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Key Points 

● Simulated net carbon fluxes show low interannual variability because of low tropical 

variability and high correlation in component fluxes  

● Seasonal amplification and redistribution of fluxes characterize dominant modes of 

carbon cycle variability, consistent with observations 

● Seasonal redistribution is characterized by warm springs, dry summers, and can result in 

a net carbon loss from land 

 

Abstract 

Earth system models are intended to make long-term projections, but they can be evaluated at 

interannual and seasonal time scales. Although the Community Earth System Model (CESM2) 

showed improvements in a number of terrestrial carbon cycle benchmarks, relative to its 

predecessor, our analysis suggests that the interannual variability (IAV) in net terrestrial carbon 

fluxes did not show similar improvements. The model simulated low IAV of net ecosystem 

production (NEP), resulting in a weaker than observed sensitivity of the carbon cycle to climate 

variability. Low IAV in net fluxes likely resulted from low variability in gross primary 

productivity (GPP)—especially in the tropics—and a high covariation between GPP and 

ecosystem respiration. Although lower than observed, the IAV of NEP had significant climate 

sensitivities, with positive NEP anomalies associated with warmer and drier conditions in high 

latitudes, and with wetter and cooler conditions in mid and low latitudes. We identified two A
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dominant modes of seasonal variability in carbon cycle flux anomalies in our fully coupled 

CESM2 simulations that are characterized by seasonal amplification and redistribution of 

ecosystem fluxes. Seasonal amplification of net and gross carbon fluxes showed climate 

sensitivities mirroring those of annual fluxes. Seasonal redistribution of carbon fluxes is initiated 

by springtime temperature anomalies, but subsequently negative feedbacks in soil moisture 

during the summer and fall result in net annual carbon losses from land. These modes of 

variability are also seen in satellite proxies of GPP, suggesting that CESM2 appropriately 

represents regional sensitivities of photosynthesis to climate variability on seasonal time scales.  

Plain Language Summary 

Earth system models that are intended to make climate change projections also represent the 

global exchange of carbon dioxide (CO2) between the atmosphere, oceans, and land. As such, the 

growth rate and variability of CO2 concentrations in the atmosphere provide a robust 

measurement to evaluate models. We looked at the interannual variability of terrestrial carbon 

fluxes and their sensitivity to variations in temperature and water that were simulated by the 

Community Earth System Model (CESM2) and compared them to observations. We found that 

the model underestimates the interannual variability of net terrestrial carbon fluxes, especially in 

the tropics. We also identified two modes of variability that correspond to an increase in summer 

land carbon uptake (amplification) and a change in the seasonal timing (redistribution) of land 

carbon fluxes. Notably, seasonal redistribution was initialized by warmer springs that increased 

early-season productivity, but subsequent water limitations in the summer and fall resulted in 

lower-than-average productivity over the growing season and net annual C losses to the 

atmosphere. Similar patterns of seasonal amplification and redistribution are seen in satellite 

observations of photosynthesis, suggesting that the model is realistically simulating 

characteristics of terrestrial ecosystems necessary for capturing carbon cycle-climate feedbacks.  
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1. Introduction 

Terrestrial ecosystems continue to provide a sink for about a quarter of anthropogenic carbon 

dioxide (CO2) emissions (Ballantyne et al., 2012; Friedlingstein et al., 2019), but the long-term 

strength and locations of this sink remain uncertain (Gaubert et al., 2019; Schimel, Stephens & 

Fisher 2015; Tagesson et al., 2020). The net terrestrial flux of CO2 to or from the atmosphere 

depends on the balance between much larger carbon fluxes that are driven by plant productivity, 

ecosystem respiration, and disturbances like fire (Keppel-Aleks et al., 2014). Observational 

constraints on these gross fluxes are difficult to make globally, which results in persistently high 

uncertainty in terrestrial carbon cycle projections (Anav et al., 2013; Arora et al., 2020; 

Friedlingstein et al., 2014, Liddicoat et al. 2021). Thus, capturing the appropriate carbon cycle 

sensitivities to climate driven variability at interannual and seasonal time scales over the 

observational record may be important to improving longer-term projections of terrestrial carbon 

balance.  

At decadal- to century-time scales, the net exchange of CO2 between the land and 

atmosphere remains one of the more robust benchmarks by which to evaluate the representation 

of terrestrial biogeochemistry in land models (Collier et al., 2018; Hoffman et al., 2014; Keppel-

Aleks et al., 2013). Separately, the trends in the seasonal amplitude of terrestrial CO2 fluxes 

provides insights to how global change drivers are altering the net exchange of terrestrial CO2 

with the atmosphere (Graven et al. 2013; Ito et al 2014; Piao et al. 2018). Indeed, successive 

generations of the Community Earth System Model (CESM) and its terrestrial component, the 

Community Land Model (CLM) show improvements in the globally integrated net terrestrial 

carbon flux over the historical period (Bonan et al., 2019; Danabasoglu et al., 2020; Lawrence et 

al., 2019). The model also shows improved seasonal amplitude of terrestrial CO2 fluxes and 

better represents their increasing trend over the observational record (Lawrence et al. 2019; 

Lombardozzi et al. 2020). This suggests that the model adequately represents dominant features 

influencing longer-term trends in the terrestrial carbon cycle dynamics, namely land-use and land 

cover change as well as potential CO2 fertilization effects (Wieder et al., 2019). These longer-

term benchmarks, however, offer little insight into the environmental sensitivities of terrestrial 

CO2 fluxes at annual to seasonal time scales, which are important for understanding carbon cycle 

sensitivities to climate variability and potential carbon cycle responses to future climate change.  
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Measurements of the atmospheric CO2 growth rate provide an integrated estimate of the 

interannual variability (IAV) in global carbon cycle (Keeling et al., 1995; Zeng et al., 2005). 

Since much of the observed IAV is driven by terrestrial processes (Bousquet et al., 2000), 

variability in the atmospheric CO2 record provides a top-town constraint on the climate 

sensitivity of land-atmospheric CO2 exchange (reviewed by Piao et al., 2020). Specifically, 

natural climate variability in temperature and precipitation over land are the primary drivers of 

terrestrial carbon cycle variability that can be inferred from IAV in the atmospheric CO2 growth 

rate. This includes the temperature sensitivity of gross primary productivity (GPP) and 

ecosystem respiration (Reco) on net ecosystem exchange (NEE, calculated as GPP - Reco), 

especially in the tropics (Anderegg et al., 2015; Ballantyne et al., 2017; Cox et al., 2013; Liu et 

al., 2017; Rödenbeck et al., 2018b; Wang et al., 2013). Meanwhile, other studies emphasize the 

importance of soil moisture variability on GPP and NEE, especially in arid and semi-arid 

ecosystems (Anderegg et al., 2015; Humphrey et al., 2018; Poulter et al., 2014). Jung et al. 

(2017) suggest that compensating moisture-driven variation in gross, local-scale fluxes (GPP and 

Reco), as well as spatial compensation in moisture anomalies among regions leaves a dominant 

temperature-driven signal in the IAV of land-atmosphere CO2 exchange. By using a mechanistic 

model we aim to provide simultaneous insights into the drivers of carbon cycle variability across 

a range of spatial scales, including finer spatial and temporal resolutions.  

Disentangling the contributions of gross carbon fluxes and their impact on the IAV of NEE 

remains a challenge. While GPP and Reco anomalies are strongly correlated, mounting evidence 

suggests that variance in NEE is more strongly correlated with variance in GPP than Reco 

(Baldocchi et al., 2018; Schwalm et al., 2010). Globally gridded estimates of net and gross 

carbon fluxes are derived from upscaled flux tower measurements (Beer et al., 2010; Jung et al., 

2011; Jung et al., 2017) or remote sensing (Alemohammad et al., 2017; Köhler et al., 2018; 

Running et al., 2004), but both of these tend to underestimate carbon cycle IAV (Jung et al., 

2020; O’Sullivan et al., 2020; Piao et al., 2020; Y. Zhang et al., 2018). Remote sensing products 

offer promise for diagnosing seasonal productivity responses to climate variability in the tropics 

and extra-tropics (Bowman et al., 2017; Buermann et al., 2018; Li and Xiao, 2019; Liu et al., 

2017; Schimel, Pavlick et al., 2015). Notably, Butterfield et al. (2020) found that while local to 

regional-scale IAV in productivity was poorly correlated among remote sensing products 

(between 2007-2015), they could identify seasonal modes of variability that shared common 
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features and environmental sensitivities. These included the: 1) Amplification of the seasonal 

cycle of GPP, which was associated with increases in summertime soil moisture availability and 

positive anomalies in GPP, and 2) Seasonal redistribution of GPP that was initially driven by 

warmer springtime temperatures—resulting in positive GPP anomalies—but that was followed 

by higher-than-average soil moisture stress in the summer and fall—resulting in negative GPP 

anomalies (see also Byrne et al. 2020).  Integrated over the growing season, the second mode of 

variability reflects climate driven shifts in the seasonal timing of photosynthesis, which has 

negligible changes in the annual C flux. 

Given improvements to the representation of terrestrial biogeochemistry in CESM2, relative 

to CESM1 (Bonan et al. 2019; Danabasoglu et al., 2020; Lawrence et al. 2019; Lombardozzi et 

al. 2020), we investigated the representation of carbon cycle variability at interannual and 

seasonal timescales in the model. Part of this work was motivated by findings of Lawrence et al. 

(2019), who noted that metrics for terrestrial carbon cycle interannual variability were degraded 

in CLM5, especially in the tropics, relative to previous versions of the model. Second, given new 

observational analysis that identified dominant modes of seasonal variability in regional 

productivity over the satellite record (Butterfield et al. 2020; Byrne et al. 2020) we explored the 

predictive model’s ability to simulate similar behavior in global-scale simulations. Thus, our 

aims were to: 1) Quantify the IAV of land carbon fluxes simulated over the historical period by 

CESM2-esm-hist and their sensitivity to climate variability; 2) Identify modes of seasonal 

variability in simulated carbon fluxes and their likely climate drivers.  

2. Methods 

2.1 Model simulations 

We analyzed simulations from the Community Earth System Model, version 2 (CESM2) that 

couples atmosphere, ocean, land, sea ice, land ice, and river transport components to simulate 

physical and biogeochemical conditions over historical and future scenarios (Danabasoglu et al., 

2020). Of greatest importance for the simulations analyzed here are the atmospheric and land 

components, which are each briefly described below. The atmosphere model in CESM2 is the 

Community Atmosphere Model, version 6 (CAM6) which applies the same Finite Volume 

dynamical core (Danabasoglu et al., 2020). Relative to previous versions of the model, CESM2 

shows an improvement in its representation of El Niño Southern Oscillation (ENSO) events and 

their effect on precipitation and temperature anomaly patterns (Meehl et al., 2020). The 



A
ut

ho
r 

M
an

us
cr

ip
t 

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

atmosphere and land models are run at a nominal 1° horizontal resolution (1.25° longitude by 

0.9° latitude) and are coupled every 30 minutes.  

The terrestrial component of CESM2 uses the Community Land Model, version 5 (CLM5; 

Lawrence et al., 2019). Briefly, these developments simulate transient agricultural expansion and 

land management (Lombardozzi et al., 2020), plant hydraulic stress (Kennedy et al., 2019), and 

improve the representation of plant nitrogen limitation (R. A. Fisher et al., 2019; Wieder et al., 

2019). We used the historical simulation of CESM2-esm-hist from 1850-2014 that has active 

biogeochemical representation of terrestrial carbon and nitrogen cycles and that also simulates 

the prognostic evolution of atmospheric CO2 concentrations based on fluxes with oceans and 

terrestrial ecosystems.  

As described in Danabasoglu et al. (2020), initial conditions for the land model and ocean 

model biogeochemical tracers in the non-ESM piControl experiment were generated using spin-

up runs of the land and ocean models, respectively. In these spin-up runs, the active atmospheric 

component was replaced with a data atmosphere that repeatedly cycled through twenty-one years 

of surface forcing that were extracted from a fully coupled CESM2 experiment. Twenty-one 

years of forcing were used to capture some aspects of interannual variability. The land model 

spin-up consisted of an accelerated decomposition (AD) mode segment and a subsequent 

synchronous spin-up segment. These segments were run for 252 and 1701 years respectively. 

The ocean model spin-up was applied to biogeochemical tracers. The ocean spin-up was run for 

1029 years and also utilized a Newton-Krylov solver, based on Lindsay (2017) to more 

completely spin up a subset of the biogeochemical tracers, including the carbon pools. The esm-

piControl was initialized from the piControl experiment using an incremental coupling approach. 

In an intermediate experiment, which was initialized from the piControl experiment, the carbon 

cycle of the surface components was coupled bidirectionally to a CO2 tracer in the atmospheric 

model. This intermediate experiment was run for 80 years, during which the surface 

biogeochemical parameterizations adjusted to the prognostic atmospheric CO2. The esm-

piControl experiment was initialized with the model state from the end of this intermediate 

experiment, and the prognostic CO2 was coupled to the radiative computations in the 

atmospheric model. The esm-hist experiments analyzed here were initialized from the esm-

piControl experiment.  The CESM2-esm historical simulations used CMIP6 forcings for 

anthropogenic emissions, biomass burning, and volcanic SO2 emissions from 1850-2014 
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described in Danabasoglu et al. (2020) as well as land use and land cover change described in 

Lawrence et al. (2019) following CMIP6 protocols outlined by Eyring et al. (2016).  

Using a single ensemble member of CESM2-esm-hist, we focused our analysis on carbon 

fluxes that are simulated during the end of the historical period (1960-2014), which overlaps 

with atmospheric CO2 measurements. We quantified variability in carbon fluxes at interannual 

and seasonal time scales and correlated these fluxes with anomalies in climate drivers 

(temperature and moisture). The model simulates gross fluxes of GPP and Reco, with the 

difference between them representing net ecosystem production (NEP). Positive values for NEP 

represent net terrestrial ecosystem uptake of carbon. We focused on NEP instead of net 

ecosystem exchange or net biome production (NEE and NBP, respectively), which include fluxes 

from fire, land use, and land management, because the CESM2-esm-hist simulations have 

unrealistically large fire carbon fluxes from land degradation in the tropics at the end of the 

historical period.  

2.2 Statistical Analyses 

2.2.1: Interannual variability 

We summed monthly carbon fluxes (NEP, GPP, and Reco) that were simulated from 

vegetated terrestrial grid cells to calculate accumulated annual fluxes and weighted them by grid 

cell area and land fraction to calculate global values. We similarly calculated mean annual 

temperature (TBOT) and terrestrial water storage (TWS) that was simulated by the model. The 

CESM2-esm results showed strong long-term trends in relevant variables (Fig. S1), so we 

subtracted linear trends and focused on the detrended anomalies from the climatological mean 

state for both monthly and annual data.  

The IAV was calculated as the standard deviation of annual results simulated from 1960-2014. 

We compared the IAV in global detrended anomalies of simulated CO2 fluxes, simulated land 

CO2 fluxes, and NEP to those observed in the atmospheric CO2 growth rate reported by the 

Global Carbon Project (Friedlingstein et al., 2019). As most of the variability in global CO2 

fluxes is driven by IAV in terrestrial fluxes (Fig. S2), we focus on the IAV of NEP and its 

component fluxes.  

Lagged correlations reveal teleconnections between modes of climate variability, like 

ENSO, that are associated with atmospheric CO2 anomalies and terrestrial CO2 fluxes (Braswell 

et al 1997, see also Lindsay et al. 2014).  Ecosystems, however, are responding to local climate 
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conditions, where Bloom et al (2020) also inferred significant ecosystem carbon cycle memory 

from lagged correlations with local climate anomalies. While both lagged responses are 

important features of terrestrial ecosystem response to climate variability, we focus here on 

documenting the immediate, lag-zero response of fluxes simulated by CESM2-esm. To 

characterize relationships in the data we calculated Pearson’s correlation coefficients and 

regression statistics between detrended anomalies in carbon fluxes, moisture, and temperature. 

We also calculated the grid cell variance and standard deviation of annual, detrended carbon 

fluxes to look at covariation between simulated fluxes (as in Baldocchi et al., 2018).  

2.2.2: Seasonal modes of interannual variability 

To decompose the annual cycle of carbon fluxes simulated in each terrestrial grid cell and 

identify modes of variability we used a singular value decomposition (SVD; Golub & Reinsch, 

1971 as in Butterfield et al., 2020). The SVD decomposed the time series of detrended flux 

anomalies into singular vectors (SVi), the elements of which reflect the month (m) of the year (y; 

Fig. S3). Vectors are ranked by the fraction of variance they explain in the time series. Each 

singular vector also receives a weight wi, one per year per singular vector, that quantifies the 

contribution from an individual singular vector to the observed IAV in any given year. Thus, the 

simulated IAV time series for a grid cell can be fully reconstructed as the weighted sum of 

singular vectors: 

IAV(y,m) = Σi wi(y) × SVi(m)      (1) 

Our SVD had 55 singular vectors (i, corresponding to the number of years in our analysis). 

Given recent publications that use and SVD to characterize seasonal variability in regional GPP 

fluxes (Butterfield et al. 2020; Byrne et al. 2020) we evaluated the model GPP using the same 

approach, but extend the analysis to also include grid-cell variation in NEP simulated by 

CESM2-esm, using the first two singular vectors to characterize the dominant modes of 

variability. We also calculated a redistribution metric, 𝜽, as the sum of elements from a singular 

vector divided by the absolute values of the sum of elements from that vector (Butterfield et al. 

2020).  

𝜽 = Σm SVi(m) / Σm |SVi(m)|        (2) 
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Thus, when 𝜽 = 0, NEP was redistributed within the growing season without changing the annual 

flux. By contrast, values of 𝜽 = 1 (or -1) indicate that every month had a positive (or negative) 

anomaly in GPP relative to the multi-year mean.   

We identified the mode of variability corresponding to a seasonal amplification of NEP as 

the vector whose elements most strongly correlated with annual climatology of NEP. At annual 

time scales, the amplification vector corresponds to a net increase (or decrease) in terrestrial 

NEP, compared to the monthly detrended climatological mean. The other mode of variability 

corresponded to a seasonal redistribution of NEP, which typically has both positive and negative 

phases. In the northern hemisphere, this typically results from anomalously high plant 

productivity in the spring that is followed by lower-than-average plant productivity in the 

summer and fall (Fig. S4 and results in section 3.2; see also Butterfield et al. 2020). Thus, the 

redistribution vector does not necessarily result in a change in the net annual carbon flux, but it 

indicates changes in the seasonal timing of ecosystem production, relative to the monthly 

detrended climatological mean. 

The 𝜽 values were used to confirm the appropriate identification of amplification and 

redistribution modes of variability in each grid cell (e.g., |𝜽|amplification > |𝜽|redistribution). To facilitate 

our analysis, we reversed the sign of singular vector elements, weights and 𝜽 values so that 

amplification vectors were positively correlated with the annual climatology of carbon fluxes and 

the redistribution vector started with a positive phase (Fig. S4). For visualization we calculated 

regional means for elements in the seasonal amplification and redistribution vectors across high, 

mid, and low latitude bands in both hemispheres (50-80°, 20-50°, and 0-20°, respectively). 

Finally, to link modes of carbon cycle variability back to climate anomalies we calculated 

seasonal means for NEP, air temperature, and terrestrial water storage anomalies. We looked at 

Pearson’s correlation coefficients between these seasonal anomalies and the SVD weights 

generated for amplification and redistribution vectors.  

3 Results 

3.1 Interannual variability 

Detrended anomalies of terrestrial net ecosystem production (NEP) that are simulated by 

CESM2-esm have low variability, compared to the atmospheric growth rate of CO2 measured 

since 1959 and reported by the Global Carbon Project (Friedlingstein et al., 2019; Figs. 1a, S2). 

The standard deviation of modeled NEP fluxes (0.47 Pg C y-1) is roughly half of the standard 
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deviation in the observed atmospheric CO2 growth rate (0.95 Pg C y-1; Friedlingstein et al., 2019; 

Rödenbeck et al., 2018a). Notably, the standard deviation of annual detrended NEP fluxes in the 

tropics (23°S-23°N) simulated by CESM2-esm is 0.24 Pg C y-1, roughly a factor of three lower 

than estimates from inversion models over land (90°S-25°N, 0.6-0.8 Pg C y-1; Rödenbeck et al., 

2018a). Note, for convenience we inverted the sign of the atmospheric growth rate so that 

positive anomalies in Fig. 1a show net land C uptake for both the model and observations. We 

also note that any temporal correlations between C flux anomalies in CESM2-esm simulations 

and atmospheric observations here are unintended, because CESM2-esm is experiencing a 

modeled atmosphere that does not necessarily match local, regional, or global conditions 

experienced during the historical record of atmospheric CO2 observations. The low IAV of net 

terrestrial C exchange with the atmosphere in CESM-esm could be driven by a number of factors 

that include low climate variability in the coupled model, low sensitivity of component fluxes 

(GPP and Reco) to climate variability, or high correlation between component fluxes at annual 

timescales that results in a dampening of IAV in the net carbon flux.  

To investigate the hypothesis that the low IAV of net terrestrial C exchange could be caused 

by low climate variability in in the coupled model, we plot in Fig. 1b the detrended annual 

anomalies of NEP (as in Fig. 1a) along with annual anomalies in terrestrial water storage (over 

vegetated grid cells) and tropical air temperatures over land (23°S - 23°N). The magnitude of 

terrestrial water storage and tropical air temperature variability simulated in CESM2-esm seems 

reasonable, compared to observations (𝜎 = 0.82 Tt H2O and 0.10 K, respectively; Fig. 1b; Cox et 

al., 2013; Humphrey et al., 2018). Consistent with the low carbon cycle variability simulated by 

CESM2-esm (Fig. 1a-b), however, the model shows weaker than observed carbon-cycle 

sensitivity to global and regional climate anomalies (Fig. 1c-d). The anomalies between NEP and 

terrestrial water storage are statistically significant (r = 0.63, p<0.001), but with a weaker than 

observed effect on carbon cycle variability (slope = 0.36 Pg C y-1 Tt H2O
-1 vs. r = 0.85, slope = 

1.3 Pg C y-1 Tt H2O
-1 in Humphrey et al., 2018). We similarly find significant correlations 

between simulated anomalies of NEP and tropical temperature (r = -0.58, p<0.001, slope = -2.6 

Pg C y-1 K-1), but this relationship is also weaker than observed estimates [Cox et al. (2013), r = -

0.65, slope = -5.1 Pg C y-1 K-1; Wang et al. (2013), r = -0.7, slope = -3.5 Pg C y-1 K-1] (see also 

Fig S5, Ballantyne et al., 2017; Rödenbeck et al., 2018a). Supplementary Fig. S5 shows that 

when forced with historical climate reanalysis land-only simulations with CLM5 (Lawrence et 
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al. 2019) capture the appropriate sign of terrestrial carbon cycle IAV observed in the atmospheric 

record, but not an appropriate magnitude of response, especially to the 1986-87 or 1997-98 El 

Niño events, resulting in low IAV of NEP fluxes ( = 0.41 Pg C y-1). These land-only 

simulations show similar IAV of terrestrial water storage and tropical air temperatures as results 

from the coupled model (𝜎 = 0.80 Tt H2O and 0.07 K, respectively), suggesting that the CESM2-

esm adequately represents climate variability over terrestrial ecosystems. 

Observed and simulated variability in NEP is driven by variability in component fluxes, 

gross primary productivity (GPP) and ecosystem respiration (Reco). The global mean IAV of 

detrended GPP and Reco anomalies were 1.4 and 1.1 Pg C y-1, respectively. These values for GPP 

are in line with those reported by Chen et al. (2017) who looked at the IAV of GPP from 

ensemble of land models and upscaled flux tower estimates (1.4 and 1.5 Pg C y-1, respectively).  

Elsewhere, O’Sullivan et al. (2020) found little agreement in the magnitude of IAV of GPP 

simulated by different ensemble of land models (which included CLM4.5), upscaled flux tower 

observations, and remote sensing derived light-use efficiency models, especially in highly 

productive tropical forests. This highlights the challenge in assessing global scale variability in 

plant productivity without direct observations. The challenges are even greater for ecosystem 

respiration, which has no remote sensing proxy and can only be indirectly inferred as the residual 

of other component fluxes, which are themselves highly uncertain (Basile et al. 2020; Chevallier, 

2018; Liu et al., 2017).  

Disaggregating the global fluxes simulated by CESM2-esm into their gridcell contributions 

provides another perspective on component fluxes simulated by the model. The mean standard 

deviation of detrended GPP and Reco anomalies (102 and 83.8 g C m-2 y-1, respectively) in 

CESM2 were about 10% of the mean fluxes (950 and 910 g C m-2 y-1, respectively). Again, these 

estimates of GPP IAV agree with those reported from an ensemble of land models (96 g C m-2 y-

1; O’Sullivan et al. 2020), but we note that the ensemble of prognostic models generally simulate 

lower IAV than FLUXCOM estimates and light-use efficiency models (see also Jung et al., 

2017). CESM2-esm shows high IAV of detrended GPP fluxes in tropical savannah regions, but 

relatively low coefficient of variation in humid tropical forests (Fig. S6). This feature is 

commonly seen in land models (O’Sullivan et al. 2020) and is inconsistent with observations 

from tropical forests (Bowman et al., 2017; Liu et al., 2017). Thus, we see the low IAV in 



A
ut

ho
r 

M
an

us
cr

ip
t 

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

simulated GPP fluxes as a major limitation in current land models, including CLM5, and note 

this as a priority area for future model developments.  

Outside of the tropics, we compared the coefficients of variability (defined as the ratio of the 

interannual standard deviations to the seasonal amplitude of the multi-year mean) in four 

ecoregions of North America as defined in Butterfield et al. (2020) from CESM2 and several 

remote sensing products (Table S1). The various remote sensing products show a factor of two 

difference in the range of variability in regional GPP estimates, and the magnitude of GPP 

variability simulated by CESM2 is comparable to these observationally derived estimates. This 

finding contradicts results reported by Wozniak et al. (2020), who found lower than observed 

variability in land-only simulations conducted with CLM5 at flux tower sites.  

Grid cell variance of NEP was strongly and positively correlated with the variance of 

component fluxes (Fig. 2a). Although variance in NEP is slightly better explained by GPP 

variance (r = 0.79, slope = 0.77) than Reco variance (r = 0.74, slope = 0.72; Fig. 2a), the 

anomalies of the component fluxes are highly correlated with each other (r = 0.94, slope = 0.80; 

Fig. 2b). By contrast, observations from FLUXNET show lower correlations between GPP and 

Reco anomalies (r = 0.70, slope = 0.42; Baldocchi et al. 2018). We acknowledge that estimates of 

GPP and Reco from flux tower observations are a modeled product derived from NEE 

measurements.  Moreover, these measurements are biased towards to relatively mesic 

temperature environments, creating a scale mismatch when used to evaluate results from a global 

model (Pastorello et al., 2017; Schimel, Pavlick et al., 2015). Regardless, the strong simulated 

correlation between simulated GPP and Reco likely accounts for some of the low interannual 

variability in land carbon uptake in CESM2-esm, since years with large GPP fluxes are 

necessarily compensated by Reco fluxes that are of nearly the same magnitude.  

Numerous developments went into CLM5 (described in Lawrence et al. 2019), but we briefly 

explore the underlying causes for the high correlation between GPP and Reco fluxes in the model 

that are shown in Figure 2. The components of Reco include autotrophic and heterotrophic 

respiration. We found that annual gridcell Reco anomalies were most strongly correlated with 

annual anomalies in autotrophic respiration fluxes (Fig S7a). The components of autotrophic 

respiration include growth respiration, maintenance respiration, and a new plant respiration flux 

that is associated with the fixation and uptake of nitrogen model (FUN; R. A. Fisher et al., 2019; 

Shi et al., 2016). Of these, we find that anomalies associated with FUN are most strongly 
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correlated with the autotrophic respiration fluxes simulated by CESM2-esm (Fig. S7b). From a 

mechanistic perspective, this high correlation makes sense, since for each additional increment in 

GPP, a corresponding increment in respiration is required to meet associated nitrogen demand 

associated with plant growth. This flux, however, occurs instantaneously in CLM5, and thus 

dampens potential IAV of net fluxes. In real ecosystems there is longer lag between 

photosynthesis and autotrophic respiration fluxes, notably those associated with plant nutrient 

uptake. Measuring and modeling these fluxes, especially related to non-structural carbohydrates 

(Martínez-Vilalta, et al 2016) remains an outstanding challenge.  

  The IAV of detrended NEP anomalies simulated in CESM2-esm is positively correlated 

with terrestrial water storage anomalies in low and mid latitude regions (50°S - 50°N), whereas 

high latitude ecosystems show a negative correlation between NEP and water storage anomalies 

(Fig. 3a). These patterns are reversed for correlations between NEP and air temperature 

anomalies (Fig. 3b). Over cold regions, and especially in boreal forests, the IAV of detrended 

NEP anomalies are positively correlated with air temperature anomalies. By contrast, over mid 

and low latitudes, especially in the Amazon, SE Asia, and N Australia, the IAV of detrended 

NEP anomalies are negatively correlated with air temperature anomalies. At annual time scales 

NEP anomalies show stronger correlations with GPP anomalies than they do with ecosystem 

respiration anomalies (Fig. 3c-d). Figure S8 shows correlations of annual GPP, total water 

storage, and temperature anomalies.  

 

3.2 Seasonal variability  

The first two vectors in the singular value decomposition explained 68% (area weighted 

mean) of the variance in NEP over the vegetated land surface. In general, the amplification 

vector explained the greatest fraction of variance in NEP, especially in arctic and boreal regions, 

as well as arid and temperate regions like the western North America (global area weighted mean 

= 39%; Fig. 4a). The redistribution vector explained the largest fraction of variation over more 

mesic regions in the mid latitudes, especially temperate deciduous forest and agricultural regions 

in the eastern North America and Europe (global weighted mean = 29%; Fig. 4b). Neither vector 

explained a large fraction of NEP variance over tropical forests, which generally showed low 

variability in detrended GPP anomalies (Fig. S6). Figure S9 shows SVD results for GPP, which 

explained 75% for the total variance in GPP (45% and 29%, for amplification and redistribution 
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vectors, respectively).  The modes of variability simulated by CESM2-esm with amplification 

and redistribution in western and eastern United States, respectively, are qualitatively similar to 

patterns observed in remote sensing estimates of GPP and flux inversions of NEE (Byrne et al. 

2020). 

Figure 5 shows the mean annual climatology of the NEP, as well as the monthly values for 

amplification and redistribution vectors (grey, blue, and red lines respectively) for latitudinal 

bins. High and mid latitudes are characterized by a distinct annual cycle of NEP that is strongly 

correlated with the amplification vectors describing NEP variability (Fig. 5a, b, d). The 

amplification vector describes 48%, 40%, and 32% of the NEP variability in arctic, northern 

hemisphere temperate, and southern hemisphere temperate latitudinal zones, respectively. By 

contrast, the redistribution vectors in these regions explain 26-28% of the NEP variability and 

are characterized by positive spring-time anomalies that are followed by negative NEP anomalies 

in the summer and fall, relative to the monthly climatology. In the tropics, the seasonal cycle is 

more muted, but seasonal amplification and redistribution vectors describe roughly 35% and 

28% of the variability in NEP, respectively (Fig. 5c, e). Figure 6 shows analogous plots for the 

mean monthly vectors for the SVD of GPP anomalies, which illustrates modes of seasonal 

variability in GPP that are simulated by CESM2-esm are similar to those reported from remote 

sensing observations (Butterfield et al., 2020; Byrne et al., 2020).  

The 𝜃 values calculated in the SVD show the net impact on the integrated seasonal signal of 

NEP. The mean 𝜃 values associated with the amplification vector are globally positive (Fig. 5). 

By contrast, the 𝜃 values associated with a seasonal redistribution of NEP are negative, or close 

to zero. This indicates that a negative, or little change in integrated seasonal signal of net carbon 

fluxes from seasonal redistribution of NEP. The redistribution vectors of GPP anomalies largely 

have 𝜃 values close to zero (Fig. 6). Notably, redistribution of GPP in temperate and boreal 

regions leads to no net change in the annual uptake of CO2 (Fig. 6).  Net fluxes, however, in high 

latitude ecosystems show an annually integrated loss of C from land to the atmosphere with 

seasonal redistribution of fluxes (𝜃 < 0, Fig. 5a). These dynamics are driven by concurrent, 

higher than average (positive) spring anomalies in heterotrophic respiration fluxes (Fig. S10) that 

cancel positive anomalies in GPP, resulting in negligible net C uptake in the spring (Fig. 5a). 
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More broadly, although the seasonal redistribution of carbon variability is a major source of 

global carbon cycle variability in the model, it would not be evident in more aggregated metrics 

of variability that only look at annual times-scales (e.g., Figs. 1, S5).    

To evaluate the environmental drivers of carbon cycle variability we conducted linear 

regressions on the weights of the amplification (Fig. 7) and redistribution (Fig. 8) vectors from 

SVD analysis (n = 55, for each year of the simulation) with seasonal anomalies of carbon fluxes, 

terrestrial water storage, and air temperature. We focus our analysis on GPP to isolate between 

the environmental sensitivities of component fluxes of NEP. The SVD weights for the 

amplification vector of GPP were strongly and positively correlated with the GPP anomalies 

during the peak of the growing season (Fig. 7, left column). This is expected, since the 

amplification vector was identified by its correlations with the climatology of GPP. As such, 

correlation coefficients are highest in the summer months (JJA and DJF for northern and 

southern hemispheres, respectively). Strong correlations are evident at other times (e.g., negative 

correlations between weights and GPP anomalies across high latitudes in DJF), but the 

magnitude of these anomalies is small relative to the annual cycle (see also Fig. 6a). Although 

terrestrial water storage and air temperature covary (Fig. S8c), high-latitude ecosystems 

generally show SVD amplification weights that are more positively correlated with air 

temperature anomalies and negatively correlated with water storage anomalies in JJA (Fig. 7, 

right and middle columns, Table S2). By contrast, across mid and low latitudes, SVD 

amplification weights for GPP are more strongly and positively correlated with wetter-than-

average conditions and negatively correlated with air temperature anomalies.  

The SVD weights for the redistribution vector were strongly and positively correlated with 

the GPP anomalies during the spring, with correlation coefficients that are highest in the MAM 

and SON (for northern and southern hemispheres, respectively; Fig. 8, left column). In the 

northern hemisphere, the positive phase of the redistribution vector is also more strongly 

correlated with warmer spring-time air temperatures (Fig. 8, right column) than terrestrial water 

storage. Subsequent GPP anomalies in the summer and fall, however, show negative correlations 

with SVD weights (see also Fig. 6). The summer (JJA) is still characterized by warmer, but also 

drier-than-average conditions (Fig. 8, middle column; Table S3) that also have negative GPP 

anomalies. By fall (SON), these negative GPP anomalies are only associated with drier-than-

average conditions. Thus, the positive phase of the redistribution vector associated with warmer-
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than-average springs is (nearly) canceled by the subsequent soil moisture stress and lower-than-

average productivity in the summer and fall, resulting in minimal change in annual productivity.  

 

4. Discussion 

4.1 Interannual variability 

Our results show that the magnitude of global carbon cycle interannual variability simulated 

by CESM2-esm is low, relative to measurements of IAV in the atmospheric CO2 growth rate 

(Fig. 1). The CESM2 has a good representation of precipitation and temperature anomaly 

patterns associated with tropical Pacific sea surface temperatures (Danabasoglu et al., 2020; 

Meehl et al., 2020). Accordingly, the magnitude of terrestrial water storage and air temperature 

variability agrees reasonably well with observations (Fig. 1; Cox et al., 2013; Humphrey et al., 

2018). This suggests that the model adequately represents global-scale climate variability, but 

that this climate variability does not generate enough terrestrial carbon cycle variability in the 

model.  

Because the timing of moisture or temperature variability in the coupled model are not 

expected to agree with the timing of these variations in the historical, observational record, we 

instead analyze relationships between carbon fluxes and climate anomalies. The model shows 

lower than observed sensitivity of net C fluxes to climate variability in moisture and temperature 

anomalies (Fig. 1c, d; Cox et al 2013; Humphrey et al. 2017; Wang et al. 2013). We appreciate 

that these studies all use slightly different time periods for their calculations, but we do not 

expect this to significantly alter the fundamental sensitivities of land carbon fluxes to climate 

variability. Including terrestrial CO2 fluxes associated with land use change and fire does not 

meaningfully change the magnitude of IAV of net carbon fluxes that are simulated by the model 

(Fig. S2; excluding the year 2010). The finding that simulated C fluxes in the coupled model 

have low IAV is generally consistent with land-only CLM5 simulations, which also shows 

weaker than observed carbon cycle variability when driven by reanalysis climate forcing data 

that reflects the historical drivers of the observed carbon cycle variations (Fig. S5), even when 

including C fluxes associated with land use change and fires (Lawrence et al., 2019). Notably, 

these offline simulations capture the sign of terrestrial carbon cycle IAV observed in the 

atmospheric record, the model does not simulate the appropriate magnitude of response to the 

1986-87 or 1997-98 El Niño events.   
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The IAV in net carbon fluxes results from variability in component fluxes (GPP and Reco) 

and their interaction (Baldocchi et al., 2018; Lasslop et al., 2010). Simulations from CESM2-esm 

show strong correlations between NEP and both of its component fluxes (Fig. 2a). Our results 

suggest that CESM2-esm shows notably low IAV of GPP fluxes in tropical forests (Fig. S6). 

This feature of the terrestrial C cycle simulated by CESM2-esm (and CLM5) is not consistent 

with observations that suggest tropical forests respond strongly to variability in the climate 

system (Bastos et al., 2018; Cavaleri et al., 2017; Liu et al., 2017; Rödenbeck et al., 2018a). 

Ensembles of land models typically do a good job of matching the IAV of the atmospheric 

growth rate (Ahlström et al., 2015; Friedlingstein et al., 2019; Poulter et al., 2014), but 

O’Sullivan et al. (2020) recently found that land models, including CLM4.5, generally simulate 

low IAV of GPP fluxes in tropical forests. This suggests broader deficiencies in land models’ 

ability to capture appropriate mechanisms for C cycle IAV, which are also evident in our 

CESM2-esm simulations.  Future work, therefore, should focus on understanding and improving 

the simulation of gross and net carbon cycle sensitivities to climate variability, especially in the 

humid tropics. Notably uncertainties in tropical forest IAV are related to how models like CLM 

simulate phenology, as well as temperature and moisture stress on photosynthesis and stomatal 

conductance.  Indeed, O’Sullivan et al (2020) emphasize this broader challenge in understanding 

the magnitude and drivers of tropical forest variability in models and observations. 

Low variability in plant productivity simulated by CESM-esm may extend beyond the 

tropics.  For example, Wozniak et al. (2020) found that maximum rates of GPP simulated by 

CLM in temperate deciduous forests were much lower than observations at a number of 

AmeriFlux sites. Indeed, measurements from flux towers suggest that brief periods of large 

photosynthetic uptake appear to be an important component of the IAV in net carbon exchange, 

especially in arid ecosystems (Fu et al., 2019; Kannenberg et al., 2020; Zscheischler et al., 2016). 

The failure of CLM5 to simulate high rates of GPP during favorable conditions suggests that the 

model needs parametric or structural changes in its representation of leaf-level photosynthesis, 

stomatal conductance, or canopy scaling to represent photosynthetic variability. Regional 

analyses comparing the IAV of GPP in CESM-esm simulations to remote sensing estimates 

suggest that the variation in GPP fluxes may be appropriate for four regions of North America 

(Table S1; Butterfield et al., 2020). Additional work is, however, needed to evaluate the 

feasibility of quantifying IAV of carbon cycle components from remote sensing products 
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(Bowman et al., 2017; Liu et al., 2017; Schimel, Pavlick et al., 2015) and comparing the result to 

Earth system models, especially in the tropics.   

Observations suggest that site-level variance in net carbon fluxes is more tightly correlated 

with GPP than Reco (Baldocchi et al., 2018), which is also true in our simulations (Fig. 3c-d). 

Broadly, we note that models like CLM tends to overestimate respiration fluxes because they do 

not simulate other ecosystem C losses pathways that may have longer residence times 

(Randerson et al., 2002; Trumbore, 2006; Ciais et al, 2020). The anomalies of GPP and Reco that 

are simulated by CESM2-esm are more strongly correlated than observations suggest (Fig 2b, 

Baldocchi et al., 2018). This high covariation between GPP and Reco offsets variance in either of 

the component fluxes and dampens the IAV of NEP in the model. These results also suggest that 

the current structure and parameterization of CESM2-esm, which dictates the high covariance of 

simulated GPP and Reco, should be revised (although evaluating Reco fluxes is challenging 

without spatiotemporally explicit estimates for model benchmarking). We suspect that several 

changes made to the land model for CESM2 have exacerbated this problem.  

First, CLM5 reduced the magnitude of growth respiration fluxes (Atkin et al., 2017) and 

reduced the total C fluxes associated with growth and maintenance respiration fluxes, relative to 

previous versions of the model (Lawrence et al., 2019). Second, the incorporation of the Fixation 

and Uptake of Nitrogen model (FUN) into CLM5 makes plants pay the carbon costs of nitrogen 

uptake (J. B. Fisher et al., 2010; R. A. Fisher et al., 2019; Shi et al., 2016). As currently applied 

in CLM5, the anomalies in FUN carbon costs are highly correlated with autotrophic respiration 

and, by extension, NEP anomalies (Fig. S7). This follows the logic currently built into the model, 

whereby plants instantaneously allocate new photosynthate to build biomass or meet respiration 

demands and remaining carbon is used for nitrogen acquisition by FUN.  In real ecosystems this 

expenditure of carbon to acquire nitrogen would occur below ground, with at least some of the 

carbon interacting with the soil matrix (e.g., through root exudates). Moreover, this transfer of 

fresh photosynthate belowground for nitrogen uptake does not occur instantaneously, as it does 

in the model.  Future developments should address these deficiencies in CLM5. Finally, the 

parameterization for soil organic matter turnover uses a higher minimum water potential, which 

increases the sensitivity of heterotrophic respiration fluxes to liquid soil water availability 

(Carvalhais et al., 2014; Koven et al., 2017; Lawrence et al., 2019; Z. Liu et al., 2018). 

Independently, these changes to growth respiration, FUN, and heterotrophic respiration fluxes 
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seem justified in their aim to represent terrestrial ecosystems more realistically, but together they 

likely served to reduce the IAV of net carbon fluxes that are simulated by CESM2-esm.  

The correlations of NEP and GPP anomalies with climate drivers in CESM2-esm show 

strong latitudinal patterns (Figs. 3, S8). Notably, correlations between carbon flux and terrestrial 

water storage anomalies are particularly strong in many arid, semi-arid and savannah regions 

(Figs. 3a, S8a), a finding that is consistent with work emphasizing moisture and precipitation 

controls over carbon cycle variability in arid regions (Ahlström et al., 2015; Humphrey et al., 

2018; Poulter et al., 2014). Concurrently, correlations between carbon flux and air temperature 

anomalies are stronger in arctic, boreal and temperate deciduous forests (Figs. 3b, S8b), which 

again is consistent with observations (discussed in section 4.2; Hu et al., 2019; Rödenbeck et al., 

2018b). We recognize that inferring the relative importance of climate controls over land-

atmosphere carbon exchange remain actively discussed in the literature (Cox et al., 2013; 

Humphrey et al., 2018; Jung et al., 2017; Piao et al., 2020; Poulter et al., 2014). Given the spatial 

and temporal heterogeneity of climate anomalies and timescales of ecosystem responses 

(Rödenbeck et al., 2018b; X. Zhang et al., 2013) we investigated the seasonal modes of carbon 

cycle variability that are simulated by CESM2-esm and their environmental covariates. 

 

4.2 Seasonal variability  

The timing of climate variations with respect to the climatological annual cycle plays an 

important role in the resulting seasonal and interannual variability of terrestrial carbon fluxes 

(Buermann et al., 2018). Satellite and flux tower observations in North America suggest that 

carbon cycle variability can be decomposed into modes of variability that are characterized by 

the amplification and redistribution of seasonal fluxes (Butterfield et al., 2020; Byrne et al., 

2020). Likewise, the SVD analysis identified similar modes of variability in NEP and GPP 

simulated in CESM2-esm (Figs. 4, S9). Amplification vectors are dominant in high latitude and 

arid ecosystems, while redistribution vectors that are dominant in temperate forests, boreal 

forests, and agricultural regions. Qualitatively, these patterns align with findings from 

(Butterfield et al., 2020) who found robust patterns in seasonal GPP variability from several 

satellite datasets that are correlated with regional anomalies of temperature and soil moisture 

availability. The similarity in spatial patterns of NEP and GPP variability form our SVD analyses 

illustrate the strong dependence of modeled NEP variability on GPP, but we recognize that 
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seasonal changes in ecosystem respiration that are also important drivers of carbon cycle 

variability (Basile et al., 2020; Commane et al., 2017; J. Liu et al., 2017; Z. Liu et al., 2018; 

Welp et al. 2007).  

In grid cells where the seasonal amplification of carbon cycle fluxes characterizes most of the 

flux variability the second vector from the SVD corresponds to a seasonal redistribution of the 

fluxes (Figs. 4-6). For example, in high latitude ecosystems the amplification vector describes 

nearly half of the variability in simulated NEP and is associated with a net increase (or decrease) 

in annual carbon fluxes (Fig. 5a). The weights associated with the amplification vectors are most 

strongly correlated with summertime GPP anomalies (Fig. 7, top row; Table S2), which is not 

surprising since we identified the amplification vector from the SVD by its correlation with the 

mean climatology of monthly fluxes simulated in each grid cell (section 2.2; Fig. S4). The 

weights from the amplification vectors in high latitude ecosystems also show a strong, positive 

correlation with summertime air temperature anomalies and a weaker, but still significant, 

negative correlation with terrestrial water storage anomalies. Thus, with warmer (and drier) 

summertime conditions, CESM2-esm simulated positive GPP anomalies in arctic and boreal 

ecosystems. Conversely, with cooler (and wetter) summertime conditions CESM2 simulated 

negative GPP anomalies in these regions. Our analysis cannot diagnose the proximal driver of 

the GPP anomalies, but given their higher correlation coefficient we assume that summertime 

temperature anomalies are driving the carbon cycle response, with declines in soil moisture 

subsequently resulting from higher evapotranspiration fluxes in warmer, more productive years.  

The amplification vector also describes a high fraction of the NEP and GPP variability in 

lower latitudes (Figs. 5-6). The weights from the GPP amplification vectors in mid and low 

latitudes shows a strong positive correlation with regional peak growing season GPP anomalies 

in their respective hemispheres (Fig. 7). In contrast to northern high latitudes, weights from GPP 

amplification vectors in these regions generally show stronger correlations with terrestrial water 

storage anomalies than they do for air temperature (Fig. 7, Table S2). Thus, in mid and lower 

latitudes wetter (and cooler) anomalies during the growing season maxima are associated with 

positive GPP anomalies, whereas drier (and warmer) anomalies are associated with negative 

GPP anomalies. While seasonal amplification vectors do explain most of the global carbon cycle 

variability, some regions are better characterized by a seasonal redistribution of carbon fluxes 

that do not necessarily change the annual carbon flux, just its timing. 
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The seasonal redistribution of NEP and GPP explains roughly a quarter of global variability 

in these fluxes (Figs 4-6, S9). This seasonal redistribution of net and gross carbon fluxes is the 

dominant mode of variability simulated by CESM2-esm in several regions, including temperate 

forests and agricultural regions in Eastern North America and Europe. The spatial cohesiveness 

of this pattern is most notable in the northern hemisphere, where the redistribution vector has 

positive spring GPP anomalies that are associated with warmer-than-average spring temperatures 

(MAM; Fig. 8).  These positive springtime GPP anomalies are subsequently compensated by 

lower-than-average photosynthesis rates in the summer and fall that tend to be associated with 

increasing soil moisture stress (JJA and SON; Fig. 8, Table S3). Drier summer and fall 

conditions could result from higher evapotranspiration in the spring, or also from increased early 

runoff due to earlier snowmelt during warm springs (Buermann et al., 2013). The ability of 

CESM2 to replicate the redistribution of NEP and GPP fluxes (Figs 4, 8; Byrne et al. 2020) 

suggests that the representation of plant phenology and water stress in CESM2 are likely 

responding in physically and ecologically realistic ways to simulated climate variability. With 

seasonal redistribution, potential increases in plant productivity from an early green-up that were 

facilitated by warmer spring temperatures are negated by soil moisture stress later in the growing 

season, leading to negligible changes in the annual rates of gross and net carbon uptake (mean 𝜽 

values close to zero for the redistribution vector; Figs. 5-6).  

The regions where a seasonal redistribution vector dominates carbon cycle variability in 

CESM2-esm (Figs. 4, S9) are also regions where native vegetation in the model use a stress 

deciduous phenology scheme, or they are under agricultural management, which is explicitly 

represented by CLM5 in CESM2 (Lawrence et al., 2019; Lombardozzi et al., 2020). Both 

phenology parameterizations use a growing degree day approach to simulate leaf emergence (or 

planting date and leaf emergence for the CLM5 crop model), so the strong correlation between 

air temperature anomalies and SVD weights are expected (Fig. 8, Table S3). We were more 

surprised, however, by the negative GPP and NEP anomalies that emerge later in the growing 

season. These seem to be driven by drier- and warmer-than-average conditions that are consistent 

with satellite observations of vegetation greenness (Buermann et al., 2013; Buermann et al., 

2018). Notably, redistribution vectors diagnosed from solar induced fluorescence (SIF) derived 

GPP in North America are tightly linked with spring (and summer) temperature anomalies 

(Butterfield et al., 2020; Byrne et al., 2020; Table S1). The larger influence of seasonal 
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redistribution in temperate latitudes that is simulated in CESM2-esm is also consistent with 

observations from forests reported in Butterfield et al. (2020), but the overall importance of 

seasonal redistribution vs. amplification on carbon cycle variability remains uncertain. Indeed, 

considering the relative importance of these modes of variability may be important in trying to 

infer appropriate sensitivities and interactions between seasonal to interannual variability in 

climate, phenology, and ecosystem carbon fluxes from both models and observations.    

     

5. Conclusion 

The interannual variability of terrestrial net carbon exchange with the atmosphere in CESM2-

esm is low. Accordingly, the model also simulates a weaker-than-observed sensitivity of net 

carbon exchange to global climate anomalies. This low variability of net carbon fluxes likely 

results from low interannual variability in photosynthesis anomalies that are simulated by the 

model, especially in humid tropical forests, and a high covariation gross primary productivity 

and ecosystem respiration. Our findings emphasize the need to evaluate and revise the 

parameterization of carbon cycle sensitivity to climate variability, especially in the tropics, that 

are related to phenology, photosynthetic and stomatal conductance responses to environmental 

stress, the canopy scaling of these leaf level processes and potential legacy effects from extreme 

events. The variability in GPP that is simulated by CESM-esm generally shows a latitudinal 

gradient in climate sensitivities whereby positive NEP and GPP anomalies are driven by warmer 

and drier conditions in high latitude ecosystems but wetter and cooler conditions across mid and 

low latitudes. 

Our analysis decomposes IAV in terrestrial carbon cycle anomalies into modes of variability 

that are characterized by seasonal amplification and redistribution of carbon fluxes.  Together 

these modes of variability explain two-thirds of the variability in NEP anomalies and three-

quarters of the global variability in GPP. Both CESM and observations show that wetter and 

cooler springs and summers lead to an amplification signal in GPP, especially over the high 

latitude ecosystems and temperate and arid regions like western North America. By contrast, the 

temporal redistribution of GPP anomalies is more strongly associated with variability in 

springtime temperatures and positive C cycle anomalies that are followed by subsequent soil 

moisture stress and negative carbon cycle anomalies. This seasonal redistribution of fluxes is the 

dominant mode of carbon cycle variability in the more mesic temperate ecosystems like the 
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eastern North America and Europe. The seasonal redistribution of carbon cycle variability is 

notable because although it is not apparent in more aggregated (annual) measurements of IAV, it 

does seem widespread in both the model and observations. Thus, while the total magnitude of net 

and gross terrestrial carbon flux variability simulated by CESM2 may be too low, the simulated 

interannual and seasonal variability does qualitatively capture patterns of carbon sensitivities to 

climate variability. More broadly, we contend this kind of analysis is useful in diagnosing 

strengths and weaknesses in biogeochemical models in comparison to observational data. 
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Figure captions 

 

Figure 1. Detrended annual anomalies of global carbon fluxes, climate drivers, and their 

correlation. Upper panels show: (a) Atmospheric CO2 growth rate reported by the global carbon 

project (Friedlingstein et al., 2019) and net ecosystem production (NEP) simulated CESM2-esm 

(green and black lines, respectively); (b) NEP, terrestrial water storage (TWS), and tropical air 

temperature anomalies simulated by CESM2-esm (black, blue, and red lines respectively. Lower 

panels show correlations between simulated: (c) TWS, which is positively correlated to 

simulated NEP anomalies; and (d) Tropical air temperature, which is negatively correlated to 

simulated NEP anomalies. Note, for convenience we inverted the sign of the atmospheric growth 

rate in (a) so that positive anomalies in C fluxes show net land C uptake for both the model and 

observations. 

 

Figure 2. Correlations of grid cell carbon fluxes simulated by CESM2-esm from 1960-2015: (a) 

Variance in NEP versus GPP and Reco (shown in black and green, respectively); and (b) 

Correlation of anomalies in Reco and GPP. Pearson correlation coefficients and regression slopes 

from each relationship are provided in each panel, all correlations are significant (p < 0.001).  
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Figure 3. Correlation coefficients between detrended annual anomalies that are simulated by 

CESM2-esm from 1960-2014. Panels show the correlation between NEP and (a) terrestrial water 

storage, (b) air temperature, (c) GPP, and (d) Reco. Only statistically significant correlations (p < 

0.05, when |r| > 0.226 for 55 years of data) are shown. 

 

Figure 4. Fraction of variance in detrended NEP anomalies that was explained by (a) seasonal 

amplification or (b) seasonal redistribution vectors.  Globally, these two vectors explained 39% 

and 29% of the variance in monthly NEP anomalies, respectively. 

 

Figure 5. Zonal mean climatology of monthly NEP and singular vectors associated with seasonal 

amplification and temporal redistribution of NEP (grey, blue, and red lines respectively) for the 

northern hemisphere and southern hemisphere (top and bottom rows, respectively). Panels show: 

(a) high latitude ecosystems, 50-80°N; (b, d) northern and southern temperate mid latitudes, 20-

50°N and 20-50°S; and the (c, e) tropics, 0-20°N and 0-20°S, respectively. The magnitude of the 

singular vectors is arbitrary (y-axis). Mean fraction of variance explained and 𝜃 values, which 

indicate the net impact on the integrated seasonal signal of NEP for each singular vector, are also 

provided. Note x-axis was shifted for southern hemisphere plots to show the climatology for 

austral summer. 

 

Figure 6. Zonal mean climatology of monthly GPP and singular vectors associated with seasonal 

amplification and temporal redistribution of GPP (grey, blue, and red lines respectively) for the 

northern hemisphere and southern hemisphere (top and bottom rows, respectively). Panels 

organized as in Fig. 5. Note x-axis was shifted for southern hemisphere plots to show the 

climatology for austral summer. 

Figure 7. Pearson correlation coefficients between SVD weights from the amplification vector 

with seasonal anomalies of GPP, terrestrial water storage (TWS), and air temperature (TBOT) 

simulated by CESM2-esm from 1960-2014. Only statistically significant (p < 0.05) correlations 

are shown (|r| > 0.26, two-tailed test, n = 55).  
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Figure 8. Pearson correlation coefficients between SVD weights from the redistribution vector 

with seasonal anomalies of GPP, terrestrial water storage (TWS), and air temperature (TBOT) 

simulated by CESM2-esm from 1960-2014. Only statistically significant (p < 0.05) correlations 

are shown (|r| > 0.26, two-tailed test, n = 55).  
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Figure S1. Global monthly anomalies, annual anomalies, and detrended annual anomalies (blue, 
orange and green lines respectively). Panels show variability in globally summed: (a) terrestrial 
water storage (TWS); (b) Air temperature (TBOT); (c) Net ecosystem production (NEP); (d) Gross 
primary productivity (GPP), (e) Ecosystem respiration (ER); and (f) incoming solar radiation (FSDS 
simulated by CESM-esm over vegetated terrestrial grid cells over the end of the historical period 
(1960-2014).  
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Figure S2. Detrended annual anomalies of global carbon fluxes showing the dominance of 
terrestrial carbon fluxes of the total IAV of net carbon fluxes simulated by CESM. As in Fig. 1, we 
show the atmospheric CO2 growth rate reported by the global carbon project (green line; 
Friedlingstein et al. 2019), net ecosystem production (NEP) simulated CESM2-ESM (black line), 
the IAV of the total CESM2 surface CO2 flux (solid blue line), and the IAV of surface CO2 flux from 
terrestrial ecosystems (dashed blue line). Differences between the total surface and land CO2 
fluxes (solid and dashed blue lines) show the influence of IAV in ocean fluxes simulated by 
CESM2. Differences between land CO2 flux and NEP show the effect of fire and land use change 
on terrestrial carbon fluxes. Note, for convenience we inverted the sign of the atmospheric 
growth rate and surface CO2 fluxes (green and blue lines) so that positive anomalies show net 
land C uptake for all fluxes. 
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Figure S3. To decompose the annual cycle of detrended GPP time series simulated in each 
terrestrial grid cell, we used a singular value decomposition method (SVD; Golub and Reinsch 
1971; see also Butterfield et al. 2020). The SVD method applied to a 12 x 55 matrix (12 months 
by 55 years included in our analysis) of annual GPP anomalies (IAVy) resulted in three matrices, 
U, s, and V, the middle of which is a 55 x 55 diagonal matrix. The product of U and s provided a 
matrix of singular vectors (SVi), the elements of which reflect the month (m) of year (y), that 
represent common seasonal patterns or modes within the data. The matrix V contained weights 
(wy,i) that quantify how prominent a singular vector was for any given year. Thus, the simulated 
IAV time series for a grid cell in any given year could be fully reconstructed as a weighted sum of 
singular vectors. The singular vectors are ranked by the fraction of variance they explain in the 
GPP time series, and the first two describe the majority (~75%) of GPP variability. Thus, we 
focused our analysis on only these first two singular vectors. 
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Figure S4. Example grid cell (50°N, 70°W) showing the monthly climatology of GPP fluxes (green) 
and SVD vectors identified as amplification and redistribution vectors (blue and red, 
respectively). The amplification vector was identified by its higher correlation with the monthly 
climatology of GPP fluxes (a). For this grid cell, the redistribution vector (as well as the 
associated values for weights and theta) was reversed (b), so that positive springtime anomalies 
occurred before the negative summer anomalies.  

 
  

(a) (b) 
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Figure S5. Detrended annual anomalies of global carbon fluxes showing low IAV for net carbon 
fluxes simulated by offline CLM5 simulations forced with GSWP3 climate reanalysis data through 
2014 (see Lawrence et al. 2019).  As in Figures 1 and S2, we show the atmospheric CO2 growth 
rate reported by the Global Carbon Project, diagnosed from net biome production simulated by 
an ensemble of land models (green line; Friedlingstein et al. 2019), net ecosystem production 
(NEP) simulated CLM5 (black line).  Although the model captures the sign of terrestrial carbon 
cycle IAV observed in the atmospheric record, it does not simulate the appropriate magnitude of 
response to the 1986-87 or 1997-98 El Niño events. Note, for convenience we inverted the sign 
of the atmospheric growth rate (green line) so that positive anomalies show net land C uptake 
for all fluxes. 
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Figure S6. Characterization of GPP (top row), terrestrial water storage (TWS, middle row), and 
air temperature (TBOT, bottom row) simulated by CESM2-ESM. The first column (a, d, g) shows 
the standard deviation of detrended annual anomalies (units: gC m-2 y-1, kg H2O m-2, and K, 
respectively) The second column (b, e, h) shows the annual mean simulated between 1960-2014 
(units: gC m-2 y-1, kg H2O m-2, and K, respectively). The third column (c, f, i) shows coefficient of 
variation (the units %, calculated and the quotient of first and second columns ✕ 100). 
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Figure S7. Gridcell correlations of annual (a) Reco anomalies with anomalies of component fluxes 
autotrophic and heterotrophic respiration (AR and HR, respectively).  Panel (b) AR anomalies 
with anomalies of component fluxes: growth respiration, maintenance respiration, and from the 
fixation and uptake of nitrogen module (GR, MR, and FUN, respectively). Correlation coefficients 
and slopes show that Reco anomalies are most strongly correlated with AR anomalies, which are 
most strongly linked to the fluxes calculated by the FUN module in CESM2-esm. 
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Figure S8. Correlation coefficients between detrended annual anomalies that are simulated by 
CESM2-esm from 1960-2014. Panels show the correlation between (a) GPP and terrestrial water 
storage; (b) GPP and air temperature; and (c) terrestrial water storage and air temperature. Only 
statistically significant correlations (p < 0.05, when |r| > 0.226 for 55 years of data) are shown. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure S9. Fraction of variance in detrended GPP anomalies that was explained by (a) seasonal 
amplification or (b) seasonal redistribution vectors, as in Figure 4.  Globally, these two vectors 
explained 45% and 29% of the variance in monthly GPP anomalies, respectively. 
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Figure S10. Zonal mean climatology of monthly heterotrophic respiration (HR) and singular 
vectors associated with seasonal amplification and temporal redistribution of HR (grey, blue, 
and red lines respectively) for the northern hemisphere. As in Figs 5-6, panels show: (a) high 
latitude ecosystems, 50-80°N; (b, d) northern temperate mid latitudes, 20-50°N. The magnitude 
of the singular vectors is arbitrary (y-axis). Mean fraction of variance explained and 𝜃 values, 
which indicate the net impact on the integrated seasonal signal of HR for each singular vector, 
are also provided.  
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Table S1. Coefficients of variability in four North American ecoregions defined in Butterfield et al 
(2020): Temperate Mixed Forest (TMF, 43°–48° N, 84°–94° W), Boreal Coniferous Forest (BCF, 
54°–59° N, 94°–104° W ), Midwest Cropland (MC, 39°–44° N, 86°–96° W), and Canadian Great 
Plains (CGP, 50°–55° N, 105°–115° W). To compare with remote sensing variability estimates 
reported in Butterfield et al. (2020) we define the coefficient of variability as the ratio of the 
interannual standard deviations to the seasonal amplitude of the multi-year mean. Both model 
and remote sensing results use nine years of data, 2006-2014 for the model and 2007-2015 for 
the remote sensing. All values are reported in %. 

 
Region CESM2 GOME-2 SIF MODIS NIRv MODIS NDVI AVHRR NDVI 

TMF 5.2 2.3 1.6 2.2 3.2 

BCF 2.4 4.1 2.5 1.9 2.9 

MC 1.4 1.8 2.6 2.0 1.5 

CGP 2.6 2.8 3.1 2.2 2.5 
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Table S2. Mean Pearson’s correlation coefficients between SVD weights from the amplification 
vectors and seasonal anomalies in GPP, terrestrial water storage, and air temperature (Fig. 7) for 
regions. As in Fig. 6, regions here include high-latitude ecosystems, 50-80°N; northern 
temperate mid-latitudes, 20-50°N, tropics, 0-20°N and 0-20°S, respectively; and southern 
temperate mid-latitudes, 20-50°S. 

  GPP Terrestrial Water Storage Air temperature 

Region  DJF MAM JJA SON DJF MAM JJA SON DJF MAM JJA SON 

NH 
high -0.45 0.22 0.95 0.41 -0.05 -0.17 -0.34 -0.21 0.21 0.38 0.38 0.13 

NH mid 
-0.11 0.70 0.76 0.15 0.38 0.45 0.44 0.34 -0.03 -0.26 -0.30 -0.10 

NH 
tropics 0.50 0.67 0.67 0.45 0.54 0.59 0.50 0.40 -0.24 -0.44 -0.42 -0.27 

SH 
tropics 0.58 0.59 0.59 0.70 0.46 0.54 0.56 0.58 -0.31 -0.32 -0.15 -0.32 

SH mid 
0.68 0.59 0.42 0.69 0.49 0.51 0.51 0.48 -0.38 -0.28 -0.28 -0.26 

 
 
 

Table S3. Mean Pearson’s correlation coefficients between SVD weights from the redistribution 
vectors and seasonal anomalies in GPP, terrestrial water storage, and air temperature (Fig. 8) for 
regions.  As in Fig. 6, regions here include high-latitude ecosystems, 50-80°N; northern 
temperate mid-latitudes, 20-50°N, tropics, 0-20°N and 0-20°S, respectively; and southern 
temperate mid-latitudes, 20-50°S.  

  GPP Terrestrial Water Storage Air Temperature 

Region DJF MAM JJA SON DJF MAM JJA SON DJF MAM JJA SON 

NH 
high -0.05 0.46 -0.11 -0.40 -0.18 -0.16 -0.24 -0.25 0.30 0.30 0.22 0.04 

NH mid 
0.15 0.47 -0.33 -0.41 -0.17 -0.22 -0.40 -0.32 0.33 0.31 0.33 0.21 

NH 
tropics 0.38 0.43 0.10 -0.11 0.29 0.31 0.24 0.15 -0.13 -0.25 -0.16 -0.08 

SH 
tropics -0.06 0.03 0.31 0.42 0.12 0.20 0.29 0.38 -0.01 -0.13 -0.06 -0.26 

SH mid 
-0.30 -0.30 0.13 0.28 -0.13 -0.01 0.08 0.10 0.07 -0.01 -0.11 -0.22 

 


