜽)] = Φ2

⎛⎜⎜⎜⎝−
q2(0;𝜽2) − 𝜌𝜏(𝜽𝜌)q1(t;𝜽1)√

1 − 𝜌2
𝜏(𝜽𝜌)

⎞⎟⎟⎟⎠ fT𝜏
(t;𝜽1)

• Is alive or censored at time t and Z(𝜏) = 1

Pr(T𝜏 ≥ t,Z∗
𝜏 ≥ 0;𝜽) = [1 − FZ∗

𝜏
(0;𝜽2)] − FT𝜏

(t;𝜽1) + FT𝜏 ,Z∗
𝜏
(t, 0;𝜽)

where q1(t;𝜽1) = Φ−1(FT𝜏
(t;𝜽1)) and q2(z;𝜽2) = Φ−1(FZ∗

𝜏
(z;𝜽2)).

Direct maximization of this pseudo-likelihood can be computationally intensive due to the potentially large number
of parameters to be estimated and complexity of the chosen marginal models. Thus, we conduct estimation using the
inference functions for margins (IFM) method.18 First, the parameters �̃�1 and �̃�2 are estimated from their respective
marginal models. Second, these estimates are held fixed in the pseudo-likelihood given by Equation (5), PL(�̃�1, �̃�2,𝜽𝜌),
which is maximized over 𝜽𝜌 to get �̃�𝜌. The IFM estimate is then �̃� = (�̃�1, �̃�2, �̃�𝜌), and the dynamic predictions of interest
can be computed as Pr(T ≥ 𝜏 + s|T > 𝜏,Z(𝜏) = z; �̃�) for z = 0, 1 from Equations (3) and (4), respectively.

The standard errors for the marginal survival model parameters can be obtained using standard methods used for a Cox
or parametric survival model.19 The marginal marker model is estimated using repeated measurements from each indi-
vidual, thus robust standard errors can be computed using a sandwich estimator.20 Due to the use of a two-stage method
for estimation, the analytic standard errors for the association parameters must account for the estimation variability of
the marginal model parameters. Two-stage variance estimation for parametric and semiparametric copula models are pre-
sented in existing literature, but can result in complex expressions for flexible specifications of the marginal models.18,21-23

Thus, a resampling scheme, such as jackknife18 or bootstrapping,24 will be used to compute the standard errors of the
association parameters.

3 SIMULATION STUDY

We use a simulation study to assess the predictive performance of the proposed method and compare it to the existing
dynamic prediction methods of joint modeling and landmarking. We focus on the situation where the binary marker
starts at 0, and can change to 1, but changes from 1 to 0 are not possible.

3.1 Performance comparison metrics

We compute the dynamic predictions at a sequence of prediction times 𝜏 for the probability of experiencing the event
in the interval (𝜏, 𝜏 + s], given by pi(𝜏, s) = 1 − pi(𝜏, s), where pi(𝜏, s) is the dynamic prediction given in Equation (1).
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We compare the dynamic predictions to the true conditional death probabilities, which are computed using the true
parameter values to get the transition intensities that are then numerically integrated over the prediction window
[𝜏, 𝜏 + s).14 At each prediction time 𝜏, we compute the bias and variance of the dynamic predictions conditional on the
marker value, that is, Z(𝜏) = 0 or Z(𝜏) = 1. We evaluate calibration using the root mean squared prediction error (RMSE)
between the true conditional death probabilities, pTrue, and the predictions obtained from each of the different models,
pModel, conditional on the baseline covariates, given by

RMSE(𝜏, s|X) =
√

E

[(
pTrue,i(𝜏, s|X) − pModel,i(𝜏, s|X)

)2
]

We evaluate the discrimination and overall performance of the dynamic predictions using dynamic versions of area under
the curve (AUC) and Brier score (BS), which account for censoring. We denote these measures AUC(𝜏, s) and BS(𝜏, s),
and use the following definitions presented in Blanche et al25 for which inverse probability of censoring weight (IPCW)
estimators are given,

AUC(𝜏, s) = Pr(pi(𝜏, s) > pj(𝜏, s)|Di(𝜏, s) = 1,Dj(𝜏, s) = 0,Ti > 𝜏,Tj > 𝜏)

BS(𝜏, s) = E

[(
D(𝜏, s) − p(𝜏, s)

)2|T > 𝜏

]
where Di(𝜏, s) = 1(𝜏 < Ti ≤ 𝜏 + s). Since BS depends on the cumulative incidence of death in the prediction window
(𝜏, 𝜏 + s], we use a standardized R2-type measure that compares how well the predictions perform relative to predic-
tions from a null model given by the Kaplan-Meier estimate, B̂S0(𝜏, s), which does not take into account subject-specific
information. We denote this scaled measure R2(𝜏, s) = 1 − B̂S(𝜏, s)∕B̂S0(𝜏, s). The measures of AUC(𝜏, s) and BS(𝜏, s)
include all of the subjects who are alive at prediction time 𝜏. To make comparisons between models, we compute the
best-attainable AUC and R2 using the predicted probabilities from the true models. We then examine the relative mea-
sures ΔAUC = ̂AUCTrue − ̂AUCModel and ΔR2 = R2

True − R2
Model for each of the models, where values close to 0 indicate

better performance.
For each scenario, we simulate 1000 subjects. A random sample of 500 subjects are selected for the training data set

to which the models were fit. These models are then used to obtain dynamic predictions for the remaining 500 subjects
who compose the validation data set. Performance metrics are computed for these predictions, and averaged across five
hundred simulations.

3.2 Simulation setup

Using a similar scenario as in Suresh et al,14 we simulate patients from an illness-death model, which is a joint model for
a time-to-event outcome and a binary time-dependent covariate. Such data can arise when there is a intermediate event
(eg, illness) that can occur during patient follow-up prior to a terminal event (eg, death). Thus, in our defined notation, T
represents the time to the terminal event, and the marker process Z(t) indicates whether the patient has experienced the
intermediate event by time t. Defining the states as {0: Healthy, 1: Ill, 2: Dead}, the ages of illness onset and death without
illness were generated from

𝜆jk(ti|Xi) =
(
𝜌jk

𝜅jk

)(
ti

𝜅jk

)𝜌jk−1

exp{𝜶′
jkXi} for j = 0, k = 1, 2

For transition intensity from illness to death (1 → 2), we generate data under two different models: (1) Markov, where
the transition intensity depends only on current time, that is, 𝜆12(t|X), and (2) semi-Markov (“clock-reset”), where the
transition depends on duration in the illness state that is, 𝜆12(t − V |X), where V is the known transition time. The change
in the binary marker value from 0 to 1 corresponds to the healthy-to-ill transition and is determined by the hazard 𝜆01(t).
The other two transition intensities 𝜆02(t) and 𝜆12(t) represent the hazard function for death conditional on the marker
value being 0 and 1, respectively.

We choose the transition intensity shape and scale parameters such that 𝜆12(t) > 𝜆02(t) > 𝜆01(t) [𝜌jk = 1.15 for all j → k,
𝜅01 = 15; 𝜅02 = 12.5; 𝜅12 = 10], to achieve 25% of patients developing illness. We simulate a binary covariate X with preva-
lence 50%, that has a stronger effect on death in ill subjects, with 𝛼01 = 0.5, 𝛼02 = 0.5, 𝛼12 = 2. We generate right-censoring
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Scenario Model Baseline covariates Inter-inspection rate

1a Markov X 0.5

1b Markov X 1

1c Markov X Continuously observed

2a Semi-Markov X 0.5

2b Semi-Markov X 1

2c Semi-Markov X Continuously observed

3a Markov X1,X2 0.5

3b Markov X1,X2 1

3c Markov X1,X2 Continuously observed

T A B L E 1 Summary of scenarios for
simulation study

from a Uniform (0,15) distribution to achieve a 50% censoring rate. We simulate marker measurement under two patterns
of observation: (1) the marker process is continuously observed, and (2) the value of the marker is observed at random
inspection times. Inter-inspection times are exponentially distributed with rate 0.5 and 1, to simulate both frequent and
more sparsely collected marker measurements.

In addition to the basic scenario of a single baseline covariate, we also evaluated the performance of landmark models
when the baseline covariate vector varies by transition. We generate data with two binary baseline covariates X1 that has a
stronger effect on death in ill subjects [𝛼01,1 = 𝛼02,1 = 0.5, 𝛼12,1 = 2] and X2, which has no effect on death [𝛼01,2 = 1, 𝛼02,2 =
𝛼12,2 = 0]. We are interested in the dynamic prediction of failure at the prediction times 𝜏 = 0, 1, … , 5, for a prediction
window of 3 years beyond the prediction time. A summary of the scenarios that were simulated under are given in Table 1.

3.2.1 Models for dynamic prediction

In addition to the copula approach We fit Markov and semi-Markov joint models, and landmark models, as shown in
Table 2. (MM) is a Markov illness-death model with Weibull transition intensities. (MSM) accounts for the effect of the
observed transition time on the risk of death for those in the illness state. (MMCox) and (MSMCox) are their semipara-
metric counterparts. (SMM) is a parametric semi-Markov (“clock-reset”) illness-death model, where the risk of transition
to death after illness depends on the duration of time the individual has spent in the illness state. We also consider the
flexible landmark models introduced in Suresh et al,14 which can be fit to unbalanced longitudinal data. (LM3) is the
extended super landmark model and allows for non-proportional hazards. (LM4) allows the covariate effects of illness
status to be a function of both measurement time 𝜏 and residual time t − 𝜏. (LMInt3) and (LMInt4) extend these models
to include an interaction term between illness status and the baseline covariates. These interaction models were found
to have significantly improved performance over the regular landmarking models, especially when there were multiple
baseline covariates with differential effects for the different transitions.14 (LSM3) and (LSM4) are fit in the scenarios using
the semi-Markov model for generating data, and account for the dependency of transition on the observed illness time by
including it as a covariate.

To identify the functional forms of the copula models we examine goodness-of-fit statistics and perform model selec-
tion, as demonstrated in Supplementary Material B. We present the results from six flexible copula models. Failure time
data is modeled either parametrically (W: Weibull) or semiparametrically (C: Cox) and the binary marker data is modeled
using a probit regression. In (B*1), we model both the association and the mean of the continuous latent variable underly-
ing the binary marker as a function of time and the baseline covariate. In (B*2), we increase the flexibility by including an
interaction between the baseline covariate and time in the model for the mean of the latent variable. In (B*3), we consider
an interaction between the baseline covariate and time in both the model for the marker and for the association. We also
considered more flexible forms for the mean and association using splines and higher order terms, but found that the addi-
tional flexibility did not improve fit or performance. Since we simulate data from a joint model, the copula and landmark
models in all of the scenarios are misspecified models. Prediction for all three methods computes the dynamic predic-
tion probabilities conditional on the scalar marker value at the prediction time, using a last-observation-carried-forward
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T A B L E 2 Summary of models fit in the simulation study

Class Model Label

Markov 𝜆W
jk,0(t) exp{𝛼jkX} for j → k transition (MM)

Markov, V∗ 𝜆W
jk,0(t) exp{𝛼jkX + 𝛾V∗1(j = 1, k = 2)} (MSM)

Semi-Markov 𝜆W
jk,0(t − V∗1(j = 1, k = 2)) exp{𝛼jkX} (SMM)

𝜆W
jk,0(t) modeled as Weibull hazard

Markov 𝜆Cox
jk,0 (t) exp{𝛼jkX} for j → k transition (MMCox)

Markov, V∗ 𝜆Cox
jk,0 (t) exp{𝛼jkX + 𝛾V∗1(j = 1, k = 2)} (MSMCox)

𝜆Cox
jk,0 (t) modeled nonparametrically

Landmark Models h0(t) exp{𝜃(𝜏) + 𝛽0Z(𝜏) + 𝜔(t − 𝜏)Z(𝜏) + 𝛼X} (LM3)

h0(t) exp{𝜃(𝜏) + 𝛽0Z(𝜏) + 𝜔(t − 𝜏)Z(𝜏) + 𝛼1X + 𝛼2XZ(𝜏)} (LMInt3)

h0(t) exp{𝜃(𝜏) + 𝛽0Z(𝜏) + 𝜔(t − 𝜏)Z(𝜏) + 𝛾V∗Z(𝜏) + 𝛼X} (LSM3)

h0(t) exp{𝜃(𝜏) + 𝛽(𝜏)Z(𝜏) + 𝜔(t − 𝜏)Z(𝜏) + 𝛼X} (LM4)

h0(t) exp{𝜃(𝜏) + 𝛽(𝜏)Z(𝜏) + 𝜔(t − 𝜏)Z(𝜏) + 𝛼1X + 𝛼2XZ(𝜏)} (LMInt4)

h0(t) exp{𝜃(𝜏) + 𝛽(𝜏)Z(𝜏) + 𝜔(t − 𝜏)Z(𝜏) + 𝛾V∗Z(𝜏) + 𝛼X} (LSM4)

Copula models C: Gaussian copula

𝜇Z∗ = 𝛾0 + 𝛾1𝜏 + 𝛾2X

𝜂𝜏 = 𝜉0 + 𝜉1𝜏 + 𝜉2X

h(t) = h0(t) exp{𝜈X}; h0(t) modeled nonparametrically (BC1)

h(t) = h0(t) exp{𝜈X}; h0(t) modeled as Weibull hazard (BW1)

C: Gaussian copula

𝜇Z∗ = 𝛾0 + 𝛾1𝜏 + 𝛾2X + 𝛾3X𝜏

𝜂𝜏 = 𝜉0 + 𝜉1𝜏 + 𝜉2X

h(t) = h0(t) exp{𝜈X}; h0(t) modeled nonparametrically (BC2)

h(t) = h0(t) exp{𝜈X}; h0(t) modeled as Weibull hazard (BW2)

C: Gaussian copula

𝜇Z∗ = 𝛾0 + 𝛾1𝜏 + 𝛾2X

𝜂𝜏 = 𝜉0 + 𝜉1𝜏 + 𝜉2X + 𝜉3X𝜏

h(t) = h0(t) exp{𝜈X}; h0(t) modeled nonparametrically (BC3)

h(t) = h0(t) exp{𝜈X}; h0(t) modeled as Weibull hazard (BW3)

Note: V∗, observed illness time; X , baseline covariate vector; Z(t), value of binary marker at time t (0, healthy; 1, ill);
𝛽(𝜏) = 𝛽0 + 𝛽1𝜏 + 𝛽2𝜏

2; 𝜃(𝜏) = 𝜃1𝜏 + 𝜃1𝜏
2; 𝜔(s) = 𝜔1s + 𝜔2s2

imputation for inspection time scenarios. R code for estimating these models and the dynamic predictions is available at
https://github.com/ksuresh17/binarymarker-copula-dyn-pred.

3.2.2 Simulation results

We present the simulation results comparing the three methods for dynamic prediction in Supplementary Material C.
First, we simulate under a Markov assumption with a single baseline covariate, and in Figure 1 present the results from
the inspection time measurement setting (Scenario 1a). As expected, the joint model from which the data were simulated
(MM) has the best predictive performance. We find that the copula model has better RMSE for both values of the binary
baseline covariate than the misspecified Cox model with semiparametric baseline hazards (MMCox) and the landmark
models (LM3) and (LMInt3). We present the bias for X = 1,Z(𝜏) = 1 (ie, those in the illness group with baseline covariate

https://github.com/ksuresh17/binarymarker-copula-dyn-pred
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F I G U R E 1 Simulation estimates for binary marker Scenario 1a (Markov illness-death model with one baseline covariate and
inspection rate 0.5) for bias (upper-left) and variance (upper-right) for Z(𝜏) = 1,X = 1, and RMSE for X = 0 (bottom-left) and X = 1
(bottom-right) for predicted probability P(T ≤ 𝜏 + 3|T > 𝜏,Z(𝜏),X) from copula models (BC1), (BW1), joint models (MM), (MMCox) and
landmark models (LM3), (LMInt3) [Colour figure can be viewed at wileyonlinelibrary.com]

X = 1 and who have transitioned to the illness state by prediction time 𝜏), and find that as the prediction time increases
the bias for the copula model worsens. At the later time points there are very few individuals in this group (3% at LM=5),
demonstrating that the copula model does not fit the data well at later time points for groups that have sparse data at those
times. The copula model has low variance and BS relative to the other models, and comparable AUC. As the inspection
time increases (Scenario 1b, 1c), the performance of the landmark models with the interaction (LMInt*) and semipara-
metric Markov model (MMCox) improve to be on par with the copula model. The copula and other models consistently
outperform the landmark models without the interaction term.

On average, in Scenario 1a the computation time for estimation for the joint models (MM) and (MMCox) took 10.4
and 0.02 seconds, respectively. The landmark models ranged from 1.62 to 1.93 seconds, with (LM3) and (LMInt3) having
faster computation time than (LM4) and (LMInt4), but the models that included the interaction taking longer than those
without. The copula models that included simple and interaction effects in the marker process (BC1), (BW1), (BC2),
(BW2) took about 0.92 seconds, with the models that used a Weibull model for the failure time data taking slightly longer
than those that used the Cox models. The copula models (BC3) and (BW3) that included an interaction in the association
function took longer at 1.87 and 1.93 seconds, respectively. These relationships were consistent across the other simulation
scenarios as well and are summarized in Supplementary Material Table C1.

The performance of the copula model fit with a semiparametric Cox model for the marginal survival time distribution
(BC*) has higher RMSE than the parametric version (BW*) but performs similarly or slightly better for the other perfor-
mance metrics. Comparing the copula models, the models that include additional flexibility in the model for the mean
of the latent variable (B*2) and in the association function (B*3) have almost identical performance to that of the simpler
models (B*1). These relationships between the copula models holds across all of the simulation scenarios.

For the semi-Markov simulation setting, we compare the copula model with landmark models and joint models that
condition on the observed transition to illness. We present the results for the inspection time measurement setting in
Figure 2 (Scenario 2a). We find that the copula model has better performance than the landmark models and the semi-
parametric semi-Markov model (MSMCox). It has low variance and Brier score and has an AUC comparable with that
of (SMM). As the inspection time increases (Scenario 2b, 2c), the performance of (MSMCox) improves, but the copula
model still outperforms the landmark models across all the metrics.

Finally, we generate data under a Markov model with two baseline covariates that have differing effects for the different
transitions. From Figure 3, in the setting with inspection time measurement (Scenario 3a) we see that the copula model
has low variance and Brier score compared to the landmark models, and comparable RMSE to the landmark model with
the interaction and the semiparametric Markov model. We present bias for the group X1 = 1,X2 = 1,Z(𝜏) = 1, and find

http://wileyonlinelibrary.com
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F I G U R E 2 Simulation estimates for binary marker Scenario 2a (semi-Markov illness-death model with one baseline covariate and
inspection rate 0.5) for bias (upper-left) and variance (upper-right) for Z(𝜏) = 1,X = 1, and RMSE for X = 0 (bottom-left) and X = 1
(bottom-right) for predicted probability P(T ≤ 𝜏 + 3|T > 𝜏,Z(𝜏),X) from copula models (BC1), (BW1), joint models (MSM), (MSMCox),
(SMM), and landmark models (LSM3), (LSM4) [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 3 Simulation
estimates for binary marker
Scenario 3a (Markov
illness-death model with two
baseline covariates and
inspection rate 0.5) for bias and
variance for
Z(𝜏) = 1,X1 = 1,X2 = 1, and
RMSE for predicted probability
P(T ≤ 𝜏 + 3|T > 𝜏,Z(𝜏),X) from
copula models (BC1), (BW1),
joint models (MM), (MMCox)
and landmark models (LM3),
(LMInt3) [Colour figure can be
viewed at
wileyonlinelibrary.com]
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that for the copula model the bias increases with prediction time. Again, we find that this is associated with few people
being in that group at later times, preventing the copula from estimating the marginal distributions well at those times.

Overall, the copula model has good predictive performance across all the metrics, performing better than landmark
models and misspecified Markov models with less frequent inspection times, and on par with other models with a
continuously observed binary marker. The copula model consistently outperforms the landmark model without the inter-
action term, indicating that it has better predictive performance than the standard landmark models that do not include
additional flexibility. The bias for the copula model can be high for groups at times where there is little data observed;
however, from RMSE we see that overall performance of the copula model is better or comparable to the flexible land-
mark and misspecified Markov models. In comparing the copula models, as in the continuous marker situation, we find
that changes in the association structure result in similar predictive performance.8 This suggests that with well-chosen
models for the marginal latent marker and failure time distributions, flexible association functions can be specified.

4 APPLICATION: PROSTATE CANCER STUDY

Returning to the prostate cancer study in Suresh et al,14 we demonstrate and assess the use of the copula model for
obtaining dynamic predictions using a binary marker. The data consists of 745 patients with clinically localized prostate
cancer who were treated with radiation therapy. Patients were followed from start of treatment (baseline) and monitored
for the occurrence of metastatic clinical failure (CF), treated as a time-dependent binary covariate. The aim is to use the
intermediate CF information to predict a patient’s future risk of death. The median follow-up time was 9 years, and 52
patients experienced CF during the study. Out of 188 total deaths, 154 patients died before and 34 died after experiencing
clinical failure. The pretreatment prognostic factors measured at baseline are continuous age (median 69; IQR 63-74),
log(PSA + 1) (PSA ng/ml; median 8; IQR 5-12), and Gleason score with 7=“3+4” and 7.5=“4+3” (median 7; IQR 6-7.5),
and categorical prostate cancer stage (T1: 57%, T2-T3: 43%), and number of comorbidities (0: 55%, 1-2: 37%, ≥3: 8%). We
are interested predicting the probability of death within 5 years at prediction times 𝜏 = 0, 1, … , 8 years following start of
treatment.

After performing model selection and assessing goodness-of-fit, we fit the following Gaussian copula model: h(t) =
h0(t) exp{𝝂X}, 𝜇Z∗ = 𝛾0 + 𝜸1X +

∑3
k=1𝛾2kBk(𝜏), 𝜂𝜏 = 𝜉0 + 𝝃1X +

∑3
i=1Bk(𝜏, 𝝃2), where X is a vector of the baseline covari-

ates, Bk is a B-spline for a natural cubic spline with boundary knots at 0 and 10 years. We consider failure time models
where h0(t) is modeled nonparametrically (CopCox) and parametrically with a Weibull baseline hazard (CopWeib), and
model the binary marker data using a probit regression. We evaluate the fit of the Cox model to the failure time data, and
find that there is no violation of the proportional hazards assumption for any of the baseline covariates. We assess the
fit of the probit model to the binary marker and identify that no covariate transformation is required. The model for the
association parameter function was chosen to be a flexible function of measurement time and baseline covariates. Details
for assessing goodness of fit are given in Supplementary Material D.

The parameter estimates for the components of the copula model are given in Table 3. Robust standard errors were
computed for the marginal marker model coefficient estimates, and standard errors for the association parameters were
computed using bootstrapping. Additionally, we fit joint and landmark models explored in our simulation study, and
present results from the parametric and semiparametric joint models (MM) and (MMCox), and the extended super
landmark models (LM4, LMInt4). The parameter estimates for these models are given in Supplementary Material D.

For the marginal model for time to death, increased age, PSA, Gleason score, and number of comorbidities are sig-
nificantly associated with increased risk of death. From the marginal model for the binary marker data, increased age,
Gleason score, and Stage T2-T3 were associated with increased probability of developing CF. These relationships were
also observed in the joint models. Unlike the copula model, the landmark models are not able to evaluate the effect of the
baseline covariates on the risk of CF. The bootstrapped association parameter standard errors are large due to the incor-
poration of the estimation uncertainty of the first-stage parameters. But negative association parameter estimates suggest
that increasing Gleason score and Stage T2-T3 result in more negative association between the latent variable underlying
CF and time to death, indicating that patients with those characteristics have high negative association between CF and
death (ie, decreased time to death). Similarly, the positive coefficient for having 1-2 comorbidities compared to 0 comor-
bidities indicates positive association between CF and time to death, and thus decreased risk of death. This relationship
was also demonstrated in the landmark models with interactions.

In Figure 4, we present the predicted probabilities for two individuals in the data set from the copula, landmark, and
joint models. Individual A is at increased risk of death due to risk factors (older, increased PSA, high Gleason score), but
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T A B L E 3 Coefficient
estimates and standard errors
for copula model applied to
prostate cancer data with
binary marker of metastatic
clinical failure

CopCox CopWeib

Covariate Coef. SE Coef. SE

𝝂 Age 0.073 0.012 0.071 0.012

log(PSA+1) 0.263 0.110 0.261 0.110

Gleason Score 0.311 0.084 0.283 0.082

Stage T2-T3 0.043 0.158 0.114 0.156

Comorbidities 1-2 0.472 0.163 0.468 0.162

Comorbidities ≥ 3 1.228 0.217 1.204 0.216

𝜸 Intercept −6.152 1.074 Same parameter estimates and SEs as CopCox

Age 0.002 0.012

log(PSA+1) 0.267 0.075

Gleason Score 0.220 0.109

Stage T2-T3 0.245 0.175

Comorbidities 1-2 0.096 0.188

Comorbidities ≥ 3 −0.120 0.280

B1 2.523 0.553

B2 1.416 0.371

B3 1.713 0.323

𝝃 Intercept −0.498 2.332 −0.283 2.069

Age 0.005 0.016 0.007 0.015

log(PSA+1) 0.024 0.228 −0.020 0.192

Gleason Score −0.151 0.191 −0.147 0.171

Stage T2-T3 −0.314 0.396 −0.285 0.384

Comorbidities 1-2 0.230 0.312 0.225 0.284

Comorbidities ≥ 3 −0.117 0.402 −0.006 0.311

B1 1.789 2.219 1.105 1.871

B2 0.050 0.888 −0.079 0.765

B3 1.207 1.266 0.825 1.059
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F I G U R E 4 Predicted probability of death within 5 years, P(T ≤ 𝜏 + 5|T > 𝜏,Z(𝜏),X) for two individuals in the prostate cancer data set
for landmark, joint, and copula models. Individual A (left) is 75 years old at baseline, with PSA 29.9 ng/mL, Gleason score 9, T2 Stage, 2
comorbidities, and does not experience clinical failure but dies 9 years from baseline. Individual B (right) is 67 years old at baseline, with PSA
12.6 ng/mL, Gleason score 8, T1 Stage, zero comorbidities, and experiences clinical failure 5.8 years after start of treatment before dying at
time 6.7 years from baseline. Black dashed line indicates time of death [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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F I G U R E 5 Association functions from (CopCox) for
Individual A (solid) and Individual B (dashed) from the prostate
cancer data set

does not experience clinical failure before death. Individual B is a lower risk patient, but has some baseline characteristics
(increased PSA, high Gleason score) that indicate increased probability of CF, and that greatly increase his risk of death
after experiencing clinical failure. In the probability plots, the predictions from the copula models are very similar to
the joint models, (MM) and (MMCox), and the landmark model with the interaction (LMInt4). Unlike the landmark
model without the interaction (LM4), the copula model is able to take into account the differential effects of the baseline
covariates on the different transitions, which is demonstrated by the large increase in predicted probability of death after
CF for Individual B. There is no difference in the predicted probabilities for (CopCox) and (CopWeib) for Individual A, but
we see that the predictions from (CopWeib) are lower than (CopCox) in Individual B after they experience CF. In Figure 5,
we present the association functions for the two individuals. As prediction time increases the association between time
to death and CF is negative but is increasing and approaches zero, thus indicating that as time from treatment increases
the predicted probability of death relies less on an individual’s CF status. This is also demonstrated in the effect of the
interaction between CF and measurement time in the landmark models where as the prediction time increases the effect
of CF on the risk of death decreases.

5 DISCUSSION

Dynamic prediction methods that incorporate the effect of a patient’s changing longitudinal information into their sur-
vival prediction are necessary for making informed, and personalized treatment decisions. Existing methods for dynamic
prediction are often focused on incorporating continuous marker information; however, often binary indicators that iden-
tify the occurrence of an intermediate event can be collected during follow-up. We propose a Gaussian copula approach
for dynamic prediction of survival that incorporates binary time-dependent information collected during follow-up.

The Gaussian copula approach for dynamic prediction has been shown in previous work to have good predictive
performance in the continuous marker setting.8 By separately modeling the marginal marker and survival data and their
association, it has the advantage of allowing us to assess goodness-of-fit and perform variable selection to minimize bias
at the marginal model stage. Unlike landmarking, it does not require fixing the prediction horizon and the prediction
times of interest for estimation. In comparison to more complex joint models, estimation can be performed using standard
software, and the dynamic predictions of interest are easily derived.

Since the Gaussian copula is only applicable for modeling the joint distribution of two continuous outcomes, using a
latent variable formulation we extend its use for the binary marker setting. We demonstrate that its predictive performance
is on par with those of joint modeling and landmarking under various scenarios, and show its use for obtaining dynamic
predictions in a data application. This approach provides us with an alternative method for dynamic prediction when
incorporating a time-dependent binary covariate, with advantages over the existing methods of landmarking and joint
modeling.

A limitation of the Gaussian copula approach is that since it models the joint distribution of the marker and survival
conditional on surviving to the prediction time, it relies on the availability of data at those prediction times. In the binary
marker simulations, we demonstrate that as the number of people in a particular group decreases over time (due to death
or censoring), the bias of the predictions for that group increases. In addition, the large standard errors in the association
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function, resulting from the two-stage estimation approach, make it difficult to perform variable selection for identifying
the optimal association function specification. With this approach we have to specify a functional form for the marker,
the survival, and their association based on covariates. However, from the simulation study we find that the predictive
performance of the copula is similar when comparing flexible functions for these components.

Using a copula framework provides the potential for several extensions to more complicated data structures. In this
article, we mainly consider a single binary time-dependent variable that can transition from 0 to 1 during a patient’s
follow-up. The use of the copula to describe the distribution of the latent marker value over time suggests an easy extension
to more complex data structures, such as when the patient’s binary marker can transition from 0 to 1 and back multiple
times. We can then also include as a covariate the number of reversals a patient has experienced by a particular prediction
time in the models for the conditional marker and/or residual time distributions to account for increased risk of the binary
marker and/or death. Additional summary variables of the binary marker up to the prediction time, such as time spent
in the illness state, can also be similarly included in the different components of the model.

Dynamic predictions are usually implemented in longitudinal studies where dropout is a common complication. This
dropout may be random or it may be associated with the longitudinal variable (making it missing at random, MAR)
or there may be a form of dependent censoring in which the dropout is related to the event (making it missing not at
random, MNAR). If the data set does have this feature then an interesting question is how well the three approaches
will behave under these type of dropout scenarios. We speculate that all three approaches would work under completely
random dropout. In previous work,8 we have demonstrated that a copula approach for dynamic prediction has similar
performance to joint modeling when missingness of the longitudinal marker is dependent on observed variables. Under
MAR we would expect the joint modeling approach to continue to work well because it is based on a likelihood from a
unified model. Whether and by how much the performance of the copula and landmarking approaches will deteriorate
under MAR will likely depend on the exact scenario. All approaches are likely to behave less well if the dropout is MNAR.

The copula formulation also allows us to extend from a bivariate copula to a multivariate copula to accommodate
multiple longitudinal markers. By adapting the Gaussian copula approach for dynamic prediction to a binary marker
setting, we can use a multivariate copula to incorporate both the effect of binary and continuous markers into updating a
patient’s prediction. We can model the various markers using appropriate marginal distributions based on their specific
data types, and separately describe their association with the failure time using the copula. This approach would replace
the association function with an association matrix, which would also allow us to account for the correlation between the
multiple longitudinal markers. Although, care should be taken to propose parsimonious models for the marginals and
the association functions to avoid exponentially increasing the number of parameters to estimate.

With this work we have demonstrated that an approximate approach that models only a component of the joint distri-
bution of the marker and survival process can incorporate additional flexibility to achieve good predictive performance.
In complex settings, joint models may be difficult to specify and estimate, and their predictive performance is sensitive
to misspecification. Future work will explore developing and extending approximate approaches for dynamic prediction
with complicated data structures, such as interval censoring and multiple longitudinal markers.
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