Using Computational Modeling For Assessing and Improving Operational Management at Michigan Medicine Emergency Department

Abhishek Bhattacharya
Akul Arora
Jeet Das
Blake Duffy
Matthew Friedland
Max Sievers
What is the optimal throughput model of patients in the Michigan Medicine ED?
Solutions for Crowding

Physician in Triage
Skilled personnel at Triage shown to increase efficiency:
- Nurse
- Physician’s Assistant
- Attending

Fast Track
Streamlined treatment of non-urgent patients:
- Recently, widely adopted
- Typically staffed by senior staff
- Selectively implemented during peak traffic

Vertical Treatment
Waiting rooms for mid-acuity (ESI 3) patients:
- Less bed utilization
- Allows for ESI escalation
Patient ED journey pathway without vertical flow

WITHOUT VERTICAL FLOW

- Intake
- Triage
- Eval/Treatment
- Discharge/Admission
Patient ED journey pathway with vertical flow

WITH VERTICAL FLOW

Intake → Triage → Eval/Treatment → Discharge/Admission

ESI 1, 2, 4, 5

ESI 3

Vertical Flow Area → Discharge/Admission

Med ECG | Medical Educational Consulting Group
Implementation Pathway:

Data Gather

Patient Level Data
- ESI levels
- Timestamps
 - LOS
 - TTP

ED Flow Data
- Vertical treatment zone scheme

Modeling

Build
- Ensure proper inputs and outputs
- Incorporate data gathered

Validate
- Compare model outcomes with known outcomes

Presentation

Provide Final Results
- Optimal size
- Impact on time and money saved

Deeper Dive
- Potential U of M collaborations
- Student Involvement
- Professional modeling and consulting
Patient Flow Modeling Options (Wiler et. al. 2011)

<table>
<thead>
<tr>
<th>Modeling Type</th>
<th>Description</th>
<th>Ability to Forecast ED Crowding</th>
<th>Ability to Predict Process Improvement Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula-Based</td>
<td>Past experiences of ED flow used to posit formulas</td>
<td>Poor</td>
<td>N/A</td>
</tr>
<tr>
<td>Regression-Based</td>
<td>Statistically predicts dependent variables based on independent variables</td>
<td>Fair</td>
<td>Poor</td>
</tr>
<tr>
<td>Time-Series Analysis</td>
<td>Statistically uses recent past performance to predict current and immediate future performance</td>
<td>Fair</td>
<td>Poor</td>
</tr>
<tr>
<td>Queuing Theory</td>
<td>Mathematical formulas derived from system principles, utilizes many underlying assumptions</td>
<td>Poor</td>
<td>Good</td>
</tr>
<tr>
<td>Discrete-Event Simulation</td>
<td>Computer-generated model used to sample inputs and generate outputs, *most frequently used in literature</td>
<td>Fair</td>
<td>Good</td>
</tr>
</tbody>
</table>
Preliminary Results:

(Simulated) Current Bed Occupancy

(Simulated) Vertical Treatment Zone Impact

Med ECG | Medical Educational Consulting Group
Our Team

Akul Arora
Abhishek Bhattacharya
Jeet Das
Blake Duffy
Matt Friedland
Max Sievers