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Abstract 

As the automotive industry moves toward developing lightweight crashworthy structures, 

it is expected that a multi-material solution involving steels, aluminum alloys and high-

performance composites will become increasingly common in future vehicles.  Joining a variety 

of materials with different physical, mechanical, and thermal characteristics is one of the major 

challenges for such multi-material designs.  Adhesive joining is emerging as one of the key 

joining methods in multi-material structures, since in general, adhesives are compatible with 

most materials under consideration for lightweight vehicles.       

There are many body, chassis and powertrain components in vehicles that are designed 

with tubular sections.  A few examples of these components are the front rails, underbody frames 

or sub-frames, instrument panel crossbeams, drive shafts and spaceframe structures.  Increasing 

use of hydroforming and closed-section extrusions will lead to even more use of tubular sections, 

especially in crush-resistant components, such as front rails and roof rails.  Tubular joints are 

also used in buses and other heavy vehicle constructions.  Unlike the seam adhesive joints 

between thin sheets or panels, there has not been much research and design studies on tubular 

adhesive joints in which a tube is fitted in another tube of the same material or different 

materials.  

In a crash condition, tubular structures are designed to crush in a controlled manner.  In 

addition to the crush mode, crush energy absorption and peak crush load are the two most critical 

parameters to consider for improved crashworthiness.  If the tubular structure is made of 
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adhesive joints, it is important that the joint failure does not occur before controlled crushing of 

the joined tubes. The crush characteristics are affected by joint geometry and material properties. 

Hence, the key objective of this research is to develop a crush resistant tubular adhesive joint in 

aluminum-aluminum, composite-composite, and composite-aluminum structures using finite 

element analysis.  

A Design of Experiments approach is used to understand the interactions between 

different joint parameters and their effects. Since such tubular structures are likely to be 

subjected to different forms of loading, the dissertation aims to present optimal tubular adhesive 

lap joint design choices for maximum energy absorption under crush load and joint failure 

strength under tensile load using finite element analysis.  



  

 1 

Chapter 1 Introduction 

1.1 Background 

Need for better performance, efficiency and economics has shifted the automotive 

industry from predominantly using steel in vehicle builds to a more multi material approach [1, 

2]. Until a few years ago, mass produced automobiles used steel solely for the BIW and body 

panels. This is shifting toward an increasingly multi-material philosophy, where each part of an 

automobile uses the material that is best suited for its performance and functionality (Figure 1.1). 

Different OEMs have adopted different philosophies in their design approach. For example, 

European auto makers such as Jaguar and Audi have adopted aluminum as the major material for 

BIW, with composites for some body panels and semi-structural applications [2, 3].  American 

and Japanese automakers have chosen a more multi-material approach, with, advanced high 

strength and ultra-high strength steels, aluminum and magnesium being used in the BIW based 

on the strength or stiffness requirement of its components and low carbon and high strength 

steels, composites and aluminum for body panels and semi-structural applications.  

 

 
Figure 1.1 Multi-material design approach [4]. 
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This difference in philosophies is due to difference in opinion on efficiency and 

economics of using aluminum. The primary driving force behind the shift from mild steels was 

the need for increased weight saving and environmental friendliness. Aluminum was found to be 

a very good substitute for mild steel with its better strength-to-weight properties. However, the 

carbon footprint incurred during the production of aluminum from ore is almost ten times higher 

than steel [5].  This along with new developments in the steel industry, such as advanced high 

strength steels (AHSS) and ultra-high strength steels (UHSS) which have higher strength-to-

weight ratios compared to aluminum, has reduced the drive towards the use of aluminum in body 

structure components. The use of magnesium has similar issues.   

The use of composites has been increasing steadily due to advances in manufacturing 

technology and reduction in costs [6].  High performance, super cars in the motor sports industry 

have been successfully using carbon fiber composites for constructing the chassis for a number 

of years. In the automotive industry, low-cost chopped fiber composites, such as random glass 

fiber sheet molding compounds, are popular in body panels, fascia, and other semi-structural 

applications.  Even though carbon fiber composites offer the highest potential for weight 

reduction in body structure components, such as roof rails and B-pillar, their use has seen very 

little progress in mass-produced cars. This is due to several factors such as high cost of carbon 

fibers, their availability, manufacturing process control, and difficulty in modelling material 

behavior.  

These issues have pushed automakers to adopt a multi-material approach to automotive 

design, with material selection for each individual component decided based on strength, 

stiffness, cost, and weight saving requirements. Figure 1.2 provides an example on the multi 

material construction of an automobile [2], and Figure 1.3 illustrates the future possibilities of 
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the changing demographic in automotive materials that includes predominantly mild steels in 

2020 vehicles to a more diverse group of materials in 2040 vehicles [7].  

 

 

Figure 1.2 Example of multi material construction of an automobile [2]. 

 

 

 Figure 1.3 Expected demographic of automotive materials from model year 2020 to 2040 [7]. 
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Occupant safety and crashworthiness is an important requirement of automotive design, 

due to increasingly strict regulatory requirements as well as consumer expectations. Even though 

the focus has shifted to crash avoidance technology with many such devices being made 

mandatory from 2022 by the National Highway Transportation Safety Agency (NHTSA), the 

crashworthiness of a car remains critical to protect the occupants in the event of a crash. And, to 

maintain high safety standards, the use of different materials in the construction of a car places 

greater emphasis on the joints, making joint design a critical area of study. Currently, welding is 

widely used to join components due to the high welding speed, low cost, and easy automation of 

the process. However, welding can only be used to join similar materials, such as steel with steel 

or aluminum with aluminum.   For joining of dissimilar materials, joining techniques such as 

adhesive bonding and mechanical fastening methods are used. Figure 1.4 indicates the prospects 

of various joining processes due to a multi-material design approach [7].  Most notables among 

them are the growth of adhesive bonding and decreasing use of resistance spot welding (RSW). 

 

 

Figure 1.4 Current and future trends in joining processes in the automotive industry [7]. 
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Mechanical joining methods such as self-piercing riveting (SPR) are suitable for joining 

aluminum alloys; but in the case of composites, processes involved in SPR and bolted joints, 

such as punching or drilling of holes, may cause delamination and fiber breakout. Also, the 

clamping load of the fasteners may cause localized damage to the materials under the fastener 

head and hence, precautions must be taken to ensure that the clamping forces are distributed over 

a wider area. Other problems such as electrical discontinuity and fastener corrosion also affect 

mechanical joints in composites. 

Unlike mechanical joints, adhesive joints do not need any significant alteration to the 

components that may damage the material and hence, are suited for joining composite-metal or 

composite-composite parts [4, 8]. Other advantages of adhesive joining are low cost, ability to 

join complex shapes, higher shear strength and attenuation of noise and vibration.  

Disadvantages include the possibility of out-of-plane joint deformation under load, the need for 

surface treatment before joining to ensure good adhesion with the substrates, poor resistance to 

heat or cold, etc. The demerits to adhesive joining can be avoided through altering the joint 

design and proper surface treatment. Hence, adhesive joining has become a popular technique for 

composite joints. 

As the automotive industry moves toward developing lightweight crashworthy structures, 

it is expected that a multi-material solution involving steels, aluminum alloys and high-

performance composites will become increasingly common in future vehicles.  Joining a variety 

of materials with different physical, mechanical, and thermal characteristics is one of the major 

challenges for such multi-material designs.  Adhesive joining is emerging as one of the key 

joining methods in multi-material structures, since in general, adhesives are compatible with 

most materials under consideration for lightweight vehicles.  
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There are many body, chassis and powertrain components in vehicles that are designed 

with tubular sections.  A few examples of these components are the front rails, underbody frames 

or sub-frames, instrument panel crossbeams, drive shafts and spaceframe structures.  Increasing 

use of hydroforming and closed-section extrusions will lead to even more use of tubular sections, 

especially in crush-resistant components, such as front rails and roof rails.  Tubular structures are 

also widely used in buses, trains, and other heavy transportation vehicle constructions. Such 

structures are being paid particular attention in the railroad industry to reduce weight of steel-

based carriages. Examples of tubular construction in different applications are shown in Figure 

1.5. Such tubular structures in a multi-material design would require the use of adhesive bonding 

to join different sections. 

 

 

Figure 1.5 Tubular structures in cars, light rail, RVs, and rail coaches (clockwise from top left). (Source: Web) 
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Tubular joints are not limited to the transportation industries. The oil and gas industry 

uses long, slender tubes called riser to extract crude oil and natural gas from underground and 

ocean floor reserves. The use of polymer composite tubes is noticing an increase in acceptance as 

risers due to several advantages offered by them, such as weight reduction, high strength and 

stiffness, corrosion resistance, and better thermal insulation. This has been effectively adopted by 

Saudi Aramco [9] across a significant portion of their oil and gas flow line network. An example 

of their glass fiber reinforced composite tubes is shown in Figure 1.6. These risers extend 

thousands of feet from the ocean bed to the floating unit on the ocean surface and are constructed 

by joining several sections of tubes using adhesive bonds. Typical joining techniques include 

tubular lap joints, flange joints and socket type joints.   

 

 

Figure 1.6 Reinforced thermoplastic (RTP) risers offered by Saudi Aramco [9]. 
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Unlike the adhesive seam or lap joints in thin sheets or panels, there has not been much 

research and design studies on tubular adhesive joints. Recent literature on tubular lap joints is 

based on loading conditions generally faced in riser joints, such as hydrostatic pressure, internal 

pressure, bending due to water currents, torsion, tensile loading due to the riser tube’s weight, 

and a combination thereof. These joints are generally bonded using brittle adhesives and the joint 

including substrates are not designed to yield. Hence, most studies on tubular joints in literature 

involve linear stress analysis of bonded area and use strength-based failure conditions. The 

results in these studies suggest that several factors influence joint characteristics such as 

boundary conditions, tube and joint geometry, and material properties. 

Tubular adhesive joints in automotive and aerospace industries are structural joints that 

are required to not only have high strength and stiffness, but also absorb energy during crash. 

Hence, there is a need to investigate the characteristics of such joints under different types of 

loads which would result in different forms of deformation and joint failure. The objective of this 

study is to develop a numerical model to analyze the characteristics of multi-material structures 

with tubular single lap joints under different load cases and optimize the joint design for strength 

and energy absorption. The findings of this study will provide insight on the performance of such 

joints if used in the design of front-end structure in automotive chassis and help other ground 

transportation industries such as trains, buses, and trucks in designing structures with light 

weight composite materials, particularly with joining of multi-material tubular members in the 

coach structures. 

1.2 Objectives 

The objective of this dissertation is to analyze the performance of aluminum and 

composite tubes with single lap adhesive joints under axial crush and tensile loads at quasi-static 
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and high loading rates using finite element analysis. A parametric study using a design of 

experiments-based approach is conducted to analyze the influence of geometric and material 

variables on the crush performance indicators such as energy absorption, peak load and modes of 

collapse and tensile failure performance, such as peak loads and failure modes. Optimal 

configurations for Al-Al, Al-composite and composite-composite joints are presented with the 

objectives of maximizing energy absorption under compressive crush load. Since tubular 

structures are also subjected to tensile loading, the dissertation also studies the performance of 

the same tubular lap joints under tensile load for similar joint configurations and present optimal 

tubular adhesive lap joint design choices for joint failure strength under tensile load using finite 

element analysis.  

1.3 Research Methodology 

The dissertation presents a numerical analysis of tubes with single lap adhesive joints 

subjected to compressive crush loads and tensile loads. Performance of the joints is measured in 

terms of energy absorption, crush load and modes of deformation under compression and joint 

strength under tension. The results of analysis are obtained using numerical simulations 

constructed and processed using LS Dyna, a commercial finite element solver. Due to 

unavailability of resources to conduct experiments, the necessary material properties are obtained 

from literature and necessary calibration is done wherever possible.  

The structure considered here consists of three major parts, the two circular tubes that are 

joined using a thin adhesive layer. Varying the joint design and material parameters, such as 

overlap length, tube dimensions, substrate material properties and adhesive properties is 

expected to significantly influence the performance of the joint. This hypothesis is based on 

several stress analysis studies available in literature that show that joint geometry and substrate 
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materials have a significant influence on the stress distribution in the adhesive layer. Hence, this 

study considers the influence of the following parameters on joint performance:  

• Load conditions considered are quasi-static and high speed compressive and tensile 

loadings,  

• Joint parameters include joint geometry variables such as tube thickness, tube length, 

bond overlap length, and adhesive thickness. 

• Material properties of the tubes and adhesive.  

Design of experiments, a statistical approach is used to plan and interpret results obtained 

from numerical simulations. A full factorial model is used to analyze the effects and interactions 

of different variables on the tubular joint performance. Optimal joint configurations are 

determined by optimizing the simulation response criteria. The analysis of data is conducted 

using Minitab, a commercially available statistics package. 

1.4 Chapter Distribution 

 The dissertation is divided into the following chapters to present the methodology, 

results, and outcomes:  

• Chapter 2: Literature review. This chapter presents a brief review of the existing literature 

on the crush characteristics of aluminum and composite tubes, a brief discussion on 

adhesive joints and finally, the current literature on tubes with single lap adhesive joints. 

• Chapter 3: Stress analysis of tubular single lap joints. A finite element analysis of the 

stress distributions across the adhesive overlap of tubular single lap joints is presented in 

this chapter. The results discussed in this chapter are based on quasi-static compressive 

loading and linear elastic material conditions for different joint configurations.  The 
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influence of various joint design parameters on the stress distributions in the adhesive 

layer is considered.   

• Chapter 4: Crush analysis of Al-Al tubular single lap joints. Quasi-static and high-speed 

crush analysis of Al-Al joints is presented in this chapter using explicit finite element 

simulations. The chapter begins with a description of the modeling technique employed 

and then presents a parametric study on the influence of load type, joint geometry, and 

material properties on the crush performance of Al-Al tubular joints. It also presents a 

study to determine the optimal joint design parameters for both maximum energy 

absorption and peak load. 

• Chapter 5: Quasi-static crush analysis of Al-composite and composite-composite tubular 

single lap joints. The focus of this chapter is on the crush performance of tubular joints in 

which either one or both tubes are made of a carbon fiber composite.  The results 

compare influence of tube length, tube material combination and layup of the composite 

tubes under quasi-static crush. 

• Chapter 6: Analysis of Al-Al and Al-composite joints under tension. This chapter 

presents the tensile performance of tubular joints in which at least one tube is made of 

aluminum and the other tube is either an aluminum or a carbon fiber composite.  It 

considers the key joint design parameters that influence the failure modes and the peak 

loads as the tensile load is increased quasi-static and high loading rates. 

• Chapter 7: Conclusions. A summary of results and recommendations for future work are 

presented in this chapter. 
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Chapter 2 Literature Review 

When tubular members joined by adhesive lap joints are subjected to an axial load, the 

function of the joint is to transmit the load between the tubular members and maintain integrity 

until the tubes fail, either by plastic collapse in the tubes if the axial load is compressive or by 

tensile yielding or fracture if the axial load is tensile.  Good joint performance requires that the 

adhesive failure should not occur before the tube failure. Under crash conditions, the tubular 

sections are expected to deform with progressive folds if they are made of ductile metals or fail 

with progressive damage development if they are made of composite materials for best crash 

energy absorption. The deformation and failure characteristics of tubular sections with an 

adhesive lap joint depend on several factors such as tube and adhesive material properties, joint 

geometry, type of load, and fabrication issues. Hence, in this chapter, a review of crush 

characteristics of thin-walled metal and composite tubes, adhesive properties, and current state of 

research on such joints is presented. 

2.1 Crush Characteristics of Thin-Walled Metal Tubes 

 Thin-walled metal tubes have long been used as energy absorbers due to their high load 

carrying and energy absorption capabilities. This is particularly true for axially loaded tubular 

members which are commonly used in automotive crash structures. Under axial crush, thin-

walled tubes with properly designed dimensions exhibit load-deformation characteristics 

resembling the buckling and post-buckling behavior of thin plates rather than columns. Hence, 

such tubular members offer continued resistance to deformation even after buckling.  
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The characteristics of thin-walled steel and aluminum tubes subjected to axial crush has 

been well researched over the years and several publications have investigated the various 

factors determining modes of deformation and crush load. The primary modes of collapse in 

crush can be broadly classified as Euler or global buckling, progressive collapse, and mixed 

collapse. Progressive collapse mode can be further classified based on the nature of progressive 

collapse under crush such as axisymmetric folding, n-lobe diamond shaped folding, and mixed 

diamond-axisymmetric type. An illustration of some of these modes of collapse with their load-

deflections curves are shown in Figure 2.1. Highest resistance to crush is offered by tubes 

undergoing regular folding illustrated by a high mean crush load in (a) compared to global 

buckling case where there is a rapid drop in resistance to axial crush (b).  

The different modes of collapse are initiated by elastic local buckling leading to bending 

collapse or progressive crush of the cross section. In tubes with circular cross section, the basic 

column buckling theory [10] proposes that elastic buckling is a function of tube geometry and 

occurs as m half waves in circumferential direction and n half waves in longitudinal direction, 

where m and n are whole numbers and vary based on tube dimensions and tube material. In this 

theory, for axisymmetric crush m is zero and in case of diamond mode of failure m has a whole 

number value. However, experimental observations indicate that such wave forms do not occur 

or become visible at the same time but occur one after the other.  
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Figure 2.1 Modes of Axial collapse in thin-walled tubes [11]. 

 

An alternate analysis of axial collapse was proposed by Allan [10] who considered tube 

deformation as a pressure vessel problem. The author states that the wall deformation which is a 

result of Poisson effect causes a tensile or compressive hoop stress. Under stable regime, wall 

deformation will result in axisymmetric crush and unstable stresses will result in diamond 

formation. The author proposes that for low t/D values initial imperfections in the tube and effect 

of friction at the ends could result in instabilities resulting in diamond lobe formation compared 

to tubes with high t/D values where any imperfections are averaged out over a larger thickness. 

A detailed experimental classification of axial collapse in tubes with cylindrical cross 

sections was published by Andrews et al. [12]. Numerous specimens with different lengths (L), 

diameters (D) and thicknesses (t) were tested, and the results indicated a grouping of collapse 

modes based on t/D and L/D ratios. This is represented in Figure 2.2. Slender tubes with high 

L/D ratios tend to fail by Eulerian buckling which is undesirable because of their low energy 

absorption. For similar L/D values, the thickness of the tube determines the mode of progressive 

collapse. There is a transition from mixed mode to axisymmetric crush with increasing t/D ratio. 

This is in accordance with the theoretical explanation stated previously. Other factors influencing 

the mode of collapse include material properties, cross-section shape and boundary conditions. 
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An appropriately designed thin-walled tube subjected to axial crush is characterized by a 

reasonably constant mean crush force and progressive plastic collapse resulting in high energy 

absorption capacity. The force displacement curve for such a tube under axial crush is shown in 

Figure 2.3. The curve is characterized by an initial peak force or crippling force followed by 

several peaks and valleys representing formation of folds. This initial peak force is desired to be 

as low as possible to reduce transmitted impulse forces on the occupant or equipment. Crush 

triggers are used for this purpose. An ideal force displacement curve for an energy absorber with 

a crush trigger is shown in Figure 2.3.  

 

 

Figure 2.2 Collapse modes of aluminum tubes with circular cross section [12]. 
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Figure 2.3 Ideal load-displacement curve for an axially collapsing tube. 

 

The energy absorbed during axial progressive collapse of the tube is the area under the 

force-displacement curve, which can be approximated as the product of mean crush force and 

crush distance. Many studies have proposed theoretical or empirical models to predict mean 

crush force. A widely accepted theoretical expression for mean crush force (Pm) was developed 

by Alexander [13]. The expression was obtained by assuming that the tube is a rigid, perfectly 

plastic material, and the deformation mode is an axisymmetric progressive collapse. The 

expression is: 

𝑃𝑚 = 𝐾𝜎𝑦𝑡
1.5√𝐷      Eq. 2.1 

where, K ≅ 6.08, σy is the yield strength of the material, t is tube thickness and D is mean 

diameter. The expression compares well with the experimental results. Another useful empirical 

expression for mean crush force, given by Equation 2.2, was developed by Guillow et al. [14] 

using data from quasi-static crush of circular aluminum tubes. Equation (2.2) for the mean crush 

force works for any deformation type.  

𝑃𝑚 = 18.075𝜎𝑦𝑡
2 (

𝐷

𝑡
)
0.32

     Eq. 2.2 
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As can be seen in Equations 2.1 and 2.2, deformation of tubes and crush force depend on 

the yield strength of the material. Hence, if the tube is made from a strain rate dependent 

material, the mean crush force equations need to be modified appropriately [15]. Commonly 

used model to define rate sensitivity for yield strength is the Cowper-Symonds equation. 

Incorporating this into Equation 2.1 we get Pm as, 

𝑃𝑚 = 𝐾𝜎𝑦 [1 + (
𝜀̇

𝐷
)
1/𝑞

] 𝑡1.5√𝐷    Eq. 2.3 

where, D and q are material constants. Also, at very high strain rates circular tubes with high 

wall thickness exhibit mushrooming at the impacted end.  

To compare experimental results of tubes with different geometry and cross sections two 

dimensionless parameters are commonly used. They are structural effectiveness and solidity ratio 

[16]. Structural effectiveness, η, (Equation 2.4) is defined as the ratio of mean crush force to the 

peak crush force, and solidity ratio, ϕ, (Equation 2.5) is defined as the ratio of cross-sectional 

area (A) to area enclosed by the cross-section (Ac). 

𝜂 =
𝑃𝑚

𝐴𝜎𝑦
      Eq. 2.4 

𝜙 =
𝐴

𝐴𝑐
      Eq. 2.5 

Equating these two parameters indicates effectiveness of different cross sections. 

Equation 2.6 gives the effectiveness expression for a square tube and Equation 2.7 represents the 

relationship for a circular tube [17]. Comparing the two expressions, we see that structural 

effectiveness is higher for a circular tube compared to a square one. In fact, experimental results 

show that circular tubes have the highest structural effectiveness but are rarely used due to 

manufacturing difficulties such as distortion in shape and axis, and assembly constraints. 

𝜂 = 1.3𝜙2/3, 𝑓𝑜𝑟 𝑎 𝑠𝑞𝑢𝑎𝑟𝑒 𝑡𝑢𝑏𝑒    Eq. 2.6 

𝜂 = 2𝜙0.7, 𝑓𝑜𝑟 𝑎 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑡𝑢𝑏𝑒   Eq. 2.7 
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2.2 Crush Characteristics of Thin-Walled Composite Tubes 

Thin-walled tubes made of fiber reinforced polymer composites have become 

increasingly popular as energy absorbers especially in the aerospace industry where weight is an 

important design consideration. Composite tubes with appropriate design show much higher 

energy absorption per unit mass or specific energy absorption compared to aluminum tubes [18, 

19, 20]. Similar to thin-walled metal tubes, the preferred mode of collapse in composite tubes is 

also a progressive crush. However, unlike elasto-plastic collapse in metal tubes, progressive 

crush in composites is governed by different principles due to the brittle nature of the 

constituents. Factors influencing the crush mode are fiber and matrix properties, fiber-matrix 

interactions, interfacial properties, fiber orientation and layup, fiber volume fraction and 

geometry of the tube. For certain material and geometry parameters, composite tubes can exhibit 

unstable crush or catastrophic failure. Tube thickness is a crucial parameter as thin-walled tubes 

can fail due to global buckling and thick-walled tubes can fail due to circumferential tension. 

This is a result of much larger load required to initiate crush compared to buckling for thin tubes. 

Hence, crush initiators such as end chamfers are provided to reduce the load needed to initiate 

crush at the crush front. 

Under axial crush, primary driving forces for crush are transverse shearing, lamina 

bending and local buckling [18]. A combination of the first two failure modes results in brittle 

fracture of the lamina in the case of brittle fiber/matrix, and if the material has some ductility, 

local buckling of the lamina occurs. Energy absorption in composite tubes is governed by the 

energy dissipated due to fracture and crack growth. Hence, for high energy absorption stable 

crack growth or progressive local buckling is preferred. In the event of unstable crack growth or 
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if crack length is less than interlaminar thickness, tubes fail catastrophically. Possible failure 

modes in composite tubes are illustrated in Figure 2.4.  

Transverse shearing mode results in a wedge at the crash front due to fragmentation 

resulting from interlaminar and longitudinal cracks. Such fracturing and crack growth contributes 

to the energy absorption in this mode. The crack lengths in this mode are generally smaller than 

interlaminar thickness resulting in single or multiple lamina bundles. Such bundles support crush 

force until crack growth causes lamina failure. Lamina bending results in long inter- and intra-

laminar cracks. Such cracks are parallel to fiber orientation and do not result in lamina failure but 

show significant bending deformation. This deformation along with friction at lamina-impactor 

interface are major sources of energy absorption in this mode. A combination of these two results 

in brittle fracture type crush mode.  

 

 

 

Figure 2.4 Failure modes in composite tubes [18]. 
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Hull [21] presented a unified theory of composite tube crush where progressive crush 

occurs due to a fragmentation mode or splaying mode. Fragmentation is stated occur when the 

stress builds up at the crush front is sufficiently high to cause shear failure in the lamina. Both 

types of failure are initiated at the crush front and final crush mode depends on the laminate 

configuration and material properties of the fiber and the matrix.  

Several studies have investigated the influence of strain rate, crush initiators, fiber/matrix 

properties and laminate configurations to determine optimal configuration for energy absorption 

and peak crush force in composite tubes. However, due to a large number of variables involved 

in determining crush mode, there is no single model that describes the possible outcomes. In 

general, experimental observations and numerical simulations are used to design composite 

structures for crush applications. Furthermore, the effect of cross section is also present in 

composite tubes. Structural effectiveness of composite tubes with circular cross-section are 

observed to be much higher than tubes with square cross-section.  

2.3 Adhesive Properties 

Adhesives commonly used in industry are synthetic polymers such as epoxies, urethanes, 

acrylics, and cyanoacrylates [22]. Epoxy based adhesives are widely used in the automotive and 

aerospace industries for structural composite or composite-metal joints. They show good shear 

strength, stiffness, and temperature resistance, but have low impact resistance. This is improved 

with the addition of elastomeric tougheners. Urethanes have high impact resistance but low 

strength and temperature resistance, while acrylics exhibit similar properties to epoxies, but have 

high coefficient of thermal expansion that leads to high thermal residual stresses after curing. 

Urethanes and acrylics are also widely used in the automotive industry. Adhesive selection is 

quite important and depends on several factors such as adherend materials, surface preparation 
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requirements, application method, production time, use environment, strength, and operating 

costs.  

Physical testing to determine joint performance under a variety of loading conditions and 

with different material combinations is an expensive process; to avoid this, numerical analysis of 

the problem is performed to analyze and optimize the joint design. A commonly used method to 

model adhesive bonds in finite element analysis is using the cohesive zone model. This model 

uses traction separation laws based on fracture energy to determine bond deformation and 

failure. To predict accurate results, confidence in material properties across different conditions 

is critical. Apart from the basic material properties of strength and modulus, numerical 

simulation using a cohesive zone model requires failure displacement and fracture energy (GIC, 

GIIC) data. For crush simulations, it is also important to consider the effect of strain rate on these 

parameters. 

A large amount of information is available on the general characteristics of adhesives; 

however, structural adhesives are designed to meet specific joint design requirements with the 

use of additives that alter their mechanical properties of the adhesive and hence is difficult to 

predict their properties under different loading and environmental conditions using existing 

models. This is especially true for the effects of strain rate and bond thickness on the mechanical 

properties of adhesives. The use of adhesives in structural joints is a recent development; 

therefore, the research in this area is limited. The following sections review the literature on 

these topics. 

2.3.1 Effect of Strain Rate on Adhesive Properties 

Adhesives show high susceptibility to the effect of strain rate. Most studies focus on the 

tensile strength, modulus, and fracture toughness of adhesives due to their importance in 
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modeling adhesive joints and predicting failure. However, there is no consensus on a single 

material model to describe the effect of strain rate on the adhesive properties due to a wide 

variety of possible formulations and outcomes. Several studies have applied existing models 

used in polymers, metals, or the Time-Temperature Superposition Principle (TTSP) to describe 

the variation in properties. This section investigates the existing literature on the effect of strain 

rate on adhesives and related modeling methods. Since the number of adhesive formulations 

available in the market are numerous, with different characteristics, the results presented in 

literature cannot be compared as such. However, they provide a general direction on the 

important factors affecting the material behavior.  

2.3.1.1 Adhesive Strength 

Goglio et al. [23] studied the changes in the stress-strain curve and modulus of a two-part 

epoxy adhesive with increasing strain rate (ranging from 1x10-3 to 3x103 s-1) under tensile and 

compressive loads. The effect of curing conditions was also studied. The tests were conducted on 

a servo-hydraulic test machine for low to moderately high strain rates and split Hopkinson 

pressure bar test apparatus for very high strain rates. The adhesive shows an increase in strength 

and decrease in failure strain with an increase in strain rate. There is little effect on the elastic 

modulus with increasing strain rate. The study also explores the application of yield stress 

sensitivity models used for metals such as Johnson-Cook model and Cowper-Symonds model to 

adhesive data obtained in the study, without taking into consideration the viscoelastic nature of 

the material. Figure 2.5 shows the variation in stress-strain behavior with strain rate and Figure 

2.6 compares the yield stress sensitivity models with the experimental data under tensile load. 

The models did not provide a good fit to the experimental data, especially at high strain rates; 

hence an arbitrary bilinear fit was proposed to describe the experimental results.  
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Figure 2.5 Effect of strain rate on the stress-strain behavior of a bulk epoxy adhesive [23]. 

 

 

 

Figure 2.6 Comparison of dynamic factor, representing yield stress sensitivity to strain rate, with Johnson-Cook and 

Cowper-Symonds models [23].  

 

The study by Chai [24] presents the effect of strain rate (ranging between 10-4 and 1 s-1), 

temperature and adhesive thickness on the properties of structural adhesives under shear load. A 

napkin ring specimen was used to study the strength and failure strain of an epoxy resin. The 
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failure strain and strength are observed to decrease with increasing bond thickness at a fixed 

strain rate; the decrease in strain is explained as due to the probability of more flaws in a thicker 

bond. The shear strength is seen to increase with increasing strain rate, however, there is no 

effect on the failure strain (Figure 2.7).  

Eyring’s model is a commonly used to relate yield stress with strain rate and temperature 

in polymers. It relates the motion of molecules with strain rate and stress applied to the activation 

energy required to move the molecules. A mathematical representation of this model is expressed 

as follows.  

[ln 2 ( / )]
y

yA C Q RT
T


= +       Eq. 2.8 

A modified version of Eyring’s theory of molecular activation with constants A1 and A2, 

defined as activation energy and activation volume is used to predict shear strength and ultimate 

shear strain (Equations 2.9 and 2.10). The experimentally observed behavior is consistent with 

model predictions. 

1 2 0[1 ( / ) log( / )]y gA A T T  = +                        Eq. 2.9 

03.5( / )( / )c

F gT T h h =     Eq. 2.10 

The shear fracture energy model is approximated as the product of shear stress and shear 

strain obtained from equations 2.9 and 2.10.  The fracture energy normalized with height 

decreases with increasing height and increases with increasing strain rate. This model is verified 

using an end-notched fracture (ENF) specimen and shows reasonably good fit for lower bond 

thickness (Figure 2.9). Fracture energy also shows a decrease with increasing bond thickness.  
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Figure 2.7 Effect of strain rate on yield stress and ultimate strain in shear [24]. 

 

 

Figure 2.8 Effect of bond thickness on Mode II fracture Energy [24]. 
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The shear strength model presented by Chai [24], has also been applied for tensile load 

cases by Banea et al [25]. However, this study investigates quasi-static extension rates (0.1, 1 

and 10 mm/min) hence no significant variation in properties is seen.   

 Another extension of this model, with added parameters for α and β relaxation processes 

is applied to test data of epoxy and acrylic adhesives, in tensile and shear loads at different 

temperatures and a wide range of strain rates by Read et al [26]. Figure 2.9 plots the model fit 

with experimental data from tensile tests on epoxy specimens. Young’s modulus is seen to 

increase with strain rate by about 6% per decade increase in strain rate. Tensile and shear 

strengths also increase with increasing strain rate, which is in line with other studies. Both epoxy 

and acrylic adhesives behave similarly under the influence of strain rate and temperature, 

however the magnitude of change is seen to be slightly higher in acrylic. Furthermore, their 

mechanical behavior in tension is shown to differ significantly from that in shear due to 

cavitation or crazing under tensile load for both epoxy and acrylic adhesives.  

 

 

Figure 2.9 Stress-strain curve for an epoxy adhesive in tension and shear [26]. 
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Brinson et al. [27] presents the effect of strain rate on the failure response as well as creep 

characteristics of structural adhesives. The study uses different Meltbond epoxy adhesives to 

conduct tensile tests. Tensile tests were done on an Instron testing machine over crosshead 

velocities of 0.002 to 2 in/min and on a pneumatic testing machine at 20 in/min. These tests 

showed that modulus of the linear elastic region remains constant with increasing strain rate; 

however, the elastic limit is seen to vary with the rate. Crazing or stress whitening is observed 

prior to yielding or fracture depending on the strain rate, but at the same strain value.  

The study by Brinson et al. [27] shows that material properties such as yield stress, elastic 

limit stress and elastic limit strain can be described using Ludwick’s equation at different strain 

rates (Figure 2.10), which is given by, 

logyp yp


  


 = +


      Eq. 2.11 

where, σyp and ε ̇are the yield stress and strain rate respectively, and σ’, σ’yp and ε’ are material 

constants. The yield stress and elastic limit stress show an increase with increasing strain rate. 

The stress-strain behavior of the material is described using a modified Bingham’s equation 

(Equation 2.12 given below). The results are plotted in Figure 2.11. 
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= 
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    Eq. 2.12 

where, τ is the relaxation time and ϴ is the elastic limit stress. It is important to note here that the 

relaxation time is seen to decrease with increasing strain rate; therefore, appropriate values need 

to be used in the modified Bingham’s equation to determine the stress-strain response. The 

model provides a good correlation with experimental data in linear elastic region for the low 

strain rates considered here. This study does not consider the non-linear response of the adhesive 

and hence cannot predict properties for crash resistant adhesives. 
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Figure 2.10 Effect of strain rate on yield stress modeled using Ludwick’s equation and compared with experimental 

results [27]. 

 

 

Figure 2.11 Stress-strain curve plotted using modified Bingham’s model at different strain rates [27]. 
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A study conducted on the effect of strain rate on an Epon epoxy adhesive by Chen and 

Zhou [28] considers a wide range of strain rates from 10-3 to 104 s-1. An MTS servo-hydraulic 

test machine was used for quasi-static tests and a split-Hopkinson bar was used for the high 

strain rate tests. The study showed a significant increase in the yield stress as well as the strength 

with increasing strain rate up to a certain test speed beyond which no significant change was 

observed. This saturation limit is attributed to adiabatic heating of the material due to plastic 

deformation. The softening due to heat generated at low strain rates is not sufficient to overcome 

the strain hardening of the adhesive resulting in an increase in strength. However, at high strain 

rates the two-phenomenon balance each other resulting in a saturation point. In the current study, 

this point is observed to be at 103 s-1. Figure 2.12 shows the variation in compressive strength 

with strain rate. The trend line for compressive strength is described using a hyperbolic tangent 

function with an arbitrary reference point. 

 

 

Figure 2.12 Effect of strain rate on compressive strength [28]. 
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The authors also apply a modified Johnson-Cook model (equation 2.13), which is 

modified based on Eyring’s equation to describe the stress-strain response at different strain 

rates.  
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          Eq. 2.13 

where, n is a strain-hardening factor, m is a strain rate factor and A is a material constant. The 

exponential term describes the material softening region while, the term in the square brackets 

describes the temperature dependence. This model is seen to provide an accurate representation 

of the stress-strain curve obtained from test data in this study.  

2.3.1.2 Fracture Toughness 

A study on the rate dependent changes in fracture toughness of an epoxy adhesive was 

done by Pohlit et al. [29].  This study looks at the Mode I fracture toughness values for bulk 

adhesive using a compact tension specimen. The tests are conducted on an MTS servo hydraulic 

test machine with slack adapters to ensure uniform crosshead rate for the duration of the 

experiment. Crosshead rates of 10-6 to 1 m/s are considered. The fracture toughness is seen to 

decrease linearly with an increasing crosshead rate as shown in Figure 2.13, and failure is seen to 

be increasingly brittle as the crosshead rate is increased. To predict properties at higher 

crosshead rates, the time-temperature superposition principle (TTSP) is used. The predicted 

values up to 1010 m/s are plotted in Figure 2.14.  
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. 

Figure 2.13 Effect of loading velocity on fracture toughness [29]. 

 

 

Figure 2.14 Fracture toughness values obtained using TTSP at high strain rates [29].  

 

Automotive crash applications require data at high strain rates, and to obtain this, the 

Pohlit et al. [29] used the time-temperature superposition principle (TTSP), which works on the 

basis that linear viscoelastic polymers show a strong correlation between time and temperature 

[30]. At high temperatures, molecular motion is more rapid compared to low temperatures. 

Therefore, the response of time dependent properties at high temperatures for a short duration is 

equivalent to that at low temperatures for a longer duration. This principle is used to determine a 

master curve that can be used to predict time dependent properties over a longer duration, if the 
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nature of relationship between the property and time remains the same over the temperature 

range considered. The same principle is also used by Lim and Mizumachi [31] over a much 

wider set of experimental data to obtain the master curve for strength and fracture energy at 

20oC. The temperature range in their experiments is -80 to 80oC and the testing speed is from 0.5 

mm/min to 500 mm/min.  Their results indicate an initial increase in strength and fracture energy 

with strain rate for a polyurethane adhesive.  After reaching maximums at around a rate 

corresponding to the glass transition temperature of the adhesive, both show a decreasing trend. 

Kinloch and Shaw [32] used compact tension (CT) specimens to determine Mode I 

fracture energy of a bulk adhesive and compared it with the fracture toughness obtained by using 

double cantilever beam (DCB) specimens in which the same adhesive is used to bond two steel 

substrates.   The adhesive is a rubber toughened epoxy, and the tests are conducted on an Instron 

testing machine at four different displacement rates ranging from 10-6 to 10-3 m/s.  To understand 

the differences in fracture toughness values between the two methods, effect of adhesive 

thickness, bond width and temperature are studied.  

 The adhesive fracture energy of the joints (determined in DCB tests) is found to be a 

strong function of the adhesive thickness.  It increases initially with increasing adhesive 

thickness, attains a peak value, and then decreases. The peak fracture energy and the thickness at 

which it is attained depend on the strain rate, temperature, and bond width. The adhesive 

thickness for maximum fracture energy is seen to decrease with increasing strain rate and is 

nearly constant with different specimen widths, though increasing specimen width results in 

higher fracture toughness.   Another important observation in this study is that the fracture 

energy of the bulk adhesive determined using a compact tension specimen is nearly 50% lower 

compared to the adhesive fracture energy of the joint (Figure 2.15).  
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Figure 2.15 Comparison of fracture energies in bulk adhesive and adhesive joints at different strain rates [32]. 

 

This difference in the fracture energy values in the rubber-toughened epoxy can be 

qualitatively explained in terms of the constraints imposed by the substrates for the development 

of the plastic deformation zone ahead of the crack tip. The size of the plastic deformation zone 

has been observed to be higher in the presence of high modulus constraints on the adhesive 

resulting in an increase in the GIC values. Fracture toughness is maximum when adhesive 

thickness is equal to the size of the plastic deformation zone. A lower thickness results in over-

constrained adhesive layer leading to lower toughness, and with a higher thickness the degree of 

constrain reduces the plastic deformation zone to have the same size as in bulk adhesive, i.e., GIC 

value of joint decreases till it reaches the bulk GIC value. 

 Carlberger et al. [33] used the J-integral approach to determine fracture energy for DCB 

and ENF tests to compare results in shear and peel. This study also investigates the influence of 

temperature and strain rate on strength and fracture energy of an epoxy adhesive. A temperature 

range of -40 to 80 oC and strain rates of 10-3 to 1 s-1 are considered. There is no significant 

change in the fracture energy for the temperatures considered here, though the ultimate strength 

decreases with increase in temperature. Fracture energy is observed to increase with increasing 

strain rate in peel, but the opposite is observed for shear (Figure 2.16).  
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In Carlberger et al.’s study, the properties of the adhesive are observed to be more rate 

dependent compared to previous studies. This is attributed to the use of thicker adhesive layers, 

which may result in greater rate dependent plasticity. Also, the strain rate is noted to be ramping 

up during the loading of DCB specimens instead of having a constant value. 

 Angelidi et al. [34] studied the effect of strain rate on the physical properties of acrylic 

adhesives. The paper explores strain recovery, ductility, and Poisson’s ratio under tensile and 

compressive loads. Tensile testing is done using dog bone specimens and compressive testing is 

done using brick shaped specimens. Poisson’s ratio is seen to become steady after yield point and 

increases marginally with increasing strain rate in tension. The stress-strain data obtained from 

these experiments is also used to analyze the effect of strain rate on yield strength, ultimate 

strength, and failure strain. The results show a similar increase in strength and decrease in failure 

strain under tensile load with a logarithmic trend.  

 

 

 

Figure 2.16 Effect of strain rate on fracture energy under peel and shear load [33]. 
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Most of the above studies have developed specimens and test fixtures to obtain the 

required data as there is no standard test methodology to determine several material properties. 

The American Society for Testing and Materials (ASTM) is responsible for determining standard 

test practices to determine material properties, and the D14 subcommittee is responsible for 

setting standards for adhesive joint testing. The current standard for determining Mode I fracture 

toughness is given by ASTM D3433-99. There is no such standard for Mode II fracture 

toughness. Tensile and shear properties can be determined by using ASTM standards for 

polymers.  

To summarize, adhesive properties are sensitive to strain rate, substrate material and bond 

thickness. Strength and modulus of epoxy adhesive show a positive correlation with strain rate, 

while fracture energy decreases with increasing strain rate. Properties also show a decrease with 

increasing bond thickness up to a critical thickness determined by the plasticity of the adhesive.  

2.4 Adhesive Joints 

A joint of two or more components made by using a bonding agent or adhesive that binds 

them together is referred to as an adhesive joint. A layer of adhesive is spread uniformly between 

the surfaces required to be joined and cured over a period of time, and if necessary, at elevated 

temperatures to accelerate the process. Adhesive joints can be broadly classified into lap shear, 

peel and butt joints based on the joint configuration and the type of load applied on them. Joint 

strength is usually poorer under peel and tensile loads compared to shear; therefore, design of 

structural adhesive joints is done such that load acting on the joint is principally in shear. Lap 

joints are the most used adhesive joints due to their superior properties and easy construction. 

Figure 2.17 shows a few different types of lap joints [35]. In single lap joints, the tensile or 

compressive load applied on the adherends creates a bending moment due to load line 
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eccentricity.  The adhesive layer in a single lap joint not only experiences a shear stress, but also 

a normal (peel) stress due to the bending effect, both of which show a non-uniform distribution 

with their maximum values occurring at the overlap ends. The bending effect can be reduced 

either by using thicker adherends or by using a double lap joint. The use of a strap also helps 

reduce the bending moment. Scarf and step joints exhibit higher strength, however the 

complexity in manufacturing such joints make them less practical [36].    

The strength of an adhesive joint is influenced by the bond joint geometry and the 

cohesive forces between the substrate and the adhesive. Several studies have considered the 

effects of joint geometry parameters such as overlap length, adhesive thickness, adherend 

thickness, spew, fillets etc. in determining the stress distributions across the joint and hence its 

strength. The presence of a fillet or chamfer at the leading edges of the joint are seen to reduce 

normal and shear stresses at the edges [37]. This is likely due to the absence of stress 

concentrations. The strength and energy absorption characteristics of the joint are found to be 

dependent on the nature of adhesive (brittle or ductile) and the thickness of the bond. Increasing 

adhesive thickness makes the bond prone to a greater number of flaws resulting in a decrease in 

strength.  

 

 

 

Figure 2.17 Different forms of adhesive joints [35]. 
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The optimum thickness of the adhesive depends on the nature of the adhesive and 

function of the joint. The load bearing capacity of an adhesive lap joint increases with increasing 

bonded area, however, the study by da Silva et.al. [38] shows that increase in strength is possible 

only to a certain value beyond which there is no benefit. In fact, increasing bond length could 

potentially decrease strength due to the inclusion of a greater number of voids and thermal 

residual stresses during curing. Optimal bond length can be predicted using the following two 

equations [38] which describe the maximum load carried by the adhesive (Fa) (Equation 2.14) 

and the substrate (Fs) (Equation 2.15). 
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where, k is a bending moment factor which depends on overlap length and load applied. For l/ts > 

20, k tends to be 0. τy and σys are the yield strength of the adhesive and adherend substrate 

respectively and w, l and ts are geometry parameters width, overlap length and substrate 

thickness, respectively.  

The study of adhesion phenomenon is equally important, however, there is no unifying 

theory to explain all the factors affecting bond strength as it is a multidisciplinary field of study. 

Adsorption theory [39] is a widely accepted model, which explains that the cohesive forces are 

set up due to intermolecular interactions between the adhesive and adherend such as van der 

Waals forces, hydrogen bonds, covalent bonds etc., and hence, the bond strength depends on the 

surface free energy of the adhesive and adherends, and quality of the interface to ensure 

complete wetting of the substrate surface by the adhesive [39] [40].  
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2.4.1 Effect of Strain Rate on Adhesive Joints 

 The effect of strain rate on bulk adhesive has been explained in detail in a previous 

section. However, when designing adhesive joints, this knowledge alone is insufficient as 

changes in strain rate has a significant effect on the behavior of substrate materials as well as the 

interaction between the adhesive and the substrates. Several studies have considered the aspect of 

impact behavior of different types of adhesive joints, but there are few which compare the 

strength and failure response at various strain rates. 

 A study on the mechanical behavior of Betamate epoxy-DP steel double lap shear joints 

at different loading rates (1, 100 and 500 mm/min) and temperatures by Deb et al. [41] shows 

significant influence on the failure strength at both room temperature and high temperature 

(82oC). Room temperature experiments show no change in failure load with different loading 

rates but show a higher failure strain compared to the tests at higher temperatures, which could 

be due to yielding in the substrate. Increase in the extension rate results in an increase in the 

failure load, though no significant difference in failure strain is observed. Since the extension is 

measured across the ends of the specimen and not the joint section, it is difficult to judge the 

effect of loading rate on the failure strain, especially since yielding is observed in the substrate in 

the non-overlap area. Joint failure in all cases is observed to be a cohesive failure. The study also 

investigates the application of failure models provided by ABAQUS in predicting the stress-

strain response. At room temperature or below, von Mises yield criterion shows good correlation 

with the test data; however, at high temperature, Raghava/EDP failure criterion is suggested to 

be more appropriate as it includes hydrostatic stress. 

 Zhang et. al. [42] considered the effect of strain rate up to 100 s-1 on single lap joints with 

steel and aluminum substrates and crash resistant adhesive using a servo-hydraulic test machine. 
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The substrates used in this study show the effect of having a rate sensitive adherend versus an 

insensitive one. The aluminum used for the joint has no significant rate sensitivity. Figure 2.18 

shows the load displacement curves for the joint at different strain rates, where (a) is for a steel-

steel joint and (b) is for an aluminum-aluminum joint. The two plots show that while there is an 

increase in yield strength with increasing rate in the steel joint, there is no such change observed 

for the aluminum joint. This is attributed to the rate sensitivity of steel’s yield point. The quasi-

static curve in both cases shows similar characteristics, with adhesive failure prior to substrate 

yielding due to low adhesive strength at that strain rate. In the steel joint, there is no obvious 

yielding of the adherend and the increase in strength could be due to increase in adhesive 

strength with strain rate. But the aluminum joint shows clear yielding in the substrate 

characterized by the perfectly plastic portion of the curve followed by adhesive failure. 

Therefore, the adhesive joint strength could be said to be limited by the yield point of substrate 

material. Also, the fracture is observed to be of mixed nature, with both interfacial and cohesive 

failure at all strain rates in this study. 

 

 

Figure 2.18 Effect of strain rate on load-deflection curves in (a) Aluminum and (b) Steel [42]. 

  



  

 40 

The increase in bond strength is also observed by Srivastava [43] in a study considering 

the effect of strain rate on Ti-Al alloy-C/C SiC composite adhesive joint. The effect of spew 

fillets is seen to be beneficial to the bond strength and increase in bond length is observed to lead 

to a decrease in strength upon reaching a certain limiting value due to the moment induced under 

load in single lap joints.  

2.5 Tubular Joints 

 Adhesive bonding is a popular method to join composite-composite or composite-metal 

tubular or box sections. These joints are usually single lap joints with the two sections bonded 

across an overlap region. Several other forms of adhesive tubular joints have been studied such 

as a sleeve or a coupler joint analogous to the strap joints for flat plates and co-curing in the case 

of composite-composite joints [44]. These joints have found applications in the chemical and 

energy industries where they are used in the piping structures. However, the simplicity of single 

lap tubular joints has made it a popular method to join multi-material tubular or box sections in 

the aerospace and automotive industries. Such joints may experience axial and torsional loads 

depending on their application. Several studies have investigated the normal and shear stress 

distribution across the bond length using numerical methods under axial loads. These studies 

consider only an axial tensile load on the adherend. A review of various adhesive stress models 

in axially loaded tubular joints was published by Dragoni and Goglio [45]. Their article 

compares the models with finite element results of a particular joint configuration under quasi- 

static tensile load. The results indicate that Lubkin and Reissner model closely follows the FEA 

data, but the other models are not able to predict the peel stress in the adhesive. 

 Lubkin and Reissner [46] published one of the earliest works on the stress distribution 

across the adhesive in a circular tube joint under tensile load, and presented design data for 
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different cases of adhesives, adherends and geometries using an analytical approach like the 

models used for flat lap joints. This study assumes that the adhesive is a thin-flexible layer 

whereby the stresses are constant through thickness, and the adhesive is only subjected to normal 

(peel) and shear stresses. To reduce computations, the adhesive is approximated by a set of 

infinitesimal springs, and materials are linear elastic. Results of this approach indicate high peel 

and shear stress concentration at the overlap ends, and nearly uniform shear and peel stress 

distributions in much of the overlap length.  The magnitude of stress concentration is seen to 

vary based on the adhesive thickness, tube thickness and tube diameter.  

Figure 2.19 shows normalized stress distribution across bond length for two design cases 

with β = 100 (flexible adhesive) and β = 4 (stiff adhesive). β is the elasto-thickness parameter 

given by, β = ηE/Eat, where t and η are the adhesive thickness and tube thickness, respectively 

and Ea and E are their tensile modulus values. Stress concentrations are observed at the adhesive 

bond edges in both cases, which is more pronounced in flexible adhesives. 

 

 

Figure 2.19 Normalized shear (T) and normal (N) stress distributions across the bond length in a tubular adhesive 

joint [46]. 
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Figure 2.20 Comparison of Lubkin and Reissner’s solution with finite element results of Adams and Peppiatt [47]. 

 

A finite element simulation and verification of the above study is presented by Adams 

and Peppiatt [47]. Quasi-static tensile and torsional loads are applied on the joint. There is no 

information regarding the model apart from mesh geometry, but it can be assumed that the 

materials are modeled as linear elastic. The results show that theoretical model of Lubkin and 

Reissner is quite accurate for the specific design cases presented in the study. The paper also 

verifies the model for another two cases again from Lubkin and Reissner’s design data.  Figure 

2.20 shows a comparison of results for one such design case.  

Adams and Peppiatt [47] also explore the effects of fillets and scarf joints on the stress 

distribution in the adhesive. The use of fillets shows a significant improvement in the design; 

however, the use of scarf joints shows negligible improvement in design and is not worth the 

cost as fillets are a cheaper and easier solution. 

Another numerical model presented by Nakano et al. [48] uses axisymmetric elasticity 

theory to establish the equilibrium equations for stress and strain in the joint. The study compares 
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the effect of adherend modulus on the stress distribution at the adhesive-adherend interface, 

adhesive thickness and overlap length using a numerical method presented in the study. The 

results indicate that a decrease in overlap length causes an increase in peel stress concentration at 

the joint ends more so at the loaded end of the joint and, with decrease in adhesive thickness von 

Mises equivalent stress is lower across the overlap but show higher stress concentration values. 

In terms of adherend modulus, a stiffer inner tube leads to lower stresses at the inner tube and 

adhesive interface, but a stiffer tube leads to a higher stress at the outer tube and adhesive 

interface. The study also presents limited experimental work to determine the joint strength with 

different substrates. It is reported that failure occurs at the inner interface if both substrates are of 

the same material.  Additionally, test results have shown that a joint with a stiffer inner tube has 

the highest strength (Table 2.1).  

Shi and Cheng [49] published a model for tubular adhesive joints with an approximate 

closed form solution based on minimum complimentary energy. The solution here is much more 

complex due to the large number of variables and boundary conditions considered. The nature of 

shear stress distribution is similar to the results published by Lubkin and Reissner [46], but the 

peel stress distribution is seen to be different. Peel stress distribution across the overlap varies 

almost linearly from a positive value at the leading edge to a negative value at the trailing edge, 

which is quite different when compared to previous studies (Figure 2.21). The authors conclude 

by mentioning that the results are akin to other flat single lap joint theories, however, they fail to 

compare their results with other tubular joint theories which is more appropriate. The effects of 

adhesive thickness and overlap are also analyzed numerically. Decrease in adhesive thickness is 

seen to decrease shear stress while the normal stress does not change much and increase in 

overlap length causes the stress concentration to move towards the joint ends. 
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Table 2.1 Effect of tube material on joint strength under tensile load [48]. 

Inner Shaft Outer Shaft Tensile Strength (kN) Standard Deviation (kN) 

Steel Steel 24.0 0.79 

Al alloy Al alloy 22.2 1.35 

Steel Al alloy 25.2 1.53 

Al alloy Steel 12.9 2.36 

 

 

Figure 2.21 Stress distribution across bond length according to model proposed by Shi and Cheng [49]. 

 

The mathematical models provide a method to arrive at the stress distributions in the 

adhesive through a complex numerical solution, but do not provide a failure criterion which is 

more relevant in joint design. Kim et al. [50] proposed a failure criterion based on the adhesive 

properties and adhesive stresses under load in CFRP-Steel tubular joints. The study consists of 

three parts, first is the effect of adhesive thickness and fiber angle on the load carrying capacity 

of the bond, second, a two-parameter exponential equation to define the stress-strain curve of 

adhesive in tension and shear, and finally a failure model for the adhesive in a tubular adhesive 

joint. 
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The load bearing capacity is observed to decrease with an increase in adhesive thickness. 

This decrease is observed to be marginal at a stacking angle of 15o, but quite significant at 30o 

and 45o. The authors attribute the decrease to higher residual thermal stresses in thicker adhesive 

layers, leading to premature failure. There is no further explanation on the effect of stacking 

angle on the joint strength as the 15o angle seems to indicate a very low dependence of thickness 

on load carrying capacity, while the decrease at higher stacking angles could be attributed 

primarily to the decrease in adherend strength. Non-linear adhesive behavior is described as 

shown in Equation 2.16. 

( / )
(1 )mE

m e
   −

= −       Eq. 2.16 

Where, σ is the tensile stress in the adhesive, σm is ultimate tensile strength of the adhesive, E is 

the Young’s modulus of the adhesive and ɛ is the tensile strain in the adhesive.  

A finite element model is used to calculate the 3D stresses in the adhesive layer. The 

model considers residual thermal stress, calculated by considering the differences in coefficient 

of thermal expansion between adhesive and adherend, and by modeling the adhesive layer using 

equation 2.16. The tensile load data used in FEA is obtained from the experimental results. The 

stresses in adhesive elements at the interface are used to calculate a failure index given by 

Equation 2.17.  

  Eq. 2.17 

where, ST and SS are the tensile and shear strength of the adhesive, and the rest of the terms are 

the calculated stresses in polar coordinates. To predict joint failure, a model based on Equation 

2.18 is proposed. The fracture criterion or kf is defined as follows, 
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Here, α and β are arbitrary constants based on the stacking angle of the composite tube and ki is 

an initial failure index calculated using equation 3 with only residual thermal stresses in 3D. 

Failure occurs when failure index (2.17) is equal to the fracture index (2.18). Hence, this model 

requires joint geometry and curing cycle details to predict joint failure. The experimental data 

from a brittle adhesive are applied here to verify the model (Figure 2.22) for various joint 

thicknesses and show reasonable accuracy.  

 

 

 

 

Figure 2.22 Joint failure index variation with adhesive thickness [50]. 

 

 

 

 



  

 47 

Fracture mechanics of tubular adhesive joints is explored by Reedy and Guess [51]. 

Linear elastic and elastic plastic approaches are used to study the joint failure mechanics. 

Limited experimental work is also done to compare the strength of the composite to Aluminum 

joint under quasi-static, fatigue tensile and compressive loads. Experimental results indicate that 

compressive strength is about half of the tensile strength of the joint, and failure is abrupt under 

quasi-static as well as fatigue conditions. Cohesive adhesive failure is seen to initiate at the edge 

of adhesive aluminum interface in tensile tests. And tapering of the inner aluminum adherend is 

seen to improve compressive strength and decrease tensile strength, leading to similar failure 

load values in both tension and compression.  

ABAQUS finite element software is used to determine the fracture energy and stress 

intensity factors of the adhesive in this joint configuration. Two approaches are adopted, an 

elastic-plastic material approach with no crack in the adhesive and linear elastic approach with a 

crack in the adhesive. The crack tip yield zone dimension is obtained from the elastic-plastic 

model and no further work is shown. While the element displacements are used to calculate the 

stress intensity factors, and energy release rate is obtained using ABAQUS codes in the linear-

elastic model. The model is used to compare the parameters for different substrate combinations, 

but there is insufficient data to draw accurate conclusions since data from tensile cases are 

compared to compressive cases to draw conclusions on the effect of substrate material. The 

authors observe that linear-elastic approach is not applicable in this case to determine joint 

failure as the yield zone is bigger than adhesive thickness at a lower load level.  

An extension of this study by Guess et.al. [52] shows that the difference in tensile and 

compressive strength is negated with use of a taper in an aluminum-plain weave composite joint, 

but the taper has no effect if the composite adherend is changed to a triaxial reinforced 
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composite. And, according to finite element analysis, peel stress concentration at joint ends is 

observed to cause failure initiation.  

Another approach to numerical investigation of inter-locked tubular joints done by Sonia 

Braeik et. al. [53] uses cohesive zone model to define the adhesive and composite is modeled 

using volume elements. Damage in the joint is observed to cause delamination, matrix crack and 

fiber matrix debonding. The damage data from FE is comparable to the test observations.  

An extensive study on optimizing the parameters influencing joint performance under 

tensile load was published by Labbé and Drouet [54]. The study uses a linear elastic approach to 

model the materials with a strength-based failure criterion for the adhesive. While the results of 

this study provide a good direction on the ideal joint parameters, the use of linear elastic models 

makes the end results less accurate since most structural adhesives are toughened and have some 

degree of non-linearity in their stress-strain response.  Barbosa et. al. [55] [56] have investigated 

the same using cohesive zone model, but the scope of their study was limited to different brittle 

adhesives and influence of overlap length.  

Most studies on such joints and joint parameters are based on the stress distributions in 

the adhesive layer when modeled as a linear elastic material which may not be an effective 

representation of structural joint behavior. Hence, there is a need for further investigation on the 

influence of joint parameters as well as optimization of the joint considering non-linearity in 

adhesive behavior and material failure. 
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Chapter 3 Analysis of Adhesive Stresses in Tubular Lap Joints 

The existing analytical and finite element models on the stress distributions in the 

adhesive layer of tubular single lap joints are based on tensile and torsional loads on the tubes. 

They not only provide insight into the stress distributions in the joints under a tensile or a 

torsional load, but also provide important information on joint design under quasi-static and 

linear elastic conditions. However, the existing findings may not be sufficient for the design for 

crush performance of tubular joints since the loading condition in crush condition is typically 

compressive in nature. For this reason, stress distributions in the adhesive layer in tubular joints 

under an axial compressive load and the effects of different joint parameters on them are studied 

in this chapter.  

3.1 Joint Design and Model Parameters 

 Review of existing literature on lap joints and tubular joints under tensile loads show that 

the important parameters in joint design are joint geometry including overlap length (L), bond 

thickness (t), tube diameters, inner tube thickness (ti), outer tube thickness (to), tube end design 

and tube overlap design, tube material and the characteristics of the adhesive itself. Figure 3.1 

illustrates the joint with important parameters for a joint under compressive load. Stress analysis 

of the adhesive overlap under compressive load is performed using Altair Hyperworks’ 

Optistruct (v2017.1.0.10) solver.  
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Figure 3.1 Illustration of tubular joint under compressive loading with important joint parameters. 

 

Table 3.1 Geometry of joint. 

Parameter Value 

Inner tube length (Li) 40 mm 

Outer tube length (Lo) 40 mm 

Inner tube thickness (ti) 1 mm 

Outer tube thickness (to) 1 mm 

Inner tube outer diameter (di) 9.8 mm 

Outer tube outer diameter (do) 11 mm 

Adhesive thickness (t) 0.2 mm 

Mean adhesive diameter 10 mm 

Overlap length (l) 10 mm 
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The geometric parameters for a reference model of the joint are listed in Table 3.1. For 

easy interpretation of stress data, a cylindrical coordinate system is used as shown in Figure 3.1.  

Adhesive overlap is measured from zero at the leading edge to l0 mm at the trailing edge.  The 

material of both substrate tube and adhesive are defined as linear elastic. In the reference model, 

both tubes are made of steel with a modulus of 200 GPa and they are bonded with an adhesive 

having a modulus of 3.5 GPa. Variations of the joint parameters and material properties are 

considered in the Section 3.2. 

The finite element model of a joint under compressive load is shown in Figure 3.2.  It is 

constructed of 8-noded 3-D brick elements. The tubes are meshed with brick elements of varying 

height, ranging from 0.167 mm in the bonded region to 1 mm at top end of the inner tube and 

bottom end of the outer tube; thickness varies similarly from 0.167 mm at the joint to 1 mm at 

the tube ends and width of the elements is appropriately adjusted for 64 elements around the tube 

and adhesive circumferences.  The adhesive layer is meshed with 0.1 mm thick and 0.167 mm 

high brick elements.  

The axial compressive load is applied to the top end of the inner tube via a point force. 

The point force acts on a floating node which is connected to all the top end nodes of the inner 

tube with 1D rigid elements as shown in Figure 3.2. The joint is constrained by providing a rigid 

boundary condition to the bottom end nodes of the outer tube preventing all movements of the 

bottom end of the joint.  
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Figure 3.2 Tubular adhesive joint model in OPTISTRUCT under compressive load. 

 

Before conducting the finite element analysis with a compressive load, an initial 

simulation was conducted with an axial tensile load of 6000 N to verify the resulting stress 

distributions with    the analytical results of Lubkin and Reissner [43] described in Chapter 2.  

Figure 3.3 plots the normalized distributions of shear (rz) and radial normal (rr) stresses at the 

inside and outside interfaces for a joint with a mean diameter of 10 mm, adhesive thickness of 

0.2 mm and overlap length of 10 mm, the same adhesive layer dimensions as was used by 

Lubkin and Reissner [46].  The normalized stresses are calculated by dividing the actual stress 

values with the average shear stress in the adhesive layer.  The results show shear concentrations 

near the two edges of the joint. The radial normal stress distribution shows significant stress 

concentration at the edges of the bond but is close to zero across the middle of the bond. Results 

also show a difference in stress magnitudes between the inside and outside interface of the bond.  

The normal stress is tensile on the leading edge, but compressive at the trailing edge for the 
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outside interface and tensile at both edges for the inside interface. The tensile normal stress can 

be characterized as peel stress, which can contribute to the initiation of failure of the adhesive 

layer when the tubular joint is subjected to an axial tensile load. Also, comparing the finite 

element results with those shown in Lubkin and Reissner’s study (Figure 3.4), a good correlation 

can be observed. 

 

 

Figure 3.3 Normalized stress distributions in the tubular adhesive joint along the overlap length (for the joint 

dimensions listed in Table 3.1). The loading is tensile. 

 

Figure 3.4 Normalized stress distributions in the tubular adhesive joint along the overlap length according to Lubkin 

and Reissner’s results [46]. The joint dimensions are the same as in Figure 3.3. 
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Figure 3.5 Stress distribution across joint overlap under a compressive load of 6000 N. The joint dimensions are the 

same as in Figure 3.3. 

 

Since the primary objective of this dissertation is to understand the crush characteristics 

of single lap tubular joints under compressive loading, the finite element stress analysis from 

here on is performed under a compressive load.  The same model is used to study the stress 

distributions under an axial compressive load of 6000 N, which is the same as the tensile load 

applied before. 

 Figure 3.5 plots the shear and normal stress distributions across the overlap length under 

an axial compressive load of 6000 N. The black solid line in Figure 3.5 represents the average 

shear stress acting on the adhesive, which is equal to 1.91 MPa. It is observed that the change of 

the applied load from tension to compression does not affect the magnitude of the normal and 

shear stresses, but their directions have changed. This is as expected since the material is 

considered linear elastic with the same modulus under both tensile and compressive loads. When 

compared with the results under a tensile load, the positive normal stress at the leading edge has 

become negative under a compressive load, or the normal stress concentration zone at the 
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leading edge has become compressive.   At the trailing edge, the normal stress is now positive or 

tensile on the inside interface, but negative or compressive on the outside interface, which is the 

opposite of the normal stresses at the trailing edge under tensile loading.  The shear stress also 

changes its direction under the compressive load, and as with the tensile load, shows higher 

values at the ends of the joint. These stress concentration areas near the ends of the overlap are 

expected to play a major role in crack initiation and propagation in the adhesive layer. Also, as 

with the tensile load, there are differences in the magnitudes of the normal stresses between the 

inside and outside interfaces of the adhesive. The inside interface shows higher magnitudes of 

normal stress at both edges compared to the outside interface. This makes the study of the inside 

interface more crucial for failure studies, and hence, moving forward the study will mostly 

describe the stresses at the inside interface obtained from elements in contact with inner tube. 

3.2 Effect of Joint Parameters on Stress Distributions 

For efficient design of adhesive joints in multi-material tubular constructions, it is 

important to consider the effects of various joint design parameters on the stress distributions and 

maximum stresses in the adhesive layer.  In the following subsections, the effects of joint design 

parameters, such as tube materials, adhesive modulus and joint geometry on the shear and 

normal stresses in the adhesive layer are investigated.  The axial compressive load applied on the 

joint is 6000 N.  

3.2.1 Effect of Tube Materials 

The study below considers the effect of joining two aluminum tubes (Al-Al), an inner 

steel tube with an outer aluminum tube (Steel-Al), and an inner aluminum tube with an outer 

steel tube (Al-Steel).  The joint geometry parameters are the same as in Table 3.1. The modulus 

of aluminum is 70.3 GPa, which is approximately one-third the modulus of steel, and therefore, 
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for equal cross-sectional area, the axial stiffness of aluminum tubes is one-third that of steel 

tubes.  Figures 3.6 compares the shear and normal stress distributions for different tube material 

combinations with the stress distributions for a steel-steel joint.   

The studies with different tube materials show a much greater variation in the shear stress 

distributions (Figure 3.6 (b)) than in the normal stress distributions (Figure 3.6(a)). In an 

aluminum-aluminum joint, the shear stress shows much lower values across the length of the 

joint, despite having almost equal shear stresses as in a steel-steel joint at the edges. Looking at 

the steel-Al and Al-steel joints, it is observed that the stiffness difference of the two tubes affects 

the shear stress distributions significantly. A softer aluminum tube on the inside and a stiffer 

steel tube on the outside in the Al-Steel combination causes the highest shear stress at the trailing 

edge and low shear stress at the leading edge.  The lowest shear stress occurs at the trailing edge 

with Steel-Al combination in which the steel is the inner tube and aluminum is the outer tube; 

however, at the leading edge, the shear stress is the highest in the Steel-Al combination among 

all considered here.   

In Figure 3.6 (b), it can be seen that there is little effect of the tube material combination 

on the normal stress distribution in the middle length of the overlap; however, normal stress 

concentrations near the edges are significantly influenced by the tube material combination.  The 

case of steel inner tube bonded to aluminum outer tube in Steel-Al combination is of particular 

interest. The softer outer tube has resulted in a positive shift of stress concentration magnitudes 

resulting in a high tensile normal stress at the trailing edge of the overlap.  On the other hand, the 

highest compressive normal stress distribution at the leading edge and the lowest tensile stress 

concentration at the trailing edge occur with aluminum inner and steel outer tube in Al-Steel 

combination.  



  

 57 

 

 

 
(a) 

 
(b) 

 
Figure 3.6 Comparison of adhesive stresses in joints with different tube material combinations. (a) and (b) compare 

shear and normal stresses on the inner surface of the adhesive layer.  
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3.2.2 Effect of Adhesive Modulus  

Another important factor to consider in adhesive joints is the modulus of the adhesive. 

Several studies on tubular lap joints under tensile loading have presented results on the effect of 

adhesive modulus showing an increase in stress concentrations with increase in adhesive 

modulus. To determine the effect of adhesive modulus for tubular joints under compressive 

loading, three different adhesive modulus values, namely 2, 3.5 and 5 GPa, are considered in 

steel-steel joints with the same joint geometry as in Table 3.1. The 2 GPa adhesive is referred to 

as the softer adhesive and 5 GPa adhesive is called the stiffer adhesive.  Figure 3.7 (a) plots the 

normal stress distribution in tubular joints with adhesives having the different modulus and 

Figure 3.7 (b) plots shear stress distribution. Changing the adhesive modulus is seen to mainly 

affect the stresses at the leading edge of the overlap. Lowering the adhesive modulus allows 

higher strains to be developed in the adhesive layer at a given stress level, resulting in a greater 

difference in the deformation between inner and outer tubes. This difference results in both 

higher compressive stresses and higher shear stresses, particularly at the leading overlap edge.  
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(a) 

 

(b) 

 

Figure 3.7 Plot showing the effect of adhesive modulus on the normal stress (a) and shear stress (b) distribution 

across bond length in steel-steel tubular joints. The joint geometry is given in Table 3.1. 

 

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

0 2 4 6 8 10
N

o
rm

al
 S

tr
es

s 
(M

P
a)

Overlap Length (mm)

Harder Adhesive

Softer Adhesive

Ref. Adhesive

-35

-30

-25

-20

-15

-10

-5

0

0 2 4 6 8 10

Sh
ea

r 
St

re
ss

 (
M

P
a)

Overlap Length (mm)

Harder Adhesive

Softer Adhesive

Ref. Adhesive



  

 60 

3.2.3 Effect of Tube Thickness 

The effect of changing tube thickness is seen to be analogous to changing the modulus of 

the tube material, since both affect the axial stiffness of the tubular joint. For this study, the 

thicker outer or inner tube has a tube thickness of 1 mm, while the other tube has a thickness of 

0.5 mm. Thus, the three tube thickness combinations are thicker inner tube with 1 mm inner 

tube/0.5 mm outer tube, thinner inner tube with 0.5 mm inner tube/1 mm outer tube and the 

reference tube with 1 mm inner tube/1 mm outer tube.  The tubes are made of steel and other 

joint parameters are the same as in Table 3.1.   

The stress distributions for different tube thickness combinations are plotted in Figure 3.8 

The tube thickness combinations considered have little effect on the normal stress distributions 

but have considerable effect on the shear stress distributions. Thicker inner tube produces the 

highest shear stress concentration at the loading edge and the lowest shear stress concentration at 

the trailing edge.  The opposite is true with the thicker inner tube. 
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(a) 

 
(b) 

Figure 3.8  Plots showing the effect of tube thickness combinations on the normal stress (a) and shear stress (b) 

distributions across bond length.  The other joint geometry parameters are given in Table 3.1 

 

3.2.4 Effect of Adhesive Thickness 
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adhesive layer. Three different adhesive thicknesses, 0.2 mm, 0.5 mm, and 1 mm, are considered 

here, and the overlap length is maintained at 25 mm. In this study, the outer tube has an outside 

diameter of 25.4 mm, both inner and outer tube thicknesses are 1.25 mm, and each tube length is 

75 mm.  To consider different adhesive thicknesses, the inside diameters of the inner tube are 10, 

9.7 and 9.2 mm for 0.2, 0.5- and 1-mm adhesive thickness, respectively.   In the finite element 

models, the 0.5 mm and 1 mm adhesive layers are modeled with 5 through thickness brick 

elements and the 0.2 mm adhesive layer with 2 through thickness elements.   

 Figure 3.9 (a) plots the normal stress and Figure 3.9 (b) plots the shear stress versus 

overlap length for the three adhesive layer thicknesses considered. At the trailing edge of the 

adhesive layer in Figure 3.9(a), 0.2 mm thickness shows compressive stress concentration 

compared to 0.5- and 1-mm thicknesses that show tensile stress concentration.  It can be 

observed in Figure 3.9 (b), that shear stress concentrations at both adhesive edges increase with 

decreasing adhesive thickness and the shear stress distribution becomes more uniform with 

increasing adhesive thickness. 

Figure 3.10 plots the variation of normal stress across the adhesive thickness. As noted in 

Section 3.1, there is a significant difference in normal stresses between inside and outside 

interfaces at the overlap edges. The difference in normal stresses between the two interfaces is 

seen to increase with adhesive thickness as shown in Figure 3.10. Top end and bottom end in this 

figure refer to the leading edge and trailing edge of the adhesive overlap, respectively.  The 

nature of normal stress changes from compressive to tensile at the inside interface of the trailing 

edge with increase in adhesive thickness, while at the outside interface the magnitude of normal 

stress is similar. At the leading edge, the normal stress is compressive, but the difference in 

magnitude between the interfaces increases greatly with increase in adhesive thickness. 
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(a) 

 

(b) 

Figure 3.9 Plot showing the effect of adhesive thickness on the normal (a) and shear (b) stress distribution across 

bond length. 

 

Figure 3.10 Plot showing the effect of adhesive thickness on the normal stress distribution across adhesive thickness. 

(1: inside interface, 5: outside interface, Top end: leading edge, bottom end: trailing edge) 
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3.2.5 Effect of Tube Length 

Tube length plays a major role in determining crush characteristics of tubular structures. 

Hence, different tube lengths were considered for stress analysis. However, under linear elastic 

conditions, changes in tube length or changes in the ratio of inner tube to outer tube lengths do 

not show any influence on the stress distributions across the adhesive overlap.  

3.2.6 Effect of Overlap Length 

To join a given set of tubes the overlap length is a critical parameter in determining joint 

strength.  Increasing bond length directly increases the bonded region, reduces the average shear 

stress, and hence allows for greater load carrying capacity. Apart from the basic understanding of 

higher overlap length leads to lower stress, it is important to understand the changes in stress 

distributions with overlap length. For this, two cases are considered: 10 mm and 25 mm overlaps. 

The tubular joint is made of steel tubes. Both tubes have a length of 75 mm and thickness of 1.25 

mm. The outer tube has an outside diameter of 25.4 mm, and the adhesive thickness is 0.2 mm. 

The normal and shear stress distributions for the two cases are plotted in Figures 3.11 (a) and (b), 

respectively. To better compare the stress distributions, normalized stress values are also shown 

in Figure 3.11.   

The normal stress plot indicates compressive stress concentrations at both edges of the 

overlap are higher for the 10 mm overlap and more uniform stress distribution for the 25 mm 

overlap.  Also, the normal stress is zero for much of the mid-length of the 25 mm overlap. The 

shear stress concentrations at both edges of the overlap are much higher for the 10 mm overlap, 

but the shear stress distribution is more uniform for the 10 mm overlap.  However, since the 

average shear stress is 2.5 times lower for the 25 mm overlap, the normalized shear stress values 

are higher for the 25 mm overlap compared to the 10 mm overlap.   
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(a) 

 

 
(b) 

 
Figure 3.11 Plot showing the effect of overlap length on the normal (a) and shear (b) stress distributions across the 

overlap length. 
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3.2.7 Effect of Adhesive Spew 

Finally, the end geometry of the adhesive joint also plays an important role in affecting 

the stresses in the adhesive layer. Changes made to the tube such as chamfered tube ends at the 

joint or scarfing and the presence of adhesive spew at the overlap ends help reduce stress 

concentrations in the adhesive layer. Triangular adhesive spews as shown in Figure 3.12 are 

considered here. Figure 3.13 (a) plots the normal stress for a joint with a 0.5 mm adhesive spew 

in a 0.2 mm thick adhesive joint. The introduction of a small spew marginally reduces the normal 

stresses at the joint edges while the stresses across rest of the adhesive length remains the same. 

The same is observed for shear stress values (Figure 3.13 (b)).  

 

   

Figure 3.12 Tubular single lap joint with spew 
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(a) 

 

(b) 

Figure 3.13 Plot showing the effect of small triangular adhesive spews shown in Figure 3.12 on the normal (a) and 

shear (b) stress distributions across bond length. The other joint parameters are given in Table 3.1. 

 

3.3 Conclusions 

A linear elastic finite element analysis of the bonded region was conducted to gain insight 

into the stress distributions in the adhesive layer in tubular joints subjected to an axial 

compressive load.  Adhesive overlap exhibits regions of shear stress concentrations at the 

overlap ends and relatively low shear stress across the bond length. Unlike tensile loading on the 

joint, compressive loading creates high compressive radial normal stresses at the leading overlap 
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edge. Depending on adhesive thickness, the normal stress at the trailing edge is either 

compressive or tensile. Stress values are higher at the leading edge compared to trailing edge. 

Critical joint design parameters are found to be tube material modulus, tube thickness, adhesive 

thickness and overlap length.  
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Chapter 4 Crush Performance of Aluminum-Aluminum Tubular Lap Joints 

The existing analytical and numerical stress analysis models provide insight into the 

stress distributions in tubular lap joints under quasi-static, linear elastic conditions; however, this 

information is not sufficient to design such joints for structural applications. Studies on stress 

analysis do not provide insight into the crush and failure characteristics of the joint under axial 

loads. Hence, an explicit finite element analysis of tubular single lap joints using LS-Dyna was 

performed to determine failure modes, peak loads and energy absorption characteristics under 

compressive and tensile loads.  This chapter presents the methodology used and the results of the 

finite element analysis of the crush characteristics of aluminum-aluminum tubular joints under 

compressive loads.   

The single lap tubular adhesive joint considered in this research has a circular cross-

section with three parts - an inner tube, an outer tube and an adhesive layer joining them over a 

small overlap. The geometric and material properties of each part have an influence on the 

deformation response and failure characteristics of the tubular joint under axial loads. The 

following sections of this chapter will explore the influence of these parameters and use Design 

of Experiments (DOE), a statistical analysis approach, to determine their degrees of influence on 

the joint performance under compressive loads. 

4.1 Joint Configuration 

The single lap tubular joint comprises of two co-axial tubes joined together across an 

overlap region using an adhesive as shown in Figure 4.1. For the purposes of this analysis under 
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compressive load, the joint is supported by a plug at the stationary bottom end of the outer tube 

and an axial compressive load is applied at the top of the inner tube by means of another plug 

moving at a constant velocity. The bottom plug is constrained across all degrees of freedom and 

the top plug is constrained in all but the y-direction displacement. Schematic drawings of the 

bottom and top plugs are given in Figures 4.2 (a) and (b).   

As shown in Figure 4.1, the joint consists of three parts: top tube, bottom tube, and an 

adhesive overlap. The bottom tube is the outer tube and is larger in diameter than the top tube or 

inner tube.  Each of the three parts have several geometric parameters to be considered for the 

crush-resistant design of the joint. Previous studies [10, 12] have shown that crush characteristics 

of round tubes are affected by the slenderness ratio which is the ratio of tube length to mean 

diameter. Typically, tubes with high slenderness ratio fail by global buckling with low energy 

absorption, which is an undesirable failure mode in crash conditions.  A more sustained local 

buckling with fold formation occurs with tubes with low slenderness ratio.  Tube thickness also 

plays a significant role in the type of deformation that may occur in tubes under compressive 

loads.  Stress analysis of single lap tubular joints in literature [46, 47] shows that both tube 

thickness and diameter have significant influence on the stress distributions across the overlap 

length.  In addition, the adhesive thickness and overlap length also influence the stress 

distributions in the adhesive.  This was also verified using quasi-static stress analysis presented 

in Chapter 3.  

In the crush analysis conducted in this chapter, the mean diameter of the joint, defined as 

the average of the inside diameter of the outer tube and the outside diameter of the inner tube, is 

kept constant at 26.46 mm.  Two different adhesive thicknesses are considered and other 

parameters, such as outer and inner tube lengths, outer and inner tube diameters, and adhesive 
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overlap length (Figure 4.1) are varied. A list of these parameters along with their range of values 

is given in Table 4.1. The set of joint configurations used in the finite element simulations are 

listed in Table 4.2.  

 

 

 

Figure 4.1 Joint configuration with end plugs. 
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Table 4.1 Geometric parameters of single lap tubular joints considered in the study (All dimensions are in mm) 

Parameter Symbol Values 

Joint length  L = Li + Lo - Lov  125, 137.5, 150, 162.5, 175 

Inner tube length Li 75, 87.5, 95, 97.5, 100, 105 

Outer tube length Lo 75, 87.5, 95, 97.5, 100, 105 

Overlap length Lov 15, 20, 25, 35  

Mean joint diameter dm 26.46 

Inner tube thickness ti 0.8, 1.2, 1.6  

Outer tube thickness to 0.8, 1.2, 1.6 

Adhesive thickness ta 1.06, 1.5 

 

 

 

Figure 4.2 Plug schematic drawing with dimensions in mm. 
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Table 4.2 List of Joint configurations 

L/dm Li/Lo ti/to ti Li L Overlap 

6.6 1 1 1.6 95 175 15 

6.6 1 1 1.2 95 175 15 

6.6 0.95 1 1.6 95 175 20 

6.6 0.95 1 1.2 95 175 20 

6.6 1 0.75 1.2 97.5 175 20 

6.6 1 1 1.6 97.5 175 20 

6.6 1 1 1.2 97.5 175 20 

6.6 1 1.33 1.6 97.5 175 20 

6.6 1.05 1 1.6 100 175 20 

6.6 1.05 1 1.2 100 175 20 

4.7 1 1 1.6 75 125 25 

4.7 1 1 1.2 75 125 25 

4.7 1 1 0.8 75 125 25 

5.19 0.86 1 1.6 75 137.5 25 

5.19 1.17 1 1.6 87.5 137.5 25 

5.7 0.75 1 1.6 100 150 25 

5.7 0.75 1 1.2 100 150 25 

5.7 0.75 1 0.8 100 150 25 

5.7 1 1 1.6 87.5 150 25 

5.7 1 1 1.2 87.5 150 25 

5.7 1 1 0.8 87.5 150 25 

5.7 1.33 1 1.6 75 150 25 

5.7 1.33 1 1.2 75 150 25 

5.7 1.33 1 0.8 75 150 25 

6.14 0.875 1 1.6 87.5 162.5 25 

6.14 1.14 1 1.6 100 162.5 25 

6.6 1 0.75 1.2 100 175 25 

6.6 1 1 2 100 175 25 

6.6 1 1 1.6 100 175 25 

6.6 1 1 1.2 100 175 25 

6.6 1 1 0.8 100 175 25 

6.6 1 1.33 1.6 100 175 25 

6.6 0.95 1 1.6 100 175 30 

6.6 0.95 1 1.2 100 175 30 

6.6 1 0.75 1.2 102.5 175 30 

6.6 1 1 1.6 102.5 175 30 

6.6 1 1 1.2 102.5 175 30 

6.6 1 1.33 1.6 102.5 175 30 

6.6 1.05 1 1.6 105 175 30 

6.6 1.05 1 1.2 105 175 30 

6.6 0.91 1 1.6 100 175 35 

6.6 0.91 1 1.2 100 175 35 

6.6 1 0.75 1.2 105 175 35 

6.6 1 1 1.6 105 175 35 

6.6 1 1 1.2 105 175 35 

6.6 1 1.33 1.6 105 175 35 

6.6 1.1 1 1.6 110 175 35 

6.6 1.1 1 1.2 110 175 35 
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4.2 Material Properties 

The material properties of both tubes as well as the adhesive greatly influence stress 

distributions across the overlap as described in the previous chapter. This in turn will affect crush 

characteristics of the joint. Hence, both tube and adhesive material properties are important 

variables to be considered for joint design. The required material properties for the adhesive and 

the tubes are obtained from literature [57 - 59].  

The tube material in the aluminum-aluminum joints is a 6061-T4 aluminum alloy, which 

is an Al-Mg-Si alloy and is widely used in the automotive industry.     The T4 designation for the 

aluminum alloy indicates that it is naturally aged.  Its properties are listed in Table 4.3.  

An assortment of adhesives is available in the market with properties tailored for 

different applications. Some adhesives are designed to have high strength and stiffness, while 

some are optimized for energy absorption at the cost of strength and stiffness. To better 

understand the influence of adhesive properties on joint crush characteristics, three different 

epoxy adhesives are considered: Betamate 1496, Araldite 2015 and Araldite AV138. The quasi-

static properties for these adhesives are listed in Table 4.4. Strength, modulus, and fracture 

toughness of an adhesive are important parameters to be considered in crush-resistant design. 

Fracture toughness is critical since it indicates the resistance to crack propagation in the 

adhesive, and therefore, the amount of energy absorbed by the adhesive prior to its failure. The 

three adhesives selected in this study exhibit distinct characteristics that will help understand the 

influence of adhesive characteristics on the crush performance of the joint. 

  Betamate 1496 is a one-component epoxy adhesive, optimized for crash resistant multi-

material joints. It shows the highest fracture toughness among the adhesives considered along 

with moderate strength properties. Both Araldite adhesives are two-component epoxy adhesives. 
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Araldite AV138 is a brittle adhesive with high strength and stiffness, but low fracture toughness. 

Araldite 2015 has properties that are intermediate between the other two adhesives.  

 

Table 4.3 Aluminum 6061 -T4 [57]. 

Density (g/cc) 2.69 

Modulus (GPa) 70.3 

Yield Strength 

(MPa) 
252 

% Elongation to 

Failure 
19 

Power Law Parameters 

k (MPa) 400 

n 0.069 

Rate Effect Parameters 

C 6500 

p 4 

 

 

 

Table 4.4 Adhesive Properties [58, 59] 

 Betamate 1496 Araldite 2015 Araldite AV138 

Density (g/cc) 1.6 1.6 1.6 

Modulus (E ) (GPa) 1.6 1.85 4.89 

Poisson’s ratio (ν) 0.42 0.33 0.35 

GIC (N/mm) (1) 4.46 0.43 0.2 

GIIC (N/mm) (2) 25.1 4.7 0.38 

Tensile strength 

(MPa) 
30 21.63 39.45 

Shear strength 

(MPa) 
24 17.9 30.2 

Strength strain rate 

factor at 1000 s-1 
2.5 - - 

Fracture energy 

strain rate factor at 

1000 s-1 

2.75 - - 

(1) GIC is Mode I fracture toughness and (2) GIIC is Mode II fracture toughness. 
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4.3 Finite Element Model Parameters 

The finite element analysis of the single lap tubular adhesive joint is conducted using LS-

DYNA (Version R9.0.1), a non-linear finite element software commonly used in the automotive 

industry for vehicle crash analysis.  The joint with finite element meshes are shown in Figure 

4.3. The tubes are meshed using 2.5 mm 4-noded quadrilateral shell elements and the adhesive is 

meshed using a single layer of 2.5 mm, 8-noded solid elements across the adhesive thickness. 

The shell elements are modeled using the default Belytschko-Tsay element formulations with 

five through-thickness integration points. To reduce hourglass energy under large deformations, 

hourglass control is opted for adhesive elements. The control type is Flanagan-Belytschko 

viscous form with exact volume integration for solid elements and hourglass quotient of 0.1. 

 

 

Figure 4.3 Finite element meshing of the tubes, adhesive and the plugs 

Top (Inner) Tube 

Bottom (Outer)Tube 

Bottom Plug Top Plug 

Adhesive 

Overlap 
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Boundary conditions for the joint are provided at the top and bottom plugs. The degrees 

of freedom and constant velocity condition are defined using PRESCRIBED MOTION RIGID 

card for the top plug.  The plug moves at a constant velocity of 1 mm/s to simulate a quasi-static 

loading condition. The bottom plug is constrained in all degrees of freedom. 

Contact conditions are defined using AUTOMATIC_SINGLE_SIRFACE and 

AUTOMATIC_SURACE_TO_SURAFECE conditions. Surface to surface contact definitions 

are provided between the tubes and the plugs. Single surface contact definition is provided to 

inner and outer tube elements to avoid penetration between the tubes or self-penetration under 

large deformations. Contact static friction is defined as 0.2 and dynamic friction as 0.1.  

Simulation data are recorded for 40 s at 0.02 s intervals. Also, mass scaling of the entire 

system by 1000 times was done to reduce the run time.  

4.3.1  Aluminum Material Model 

The material for the aluminum tubes is modeled using MAT_18 Power Law Plasticity 

material model. This model defines the elastoplastic behavior of the material using an isotropic 

hardening rule. The yield stress is defined using the power law equation as shown in Equation 

4.1 [60].  

𝜎𝑦 = 𝑘𝜀
𝑛 = 𝑘(𝜀𝑦𝑝 + 𝜀

𝑝)𝑛     Eq. 4.1 

where, εyp is yield strain, εp is the plastic strain, and k and n are power law parameters listed in 

Table 4.2. Rate effects are disregarded for this part of the study.  

4.3.2 Adhesive Material Model 

LS Dyna offers several material models based on continuum mechanics and cohesive 

zone model to simulate adhesive behavior. Continuum mechanics models such as MAT_SAMP-

1 (MAT_187) and MAT_GURSON (MAT_120) are suggested for detailed representation of the 
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adhesive and require input of several parameters that need to be calibrated with experimental 

results for accurate representation [61]. The extensive experimental work required to build the 

material card using this approach is not feasible for the scope of this dissertation.  

Cohesive zone model (CZM) is a fracture mechanics model used to describe crack 

formation. The separation of surfaces is described using traction-separation laws. This model has 

been adapted to simulate behavior of delamination in composites and adhesive bonding. LS-

Dyna offers several CZM based material models [62]. Cohesive element-based models such as 

MAT_ARUP_ADHESIVE (MAT_169) show good correlation with experimental data for 

structural adhesives at quasi-static as well as high strain rates. Hence, they have been widely 

used in literature to simulate adhesive behavior under different loading conditions. In this study 

MAT_ARUP_ADHESIVE is used to model the adhesive due to ease of use and availability of 

material parameters for several adhesives.  

The thickness of the adhesive is a critical factor in determining stiffness and failure of 

adhesive elements. The model assumes that solid adhesive elements are tied to shell elements 

representing mid-plane of the substrate sheet. Hence, the adhesive elements are assumed to be 

larger than the actual thickness of the adhesive bond layer. However, this results in erroneous 

results with respect to bond stiffness and strength, requiring further calibration of a bond 

thickness parameter (BTHK) and scaling of the adhesive modulus. Another option to model the 

joint is by offsetting the shell elements. In this case, the shell elements represent the inner surface 

for the inner tube and outer surface for the outer tube. This results in element thickness being 

equal to bond thickness. Simulation of models using the previously described two approaches 

showed completely different results. With substrate shell elements representing mid-plane, a 35 

mm overlap bond showed complete failure with tube thickness as low as 0.8 mm, while a model 
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with shell elements representing outer/inner layers did not exhibit complete adhesive failure. Due 

to lack of corresponding experimental results, the tubes are modeled with shell elements 

representing inner surface and outer surface. The through-thickness direction flag (THKDIR) is 

set to 1 which takes the direction as between adhesive element nodes 1-2-3-4 and 5-6-7-8. 

The ARUP adhesive material model is described using two traction separation laws in 

tension and shear as shown in Figure 4.4. The tension traction separation law is generally 

represented using a bilinear stress-displacement diagram with an area is equal to GIc. The shear 

traction separation law is represented using a bilinear or trilinear stress-displacement diagram 

with an area equal to GIIc. For viscoplastic adhesives such as Betamate 1496, a trilinear diagram 

is suggested, while for brittle adhesives a bilinear diagram is suggested. The shear plateau 

parameter (SHRP) in the trilinear diagram is taken to be 0.77 for Betamate 1496 [58] and zero 

for the brittle adhesives AV138 and Araldite 2015.  It should be noted that SHRP can have a 

significant influence on the crush characteristics of the joint.  A sensitivity study conducted here 

showed a value of 0.75 resulted in progressive inner and outer tube crush, while a value of 0.9 

resulted in no adhesive failure and global buckling. The strength and fracture energy properties 

of the adhesives are as listed in Table 4.4.  

The yield condition for the adhesive material is defined using a power law combination 

of tension and shear parameters (Equation 4.2). The power terms PWRT and PWRS are set as 

two [58]. Figure 4.5 represents the yield surface. The strain rate effects of material strength and 

fracture toughness are modeled using a log-linear approach. 

(
𝜎

𝜎𝑚𝑎𝑥
)
𝑃𝑊𝑅𝑇

+ (
𝜏

𝜏𝑚𝑎𝑥
)
𝑃𝑊𝑅𝑆

= 1 𝑎𝑡 𝑦𝑖𝑒𝑙𝑑     Eq. 4.2 

where, σmax (TENMAX) is the tensile strength and τmax (SHRMAX) is the shear strength of the 

adhesive. The slope of yield surface at σ = 0 is zero. 
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Figure 4.4 Traction-separation laws in tension (left) and shear (right). 

 

 

Figure 4.5 Yield surface for ARUP adhesive model. 

 

4.4 Finite Element Simulation Results 

Crush characteristics of single lap tubular joints are analyzed by considering the tube 

deformation, nature of the force-time plot, peak load and energy absorbed in the tubes and the 

adhesive. An ideal joint would exhibit progressive accordion fold type failure in one or both 

tubes along with no or minimal adhesive failure. A weak bond that fails prior to any significant 

folding deformation of the tubes is not acceptable as it results in low energy absorption in crash. 

The adhesive bond failure is largely affected by overlap length, adhesive thickness, and adhesive 

properties, while the nature of crush in the tubes is also affected by the tube geometry. Hence, 

crush simulation of single lap tubular adhesive joints is conducted with different joint 

configurations as described in Section 4.1.  

GIc GIIc 
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A reference model is first built and analyzed using two 100 mm long aluminum tubes 

bonded with Betamate 1496 adhesive. The lap joint has an overlap length of 25 mm. The outside 

diameter of the inner tube is 25.4 mm, and the outside diameter of the outer tube is 30.72 mm. 

Both tubes are 1.6 mm thick. The adhesive thickness is 1.06 mm. The crush behavior of the 

reference model is shown with a sequence of images in Figure 4.6. The numbers below the figure 

represent the points on the force-time plot at which the images are captured. The resultant force-

time plot is shown in Figure 4.7. The reference model exhibits minor tube crush of both the inner 

and outer tubes followed by global buckling of the inner tube which tilts the joint to the right. 

The inner tube deforms first (2), which is then followed by the deformation of the outer tube (3). 

The tubes continue to show increasing crush prior to global buckling of the inner tube (4), 

leading to the joint failure. The tube crush is characterized by several peaks and valleys on the 

force-time plot before reaching (4), and when the buckling sets in, a steady decrease in load 

carried by the joint. 

The yellow elements in Figure 4.6(a) represent the adhesive bond before any failure 

initiation in the adhesive layer. Adhesive failure is first observed at the leading edge of the 

overlap in Figure 4.6(c) where several yellow elements are deleted. The failure region initially 

grows along the circumference and then toward the center of the overlap length. The region of 

initial adhesive failure also coincides with initial buckling of the inner tube near the leading edge 

of the bond. The buckled region deforms further to result in global buckling of the joint 

accompanied by increasing amount of adhesive failure. Figure 4.8 illustrates this in two images 

taken at 10s and 30s. The circled areas in Figure 4.8 show the localized deformation of the inner 

tube at 10s. 
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      (1)          (2)           (3)            (4)            (5) 

Figure 4.6 Sequence of reference model crush. 

 

 

Figure 4.7 Force-time plot for reference model. 

 

 

Figure 4.8 Deformation of the inner tube and adhesive failure zone at 10 s (Left) and 30 s (Right). 
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The maximum resultant force under crush for the tubular joint is not observed at the first 

peak of the force-time plot. In this case, the resultant force at the first peak is 22.9 kN which 

occurs as the top end of inner tube starts to deform and the maximum resultant force is 23.4 kN 

which occurs as the lower end of the outer tube starts to deform. The total energy absorbed by 

the joint is 498 J and the energy absorbed by the adhesive is 19.3 J over a deformation of 40 mm. 

Thus, the energy absorbed by the adhesive only 3.9% of the total energy absorbed. 

Global buckling of the specimen is not an ideal form of failure for tube crush, since in 

general, it produces low energy absorption and a sudden large load drop after global buckling is 

not desirable. Hence, a preliminary study was conducted based on the reference model by 

varying several joint geometry parameters and the adhesive material to understand their 

influence on crush characteristics of the joint. The adhesive materials are crash resistant epoxy 

(Betamate 1496), toughened epoxy (Araldite 2015), and brittle epoxy (Araldite AV138). 

Geometric parameters considered are adhesive thickness (ta), overlap length, ratio of inner and 

outer tube thicknesses (ti/to), and ratio of inner and outer tube lengths (Li/Lo). The results of the 

simulations using these factors are listed in Table 4.5 and are discussed below. Failure modes of 

the joints fall broadly into four categories, namely, global buckling, tube wrinkling and folding, 

adhesive failure, or combinations thereof. This in turn results in differences in force-time 

characteristics, peak load, energy absorbed by the joints as well as by the adhesive. 
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Table 4.5 Crush characteristics for different joint configurations. 

L/dm 

 

Li/Lo 

 

ti/to 

 

ti 

(mm) 

Li 

(mm) 

L 

(mm) 

Overlap 

(mm) 

Pmax 

(kN) 

Total 

Energy 

Absorbed 

@40 s (J) 

 

Adhesive Failure 

Adhesive 

Energy 

Absorbed 

@40 s (J) 

Comments 

6.6 1.05 1 1.6 105 175 30 
23 

(28.1) 
783 

10 mm failure in the 

middle of overlap 

(2.5 mm from leading 

edge) 

25.7 

Global 

buckling with 

IT wrinkling, 

folding 

6.6 1.05 1 1.2 105 175 30 
16.7 

(18.7) 
446 No failure 18 

IT wrinkling, 

folding 

 

Li = 1.05 Lo = 105 mm, ti = to, overlap = 30 mm: Lower ti, inner tube wrinkling, lower peak force, lower energy absorption  

 

6.6 1 1 1.6 102.5 175 30 
23.0 

(27.4) 
783 

7.5 mm failure in the 

middle of overlap 

(2.5 mm from leading 

edge) 

24.7 
Global 

Buckling 

6.6 1 0.75 1.2 102.5 175 30 
17.2 

(21.8) 
508 

2.5 mm 

circumferential 

failure at leading 

edge 

17.2 
IT wrinkling, 

folding 

6.6 1 1 1.2 102.5 175 30 
16.8 

(18.0) 
512 No failure 15.5 

OT wrinkling, 

folding 

6.6 1 1.33 1.6 102.5 175 30 
19.4 

(24.8) 
509 

10 mm crack from 

trailing edge, 5 mm 

circumferential 

failure 

21.4 
OT wrinkling, 

folding 

 

Li = Lo =102.5 mm, overlap = 30 mm: 

Compare 1 and 2:  Lower ti, inner tube wrinkling, lower peak force, and lower energy absorption. 

Compare 1 and 3:  Lower ti, outer tube wrinkling, lower peak force, and lower energy absorption 

Compare 2 and 3:  ti less than to, inner tube wrinkling; ti equal to or higher than to, outer tube wrinkling 

 

6.6 0.95 1 1.6 100 175 30 
23.4 

(24.9) 
718 

2.5-5 mm adhesive 

failure in the middle 

of overlap (2.5 mm 

from leading edge) 

20.3 

Global 

buckling with 

OT wrinkling, 

folding 
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6.6 0.95 1 1.2 100 175 30 
17.0 

(18.2) 
454 

2.5 mm 

circumferential 

failure at leading 

edge 

16.2 
IT wrinkling, 

folding 

 

Li = 0.95 Lo = 1oo mm, ti = to, overlap = 30 mm: Lower ti, Inner tube wrinkling, lower peak force, lower energy absorption  

 

6.6 1 1 2.0 100 175 25 
29.1 

(29.9) 
715 

15 mm crack from 

leading edge, 5 mm 

circumferential 

failure 

8 
Global 

Buckling 

6.6 1 1 1.6 100 175 25 
22.9 

(23.4) 
498 

15 mm crack from 

leading edge, 5 mm 

circumferential 

failure 

17.9 
Global 

Buckling 

6.6 1 1 1.2 100 175 25 
16.7 

(17.6) 
471 

5 mm crack from 

leading edge, 2.5 mm 

circumferential 

failure 

16.6 
IT wrinkling, 

folding 

6.6 1 1 0.8 100 175 25 10.8 243 

2.5 mm crack from 

leading edge, single 

location 

7.7 
IT wrinkling, 

folding 

 

Li = Lo, ti = to, overlap = 25 mm:  Global buckling at ti = 2 and 1.6 mm, Inner tube wrinkling at ti = 1.2 and 0.8 mm; Lower ti, lower peak 

force, lower energy absorption 

 

6.6 1 0.75 1.2 100 175 25 
16.6 

(21.1) 
305 

10 mm crack from 

leading edge, 2.5 mm 

circumferential 

failure 

14.3 
Global 

Buckling 

6.6 1 1.33 1.6 100 175 25 
19.2 

(23.2) 
600 

10- and 5-mm cracks 

on opposite sides 
21.1 

Global 

buckling with 

OT wrinkling, 

folding 

 

Li = Lo, ti = 0.75 and 1.33 to, overlap = 25 mm: Global buckling; higher ti, higher peak force and higher energy absorption  

 

6.6 1.05 1 1.6 100 175 20 23.8 461 

10- and 17.5-mm 

cracks on opposite 

sides 

5.0 
Global 

Buckling 
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6.6 1.05 1 1.2 100 175 20 17.1 232 

7.5- and 5-mm 

cracks, 2.5 

circumferential 

failure 

14.8 

Global 

Buckling with 

no second 

peak 

6.6 1 1 1.6 97.5 175 20 23.3 310 

12.5- and 5-mm 

cracks on opposite 

sides 

7.7 

Global 

Buckling with 

no second 

peak 

6.6 1 1 1.2 97.5 175 20 16.5 218 

7.5- and 5-mm 

cracks, 2.5 

circumferential 

failure 

13.3 

Global 

Buckling with 

no second 

peak 

6.6 0.95 1 1.6 95 175 20 22.7 329 

12.5- and 10-mm 

cracks on opposite 

sides 

8.6 

Global 

Buckling with 

no second 

peak 

6.6 0.95 1 1.2 95 175 20 17.2 242 

7.5- and 5-mm 

cracks, 2.5 

circumferential 

failure 

15.4 

Global 

Buckling with 

no second 

peak 

6.6 1 0.75 1.2 97.5 175 20 
17.4 

(17.7) 
222 

7.5- and 5-mm 

cracks, 2.5 

circumferential 

failure 

14.8 
Global 

Buckling 

6.6 1 1.33 1.6 97.5 175 20 
19.4 

(19.7) 
353 Complete failure 15.1 

Global 

buckling 

 

Li = Lo = 175 mm, ti = 0.75, 1 and 1.33 to, overlap = 20 mm: ti = 1.2 and 1.6 mm, all Global buckling 

 

6.6 1 1 1.6 95 175 15 23.4 405 Complete failure 13.9 
Global 

Buckling 

6.6 1 1 1.2 95 175 15 16.3 195 
two 2.5 mm cracks 

on opposite sides 
1.9 

Global 

Buckling 

 

Li = Lo, ti = to, overlap = 15 mm: ti = 1.2 and 1.6 mm, global buckling; lower ti, lower peak force and energy absorption 
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6.14 0.875 1 1.6 87.5 162.5 25 
23.5 

(27.0) 
633 

15 mm crack from 

leading edge, 7.5 mm 

circumferential 

failure 

18.2 
Global 

Buckling 

6.14 1.14 1 1.6 100 162.5 25 
23.1 

(24.7) 
572 

17.5 mm crack from 

leading edge, 12.5 

mm circumferential 

failure 

23.4 
Global 

Buckling 

5.7 1 1 1.6 87.5 150 25 
23.1 

(25.9) 
589 

15 mm crack from 

leading edge, 7.5 mm 

circumferential 

failure 

19.4 
Global 

Buckling 

5.7 1 1 1.2 87.5 150 25 
17.7 

(18.5) 
496 

5 mm crack from 

leading edge, 2.5 mm 

circumferential 

failure 

18.5 
IT wrinkling, 

folding 

5.7 1 1 0.8 87.5 150 25 11.0 251 

5 mm crack from 

leading edge, 2.5 mm 

circumferential 

failure 

18.3 
IT wrinkling, 

folding 

5.7 1.33 1 1.6 75 150 25 
22.6 

(24.0) 
693 

7.5 mm crack from 

leading edge, 2.5 mm 

circumferential 

failure 

16.3 
Global 

Buckling 

5.7 0.75 1 1.6 100 150 25 
22.9 

(29.5) 
569 

10 mm crack from 

leading edge, 5 mm 

circumferential 

failure 

17.6 
Global 

Buckling 

5.7 1.33 1 1.2 75 150 25 
16.9 

(19.3) 
458 

12.5 mm crack from 

leading edge, 2.5 mm 

circumferential 

failure 

17.6 

Global 

Buckling with 

IT folding 

5.7 0.75 1 1.2 100 150 25 
16.9 

(19.01) 
368 

12.5 mm crack from 

leading edge, 2.5 mm 

circumferential 

failure 

12.9 

Global 

Buckling with 

some IT 

folding 

5.7 1.33 1 0.8 75 150 25 
10.4 

(11.1) 
263 

5 mm crack from 

leading edge, 2.5 mm 

circumferential 

failure 

16.7 
IT wrinkling, 

folding 
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5.7 0.75 1 0.8 100 150 25 11.5 240 

5 mm crack from 

leading edge, single 

location 

14.8 
IT wrinkling, 

folding 

5.19 0.86 1 1.6 75 137.5 25 
23.6 

(27.7) 
752 

7.5 mm crack from 

leading edge, 2.5 mm 

circumferential 

failure 

16.6 
Global 

Buckling 

5.19 1.17 1 1.6 87.5 137.5 25 
22.4 

(27.7) 
770 

10 mm crack from 

leading edge, 2.5 mm 

circumferential 

failure 

19.4 
Global 

Buckling 

 

ti = to = 1.6 mm, overlap = 25 mm:  Li = 0.86 and 1.17 Lo, global buckling, no changes in peak forces and energy absorptions  

 

4.7 1 1 1.6 75 125 25 
23.3 

(28.1) 
748 

7.5 mm 

circumferential 

failure 

23.0 
Global 

Buckling 

4.7 1 1 1.2 75 125 25 
17.0 

(20.5) 
489 

10 mm crack from 

leading edge, 5 mm 

circumferential 

failure 

22.1 
IT wrinkling, 

folding 

4.7 1 1 0.8 75 125 25 
10.8 

(11.8) 
274 

5 mm crack from 

leading edge, 2.5 mm 

circumferential 

failure 

16.0 
IT wrinkling, 

folding 

 

Li = Lo, ti = to, overlap = 25 mm: to = 1.6 mm, global buckling; ti = 1.2 and 0.8 mm, inner tube wrinkling; lower ti, lower peak force and lower 

energy absorption 
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4.4.1 Effect of Adhesive Material Properties  

 To understand the effect of different types of adhesives on the joint behavior, three 

adhesives are chosen for comparison, namely, a crash optimized adhesive (Betamate 1496), a 

toughened epoxy adhesive (Araldite 2015) and a brittle adhesive (Araldite AV138). The joint 

with overlap length of 25 mm and tube lengths of 100 mm is subjected to compressive load as 

described previously. Figure 4.9 plots force-time curve for the three adhesive joints. The results 

show that all three adhesives have the same initial peak load, indicating a similar crush initiation 

and progression at the initial crush front. But as the impactor moves downward, the brittle AV 

138 adhesive is the first to fail followed by Araldite 2015. Both adhesives fail suddenly with 

little deformation in the tubes. Figure 4.10 illustrates the failure of the joint with Araldite 2015 

adhesive. Once the adhesive completely fails, the inner tube starts sliding inside the outer tube 

with only resistance to its downward displacement arising from friction.  The force increases in a 

stick-slip manner, but there is very little plastic deformation taking place in the tubes. In contrast, 

as can be observed in Figure 4.9, the joint with Betamate 1496 adhesive exhibits global buckling 

and only partial adhesive failure. A much slower crack progression in the adhesive in this case 

allows for greater tube deformation to take place.    

 The same set of adhesive properties are also applied to a joint with 35 mm overlap and 

105 mm tubes. The tube lengths are increased to keep the free length constant. Results of these 

simulations are plotted in Figure 4.11. The increase in overlap lengths seems to have little impact 

on joints with Araldite 2015 and AV138 in terms of the failure mode. Both adhesives show 

complete adhesive failure followed by load increase in a stick-slip manner. The Betamate 

adhesive shows a combination of wrinkling and buckling as explained in the previous section.  
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 Betamate 1496 and Araldite AV138 have similar tensile and shear strengths, however 

AV138 being a brittle adhesive shows poor fracture properties. This results in poor performance 

in crush applications compared to a toughened epoxy adhesive as illustrated here. Hence, further 

studies will only include Betamate adhesive. 

 

 

Figure 4.9 Force-time plot comparison of three types of adhesives for joint with 25 mm overlap: (A) Araldite 2015, 

(B) Araldite AV138 and (C) Betamate 1496 

   

 Figure 4.10 Deformation of specimen with Araldite 2015, 25 mm overlap at 2.9, 3.42 and 9s (left to right). 
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Figure 4.11 Force-time plot comparison of three types of adhesives for joint with 35 mm overlap: (A) Araldite 2015, 

(B) Araldite AV138 and (C) Betamate 1496 

 

   

Figure 4.12 Deformation of specimen with Araldite 2015, 35 mm overlap at 2.8, 3.28 and 9s (left to right). 

 

4.4.2 Effect of Overlap Length 

In design of single lap joints joining two flat plates, increasing overlap length shows a 

corresponding increase in the joint strength. In single lap tubular joints, the objective of the 

adhesive is not only to transfer load between the tubes and provide good load carrying capacity 

but also to ensure progressive crush in the tubes for high energy absorption. To study this, a 
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range of overlap lengths, 10, 12.5, 15, 20 and 25 mm, was considered with a total joint length of 

175 mm, equal tube lengths and equal tube thicknesses. The simulations had a termination time 

of 0.5s and a deformation speed of 100 mm/s to reduce runtime, thus producing the top plug 

displacement up to 50 mm. Strain rate effects are not considered in this part of the study. Total 

energy and peak load are recorded. Figures 4.13 and 4.14 illustrate the results and show that an 

increase in overlap length results in greater peak load as well as higher energy absorption. At 

overlap lengths below 15 mm, the adhesive fails prior to any significant plastic deformation in 

the tubes, whereas at overlap lengths greater than 15 mm, significant tube deformation occurs 

prior to adhesive yield or failure and a plateau in peak load appears to have reached.   

Overlap lengths of 10 and 12.5 mm showed complete adhesive failure prior to any tube 

deformation.  At overlap lengths of 15 and 20 mm, tube deformation is followed by complete 

adhesive failure and partial adhesive failure with further increase in overlap up to 25 mm. None 

of the simulations with 1.2 mm tube thickness show complete adhesive failure, while all 

simulations with 2.4 mm tube thickness show complete adhesive failure. Most of the simulations 

that show some degrees of deformation result in global buckling with little wrinkling/folding 

type deformation in the tubes at lower overlap lengths. Overlap of 25 mm show some wrinkling 

and folding in both tubes prior to buckling. 

Further studies on joint crush characteristics will exclude overlap of 10 and 12.5 mm due 

to their poor performance. Also, since with different overlap lengths, the tube length also varies, 

the relationship between tube length, joint length and overlap length is also further explored in 

this section. 
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Figure 4.13 Variation of peak load with overlap length. (L = 175 mm, dm = 26.46 mm) 

 

 

Figure 4.14 Variation of total energy absorbed versus overlap length. (L = 175 mm, dm = 26.46 mm) 

 

  Results listed in Table 4.5 indicate that the modes of tube deformation depend on the 

adhesive overlap length.  The 15 mm overlap joint, smallest considered in this set of studies 

shows complete bond failure for 1.6 mm thick tubes and global buckling for 1.2 mm thick tubes. 

For 20- and 25-mm overlap lengths, the mode of deformation is global buckling. Some joints 

with lower tube thickness show progressive crush at these overlap lengths. At higher overlap 

lengths of 30- and 35-mm, the deformation mode is either progressive folding or folding with 

some buckling in one of the tubes.  
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 An example of joint deformation with progressive crush is shown in Figure 4.15. The 

figure illustrates crush of a specimen with 35 mm overlap, equal tube lengths of 105 mm and 

equal tube thicknesses of 1.6 mm. The sequence of images shows increasing amount of adhesive 

failure accompanied by inner tube folding followed by some wrinkling of the outer tube, and 

finally buckling of the joint. Compared to the 25 mm overlap discussed previously, both 

simulations indicate some adhesive failure starting at the leading edge of the overlap. In both 

cases, there is no adhesive failure at the trailing edge of overlap.  

Figure 4.16 compares the force-time curves of 25 mm and 35 mm overlap joints. The 35 

mm overlap joint shows several peaks and valleys owing to the folding of the inner tube up to 60 

s where there is an increase in resultant force due to the folding of the inner tube reaching the top 

end of the outer tube, resulting in additional resistance to the downward movement of the top 

plug and flaring of the top end of the outer tube. This peak in force-time plot is followed by a 

steady decrease in load due to buckling of the outer tube. 

 

   

3s   10s   40s   60s   100s 

Figure 4.15 Deformation of specimen with Betamate 1496 with 35 mm overlap. (Tube thickness =1.6 mm) 
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Figure 4.16 Force time plot comparing joints with (A) 25- and (B) 35-mm overlaps. 

 

The crush mode has a direct impact on the peak load and energy absorption as stated 

earlier. For smaller overlap lengths, the joint fails due to bond failure or undergoes global 

buckling without any significant deformation in the tubes. With larger overlap, there is some 

tube wrinkling at both tube-plug interfaces even in cases with global buckling type failure. This 

results in a higher second peak load which is absent in smaller overlap joints as shown in Figure 

4.17. The range in data shown is due to different tube thicknesses and joint lengths. 

Any change in overlap length also corresponds to a change in the unbonded or free length 

of the tubes. Figure 4.18 plots the crush results against joint aspect ratio (JAR), which is defined 

as the ratio of the length of the joint and the bond overlap length. The dashed curve indicates 

results for joints with 175 mm joint length, but different overlap lengths resulting in different 

JAR values, and the solid curve indicates results for joints with 25 mm overlap length, but 

different joint lengths. In general, crush parameters improve with decreasing free length. From a 

design perspective, the specimen length is most likely to be the controlling parameter and the 

data shown in these curves indicates that a higher overlap length improves crush performance. 
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Figure 4.17 Variation in resultant force at first peak and maximum resultant force (up to 40s) for different overlap 

lengths. 

 

The joint aspect ratio has a significant influence on crush performance of the joint. At 

higher JAR values where the overlap length is smaller compared to the joint length, its effect is 

relatively small. But, at smaller values of JAR, the joint performance improves with decreasing 

JAR. This is true with fixed overlap length or fixed joint length.   As seen in Figure 4.16, a 35 

mm overlap joint with JAR of 5 continues to carry load beyond the 40 mm crush considered here 

compared to 25 mm joint with JAR of 7 which buckles. Hence, to achieve high crush 

performance, not only should the overlap length be such that adhesive failure does not occur, but 

also joint aspect ratio should be low so that tube deformation is by folding rather than by global 

buckling. Additionally, tube thickness and ratio of tube lengths also play a major role in crush.  
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(a) 

 

(b) 

 

(c) 

Figure 4.18 Crush performance results as a function of joint aspect ratio for 40 mm crush deformation. For L=175 

mm curve, overlap length varies from 15 – 35 mm and for overlap length 25 mm curve L = 125, 150 and 175 mm. 
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4.4.3 Effect of Tube Thickness 

To consider the effect of tube thickness on the crush performance of tubular joints, a 

study is first conducted with inner and outer tubes of equal thickness. The tube thickness is 

varied from 1.2 to 2.4 mm. A comparison of force-displacement plots for different tube 

thicknesses and 25 mm overlap is shown in Figure 4.19. With increasing tube thickness, the 

force required for the aluminum tubes to yield and plastically deform increases and the adhesive 

fails prior to yielding of the aluminum tubes, resulting in very low energy absorption. 

Alternatively, when the adhesive does not fail first, higher thickness tubular joints show global 

buckling compared to lower thickness tubes that show a greater degree of folding under crush. 

For these tube thicknesses, the energy absorption is high, but the peak load is low. The results of 

this study are plotted in Figures 4.20 (a) and (b), in which an increasing trend in peak load and a 

decreasing trend in energy absorption with increasing thickness can be observed. 

 

 

 

Figure 4.19 Force-displacement plot for two joints with 25 mm overlap, same tube length and diameter. Inner and 

outer tubes are of same thickness. 
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(a) 

 

 

(b) 

Figure 4.20 Variation of peak load (a) and total energy absorbed (b) with tube thickness. (L = 175 mm, dm = 26.46 

mm) 
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(a) 

 
(b) 

Figure 4.21 Response surface for peak load (Pmax_Crush) (kN) and total energy absorbed (J) during crush for 

different tube thickness and overlap lengths in mm. 

 

Tube thickness and overlap length have a significant influence on crush performance. To 

predict performance under compressive load for the different joint configurations, a polynomial 

response surface is fit to the data. Responses of peak load and energy absorption are plotted for 

different overlap length and tube thickness values. Figure 4.21 (a) and (b) show the response 

surfaces for the peak load and total energy absorbed by the joint under crush, respectively. 

Empirical equations describing the response surfaces are given in Equations 4.3 and 4.4.  

𝑃𝑀𝑎𝑥_𝐶𝑟𝑢𝑠ℎ = −185.3 + 14.37𝑥 + 221.2𝑦 − 0.7605𝑥2 − 0.782𝑥𝑦 − 118.8𝑦2 +
0.01227𝑥3 − 0.02𝑥2𝑦 + 0.275𝑥𝑦2 + 20.31𝑦3                                                                     Eq. 4.3 



  

101 

 

𝑇𝑜𝑡𝑎𝑙_𝐸𝑛𝑒𝑟𝑔𝑦_𝐴𝑏𝑠𝑜𝑟𝑏𝑒𝑑 = −6478 − 70.07𝑥 + 13790𝑦 − 4.802𝑥2 + 225.4𝑥𝑦 − 9462𝑦2 −
0.0891𝑥3 + 4.311𝑥2𝑦 − 91.25𝑥𝑦2 + 2022𝑦3                                                               Eq. 4.4 

where x is overlap length and y is tube thickness. Both variables are in mm. PMax is the peak 

crush load and TotE is the total energy absorbed by the joint under crush loading. The empirical 

equations have a R-sq value of 0.936 and 0.81 respectively. 

Among the four tube thicknesses considered so far, 1.6 mm produces high energy 

absorption as well as a relatively high peak load. Therefore, it is selected as the reference 

thickness in the next study in which the joints consist of tubes of different thicknesses.  The next 

study on effect of tube thickness considers the inner and outer tube thickness combinations of 

1.2-1.6, 1.6-1.6 and 1.6-1.2; correspondingly, the thickness ratios (ti/to) are 0.75, 1 and 1.33. 

Results of varying combinations of thickness is shown in Figure 4.22. For comparison, 1.2-1.2 

mm thickness combination with thickness ratio of 1 is also included. Joints with unequal 

thickness and joint with lower thickness is seen to exhibit some form of folding type 

deformations. The load-time curves indicate that the inner tube thickness plays a greater role in 

load carrying capacity of the joint as both joint configurations with 1.6 mm inner tube thickness 

show similar first peak. However, once folding initiates in the inner tube, the load carried by the 

joint is similar to the other joint configurations while the joint with both 1.6 mm tubes undergo 

buckling and a gradual decrease in load vs time. 

Figure 4.23 illustrates deformation modes of the different tubular joint configurations. 

The reference joint with 1.6 mm tubes shows global buckling. Reducing thickness of inner tube 

shows no major change in crush mode. But reducing outer tube thickness keeping inner tube at 

1.6 mm results in wrinkling and folding in outer tube along with global buckling. When both 

tubes have lower thickness of 1.2 mm, both inner and outer tubes show folding along with global 

buckling.  
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Figure 4.22 Comparison of force-time plots for joints with different tube thicknesses. 

 

(a) 1.6-1.6         (b) 1.2-1.6              (c)1.6-1.2             (d) 1.2-1.2 

Figure 4.23 Deformation of joints with different tube thickness combinations. (Top tube thickness – bottom tube 

thickness in mm) 

Figure 4.24 plots total energy absorbed, adhesive energy absorbed and peak load versus 

tube thickness ratios. The overlap length and the tube lengths are 25 mm and 175 mm, 

respectively. And, for thickness ratio 1, the tube thickness is 1.6 mm. From the force data at the 

first peak, we can see the influence of inner tube thickness. Higher inner tube thickness results in 

higher first peak force. This corresponds with results in Figure 4.24 (a). Both figures 4.24 (b) and 

4.24 (c) show that total energy absorbed by specimen and energy absorbed by adhesive are 

greatly affected by tube thickness and thickness ratio. 
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(a) 

 

(b) 

 

 

(c) 

Figure 4.24 (a) Peak load, (b) Total energy absorbed by the joint and (c) Energy absorbed by adhesive for different 

tube thicknesses ratios (ti / to). Tube thickness ratios of 0.75, 1 and 1.33 correspond to inner and outer tube thickness 

combinations of 1.2-1.6, 1.6-1.6 and 1.6-1.2 mm. 
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4.4.4 Effect of Tube Length 

The third geometric variable considered is the tube length. Any change in tube length 

affects the free length of the specimen and also the overall length of the specimen. While linear 

elastic analysis of adhesive stresses presented in Chapter 2 shows no influence of tube length on 

the adhesive stress distributions, it is one of the factors that control the deformation behavior of 

thin-walled tubes under compressive load.    

Three joint lengths 125, 150 and 175 mm were considered with 25 mm adhesive overlap. 

The joints showed global buckling as the final failure mode, however with decreasing length, 

there is greater wrinkling and folding deformation in tubes prior to buckling.  

The tube length parameter is presented as a ratio of inner tube length to outer tube length 

(Li/Lo).  For the same overlap length of 25 mm, equal tube thickness of 1.6 mm and joint length 

of 150 mm three different length ratios are considered: 0.75, 1 and 1.33 corresponding to inner 

tube-outer tube lengths of 75-100, 87.5-87.5, and 100-75 mm. Figure 4.25 plots crush 

characteristics versus ratio of inner tube length to outer tube length. All joints showed global 

buckling with partial adhesive failure. However, for the same joint length, joint with Li/Lo =1 

showed the highest peak load during crush while joint with length ratio 1.33 showed the highest 

energy absorption.  
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(a) 

  

(b) 

Figure 4.25 Crush characteristics, (a) Peak Force and (b) Total energy absorbed up to crush displacement of 40 mm 

for 150 mm specimens with 25 mm overlap length and equal tube thickness of 1.6 mm 

  

 The above discussion on finite element analysis results mostly focused on one variable at 

a time but results in Table 4.5 which include multi-parameter specimens show that considering 

more than one parameter at a time changes the nature of joint crush. For better understanding of 
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the influence of these parameters, a Design of Experiments (DOE) approach is used to determine 

the main effects and interactions between them. 

4.5 Design of Experiments: Analysis of the Effects of Joint Design Variables 

Discussed in the previous sections are the important geometric variables that influence 

crush characteristics of tubular lap joints in aluminum.  However, analyzing the effects of 

geometric variables one factor at a time is inefficient and may not provide conclusive results.  

Hence, a Design of Experiments (DOE) approach is used in this section in which the effects of 

two or more variables and interactions between them are considered.   

Design of Experiments (DOE) [63], a branch of applied statistics, is a powerful tool used 

for data collection and analysis of experimental results. DOE provides a methodology for 

planning, analyzing, and interpreting controlled experiments to evaluate independent factors 

affecting an outcome or a set of outcomes. Multi-factor analysis of variance is conducted in DOE 

to identify important interactions and rank main effects by manipulating multiple variables at a 

time. Further, results of the analysis of variance provides insight into the optimization of 

experimental variables. 

The DOE approach to experimental design is implemented using Minitab 18 statistical 

software. The software tool provides for different DOE designs such as fractional factorial, full 

factorial, and Taguchi methods. As discussed in previous sections, results in Table 4.4 indicate 

varied response to different tube length and thickness ratio. Hence, a fractional factorial design 

which accepts only two levels for each variable cannot be implemented to accurately represent 

the data. While both Taguchi methods and full factorial design provide for multi-level multi-

factorial analysis, full factorial design is implemented in this study due to ease of its application.  
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4.5.1 Effect of Joint and Tube Geometry 

An experiment is designed to understand the effect of bond overlap lengths, tube 

thickness ratios, and tube length ratios for a given reference configuration of 175 mm long joint 

bonded with Betamate 1496 adhesive. The outer diameter of top tube is 25.4 mm and outer 

diameter of bottom tube is 30.84 mm. The adhesive thickness is 1.06 mm. A full factorial 

implementation of this experiment with two 3-level factors and one 2-level factor requires 18 

experiments as listed in Table 4.5. The details of tube length, tube thickness and overlap length 

for each simulation is listed in Table 4.6. The Minitab 18 software provides Pareto, main effects, 

and interaction plots to analyze the responses, which in this study are the peak load and the 

energy absorption. The results are recorded up to 100 mm displacement of top plug. The range of 

data is increased to record more details of tube deformation. In addition, energy absorbed by the 

adhesive is also analyzed in these simulations. 

 

 

 

 

Table 4.6 Variables and Levels for full-factorial simulation design. 

Variables Levels 

Overlap (mm) 25 35  

Tube Length Ratio 
(Li/Lo) 

0.75 1 1.33 

Tube Thickness Ratio 
(ti/to) 

0.75 1 1.33 
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Table 4.7 Values of tube length, tube thickness and overlap length for different joint configurations. 

Li Lo Li/Lo ti to ti/to Overlap 
(mm) 

85 115 0.75 1.2 1.6 0.75 25 

90 120 0.75 1.2 1.6 0.75 35 

85 115 0.75 1.6 1.6 1 25 

90 120 0.75 1.6 1.6 1 35 

85 115 0.75 1.6 1.2 1.33 25 

90 120 0.75 1.6 1.2 1.33 35 

100 100 1 1.2 1.6 0.75 25 

105 105 1 1.2 1.6 0.75 35 

100 100 1 1.6 1.6 1 25 

105 105 1 1.6 1.6 1 35 

100 100 1 1.6 1.2 1.33 25 

105 105 1 1.6 1.2 1.33 35 

85 115 1.33 1.2 1.6 0.75 25 

90 120 1.33 1.2 1.6 0.75 35 

85 115 1.33 1.6 1.6 1 25 

90 120 1.33 1.6 1.6 1 35 

85 115 1.33 1.6 1.2 1.33 25 

90 120 1.33 1.6 1.2 1.33 35 

 

Pareto charts obtained from analyzing the full factorial data provides a preliminary view 

of important factors or combination of factors. The standardized effects of different factors are 

plotted. Figure 4.26 shows the effects Pareto for (a) peak load (PMax), (b) total energy absorbed 

(TotE) and (c) energy absorbed by the adhesive (AdhE). The dotted line is a reference value 

which denotes significance level for the analysis and is one minus confidence level. A 

comparison of standardized effects with reference line helps indicate variables with significant 

influence on outcome. The plots indicate overlap length as the main factor in influencing all 

three joint behaviors. Pareto chart for peak load in Figure 4.26 (a) also indicates significant 

influence of the interaction between tube thickness ratio and length ratio, and the factor of tube 

length ratio itself. The tube thickness ratio and length ratio do not much influence on either joint 

or adhesive energy absorptions. 
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For a detailed understanding of the nature of interactions between different factors we 

look at the main effects and interaction plots. Figures 4.27 – 4.29 illustrate the main effects and 

interaction plots for peak load, total energy absorbed, and adhesive energy absorbed, 

respectively. Since at each level multiple results are available, the mean value is plotted. 

Examining the plots there is no significant interaction between variables for energy absorbed by 

joint or adhesive, but for peak load there is significant interaction between tube length ratio and 

thickness ratio. Joint configuration of thinner top tube and shorter top tube has the worst peak 

load, but joint with thinner top tube and longer top tube has the best peak load. This is due to 

change in mode of deformation from buckling with longer outer tubes to folding/wrinkling with 

shorter outer tubes. The modes of deformation for different joint configurations are illustrated in 

Figure 4.30. Joints with equal tube thickness tend to buckle while ones with unequal thickness 

show some degree of folding in tubes. Also, joints with longer overlap length show less buckling 

type deformation. 

Examining the results, to maximize peak load the best joint configuration is with tube 

length ratio of 1.33, thickness ratio of 1 and overlap of 35 mm. Highest energy absorbed by the 

structure is with a configuration of length ratio 1.33, thickness ratio 0.75 and overlap length 35 

mm. To maximize both outcomes, response optimizer tool is used to provide a statistical analysis 

of the data. The tool indicates a joint configuration with Li/Lo = 1.33, ti/to = 0.75 and overlap 

length 35 mm as the best configuration for maximum peak load and energy absorption. 
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(a)Peak Force 

 

(b)Total Energy Absorbed 

 

(c)Adhesive Energy absorbed. 

Figure 4.26 Pareto plots of tube geometry and overlap study simulation results for (a)peak load, (b) total energy 

absorbed and (c) adhesive energy absorbed. 
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(a) 

 

 

(b) 

Figure 4.27 (a) Main effects and (b) interaction plots for peak load (PMax). 

 



  

112 

 

 

(a) 

 

 

(b) 

Figure 4.28 (a) Main effects and (b) interaction plots for total energy absorbed by structure. 
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(a) 

 

 

(b) 

Figure 4.29 (a) Main effects and (b) interaction plots for energy absorbed by adhesive. 
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Figure 4.30 Deformation modes for different tube length and thickness ratios, Li/Lo and ti/to, having 175 mm joint 

length and 26.46 mm mean diameter.  Mixed mode is folding followed by global buckling. 

 

Figures 4.31 and 4.32 plot the response surfaces for the peak load and total energy 

absorbed by joints with 25 mm and 35 mm overlap. The response surfaces are plotted to show 

the effects of tube thickness ratio and tube length ratio on these two crush characteristics. 

Equations for the response surfaces are given below along with goodness of fit values. 

𝑃𝑀𝑎𝑥_25𝑂𝑣 = −4.867 − 7.401𝑥 + 54.48𝑦 + 14.44𝑥2 − 18.19𝑥𝑦 − 15.28𝑦2            Eq. 4.5 

Goodness of fit: R-square: 0.6667 

𝑇𝑜𝑡𝐸_25𝑂𝑣 = 2409 − 2189𝑥 − 1969𝑦 + 3565𝑥2 − 4710𝑥𝑦 + 3335𝑦2                    Eq. 4.6 

Goodness of fit: R-square: 0.8733 

𝑃𝑀𝑎𝑥_35𝑂𝑣 = 8.744− 17.28𝑥 + 51.85𝑦 + 19.8𝑥2 − 19.65𝑥𝑦 − 16.5𝑦2                Eq. 4.7 

Goodness of fit: R-square: 0.6593 

𝑇𝑜𝑡𝐸_35𝑂𝑣 = 4815 − 4882𝑥 − 1344𝑦 + 1753𝑥2 + 1339𝑥𝑦 − 119𝑦2                      Eq. 4.8 

Goodness of fit: R-square: 0.6287 

where, x represents thickness ratio and y is the length ratio. 
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(a) 

 

(b) 

Figure 4.31 Response surface for (a) peak load (kN) and (b) total energy absorbed by joints (J) for different tube 

thickness and length ratios in joints with 25 mm overlap. 
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(a) 

 

(b) 

Figure 4.32 Response surface for (a) peak load (kN) and (b) total energy absorbed by joints (J) for different tube 

thickness and length ratios in joints with 35 mm overlap. 
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Adhesive thickness is an important parameter to be considered for the design of any 

bonded joint which is not included in the previous DOE. To understand the influence of adhesive 

thickness on the crush performance of the tubular structure, additional simulations are conducted 

with a higher adhesive thickness of 1.5 mm in addition to the reference 1.06 mm thickness. The 

adhesive thickness is now considered an additional variable in the DOE analysis of the joint 

geometry with two levels of 1.06 mm and 1.5 mm. With the inclusion of adhesive thickness, the 

full-factorial design requires an additional 18 simulations. This helps to check for interaction 

between bond thickness and tube thickness ratio, length ratio and overlap length. 

Pareto charts for peak load, total energy absorbed, and adhesive energy absorbed are 

illustrated in Figure 4.33.  These charts also indicate standard effects of up to third order 

interactions between the variables. The Pareto charts show that both overlap length and adhesive 

thickness are the leading factors affecting crush response. Peak load is affected by several 

variables as indicated by the reference line such as adhesive thickness, overlap length and 

interaction between thickness ratio and adhesive thickness. Main effects and interaction plots for 

peak load are shown in Figure 4.34. Higher overlap length results in higher peak load while 

higher adhesive thickness reduces peak load. The interaction plot for adhesive thickness and 

thickness ratio shows that with higher adhesive thickness, a thickness ratio of 1.33. i.e., a higher 

inner tube thickness greatly reduces peak force during crush. For energy absorbed by the tubular 

structure, the Pareto plot indicates overlap length followed by adhesive thickness as critical 

factors. Higher overlap length shows higher total energy absorption, while higher adhesive 

thickness reduces total energy absorption. This is reflected in main effects and interaction plots 

for total energy absorption in Figure 4.35.  
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(a) peak load 

 

(b) total energy absorbed 

 

(c) adhesive energy absorbed 

Figure 4.33 Pareto plots of tube geometry and overlap study simulation results for (a) peak load, (b) total energy 

absorbed and (c) adhesive energy absorbed. 
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(a) 

 

 

(b) 

Figure 4.34 (a) Main effects and (b) interaction plots for peak load during crush. 
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(a) 

 

 

(b) 

Figure 4.35 (a) Main effects and (b) interaction plots for total energy absorbed by structure. 
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(a) 

 

 

(b) 

Figure 4.36 (a) Main effects and (b) interaction plots for energy absorbed by the adhesive. 

 

 

 



  

122 

 

No significant interaction between adhesive thickness and other variables are observed. 

In terms of adhesive energy absorption, Pareto plot indicates overlap length as the most 

significant. While other variables do show an influence, the effects are lower compared to the 

reference value. The main effects and interaction plots for energy absorption in adhesive are 

shown in Figure 4.36.  

In general, the higher adhesive thickness of 1.5 mm results in reduced crush performance 

across the board.  Interaction between adhesive thickness and other geometry variables do not 

result in any significant influence on the crush response of the structure. Optimal joint design is 

as previously discussed with an adhesive thickness of 1.06 mm.  

4.5.2 Effect of High-Speed Crush 

Studies presented in the previous sections were obtained at a load application rate of 1 

mm/s, which can be considered a quasi-static condition.  Under crash test conditions, the load 

application rate is in the range of 1 to 3 m/s.   The tubular lap joints considered in this chapter 

comprises of AA 6061-T4 aluminum tubes and Betamate 1496 adhesive, and both materials 

show strain rate sensitivity that can affect the crush characteristics of the tubular joints.  To 

understand the effect of strain rate, the downward speed of the top plug is increased to 1 m/s and 

the results are compared with those at 1 mm/s.  The adhesive overlap lengths are 25 and 35 mm 

at which adhesive failure did not precede the tube deformation in quasi-static simulations.  The 

joint length and mean diameter are 175 mm and 26.46 mm, respectively. The bottom tube length 

and thickness are selected such that both the tube length ratios (Li/Lo) as well as tube thickness 

ratios (ti/to) are 0.75, 1 and 1.33.  
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Figure 4.37 Strain rate effect model for adhesive in MAT_ARUP_ADHESIVE [60]. 

 

The strain-rate sensitivity of AA 6061-T4 is represented by the following Cowper-

Symonds Equation.  

𝜎𝑦 = 1 + (
𝜀̇

𝐶
)
1
𝑝⁄

     Eq. 4.9 

where, σy is yield strength and ε̇ is strain rate. C and p are material constants defined in Table 4.3. 

For Betamate 1496, the strain-rate sensitivity is represented by a log-linear curve 

illustrated in Figure 4.37. EDOT0 represents quasi-static strain rate and EDOT2 represents 

impact strain rate. The strain rate values are defined as 10-4 s-1 and 103 s-1, respectively [58]. 

SDFAC is a scale factor for strength and is given to be 2.5. A similar curve is used for fracture 

energy and the scale factor is defined as 2.75. 

Figures 4.38 and 4.39 illustrate the difference in crush performance at 1 mm/s and 1 m/s. 

In Figure 4.36, the force-displacement curves are for joints with 100 mm tube lengths, 1.6 mm 

tube thicknesses and 25 mm overlap length. In Figure 4.39, the force-displacement curves are for 

joints with 0.75 length ratio, 1.33 thickness ratio and 35 mm overlap length.  In both figures it 

can be observed that the peak load is much higher at 1 m/s than at 1/mm/s, which is due to higher 

yield strength of the tube material and the adhesive at higher strain rates.  
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The results of the analysis are represented by the total energy absorbed and peak load 

diagrams shown in Figures 4.40 and 4.41 respectively. The diagrams compare results at quasi-

static and high-speed crush. In none these cases, adhesive failure has occurred, and the joint 

failure is due to tube folding, buckling or a combination of the two. Increase in crush speed 

shows an increase in energy absorption across most joint configurations and increase in peak 

load in all the joints. The results show joint configurations with 25 mm overlap length does not 

present significant variation in performance. But for 35 mm overlap, changes in length ratio or 

thickness ratio affect crush performance. Joints with 35 mm overlap and thickness ratio of 1.33 

show comparatively poorer performance, particularly with tube length ratio of 0.75. A 

combination of shorter and thicker inner tube results in buckling prior to any significant folding 

in either the inner or the outer tube.  The highest peak load is when both thickness and length 

ratios are 0.75, and the highest energy absorption is when the length ratio is 1.33, the thickness 

ratio is 1 and the overlap length is 25 mm. 

 

 

Figure 4.38 Comparison of force-displacement plots at 1 mm/s and 1 m/s for joints with 25 mm overlap and equal 

tube thickness of 1.6 mm and lengths of 100 mm. 
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Figure 4.39 Comparison of force-displacement plots at different crush speeds at 1 mm/s and 1 m/s for joints with 

Li/Lo = 0.75, ti/to = 1.33, and 35-mm overlap. 

 

 

Figure 4.40 Total energy absorbed by tubular joint at different speeds and for different configurations. 
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Figure 4.41 Peak load during crush for tubular joint at different speeds and for different configurations. 

 

A set of crush simulations are run at 1 m/s based on DOE-defined full factorial set of 18 

simulations. Variables considered are tube thickness ratio, length ratio and overlap length. The 

levels for each variable and dimensions are as listed in Tables 4.6 and 4.7 respectively. The 

results of the simulations are illustrated by the Pareto plots in Figure 4.42 and main effects plots 

in Figure 4.43.  At quasi-static speeds, overlap length was the most crucial factor as discussed 

previously. However, at 1 m/s impact speeds the Pareto plots indicate tube thickness ratio as the 

most important variable determining the peak load. The same is true for energy absorption, 

however the effects are not as significant as indicated by the bar plots shorter than the reference 

line in Figure 4.41 (b). Other geometric variables do not have a significant influence on crush 

performance.  

A closer look at the main effects plot details the influence of tube thickness ratio on crush 

characteristics. The tubular section shows a drastic decrease in performance with thinner bottom 

tube. This occurs due to a greater possibility of bottom tube buckling prior to any wrinkling or 

folding type deformation. Best results are obtained when both tubes are of equal thickness. 
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Changes in tube length ratio and overlap length do not show much change in crush 

characteristics.  

 

 

 

 

 

(a) 

 

 

(b) 

Figure 4.42 Pareto plots for (a) total energy absorption and (b) peak load at 1 m/s. 
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(a) 

 

 

(b) 

Figure 4.43 Main effects plot for (a) total energy absorption and (b) peak load at 1 m/s. 

 

4.5.3 Optimum Joint Configurations 

Table 4.8 summarizes the joint configurations that produce the maximum peak loads and 

total energy absorptions in single lap tubular adhesive joints between two aluminum tubes.  It 

shows that the joint parameters for the maximum peak loads and energy absorption at high 

loading rates, such as 1 m/s, and at quasi-static loading rates, such as 1 mm/s are not all the 
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same.  The optimal configurations are obtained by maximizing or minimizing predicted response 

for the stored model. A 2-sided 95% confidence interval is used to obtain the predicted response 

for optimal designs. In general, the statistical analysis presents 35 mm overlap as the most 

suitable for crush performance. At impact speeds, for maximum energy absorption and peak 

load, joints with equal tube length and thickness are suggested. However, when designing for 

crash front structures, the requirement is to maximize energy absorption while minimizing crush 

initiation load. For such a design condition, the tube geometry should have longer and thicker 

inner tube, and an overlap of 25 mm. If a condition of maximizing peak load at quasi-static 

speeds is desired, an increase in overlap to 35 mm is suggested.  

 

Table 4.8 Optimal design parameters for different response requirements at 1 mm/s and 1 m/s. 

Tot E (J)  
@ 1 
mm/s 

Pmax (kN) @ 1 
mm/s 

Tot E (J)  
@ 1 m/s 

Pmax (kN) @ 1 
m/s 

Li/Lo ti/to Overlap 
(mm) 

max - - - 1.33 0.75 35 

- max - - 1.33 1 35 

max max - - 1.33 0.75 35 

- - max - 1 1 35 

- - - max 1 1 35 

- - max max 1 1 35 

- max - max 1.33 0.75 35 

max - max - 1 1 35 

max max max max 1.33 1 35 

- - max min 1.33 1.33 25 

max min - - 1 0.75 35 



  

130 

 

4.6 Conclusions 

Non-linear finite element simulation of tubular lap joints under compressive load is 

studied in this chapter to determine the crush characteristics of adhesively bonded single lap 

joints between two aluminum tube. Tube geometry, joint geometry, and material properties are 

observed to influence the crush characteristics of such joints Important geometry variables are 

identified as tube length ratio, tube thickness ratio and overlap length. A study of different 

adhesives provided insight on the influence of brittle or ductile adhesives on crush 

characteristics. 

Crush characteristics of Al-Al joints at quasi-static loading rates analyzed using a Design 

of Experiments approach delineate that overlap length is the most important design parameter, 

followed by tube thickness ratio and length ratio. At a high loading rate of 1 m/s, tube thickness 

ratio is the main influencer for crush performance followed by overlap length. 
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Chapter 5 Crush Characteristics of Aluminum-Composite and Composite-Composite 

Tubular Lap Joints 

Crush characteristics of thin-walled aluminum tubes and composite tubes have been 

studied in the past in terms of their load carrying capacity and energy absorption capabilities. For 

ideal crush characteristics, thin-walled metal tubes are expected to collapse or fold in a 

progressive manner, while composite tubes to show progressive failure at the crush front. Studies 

have shown that crush characteristics of such tubular sections are influenced by geometric 

parameters such as length, diameter, and thickness.  As the use of aluminum alloys and fiber-

reinforced composites increases in multi-material designs of automotive, aerospace, and other 

structures, it is important to study the crush characteristics of composite-aluminum and 

composite-composite tubular joints. This chapter considers such as a study in which aluminum-

composite and composite-composite tubes are joined by an adhesive in a single-lap 

configuration.   The joined tubes are subjected to a quasi-static compressive load.   Influence of 

joint and tube geometry parameters, such as bond overlap length, tube dimensions and crush 

initiator on the crush mode and crush parameters, such as peak load and energy absorption, of 

aluminum-composite and composite-composite tubes are determined using finite element 

analysis. 
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5.1 Design of Tubular Single Lap Joint 

The single lap tubular joint comprises of two tubes of circular cross section bonded 

across an overlap using a thin layer of adhesive as discussed in Chapter 4. Figure 5.1 illustrates a 

tubular single lap joint considered in this study. Critical parameters influencing crush 

performance are tube material, tube geometry and joint geometry. Table 5.1 lists the geometric 

parameters considered in this study.  

 

 

Figure 5.1 Tubular section with single lap joint. 

 

Table 5.1 Geometric parameters of the tubular joint. 

Parameter Values 

Joint length (L) 175 mm 

Aluminum tube thickness  1.2 and 1.6 mm  

Composite tube thickness  2.16 mm 

Top tube outer diameter (di) 25.4 mm 

Bottom tube outer diameter (do) 31.84 mm 

Adhesive thickness (t) 1.06 mm 

Overlap length (l) 10, 12.5, 15, 20 and 25 mm 

 

Outer Tube 

Inner Tube 
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The tubular joint is supported on a rigid plug at the bottom end of the outer tube and a 

compressive load is applied by the downward motion of a rigid plug fitted at the top end of the 

inner tube. The bottom plug is fixed in all directions and the top plug is constrained to move only 

in the axial direction at a constant velocity of 100 mm/s to create a compressive load on the 

tubular joint. Both plugs have a 45o corner chamfer to act as a crush trigger.  

5.2 Materials 

The tube materials are Al 6061-T4 aluminum alloy and a T700 carbon fiber/epoxy 

composite (CFRP). Two different composite tube layups are considered to determine their 

influence on the joint crush performance.  These layups are [0/90]8s, a symmetric cross-plied 

laminate, and [0/±45/90]4s, a symmetric quasi-isotropic laminate, each containing 16 laminae.  

For the [0/90]8s tube, two different lamina thicknesses, namely 0.135 mm and 0.16 mm, are 

considered, resulting in tube thicknesses of 2.16 mm and 2.56 mm, respectively.  For the 

[0/±45/90]4s tube, the lamina thickness is 0.135 mm, which results in a tube thickness of 2.16 

mm.  The adhesive joining the inner and outer tubes is Betamate 1496, which is a crash-

optimized epoxy resin. Material properties for the aluminum, adhesive and composite are listed 

in Tables 5.2, 5.3 and 5.4, respectively. 

 

Table 5.2 Aluminum 6061 -T4 [57] 

Density (g/cc) Modulus (GPa) K (MPa) n 
Yield Strength 

(MPa) 

2.69 70.3 400 0.069 252 

 

 
Table 5.3 Betamate 1496 adhesive [58] 

Density 

(g/cc) 

Modulus 

(GPa) 
ν 

GIC 

(N/mm) 

GIIC 

(N/mm) 

Tensile 

Strength 

(MPa) 

Shear 

Strength 

(MPa) 

1.6 1.6 0.42 4.46 16.7 30 24 
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Table 5.4 T700/2510 carbon fiber epoxy unidirectional composite. [64, 65] 

Property LS-Dyna Designation Value 

Density RO 1.52 g/cc 

Modulus in 1-direction (E11) EA 127 GPa 

Modulus in 2-direction (E22) EB 8.41 GPa 

Shear Modulus (G12) GAB 4.21 GPa 

Major Poisson’s ratio (12) - 0.309 

Minor Poisson’s ratio (21) PRBA 0.02049 

Tensile strength in 1-direction (St1) XT 2.2 GPa 

Tensile strength in 2-direction (St2) YT 48.9 MPa 

Compressive strength in 1-direction 

(Sc1) 

XC 1.47 GPa 

Compressive strength in 2-direction 

(Sc2) 

YC 199 MPa 

Shear Strength (S12) SC 154 MPa 

Fiber tensile failure strain DFAILT 0.0174 

Fiber compressive failure strain DFAILC -0.0116 

Matrix failure strain DFAILM 0.024 

Maximum shear strain DFAILS 0.03 

Effective Failure Strain EFS 0.55 

 

5.3 Finite Element Model 

Numerical analysis of crush performance in this study of Al-composite and composite-

composite joints is conducted using LS Dyna R9.0.1, a commercial finite element software. The 

tubes are meshed using 4-noded quadrilateral shell elements. The meshing of Al tubes and rigid 

end plugs are as described in Chapter 4. The composite tubes are meshed with 2.5 mm 4-noded 

quad shell elements. The elements used in the composite tubes are created using 

PART_COMPOSITE option of shell elements, which represents each lamina as an integration 

point. The composite tube shell elements are defined using Belytschko-Tsay formulation with 16 

integration points, one for each lamina according to the layup described in the previous section.  

Boundary conditions for the two plugs are as defined in Chapter 4. The top plug moves at a rate 

of 100 mm/s.  Rate effect is not considered in this chapter. 

Contact condition is found to be critical in modeling of composite-Al joints due to 

oscillations in the Al tube under progressive composite tube crush. Oscillations in Al tube is 
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observed under progressive crush of composite tube in an aluminum-composite tubular joint. 

Under crush of composite tube, layers of elements at the plug-tube interface are deleted 

progressively because of material failure. Once elements get deleted a gap is created between 

tube and plug. This gap unloads the joint following which Al tube shows a spring-back type 

movement until composite tube once again meets the plug.   

Contact between tube and plug is defined using AUTOMATIC_NODES_TO_SURFACE 

definition where the tube nodes are considered as slave and the plug elements are the master. 

Static and dynamic friction values of 0.5 are assumed to reduce slippage between the tube ends 

and the plugs, and thereby reduce oscillations. Other contact definitions with user defined load-

penetration curve are considered due to better performance under pure composite crush. 

However, such contact definitions show instability in the presence of any aluminum deformation. 

Hence, to maintain uniformity across all simulations, nodes-to-surface definition is used. 

AUTOMATIC_SINGLE_SURFACE contact definition is provided to the tubes to prevent 

interpenetration of tube elements and penetration between tubes post adhesive failure. 

The material model for aluminum tubes is power law plasticity and for adhesive is 

cohesive zone model as defined in Chapter 4. The material model used for the composite tubes 

are described below. 

5.3.1 CFRP Composite Material Model 

LS Dyna offers several material models to model fiber reinforced composites. MAT_54 

Enhanced Composite Damage [60] is one such model which has been widely used in literature 

and verified to be capable of reasonably accurate prediction of composite behavior [66, 67, 68]. 

The model is a simple brittle model with a crash front algorithm and strength reduction 

parameters upon lamina failure. The model uses a Chang-Chang failure criteria to predict lamina 
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failure. The model also requires a fewer number of input parameters making it more user 

friendly. The Chang-Chang failure criteria predicts lamina failure when one of the following 

criteria are met: tensile fiber failure, compressive fiber failure, tensile matrix failure or 

compressive matric failure. The equations for Chang-Chang failure criteria are given below in 

Equations 5.1-5.4 [60].  

Tensile fiber failure mode: 

 𝜎11 > 0 ⇒ 𝑒𝑓
2 = (

𝜎11

𝑆𝑡1
)
2

+ 𝛽 (
𝜎12

𝑆12
) − 1,   

𝑒𝑓<0 ⇒  𝑒𝑙𝑎𝑠𝑡𝑖𝑐
2

𝑒𝑓≥0 ⇒  𝑓𝑎𝑖𝑙𝑒𝑑
2

        Eq. 5.1 

E11 = E22 = G12 = ϑ21 = ϑ12 = 0 

Compressive fiber failure mode: 

𝜎11 < 0⇒ 𝑒𝑐
2 = (

𝜎11

𝑆𝑐1
)
2

− 1,   
𝑒𝑐<0 ⇒  𝑒𝑙𝑎𝑠𝑡𝑖𝑐
2

𝑒𝑐≥0 ⇒  𝑓𝑎𝑖𝑙𝑒𝑑
2

         Eq. 5.2 

E11 = ϑ21 = ϑ12 = 0 

 

Tensile matrix failure mode: 

𝜎22 > 0⇒ 𝑒𝑚
2 = (

𝜎22

𝑆𝑡2
)
2

+ (
𝜎12

𝑆12
) − 1,   

𝑒𝑚<0 ⇒  𝑒𝑙𝑎𝑠𝑡𝑖𝑐
2

𝑒𝑚≥0 ⇒  𝑓𝑎𝑖𝑙𝑒𝑑
2

        Eq. 5.3 

E22 = ϑ21 = 0 ⇒ G12 = 0 

Compressive matrix failure mode: 

𝜎22 < 0⇒ 𝑒𝑑
2 = (

𝜎22

2𝑆𝑐2
)
2

+ [(
𝑆𝑐2

2𝑆12
)
2

− 1]
𝜎22

𝑆𝑐2
+ (

𝜎12

𝑆12
)
2

− 1,   
𝑒𝑑<0 ⇒  𝑒𝑙𝑎𝑠𝑡𝑖𝑐
2

𝑒𝑑≥0 ⇒  𝑓𝑎𝑖𝑙𝑒𝑑
2

       Eq. 5.4 

E22 = ϑ21 = ϑ12 = 0⇒ G12 = 0 
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An orthotropic elastic stress-strain failure relation is used until failure in each lamina 

occurs following one of the above four modes. A plane stress condition is assumed for stress 

calculations. For this study, lamina properties are reduced to zero and the material is set to fail 

when all laminae fail.   

Several simulation parameters are required to validate the simulation results for accurate 

representation. These parameters control element deletion due to distortion, strength degradation 

under different conditions, and failure strains. The required parameters are obtained from Deleo 

and Feraboli’s study on crush of carbon fiber composites [66]. The enhanced composite damage 

model provides a crash front algorithm to ensure progressive crush and suppresses global 

buckling. The crush front softening factor is defined as 0.083 in this study. This factor reduces 

the strength of the composite elements at the plug-tube interface by the given value to ensure 

progressive failure of the material under compressive load. Another important parameter is 

TFAIL which determines element deletion due to distortion by monitoring the time step size. 

This factor is given a value of 0.5 which results in material failure when time step size reduces 

by 50%. Other parameters are given default values, as shown in Table 5.5. 

 

Table 5.5 LS-Dyna model parameters for composite material. 

Parameter Description Value 

SOFT Softening reduction factor 0.083 

TFAIL Time step size criteria for element deletion 0.5 

ALPHA 
Shear stress parameter for the nonlinear 

term 
0.3 

YCFAC 
Reduction factor for compressive fiber 

strength after matrix compressive failure 
2.0 

PEL 
Percentage of layers which must fail until 

crash front is initiated 
100 

BETA 
Weighting factor for shear term in tensile 

fiber mode 
0.5 
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5.3.2 Tube Mesh Configuration 

Progressive crush of composite tubes in finite element simulations is presented as 

sequential deletion of elements at the crush front as the top plug moves.  A small gap forms 

between the plug and the next layer of elements each time the material at the crush front fails, 

resulting in sequence of zero loads on the load-displacement plots. To prevent this issue, a 

couple of options has been explored, such as modifying the contact definition or modifying the 

mesh arrangement. Nodes to surface contact is chosen for reasons described previously. As for 

the mesh arrangement, a regular mesh shown in Figure 5.2 (a) and an irregular mesh 

arrangement shown in Figure 5.2 (b) are compared for single composite tubes with [0/90]8s and 

[0/±45/90]4s layups. The arrangement of irregular mesh is such that all elements at the leading 

end of the tube do not meet the plug at the same time. This ensures a staggered deletion of 

elements at the crush front and avoids the formation of a gap between the tube and the plug. To 

do this, the mesh comprises of quadrilateral and triangular shell elements arranged at an angle to 

the loading axis. Similar mesh arrangements were explored in [66]  for impact of corrugated 

sheets with [0/90]8s laminates and showed some success.  The brown elements at the bottom 

represents crush triggers with half the material thickness.  

Figure 5.3 compares the force-displacement curves for the two mesh types. A SAE 60 Hz 

low pass filter is used to present data. The plots indicate slightly lower peak load for the irregular 

mesh type. Both regular and irregular mesh result in a peak and valley type progressive crush 

after the initial peak, but for the regular mesh the difference in magnitude between peak and 

valley loads is much higher. This difference is due to time taken by the top plug to resume 

contact with the tube once a layer of composite elements is deleted at crush front. The constant 

mean crush force in irregular mesh simulation appears to be approximately equal to that for a 
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regular mesh. However, when comparing the plots for a quasi-isotropic [0/±45/90]4s layup, the 

peak force, and the mean crush force after the first peak are much lower than expected for the 

irregular mesh simulation and do not show the expected load-displacement characteristics as is 

seen with the regular mesh type. Hence, for uniformity across all simulations, the regular mesh 

type is used henceforth.  

 

 
(a)     (b) 

Figure 5.2 (a) Regular and (b) Irregular mesh types. 

 

Figure 5.3 Comparison of force-displacement plots for the regular and irregular mesh types for [0/90]8s tubes. 
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Figure 5.4 Comparison of force-displacement plots for the regular and irregular mesh types for [0/±45/90]4s tubes. 

 

5.4 Results of Finite Element Analysis 

5.4.1 Aluminum-Composite Tubular Joints without Crush Triggers 

The important characteristics defining crush performance of a tubular lap joint are failure 

or deformation mode, nature of force-displacement diagram, peak load, and energy absorption. 

Ideally, the tubular sections in a joint should exhibit progressive collapse with little or no 

adhesive failure. As discussed in the previous chapter, the adhesive overlap length is a critical 

criterion in determining the joint strength and mode of deformation. A short overlap may lead to 

complete adhesive failure prior to any significant tube deformation while a long overlap may 

result in an unnecessary increase in weight and cost. To determine the effect of overlap length in 

Al-composite joints, a study is conducted with four different overlap lengths, namely 10, 12.5, 

15 and 20 mm. All joints have a length of 175 mm and a mean diameter of 26.46 mm. In this 

study, the composite tube has a [0/90]8s layup and is 2.16 mm thick and does not have a crush 

trigger. The aluminum tube is either 1.2 mm or 1.6 mm thick. Results from the simulation study 

are compiled in Table 5.6. The highlighted rows indicate configurations with the highest energy 

absorption for each overlap length. 
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Table 5.6 Results of Al - [0/90]8S CFRP composite tubular joint crush with no composite tube crush trigger. 

Overlap 

(mm) 

Inner 

Tube 

Outer 

Tube 

Peak 

Load 

(kN) 

Mean 

Load 

(kN) 

Total 

Energy 

(J) 

Adhesive 

Failure 

Tube Deformation 

Mode 

10 

2.16 mm 

Composite 
1.2 mm Al 21.7 0.7 33.7 Yes None / Sliding 

2.16 mm 

Composite 
1.6 mm Al 23.1 0.6 27.1 Yes None / Sliding 

1.2 mm Al 
2.16 mm 

Composite 
23.9 14.1 679 No Al Folding 

1.6 mm Al 
2.16 mm 

Composite 
21.6 1.3 61.5 Yes None / Sliding 

12.5 

2.16 mm 

Composite 
1.2 mm Al 28.1 3 147 Yes Al Folding / Sliding 

2.16 mm 

Composite 
1.6 mm Al 26.8 0.8 40.7 Yes None / Sliding 

1.2 mm Al 
2.16 mm 

Composite 
23.2 13.2 636.4 No Al Folding 

1.6 mm Al 
2.16 mm 

Composite 
26.6 2.7 129.4 Yes CFRP Crush + Sliding  

15 

2.16 mm 

Composite 
1.2 mm Al 29.8 13.4 645.2 No Al Folding 

2.16 mm 

Composite 
1.6 mm Al 30.3 3.4 164.9 No 

Al folding + CFRP 

Offset Crush 

1.2 mm Al 
2.16 mm 

Composite 
25.1 12.8 618.3 No Al Folding 

1.6 mm Al 
2.16 mm 

Composite 
32.8 11.9 573.4 No 

Al folding + CFRP 

Crush 

20 

2.16 mm 

Composite 
1.2 mm Al 30.1 13.8 667.6 No Al Folding 

2.16 mm 

Composite 
1.6 mm Al 29.7 1.8 86 No CFRP offset crush 

1.2 mm Al 
2.16 mm 

Composite 
20.8 7.8 376.5 Yes 

Al Buckling / Sliding + 

Offset Crush 

1.6 mm Al 
2.16 mm 

Composite 
20.6 1.3 62.2 No CFRP Crush 

 Notes: (1) Adhesive thickness = 1.06 mm, (2) T: Top Tube, B: Bottom Tube, (3) Load is applied at the top plug and the 

bottom plug is fixed. Total energy absorbed is measured for a crush distance of 50 mm. 

 

Simulation results show a varied deformation and crush response to the compressive 

load. Joints with 10- and 12.5-mm overlaps show complete adhesive failure except for cases with 

1.2 mm thick Al top tube for which the primary deformation mode is progressive folding of the 

aluminum tube. Increasing the overlap length to 15 mm increases the peak load. Joints with 15- 

and 20-mm overlap show little difference in peak load. Highest energy absorption is observed in 
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cases with no adhesive failure and progressive collapse or folding in the Al tubes. Cases with 

mostly composite tube crush show poor performance.  

Looking at the cases with adhesive failure, we can observe two modes of failure. One 

where the adhesive fails suddenly prior to any deformation in the aluminum tubes and the other 

case where the adhesive fails progressively accompanied by aluminum tube deformation. The 

deformed Al tube resists the sliding of the inner composite tube in a stick-slip fashion, and 

thereby the joint continues to carry the load after adhesive failure. Hence, a few simulation 

results show higher energy absorption values despite adhesive failure such as 2.16 mm thick 

inner composite tube - 1.2 mm thick Al outer tube joint with 12.5 mm overlap and 1.6 mm thick 

inner Al tube – 2.16 mm thick outer composite tube joint with 12.5 mm overlap. 

When there is no adhesive failure, different deformation modes are observed in the 

tubular joints. They can be broadly classified as (1) axisymmetric or diamond lobe folding of the 

Al tube, (2) progressive failure of the composite tube at the crush front or composite crush, (3) 

composite tube offset crush, and (4) a combination of two or more of these deformation modes. 

The composite tube offset crush occurs when there is simultaneous or sequential deformation of 

the Al tube and crush of the composite tube. A non-uniform folding deformation of the Al tube 

or a non-uniform crushing failure of the composite tube at the crush front results in a shift in the 

tube axis and hence the tubes are offset from the loading axis. 

Figures 5.5-5.8 plot the force-displacement diagrams and illustrate representative failure 

or deformation modes observed in different cases when there is no adhesive failure. Figure 5.5 

illustrates the load-displacement diagram for a joint exhibiting progressive crush of the 

composite tube. Crush of [0/90]8S composite tube is characterized by a relatively high initial peak 

load at crush initiation, followed by much lower progressive crush load. Figure 5.6 shows a joint 
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where composite tube crush is offset from the loading axis. This is caused by non-uniform 

deformation of Al outer tube. Energy absorption in cases with offset crush is much lower as 

indicated by much lower progressive crush load after the initial peak. Figures 5.7 and 5.8 

illustrate partial or complete deformation of the Al tube by folding. Figure 5.7 shows peaks and 

valleys corresponding to the Al tube folding over a displacement of 25 mm followed by a sharp 

drop in crush load indicating crush initiation in the composite tube. Figure 5.8 illustrates a case 

where the Al tube shows folding with no failure in the composite tube over a crush distance of 50 

mm.  

 

 

Figure 5.5 Composite tube (bottom) crush with little or no Al tube (top) deformation. (ti - 1.6 mm Al / to - 2.16 mm 

[0/90]8s CFRP composite joint, overlap length = 20 mm) 
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Figure 5.6 Offset crush in composite tube (top) with little Aluminum tube (bottom) deformation. (ti - 2.16 mm 

[0/90]8s CFRP composite / to - 1.6 mm Al joint, overlap length = 20 mm) 

 

 

 

Figure 5.7 Al tube (top) folding along with composite tube (bottom) crush. (ti - 1.6 mm Al / to - 2.16 mm [0/90]8s 

CFRP composite joint, overlap length = 15 mm) 
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Figure 5.8 Al tube (top) folding with little or no composite (bottom) tube crush. (ti - 1.2 mm Al / to - 2.16 mm 

[0/90]8s CFRP composite joint, overlap length = 20 mm) 

 

 

 

  

Figure 5.9 Adhesive failure followed by composite tube (top) sliding in deformed Al tube (bottom). (ti - 2.16 mm 

[0/90]8s CFRP composite / to - 1.2 mm Al joint, overlap length = 12.5 mm) 
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Figure 5.10 Composite tube (outer) crush post adhesive failure due to load transfer by deformed Al tube (inner). (ti - 

1.6 mm Al / to - 2.16 mm [0/90]8s CFRP composite joint, overlap length = 12.5 mm) 

 

 

Figure 5.11 Sliding crush of composite tube (bottom) due to load applied by deformed Al tube (top). (ti - 1.2 mm Al 

/ to - 2.16 mm [0/90]8s CFRP composite joint, overlap length = 20 mm) 

 

Figures 5.9 and 5.10 illustrate cases where the tubular joint continues to carry the load 

post-adhesive failure. Deformation illustrated in Figure 5.9 represents stick-slip phenomenon due 

to sliding of the deformed Al tube in the composite outer tube post adhesive failure. Figure 5.10 
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represents a case where the 1.6 mm thick Al inner tube has deformed to an extent where sliding 

is no longer possible. This deformed Al tube then transfers load to composite tube which then 

undergoes progressive crush. But with 1.2 mm thick Al inner tube, 20 mm overlap due to 

buckling in Al tube after initial deformation, joint failed by composite offset crush as shown in 

Figure 5.11. 

5.4.2 Aluminum-Composite Tubular Joints with Crush Triggers 

Crush triggers are commonly used to ensure progressive crush. In the following study, 

two crush triggers are considered; one being a corner chamfer of the plug and the other is a 

thickness reduction in the leading elements of the composite tube representing a chamfer at the 

top end of the composite tube. The tube chamfer is used together with the plug corner chamfer. 

The same set of simulations as in the previous section are run with crush triggers and the results 

are compiled in Table 5.7. Joint configurations with the highest energy absorption for each 

overlap length are highlighted in the table.  

Comparing the results of joint configurations with no composite tube crush trigger in 

Table 5.5 and with 2.5 mm composite tube crush trigger in Table5.6, we can clearly observe its 

influence on crush characteristics of the joint. There is a significant reduction in crush initiation 

loads. In most cases, the composite tube crush initiates prior to any significant deformation in the 

Al tubes. Also, none of these simulations except in the case of 10 mm overlap joint with 1.6 mm 

thick Al show adhesive failure due to low peak loads. In general, since tube deformation is 

dominated by composite tube crush, crush energy absorption is much lower. Higher energy 

absorptions are observed in cases with composite tubes on the top and 1.2 mm thick Al tube in 

the bottom. Higher peak loads are observed in cases with composite tubes in the bottom due to 

larger tube diameter.  
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Table 5.7  Results of Al- [0/90]8S CFRP composite tubular joint crush with composite tube crush trigger. 

Overlap 

(mm) 

CFRP 

Tube 

Thickness 

(mm) 

Al Tube 

Thickness 

(mm) 

Tube Failure 

Mode 

Adhesive 

Failure 

Peak 

Load 

(kN) 

Mean 

Load 

(kN) 

Energy 

Absorption 

(J) 

10 2.14 (B) 1.2 (T) Al fold + 

CFRP Crush 

No 14.1 1.3 61.8 

2.14 (B) 1.6 (T) CFRP Crush No 16.3 1.2 59.6 

2.14 (T) 1.2 (B) CFRP Offset 

Crush 

No 20.4 1.4 68.7 

2.14 (T) 1.6 (B) CFRP Offset 

Crush 

Yes 20.5 1.4 65.7 

12.5 2.14 (B) 1.2 (T) CFRP Crush No 15.1 1.6 75.7 

2.14 (B) 1.6 (T) CFRP Crush No 16.9 1.3 63.9 

2.14 (T) 1.2 (B) CFRP Offset 

Crush 

No 21.4 1.8 85.6 

2.14 (T) 1.6 (B) CFRP Offset 

Crush 

No 21.5 1.4 65.2 

15 2.14 (B) 1.2 (T) CFRP Crush No 12.1 1.3 62.3 

2.14 (B) 1.6 (T) CFRP Crush No 14.1 1.3 63.4 

2.14 (T) 1.2 (B) CFRP offset 

crush 

No 18.2 1.6 78.9 

2.14 (T) 1.6 (B) CFRP Offset 

Crush 

No 20.6 1.3 64.1 

20 2.14 (B) 1.2 (T) CFRP Crush No 11.8 1.2 57.5 

2.14 (B) 1.6 (T) CFRP Crush No 12.7 1.3 63.4 

2.14 (T) 1.2 (B) CFRP Offset 

crush 

No 18.4 1.4 67.6 

2.14 (T) 1.6 (B) CFRP offset 

crush 

No 20.6 1.3 61.5 

Notes: (1) Adhesive thickness = 1.06 mm, (2) T: Top Tube, B: Bottom Tube, (3) Load is applied at the top plug and 

the bottom plug is fixed. Total energy absorbed is measured for a crush distance of 50 mm. 

 

 

5.4.3 Effect Composite Tube Layup in Al-Composite and Composite-Composite Joints 

The typical crush characteristics of a [0/90]8s CFRP composite tube is a relatively high 

initial peak followed by low mean crush load. This is illustrated in the load-displacement 

diagrams for single [0/90]8s tubes shown in Figure 5.3. A result of such behavior is low energy 

absorption under composite crush. These characteristics can be improved by changing the layup 

to a quasi-isotropic laminate.  An example of a commonly used quasi-isotropic laminate is 

[0/±45/90]4s. Such a laminate exhibits a more uniform crush characteristics as shown in Figure 

5.4 for a single [0/±45/90]4s tube. Single tube crush results show a peak load of 10.8 kN for this 
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laminate compared to 11.6 kN for cross-plied laminate. The first force peak is slightly lower for 

this laminate due to lower fiber fraction in the loading direction. For the quasi-isotropic laminate, 

the mean crush force is higher, hence more energy is absorbed under crush. Energy absorbed by 

this laminate is 93.5 J compared to 40.8 J for cross-plied laminate. Because of this, the influence 

of changing the composite tube from a cross-plied to a quasi-isotropic laminate is studied with 

different overlap lengths and compared with results of the Al-composite and composite-

composite tubular joints with cross-plied laminate. 

Crush simulation results of Al-composite joint with [0/±45/90]4s quasi-isotropic 

composite tubes are listed in Table 5.8. As can be observed in this table, compared to the tubular 

joints with [0/90]8s cross-plied composite tube, for smaller bond lengths where the peak load is 

determined by adhesive failure, the results are similar for both laminates. At higher overlap 

lengths when there is no adhesive failure, tubular sections with quasi-isotropic composite inner 

tube show lower peak load as well as energy absorption. This is due to lower strength of the 

composite inner tube with [0/±45/90]4s laminate, resulting in crush prior to significant Al tube 

deformation. The peak loads shown in Table 5.8 for composite inner tube with [0/±45/90]4s 

laminate are lower than corresponding results with cross-plied laminate. With composite outer 

tube, both laminate types show similar peak loads during crush. Energy absorption of tubular 

section with quasi-isotropic laminates is higher in cases with only composite tube crush. 

Examples of such sections are 1.6 mm thick Al inner tube-composite outer tube joints with 

overlap 15 mm or greater. Joint configuration with the best energy absorption is with 1.2 mm 

thick Al top tube, except for 15 mm overlap where the joint with 1.6 mm thick Al top tube has a 

better performance, since it shows non-uniform folding of Al tube followed by composite tube 

offset crush. 
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Table 5.8 Results of Al- [0/±45/90]4s CFRP composite tubular joint crush with no crush triggers. 

Overlap 

Length 

(mm) 

Inner Tube Outer Tube Adhesive 

Failure 

Deformation Mode Peak 

Load 

(kN) 

Total 

Energy 

(J) 

10 

Quasi-isotropic 

2.16 mm 

Al 1.2 mm Yes None / Sliding 22.1 85.8 

Quasi-isotropic 

2.16 mm 

Al 1.6 mm Yes None / Sliding 23.7 25.8 

Al 1.6 mm Quasi-isotropic 

2.16 mm 

Yes None / Sliding 21.7 27.2 

Al 1.2 mm Quasi-isotropic 

2.16 mm 

No Al Folding 22.7 642.1 

12.5 

Quasi-isotropic 

2.16 mm 

Al 1.2 mm Yes Al Folding 26.7 146 

Quasi-isotropic 

2.16 mm 

Al 1.6 mm Yes None / Sliding  26.7 38.4 

Al 1.6 mm Quasi-isotropic 

2.16 mm 

Yes Sliding Crush 26.7 59.7 

Al 1.2 mm Quasi-isotropic 

2.16 mm 

No Al Folding 23.3 634.2 

15 

Quasi-isotropic 

2.16 mm 

Al 1.2 mm No Al folding + CFRP 

Crush 

24.7 178.6 

Quasi-isotropic 

2.16 mm 

Al 1.6 mm No CFRP Offset Crush 19.4 88 

Al 1.6 mm Quasi-isotropic 

2.16 mm 

No Al folding + CFRP 

Offset Crush 

33 425.3 

Al 1.2 mm Quasi-isotropic 

2.16 mm 

No Al folding + CFRP 

Crush 

25.1 383.8 

20 

Quasi-isotropic 

2.16 mm 

Al 1.2 mm No Al Folding + CFRP 

Offset Crush 

24.6 202.6 

Quasi-isotropic 

2.16 mm 

Al 1.6 mm No CFRP offset rush 21.5 84.6 

Al 1.6 mm Quasi-isotropic 

2.16 mm 

No Al Buckling + 

CFRP Crush 

33.4 467.7 

Al 1.2 mm Quasi-isotropic 

2.16 mm 

Yes Al Buckling 20.2 515.9 

Notes: (1) Adhesive thickness = 1.06 mm, (2) Load is applied at the top plug and the bottom plug is fixed. Total 

energy absorbed is measured for a crush distance of 50 mm. 
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Table 5.9 lists the crush simulation results of composite-composite joints with the two 

different layups, quasi-isotropic and cross-plied. Tube length and mean diameter are 175 mm and 

26.46 mm, respectively. When adhesive failure occurs before either the inner or outer tube starts 

to crush the cross-plied layup has a marginally better performance due to higher crush initiation 

loads. But when the adhesive is not critical, performance of the quasi-isotropic tube joint is 

significantly better. However, both energy absorption and peak load are much lower when 

compared to joints with Al tubes. 

 

 

 

 

Table 5.9 Results of CFRP-CFRP composite tubular joint crush with no crush triggers. 

Overlap 

Length (mm) 
Inner Tube Outer Tube 

Adhesive 

Failure 

Deformation 

Mode 

Peak Load 

(kN) 

Total 

Energ

y (J) 

10 

Quasi-

isotropic 

Quasi-

isotropic 
Yes 

Sliding Offset 

Crush 
22.1 23.3 

Cross-plied Cross-plied Yes 
Sliding Offset 

Crush 
27 33 

12.5 

Quasi-

isotropic 

Quasi-

isotropic 
Yes None / Sliding 27.8 31.2 

Cross-plied Cross-plied Yes 
Sliding Offset 

Crush 
27.2 41.7 

15 

Quasi-

isotropic 

Quasi-

isotropic 
No 

Sliding Offset 

Crush 
21.9 105.5 

Cross-plied Cross-plied Yes 
Sliding Offset 

Crush 
32.3 42.7 

20 

Quasi-

isotropic 

Quasi-

isotropic 
No CFRP Crush 26.8 92.9 

Cross-plied Cross-plied No CFRP Crush 27.5 75.5 

Notes: (1) Adhesive thickness = 1.06 mm, (2) Load is applied at the top plug and the bottom plug is fixed. Total 

energy absorbed is measured for a crush distance of 50 mm. 
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5.5 Conclusions 

Finite element analysis of composite-composite and composite-Al tubular lap joints was 

successfully implemented, and influence of material and geometry parameters was examined. 

Crush failure mode should exhibit significant plastic deformation of aluminum tube to maximize 

performance indices such as energy absorption and peak load. Joints which show composite 

crush prior to any aluminum tube deformation produces lower crush performance. As an 

extension, composite – composite joints exhibit high peak loads but have poor energy absorption 

characteristics. 

Joint strength is limited by the overlap length and crush initiation load, hence as overlap 

length increases, the strength reaches a plateau when it equals crush initiation load. A minimum 

bond length is required to ensure load transfer between the tubes prior to failure. This minimum 

length is a function of tube material and thickness.  

To maximize crush performance, peak load and energy absorption of the tubular section, 

crush mode should include significant amount of aluminum tube folding. Composite crush 

initiation before aluminum tube folding produces lower crush performance of the tubular section. 

Crush initiator in the form of reduced thickness chamfer on the loading end of the 

composite cross-plied inner tubes greatly reduces the composite failure initiation load; hence 

tubular joints with such crush initiators do not show much adhesive failure even for smaller 

overlaps and exhibit poor crush performance due to a lack of deformation in aluminum tubes. 

The influence of quasi-isotropic laminate in composite and aluminum joints is analyzed.  

Composite tube laminate layup is an important factor when joint does not fail due to adhesive 

failure. Al-composite joints with this laminate perform better when composite crush is the major 
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mode of deformation. In composite-composite joints, the use of quasi-isotropic laminate is 

observed to improve energy absorption when crush is not limited by adhesive failure first. 
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Chapter 6 Strength and Failure Characteristics of Tubular Adhesive Lap Joints under 

Tensile Load 

In Chapters 4 and 5, crush behavior of tubular adhesive lap joints under compressive 

loads was explored. Tube and joint parameters such as geometry and material properties were 

shown to greatly influence the crush performance. However, tubular joints in structural 

applications may not only experience crush loading, but also other forms of loading such as 

tension, bending and torsion. Changes in loading mode will significantly influence stresses in the 

adhesive overlap as well as deformation and failure in the joined tubes. In this chapter, the tensile 

performance of aluminum-aluminum and composite-aluminum tubular adhesive lap joints is 

studied using finite element analysis.  The strength and failure characteristics of the tubular joints 

are analyzed under tension for different tube and joint geometries such as tube and adhesive 

thickness and overlap length. The joint performance is also studied at quasi-static and high 

loading rates since both tube and adhesive material are rate sensitive to varying degrees.  

6.1 Tubular Adhesive Lap Joint 

The configuration of the tubular adhesive lap joint in tension is similar to that described 

in Chapter 4.  Figure 6.1 illustrates a tubular lap joint under a tensile load. Two aluminum tubes 

of circular cross section and equal length are bonded together using a thin layer of adhesive 

across an overlap length.  In a few cases, a combination of an aluminum external tube and a 

carbon fiber/epoxy composite internal tube is also considered.  The tensile load and constraints 

are directly applied to the inner and outer tubes. Table 6.1 lists joint and tube parameters 
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considered for the Al-Al tubular joints. The outer and inner tube thicknesses are equal, and the 

tube lengths are varied based on the overlap length to ensure that the total joint length is 175 

mm. 

 

 

Figure 6.1 Configuration of tubular adhesive lap joint under tensile load. 

 

Table 6.1  Geometric parameters of the Al-Al tubular joints considered for tensile loading 

Parameter Value 

Joint length 175 mm 

Aluminum tube thickness  1.2, 1.6, 2.0 and 2.4 mm  

Inner tube outer diameter (di) 25.4 mm 

Adhesive thickness (t) 0.5, 1.06, 1.5, and 2.0 mm 

Overlap length (l) 10, 12.5, 15, 20 and 25 mm 
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6.2 Materials 

The tube materials considered in this study are a 6061-T4 aluminum alloy for the 

aluminum tubes and a [0/90]8s T700 carbon fiber epoxy for the composite tubes.  The adhesive is 

either Betamate 1496, a crash optimized adhesive or AV 138, a brittle adhesive. The properties 

of the aluminum, the composite and the two adhesives are listed in Table 6.2, 6.3 and 6.4 

respectively.  

 

Table 6.2 Aluminum 6061 -T4 [57] 

Density (g/cc) Modulus (GPa) K (MPa) n 
Yield Strength 

(MPa) 

Strain to 

Failure (%) 

2.69 70.3 400 0.069 252 19 

 

 

 
Table 6.3 T700/2510 carbon fiber epoxy unidirectional tape [64, 65] 

Property Value 

Density 1.52 g/cc 

Modulus in 1-direction (E11) 127 GPa 

Modulus in 2-direction (E22) 8.41 GPa 

Shear Modulus (G12) 4.21 GPa 

Major Poisson’s ratio (12) 0.309 

Minor Poisson’s ratio (21) 0.02049 

Tensile strength in 1-direction (St1) 2.2 GPa 

Tensile strength in 2-direction (St2) 48.9 MPa 

Compressive strength in 1-direction 

(Sc1) 

1.47 GPa 

Compressive strength in 2-direction 

(Sc2) 

199 MPa 

Shear Strength (S12) 154 MPa 

Fiber tensile failure strain 0.0174 

Fiber compressive failure strain -0.0116 

Matrix failure strain 0.024 

Maximum shear strain 0.03 

Effective Failure Strain 0.55 
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Table 6.4 Adhesive Properties [58, 59] 

 Betamate 1496 Araldite AV138 

Density (g/cc) 1.6 1.6 

Modulus (E) (GPa) 1.6 4.89 

Poisson’s ratio (ν) 0.42 0.35 

GIC (N/mm) (1) 4.46 0.2 

GIIC (N/mm) (2) 25.1 0.38 

Tensile strength (MPa) 30 39.45 

Shear strength (MPa) 24 30.2 

Strength strain rate factor at 

1000 s-1 
2.5 - 

Fracture energy strain rate 

factor at 1000 s-1 
2.75 - 

(1) GIC is Mode I fracture toughness and (2) GIIC is Mode II fracture toughness. 

 

6.3 Finite Element Model 

Tensile performance of the tubular lap joint is analyzed using a commercial finite 

element software: LS Dyna R9.0.1. The joint is modeled by representing tubes with 4-noded 

quadrilateral shell elements and the adhesive layer with 8-noded solid brick elements. A single 

layer of solid elements represents the bond between tubes. The size of both elements are 

approximately 2.5 mm and thickness of the solid adhesive elements varies based on the bond 

thickness. The element formulation and details are as described in Chapter 4.  

Boundary conditions for the joint are defined using nodal definitions. A set of nodes at 

the bottom end of the outer tube shown in Figure 6.1 are fixed in all directions and rotations 

using SPC_SET option. The fixed nodes constrain the tube movement at the bottom. The nodes 

at the top end of the tube are displaced in the positive Y-direction with a nodal velocity of 1 

mm/s for the quasi-static condition and 1 m/s for the high-speed loading condition The loading 

condition is provided using PRESCRIBED_MOTION_SET option. Rate effects are considered 

at the higher velocity of 1 m/s. The resultant load is calculated by summing up the nodal forces 
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at the constrained end. An AUTOMATIC_ SINGLE_SURFACE contact definition is provided 

for the tubes to prevent any penetration errors between the tubes or within a tube.  

The aluminum used for the tubes is modeled using power law plasticity and the adhesive 

is modeled using cohesive zone model.    For the composite tube, the Chang-Chang failure model 

is used. Material models and rate effects are as described in Chapter 4. Additionally, a strain-

based failure criterion is provided to model aluminum failure in tension. The aluminum tubes are 

set to fail when the plastic strain in the material exceeds 19%. 

6.4 Results 

The performance of the tubular lap joints under tensile load was determined by analyzing 

the peak load or strength of the joint. Under tensile load, two possible failure outcomes are tube 

failure and adhesive failure.  Ideally, both tube failure and adhesive failure should occur 

simultaneously. If the bond shows no failure and either one or both tubes fail first, then the joint 

is stronger than necessary. On the other hand, if the bond fails prior to failure in the tubes, then 

the full potential of the joint is not reached. Overlap length, bond thickness, tube thicknesses, 

tube diameters and material properties are the parameters that determine the failure mode and 

therefore the strength of the joint. Additionally, since the materials are strain rate sensitive, 

loading rate is also a factor determining the joint performance.  

To understand the failure modes in single lap tubular joints in tension, it is important to 

consider the stress distributions in the adhesive layer.  When a tubular adhesive lap joint is 

subjected to a tensile load, the adhesive layer experiences a shear stress and a radial normal 

stress (peel stress) across the bond length with regions of shear and normal stress concentrations 

close to the two edges of the overlap.  This is illustrated in Figure 6.2 in which shear and normal 

stress distributions in the adhesive layer in a single lap tubular joint between two aluminum tubes 
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under a tensile load are shown.  The inner tube has an outer diameter of 9.8 mm and both tubes 

have a length of 40 mm and thickness of 1 mm. The bond length is 10 mm, and bond thickness is 

0.2 mm. The results are obtained using OPTISTRUCT solver as described in Chapter 3. A tensile 

load of 4000 N is applied to the tubular sections. The normalized stress values shown in the 

figure are obtained by dividing element shear and normal stresses with the average shear stress in 

the adhesive layer. The stress distributions indicate regions of high shear and normal stresses at 

the ends of the joint. The leading edge of the joint (at x = 0) has the highest stresses. Normal 

stress is close to zero across the middle of the bonded region but increases rapidly at the leading 

edge to its highest value.   The magnitude of shear stress is 1.5 times the average shear stress at 

the leading edge but reduces to about half the average shear stress at the mid-length of the bond. 

Several previous studies [46, 47] have shown that magnitude and distribution of adhesive 

stresses are affected by tube and joint parameters.  

 

 

Figure 6.2 Normalized stress distributions across overlap length in an Al-Al tubular joint under tensile load. 
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The influence of material and joint parameters was further explored under compressive 

load in Chapter 3. The same is true for tensile load under linear elastic conditions. Tube 

thickness, overlap length, bond thickness and material properties are seen to significantly 

influence the magnitude of stresses across the overlap. 

6.4.1 Failure Modes of Al-Al Tubular Joints  

While understanding stress distribution in the adhesive is important, for design of 

structural joints it is critical to analyze joint failure and tube deformation characteristics as well. 

Under tensile loading, two distinct forms of failure are observed in Al-Al tubular joints, one 

being the tensile failure of the inner Al tube and the other being the failure in the adhesive 

between the tubes. Since the inner and outer tube thicknesses are the same and the inner tube has 

a smaller cross-sectional area, it carries a higher axial tensile stress compared to the outer tube.  

Hence, when tube failure occurs first, it is the inner tube that fails before the outer tube and the 

failure process includes yielding, plastic deformation, and ultimately fracture of the inner tube.  

The two failure modes observed in Al-Al tubular joints with Betamate 1496 adhesive are 

described below. 

6.4.1.1 Tube Failure Mode  

Figures 6.3 - 6.6 illustrate the progression of deformation and failure for tube failure 

mode, variation in the tensile force on the tubular joint, axial stress in the inner Al tube, and 

stresses in an adhesive element at the leading end of the adhesive layer, each as a function of 

loading end displacement. The stress curves in Figure 6.5 and Figure 6.6 are plotted with respect 

to the displacement of tube nodes at the loading end. The numbered sequence of images in 

Figure 6.4 are correlated with the indicated points on both force, aluminum stress and adhesive 

stress curves. Initial elastic deformation of tube and adhesive is accompanied by increase in load 
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with displacement up to 1 mm approximately, when the inner Al tube begins to yield as the 

combined stress in this tube, plotted in Figure 6.5, reaches 250 MPa, the yield strength of the 

tube material.  Inner tube yielding occurs across one row of elements close to the adhesive 

overlap. This is reflected in a decrease in applied load as well as stresses in the adhesive. The 

significant drop in adhesive stresses could be due to a change in strain gradient between the inner 

and outer tubes post yielding in the inner tube. Further increase in loading results in continued 

plastic deformation of the inner tube with no major increase in load, which is also accompanied 

by increasing stresses in the adhesive layer. Decrease in load carried by the joint after 2 mm of 

displacement reflects necking in the inner Al tube and adhesive failure occurring at the leading 

edge of the overlap up to 2.9 mm approximately. This is followed by tube failure at 3.1 mm 

displacement.  

In this case, the progression of deformation and failure can be summarized as follows: (1) 

aluminum tube yielding, (2) initiation of necking in inner tube, (3) beginning of adhesive failure 

at its leading end, (4) initiation of inner tube failure and (5) inner tube fracture.  

 

 

Figure 6.3 Sequence of images illustrating the inner tube failure process under tensile load:(1) tubular joint before 

load application, (2) inner Al tube is beginning to yield, (3) initiation of adhesive failure, (4) necking in the inner Al 

tube, and  (5) tube fracture. (Tube thickness = 1.6 mm, adhesive thickness = 1.06 mm, overlap length = 15 mm) 

1 2 3 4 5 
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Figure 6.4 Force-displacement curve when the inner Al tube starts to fail before adhesive failure under tensile load. 

 

 

 

 

Figure 6.5 Variation in effective stress in an element in the failure region of the inner Al tube versus displacement in 

the case of tube failure. 
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Figure 6.6 Variations of adhesive stresses in an element at the leading edge of the bond versus displacement in the 

case of tube failure. 

 

6.4.1.2 Adhesive Failure Mode 

The second failure mode is the adhesive failure, which is illustrated in Figures 6.7 – 6.10. 

Figure 6.7 shows the progression of tube deformation and failure in adhesive overlap. Figures 

6.8, 6.9 and 6.10 plot the force-displacement, inner tube stress-displacement and adhesive stress-

displacement curves, respectively. The adhesive stress plots in Figure 6.9 are for an element at 

the leading edge of the adhesive overlap, where the highest shear and normal stresses are present. 

Figure 6.7 shows that the tensile force on the joint increases steadily until the displacement 

reaches 0.9 mm approximately where it reaches the peak value (1) and then stays at a near 

constant value until the adhesive failure occurs (2). The tube stress-displacement plot shows a 

similar curve, but the magnitude of the equivalent stress in the tube remains lower than yield 

strength of the tube material. The adhesive stress plots in Figure 6.8 indicate that at 0.9 mm 

displacement (1), the adhesive at the leading edge has reached the yield strength of the adhesive 

1 

2 

3 
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and is beginning to fail by yielding.  Failure in the adhesive layer progresses from its leading 

edge to the trailing edge until it completely fails (2) at a tube displacement of 1.56 mm.    

 

 

Figure 6.7 Sequence of images illustrating adhesive failure process under tensile load.  (1) tubular joint before load 

application, (2) initiation of adhesive failure, and (3) adhesive failure. (Tube thickness = 2.4 mm, adhesive thickness 

= 1.06 mm, overlap length = 15 mm) 

 

 

 

Figure 6.8 Force-displacement curve when adhesive bond fails under tensile load 
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Figure 6.9 Variation in von Mises stress of an element at failure region of the aluminum tube versus displacement of 

loading end in the case of adhesive failure. 

 

 

 

 

Figure 6.10 Variation in adhesive stresses in an element at the leading edge of the bond versus displacement of 

loading end in the case of adhesive failure. 
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A sudden failure of adhesive bond with no significant deformation of aluminum tubes or 

failure in tubular section without significant deformation or failure initiation in the adhesive are 

not ideal. Both these cases indicate a higher than necessary thickness of tubes or bond length 

respectively, depending on design strength requirement. To maximize joint efficiency under 

tensile load, stresses in either adhesive overlap or tubular section should be close to yielding 

prior to failure in one of the failure modes. This is affected by material properties and joint 

geometry. The following section explores influence of overlap length and tube thickness on joint 

strength. 

6.4.2 Effects of Overlap Length, Tube Thickness and Adhesive Thickness 

To understand the effects of overlap length and tube thickness on the peak load on Al-Al 

tubular joints, four different overlap lengths are considered: 10, 15, 20 and 25 mm and for each 

overlap length, four different tube thicknesses are used: 1.2, 1.6, 2.0 and 2.4 mm.  Four different 

adhesive thicknesses are also considered, namely 0.5, 1.06, 1.5 and 2.0 mm.  Results for 10 mm 

overlap length showed adhesive failure for all four tube thicknesses with 0.5, 1.06, 1.5- and 2.0-

mm bond thicknesses. The results of the simulations with overlap lengths 15, 20 and 25 mm are 

summarized in Table 6.5 and are discussed below.  

The results of varying overlap length are shown in Figure 6.11 (a), which plots peak load 

vs. overlap length for various tube thicknesses. Figure 6.11 (b) plots peak load vs. tube thickness 

for different overlap lengths. The circled data points in Figures 6.11 (a) and (b) represent 

configurations with bond failure. At 10 mm overlap length, all tubular joints showed bond 

failure; at 15 mm overlap length, tubular joints with 2.0- and 2.4-mm tube thickness showed 

bond failure, and at 20 mm overlap length, the only tubular joint that showed bond failure was 

with 2.4 mm thick tubes. The rest of the configurations showed tube failure in the inner tube. 
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Table 6.5 Results of tensile loading of Al-Al tubular joints with different tube thicknesses, bond thicknesses and 

overlap lengths. (Adhesive: Betamate 1496) 

Overla

p (mm) 

Tube 

Thickness 

(mm) 

Bond Thickness = 

0.5 mm 

Bond Thickness = 

1.06 mm 

Bond Thickness = 

1.5 mm 

Bond Thickness = 

2 mm 

Pmax 

(kN)  

 
E 

(J) 

Pmax 

 (kN) 

 
E 

(J) 

Pmax 

(kN)  

 
E 

(J) 

Pmax 

(kN)  

 
E 

(J) 

15 

1.2 23.4 T 37 23.6 T 37 23.8 T 46 23.9 T 38 

1.6 29.2 T 60 29.1 T 54 28.2 T 61 29.5 T 52 

2.0 29.5 A 28 30 A 31 28.8 A 24 30.8 A 33 

2.4 29.5 A 24 29.5 A 25 29.9 A 26 31.1 A 27 

20 

1.2 23.6 T 44 24.2 T 46 23.7 T 49 23.9 T 46 

1.6 29.3 T 66 28.7 T 53 29.1 T 65 29.4 T 61 

2.0 34.4 T 75 33.6 T 68 34.5 T 91 34.8 T 81 

2.4 39.5 A 65 39.5 A 68 39.8 A 120 39.8 T 96 

25 

1.2 23.4 T 36 23.5 T 37 23.6 T 42 23.9 T 37 

1.6 28.9 T 48 29.6 T 51 29.1 T 57 29.3 T 49 

2.0 34.2 T 60 33.7 T 59 34.3 T 69 34.4 T 62 

2.4 39.4 T 71 39.5 T 72 39.6 T 80 39.5 T 84 

Note:  A = Adhesive Failure, T = Tube Failure 
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(a) 

 

(b) 

Figure 6.11 Effect of overlap length (a) and tube thickness (b) on peak load of the joints. (Adhesive thickness 1.06 

mm) 
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Figure 6.12 Response surface for effect of overlap length and tube thickness on peak load under tension. 

 

Figures 6.11 (a) and 6.11 (b) show that the peak load on the tubular joint increases with 

overlap length and tube thickness. In two cases which show adhesive failure increase in overlap 

length or tube thickness did not result in an increase in tensile strength. They are joint 

configurations of 1.6 mm tubes with 15 mm overlap and 2.4 mm tubes with 20 mm overlap. In 

the first case, despite tube failure, increasing tube thickness did not result in any change to the 

strength. Hence, it is evident that tube and bond strength is maximized in this configuration. In 

the second case, with 2.4 mm thick tubes joint fails at approximately the same load with 20- and 

25-mm overlap lengths albeit due to joint failure and tube failure respectively. Both these 

configurations indicate ideal combination of tube thickness and overlap length. Considering 1.2 

mm tubes and 2.0 tubes, results show tubular strengths are between overlap levels of 10-15 mm 

and 15-20 mm respectively. Hence, they show further increase in strength with increase in 

overlap and then plateau.  

Figure 6.12 plots a response surface for peak load under tension with different tube 

thicknesses and overlap lengths. The empirical expression (Equation 6.1) shown below is used to 

fit the response data. 
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𝑃𝑀𝑎𝑥_𝑇𝑒𝑠𝑛𝑖𝑜𝑛 = −19.91 + 1.391𝑥 + 42.92𝑦 − 0.1015𝑥2 + 1.759𝑥𝑦 − 30.94𝑦2 +
0.001899𝑥3 − 0.04372𝑥2𝑦 + 0.1956𝑥𝑦2 + 4.753𝑦3            Eq. 6.1 

Where, x is overlap length and y is tube thickness in mm. The response, peak load under tension 

is in kN. The R-square value for the equation is 0.9784 which represents a reasonably good fit 

for the data. 

Among the different configurations of tube thickness and overlap length 1.6 mm tubes 

with 15 mm overlap and 2.4 mm tubes with 20 mm overlap are the most efficient. Design choice 

among the two can be made based on strength requirement.  

6.4.3 Effect of Adhesive Properties 

A crash optimized adhesive, Betamate 1496 and a brittle adhesive AV 138 were 

considered for aluminum-aluminum tubular lap joints with a bond thickness of 1.06 mm.  As 

mentioned in Chapter 4, the two adhesives have similar behavior under mode I deformation.  But 

under mode II loading, Betamate 1496 shows an elastic-plastic behavior with a much lower shear 

strength compared to AV 138 which shows a linear behavior up to failure. The modulus of the 

brittle adhesive is also much higher. The results of different joint configurations with two 

adhesives are listed in Table 6.6. Most of the joints with brittle AV 138 adhesive show bond 

failure under tensile load. Another feature of the results is the low energy absorption values due 

to brittle nature of the adhesive. Figure 6.13 illustrates load-displacement curve for a joint with 

brittle adhesive. The curve shows an approximately linear load-displacement curve followed by a 

sudden drop in load due to adhesive failure. The star marker at approximately 0.8 mm 

displacement indicates point at which adhesive failure began. 

Stresses in the adhesive also show a similar behavior as shown in Figure 6.14. The figure 

plots normal and shear stress in an element at the leading end versus displacement. Both shear 

and normal stresses show an almost linear increase in magnitude prior to failure. The star marker 
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on the shear curve indicates point of damage initiation in the adhesive.  Unlike a crash optimized 

adhesive like Betamate which shows significant shear plateau after yielding, the brittle adhesive 

fails quickly after damage initiation as seen here. 

 

 

Table 6.6 Results of tensile loading of Al-Al tubular joints with Betamate 1496 and AV 138 adhesives (Adhesive 

thickness = 1.06 mm). 

Overlap 

(mm) 

Tube 

Thickness 

(mm) 

Betamate 1496 AV 138 

Pmax  

(kN) 

Failure 

Mode 

E  

(J) 

Pmax  

(kN)  

Failure 

Mode 

E (J) 

10  1.2 19.9 A 23.1 18.5 A 7.1 

1.6 19.9 A 18.4 20.6 A 5.2 

2 20 A 16.2 20.9 A 3.9 

2.4 20 A 15.4 20.7 A 3.2 

15 1.2 23.6 T 37.1 22.9 A 30.9 

1.6 29.1 T 54.1 22.5 A 6.6 

2 30 A 31.1 26.5 A 7.2 

2.4 29.5 A 24.8 26.1 A 5.3 

20  1.2 24.2 T 46.3 23.9 A 35.9 

1.6 28.7 T 52.9 21.7 A 5.8 

2 33.6 T 68.2 26.4 A 6.9 

2.4 39.5 A 67.9 37.3 A 29.7 

25  1.2 23.5 T 37.3 22.9 T 34.9 

1.6 29.6 T 51.0 21.4 A 5.3 

2 33.7 T 59.0 26.4 A 6.8 

2.4 39.5 T 71.9 38.7 T 29.8 
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Figure 6.13 Force Displacement curve when tube fails under tensile load with AV 138 adhesive bond. Al tube 

thickness 1.6 mm and overlap length 15 mm. 

 

 

 

 

Figure 6.14 Variation in stress of an element at leading edge of the bond versus displacement of loading end in the 

case of adhesive failure with AV 138 adhesive bond. Al tube thickness 1.6 mm and overlap length 15 mm. 
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(a)      (b) 

Figure 6.15 Effect of (a) tube thickness and (b) overlap length with AV 138 adhesive. 

 

Figure 6.15 illustrates the effect of overlap length and tube thickness on peak load under 

tension in joints with a brittle adhesive. Like the Betamate adhesive, there is an increase in peak 

load with increasing overlap length followed by a plateau at each tube thickness.  Results 

indicate significant influence of tube thickness on peak load. Increase in tube thickness 

corresponds to a significant increase in peak load particularly for tubular section with 2.4 mm 

thick tubes which show the highest peak load with an overlap length of 25 mm. This could be 

due to a combination of higher shear stress in the bond with thicker tube along with higher shear 

strength of the adhesive resulting in greater bond strength. Also, the same factors result in higher 

peak load prior to bond failure at a particular overlap length with increasing tube thickness. 

6.4.4 Effect of Loading Rate 

The simulations in Sections 6.4.1 –6.4.3 were conducted with a top end nodal velocity of 

1 mm/s which can be considered a quasi-static loading rate. Since mechanical properties of both 

6061-T4 aluminum alloy and Betamate adhesive are strain rate sensitive, an increase in loading 
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rate will influence their response to stresses caused by tensile loading, and hence the 

performance of the joint. Strain-rate sensitivity of the aluminum alloy affects its yield strength 

and is modeled using Cowper-Symonds equation. In the case of the adhesive, both yield strength 

and fracture energy of the material are rate sensitive and are modeled using a log-linear model 

specified in LS-Dyna as described in Chapter 4. To study the effect of high loading rate, the top 

end nodal velocity is increased to 1 m/s and the joint performance is determined for different 

joint configurations considered under quasi-static loading rate of 1 mm/s. The adhesive thickness 

is maintained at 1.06 mm. 

The results of the simulations at 1 m/s are plotted in Figure 6.16. Unlike the results at 1 

mm/s shown in Figure 6.11 and 6.12, the peak load of the joint at 1 m/s increases with increasing 

tube thickness but is not affected by the overlap length. Adhesive failure is observed only in the 

case of 2.4 mm thick tubes with 10 mm overlap length. For the same overlap length, joints with 

2.0 mm thick tubes showed more than 50% adhesive failure prior to tube failure. Other joint 

configurations showed tube failure with no significant adhesive failure. Hence, an increase in 

overlap length shows no significant increase in the peak load.  

 

 
(a)     (b) 

Figure 6.16 Variation in peak load versus tube thickness (a) and overlap length (b) at 1 m/s loading rate. 
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 Comparing the results at loading rates of 1 mm/s and 1 m/s, it is observed that occurrence 

of adhesive failure at 1m/s is limited to 10 mm overlap compared to quasi-static results where 

even with 20 mm overlap shows bond failure albeit at higher tube thickness. This is due to 

relatively low strain rate sensitivity of the aluminum alloy compared to the adhesive used in this 

study. Therefore, tubular adhesive lap joints show a better performance at higher loading rates 

compared to quasi-static applications. A simulation with hypothetically no strain rate sensitivity 

of the adhesive and aluminum modeled with rate sensitivity showed bond failure for all overlap 

lengths at 2.4 mm tube thickness.  

6.4.5 Composite-Aluminum Tubular Joints 

For composite-Al joints, the inner tube is the T700 carbon fiber/ epoxy composite with a 

layup of [0/90]8s and the outer tube is aluminum.   Composite inner tube thickness is 2.16 mm for 

all joints and aluminum outer tube thickness is varied from 1.2 to 2.4 mm.   Betamate 1496 is 

used as the adhesive and its thickness is 1.06 mm.  The loading rate is 1 mm/s.   Table 6.7 

compares the peak loads of composite-Al and Al-Al tubular joints for different joint 

configurations. Results show that adhesive failure as the main failure mode for the composite-Al 

joints and the peak loads at which adhesive failure occurs in composite-Al joints are similar to 

the peak loads at which adhesive failure occurs in Al-Al joints.   Outer Al tube failure occurs 

only for composite-Al joints with 1.2 mm thick Al outer tube and overlap lengths of 20 and 25 

mm.  In these two cases, the outer tube failure is by necking followed by fracture, similar to the 

inner tube failure in Al-Al joints. Hence, there is significantly high energy absorption for these 

joints.  

Composite inner tube failed in the 25 mm overlap joint with 1.6 mm thick Al outer tube 

due to significant radial plastic deformation of Al tube. Figure 6.17 plots the force-displacement 
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curve for a joint with composite tube failure. The sequence of failure is as follows: (1) aluminum 

tube yielding followed by plastic deformation of Al tube and (2) composite tube failure. The von 

Mises stress in aluminum and composite tubes for an element close to the bonded region are 

plotted in Figures 6.18 and 6.19. Figure 6.20 shows the variation in adhesive stress. The 

composite tube is subjected to high axial stress in addition to radial stress due to Al plastic 

deformation. This results in a sharp increase in composite tube stress prior to failure as seen in 

Figure 6.19. The radial deformation of Al also results in a relatively high normal stress in the 

adhesive as seen in Figure 6.20. Similar process is observed in joint with 1.2 mm thick Al tube. 

However due to lower Al tube thickness, its strength is lower and Al tube fails prior to 

significant composite damage. For joints with higher thickness do not show sufficient Al radial 

deformation after yielding. 

 
Table 6.7 Results comparing Al-Al and [0/90]8s composite-Al tubular joints under tensile loading (Adhesive: 

Betamate 1496, Adhesive thickness = 1.06 mm, Composite tube thickness = 2.16 mm). 

  

Overlap 

(mm) 

Al Tube 

Thickness 

(mm) 

Al-Al Tubes Composite-Al Tubes 

Pmax 

(kN) 

Failure 

Mode 

E 

(J) 

Pmax  

(kN) 

Failure 

Mode 

E 

(J) 

10  1.2 19.9 A 23.1 19.9 A 16.6 

1.6 19.9 A 18.4 20.0 A 16.2 

2 20 A 16.2 20.0 A 15.7 

2.4 20 A 15.4 20.0 A 15.6 

15 1.2 23.6 T 37.1 29.9 A 47.7 

1.6 29.1 T 54.1 30.0 A 26.3 

2 30 A 31.1 30.0 A 25.6 

2.4 29.5 A 24.8 30.0 A 25.1 

20  1.2 24.2 T 46.3 32.2 OT 237.5 

1.6 28.7 T 52.9 40.1 A 64.6 

2 33.6 T 68.2 40.1 A 37.1 

2.4 39.5 A 67.9 40.1 A 35.9 

25 1.2 23.5 T 37.3 32.2 OT 227.6 

1.6 29.6 T 51.0 42.6 T 129.6 

2 33.7 T 59.0 50.1 A 80.7 

2.4 39.5 T 71.9 50.1 A 48.0 
A: Adhesive Failure, T: Inner Tube Failure, OT: Outer Tube Failure 
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Figure 6.17 Force -displacement curve when adhesive fails under tensile load for composite-Al joint. Al tube 

thickness 1.6 mm, composite tube thickness 2.16 mm and overlap length 25 mm. 

 

 

 

Figure 6.18 Variation of stresses in the aluminum tube for composite- Al joint. Al tube thickness 1.6 mm, composite 

tube thickness 2.16 mm and overlap length 25 mm. 
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Figure 6.19 Variation of stresses in composite tube for composite- Al joint. Al tube thickness 1.6 mm, composite 

tube thickness 2.16 mm and overlap length 25 mm. 

 

 

 

Figure 6.20 Variation of adhesive stresses in an element at leading edge of the bond versus displacement of loading 

end in the case of adhesive failure for composite-Al joint. Al tube thickness 1.6 mm, composite tube thickness 2.16 

mm and overlap length 25 mm. 
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Figure 6.21 plots the force-displacement curve for a composite-Al joint under tension for 

the case of adhesive failure. It shows a steady increase in load up to a displacement of 

approximately 1 mm and then the load remaining constant until the adhesive layer fails. This 

behavior is similar to that observed in Al-Al joints that show adhesive failure. The adhesive 

stress-displacement plots shown in Figure 6.22 and tube stress-displacement plot in Figure 6.23 

also have similar trends. The adhesive shear stress at the leading edge of the overlap increases up 

to a displacement of 1 mm which is then followed by a shear plateau and then failure at about the 

same displacement where the joint has failed. In composite-Al joints the magnitude of peel or 

normal stress is much lower compared to that in Al-Al joint with the same joint configurations.  

 

 

Figure 6.21 Force -displacement curve when adhesive fails under tensile load for composite-Al joint. Al tube 

thickness 1.6 mm, composite tube thickness 2.16 mm and overlap length 15 mm. 

 

1 2 
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Figure 6.22 Variation of adhesive stresses in an element at leading edge of the bond versus displacement of loading 

end in the case of adhesive failure for composite-Al joint. Al tube thickness 1.6 mm, composite tube thickness 2.16 

mm and overlap length 15 mm. 

 

 

 

Figure 6.23 Variation of stresses in composite and aluminum tubes for composite-Al joint. Al tube thickness 1.6 

mm, composite tube thickness 2.16 mm and overlap length 15 mm. 
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(a)      (b) 

Figure 6.24 Effect of (a) tube thickness and (b) overlap length for composite-Al joints. 

 

Figures 6.24 (a) and (b) illustrate the influence of tube thickness and overlap length on 

peak load under tension for composite-Al joints. Tube thickness has no influence on peak load at 

low overlap length of 10 and 15 mm due to adhesive failure prior to yielding or tube failure. At 

higher overlap lengths, there is an increase in peak load followed by a plateau where the tensile 

stress in the composite tube reaches the strength of the composite and it fails.  

6.5 Joint Design for Maximum Performance under Tensile Load 

Tubular members used in structural applications are designed to withstand a variety of 

load conditions. This is true for tubular joints used in structural applications as well. Performance 

of the tubular adhesive lap joint under axial tension and compression is studied in this research. 

It is shown in Chapter 4 that for Al-Al tubular joints under compressive loading, tube thickness 

ratio and tube length ratio influence crush characteristics in addition to the parameters discussed 

so far in this chapter. Tube thickness is seen to play a significant role in tensile performance; 

hence it is possible for thickness ratio to also influence peak tensile load of the joint. To further 

0.0

10.0

20.0

30.0

40.0

50.0

60.0

1.2 1.6 2 2.4

P
ea

k 
Lo

ad
 (

kN
)

Tube Thickness (mm)

Ov 10 mm

Ov 15 mm

Ov 20 mm

Ov 25 mm

Composite-Al Joint

0.0

10.0

20.0

30.0

40.0

50.0

60.0

10 15 20 25

P
ea

k 
Lo

ad
 (

kN
)

Overlap (mm)

1.2 mm

1.6 mm

2.0 mm

2.4 mm

Composite-Al Joint



  

182 

 

understand the influence of tube geometry, overlap and interaction between various geometric 

parameters    in Al-Al joints under tensile loading, a DOE-based simulation plan is drawn up and 

carried out. The plan includes three variables: tube thickness ratio, ti/to, at three levels (0.75, 1 

and 1.33), tube length ratio, Li/Lo, at three levels (0.75, 1 and 1.33), and overlap length at two 

levels (25 and 35 mm). These variables and their levels are the same as those investigated in the 

DOE-based study for optimum crush load performance in Chapter 4.           

Figure 6.25 illustrates the peak tensile load results for different joint configurations. In all 

these simulations, the joint failure is due to inner Al tube failure. Overlap length and length ratio 

show no influence on peak load as expected. Results in section 6.4.2 have shown that tubes with 

1.6- and 1.2-mm thick tubes do not fail by adhesive failure with overlap greater than 10 mm, 

hence the current set of overlap levels show no change in results. Changes in length ratio also has 

no impact on the joint strength under tensile load as there are no complex modes of deformation 

unlike crush. As load increases wither bond fails or tube fails, and tube failure is only governed 

by load and cross-sectional area. The length of tube plays no role in affecting failure load.  

Changes to thickness ratio do not change failure mode since cross-sectional area of the outer 

tubes remains higher in all cases, even with thicker inner tube. The strength of the joint however 

decreases when ratio is 0.75 since thickness of inner tube is limiting factor and is lower at 1.2 

mm compared to other cases with 1.6 mm thickness.  
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Figure 6.25 Variation in tensile strength with thickness ratio, length ratio and overlap length. 

 

The critical parameters for design of joint subjected to both tension and crush are overlap 

length, tube thickness particularly inner tube and impact speed. For higher energy absorption a 

higher overlap length is preferred, and tube length and thickness ratios also have a positive 

influence on crush characteristics. Hence, comparing results of crush and tensile load on this set 

of joint configurations we can conclude that design for crush characteristics is more critical as it 

has a greater number of parameters influencing performance. 

6.6 Conclusions 

This chapter explored strength and failure characteristics of tubular adhesive lap joints 

under tensile load using finite element analysis.    Depending on the tube diameter, tube 

thickness and overlap length, the Al-Al joints show two different failure modes under tensile 

loading: adhesive failure and inner tube failure. The key joint design parameters affecting the 

peak tensile load are overlap length and tube thickness. Increase in overlap length increases joint 

strength up to a certain limit and then plateaus. Similarly, with increase in thickness failure load 

increases and plateaus. In both cases, the limit is set by tube yield or failure load and adhesive 
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yield or failure load respectively. Change in adhesive thickness has little influence on peak load 

or failure characteristics. 

Adhesive properties are seen to have a significant influence on failure load and 

characteristics. Tubular sections with brittle adhesive showed bond failure across all overlap 

lengths considered here. The tensile failure load is observed to increase with overlap length and 

tube thickness. 

Increase in impact speed also increases joint strength and is also seen to improve bond 

performance as adhesive used in this study exhibits a much higher positive strain rate sensitivity 

compared to the aluminum tube.  

Multi-material joints with composite inner tube and aluminum outer tube largely failed at 

the bond due to much higher strength of composite laminate. Such joints also showed increase in 

peak load with bond length. 

If a tubular joint is expected to perform under tensile and compressive load, then design 

for optimal crush characteristics is more important unless there is a specific tensile strength 

requirement.  
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Chapter 7 Conclusions 

7.1 Conclusions 

The dissertation has presented the performance characteristics of crush- resistant tubular 

adhesive lap joints in aluminum and composite tubes under compressive and tensile loads.  A 

commercial finite element software was used to simulate and analyze deformation and failure 

modes for of aluminum-aluminum, composite-composite and aluminum-composite tubular joints 

with different adhesive materials   and geometric configurations.  A cohesive zone model was 

used to model the adhesive failure behavior.  

To start with, a linear elastic finite element analysis of the bonded region was conducted 

to gain insight into the stress distributions in the adhesive layer in tubular joints subjected to an 

axial compressive load.  Adhesive overlap exhibits regions of shear stress concentrations at the 

overlap ends and relatively low shear stress across the bond length. Unlike tensile loading on the 

joint, compressive loading creates high compressive radial normal stresses at the leading overlap 

edge.  Depending on adhesive thickness, the normal stress at the trailing edge is either 

compressive or tensile.  Normal Stress values are higher at the leading edge compared to trailing 

edge. The study provides details on the influence of tube and overlap geometry, tube material 

modulus and adhesive modulus on the magnitude and nature of shear and radial normal stress 

distributions across the adhesive bond. Critical joint design parameters are found to be tube 

material modulus, tube thickness, adhesive thickness and overlap length.   
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A non-linear finite element model of the joint was developed to understand the crush 

characteristics and failure modes of aluminum-aluminum tubular joints under compressive load. 

A comparison of brittle and crush resistant adhesives illustrated the importance of adhesive 

ductility in the design of crush resistant joint. Overlap length, tube length and tube thickness are 

seen to play significant roles in determining whether or not the joint will fail by failure of the 

adhesive, folding of the aluminum tube or buckling of the aluminum tube.  To understand the 

influence of different variables, a Design of Experiments approach was adopted. Variables 

considered for the study were inner-to-outer tube length ratio, inner-to-outer tube thickness ratio, 

adhesive overlap length, adhesive thickness and loading rate. The following conclusions were 

reached upon comparing results of different joint configurations: longer overlap improves crush 

characteristics as it promotes a more progressive crush behavior, longer and thinner inner tubes 

provide the highest energy absorption and peak load values, and a higher loading rate has a 

positive influence on the joint performance, particularly on the peak crush load. Best 

performance at higher speeds is observed for equal tube length and thickness with longer overlap 

length. Also, an increase in adhesive thickness has a negative influence on joint performance 

parameters. 

The non-linear analysis was extended to analyze the crush characteristics of aluminum-

composite and composite-composite tubular joints. Depending on the joint configuration, these 

tubular joints show three different failure modes: composite tube crush, aluminum tube folding 

and adhesive failure.  In general, aluminum-composite joints in which aluminum tube folding 

occurs before the composite tube fail by crushing exhibit the highest energy absorption.  In cases 

with progressive adhesive failure, plastic deformation of the aluminum tube continues in a stick-

slip manner as it penetrates the composite tube. Overlap length and tube thickness show 
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significant influence on the joint performance Cross-plied and quasi-isotropic composite tube 

constructions were compared for their crush performance. Joints with cross-plied composite fail 

by crushing at a higher peak load while quasi-isotropic composite show a lower energy 

absorption.  

In aluminum-aluminum tubular joints subjected to an axial tensile load, two different 

failure modes are observed, inner tube failure and adhesive failure. Critical parameters are 

overlap length and tube thickness. Increasing these two parameters produces an increase in joint 

strength until a plateau is reached as the joint failure mode changes from adhesive failure to inner 

tube failure. In composite-aluminum joints with composite inner and aluminum outer tubes, the 

principal failure mode is adhesive failure. An increase in joint strength also occurs as the outer 

aluminum tube thickness is increased relative to the inner composite tube thickness. 

7.2 Intellectual Merit and Broader Impact 

The existing literature on tubular adhesive lap joints is limited to studies on stress 

analysis in the adhesive or failure characteristics with brittle adhesives under tensile and 

torsional loads. Studies on structural or crash optimized adhesives are focused on the 

performance of simple lap joints which are largely used in panel or box sections. There is a lack 

of research on multi-material tubular adhesive lap joints in structural applications as explained in 

Chapters 1 and 2. This dissertation presents analysis of tubular adhesive lap joints with a crash- 

optimized ductile adhesive. Crush and tensile characteristics of tubular sections with adhesive 

lap joints are analyzed parametrically for different materials and geometries. Guidelines for tube 

and joint geometry selection are presented for improved crush performance.  

The findings of this study can provide helpful insight for the design and performance of 

adhesively bonded lightweight tubular joints of aluminum and carbon fiber composites for 
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safety-related automotive structures, such as front rails and roof rails.  The results of this study 

can also be applied in the structural design of other ground transportation vehicles such as trains, 

buses, and trucks where the use of lightweight materials, such as aluminum and composites are 

expected to grow. The adoption of multi-material designs with aluminum, composite and other 

lightweight materials in the transportation industry will lead to increase in fuel economy, load 

carrying capacity and reduction in greenhouse gas (GHG) emissions.  

7.3 Scope for Future Work 

Finite element models for crush resistant tubular adhesive lap joints between similar and 

dissimilar tubes was successfully developed in this dissertation and the critical parameters 

affecting their performance were determined. Future work will aim to experimentally verify the 

results presented in this dissertation. Quasi-static and impact testing of composite and aluminum 

tubular lap joints under crush and tensile loads will help to verify the results presented here. 

Different joint and tube geometries can also be considered for the experimental work. 

Aluminum and composite tubes were considered in this dissertation for study of multi-

material joints and results conclude that tube materials show considerable influence on the crush 

performance of tubular lap joints. Hence, further work can be done in this direction. Steel is also 

an important material and is widely used in vehicle structures. Future studies can include 

advanced high strength steel tubes in the study on tubular lap joints. In addition, composite tubes 

with different laminate configurations and different fiber-matrix combinations can be considered.  

Further, several studies in literature show influence of adhesive spew and scarfed tubes 

on the stresses in the adhesive layer. It would be interesting to explore the influence of such joint 

alterations on crush and tensile failure characteristics.  
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A major challenge faced during finite element modeling of tubular adhesive lap joints 

was defining material parameters of the adhesive, particularly fracture properties. Most studies in 

the literature use double cantilever beam and single edge notch bending tests to determine 

adhesive fracture energy and traction-separation characteristics of adhesives. A drawback of this 

method is that properties obtained are dependent on bond thickness. There is also a lack of 

standards for the determination of adhesive fracture properties. Future goal is to develop an 

experimental method to determine fracture properties for bulk adhesive under different loading 

modes and verify application of these properties in FEA for different adhesive layer thicknesses
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