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Interest (VOI), Training Set (T), Validation Set (V), Radiomic Quality Score (RQS)

ABSTRACT: 

Background: Advances in imaging technology have the potential to transform the early diagnosis 

and treatment of hepatocellular carcinoma (HCC) through quantitative image analysis. 

Computational ‘radiomic’ techniques extract biomarker information from images which can be 

used to improve diagnosis and predict tumor biology. Aims: We performed a systematic review of 

literature on radiomic features in HCC diagnosis and prognosis, with a focus on reporting metrics 

and methodologic standardization. Methods: A systematic review was performed of all full-text 

articles published from inception through December 1, 2019. Standardized data extraction and 

quality assessment metrics were applied to all studies. Results: A total of 54 unique studies were 

included for analysis. Radiomic features demonstrated good discriminatory performance to 

differentiate HCC from other solid lesions (c-statistics 0.66-0.95), predict microvascular invasion 

(c-statistic 0.76-0.92), predict early recurrence after hepatectomy (c-statistics 0.71-0.86), and 

predict prognosis after locoregional or systemic therapies (c-statistics 0.74-0.81). Common 

stratifying features for diagnostic and prognostic radiomic tools included analyses of imaging 

skewness, analysis of the peritumoral region, and feature extraction from the arterial imaging 

phase. The overall quality of the included studies was low, with common deficiencies in both 

internal and external validation, standardized imaging segmentation, and lack of comparison to a 

gold standard. Conclusions: Quantitative image analysis demonstrates promise as a non-invasive 

biomarker to improve HCC diagnosis and management. However, standardization of protocols 

and outcome measurement, sharing of algorithms and analytic methods, and external validation 

are necessary prior to widespread application of radiomics to HCC diagnosis and prognosis in 

clinical practice.        

Introduction: 

Hepatocellular carcinoma (HCC) is the fourth most common cause of cancer-associated death 

worldwide and the fastest-growing cause of cancer death in the United States.1,2 The rising 
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mortality associated with HCC is driven in part by limitations in the screening and early detection 

of HCC. Most HCC is diagnosed at an advanced stage when curative treatment options are 

limited.3 There are few available diagnostic and risk stratification tools to prioritize at-risk 

populations for surveillance and early detection of HCC. The Liver Imaging Reporting and Data 

System (LI-RADS or LR) criteria was established to provide standardized criteria for the 

radiographic diagnosis of HCC.4 However, validation of these criteria remains limited and there 

are two categories of indeterminate nodules (i.e. LR3 and LR4) for which there is uncertainty 

regarding diagnostic approach.5 Biopsy for the diagnosis of HCC is not currently routinely 

recommended by guidelines due to the risk of tumor seeding, bleeding and sampling error.6 

Similarly, the only validated noninvasive prognostic markers for HCC are tumor staging and 

alpha-fetoprotein levels, both of which have significant limitations in approximating tumor 

biology.7,8 This is particularly important in light of recent data showing variation in tumor growth 

patterns, with one-fourth of HCC having rapid growth patterns and over one-third having indolent 

growth.9,10 There remains an unmet need for non-invasive biomarkers to aid in the early detection 

of HCC and prediction of tumor behavior. ‘Radiomics,’ a term that describes the ‘omics’ approach 

for analysis of imaging data, has emerged as a novel tool for of the diagnosis and prognosis of 

HCC.11  Radiomics leverages advanced computing tools to extract deeper and more granular data 

from imaging.12  Quantitative image features predictive of tumor behavior, treatment response, and 

overall outcomes have been identified in other malignancies including breast, pancreatic, and lung 

cancer.13-16 

Quantitative Imaging

Advanced image analysis is frequently divided into two categories: semantic and quantitative. The 

term ‘semantic’ refers to radiologist-derived image features such as the presence of internal 

arteries, hypodense halos, and tumor-liver difference.17,18  The clinical utility of semantic imaging 

features has been limited by labor-intensive extraction process and concerns about suboptimal 

inter- and intra-observer reliability (k-0.50-0.70).19  ‘Quantitative’ imaging features, also known as 

agnostic features, by comparison, are computer-derived mathematically extracted quantitative 

image characteristics of the tissue of interest.20 These are extracted by analytic software and can 

be categorized into morphologic  (shape) and statistical (first-order, second-order, and higher-

order) features based on complexity.20-23 Varying analytic approaches have been used for 

radiomics studies including traditional regression analysis or machine learning approaches to 

measure the association between voxel data and a clinical outcome of interest.

Radiomic analysis involves five primary steps, as outlined in Figure 1: image acquisition, tumor 

segmentation, feature extraction, feature selection, and model creation.24 Image acquisition refers 



This article is protected by copyright. All rights reserved

to the process of collecting and reconstructing imaging studies in a manner that minimizes 

variations in extracted numerical data.25 Tumor segmentation refers to the selection of regions of 

interest (ROI) around tumoral tissue. This can be performed either manually or with the 

assistance of semi-automatic contour selection tools.26  Tumor segmentation is a major source of 

inter-reader variability and can introduce biases in quantification.27 Feature extraction refers to the 

application of specialized software to derive quantitative descriptions of the voxel patterns in each 

image, generating thousands of individual variables. The distribution of the voxel intensity values 

is considered first-order features and the spatial relationship of the voxels, also known as texture 

analysis, is considered second-order features.28  Feature Selection is the process of using 

supervised or unsupervised statistical analysis to identify the variables most predictive of the 

desired outcome measure. Because of the large number of variables, radiomic studies must also 

perform considerable dimensionality reduction to reduce the risk of overfitting.29 Model Creation: 

refers to the creation of a nomogram or multivariable model using the most successful radiomic 

variables.  Generally, the best-performing models incorporate a combination of established clinical 

and pathological biomarkers with radiomic data.  In this systematic review, we aimed to evaluate 

the role of radiomic tools for diagnosis and prognosis of HCC. 

Methods:

With the assistance of a trained librarian (WT), we performed a systematic review of the literature, 

concordant with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-

Analyses) guidelines.30 The literature review captured studies from inception to December 1, 2019 

in PubMed Legacy, Embase.com, Scopus.com, Web of Science Core Collection (SCI-

EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED), 

Cochrane CENTRAL via Wiley, and clinicaltrials.gov. The full search strategy including MESH 

headings is listed in Supplementary Methods. References of selected articles were also reviewed 

to identify additional articles. Duplicates were eliminated automatically. Inclusion criteria included 

those that met the following criteria: 

(a) Evaluated HCC using an MRI or CT-based radiomics approach AND

(b) Provided information relating to diagnosis (detection, characterization) or

(c) Provided information relating to prognosis (microvascular invasion, response to 

therapy, survival, recurrence rate) 

Exclusion criteria included the following: (1) studies not available in English with translation, (2) 

non-peer reviewed articles (3) ultrasound based studies (4) studies without an outcome measure 

(5) studies exclusively focused on semantic imaging features. This search identified a total of 754 
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unique records, 116 articles were assessed for eligibility of which 54 met inclusion criteria. Figure 

2 describes our selection process and reasons for study exclusion.  

Two authors (E.H.T., B.M.) independently reviewed all papers for eligibility. Studies were 

categorized into five groups: diagnosis, prognosis, microvascular invasion (MVI), pathologic 

correlates, and treatment response. Data extraction using standardized forms was then performed 

by three authors (E.H.T., E.C., B.M.) independently and discrepancies were resolved by 

consensus. Data were intended for meta-analysis; however, due to large differences in 

techniques/methodologies between the studies this was not possible. 

Quality Assessment:

Two reviewers (E.H.T. and B.M.) applied the radiomics quality score (RQS) to assess radiomic 

studies on the basis of 16 components (score range 0-36). Each reviewer individually scored 

studies and discrepant results were adjudicated by consensus. The score is based on clinical 

utility, feature reduction, image protocol quality, multivariable analysis, gold standard comparison, 

cut-off analysis, discrimination statistics, multiple segmentations, biological correlates, calibration 

statistics, validation, prospective study, multiple timepoints, phantom studies, open science data, 

and cost-effectiveness analysis.31

Results

HCC Diagnosis

Of the 54 studies met eligibility criteria, 9 evaluated aspects of HCC diagnosis (Table 1). Four 

studies primarily focused on distinguishing hepatic hemangiomas from HCC.32-35  Mokrane et al 

evaluated 178 patients with indeterminate nodules and sought to categorize the nodules as high- 

or low-risk for HCC. They demonstrated an AUC of 0.74 in a training cohort and 0.66 in a 

validation cohort using CT scans.36 Dankerl et al demonstrated that radiomic tools could 

outperform radiologists at predicting lesion histology (benign vs malignant) with an accuracy of 

75.1% compared with a range of 52-74% for radiologists depending on level of experience.37 

Stocker et al also compared radiomic features against human radiologists, and demonstrated that 

a combination of 13 arterial phase features outperformed radiologists at distinguishing HCC from 

non-malignant tumors.38 The majority of diagnostic studies have relied on textural features alone, 

however, even simple textural features have not been directly comparable between protocols. 

Asayama et al demonstrated that the noncancerous hepatic parenchyma of livers with HCC 
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exhibits a consistent pattern of high kurtosis and low skewness on MRI, compared to patients 

without HCC, indicating that patients with HCC have features in the background parenchyma that 

can predict risk of HCC.39  Rosenkrantz et al found that high MRI skewness (a measure of lateral 

histogram distortion) in an indeterminate liver lesion was associated with the progression of 

indeterminate lesions to malignant HCC.40

Prediction of Prognosis

Seventeen studies evaluated HCC prognosis following hepatectomy (Table 2). These were 

primarily performed with CT imaging; five studies involved MRI. Eight studies evaluated prediction 

of early recurrence,41-48 and eight evaluated overall survival and recurrence-free survival,49-56 and 

one evaluated post hepatectomy acute liver failure.57 Radiomic models predicted early recurrence 

with AUCs that varied between 0.71 and 0.86. When only second-order textural features were 

included, skewness was the most commonly identified feature predictive of outcomes. Oh et al 

reported that skewness predicted overall survival with a HR of 10.96 (95% CI: 3.21-37.46), 

compared with microvascular invasion with a HR of 2.12 (95% CI: 1.06–4.25).49 Defour et al 

performed multivariable analysis of textural features in the portal-venous phase and found 

skewness to be associated with overall survival with a HR of 438.7 (95% CI: 2.44-78,968.25).52 

The majority of studies used higher-order radiomic features. Kim et al evaluated 168 patients 

using a 3-dimensional technique which extracted 3,903 radiomic features per patient and found 

that high-order feature analysis performed similarly to a combined clinical model (age, hepatitis C, 

alcohol use, cirrhosis, tumor capsule, and microvascular invasion) in predicting early recurrence.45 

The authors also demonstrated that the inclusion of 3mm of peritumoral tissue improved risk 

prediction over segmenting the tumor alone.45 Nine studies compared their radiomic tools against 

clinical models or created a combined model using both radiomic and clinical features. In all 

cases, the combined model was equal or superior to the clinical model alone. The characteristics 

of these studies are described in Supplementary Table 1. In one of the largest studies, Zhou et 

al compared a clinical model (based on serum alpha fetoprotein, vascular invasion, and non-

smooth tumor margin) against a combined model for prediction of early recurrence (ER) in 214 

patients and patients with HCC had differential background liver texture. The addition of a 21-

feature radiomics signature improved the clinical model AUC from 0.781 to 0.836 when clinical 

features were used in combination with radiomic data.43

Prediction of Microvascular Invasion

Microvascular invasion (MVI) is among the strongest predictors of outcomes following liver 

transplantation or hepatectomy for HCC.58,59. Seven studies evaluated radiomics as a tool for 

prediction of MVI on explant following hepatectomy.60-66 (Table 3) These studies reported AUCs 
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ranging from 0.76 to 0.91. Six of the studies evaluated their result against a clinical model, and in 

all cases the combined model performed comparably or better than the clinical model. Xu et al, in 

the largest study to date, evaluated CT scans from 495 patients and found that a combination of 

clinical, radiologic, and radiomic features predicted histologic MVI with an AUC of 0.909 in the 

training/validation and 0.889 in an separate test set.63 Clinical features included aspartate 

aminotransferase (AST) and alpha fetoprotein (AFP), while radiologist-derived features included 

non-smooth tumor margin, extrahepatic growth, ill-defined pseudo-capsule, and peritumoral 

arterial enhancement, as well as the presence of a previously published radio-genomic venous 

invasion signature. The authors also compared the use of the 3-dimensional VOI of the tumor only 

against a volume which extends 5mm in every direction from the tumor. Although MVI occurs 

primarily at the periphery of tumors, the inclusion of peritumoral tissue in the VOI did not improve 

on the prediction of MVI.63 To create a simple decision tool, Zhang et al published a nomogram for 

the prediction of MVI which includes a radiomic score and alpha fetoprotein, tumor type, 

peritumoral enhancement, arterial rim and internal arteries.65 This nomogram outperformed a 

clinical and radiologic model with an AUC of 0.858 vs. 0.729.  In the limited studies examining 

MRI radiomic tools, the arterial phase of the image predicted MVI more effectively than venous 

phase.63

Prediction of Pathologic and Molecular Correlates

Ten studies used radiomic features to visually identify the pathologic and genetic correlates of 

HCC. These include p53 mutation status, Ki-67, and CD8+ T-cell invasion. (Supplementary 

Table 2).67-76 In a landmark study by Kuo et al, the authors demonstrated an association between 

radiomic textural features and a doxorubicin drug response gene signature previously shown to 

be predictive of tumor stage.69  Chen et al demonstrated among 207 patients that radiomic 

features including the peritumoral region were associated with a validated ‘immunoscore.’ This 

score characterizes the tumor infiltrating lymphocyte population, and theoretically reflects the 

immune phenotype of the tumor microenvironment.67

Treatment Response

An additional 11 studies evaluated treatment response, primarily following local-regional therapy 

(LRT) (Supplementary Table 3).77-87 These studies had the most variability in quality, with a 

median RQS of 7. Most studies were focused on single textural features and just two studies 

involved clinical models for comparison. Kim et al demonstrated in 88 patients that a combination 

of clinical (Child-Pugh score, serum alpha fetoprotein, and tumor size) and radiomic features 

(surface area-to-volume ration, kurtosis, median, size zone variability) can predict post-TACE 

overall survival with a HR of 19.88 and 95% CI of 6.37-62.02.79 These findings were also seen in 
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other studies, in which radiomic features extracted from pre-treatment imaging (CT or MRI) for 

prediction of treatment response after TACE were compared to post-treatment response 

evaluation.80,87 Mule et al found post-Sorafenib overall survival correlated significantly with 

individual textural features.83

Assessment of Methodology

Radiomic methods varied significantly between studies. Among quantitative imaging studies, no 

two groups used the same extraction tool or segmentation process. A majority of studies used 

proprietary investigator-developed tools which are not publicly available. Study outcomes and 

reporting methods were heterogeneous.  More recently, groups have begun to transition to using 

software packages, such as Matlab, for data extraction. There was wide variation in the number of 

features extracted, ranging from 5 to 3,903.  Recent studies have also begun to transition from 2 

dimensional to 3 dimensional ‘volume of interest’ models as large-scale data analysis becomes 

streamlined. The use of manual and semi-automatic ROI selection tools also varied significantly 

between studies, and inter-rater reliability of ROI selection was rarely performed. Indistinct 

nodules represent a challenge because minor changes in ROI selection can substantially 

influence the radiomic signature generated.  A minority of studies performed internal validation 

experiments against a portion of their data set, but there were no examples of external validation 

using imaging derived from outside institutions. 

Radiomics Quality Scores

The range of radiomics quality scores reflect the large degree of heterogeneity which currently 

exists within the field. The median RQS was 9 and the range was 5-13 out of a possible 36 points. 

The most notable limitations were in studies of cost effectiveness analysis, phantom use, open 

publication of methods, and prospective study protocol. Quality adherence was highest for feature 

reduction and discrimination statistics. Notably, the quality has improved over time and studies 

performed in 2019 consistently scored higher than prior years, primarily through the incorporation 

of validation cohorts, although most were internal and not external validation with some continued 

risk of overestimation of model performance.

Discussion

Quantitative image analysis has the potential to transform the early detection and management of 

HCC. Because high-resolution cross-sectional imaging is already widely available, radiomics has 

the ability to improve HCC management more rapidly than novel molecular biomarkers. We found 

radiomic tools to date have been studied primarily for their ability to predict overall survival and 

early recurrence following hepatectomy and have demonstrated good predictive accuracy, with 
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AUCs exceeding 0.80; however, many of these models have not been tested in validation cohorts 

including none being externally validated. Fewer studies evaluated response to non-surgical 

treatments or association with molecular biomarkers, although the ones to date have also 

demonstrated promising accuracy. As methodology has improved, studies have progressed from 

simple textural features to thousands of three-dimensional higher-order variables. Studies to date 

have been limited by small, single-center studies with heterogeneous methods and lack of 

validation cohorts.

The largest gaps in the use of radiomic technology are in early detection and diagnosis. Only 9 of 

54 radiomic studies focused on aspects of HCC diagnosis. Those studies were of variable quality 

and performed simple radiologic tasks such as distinguishing hepatic hemangiomas from HCC. 

The next frontier for HCC radiomics will be to assist radiologists with liver nodule risk stratification. 

This may initially involve the automation of LI-RADS classification, a task which is relatively simple 

but burdensome for abdominal radiologists. Subsequent tools might also assist in the 

differentiation of LR3 and LR4 lesions into malignant and benign categories, reducing the number 

of follow-up imaging studies required to diagnose true HCC from indeterminate nodules. This is 

particularly important in light of evolving data quantifying potential physical harms related to false-

positive and indeterminate surveillance tests.88,89 In addition, further studies of post-treatment 

survival or recurrence will be needed in response to the increasingly wide array of HCC 

treatments available. Replication of existing radiographic diagnostic and treatment criteria (e.g. 

LIRADs and modified Response Evaluation Criteria in Solid Tumors [mRECIST]) using radiomics, 

may be iteratively followed by eventual replacement of these criteria with more sophisticated and 

accurate radiomic based models. Ultimately, radiomic models may also assist in guiding the 

selection of appropriate systemic or local-regional treatments based on an individual’s radiologic, 

clinical, and genomic profiles. Alternatively, radiomic features could inform an overall treatment 

strategy for a patient with HCC, rather than treatment of an individual tumor, such as the decision 

of whether to pursue liver transplantation, or systemic versus locoregional therapy. Evaluation of 

treatment response and analysis of longitudinal imaging to evaluate how changes in imaging over 

time may predict future clinical events are relatively unexplored areas that could benefit from more 

objective analyses. The addition of novel molecular tracers and hepatocyte-specific contrast 

agents may offer a promising synergistic strategy, improving the capacity of radiomic tools to 

identify HCC at an early stage. 

There are several requisite steps before radiomics can be considered ready for use in clinical 

applications. Automation of the manual segmentation and extraction process will be essential 

prior to a transition into real world use. Tools capable of providing consistent and accurate ROI 

selections are needed to reduce inter-reader variability in tumor segmentation. This would also 
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streamline the currently labor-intensive workflow and allow radiomic models to provide an 

automatic readout that augments radiologist expertise without increasing time spent. Automated 

segmentation would also address the challenges in patients with multiple tumors with varying 

features and underlying tumor biology. Complex models capable of automatically segmenting the 

entirety of the patient’s imaging, such as convolutional neural networks, would be necessary to 

providing a holistic radiomic analysis. A second critical step will be the development of consensus 

around feature extraction methods. Currently the field of radiomics is limited by the fact that no 

two studies can be directly compared against one another. Proprietary feature extraction tools 

result in thousands of quantitative variables that have no meaning outside of the context of a 

single research study. This reduces the ability to perform external validation and prevents the 

development of cumulative knowledge around specific radiomic feature types. A rigorous 

approach to standardization, methods-sharing, and increased transparency will be critical to the 

expansion of radiomics beyond single-institution proof-of-concept studies. To create large-scale 

training datasets in HCC would require the creation of a centralized image biorepository of HCC 

scans across many institutions. The NCI’s National Biomedical Image Archive (NBIA) program 

provides a national image database which seeks to accelerate quantitative imaging resources and 

has been used to generate open-source datasets in lung, breast, and head and neck cancers.90 

Data sharing in HCC radiomics would enable cross-center validation of models and longitudinal 

adjustment with follow-up data available over time. Automated deidentification of imaging data 

would be necessary for compliance with patient privacy regulations (e.g. the Health Insurance 

Portability and Accountability Act), and several existent software packages exist that can reliably 

deidentify images prior to sharing. External validation is the most critical first step towards 

realizing the potential of radiomics in the management of HCC, and should be included if feasible 

in all published radiomic models.

Although early results are encouraging, the limitations of radiomic studies in the current era are 

substantial. Standardizing analytical methods and image acquisition techniques will be critical to 

reproducibility across institutions. The Quantitative Imaging Network (QIN) and Radiologic Society 

of North America are developing consensus protocols and digital phantoms that can help bring 

radiomics into the realm of clinical utility.91 Test-retest studies of stable phantom objects within a 

given scanner have estimated reproducibility in only approximately 30% of MRI features, while 

multi-scanner phantom studies have shown feature reproducibility ranging from 15-85%.92,93 MRI, 

in particular, is subject to fundamental intensity inhomogeneity across static fields, as well as 

large amounts of motion artifact, noise, and machine-to-machine variation in acquisition 

parameters.94 As a result, voxel intensity is often not directly comparable between MRI images 

and the reproducibility of feature extraction has thus far been poor.95 Quantitative texture analysis 
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is sensitive to scanner variability, and minor changes between institutions could create major 

distortions in model output. Many of the studies in this review are from Asian cohorts, which have 

a higher frequency of non-cirrhotic HCC. Derived textural features may differ between Asian and 

Western cohorts, due to differences in underlying disease etiology and fibrosis burden. Finally, the 

extraction of high-dimensional data from a small sample results in a high risk of overfitting during 

model creation and high false-positive rate.96 It is notable that only 2 of 32 models reporting ROC 

curves in our study had an AUC below 0.70, suggesting possible bias in reporting and over-fitting 

of data. The reduction of radiomic features to a smaller set of consistently evaluated variables 

would improve reliability across studies. Although high-throughput imaging data has great 

promise, the field of radiomics has not yet conclusively demonstrated the capacity to accurately 

reflect tissue biology. To reach clinical relevance, radiomics will need to develop rigorous cross-

center standardization protocols and evidence of a reproducible, generalizable outcome across 

multiple contexts.97,98 Larger cohorts are needed to improve model performance by reducing 

overfitting while retaining dimensionality of the models.

Conclusions:

Quantitative image analysis has the potential to transform the early detection and management of 

HCC. There is a critical need for non-invasive techniques to assist in both diagnostic and 

prognostic decision-making. Early work in radiomics has demonstrated substantial promise, 

particularly in the prediction of microvascular invasion and post-hepatectomy outcomes. There 

are, however, fundamental issues which prevent the clinical application of this technology.  

Unrecognized errors can introduce bias and unrecognized variability in quantitative analysis. 

Increased standardization, external validation of models, and rigorously designed prospective 

studies will be essential to the growth and maturation of radiomics in HCC.

Figure Legends:

Figure 1: Radiomics analysis workflow with common pitfalls

Figure 2: Literature search algorithm for generation of MRI and CT-based radiomic studies

Table 1: Studies evaluating radiomic tools for early diagnosis in HCC

Table 2: Studies evaluating radiomic tools for prognosis in HCC

Table 3: Studies evaluating radiomic tools for prediction of microvascular invasion in HCC

Supplementary Table 1: Studies comparing radiomic and clinical models.

Supplementary Table 2: Studies evaluating radiomic tools for prediction of pathologic features

Supplementary Table 3: Studies evaluating radiomic tools for prediction of post-treatment 

response
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Table 1: Studies evaluating radiomic tools for early diagnosis in hepatocellular carcinoma. CT: computed tomography; 

MRI: magnetic resonance imaging; AUC: area under the curve; HCC: hepatocellular carcinoma; HH: hepatic 

hemangioma; FNH: focal nodular hyperplasia; HA: hepatic adenoma

Author CT/MRI N 

(Train / 

Valid)

Extraction 

Tool

Specific Outcome 

Measured

Statistical Result Clinical 

Model

RQS

Dankerl

2013

CT 372 CADx Differentiation of benign vs. 

malignant lesion (nodule 

vs. HCC)

AUC 0.75 for textural 

features

AUC 0.91 for texture 

+ semantic

No 5

Song

2019

CT 84 Omni-

Kinetic

Differentiation of benign vs. 

malignant lesion (HCC vs. 

HH vs. FNH vs. HA)

AUC 0.927 for 

textural features

No 9

Stocker

2018

MRI 108 Matlab Differentiation of benign vs. 

malignant lesion

AUC 0.92 arterial 

phase

No 7

Li

2017

MRI T: 112

V:50

Internal Differentiation of HH from 

HCC

AUC 0.73 for  GLCM 

Energy-mean 

No 10

Oyama

2019

MRI T: 

50,50

V: 50

Matlab Differentiation of HH from 

HCC

AUC 0.95 textural 

features 

No 9
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Wu

2019

MRI 369 Internal Differentiation of HH from 

HCC

AUC 0.89 textural 

features

No 8

Mokrane

2019

CT T: 142

V: 36

Internal Categorize indeterminate 

nodule as high-risk or low-

risk for HCC

AUC 0.74 for training 

cohort

AUC 0.66 for 

validation cohort

No 10

Asayama

2016

MRI 84 Internal Comparison of individual 

textural features of non-

cancerous parenchyma 

between those with and 

without HCC

p = 0.0006 for 

kurtosis

p = 0.0152 for 

skewness

No 6

Rosenkrantz

2015

MRI 20 Internal Progression of 

hypovascular nodule to 

likely HCC on subsequent 

MRI

AUC 0.68 for 

skewness

No 7

Table 2: Studies evaluating radiomic tools for prediction of microvascular invasion in hepatocellular carcinoma. CT: 

computed tomography; MRI: magnetic resonance imaging; AUC: area under the curve; ROI: region of interest

Author CT

/MRI

N 

(Train

/

Valid)

Extracti

on Tool

Segment 

Tool

Specific Outcome 

Measured

Statistical Result Clinical 

Model

RQ

S

Bakr

2017

CT 28 Internal Manual 

ROI

Prediction of 

microvascular invasion

AUC 0.76 Texture 

analysis of MVI

Semanti

c Model

6

Ma

2019

CT T: 

110

V: 47

Matlab Manual 

ROI

Prediction of 

microvascular invasion 

(compares portal 

venous phase vs. 

arterial phase)

AUC 0.793 Portal 

Venous Phase for 

MVI

Clinical 

Model

10

Zheng

2017

CT 120 Matlab Semi-

Automatic 

ROI

Prediction of 

microvascular invasion 

(compares tumors < 

5cm vs. > 5cm)

AUC 0.80 for single 

feature (angle co-

occurrence matrix) if 

< 5cm

AUC 0.75 for single 

feature (local binary 

pattern) if > 5cm

Clinical 

Model

6

Xu

2019

CT T: 

350

V: 

145

Python Semi-

Automatic 

VOI

Prediction of 

microvascular invasion 

(combined clinical + 

agnostic + radiomic 

AUC 0.909 

training/validation

AUC 0.889 test

Clinical 

Model

11
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model)

Feng

2019

MRI T: 

110

V: 50

Internal Manual 

VOI

Prediction of 

microvascular invasion 

using both intra-tumoral 

and peritumoral regions

AUC 0.850 training

AUC 0.833 validation

No 12

Zhang

2019

MRI T: 

194

V: 73

Matlab Manual 

ROI

Prediction of 

microvascular invasion 

(radiomic score 

compared against 

nomogram)

AUC 0.784 training 

for rad signature

AUC 0.820 validation 

for rad signature

Clinical 

Model

12

Zhu

2019

MRI 142 Omni-

Kinetics

Manual 

ROI

Prediction of 

microvascular invasion 

(arterial phase vs. portal 

venous phase)

AUC 0.765 training 

for arterial 

AUC 0.773 validation 

for arterial

Clinical 

Model

11

Table 3: Studies evaluating radiomic tools for prognosis in hepatocellular carcinoma. CT: computed tomography; MRI: 

magnetic resonance imaging; AUC: area under the curve; ROI: region of interest; OS: overall survival; LR: log rank; 

DFS: disease free survival; MV: multivariate; ER: early recurrence

Author CT/MRI N 

(Train/

Valid)

Extraction 

Tool

Segment 

Tool

Specific Outcome 

Measured

Statistical Result Clinical 

Model

RQS

Akai

2018

CT 127 TexRAD Manual 

ROI

Model categorizes as 

high risk or low risk for 

OS and DFS

P < 0.0001 for OS

from Kaplan Meier 

LR

No 10

Chen

2017

CT 61 Matlab Manual 

ROI

Prediction of OS and 

RFS with individual 

features

P = 0.001 for OS  

from Kaplan Meier 

LR

No 9

Defour

2018

CT 47 TexRAD Manual 

ROI

Prediction of OS and 

RFS with individual 

textural features

P = 0.0084 of 

kurtosis in MV of 

OS

No 6

Kiryu

2017

CT 122 TexRAD Manual 

ROI

Prediction of OS and 

RFS with individual 

textural features

P < 0.001 of 

entropy in Kaplan-

Meier LR of OS

No 7

Peng

2018

CT T: 113

V: 64

IBEX Semi-

automatic 

ROI

Radiomic score used 

to categorize as high 

risk or low risk for OS 

and DFS 

P < 0.0001 of 

model in Kaplan-

Meier LR of OS

Clinical 

Model

13

Guo

2019

CT T: 93

V: 40

Python Semi-

automatic 

VOI

Radiomic model as a 

predictor of RFS

0.743 Training for 

RFS

0.705 Validation 

Clinical 

Model

10
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for RFS

Zheng

2019

CT T: 212

V: 107

Matlab Manual 

ROI

Radiomic score and 

radiomic-score based 

nomograms used to 

predict OS

0.714 Training for 

OS

0.71 Validation for 

OS

Clinical 

Model

12

Cai

2019

CT T: 80

V: 32

Internal Semi-

automatic 

VOI

Radiomic score used 

to predict post-

hepatectomy acute 

liver failure 

0.822 training for 

post-hepatectomy 

acute liver failure

0.762 validation 

for post-

hepatectomy 

acute liver failure

Clinical 

Model

10

Oh

2019

CT 81 TexRAD Manual 

ROI

Prediction of DFS with 

individual textural 

features

 P < 0.001 for 

skewness 

(SSF2.0) in MV of 

DFS

No 9

Ning

2019

CT T: 225

V: 100

Matlab Semi-

automatic 

VOI

Prediction of early 

recurrence after 

hepatectomy

0.817 Training for 

ER

0.719 Validation 

for ER

Clinical 

Model

9

Shan

2019

CT T: 109

V: 47

Internal Manual 

ROI

Prediction of early 

recurrence after 

hepatectomy (models 

compare peritumoral 

and tumoral features 

against tumor 

enhancement)

0.80 Training for 

ER

0.79 Validation for 

ER

No 11

Zhou

2017

CT 214 Matlab Manual 

ROI

Prediction of early 

recurrence after 

hepatectomy

(summary model 

used)

0.836 for ER Clinical 

Model

11

Hui

2018

MRI 50 Matlab Manual 

ROI

Prediction of early 

recurrence after 

hepatectomy 

(individual radiomic 

features only)

0.82 for S(0,3)

SumofSqs for ER

0.84 for S(4,0)

SumVarnc

No 10

Kim

2019

MRI T: 129

V: 39

Python Semi-

automatic 

VOI

Prediction of early 

recurrence after 

hepatectomy 

(peritumoral model)

0.716 for clinical + 

radiomic model in 

predicting ER

No 9
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Zhang

2019

MRI 100 Internal Semi-

automatic 

VOI

Prediction of early 

recurrence after 

hepatectomy 

(individual radiomic 

features only, <3cm 

vs. > 3cm)

0.867 skewness + 

entropy

No 10

Zhang

2019

MRI T: 108

V: 47

Internal Semi-

automatic 

VOI

Prediction of early 

recurrence after 

hepatectomy

0.757 Training for 

ER

0.728 Validation 

for ER

Clinical 

Model

12

Ahn 

2019

MRI 179 Internal Manual 

ROI

Prediction of early 

recurrence after 

hepatectomy 

(combines agnostic 

and radiomic)

0.83 for radiomic + 

agnostic features 

for ER

No 6
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