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Summary
Background: Advances in imaging technology have the potential to transform the 
early diagnosis and treatment of hepatocellular carcinoma (HCC) through quantita-
tive image analysis. Computational “radiomic” techniques extract biomarker informa-
tion from images which can be used to improve diagnosis and predict tumour biology.
Aims: To perform a systematic review on radiomic features in HCC diagnosis and 
prognosis, with a focus on reporting metrics and methodologic standardisation.
Methods: We performed a systematic review of all full-text articles published from 
inception through December 1, 2019. Standardised data extraction and quality as-
sessment metrics were applied to all studies.
Results: A total of 54 studies were included for analysis. Radiomic features demon-
strated good discriminatory performance to differentiate HCC from other solid lesions 
(c-statistics 0.66-0.95), and to predict microvascular invasion (c-statistic 0.76-0.92), early 
recurrence after hepatectomy (c-statistics 0.71-0.86), and prognosis after locoregional or 
systemic therapies (c-statistics 0.74-0.81). Common stratifying features for diagnostic and 
prognostic radiomic tools included analyses of imaging skewness, analysis of the peritu-
moural region, and feature extraction from the arterial imaging phase. The overall quality 
of the included studies was low, with common deficiencies in both internal and external 
validation, standardised imaging segmentation, and lack of comparison to a gold standard.
Conclusions: Quantitative image analysis demonstrates promise as a non-invasive 
biomarker to improve HCC diagnosis and management. However, standardisation of 
protocols and outcome measurement, sharing of algorithms and analytic methods, 
and external validation are necessary prior to widespread application of radiomics to 
HCC diagnosis and prognosis in clinical practice.

1 | INTRODUC TION

Hepatocellular carcinoma (HCC) is the fourth most common cause of 
cancer-associated death worldwide and the fastest-growing cause of 
cancer death in the United States.1,2 The rising mortality associated 
with HCC is driven in part by limitations in the screening and early 

detection of HCC. Most HCC is diagnosed at an advanced stage when 
curative treatment options are limited.3 There are few available diag-
nostic and risk stratification tools to prioritise at-risk populations for 
surveillance and early detection of HCC. The Liver Imaging Reporting 
and Data System (LI-RADS or LR) criteria was established to pro-
vide standardised criteria for the radiographic diagnosis of HCC.4 
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However, validation of these criteria remains limited and there are 
two categories of indeterminate nodules (ie LR3 and LR4) for which 
there is uncertainty regarding diagnostic approach.5 Biopsy for the 
diagnosis of HCC is not currently routinely recommended by guide-
lines due to the risk of tumour seeding, bleeding and sampling error.6 
Similarly, the only validated non-invasive prognostic markers for 
HCC are tumour staging and alpha-fetoprotein levels, both of which 
have significant limitations in approximating tumour biology.7,8 This is 
particularly important in light of recent data showing variation in tu-
mour growth patterns, with one-fourth of HCC having rapid growth 
patterns and over one-third having indolent growth.9,10 There re-
mains an unmet need for non-invasive biomarkers to aid in the early 
detection of HCC and prediction of tumour behaviour. “Radiomics,” 
a term that describes the “omics” approach for analysis of imaging 
data, has emerged as a novel tool for the diagnosis and prognosis 
of HCC.11 Radiomics leverages advanced computing tools to extract 
deeper and more granular data from imaging.12 Quantitative image 
features predictive of tumour behaviour, treatment response, and 
overall outcomes have been identified in other malignancies includ-
ing breast, pancreatic, and lung cancer.13-16

2  | QUANTITATIVE IMAGING

Advanced image analysis is frequently divided into two categories: 
semantic and quantitative. The term “semantic” refers to radiologist-
derived image features such as the presence of internal arteries, hy-
podense halos, and tumour-liver difference.17,18 The clinical utility 
of semantic imaging features have been limited by labour-intensive 
extraction process and concerns about suboptimal inter- and intra-
observer reliability (k-0.50-0.70).19 “Quantitative” imaging features, 
also known as agnostic features, by comparison, are computer-
derived mathematically extracted quantitative image characteristics 
of the tissue of interest.20 These are extracted by analytic soft-
ware and can be categorised into morphologic (shape) and statisti-
cal (first-order, second-order, and higher-order) features based on 
complexity.20-23 Varying analytic approaches have been used for ra-
diomics studies including traditional regression analysis or machine 
learning approaches to measure the association between voxel data 
and a clinical outcome of interest.

Radiomic analysis involves five primary steps, as outlined in 
Figure  1: image acquisition, tumour segmentation, feature ex-
traction, feature selection, and model creation.24 Image acquisition 
refers to the process of collecting and reconstructing imaging studies 
in a manner that minimises variations in extracted numerical data.25 
Tumour segmentation refers to the selection of regions of interest 
(ROI) around tumoural tissue. This can be performed either manually 
or with the assistance of semi-automatic contour selection tools.26 
Tumour segmentation is a major source of inter-reader variability 
and can introduce biases in quantification.27 Feature extraction refers 
to the application of specialised software to derive quantitative de-
scriptions of the voxel patterns in each image, generating thousands 
of individual variables. The distribution of the voxel intensity values 

is considered first-order features and the spatial relationship of the 
voxels, also known as texture analysis, is considered second-order 
features.28 Feature selection is the process of using supervised or 
unsupervised statistical analysis to identify the variables most pre-
dictive of the desired outcome measure. Because of the large num-
ber of variables, radiomic studies must also perform considerable 
dimensionality reduction to reduce the risk of overfitting.29 Model 
creation: refers to the creation of a nomogram or multivariable model 
using the most successful radiomic variables. Generally, the best-
performing models incorporate a combination of established clinical 
and pathological biomarkers with radiomic data. In this systematic 
review, we aimed to evaluate the role of radiomic tools for diagnosis 
and prognosis of HCC.

3  | METHODS

With the assistance of a trained librarian (WT), we performed a 
systematic review of the literature, concordant with the PRISMA 
(Preferred Reporting Items for Systematic Reviews and Meta-
Analyses) guidelines.30 The literature review captured studies from 
inception to December 1, 2019, in PubMed Legacy, Embase.com, 
Scopus.com, Web of Science Core Collection (SCI-EXPANDED, 
SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-
EXPANDED), Cochrane CENTRAL via Wiley, and clinicaltrials.
gov. The full search strategy including MESH headings is listed in 
Supplementary Methods. References of selected articles were also 
reviewed to identify additional articles. Duplicates were eliminated 
automatically. Inclusion criteria included those that met the follow-
ing criteria:

a.	 Evaluated HCC using an MRI or CT-based radiomics approach 
AND

b.	 Provided information relating to diagnosis (detection, characteri-
sation) or

c.	 Provided information relating to prognosis (microvascular inva-
sion, response to therapy, survival, recurrence rate).

Exclusion criteria included the following: (a) studies not avail-
able in English with translation, (b) non-peer-reviewed articles, (c) 
ultrasound-based studies, (d) studies without an outcome measure 
and (e) studies exclusively focussed on semantic imaging features. 
This search identified a total of 754 unique records, 116 articles were 
assessed for eligibility of which 54 met inclusion criteria. Figure 2 de-
scribes our selection process and reasons for study exclusion.

Two authors (EHT, BM) independently reviewed all papers for 
eligibility. Studies were categorised into five groups: diagnosis, 
prognosis, microvascular invasion (MVI), pathologic correlates and 
treatment response. Data extraction using standardised forms was 
then performed by three authors (EHT, EC, BM) independently and 
discrepancies were resolved by consensus. Data were intended for 
meta-analysis; however, due to large differences in techniques/
methodologies between the studies, this was not possible.
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4  | QUALIT Y A SSESSMENT

Two reviewers (EHT and BM) applied the radiomics quality score 
(RQS) to assess radiomic studies on the basis of 16 components (score 

range 0-36). Each reviewer individually scored studies and discrep-
ant results were adjudicated by consensus. The score is based on 
clinical utility, feature reduction, image protocol quality, multivariable 
analysis, gold standard comparison, cut-off analysis, discrimination 
statistics, multiple segmentations, biological correlates, calibration 

F I G U R E  1   Radiomics analysis 
workflow with common pitfalls [Colour 
figure can be viewed at wileyonlinelibrary.
com]
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F I G U R E  2   Literature search algorithm 
for generation of MRI and CT-based 
radiomic studies [Colour figure can be 
viewed at wileyonlinelibrary.com]
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statistics, validation, prospective study, multiple timepoints, phantom 
studies, open science data, and cost-effectiveness analysis.31

5  | RESULTS

5.1 | HCC diagnosis

Of the 54 studies met eligibility criteria, nine evaluated aspects 
of HCC diagnosis (Table  1). Four studies primarily focussed on 
distinguishing hepatic haemangiomas from HCC.32-35 Mokrane 
et al evaluated 178 patients with indeterminate nodules and sought 
to categorise the nodules as high- or low-risk for HCC. They demon-
strated an AUC of 0.74 in a training cohort and 0.66 in a validation 
cohort using CT scans.36 Dankerl et al demonstrated that radiomic 
tools could outperform radiologists at predicting lesion histology 
(benign vs malignant) with an accuracy of 75.1% compared with a 
range of 52%-74% for radiologists depending on level of experi-
ence.37 Stocker et al also compared radiomic features against human 
radiologists, and demonstrated that a combination of 13 arterial 
phase features outperformed radiologists at distinguishing HCC 
from non-malignant tumours.38 The majority of diagnostic studies 
have relied on textural features alone, however, even simple tex-
tural features have not been directly comparable between proto-
cols. Asayama et al demonstrated that the non-cancerous hepatic 
parenchyma of livers with HCC exhibits a consistent pattern of high 
kurtosis and low skewness on MRI, compared to patients without 
HCC, indicating that patients with HCC have features in the back-
ground parenchyma that can predict the risk of HCC.39 Rosenkrantz 
et al found that high MRI skewness (a measure of lateral histogram 
distortion) in an indeterminate liver lesion was associated with the 
progression of indeterminate lesions to malignant HCC.40

5.2 | Prediction of prognosis

Seventeen studies evaluated HCC prognosis following hepatectomy 
(Table 2). These were primarily performed with CT imaging; five stud-
ies involved MRI. Eight studies evaluated prediction of early recurrence,  
41-48 and eight evaluated overall survival and recurrence-free survival,  
49-56 and one evaluated post hepatectomy acute liver failure.57 Radiomic 
models predicted early recurrence with AUCs that varied between 0.71 
and 0.86. When only second-order textural features were included, 
skewness was the most commonly identified feature predictive of 
outcomes. Oh et al reported that skewness predicted overall survival 
with a HR of 10.96 (95% CI: 3.21-37.46), compared with microvascu-
lar invasion with a HR of 2.12 (95% CI: 1.06-4.25).49 Defour et al per-
formed multivariable analysis of textural features in the portal-venous 
phase and found skewness to be associated with overall survival with 
a HR of 438.7 (95% CI: 2.44-78,968.25).52 The majority of studies used 
higher-order radiomic features. Kim et al evaluated 168 patients using a 
3-dimensional technique which extracted 3903 radiomic features per 
patient and found that high-order feature analysis performed similarly 

to a combined clinical model (age, hepatitis C, alcohol use, cirrhosis, 
tumour capsule, and microvascular invasion) in predicting early recur-
rence.45 The authors also demonstrated that the inclusion of 3 mm of 
peritumoural tissue improved risk prediction over segmenting the tu-
mour alone.45 Nine studies compared their radiomic tools against clinical 
models or created a combined model using both radiomic and clinical 
features. In all cases, the combined model was equal or superior to the 
clinical model alone. The characteristics of these studies are described 
in Table S1. In one of the largest studies, Zhou et al compared a clinical 
model (based on serum alpha-fetoprotein, vascular invasion, and non-
smooth tumour margin) against a combined model for the prediction of 
early recurrence (ER) in 214 patients and patients with HCC had differ-
ential background liver texture. The addition of a 21-feature radiomics 
signature improved the clinical model AUC from 0.781 to 0.836 when 
clinical features were used in combination with radiomic data.43

5.3 | Prediction of microvascular invasion

Microvascular invasion (MVI) is among the strongest predictors of out-
comes following liver transplantation or hepatectomy for HCC.58,59 
Seven studies evaluated radiomics as a tool for the prediction of MVI 
on explant following hepatectomy60-66 (Table 3). These studies reported 
AUCs ranging from 0.76 to 0.91. Six of the studies evaluated their result 
against a clinical model, and in all cases, the combined model performed 
comparably or better than the clinical model. Xu et al, in the largest study 
to date, evaluated CT scans from 495 patients and found that a combina-
tion of clinical, radiologic, and radiomic features predicted histologic MVI 
with an AUC of 0.909 in the training/validation and 0.889 in an separate 
test set.63 Clinical features included aspartate aminotransferase (AST) 
and alpha fetoprotein (AFP), while radiologist-derived features included 
non-smooth tumour margin, extrahepatic growth, ill-defined pseudo-
capsule, and peritumoural arterial enhancement, as well as the presence 
of a previously published radio-genomic venous invasion signature. The 
authors also compared the use of the 3-dimensional VOI of the tumour 
only against a volume that extends 5 mm in every direction from the 
tumour. Although MVI occurs primarily at the periphery of tumours, the 
inclusion of peritumoural tissue in the VOI did not improve the predic-
tion of MVI.63 To create a simple decision tool, Zhang et al published a 
nomogram for the prediction of MVI which includes a radiomic score 
and alpha fetoprotein, tumour type, peritumoural enhancement, arterial 
rim and internal arteries.65 This nomogram outperformed a clinical and 
radiologic model with an AUC of 0.858 vs 0.729. In the limited studies 
examining MRI radiomic tools, the arterial phase of the image predicted 
MVI more effectively than venous phase.63

5.4 | Prediction of pathologic and 
molecular correlates

Ten studies used radiomic features to visually identify the path-
ologic and genetic correlates of HCC. These include p53 muta-
tion status, Ki-67, and CD8+ T-cell invasion (Table  S2).67-76 In a 
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landmark study by Kuo et al, the authors demonstrated an asso-
ciation between radiomic textural features and a doxorubicin drug 
response gene signature previously shown to be predictive of tu-
mour stage.69 Chen et al demonstrated among 207 patients that 
radiomic features including the peritumoural region were associ-
ated with a validated “immunoscore.” This score characterises the 
tumour infiltrating lymphocyte population, and theoretically re-
flects the immune phenotype of the tumour microenvironment.67

5.5 | Treatment response

An additional 11 studies evaluated treatment response, primarily fol-
lowing local-regional therapy (LRT) (Table S3).77-87 These studies had 
the most variability in quality, with a median RQS of 7. Most studies 
were focussed on single textural features and just two studies involved 

clinical models for comparison. Kim et al demonstrated in 88 patients 
that a combination of clinical (Child-Pugh score, serum alpha fetopro-
tein and tumour size) and radiomic features (surface area-to-volume 
ration, kurtosis, median, size zone variability) can predict post-TACE 
overall survival with a HR of 19.88 and 95% CI of 6.37-62.02.79 These 
findings were also seen in other studies, in which radiomic features 
extracted from pre-treatment imaging (CT or MRI) for prediction of 
treatment response after TACE were compared to post-treatment re-
sponse evaluation.80,87 Mule et al found post-Sorafenib overall survival 
correlated significantly with individual textural features.83

5.6 | Assessment of methodology

Radiomic methods varied significantly between studies. Among quan-
titative imaging studies, no two groups used the same extraction 

TA B L E  1   Studies evaluating radiomic tools for early diagnosis in hepatocellular carcinoma

Author CT/MRI
N (Train/
Valid)

Extraction 
tool

Specific outcome 
measured Statistical result

Clinical 
model RQS

Dankerl
2013

CT 372 CADx Differentiation 
of benign vs 
malignant lesion 
(nodule vs HCC)

AUC 0.75 for textural features
AUC 0.91 for texture + semantic

No 5

Song
2019

CT 84 Omni-Kinetic Differentiation 
of benign vs 
malignant lesion 
(HCC vs HH vs 
FNH vs HA)

AUC 0.927 for textural features No 9

Stocker
2018

MRI 108 Matlab Differentiation 
of benign vs 
malignant lesion

AUC 0.92 arterial phase No 7

Li
2017

MRI T: 112
V:50

Internal Differentiation of 
HH from HCC

AUC 0.73 for GLCM Energy-mean No 10

Oyama
2019

MRI T: 50,50
V: 50

Matlab Differentiation of 
HH from HCC

AUC 0.95 textural features No 9

Wu
2019

MRI 369 Internal Differentiation of 
HH from HCC

AUC 0.89 textural features No 8

Mokrane
2019

CT T: 142
V: 36

Internal Categorise 
indeterminate 
nodule as high-risk 
or low-risk for HCC

AUC 0.74 for training cohort
AUC 0.66 for validation cohort

No 10

Asayama
2016

MRI 84 Internal Comparison of 
individual textural 
features of 
non-cancerous 
parenchyma 
between those 
with and without 
HCC

P = 0.0006 for kurtosis
P = 0.0152 for skewness

No 6

Rosenkrantz
2015

MRI 20 Internal Progression of 
hypovascular 
nodule to 
likely HCC on 
subsequent MRI

AUC 0.68 for skewness No 7

Abbreviations: AUC, area under the curve; CT, computed tomography; FNH, focal nodular hyperplasia; HA, hepatic adenoma; HCC, hepatocellular 
carcinoma; HH, hepatic haemangioma; MRI, magnetic resonance imaging.
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tool or segmentation process. A majority of studies used proprietary 
investigator-developed tools which are not publicly available. Study 
outcomes and reporting methods were heterogeneous. More recently, 
groups have begun to transition to using software packages, such as 
Matlab, for data extraction. There was a wide variation in the number 
of features extracted, ranging from 5 to 3903. Recent studies have also 
begun to transition from 2- to 3-dimensional “volume of interest” mod-
els as large-scale data analysis becomes streamlined. The use of manual 
and semi-automatic ROI selection tools also varied significantly between 
studies, and inter-rater reliability of ROI selection was rarely performed. 
Indistinct nodules represent a challenge because minor changes in ROI 

selection can substantially influence the radiomic signature generated. 
A minority of studies performed internal validation experiments against 
a portion of their data set, but there were no examples of external vali-
dation using imaging derived from outside institutions.

5.7 | Radiomics quality scores

The range of radiomics quality scores reflect the large degree 
of heterogeneity which currently exists within the field. The 
median RQS was 9 and the range was 5-13 out of a possible 36 

TA B L E  2   Studies evaluating radiomic tools for the prediction of microvascular invasion in hepatocellular carcinoma

Author
CT/
MRI

N (Train/
Valid)

Extraction 
tool Segment tool Specific outcome measured

Statistical 
result Clinical model RQS

Bakr
2017

CT 28 Internal Manual ROI Prediction of microvascular 
invasion

AUC 0.76 
Texture 
analysis of 
MVI

Semantic Model 6

Ma
2019

CT T: 110
V: 47

Matlab Manual ROI Prediction of microvascular 
invasion (compares portal 
venous phase vs arterial 
phase)

AUC 0.793 
Portal 
Venous 
Phase for 
MVI

Clinical Model 10

Zheng
2017

CT 120 Matlab Semi-
Automatic 
ROI

Prediction of microvascular 
invasion (compares tumours 
<5 cm vs >5 cm)

AUC 0.80 for 
single feature 
(angle co-
occurrence 
matrix) if 
<5 cm

AUC 0.75 for 
single feature 
(local binary 
pattern) if 
>5 cm

Clinical Model 6

Xu
2019

CT T: 350
V: 145

Python Semi-
Automatic 
VOI

Prediction of microvascular 
invasion (combined 
clinical + agnostic + radiomic 
model)

AUC 0.909 
training/
validation

AUC 0.889 
test

Clinical Model 11

Feng
2019

MRI T: 110
V: 50

Internal Manual VOI Prediction of microvascular 
invasion using both intra-
tumoural and peritumoural 
regions

AUC 0.850 
training

AUC 0.833 
validation

No 12

Zhang
2019

MRI T: 194
V: 73

Matlab Manual ROI Prediction of microvascular 
invasion (radiomic 
score compared against 
nomogram)

AUC 0.784 
training for 
rad signature

AUC 0.820 
validation for 
rad signature

Clinical Model 12

Zhu
2019

MRI 142 Omni-
Kinetics

Manual ROI Prediction of microvascular 
invasion (arterial phase vs 
portal venous phase)

AUC 0.765 
training for 
arterial

AUC 0.773 
validation for 
arterial

Clinical Model 11

Abbreviations: AUC, area under the curve; CT, computed tomography; MRI, magnetic resonance imaging; ROI, region of interest.
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TA B L E  3   Studies evaluating radiomic tools for prognosis in hepatocellular carcinoma

Author
CT/
MRI

N (Train/
Valid)

Extraction 
tool Segment tool

Specific outcome 
measured Statistical result

Clinical 
model RQS

Akai
2018

CT 127 TexRAD Manual ROI Model categorises as high 
risk or low risk for OS 
and DFS

P < 0.0001 for OS
from Kaplan Meier LR

No 10

Chen
2017

CT 61 Matlab Manual ROI Prediction of OS and RFS 
with individual features

P = 0.001 for OS
from Kaplan Meier LR

No 9

Defour
2018

CT 47 TexRAD Manual ROI Prediction of OS and RFS 
with individual textural 
features

P = 0.0084 of kurtosis in 
MV of OS

No 6

Kiryu
2017

CT 122 TexRAD Manual ROI Prediction of OS and RFS 
with individual textural 
features

P < 0.001 of entropy in 
Kaplan-Meier LR of OS

No 7

Peng
2018

CT T: 113
V: 64

IBEX Semi-
automatic 
ROI

Radiomic score used to 
categorise as high risk or 
low risk for OS and DFS

P < 0.0001 of model in 
Kaplan-Meier LR of OS

Clinical 
Model

13

Guo
2019

CT T: 93
V: 40

Python Semi-
automatic 
VOI

Radiomic model as a 
predictor of RFS

0.743 Training for RFS
0.705 Validation for RFS

Clinical 
Model

10

Zheng
2019

CT T: 212
V: 107

Matlab Manual ROI Radiomic score and 
radiomic-score based 
nomograms used to 
predict OS

0.714 Training for OS
0.71 Validation for OS

Clinical 
Model

12

Cai
2019

CT T: 80
V: 32

Internal Semi-
automatic 
VOI

Radiomic score used to 
predict post-hepatectomy 
acute liver failure

0.822 training for post-
hepatectomy acute liver 
failure

0.762 validation for post-
hepatectomy acute liver 
failure

Clinical 
Model

10

Oh
2019

CT 81 TexRAD Manual ROI Prediction of DFS with 
individual textural 
features

P < 0.001 for skewness 
(SSF2.0) in MV of DFS

No 9

Ning
2019

CT T: 225
V: 100

Matlab Semi-
automatic 
VOI

Prediction of early 
recurrence after 
hepatectomy

0.817 Training for ER
0.719 Validation for ER

Clinical 
Model

9

Shan
2019

CT T: 109
V: 47

Internal Manual ROI Prediction of early 
recurrence after 
hepatectomy (models 
compare peritumoural 
and tumoural features 
against tumour 
enhancement)

0.80 Training for ER
0.79 Validation for ER

No 11

Zhou
2017

CT 214 Matlab Manual ROI Prediction of early 
recurrence after 
hepatectomy (summary 
model used)

0.836 for ER Clinical 
Model

11

Hui
2018

MRI 50 Matlab Manual ROI Prediction of early 
recurrence after 
hepatectomy (individual 
radiomic features only)

0.82 for S(0,3)
SumofSqs for ER
0.84 for S(4,0)
SumVarnc

No 10

Kim
2019

MRI T: 129
V: 39

Python Semi-
automatic 
VOI

Prediction of early 
recurrence after 
hepatectomy 
(peritumoural model)

0.716 for 
clinical + radiomic 
model in predicting ER

No 9

(Continues)
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points. The most notable limitations were in studies of cost ef-
fectiveness analysis, phantom use, open publication of methods, 
and prospective study protocol. Quality adherence was highest 
for feature reduction and discrimination statistics. Notably, the 
quality has improved over time and studies performed in 2019 
consistently scored higher than prior years, primarily through the 
incorporation of validation cohorts, although most were internal 
and not external validation with some continued risk of overesti-
mation of model performance.

6  | DISCUSSION

Quantitative image analysis has the potential to transform the early 
detection and management of HCC. Because high-resolution cross-
sectional imaging is already widely available, radiomics has the abil-
ity to improve HCC management more rapidly than novel molecular 
biomarkers. We found radiomic tools to date have been studied pri-
marily for their ability to predict overall survival and early recurrence 
following hepatectomy and have demonstrated good predictive ac-
curacy, with AUCs exceeding 0.80; however, many of these models 
have not been tested in validation cohorts including none being ex-
ternally validated. Fewer studies evaluated response to non-surgical 
treatments or association with molecular biomarkers, although the 
ones to date have also demonstrated promising accuracy. As meth-
odology has improved, studies have progressed from simple textural 
features to thousands of three-dimensional higher-order variables. 
Studies to date have been limited by small, single-centre studies with 
heterogeneous methods and lack of validation cohorts.

The largest gaps in the use of radiomic technology are in early 
detection and diagnosis. Only 9 of 54 radiomic studies focussed on 
aspects of HCC diagnosis. Those studies were of variable quality 
and performed simple radiologic tasks such as distinguishing he-
patic haemangiomas from HCC. The next frontier for HCC radiom-
ics will be to assist radiologists with liver nodule risk stratification. 
This may initially involve the automation of LI-RADS classification, a 

task that is relatively simple but burdensome for abdominal radiol-
ogists. Subsequent tools might also assist in the differentiation of 
LR3 and LR4 lesions into malignant and benign categories, reducing 
the number of follow-up imaging studies required to diagnose true 
HCC from indeterminate nodules. This is particularly important in 
light of evolving data quantifying potential physical harms related 
to false-positive and indeterminate surveillance tests.88,89 In addi-
tion, further studies of post-treatment survival or recurrence will 
be needed in response to the increasingly wide array of HCC treat-
ments available. Replication of existing radiographic diagnostic and 
treatment criteria (eg LIRADs and modified Response Evaluation 
Criteria in Solid Tumours [mRECIST]) using radiomics, may be itera-
tively followed by eventual replacement of these criteria with more 
sophisticated and accurate radiomic based models. Ultimately, ra-
diomic models may also assist in guiding the selection of appropriate 
systemic or local-regional treatments based on an individual's radio-
logic, clinical, and genomic profiles. Alternatively, radiomic features 
could inform an overall treatment strategy for a patient with HCC, 
rather than treatment of an individual tumour, such as the decision 
of whether to pursue liver transplantation, or systemic versus lo-
coregional therapy. Evaluation of treatment response and analysis 
of longitudinal imaging to evaluate how changes in imaging over 
time may predict future clinical events are relatively unexplored 
areas that could benefit from more objective analyses. The addition 
of novel molecular tracers and hepatocyte-specific contrast agents 
may offer a promising synergistic strategy, improving the capacity 
of radiomic tools to identify HCC at an early stage.

There are several required steps before radiomics can be con-
sidered ready for use in clinical applications. Automation of the 
manual segmentation and extraction process will be essential 
prior to a transition into real world use. Tools capable of provid-
ing consistent and accurate ROI selections are needed to reduce 
inter-reader variability in tumour segmentation. This would also 
streamline the currently labour-intensive workflow and allow ra-
diomic models to provide an automatic readout that augments 
radiologist expertise without increasing time spent. Automated 

Author
CT/
MRI

N (Train/
Valid)

Extraction 
tool Segment tool

Specific outcome 
measured Statistical result

Clinical 
model RQS

Zhang
2019

MRI 100 Internal Semi-
automatic 
VOI

Prediction of early 
recurrence after 
hepatectomy (individual 
radiomic features only, 
<3 cm vs >3 cm)

0.867 
skewness + entropy

No 10

Zhang
2019

MRI T: 108
V: 47

Internal Semi-
automatic 
VOI

Prediction of early 
recurrence after 
hepatectomy

0.757 Training for ER
0.728 Validation for ER

Clinical 
Model

12

Ahn
2019

MRI 179 Internal Manual ROI Prediction of early 
recurrence after 
hepatectomy (combines 
agnostic and radiomic)

0.83 for 
radiomic + agnostic 
features for ER

No 6

Abbreviations: AUC, area under the curve; CT, computed tomography; DFS, disease free survival; ER, early recurrence; LR, log rank; MRI, magnetic 
resonance imaging; MV, multivariate; OS, overall survival; ROI, region of interest.
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segmentation would also address the challenges in patients with 
multiple tumours with varying features and underlying tumour 
biology. Complex models capable of automatically segmenting 
the entirety of the patient's imaging, such as convolutional neural 
networks, would be necessary to provide a holistic radiomic anal-
ysis. A second critical step will be the development of consensus 
around feature extraction methods. Currently, the field of radio-
mics is limited by the fact that no two studies can be directly com-
pared against one another. Proprietary feature extraction tools 
result in thousands of quantitative variables that have no meaning 
outside of the context of a single research study. This reduces the 
ability to perform external validation and prevents the develop-
ment of cumulative knowledge around specific radiomic feature 
types. A rigorous approach to standardisation, methods sharing 
and increased transparency will be critical to the expansion of 
radiomics beyond single-institution proof-of-concept studies. To 
create large-scale training datasets in HCC would require the cre-
ation of a centralised image biorepository of HCC scans across 
many institutions. The NCI’s National Biomedical Image Archive 
(NBIA) programme provides a national image database that seeks 
to accelerate quantitative imaging resources and has been used 
to generate open-source datasets in lung, breast, and head and 
neck cancers.90 Data sharing in HCC radiomics would enable 
cross-centre validation of models and longitudinal adjustment 
with follow-up data available over time. Automated deidentifica-
tion of imaging data would be necessary for compliance with pa-
tient privacy regulations (eg the Health Insurance Portability and 
Accountability Act), and several existent software packages exist 
that can reliably deidentify images prior to sharing. External vali-
dation is the most critical first step towards realizing the potential 
of radiomics in the management of HCC, and should be included if 
feasible in all published radiomic models.

Although early results are encouraging, the limitations of radio-
mic studies in the current era are substantial. Standardizing analytical 
methods and image acquisition techniques will be critical to repro-
ducibility across institutions. The Quantitative Imaging Network (QIN) 
and Radiologic Society of North America are developing consensus 
protocols and digital phantoms that can help bring radiomics into the 
realm of clinical utility.91 Test-retest studies of stable phantom objects 
within a given scanner have estimated reproducibility in only approx-
imately 30% of MRI features, while multi-scanner phantom studies 
have shown feature reproducibility ranging from 15% to 85%.92,93 
MRI, in particular, is subject to fundamental intensity inhomogeneity 
across static fields, as well as large amounts of motion artefact, noise, 
and machine-to-machine variation in acquisition parameters.94 As a 
result, voxel intensity is often not directly comparable between MRI 
images and the reproducibility of feature extraction has thus far been 
poor.95 Quantitative texture analysis is sensitive to scanner variability, 
and minor changes between institutions could create major distor-
tions in model output. Many of the studies in this review are from 
Asian cohorts, which have a higher frequency of non-cirrhotic HCC. 
Derived textural features may differ between Asian and Western co-
horts, due to differences in underlying disease aetiology and fibrosis 

burden. Finally, the extraction of high-dimensional data from a small 
sample results in a high risk of overfitting during model creation and 
high false-positive rate.96 It is notable that only 2 of 32 models re-
porting ROC curves in our study had an AUC below 0.70, suggesting 
possible bias in reporting and over-fitting of data. The reduction of 
radiomic features to a smaller set of consistently evaluated variables 
would improve reliability across studies. Although high-throughput 
imaging data has great promise, the field of radiomics has not yet 
conclusively demonstrated the capacity to accurately reflect tissue 
biology. To reach clinical relevance, radiomics will need to develop rig-
orous cross-centre standardisation protocols and evidence of a repro-
ducible, generalisable outcome across multiple contexts.97,98 Larger 
cohorts are needed to improve model performance by reducing over-
fitting while retaining dimensionality of the models.

7  | CONCLUSIONS

Quantitative image analysis has the potential to transform the 
early detection and management of HCC. There is a critical need 
for non-invasive techniques to assist in both diagnostic and prog-
nostic decision-making. Early work in radiomics has demonstrated 
substantial promise, particularly in the prediction of microvascu-
lar invasion and post-hepatectomy outcomes. There are, however, 
fundamental issues that prevent the clinical application of this 
technology. Unrecognised errors can introduce bias and unrecog-
nised variability in quantitative analysis. Increased standardisation, 
external validation of models, and rigorously designed prospective 
studies will be essential to the growth and maturation of radiomics 
in HCC.
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