© 2021 Wiley-VCH GmbH

Supporting Information

for Adv. Funct. Mater., DOI: 10.1002/adfm.202104239

Enhanced Direct White Light Emission Efficiency in Quantum Dot Light-Emitting Diodes via Embedded Ferroelectric Islands Structure

Yuljae Cho,* Sangyeon Pak, Benxuan Li, Bo Hou, and SeungNam Cha*

Enhanced Direct White Light Emission Efficiency in Quantum Dot Light-Emitting Diodes via Embedded Ferroelectric Islands Structure

Yuljae Cho,^{*} Sangyeon Pak, Benxuan Li, Bo Hou, SeungNam Cha^{*}

Dr. Yuljae Cho

University of Michigan – Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, 800 Dong Chuan Road, Minghang District, Shanghai 200240, China Email: <u>yuljae.cho@sjtu.edu.cn</u>

Dr. Sangyeon Pak, Prof. SeungNam Cha Department of Physics, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419 Republic of Korea Email: <u>chasn@skku.edu</u>

Dr. Benxuan Li Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FF, UK

Prof. Bo Hou School of Physics and Astronomy, Cardiff University, 5 The Parade, Newport Road, Cardiff, CF24 3AA, United Kingdom

Keywords: Quantum dots, White light, Light-emitting diodes, Ferroelectricity, P(VDF-TrFE)

Figure S1. PLQY of (a) a QD solution and (b) a QD film.

Figure S2. P(VDF-TrFE) on (a) a TFB layer and (b) a QD layer. (c) Morphology of a P(VDF-TrFE) islands structure.

Figure S3. Contact angle on (a) TFB (80.85°) and (b) QD (84.34°).

Figure S4. AFM images of a P(VDF-TrFE) layer prepared by (a) spin-coating 1 wt%, (b) spin-casting 1 wt%, and (c) spin-casting 0.2 wt% P(VDF-TrFE) solution. (a)-(c) are in the same scale with the scale bar of 2 μ m.

Figure S5. Transmittance (%) of the ZnO nanoparticle film and the P(VDF-TrFE) island layer on the ZnO nanoparticle film.

Figure S6. Core-level X-ray photoelectron spectra (XPS) of each composition in P(VDF-TrFE) island layer (a) C 1s and (b) F 1s.

Figure S7. Long-term stability measurement of FE-QLED under continuous DC bias.

Figure S8. Characteristic behaviors of warm white QLEDs. (a)-(d) Q/Z FE-QLEDs, (e)-(h) references, and (i)-(l) T/Q FE-QLEDs.

Figure S9. Characteristic behaviors of daylight white QLEDs. (a)-(d) Q/Z FE-QLEDs, (e)-(h) references, (i)-(l) T/Q FE-QLEDs.

RGB Volume Ratio	CCT [K]	CIE (X, Y)
1:3.5:3.5	3000	0.4473 0.4165
1:2:4	4700	0.3743, 0.5042
1:2:9	6500	0.3183 0.3065
1:1:10	100,000	0.2938 0.1951
1:1.5:15	114,600	0.2440 0.2367

Table S1. CCT values and CIE coordinates with respect to the RGB QDs mixing ratio.

Figure S10. QLEDs with 4700 K of the CCT value (a) without P(VDF-TrFE) island layer and (b) with P(VDF-TrFE) island layer between the QDs and ZnO layer.

Figure S11. QLEDs with 100,000 K of the CCT value (a) without P(VDF-TrFE) island layer and (b) with P(VDF-TrFE) island layer between the QDs and ZnO layer.

Figure S12. QLEDs with 114,600 K of the CCT value (a) without P(VDF-TrFE) island layer and (b) with P(VDF-TrFE) island layer between the QDs and ZnO layer.

CCT [K]		Turn-on [V]	Max. Luminance [cdm ⁻²]	Avg. Luminance [cdm ⁻²]	Max. EQE [%]	Avg. EQE [%]	CIE coordinate [x, y]
3000	Ref	2.0	42670	39278 ± 2193	3.998	3.91 ± 0.26	0.5242, 0.4092
	Q/Z	2.1	51220	49023 ± 3753	5.476	5.10 ± 0.35	0.4473, 0.4165
4700	Ref	3.6	8995	8306 ± 792	2.831	2.96 ± 0.15	0.3743, 0.5042
	Q/Z	3.8	11750	10885 ± 1208	3.901	4.17 ± 0.28	0.3509, 0.5136
6500	Ref	2.6	17338	17477 ± 1426	1.542	1.41 ± 0.15	0.2490, 0.2686
	Q/Z	2.7	22710	22638 ± 1929	2.284	2.16 ± 0.12	0.3151, 0.3039
100,000	Ref	3.4	6656	6117 ± 420	0.580	0.50 ± 0.12	0.2938, 0.1951
	Q/Z	3.4	11040	10045 ± 1313	1.044	0.93 ± 0.18	0.3006, 0.2054
114,600	Ref	3.4	3094	2332 ± 360	1.280	1.13 ± 0.12	0.2387, 0.2387
	Q/Z	3.4	6016	5539 ± 423	2.498	2.26 ± 0.17	0.2440, 0.2367

Table S2. The summary of device parameters of white QLEDs with various CCT values.

Figure S13. PLQY measurement with the structure of Glass/ PEDOT:PSS/ TFB/ QDs/ ZnO results of the different ratio of RGB in the mixed QD solutions: one with R:G:B = 1:2:9 and the other with higher blue QD ratio, R:G:B = 1:1.5:12.

Ref	Material	Туре	V _{on} [V]	Max L. [cd/m ²]	EQE [%]	CIE	Year
[1]	CdSe/ZnS	BY mixed	5.3	6390	1.0	0.28, 0.33	2014
		RGB mixed	4.3	1440	1.3	0.39, 0.40	
		BCYR mixed	6.1	5340	0.9	0.29, 0.29	
[2]	CdSe/ZnS	RGB mixed	5	23352	10.9	0.20, 0.17	2015
[3]	CdZnSeS/ZnS	RGB mixed	3.1	60810	6.39	0.33, 0.32	2018
		Three-unit tandem	9.0	65690	23.9	0.33, 0.34	
[4]	CdSe/ZnS	RGB mixed	8.5	2953	5.0	0.28, 0.31	2018
[5]	CdSe/ZnS	RGB mixed	4.0	58361	10.6	0.38, 0.35	2020
		Light outcoupling	3.2	74363	28.4	0.33, 0.34	
This work	CdSe/ZnS	RGB mixed, ferroelectric coupling	2.1	51220	5.48	0.44, 0.42	2021
			2.7	22710	2.23	0.31, 0.30	2021

Table S3. Comparison of Cd-based white QLEDs performances.

[1] W. K. Bae, J. Lim, D. Lee, M. Park, H. Lee, J. Kwak, K. Char, C. Lee, S. Lee, *Adv. Mater.***2014**, *26*, 6387.

[2] K. -H. Lee, C. -Y. Han, H. -D. Kang, H. Ko, C. Lee, J. Lee, N. Myoung, S. -Y. Yim, H. Yang, *ACS Nano* **2015**, *9*, 10941.

[3] H. Zhang, Q. Su, Y. Sun, S. Chen, Adv. Optical Mater. 2018, 6, 1800354.

[4] P. Shen, X. Li, F. Cao, X. Ding, X. Yang, J. Mater. Chem. C 2018, 6, 9642.

[5] Y. Zhu, R. Xu, Y. Zhou, Z. Xu, Y. Liu, F. Tian, X. Zheng, F. Ma, R. Alsharafi, H. Hu, T. Guo, T. W. Kim, F. Li, *Adv. Optical Mater.* **2020**, *8*, 2001479.