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Summary

Dynamic prediction methods incorporate longitudinal biomarker information to pro-
duce updated, more accurate predictions of conditional survival probability. There
are two approaches for obtaining dynamic predictions: (1) a joint model of the longi-
tudinal marker and survival process, and (2) an approximate approach that specifies
a model for a specific component of the joint distribution. In the case of a binary
marker, an illness-death model is an example of a joint modeling approach that is
unified and produces consistent predictions. However, previous literature has shown
that approximate approaches, such as landmarking, with additional flexibility can
have good predictive performance. One such approach proposes using a Gaussian
copula to model the joint distribution of conditional continuous marker and survival
distributions. It has the advantage of specifying established, flexible models for the
marginals for which goodness-of-fit can be assessed, and has easy estimation that can
be implemented in standard software. In this paper, we provide a Gaussian copula
approach for dynamic prediction to accommodate a binary marker using a contin-
uous latent variable formulation. We compare the predictive performance of this
approach to joint modeling and landmarking using simulations and demonstrate its
use for obtaining dynamic predictions in an application to a prostate cancer study.
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1 INTRODUCTION6

Obtaining individualized patient predictions for the risk of a future event is becoming increasingly important in clinical practice.7

Often survival models are trained using only covariate information collected at a pre-defined clinical time point, such as diag-8

nosis or treatment. However, it is often of interest to obtain predictions at subsequent times and incorporate changing patient9

information that is collected during follow-up. Dynamic prediction methods use longitudinally collected marker information to10

produce personalized risk predictions not only at baseline, but also at future time points. There is much literature on developing11

methods for dynamic prediction, which differ based on the modeling assumptions, structuring of data, and method and compu-12

tational burden of estimation. The two most common methods for dynamic prediction include joint modeling of the longitudinal13

and survival data,1,2,3 and landmarking.414

Joint modeling approaches for dynamic prediction involve specifying a model for the longitudinal biomarker (e.g., a linear15

mixed model), a model for the survival outcome (e.g., Cox proportional hazards) and a method for linking the two (e.g., using16
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shared random effects).1,2 This method provides a single, comprehensible model that models the marker process from which17

we can obtain dynamic predictions for a variety of prediction times. However, it can require restrictive assumptions about the18

behavior of the marker and survival processes, and computationally intensive techniques for estimation and prediction.19

Standard landmarking involves estimating a prediction model at each prediction time point for the sample of subjects who20

are still at risk at that time.5 These prediction models are traditionally Cox models, and they incorporate the subject’s last21

available longitudinal information at the prediction time using an imputation method (e.g., last-observation-carried-forward)22

with administrative censoring applied at the prediction window of interest. Landmarking does not require assumptions about23

the marker distribution, is easily implementable in standard software, and does not pose a computational burden. However,24

since it does not provide a comprehensive probability model, predictions are not consistently defined over time and landmarking25

represents an approximate approach for dynamic prediction.6 There are several extensions that have been proposed within the26

landmarking framework that improve prediction but increase computational complexity.3,727

In Suresh et al,8 we propose an approximate approach for dynamic prediction that uses a Gaussian copula to model the joint28

distribution of a continuous marker and survival time conditional on the prediction time. This method does not constitute a29

joint model, but allows for predictions to be obtained for any prediction time and window, is not computationally intensive, and30

provides a greater level of consistency by specifying a single model for the event time distribution. Under several scenarios,31

we demonstrated that the predictive performance of this method was similar or superior to standard landmarking. This copula32

method can be thought of as an intermediate approach between landmarking and joint modeling. Joint modeling specifies a33

stochastic process for the marker, landmarking does not make any distributional assumption about the marker, while the copula34

approach just specifies the marginal distribution of the marker at each time without explicitly specifying a longitudinal process.35

Landmarking requires a different survival model at each time of interest, whereas joint modeling and the copula approach each36

have a single model for the event time distribution.37

Much of this presented literature for dynamic prediction focuses on the situation of a continuous marker, whose changing38

values over time can influence survival. However, during follow-up we may instead collect information on a binary marker that39

can change during the patient’s follow-up, such as an indicator of the occurrence of an intermediate event. In our motivating40

data set, patients with clinically localized prostate cancer were treated with radiation therapy. During the patient’s follow-up,41

the clinician can detect metastatic clinical failure (binary marker) that can affect the patient’s risk of mortality. By incorporating42

this new information, clinicians can obtain a current, more accurate prediction of a patient’s survival to make important medical43

decisions for the patient, such as additional/modified treatment or increased monitoring frequency.44

If the longitudinal marker is a binary variable that can only change from 0 to 1, but not from 1 to 0, then the joint model45

between the longitudinal marker and the survival outcome can be described by an illness-death model.9,10 Within the class of46

multi-state models, under the Markov assumption we can directly obtain the dynamic prediction probabilities by applying the47

Aalen-Johansen formulas.11 However, in more realistic and complex situations, obtaining predictions is much more difficult48

and may require approximation through simulation.12 In van Houwelingen and Putter,13 they demonstrate that landmarking49

methodology can be used as an alternative to multi-state modelling with similar results and easier computation of prediction50

probabilities. In previous work,14 we compared the performance of the illness-death model and landmarking with a binary51

marker under both Markov and semi-Markov assumptions and found that with additional components to make it more flexible,52

the performance of an approximate approach, such as landmarking, was similar to that of the simple joint model. Thus, based53

on the advantages provided by the Gaussian copula approach for dynamic prediction with a continuous marker,8 we explore54

extending this copula based approach to incorporate a longitudinal binary biomarker.55

A Gaussian copula is applicable only when linking two continuous outcomes; however, we are interested in modeling the56

relationship between a binary marker and the continuous time-to-event outcome. Joint modeling strategies for mixed outcomes57

using a copula approach were explored by Song et al.15 We use an extension of their model proposed by de Leon and Wu16 for58

mixed polychotomous and continuous outcomes. Using a latent variable formulation of the discrete outcome we transform it59

into a continuous one, after which we use a Gaussian copula to model the time-varying association between the two continuous60

outcomes. The advantage of this copula approach is that it allows us to model the marginal distributions of the marker data and61

time-to-event process and their association separately. This allows us to fit models for the marginals using well-known classes62

of models and standard goodness-of-fit techniques, and specify a flexible association structure to capture their dependence.63

In this paper, we aim to extend a Gaussian copula method for dynamic prediction shown to have good predictive performance64

and low computational burden to accommodate a longitudinally collected binary marker. In Section 2, we describe the Gaussian65

copula method for dynamic prediction with mixed outcomes. Using a simulation study, in Section 3 we explore the predictive66
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performance of our method. We demonstrate the use of our method for our motivating data example of metastatic clinical failure67

in prostate cancer patients in Section 4. To conclude, in Section 5 we present a discussion and future directions.68

2 METHOD69

Consider a survival time distribution T and a marker processZ(t), where T is a continuous outcome andZ(t) is a time-varying70

marker that is expected to have an influence on the time-to-event outcome. The observed data is given by = {T ∗i ,Δi,Zi,Xi; i =71

1,… , n}, where for individual i, Ti is the true event time, Ci is the censoring time, T ∗i = min(Ti, Ci) is the observed event time,72

Δi = 1(Ti ≤ Ci) is the censoring indicator, Xi is the baseline covariate vector, and Zi is an ni × 1 vector observed from the73

individual’s marker process Zi(t), such that the jth element is given by zij = Zi(�ij) for measurement times �ij , j = 1,… , ni.74

We are interested in obtaining the dynamic prediction of survival for a new individual k from the same population for a
prediction window s, conditional on the individual’s up-to-date marker information and that the individual has survived up to
time �, which is given by

pk(�, s) = Pr(Tk ≥ � + s|Tk > �,Xk,Zk(�)) (1)
where Zk(�) is the history of the marker process for individual k up to time �, and can be given by the set of longitudinal75

measurements collected up to time � or, as we assume in this paper, a scalar of the most recent measurement at time �, Zk(�).76

Since this dynamic prediction is a conditional survival probability that conditions on surviving up to time � and the marker77

measurement at time �, we can instead write it as78

pk(�, s|Xk, Zk(�) = z) =
Pr(Tk ≥ � + s,Zk(�) = z|Tk > �,Xk)

Pr(Zk(�) = z|Tk > �,Xk)
=

Pr(T�k ≥ � + s,Z�k = z|Xk)
Pr(Z�k = z|Xk)where we define T� = T |T > � as the conditional survival time distribution and Z� = Z(�)|T > � as the cross-sectional79

marker data at time �. The subscript � denotes conditioning on T > �. Details for this derivation are given in Supplementary80

Material A. We assume T�i ∼ FT� and Z�i ∼ FZ�
for individual i. FT� and FZ�

are the marginal distributions for the time-to-81

event outcome and the binary marker data, respectively, conditional on being alive at time �. Both of these marginals can be82

conditional on baseline covariates X, which shall be omitted from model specification for brevity. The dynamic prediction is83

then given by p(�, s) = FT� ,Z�
(� + s, �)∕FZ�

(�), and we can compute this probability from the marginal distribution FZ�
and the84

joint distribution FT� ,Z�
. In a joint model, we would specify the full joint distribution of Z and T , and derive the conditional85

distributions of interest for our prediction. We propose an alternative approximate approach in which we specify marginal86

distributions for FZ�
and FT� and use a Gaussian copula to give the joint distribution of T�i and Z�i , from which p(�, s) can be87

obtained.88

2.1 Mixed bivariate copula model and dynamic prediction89

Consider our specific situation where the marker process Z(t) is a discrete outcome that can take on only two values at each90

time �, i.e., Z(�) = 0 or 1. Thus, T� is continuous and Z� is discrete. By Sklar’s theorem,17 a copula is unique if and only if91

its components are continuous random variables. Thus, we introduce Z∗ ∼ FZ∗ , to be an unobserved continuous latent process92

underlying the discrete marker process Z.16 The observed Z is related to Z∗ through93

Z(�) =

{

0, if Z∗(�) ∈ (−∞, 0)
1, if Z∗(�) ∈ [0,∞)

We denote FZ∗
�
as the distribution of Z∗

� = Z∗(�)|T > �, i.e., the cross-sectional distribution of Z∗ at � conditional on94

surviving up to time �. The joint distribution at �, FT� ,Z∗
�
, is then defined by a Gaussian copula as95

FT� ,Z∗
�
(t, z) = Φ2

(

Φ−1
{

FT� (t)
}

,Φ−1
{

FZ∗
�
(z)

}

; ��
)

(2)
where Φ is the standard normal distribution, Φ2 is the standard bivariate normal distribution, and �� = �(�) is the correlation,96

which is specified as a smooth function of � and baseline covariates X. In this formulation, the marginals FT� and FZ∗
�
are abso-97

lutely continuous distributions. The dynamic prediction of interest at time � for surviving the prediction window s can then be98

derived from Eq.(2), the details for which are given in Supplementary Material A. We present separate dynamic prediction for-99

mulas conditioning onZ(�) = 0 andZ(�) = 1, respectively. In our latent variable formulation, this is equivalent to conditioning100

on Z∗(�) < 0, and Z∗(�) ≥ 0, and are given as101
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Pr(T ≥ � + s|T > �,Z(�) = 0) = Pr(T ≥ � + s|T > �,Z∗(�) < 0) (3)
=
FZ∗

�
(0) − FT� ,Z∗

�
(� + s, 0)

FZ∗
�
(0)

Pr(T ≥ � + s|T > �,Z(�) = 1) = Pr(T ≥ � + s|T > �,Z∗(�) ≥ 0) (4)
=
[1 − FZ∗

�
(0)] − FT� (� + s) + FT� ,Z∗

�
(� + s, 0)

1 − FZ∗
�
(0)

2.2 Copula Components102

The components of the copula are specified using flexible, but possibly misspecified, models that aim to provide a good approx-103

imation to the true distributions. We select marginal models from well-established survival and regression families for which104

there are established goodness-of-fit techniques and standard software available. We specify a flexible, parametric form for105

the association function and use a Gaussian copula due to its tractable nature, allowing us to perform easy estimation with a106

likelihood-based approach.107

2.2.1 Modeling the binary marker data108

For each time � we specify a simple, flexible model, for the distribution of the marker value where the mean is a function of109

time � and baseline covariates X. We can define the latent variable modelZ∗
� = �(�,X, 
) + �� where 
 is a vector of regression110

coefficients, �(�,X, 
) is a function of time �, baseline covariates, and regression coefficients, and �� is an error term that is111

independently, and identically distributed. We do not estimate parameters in the distribution of �i due to identifiability, so the112

marginal parameters to be estimated for FZ∗
�
are given by �1 = 
. Special examples include,113

• If �� is normally distributed N(0, �2), then Z∗
� ∼ N(�(�,X, 
), �2) and Z� is a probit model, where �2 = 1 for114

identifiability.115

• If �� has a logistic distribution, then Z� will be a standard logistic regression.116

• If �� is non-standardized Student t-distributed t(0, 1, v) (mean 0, scale 1, and df v), then Z∗
� ∼ t(�(�,X, 
), 1, v), where117

we fix unit scale for identifiability.118

There are a number of possible data generating models for a longitudinally measured binary marker. If the binary variable119

can only change from 0 to 1 then we can describe the joint distribution of the marker and survival process with an illness-death120

model. Under such an illness-death data generating processZ(t) is a binary indicator of the occurrence of an intermediate event121

prior to the terminal event, and we can write out the distribution of the marker value at � as122

Pr(Z(�) = 0|T > �,X) = Pr(Z(�) = 0, T > �|X)
Pr(T > �|X)

= e− ∫ �
0 �01(u|X)+�02(u|X) du

e− ∫ �
0 �01(u|X)+�02(u|X) du + ∫ �

0 e
− ∫ v

0 �01(u|X)+�02(u|X) du�01(v|X)e− ∫ �
v �12(u|X) du dv

Pr(Z(�) = 1|T > �,X) = 1 − Pr(Z(�) = 0|T > �,X)
where �ij(t|X) represents the hazard of transitioning from state i to state j (0: Healthy, 1: Ill, 2: Dead), with transition-specific123

baseline covariate effects. The details of these derivations are given in Supplementary Material A. Notice that the form of this124

marginal distribution ofZ(�) as a function ofX does not correspond to a known distribution. If the true joint distribution between125

the marker and the survival process are more complex, we can expect that this would also be the case. If the binary variable126

can change from both 0 to 1 and from 1 to 0, then a possible longitudinal model is a generalized linear mixed model, such as127

logit(Pr(Zi(�) = 1)) = ai + bi� + �f (Xi, �), where ai and bi are random effects. Combining this model with a model for the128

hazard of the event it is feasible to calculate the marginal distribution Pr(Z(�) = 1|T > �,X), but it will also have a complicated129

functional form as a function of � and X. Thus, the alternative we described above, using the flexible latent variable model is a130

misspecified model for the observed marker data that can serve as a good approximation of the true distribution ofZ(�) at each131

� but allows for easy estimation in standard software.132
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2.2.2 Modeling the failure time data133

We model the time-to-event outcome T using a semiparametric (Cox) or parametric survival model, and consider addi-134

tional flexibility by allowing for non-proportional hazards or time-varying effects. Thus, we specify the hazard as ℎ(t) =135

ℎ0(t) exp{d(t,X, �)}, where t is time from baseline, ℎ0(t) is the baseline hazard, � is a vector of regression coefficients, and136

d(t,X, �) is a function of baseline covariates, regression coefficients and possibly time to allow for non-proportional hazards and137

time-varying covariate effects. We note that this model does not includeZ. The marginal distribution for the failure time data is138

thenFT (t) = 1−exp{− ∫ t
0 ℎ(u) du}.We compute the conditional survival from thismodel asFT� (t) = [FT (t)−FT (�)]∕[1−FT (�)].139

Thus, we use a unified single survival model from which we derive the conditional survival distribution at each time �. The140

parameters to be estimated are �2 = {�,H0(t)}, whereH0(t) = ∫ t
0 ℎ0(u) du is the cumulative baseline hazard.141

2.2.3 Modeling the association142

Once the marginal models for T� and Z∗
� are specified, we use the Gaussian copula in Eq.(2) to describe the joint distribution143

between the marker value at � and failure time process, conditional on surviving up to time �. The correlation between the144

marginals is described by the association function �� , which by definition of the Gaussian copula is restricted to the range145

(−1, 1). Thus, we reparametrize using Fisher’s z-transformation to define �� = [exp(2��) − 1]∕[exp(2��) + 1], where we specify146

�� = �(�,X,��) as a function of time �, baseline covariates X, and association parameters ��. The association function ��147

provides us with information about the magnitude and direction of the correlation between the cross-sectional marker value and148

the failure time process conditional on being at risk, and whether that relationship changes with time � or baseline covariates.149

2.3 Estimation150

Let  be the observed data as defined above. Let � be the parameter vector containing the respective marginal parameters �1151

and �2 of FT� and FZ∗
�
, and the association parameters ��. We aim to model the association between the marker and time-to-152

event processes but consider the correlation due to repeated measurements on the same individual a nuisance. Thus, we assume153

working independence between measurements taken on each individual at each time and construct a pseudo-likelihood given by154

PL(�) =
n
∏

i=1

ni
∏

j=1
Pr(T�ij = ti, Z�ij = 0;�)

1(Z(�ij )=0)Δi ⋅ Pr(T�ij ≥ ti, Z�ij = 0;�)
1(Z(�ij )=0)(1−Δi)

⋅ Pr(T�ij = ti, Z�ij = 1;�)
1(Z(�ij )=1)Δi ⋅ Pr(T�ij ≥ ti, Z�ij = 1;�)

1(Z(�ij )=1)(1−Δi)

=
n
∏

i=1

ni
∏

j=1
Pr(T�ij = ti, Z∗

�ij
< 0;�)1(Z∗(�ij )<0)Δi ⋅ Pr(T�ij ≥ ti, Z

∗
�ij
< 0;�)1(Z∗(�ij )<0)(1−Δi)

Pr(T�ij = ti, Z∗
�ij

≥ 0;�)1(Z∗(�ij )≥0)Δi ⋅ Pr(T�ij ≥ ti, Z
∗
�ij

≥ 0;�)1(Z∗(�ij )≥0)(1−Δi) (5)
where the likelihood contribution is given by one of the following for an individual at measurement time � who:155

• Has the event at time t and Z(�) = 0

Pr(T� = t, Z∗
� < 0;�) =

)
)t
FT� ,Z∗

�
(t, 0;�) = Φ2

⎛

⎜

⎜

⎜

⎝

q2(0;�2) − ��(��)q1(t;�1)
√

1 − ��(��)2

⎞

⎟

⎟

⎟

⎠

fT� (t;�1)

• Is alive or censored at time t and Z(�) = 0
Pr(T� ≥ t, Z∗

� < 0;�) = FZ∗
�
(0;�2) − FT� ,Z∗

�
(t, 0;�)

• Has the event at time t and Z(�) = 1

Pr(T� = t, Z∗
� ≥ 0;�) = )

)t
[FT� (t;�1) − FT� ,Z∗

�
(t, 0;�)] = Φ2

⎛

⎜

⎜

⎜

⎝

−
q2(0;�2) − ��(��)q1(t;�1)

√

1 − �2�(��)

⎞

⎟

⎟

⎟

⎠

fT� (t;�1)
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• Is censored or still alive at time t and Z(�) = 1
Pr(T� ≥ t, Z∗

� ≥ 0;�) = [1 − FZ∗
�
(0;�2)] − FT� (t;�1) + FT� ,Z∗

�
(t, 0;�)

where q1(t;�1) = Φ−1(FT� (t;�1)) and q2(z;�2) = Φ−1(FZ∗
�
(z;�2)).156

Direct maximization of this pseudo-likelihood can be computationally intensive due to the potentially large number of param-157

eters to be estimated and complexity of the chosen marginal models. Thus, we conduct estimation using the inference functions158

for margins (IFM) method.18 First, the parameters �̃1 and �̃2 are estimated from their respective marginal models. Second, these159

estimates are held fixed in the pseudo-likelihood given by Eq.(5), PL(�̃1, �̃2,��), which is maximized over �� to get �̃�. The IFM160

estimate is then �̃ = (�̃1, �̃2, �̃�), and the dynamic predictions of interest can be computed as Pr(T ≥ � + s|T > �,Z(�) = z; �̃)161

for z = 0, 1 from Eq.(3) and Eq.(4), respectively.162

The standard errors for the marginal survival model parameters can be obtained using standard methods used for a Cox or163

parametric survival model.19 The marginal marker model is estimated using repeated measurements from each individual, thus164

robust standard errors can be computed using a sandwich estimator.20 Due to the use of a two-stage method for estimation,165

the analytic standard errors for the association parameters must account for the estimation variability of the marginal model166

parameters. Two-stage variance estimation for parametric and semiparametric copula models are presented in existing literature,167

but can result in complex expressions for flexible specifications of the marginal models.18,21,22,23 Thus, a resampling scheme,168

such as jackknife18 or bootstrapping24, will be used to compute the standard errors of the association parameters.169

3 SIMULATION STUDY170

We use a simulation study to assess the predictive performance of the proposed method and compare it to the existing dynamic171

prediction methods of joint modeling and landmarking. We focus on the situation where the binary marker starts at 0, and can172

change to 1, but changes from 1 to 0 are not possible.173

3.1 Performance comparison metrics174

We compute the dynamic predictions at a sequence of prediction times � for the probability of experiencing the event in the175

interval (�, � + s], given by p̄i(�, s) = 1 − pi(�, s), where pi(�, s) is the dynamic prediction given in Eq.(1). We compare the176

dynamic predictions to the true conditional death probabilities, which are computed using the true parameter values to get the177

transition intensities that are then numerically integrated over the prediction window [�, � + s).14 At each prediction time �,178

we compute the bias and variance of the dynamic predictions conditional on the marker value, i.e., Z(�) = 0 or Z(�) = 1.179

We evaluate calibration using the root mean squared prediction error (RMSE) between the true conditional death probabilities,180

p̄True, and the predictions obtained from each of the different models, p̄Model, conditional on the baseline covariates, given by181

RMSE(�, s|X) =
√

E
[

(

p̄True,i(�, s|X) − p̄Model,i(�, s|X)
)2
]

We evaluate the discrimination and overall performance of the dynamic predictions using dynamic versions of area under the182

curve (AUC) and Brier score (BS), which account for censoring. We denote these measures AUC(�, s) and BS(�, s), and use the183

following definitions presented in Blanche et al25 for which inverse probability of censoring weight (IPCW) estimators are given,184

AUC(�, s) = Pr(p̄i(�, s) > p̄j(�, s)|Di(�, s) = 1, Dj(�, s) = 0, Ti > �, Tj > �)
BS(�, s) = E

[

(D(�, s) − p̄(�, s))2 |T > �
]

where Di(�, s) = 1(�<Ti≤�+s). Since BS depends on the cumulative incidence of death in the prediction window (�, � + s], we185

use a standardized R2-type measure that compares how well the predictions perform relative to predictions from a null model186

given by the Kaplan-Meier estimate, B̂S0(�, s), which does not take into account subject-specific information. We denote this187

scaled measure R2(�, s) = 1 − B̂S(�, s)∕B̂S0(�, s). The measures of AUC(�, s) and BS(�, s) include all of the subjects who188

are alive at prediction time �. To make comparisons between models, we compute the best-attainable AUC and R2 using the189

predicted probabilities from the true models. We then examine the relative measures ΔAUC = ̂AUCTrue − ̂AUCModel and190

ΔR2 = R2True − R
2
Model for each of the models, where values close to 0 indicate better performance.191
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For each scenario, we simulate 1000 subjects. A random sample of 500 subjects are selected for the training data set to which192

the models were fit. These models are then used to obtain dynamic predictions for the remaining 500 subjects who compose the193

validation data set. Performance metrics are computed for these predictions, and averaged across five hundred simulations.194

3.2 Simulation Setup195

Using a similar scenario as in Suresh et al,14 we simulate patients from an illness-death model, which is a joint model for a time-196

to-event outcome and a binary time-dependent covariate. Such data can arise when there is a intermediate event (e.g., illness)197

that can occur during patient follow-up prior to a terminal event (e.g., death). Thus, in our defined notation, T represents the198

time to the terminal event, and the marker process Z(t) indicates whether the patient has experienced the intermediate event by199

time t. Defining the states as {0: Healthy, 1: Ill, 2: Dead}, the ages of illness onset and death without illness were generated from200

�jk(ti|Xi) =
(�jk
�jk

)(

ti
�jk

)�jk−1

exp{�′jkXi} for j = 0, k = 1, 2
For transition intensity from illness to death (1 → 2), we generate data under two different models: (1) Markov, where201

the transition intensity depends only on current time, i.e., �12(t|X), and (2) semi-Markov (“clock-reset"), where the transition202

depends on duration in the illness state i.e., �12(t−V |X), where V is the known transition time. The change in the binary marker203

value from 0 to 1 corresponds to the healthy-to-ill transition and is determined by the hazard �01(t). The other two transition204

intensities �02(t) and �12(t) represent the hazard function for death conditional on the marker value being 0 and 1, respectively.205

We choose the transition intensity shape and scale parameters such that �12(t) > �02(t) > �01(t) [�jk = 1.15 for all j → k,206

�01 = 15; �02 = 12.5; �12 = 10], to achieve 25% of patients developing illness.We simulate a binary covariateX with prevalence207

50%, that has a stronger effect on death in ill subjects, with �01 = 0.5, �02 = 0.5, �12 = 2. We generate right-censoring from a208

Uniform(0,15) distribution to achieve a 50% censoring rate.We simulate marker measurement under two patterns of observation:209

(1) the marker process is continuously observed, and (2) the value of the marker is observed at random inspection times. Inter-210

inspection times are exponentially distributed with rate 0.5 and 1, to simulate both frequent and more sparsely collected marker211

measurements.212

In addition to the basic scenario of a single baseline covariate, we also evaluated the performance of landmark models when213

the baseline covariate vector varies by transition. We generate data with two binary baseline covariates X1 that has a stronger214

effect on death in ill subjects [�01,1 = �02,1 = 0.5, �12,1 = 2] and X2, which has no effect on death [�01,2 = 1, �02,2 = �12,2 = 0].215

We are interested in the dynamic prediction of failure at the prediction times � = 0, 1,… , 5, for a prediction window of 3 years216

beyond the prediction time. A summary of the scenarios that were simulated under are given in Table 1.217

TABLE 1 Summary of scenarios for simulation study.

Scenario Model Baseline covariates Inter-inspection rate
1a Markov X 0.5
1b Markov X 1
1c Markov X Continuously observed
2a Semi-Markov X 0.5
2b Semi-Markov X 1
2c Semi-Markov X Continuously observed
3a Markov X1, X2 0.5
3b Markov X1, X2 1
3c Markov X1, X2 Continuously observed
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3.2.1 Models for Dynamic Prediction218

In addition to the copula approach We fit Markov and semi-Markov joint models, and landmark models, as shown in Table219

2. (MM) is a Markov illness-death model with Weibull transition intensities. (MSM) accounts for the effect of the observed220

transition time on the risk of death for those in the illness state. (MMCox) and (MSMCox) are their semiparametric counter-221

parts. (SMM) is a parametric semi-Markov (“clock-reset”) illness-death model, where the risk of transition to death after illness222

depends on the duration of time the individual has spent in the illness state. We also consider the flexible landmark models223

introduced in Suresh et al,14 which can be fit to unbalanced longitudinal data. (LM3) is the extended super landmark model224

and allows for non-proportional hazards. (LM4) allows the covariate effects of illness status to be a function of both measure-225

ment time � and residual time t− �. (LMInt3) and (LMInt4) extend these models to include an interaction term between illness226

status and the baseline covariates. These interaction models were found to have significantly improved performance over the227

regular landmarking models, especially when there were multiple baseline covariates with differential effects for the different228

transitions.14 (LSM3) and (LSM4) are fit in the scenarios using the semi-Markov model for generating data, and account for the229

dependency of transition on the observed illness time by including it as a covariate.230

To identify the functional forms of the copula models we examine goodness-of-fit statistics and perform model selection,231

as demonstrated in Supplementary Material B. We present the results from six flexible copula models. Failure time data is232

modeled either parametrically (W: Weibull) or semiparametrically (C: Cox) and the binary marker data is modeled using a233

probit regression. In (B*1), we model both the association and the mean of the continuous latent variable underlying the binary234

marker as a function of time and the baseline covariate. In (B*2), we increase the flexibility by including an interaction between235

the baseline covariate and time in the model for the mean of the latent variable. In (B*3), we consider an interaction between236

the baseline covariate and time in both the model for the marker and for the association. We also considered more flexible forms237

for the mean and association using splines and higher order terms, but found that the additional flexibility did not improve fit or238

performance. Since we simulate data from a joint model, the copula and landmark models in all of the scenarios are misspecified239

models. Prediction for all three methods computes the dynamic prediction probabilities conditional on the scalar marker value240

at the prediction time, using a last-observation-carried-forward imputation for inspection time scenarios. R code for estimating241

these models and the dynamic predictions is available at https://github.com/ksuresh17/binarymarker-copula-dyn-pred.242

3.2.2 Simulation Results243

We present the simulation results comparing the three methods for dynamic prediction in Supplementary Material C. First, we244

simulate under a Markov assumption with a single baseline covariate, and in Figure 1 present the results from the inspection245

time measurement setting (Scenario 1a). As expected, the joint model from which the data were simulated (MM) has the best246

predictive performance. We find that the copula model has better RMSE for both values of the binary baseline covariate than the247

misspecified Cox model with semiparametric baseline hazards (MMCox) and the landmark models (LM3) and (LMInt3). We248

present the bias for X = 1, Z(�) = 1 (i.e., those in the illness group with baseline covariate X = 1 and who have transitioned249

to the illness state by prediction time �), and find that as the prediction time increases the bias for the copula model worsens.250

At the later time points there are very few individuals in this group (3% at LM=5), demonstrating that the copula model does251

not fit the data well at later time points for groups that have sparse data at those times. The copula model has low variance and252

BS relative to the other models, and comparable AUC. As the inspection time increases (Scenario 1b, 1c), the performance of253

the landmark models with the interaction (LMInt*) and semiparametric Markov model (MMCox) improve to be on par with the254

copula model. The copula and other models consistently outperform the landmark models without the interaction term.255

On average, in Scenario 1a the computation time for estimation for the joint models (MM) and (MMCox) took 10.4 and 0.02256

seconds, respectively. The landmarkmodels ranged from 1.62-1.93 seconds, with (LM3) and (LMInt3) having faster computation257

time than (LM4) and (LMInt4), but the models that included the interaction taking longer than those without. The copula models258

that included simple and interaction effects in the marker process (BC1), (BW1), (BC2), (BW2) took about 0.92 seconds, with259

the models that used a Weibull model for the failure time data taking slightly longer than those that used the Cox models.260

The copula models (BC3) and (BW3) that included an interaction in the association function took longer at 1.87 and 1.93261

seconds, respectively. These relationships were consistent across the other simulation scenarios as well and are summarized in262

Supplementary Material Table C1.263

The performance of the copula model fit with a semiparametric Cox model for the marginal survival time distribution (BC*)264

has higher RMSE than the parametric version (BW*) but performs similarly or slightly better for the other performance metrics.265

Comparing the copula models, the models that include additional flexibility in the model for the mean of the latent variable (B*2)266

https://github.com/ksuresh17/binarymarker-copula-dyn-pred
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TABLE 2 Summary of models fit in the simulation study.

Class Model Label

Markov �Wjk,0(t) exp{�jkX} for j → k transition (MM)
Markov, V ∗ �Wjk,0(t) exp{�jkX + 
V ∗1(j = 1, k = 2)} (MSM)
Semi-Markov �Wjk,0(t − V

∗1(j = 1, k = 2)) exp{�jkX} (SMM)
�Wjk,0(t) modeled as Weibull hazard

Markov �Coxjk,0(t) exp{�jkX} for j → k transition (MMCox)
Markov, V ∗ �Coxjk,0(t) exp{�jkX + 
V ∗1(j = 1, k = 2)} (MSMCox)

�Coxjk,0(t) modeled nonparametrically
Landmark Models ℎ0(t) exp{�(�) + �0Z(�) + !(t − �)Z(�) + �X} (LM3)

ℎ0(t) exp{�(�) + �0Z(�) + !(t − �)Z(�) + �1X + �2XZ(�)} (LMInt3)
ℎ0(t) exp{�(�) + �0Z(�) + !(t − �)Z(�) + 
V ∗Z(�) + �X} (LSM3)
ℎ0(t) exp{�(�) + �(�)Z(�) + !(t − �)Z(�) + �X} (LM4)
ℎ0(t) exp{�(�) + �(�)Z(�) + !(t − �)Z(�) + �1X + �2XZ(�)} (LMInt4)
ℎ0(t) exp{�(�) + �(�)Z(�) + !(t − �)Z(�) + 
V ∗Z(�) + �X} (LSM4)

Copula Models C: Gaussian copula
�Z∗ = 
0 + 
1� + 
2X
�� = �0 + �1� + �2X
ℎ(t) = ℎ0(t) exp{�X}; ℎ0(t) modeled nonparametrically (BC1)
ℎ(t) = ℎ0(t) exp{�X}; ℎ0(t) modeled as Weibull hazard (BW1)
C: Gaussian copula
�Z∗ = 
0 + 
1� + 
2X + 
3X�
�� = �0 + �1� + �2X
ℎ(t) = ℎ0(t) exp{�X}; ℎ0(t) modeled nonparametrically (BC2)
ℎ(t) = ℎ0(t) exp{�X}; ℎ0(t) modeled as Weibull hazard (BW2)
C: Gaussian copula
�Z∗ = 
0 + 
1� + 
2X
�� = �0 + �1� + �2X + �3X�
ℎ(t) = ℎ0(t) exp{�X}; ℎ0(t) modeled nonparametrically (BC3)
ℎ(t) = ℎ0(t) exp{�X}; ℎ0(t) modeled as Weibull hazard (BW3)

V ∗: observed illness time; X: baseline covariate vector; Z(t): value of binary marker at time t (0: healthy; 1: ill); �(�) =
�0 + �1� + �2�2; �(�) = �1� + �1�2; !(s) = !1s + !2s2

and in the association function (B*3) have almost identical performance to that of the simpler models (B*1). These relationships267

between the copula models holds across all of the simulation scenarios.268

For the semi-Markov simulation setting, we compare the copula model with landmark models and joint models that condition269

on the observed transition to illness. We present the results for the inspection time measurement setting in Figure 2 (Scenario270

2a). We find that the copula model has better performance than the landmark models and the semiparametric semi-Markov271

model (MSMCox). It has low variance and Brier score and has an AUC comparable with that of (SMM). As the inspection272

time increases (Scenario 2b, 2c), the performance of (MSMCox) improves, but the copula model still outperforms the landmark273

models across all the metrics.274

Finally, we generate data under a Markov model with two baseline covariates that have differing effects for the different275

transitions. From Figure 3, in the setting with inspection time measurement (Scenario 3a) we see that the copula model has low276

variance and Brier score compared to the landmark models, and comparable RMSE to the landmark model with the interaction277

and the semiparametric Markov model. We present bias for the group X1 = 1, X2 = 1, Z(�) = 1, and find that for the copula278

model the bias increases with prediction time. Again, we find that this is associated with few people being in that group at later279

times, preventing the copula from estimating the marginal distributions well at those times.280
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FIGURE 1 Simulation estimates for binary marker Scenario 1a (Markov illness-death model with one baseline covariate and
inspection rate 0.5) for bias (upper-left) and variance (upper-right) forZ(�) = 1, X = 1, and RMSE forX = 0 (bottom-left) and
X = 1 (bottom-right) for predicted probability P (T ≤ � + 3|T > �,Z(�), X) from copula models (BC1), (BW1), joint models
(MM), (MMCox) and landmark models (LM3), (LMInt3).
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left) andX = 1 (bottom-right) for predicted probability P (T ≤ � +3|T > �,Z(�), X) from copula models (BC1), (BW1), joint
models (MSM), (MSMCox), (SMM), and landmark models (LSM3), (LSM4).

Overall, the copula model has good predictive performance across all the metrics, performing better than landmark models281

and misspecifiedMarkov models with less frequent inspection times, and on par with other models with a continuously observed282

binarymarker. The copula model consistently outperforms the landmarkmodel without the interaction term, indicating that it has283
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FIGURE 3 Simulation estimates for binary marker Scenario 3a (Markov illness-death model with two baseline covariates and
inspection rate 0.5) for bias and variance for Z(�) = 1, X1 = 1, X2 = 1, and RMSE for predicted probability P (T ≤ � + 3|T >
�,Z(�),X) from copula models (BC1), (BW1), joint models (MM), (MMCox) and landmark models (LM3), (LMInt3).

better predictive performance than the standard landmarkmodels that do not include additional flexibility. The bias for the copula284

model can be high for groups at times where there is little data observed; however, from RMSE we see that overall performance285

of the copula model is better or comparable to the flexible landmark and misspecified Markov models. In comparing the copula286

models, as in the continuous marker situation, we find that changes in the association structure result in similar predictive287

performance.8 This suggests that with well-chosen models for the marginal latent marker and failure time distributions, flexible288

association functions can be specified.289

4 APPLICATION: PROSTATE CANCER STUDY290

Returning to the prostate cancer study in Suresh et al,14 we demonstrate and assess the use of the copula model for obtaining291

dynamic predictions using a binary marker. The data consists of 745 patients with clinically localized prostate cancer who were292

treated with radiation therapy. Patients were followed from start of treatment (baseline) and monitored for the occurrence of293

metastatic clinical failure (CF), treated as a time-dependent binary covariate. The aim is to use the intermediate CF information to294

predict a patient’s future risk of death. The median follow-up time was 9 years, and 52 patients experienced CF during the study.295

Out of 188 total deaths, 154 patients died before and 34 died after experiencing clinical failure. The pretreatment prognostic296

factors measured at baseline are continuous age (median 69; IQR 63-74), log(PSA + 1) (PSA ng/ml; median 8; IQR 5-12), and297

Gleason score with 7=“3+4” and 7.5=“4+3” (median 7; IQR 6-7.5), and categorical prostate cancer stage (T1: 57%, T2-T3:298
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43%), and number of comorbidities (0: 55%, 1-2: 37%, ≥3: 8%). We are interested predicting the probability of death within 5299

years at prediction times � = 0, 1,… , 8 years following start of treatment.300

After performing model selection and assessing goodness-of-fit, we fit the following Gaussian copula model: ℎ(t) =301

ℎ0(t) exp{�X}, �Z∗ = 
0+
1X+
∑3
k=1 
2kBk(�), �� = �0+�1X+

∑3
i=1 Bk(�, �2), whereX is a vector of the baseline covariates,302

Bk is a B-spline for a natural cubic spline with boundary knots at 0 and 10 years. We consider failure time models where ℎ0(t)303

is modeled nonparametrically (CopCox) and parametrically with a Weibull baseline hazard (CopWeib), and model the binary304

marker data using a probit regression. We evaluate the fit of the Cox model to the failure time data, and find that there is no305

violation of the proportional hazards assumption for any of the baseline covariates. We assess the fit of the probit model to the306

binary marker and identify that no covariate transformation is required. The model for the association parameter function was307

chosen to be a flexible function of measurement time and baseline covariates. Details for assessing goodness of fit are given in308

Supplementary Material D.309

The parameter estimates for the components of the copula model are given in Table 3. Robust standard errors were computed310

for the marginal marker model coefficient estimates, and standard errors for the association parameters were computed using311

bootstrapping. Additionally, we fit joint and landmark models explored in our simulation study, and present results from the312

parametric and semiparametric joint models (MM) and (MMCox), and the extended super landmark models (LM4, LMInt4).313

The parameter estimates for these models are given in Supplementary Material D.314

For the marginal model for time to death, increased age, PSA, Gleason score, and number of comorbidities are significantly315

associated with increased risk of death. From the marginal model for the binary marker data, increased age, Gleason score, and316

Stage T2-T3 were associated with increased probability of developing CF. These relationships were also observed in the joint317

models. Unlike the copula model, the landmark models are not able to evaluate the effect of the baseline covariates on the risk318

of CF. The bootstrapped association parameter standard errors are large due to the incorporation of the estimation uncertainty319

of the first-stage parameters. But negative association parameter estimates suggest that increasing Gleason score and Stage T2-320

T3 result in more negative association between the latent variable underlying CF and time to death, indicating that patients with321

those characteristics have high negative association between CF and death (i.e., decreased time to death). Similarly, the positive322

coefficient for having 1-2 comorbidities compared to 0 comorbidities indicates positive association between CF and time to323

death, and thus decreased risk of death. This relationship was also demonstrated in the landmark models with interactions.324

In Figure 4, we present the predicted probabilities for two individuals in the data set from the copula, landmark, and joint325

models. Individual A is at increased risk of death due to risk factors (older, increased PSA, high Gleason score), but does not326

experience clinical failure before death. Individual B is a lower risk patient, but has some baseline characteristics (increased327

PSA, high Gleason score) that indicate increased probability of CF, and that greatly increase his risk of death after experiencing328

clinical failure. In the probability plots, the predictions from the copula models are very similar to the joint models, (MM) and329

(MMCox), and the landmark model with the interaction (LMInt4). Unlike the landmark model without the interaction (LM4),330

the copula model is able to take into account the differential effects of the baseline covariates on the different transitions, which331

is demonstrated by the large increase in predicted probability of death after CF for Individual B. There is no difference in the332

predicted probabilities for (CopCox) and (CopWeib) for Individual A, but we see that the predictions from (CopWeib) are lower333

than (CopCox) in Individual B after they experience CF. In Figure 5, we present the association functions for the two individuals.334

As prediction time increases the association between time to death and CF is negative but is increasing and approaches zero,335

thus indicating that as time from treatment increases the predicted probability of death relies less on an individual’s CF status.336

This is also demonstrated in the effect of the interaction between CF and measurement time in the landmark models where as337

the prediction time increases the effect of CF on the risk of death decreases.338

5 DISCUSSION339

Dynamic prediction methods that incorporate the effect of a patient’s changing longitudinal information into their survival340

prediction are necessary for making informed, and personalized treatment decisions. Existing methods for dynamic prediction341

are often focused on incorporating continuous marker information; however, often binary indicators that identify the occurrence342

of an intermediate event can be collected during follow-up. We propose a Gaussian copula approach for dynamic prediction of343

survival that incorporates binary time-dependent information collected during follow-up.344

The Gaussian copula approach for dynamic prediction has been shown in previous work to have good predictive performance345

in the continuous marker setting.8 By separately modeling the marginal marker and survival data and their association, it has346
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TABLE 3 Coefficient estimates and standard errors for copula model applied to prostate cancer data with binary marker of
metastatic clinical failure.

CopCox CopWeib

Covariate Coef. SE Coef. SE
� Age 0.073 0.012 0.071 0.012

log(PSA+1) 0.263 0.110 0.261 0.110
Gleason Score 0.311 0.084 0.283 0.082
Stage T2-T3 0.043 0.158 0.114 0.156
Comorbidities 1-2 0.472 0.163 0.468 0.162
Comorbidities ≥ 3 1.228 0.217 1.204 0.216


 Intercept -6.152 1.074

Same parameter
estimates andSEs as CopCox

Age 0.002 0.012
log(PSA+1) 0.267 0.075
Gleason Score 0.220 0.109
Stage T2-T3 0.245 0.175
Comorbidities 1-2 0.096 0.188
Comorbidities ≥ 3 -0.120 0.280
B1 2.523 0.553
B2 1.416 0.371
B3 1.713 0.323

� Intercept -0.498 2.332 -0.283 2.069
Age 0.005 0.016 0.007 0.015
log(PSA+1) 0.024 0.228 -0.020 0.192
Gleason Score -0.151 0.191 -0.147 0.171
Stage T2-T3 -0.314 0.396 -0.285 0.384
Comorbidities 1-2 0.230 0.312 0.225 0.284
Comorbidities ≥ 3 -0.117 0.402 -0.006 0.311
B1 1.789 2.219 1.105 1.871
B2 0.050 0.888 -0.079 0.765
B3 1.207 1.266 0.825 1.059
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FIGURE 4 Predicted probability of death within 5 years, P (T ≤ �+5|T > �,Z(�),X) for two individuals in the prostate cancer
data set for landmark, joint, and copula models. Individual A (left) is 75 years old at baseline, with PSA 29.9 ng/mL, Gleason
score 9, T2 Stage, 2 comorbidities, and does not experience clinical failure but dies 9 years from baseline. Individual B (right) is
67 years old at baseline, with PSA 12.6 ng/mL, Gleason score 8, T1 Stage, zero comorbidities, and experiences clinical failure
5.8 years after start of treatment before dying at time 6.7 years from baseline. Black dashed line indicates time of death.
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FIGURE 5 Association functions from (CopCox) for Individual A (solid) and Individual B (dashed) from the prostate cancer
data set.

the advantage of allowing us to assess goodness-of-fit and perform variable selection to minimize bias at the marginal model347

stage. Unlike landmarking, it does not require fixing the prediction horizon and the prediction times of interest for estimation. In348

comparison to more complex joint models, estimation can be performed using standard software, and the dynamic predictions349

of interest are easily derived.350

Since the Gaussian copula is only applicable for modeling the joint distribution of two continuous outcomes, using a latent351

variable formulationwe extend its use for the binarymarker setting.We demonstrate that its predictive performance is on par with352

those of joint modeling and landmarking under various scenarios, and show its use for obtaining dynamic predictions in a data353

application. This approach provides us with an alternative method for dynamic prediction when incorporating a time-dependent354

binary covariate, with advantages over the existing methods of landmarking and joint modeling.355

A limitation of the Gaussian copula approach is that since it models the joint distribution of themarker and survival conditional356

on surviving to the prediction time, it relies on the availability of data at those prediction times. In the binary marker simulations,357

we demonstrate that as the number of people in a particular group decreases over time (due to death or censoring), the bias358

of the predictions for that group increases. In addition, the large standard errors in the association function, resulting from the359

two-stage estimation approach, make it difficult to perform variable selection for identifying the optimal association function360

specification. With this approach we have to specify a functional form for the marker, the survival, and their association based on361

covariates. However, from the simulation study we find that the predictive performance of the copula is similar when comparing362

flexible functions for these components.363

Using a copula framework provides the potential for several extensions to more complicated data structures. In this paper, we364

mainly consider a single binary time-dependent variable that can transition from 0 to 1 during a patient’s follow-up. The use365

of the copula to describe the distribution of the latent marker value over time suggests an easy extension to more complex data366

structures, such as when the patient’s binary marker can transition from 0 to 1 and back multiple times. We can then also include367

as a covariate the number of reversals a patient has experienced by a particular prediction time in the models for the conditional368

marker and/or residual time distributions to account for increased risk of the binary marker and/or death. Additional summary369

variables of the binary marker up to the prediction time, such as time spent in the illness state, can also be similarly included in370

the different components of the model.371

Dynamic predictions are usually implemented in longitudinal studies where dropout is a common complication. This dropout372

may be random or it may be associated with the longitudinal variable (making it missing at random, MAR) or there may be a373

form of dependent censoring in which the dropout is related to the event (making it missing not at random, MNAR). If the data374

set does have this feature then an interesting question is how well the three approaches will behave under these type of dropout375

scenarios. We speculate that all three approaches would work under completely random dropout. In previous work,8 we have376

demonstrated that a copula approach for dynamic prediction has similar performance to joint modeling when missingness of the377

longitudinal marker is dependent on observed variables. Under MAR we would expect the joint modeling approach to continue378

to work well because it is based on a likelihood from a unified model. Whether and by how much the performance of the copula379
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and landmarking approaches will deteriorate under MAR will likely depend on the exact scenario. All approaches are likely to380

behave less well if the dropout is MNAR.381

The copula formulation also allows us to extend from a bivariate copula to a multivariate copula to accommodate multiple382

longitudinal markers. By adapting the Gaussian copula approach for dynamic prediction to a binary marker setting, we can use a383

multivariate copula to incorporate both the effect of binary and continuous markers into updating a patient’s prediction. We can384

model the various markers using appropriate marginal distributions based on their specific data types, and separately describe385

their association with the failure time using the copula. This approach would replace the association function with an association386

matrix, which would also allow us to account for the correlation between the multiple longitudinal markers. Although, care387

should be taken to propose parsimoniousmodels for themarginals and the association functions to avoid exponentially increasing388

the number of parameters to estimate.389

With this work we have demonstrated that an approximate approach that models only a component of the joint distribution390

of the marker and survival process can incorporate additional flexibility to achieve good predictive performance. In complex391

settings, joint models may be difficult to specify and estimate, and their predictive performance is sensitive to misspecification.392

Future work will explore developing and extending approximate approaches for dynamic prediction with complicated data393

structures, such as interval censoring and multiple longitudinal markers.394
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