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Figure S1. Global monthly anomalies, annual anomalies, and detrended annual anomalies (blue, 
orange and green lines respectively). Panels show variability in globally summed: (a) terrestrial 
water storage (TWS); (b) Air temperature (TBOT); (c) Net ecosystem production (NEP); (d) Gross 
primary productivity (GPP), (e) Ecosystem respiration (ER); and (f) incoming solar radiation (FSDS 
simulated by CESM-esm over vegetated terrestrial grid cells over the end of the historical period 
(1960-2014).  
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Figure S2. Detrended annual anomalies of global carbon fluxes showing the dominance of 
terrestrial carbon fluxes of the total IAV of net carbon fluxes simulated by CESM. As in Fig. 1, we 
show the atmospheric CO2 growth rate reported by the global carbon project (green line; 
Friedlingstein et al. 2019), net ecosystem production (NEP) simulated CESM2-ESM (black line), 
the IAV of the total CESM2 surface CO2 flux (solid blue line), and the IAV of surface CO2 flux from 
terrestrial ecosystems (dashed blue line). Differences between the total surface and land CO2 
fluxes (solid and dashed blue lines) show the influence of IAV in ocean fluxes simulated by 
CESM2. Differences between land CO2 flux and NEP show the effect of fire and land use change 
on terrestrial carbon fluxes. Note, for convenience we inverted the sign of the atmospheric 
growth rate and surface CO2 fluxes (green and blue lines) so that positive anomalies show net 
land C uptake for all fluxes. 
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Figure S3. To decompose the annual cycle of detrended GPP time series simulated in each 
terrestrial grid cell, we used a singular value decomposition method (SVD; Golub and Reinsch 
1971; see also Butterfield et al. 2020). The SVD method applied to a 12 x 55 matrix (12 months 
by 55 years included in our analysis) of annual GPP anomalies (IAVy) resulted in three matrices, 
U, s, and V, the middle of which is a 55 x 55 diagonal matrix. The product of U and s provided a 
matrix of singular vectors (SVi), the elements of which reflect the month (m) of year (y), that 
represent common seasonal patterns or modes within the data. The matrix V contained weights 
(wy,i) that quantify how prominent a singular vector was for any given year. Thus, the simulated 
IAV time series for a grid cell in any given year could be fully reconstructed as a weighted sum of 
singular vectors. The singular vectors are ranked by the fraction of variance they explain in the 
GPP time series, and the first two describe the majority (~75%) of GPP variability. Thus, we 
focused our analysis on only these first two singular vectors. 
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Figure S4. Example grid cell (50°N, 70°W) showing the monthly climatology of GPP fluxes (green) 
and SVD vectors identified as amplification and redistribution vectors (blue and red, 
respectively). The amplification vector was identified by its higher correlation with the monthly 
climatology of GPP fluxes (a). For this grid cell, the redistribution vector (as well as the 
associated values for weights and theta) was reversed (b), so that positive springtime anomalies 
occurred before the negative summer anomalies.  

 
  

(a) (b) 
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Figure S5. Detrended annual anomalies of global carbon fluxes showing low IAV for net carbon 
fluxes simulated by offline CLM5 simulations forced with GSWP3 climate reanalysis data through 
2014 (see Lawrence et al. 2019).  As in Figures 1 and S2, we show the atmospheric CO2 growth 
rate reported by the Global Carbon Project, diagnosed from net biome production simulated by 
an ensemble of land models (green line; Friedlingstein et al. 2019), net ecosystem production 
(NEP) simulated CLM5 (black line).  Although the model captures the sign of terrestrial carbon 
cycle IAV observed in the atmospheric record, it does not simulate the appropriate magnitude of 
response to the 1986-87 or 1997-98 El Niño events. Note, for convenience we inverted the sign 
of the atmospheric growth rate (green line) so that positive anomalies show net land C uptake 
for all fluxes. 

 
 
 
 



 
 

7 
 

 

Figure S6. Characterization of GPP (top row), terrestrial water storage (TWS, middle row), and 
air temperature (TBOT, bottom row) simulated by CESM2-ESM. The first column (a, d, g) shows 
the standard deviation of detrended annual anomalies (units: gC m-2 y-1, kg H2O m-2, and K, 
respectively) The second column (b, e, h) shows the annual mean simulated between 1960-2014 
(units: gC m-2 y-1, kg H2O m-2, and K, respectively). The third column (c, f, i) shows coefficient of 
variation (the units %, calculated and the quotient of first and second columns ✕ 100). 
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Figure S7. Gridcell correlations of annual (a) Reco anomalies with anomalies of component fluxes 
autotrophic and heterotrophic respiration (AR and HR, respectively).  Panel (b) AR anomalies 
with anomalies of component fluxes: growth respiration, maintenance respiration, and from the 
fixation and uptake of nitrogen module (GR, MR, and FUN, respectively). Correlation coefficients 
and slopes show that Reco anomalies are most strongly correlated with AR anomalies, which are 
most strongly linked to the fluxes calculated by the FUN module in CESM2-esm. 
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Figure S8. Correlation coefficients between detrended annual anomalies that are simulated by 
CESM2-esm from 1960-2014. Panels show the correlation between (a) GPP and terrestrial water 
storage; (b) GPP and air temperature; and (c) terrestrial water storage and air temperature. Only 
statistically significant correlations (p < 0.05, when |r| > 0.226 for 55 years of data) are shown. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure S9. Fraction of variance in detrended GPP anomalies that was explained by (a) seasonal 
amplification or (b) seasonal redistribution vectors, as in Figure 4.  Globally, these two vectors 
explained 45% and 29% of the variance in monthly GPP anomalies, respectively. 
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Figure S10. Zonal mean climatology of monthly heterotrophic respiration (HR) and singular 
vectors associated with seasonal amplification and temporal redistribution of HR (grey, blue, 
and red lines respectively) for the northern hemisphere. As in Figs 5-6, panels show: (a) high 
latitude ecosystems, 50-80°N; (b, d) northern temperate mid latitudes, 20-50°N. The magnitude 
of the singular vectors is arbitrary (y-axis). Mean fraction of variance explained and 𝜃 values, 
which indicate the net impact on the integrated seasonal signal of HR for each singular vector, 
are also provided.  
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Table S1. Coefficients of variability in four North American ecoregions defined in Butterfield et al 
(2020): Temperate Mixed Forest (TMF, 43°–48° N, 84°–94° W), Boreal Coniferous Forest (BCF, 
54°–59° N, 94°–104° W ), Midwest Cropland (MC, 39°–44° N, 86°–96° W), and Canadian Great 
Plains (CGP, 50°–55° N, 105°–115° W). To compare with remote sensing variability estimates 
reported in Butterfield et al. (2020) we define the coefficient of variability as the ratio of the 
interannual standard deviations to the seasonal amplitude of the multi-year mean. Both model 
and remote sensing results use nine years of data, 2006-2014 for the model and 2007-2015 for 
the remote sensing. All values are reported in %. 

 
Region CESM2 GOME-2 SIF MODIS NIRv MODIS NDVI AVHRR NDVI 

TMF 5.2 2.3 1.6 2.2 3.2 

BCF 2.4 4.1 2.5 1.9 2.9 

MC 1.4 1.8 2.6 2.0 1.5 

CGP 2.6 2.8 3.1 2.2 2.5 
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Table S2. Mean Pearson’s correlation coefficients between SVD weights from the amplification 
vectors and seasonal anomalies in GPP, terrestrial water storage, and air temperature (Fig. 7) for 
regions. As in Fig. 6, regions here include high-latitude ecosystems, 50-80°N; northern 
temperate mid-latitudes, 20-50°N, tropics, 0-20°N and 0-20°S, respectively; and southern 
temperate mid-latitudes, 20-50°S. 

  GPP Terrestrial Water Storage Air temperature 

Region  DJF MAM JJA SON DJF MAM JJA SON DJF MAM JJA SON 

NH 
high -0.45 0.22 0.95 0.41 -0.05 -0.17 -0.34 -0.21 0.21 0.38 0.38 0.13 

NH mid 
-0.11 0.70 0.76 0.15 0.38 0.45 0.44 0.34 -0.03 -0.26 -0.30 -0.10 

NH 
tropics 0.50 0.67 0.67 0.45 0.54 0.59 0.50 0.40 -0.24 -0.44 -0.42 -0.27 

SH 
tropics 0.58 0.59 0.59 0.70 0.46 0.54 0.56 0.58 -0.31 -0.32 -0.15 -0.32 

SH mid 
0.68 0.59 0.42 0.69 0.49 0.51 0.51 0.48 -0.38 -0.28 -0.28 -0.26 

 
 
 

Table S3. Mean Pearson’s correlation coefficients between SVD weights from the redistribution 
vectors and seasonal anomalies in GPP, terrestrial water storage, and air temperature (Fig. 8) for 
regions.  As in Fig. 6, regions here include high-latitude ecosystems, 50-80°N; northern 
temperate mid-latitudes, 20-50°N, tropics, 0-20°N and 0-20°S, respectively; and southern 
temperate mid-latitudes, 20-50°S.  

  GPP Terrestrial Water Storage Air Temperature 

Region DJF MAM JJA SON DJF MAM JJA SON DJF MAM JJA SON 

NH 
high -0.05 0.46 -0.11 -0.40 -0.18 -0.16 -0.24 -0.25 0.30 0.30 0.22 0.04 

NH mid 
0.15 0.47 -0.33 -0.41 -0.17 -0.22 -0.40 -0.32 0.33 0.31 0.33 0.21 

NH 
tropics 0.38 0.43 0.10 -0.11 0.29 0.31 0.24 0.15 -0.13 -0.25 -0.16 -0.08 

SH 
tropics -0.06 0.03 0.31 0.42 0.12 0.20 0.29 0.38 -0.01 -0.13 -0.06 -0.26 

SH mid 
-0.30 -0.30 0.13 0.28 -0.13 -0.01 0.08 0.10 0.07 -0.01 -0.11 -0.22 

 


