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Risk Factors for 100-Year Flood Events in the Mid-Atlantic
Region of the United States

Gina Tonn 1,∗ and Seth Guikema 2

Anecdotal information indicates that streams in the Mid-Atlantic region of the United States
experience more extreme flood events than might be expected. This leads to the question of
whether this is an unfounded perception or if these extreme events are actually occurring
more than should be expected. If the latter is true, is this due solely to randomness, or al-
ternately to characteristics that make certain watersheds more prone to repeated events that
may be defined as 100-year or greater floods? These questions are investigated through anal-
ysis of flood events based on standard flood frequency analysis. 100-year streamflow rates for
stream gages were estimated using Bulletin 17B flood frequency analysis methods, and the
probability of the annual peak flow record for each gage was calculated. These probabilities
were compared to a set of synthetic probabilities to evaluate their distribution. This com-
parison indicates that for the Mid-Atlantic region as a whole, the Bulletin 17B method does
not systematically over or underestimate flood frequency. A Random Forest model of prob-
ability of actual flood record (PAFR) versus watershed and stream gage characteristics was
developed and used to understand if certain characteristics are associated with PAFR. This
analysis indicated that unexpected numbers of large flood events in a stream gage period of
record can be attributed primarily to randomness, but there is some correlation with water-
shed and gage characteristics including weighted skew, drainage area, and mean annual peak
discharge. The results indicate that watersheds with high values of these characteristics may
warrant advanced flood frequency methods.
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1. INTRODUCTION

Anecdotal information indicates that along some
rivers and streams in the U.S. Mid-Atlantic region,
100-year flood events occur more frequently than
might be expected. News headlines such as “100-
Year Flood, for the Second Straight Year” (Clines,
2002) and “Potomac ‘100-year flood’ hits twice in
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eight months” (Roylance, 1996) reinforce the percep-
tion that the occurrence of these floods may not fol-
low expectations. The terminology used—100-year
flood—creates confusion among the general public
who may assume that only one 100-year flood can oc-
cur in a 100-year period. The term 1% annual flood
is used alternatively to address this concern (USGS,
2016). In either case, some rivers and streams expe-
rience repeat occurrences of these extreme events,
which leads to the question of whether this can be at-
tributed solely to randomness, or alternately to some
characteristics of these watersheds and streams that
make them more prone to repeated events that may
be defined as 100-year or greater floods based on
standard flood frequency analysis (FFA) methods.
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FFA is a commonly used tool for quantifying
flood risk. There are different types of FFA, and
widely used methods include statistical analysis of
local flood or regional flood records and rainfall–
runoff modeling (Merz & Bloschl, 2008). Within
the categories of statistical analysis of records and
rainfall–runoff modeling, many different methods
exist (Paquet, Garavaglia, Garçon, & Gailhard, 2013,
Villarini & Smith, 2010, Villarini, Smith, Baeck, &
Krajewski, 2011). The focus of this article is FFA
involving statistical analysis of local stream gage
records in order to estimate peak discharge for
specified recurrence intervals. While FFA is useful
and widely used, it is based on data sets with limited
records and uncertainty in the methods is consider-
able (Merz & Thieken, 2005). Sources of uncertainty
include the magnitude of future hydrologic events,
use of simplified models, economic and social uncer-
tainty that influence land use change, performance
of water-control measures like levees, dams, and
stormwater management features, accuracy and
length of observations, other flood-influencing vari-
ables, and climate nonstationarity (Morss, Wilhelmi,
Downton, & Gruntfest, 2005; USACE, 1996). Recent
advances in FFA have employed probabilistic and
synthetic hydrographs (Ahmadisharaf, Kalyanapu,
Lillywhite, & Tonn, 2018; Brunner et al., 2017, 2018a,
2018b), bivariate or multivariate return periods
(Brunner, Seibert, & Favre, 2016; Gräler et al., 2013),
and watershed characteristics (Rogger et al., 2012).

Additional statistical analysis may serve to bet-
ter evaluate flood risk and identify conditions for
which standard FFA may misestimate flood risk. This
project uses statistical analysis to evaluate whether
or not stream gages in the Mid-Atlantic region ex-
perience unexpected numbers of 100-year or greater
flood events based on standard FFA. It also uses
statistical analysis to investigate whether the likeli-
hood of an observed flood frequency record is at least
partially explained by watershed characteristics and
stream gage statistical characteristics. The focus of
this research is extreme streamflow events (100-year
or greater) in the Mid-Atlantic region, and the results
are intended for use in identifying watersheds where
advanced FFA methods may be warranted.

One of the first steps typically completed in as-
sessing and managing flood risk is FFA. FFA is often
followed by hydraulic modeling to estimate flood el-
evations at specific locations and to generate flood-
plain maps. Floodplain maps are used by communi-
ties as tools to regulate development in floodplains
and are developed by FEMA for setting flood insur-

ance rates. Many flood risk management decisions
are based on FFA. Use of the 100-year event, which is
common in floodplain maps, was meant to be a pre-
liminary approach, but has become a de facto stan-
dard for flood risk management in the United States
(Galloway, 2011). Quite often the 100-year flood (the
flow rate with a 1% probability of being exceeded in
a given year) is used for design, analysis, and decision
making with little regard for how uncertainty factors
into this figure (Christian, Duenas-Osorio, Teague,
Fang, & Bedient, 2013). Research is underway to
improve standard FFA methods (Stedinger, 2008).
However, flood frequency results in the form of Fed-
eral Emergency Management Agency (FEMA) flood
insurance rate maps (FIRMs) and studies are in wide
use, and even with improved FFA methods, uncer-
tainty is still considerable.

Bulletin 17B is a standard FFA method used in
the United States (IACWD, 1982), and is the method
employed in this study. The Bulletin 17B methods
are not necessarily efficient, but they are consistent.
Their adoption seeks to have all 20,000+ floodplains
in the U.S. demarcated by the same methods and
practices by engineers (Merz & Thieken, 2005). This
method and the associated narrow decision-making
process is deeply uncertain, as the analysis is primar-
ily based on available stream gage data and a sin-
gle flood frequency distribution in practice (Merz &
Thieken, 2005).

Some common issues with FFA methods includ-
ing Bulletin 17B are the lack of a physical basis for
determining the underlying flood frequency distri-
bution, and the need to look at flood risk for return
periods longer than the period of stream gage record
(Lettenmaier, Wallis, & Wood, 1987). Flood fre-
quency results at stream gages vary, and a single type
of distribution for flood frequency may not work
equally well at different gage locations (Benson,
1962a). Villarini and Smith (2010) noted that spatial
heterogeneity was apparent in flood peaks at stream
gages in the eastern United States and should be
addressed. Villarini et al. (2011) observed a heavier-
tailed flood frequency distribution in the Eastern
United States than in the Midwest and identified
relationships between watershed characteristics and
distribution parameters. Some gages experience
more 100-year events than would be expected based
on FFA given the period of record, while others expe-
rience fewer. Additionally, 100-year streamflow may
significantly increase in some regions of the U.S. due
to climate change and land use change driven by pop-
ulation growth (Kollat, Kasprzyk, Thomas, Miller,
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& Divoky, 2012). From a risk analysis perspective,
it would be useful to understand whether standard
FFA is regularly over or underestimating the fre-
quency of low likelihood events in the Mid-Atlantic
region, and to have some estimate of which stream
gage locations may experience records that standard
FFA results suggest would be unlikely. This would
aid in risk-based decisions around flood risk (Ros-
ner, Vogel, & Kirshen, 2014) in applications such as
siting of detention basins (Ahmadisharaf, Tajrishy, &
Alamdari, 2016), reservoir management (Naz et al.,
2018), managing land use, and protecting life and
property.

The purpose of this study is to address these is-
sues through the use of statistical learning methods.
We evaluate the likelihood of the flood frequency
outcomes at stream gages in the Mid-Atlantic region
as a whole, and then identify watershed characteris-
tics that are associated with conditions in which ob-
served records would be judged to have higher or
lower likelihoods based on Bulletin 17B results. That
is, we seek to identify watershed and gage record
characteristics that are associated with the probabil-
ity of record.

The rest of this article is organized as follows.
Section 2 provides background information on FFA,
watershed characteristics, and uncertainty. Section 3
describes the data and methods. Section 4 includes a
presentation and discussion of results, and Section 5
presents conclusions from the study.

2. BACKGROUND

Various types of FFA that are widely used in-
clude statistical analysis of local flood records, statis-
tical analysis of regional flood records, and rainfall–
runoff modeling (Merz & Bloschl, 2008). The FFA
method used in this study is the Log Pearson Type III
method as implemented in Bulletin 17B, developed
by the Interagency Advisory Committee on Water
Data (IACWD, 1982). This method was selected due
to its wide usage and acceptance in the United States,
including regulatory requirements to use the method
for certain applications, such as FEMA flood insur-
ance rate mapping. The Bulletin 17B method is an
evolution of previous methods developed by the U.S.
Water Resources Council and was developed in an
effort to provide an accurate and standard method
to estimate flood frequency based on stream gage
data. Bulletin 17B estimates are based primarily on
stream gage records for the stream being studied
and use the method-of-moments approach with a

log-Pearson Type III distribution to determine the
statistical parameters for a given gage station. Bul-
letin 17B includes methods to incorporate the sys-
tematic record, as well as historic data, regional data,
and flood estimates based on precipitation records
(IACWD, 1982). The method is reasonable and per-
forms well compared to other potential methods
(Stedinger, 2008).

An update of 17B was released in 2018 and in-
corporates proposed improvements such as the use
of historical and interval data, regional skew compu-
tation and precision, and confidence intervals. Gen-
erally, it is still unclear what the contribution of non-
stationarity is to uncertainty and whether estimates
would be improved by including it, and difficulties
in resolving the skew may still remain (Ouarda &
El Adlouni, 2011; Stediner & Griffis, 2011). Some
other suggested approaches to improve the accu-
racy of FFA include more substantial use of historic
or paleoflood data (Kirby & Moss, 1987). However,
historic data are often limited, and there is no cer-
tainty that historic data can be found or will improve
flood frequency estimates (Payrastre, Gaume, & An-
drieu, 2011). “A simple model with well-understood
flaws may be preferable to a sophisticated model
whose correspondence to reality is uncertain” (Lins
& Cohn, 2011). Because these FFA methods add
complexity, it would be useful to identify watershed
or stream gages characteristics for which advanced
methods are warranted due to poor performance of
the standard method.

Studies have been performed to explain how
flood magnitudes vary based on physical and cli-
matic characteristics of a watershed. A study by Ben-
son (1962b) found that drainage area, main chan-
nel slope, and surface area of lakes and ponds were
important variables. Watershed characteristics have
also been widely used in developing regional re-
gression equations and in estimating peak discharge
at ungaged watersheds (Lettenmaier et al., 1987;
Pandey & Nguyen, 1999; Wiltshire, 1985). Statistical
characteristics of gage records have also been used
in the development of regional models (Burn, 1988;
Lettenmaier et al., 1987). A study by Kidson and
Richards (2005) suggests that it is impossible to de-
termine which FFA tool is best for a given water-
shed and that a multidisciplinary approach employ-
ing physical modeling supplemented with regional,
historic, and paleoflood information may be best.
Studies correlating Bulletin 17B performance with
watershed or gage record characteristics seem to be
lacking, but one study found that Bulletin 17B had
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poor performance for watersheds with negative skew
values (Wallis & Wood, 1985).

Even with proposed improvements to FFA
methods, uncertainty is still considerable, and the
flood record at some stream gages may be consid-
ered a low probability outcome (e.g., three 100-year
floods in 50 years of record where a 100-year flood is
estimated by Bulletin 17B methods), with “outcome”
defined as the number of flood events over the period
of record. A low-probability outcome could be con-
sidered an indication that the FFA method is less ac-
curate for a particular watershed. It could be a signal
that more uncertainty exists at a gage location, or that
flood risk is either greater or smaller in and around
that 100-year floodplain than Bulletin 17B suggests.
Conversely, it could be the result of random meteo-
rological events. Given the extensive use of the flood
frequency results for flood risk management, it would
be useful to understand which gages have low proba-
bility outcomes and to identify watershed and stream
gage record characteristics that are associated with
probability of outcome. This would allow risk man-
agers to identify study locations where they might
want to consider more advanced flood frequency and
risk analysis methods versus those where they might
be more comfortable using simpler flood frequency
methods. This study applies statistical learning meth-
ods to this problem to generate a model of probabil-
ity of outcome versus watershed characteristics. The
use of probability of outcome as a measure of flood
frequency model accuracy is a novel approach.

3. METHODS AND DATA

3.1. Data

Stream gage data for this project were obtained
from the United States Geological Survey (USGS)
National Water Inventory System (NWIS) website
(2018). Annual peak streamflow data were retrieved
for the stream gages with at least 40 years of record
in the states of Delaware, Maryland, Pennsylvania,
West Virginia, Virginia, and North Carolina. Only
stream gages with 40 years or more of nonregulated
flow were included in the analysis, resulting in a to-
tal of 515 gages. The record lengths for the gages
used in this analysis ranged from 40 to 123 years,
with an average record length of 70 years. Fig. 1 pro-
vides a histogram of the gage record lengths. Addi-
tionally, a subset of 128 gages with 80 or more years
of record was identified. These gages were used to de-

Fig 1. Histogram of stream gage record length.

velop train and test data sets. The train data set con-
sisted of peak flows from the start of the gage record
up to the last 40 years of record. The test data set con-
sisted of the last 40 years of record for each of these
gages.

FFA was performed for each stream gage using
the PeakFQ software, which implements the Bulletin
17B methods. FFA was performed on the train and
test data set as well. Streamflow qualification codes
were evaluated, and peaks were disqualified based
on the specifications in the PeakFQ manual (Flynn,
Kirby, & Hummel, 2006). This included peaks af-
fected by dam failure and known effects of regula-
tion, urbanization, or other watershed change. Ad-
justments were made for low outliers, while high out-
liers were retained without adjustment per the Bul-
letin 17B guidance for analysis where useful historic
information is not available to adjust for high out-
liers (IACWD, 1982). Weighted skew values based on
the station skew and generalized regional skew were
used. Sources of generalized skew values for each
state are presented in Table I. No historic or other
adjustments (e.g., two-station comparisons) were in-
cluded in order to maintain consistency with the sim-
plest implementation of the Bulletin 17B methods.

Once the 100-year discharge was estimated for
each gage, this value was compared to the annual
peak discharge time-series for each gage to deter-
mine the actual number of years in the period of
record in which the annual peak discharge met or
exceeded the estimated 100-year discharge. This ac-
tual number of years for each gage that include a
100-year or greater discharge event is termed the
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Table I. Regional Skew Value Data

State Source of Regional Skew Values

Delaware U.S. Geological Survey (USGS) (Ries & Dillow, 2006)
Maryland Maryland Hydrology Panel (2010)
North Carolina USGS (Weaver, Feaster, & Gotvald, 2009)
Pennsylvania US Army Corps of Engineers (USACE) Delaware River Basin (Goldman, Konieczki, & Faber,

2009) and statewide (Roland & Stuckey, 2008)
Virginia Generalized skew coefficients map in Bulletin 17B, with values generated in PeakFQ based on

station location (Austin, Krstolic, & Wiegand, 2011)
West Virginia USGS (Wiley & Atkins, 2010)

“number of floods” for purposes of this study. The
probability of this specific number of floods occur-
ring considering the length of gage record was cal-
culated and is termed the “probability of actual flood
record” (PAFR). Higher values of PAFR indicate a
gage that experienced a number of floods over the
period of record that is more probable while lower
values of PAFR represent a number of floods that
is less probable. Particularly low values of PAFR in-
dicate gages with rare outcomes. We explore these
gages to understand whether these very low, poten-
tially unexpected, values may be attributed to the
stochastic nature of floods or indicates a poor fit of
the FFA method for certain types of watersheds.

The PAFR for each gage was calculated using
the binomial equation presented as Equation (1).
In this equation, n is the number of years of record
for the gage, k is the number of years in which the
annual peak discharge met or exceeded the 100-
year discharge, p is 0.01, which is the probability
of experiencing at least one 100-year or greater
discharge event in any year, and X is the observed
number of years that the peak annual discharge at
the gage met or exceeded the 100-year discharge. In
this calculation, the likelihood of a 100-year flood
event occurring in any given year remains constant
over the entire period of record and is independent
of events occurring in other years. For example, a
stream gage that had one annual peak that met or
exceeded the 100-year discharge in 50 years of record
would have a probability of 0.31.

P(X = k) =
[

n!
k!(n − k)!

]
pk(1 − p)(n−k). (1)

PAFR was plotted and evaluated geospatially to
identify any potential spatial trends. A density plot
of PAFR was also generated. In order to determine
whether the distribution of the PAFR values for the
set of gages as a whole was as expected given the

number of stream gages and the length of record
for each of the gages, a synthetic record analysis was
completed. For each stream gage, a synthetic record
of number of 100-year events (events that meet or
exceed the 100-year discharge) was randomly gen-
erated using the actual number of years of record
for each gage and a probability of 0.01 of a 100-year
event occurring in a given year. The probability of
this record was then calculated, yielding one repli-
cation for that gage. One hundred thousand replica-
tions were performed for each gage and the set of
synthetic probabilities for all gages was used to gen-
erate a synthetic distribution of probability of record.
The density of this synthetic distribution was plotted
along with the density of the probabilities based on
the actual data set to evaluate how the actual proba-
bilities compare to theoretical expected probabilities,
given the length of record at each of the gages.

Watershed data were obtained from the USGS
Geospatial Attributes of Gages Evaluating Stream-
flow II (2011) data set. This data set contains wa-
tershed characteristic data for USGS stream gages.
Covariates were chosen to reflect commonly used
watershed characteristics that could conceivably be
related to either the accuracy of the FFA method,
the runoff generating mechanisms for the watershed,
or the meteorological conditions at the watershed
location. The covariates fall into the following cate-
gories: basin identification, basin classification, basin
morphology, climate, geology, hydrology, hydrologic
modifications, landscape patterns, land use, popu-
lation and infrastructure, soil, and topography. The
full list of the 60 covariates used in the analysis is
included as Appendix A.

In addition to the watershed characteristics, the
mean annual peak discharge (log), standard devia-
tion of mean annual peak discharge, and weighted
skew were calculated for each stream gage. These
values are critical elements of the 17B analysis, as
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they are used to fit the station data to the log-Pearson
type III using the method of moments. Considering
them was important not only in completing the 17B
analysis but also in understanding whether certain
ranges of these key values are more likely to result
in low probability outcomes. The weighted skew is of
particular interest given the role of the skew in char-
acterizing the tails of the distribution.

3.2. Statistical Modeling

Statistical analysis was performed using the R
software (R Development Core Team, 2008). For
the watershed characteristics analysis, several mod-
els appropriate for the response variable, probabil-
ity of outcome, constrained to the 0–1 interval were
selected and run, including beta regression, Classifi-
cation and Regression Trees (CART), and Random
Forest. Random Forest is a nonparametric ensemble
decision tree method. In the method, a large num-
ber of regression trees are developed, with each tree
based on a bootstrapped sample of the data set. The
prediction is averaged from the set of trees. Ran-
dom Forest models are good for data sets with non-
linear relationships, outliers, and noise (Hastie, Tib-
shirani, & Friedman, 2001). Two sets of models were
generated—one using p(x = k) as the response vari-
able and one using p(x ≤ k). For each set of mod-
els, multiple versions were run, including models with
the full set of watershed characteristics as covariates,
models with the full set of watershed characteristics
plus the gage mean, standard deviation, and weighted
skew, and models with a reduced set of watershed
characteristics selected to reduce redundancies from
a physical perspective.

These models were tested in two ways. First, train
and test data sets based on the subset of 128 gages
with at least 80 years of record were used. The model
was fitted using the train data set and tested using the
test data set. Second, holdout analysis was run on the
full set of 515 gages with 50 repeated, random hold-
outs with a randomly selected 20% of the data held
out each time. The predictive accuracy of the models
was compared among the models and to a mean-only
model where predictions were made using only the
mean probability for all gages.

The models tested provided improvements in
predictive accuracy as compared to a mean-only
model. The models using p(x = k) as the response
variable provided better accuracy improvement over
the mean only model than those using p(x ≤ k). Re-
sults presented herein reflect the p(x = k) models.

3.3. Clustering

To further explore the relationship between key
covariates and the PAFR, k-means clustering was
performed. K-means clustering is a method to par-
tition a data set into a specified number of nonover-
lapping clusters based on data values (James, Witten,
Hastie, & Tibshirani, 2013). The purpose of this anal-
ysis was to determine whether certain ranges of co-
variate values might be associated with low PAFR
values. Based on preliminary evaluation of the most
functional number of clusters for purposes of this
analysis, four clusters were chosen for the PAFR k-
means analysis, and the stream gages were separated
into four clusters based solely on PAFR. Empiri-
cal Cumulative Distribution Function (ECDF) plots
were generated for each cluster, for each of the four
most important covariates from the Random Forest
model and are presented alongside the partial depen-
dence plots for each covariate.

3.4. Bootstrapped Data Analysis

In order to partially address the limitations
of our study pertaining to the variation in years
of record for stream gages, we generated 10 boot-
strapped samples of 40 years of record for each gage.
Because each bootstrapped sample had exactly 40
randomly drawn years of record, we eliminated the
effect of differing stream gage record lengths. This
yielded 10 separate bootstrapped data sets. Results
from the bootstrapped analysis were compared to
the results of the analysis of the full data set to deter-
mine if the same variables had high importance, and
how the variable importance differed among the data
sets.

4. RESULTS AND DISCUSSION

4.1. PAFR

To visualize how PAFR varied geographically,
a map of the study area and the PAFR (p = k) for
each stream gage was generated and is included as
Fig. 2. The red dots on the map represent the stream
gages with the lowest PAFR values. Because of the
nature of precipitation and flooding events, some
grouping of low PAFR stream gages was expected.
However, visual analysis of Fig. 2 fails to show any
spatial grouping of similar probability gages. This
indicates that low PAFR values are not confined to a
certain geographic portion of the study area and are
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Fig 2. Map of PAFR (p) and record length (N) in the stream gages analyzed.

not generally grouped geospatially. While watershed
boundaries are not displayed on Fig. 2, review of
these results along with HUC-4 watershed bound-
aries indicates no obvious grouping by watershed.
Fig. 2 also illustrates that the lower PAFR gages
include some with long record lengths (80+ years)
and some with shorter record lengths.

We see from Fig. 3 that the actual and expected
PAFR align reasonably well for the set of 515 stream
gages that was analyzed. However, there are fewer
low-PAFR gages and slightly more very high-PAFR
gages than would be expected. For the gages evalu-
ated in the Mid-Atlantic region, the 17B method does

not appear to result in systematic over or under esti-
mation of flood frequency, but there are some differ-
ences between the actual and expected set of proba-
bilities.

While evaluation of Fig. 3 reveals no systematic
over or underestimation of flood frequency, the un-
derrepresentation of low-PAFR gages does not mean
that these are not problematic from a risk perspec-
tive. These gages have flood risk that is either higher
or lower than Bulletin 17B would suggest. Under-
standing if watershed and stream gage characteristics
are associated with these low-PAFR estimates, and
how so, is a major goal of this article.
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Fig 3. Density of PAFR and Q-Q
plot (inset). Red represents density of
PAFR for the 515 studied stream gages.
Blue represents density of PAFR from
the synthetic probability analysis.

Table II. Comparison of model predictive accuracy based on average Mean Average Error (MAE) and Mean Square Error (MSE)

Test/Train Analysis Holdout Analysis

Model Covariates included Avg. MAE (SD) Avg. MSE (SD) Avg. MAE (SD) Avg. MSE (SD)

Beta regression A Subset of watershed covariates 0.2136 (0.0912) 0.0539 (0.0406) 0.1199 (0.0073) 0.0235 (0.0025)
Beta regression B Subset of watershed covariates plus

gage characteristics
0.1764 (0.1023) 0.0415 (0.0405) 0.1108 (0.0047) 0.0198 (0.0019)

CART A Subset of watershed covariates 0.2130 (0.0906) 0.0535 (0.0402) 0.1189 (0.0074) 0.0230 (0.0026)
CART B Subset of watershed covariates plus

gage characteristics
0.1968 (0.0864) 0.0461 (0.0376) 0.1146 (0.0055) 0.0209 (0.0017)

Random Forest A Subset of watershed covariates 0.2058 (0.1006) 0.0524 (0.0446) 0.1149 (0.0073) 0.0215 (0.0023)
Random Forest B Subset of watershed covariates plus

gage characteristics
0.1993 (0.0921) 0.0481 (0.0386) 0.1091 (0.0057) 0.0190 (0.0016)

Mean only Mean of PAFRfor all stream gages
in the training set used as
prediction for the holdout set

0.2582 (0.1976) 0.1054 (0.1229) 0.1151 (0.0078) 0.0223 (0.0021)

4.2. Statistical Model and Clustering Analysis

In order to evaluate the accuracy of the mod-
els and to choose the model with the best predic-
tive accuracy, two types of testing were performed
as described in Section 3.2. The results of the test-
ing are presented in Table II. While additional varia-
tions of the models were run, including models with
the full set of 60 watershed characteristics, only a few

of the more accurate models are presented here. The
“A” models include a subset of 33 watershed covari-
ates selected to reduce physical redundancy while the
“B” models include the same 33 watershed covari-
ates plus the mean, standard deviation, and weighted
skew of the gage record. In generating these models,
covariates representing similar physical characteris-
tics were removed. For instance, the average basin
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Fig 4. Random forest variable impor-
tance.

temperature was retained, while the maximum basin
temperature was removed.

In comparing the models, Beta regression B
had the lowest average mean absolute error (MAE)
and average mean squared error (MSE) across the
test/train analysis, while Random Forest B had the
lowest MAE and MSE in the holdout testing. A com-
parison of the models indicated that the same three
covariates were of highest importance in both Beta
regression B and Random Forest B. For simplicity
in presentation of results, only the Random Forest B
model was utilized for further analysis.

To determine whether model accuracy could be
improved by using a subset of the most important
covariates from the selected model, recursive fea-
ture elimination was performed using the Classifica-
tion and Regression Training (CARET) package in
R with 200 bootstrap samples. In recursive feature
elimination, backwards selection of covariates is per-
formed based on importance ranking. Less impor-
tant covariates are sequentially removed to identify
the subset of predictors that provides the most accu-
rate model. The output indicated that a reduction in
covariates from the selected model would not result
in a more accurate model. Thus, the selected model
(Random Forest B) was used for the remainder of
the analysis.

In considering Table II with regard to the ques-
tion of whether watershed and stream gage charac-
teristics are correlated with PAFR, it is apparent that

there is some correlation since the model provides
an improvement in fit over the mean only model. We
believe that this model provides useful information
about watersheds that might be at higher risk for low
PAFR values. However, the accuracy of this model is
limited, and it is clear that randomness plays a signif-
icant role in flood frequency outcomes. Variable im-
portance is calculated as the percent increase in MSE
resulting from permuting each covariate and record-
ing the out-of-bag prediction error (James et al.,
2013). This is a measure of the contribution of each
variable to the out of sample predictive accuracy of
the model. Fig. 4 shows the top 15 most important
covariates, based on the Random Forest variable im-
portance. As shown in Fig. 4, weighted skew was
the most important covariate, followed by drainage
area, mean annual peak log discharge, and watershed
slope. Weighted skew, drainage area, and mean an-
nual peak log discharge were also the most important
covariates in the Beta Regression B model, which re-
inforces the importance of these covariates. A cor-
relation matrix for the top 15 covariates is provided
in Appendix B. While there is some correlation be-
tween certain covariates, most notably percent devel-
oped and population density, Random Forest models
are generally robust to correlation in covariates.

In order to further analyze the influence of the
covariates, partial dependence plots and ECDF plots
were generated for each of the four covariates. Par-
tial dependence plots show the marginal influence of
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Table III. K-Means Clustering

Number of Stations Cluster PAFR Center Cluster PAFR Range

Cluster 1 83 0.14 0.03–0.22
Cluster 2 112 0.31 0.27–0.35
Cluster 3 180 0.38 0.35–0.48
Cluster 4 140 0.57 0.48–0.67

Fig 5. Partial dependence and empir-
ical cumulative distribution function
(ECDF) plots for weighted skew.

a covariate on the response variable after integrating
out the other covariates (James et al., 2013). In each
of the partial dependence plots, the influence of the
covariate changes with the covariate values.

We partitioned the response variable into four
groups using k-means clustering and then plotted the
ECDFs for each of the four groups in order to bet-
ter understand how different or similar the covari-
ates are across different ranges of the response vari-
able. The objective was to identify differences in co-
variate values that are associated with low PAFR val-
ues. The four clusters are described in Table III, in-
cluding the value of the center (centroid or median)
PAFR of the cluster and the range of PAFR in the
cluster. The partial dependence and ECDF plots for
each of the six covariates are shown in Figs. 5–8. The
results of these ECDFs and the partial dependence
plots are discussed for each of the top four covariates.
The partial dependence plots indicate the marginal
influence of the covariate on the response variable
(probability). For our top covariate, the partial de-
pendence is in the range of 0.31 to 0.46. Covariates
of lesser importance have a narrower partial depen-
dence range. The ECDF plots show the distribution
of the covariate values for each of the four clusters
described above.

4.2.1. Weighted Skew

The skew of the stream gage record (station
skew) represents the asymmetry of the values about
the mean and the regional skew represents an aver-
age skew value for gages within a geographic area.

The weighted skew is a weighted average of the sta-
tion and regional skew. Weighted skew is included as
an input in the 17B FFA method. The partial depen-
dence plot in Fig. 5 shows that predicted probability
tends to decrease with increasing weighted skew. In
the ECDF plot, the stream gages in the lowest PAFR
cluster (cluster 1) tend to have higher weighted skew
values than the stream gages in the other clusters.
Weighted skew is used in the Bulletin 17B method to
fit the stream gage record to the log Pearson type III
distribution. A higher skew value would indicate that
the shape of the distribution is wider on the right side
than on the left side, that is, it is right skewed. This
indicates that gages with a greater number of annual
peak discharge values at the high end of the distribu-
tion are more likely to have low PAFR values, which
is likely due to a poor fit with the thin-tailed log Pear-
son type III distribution.

4.2.2. Drainage Area

Drainage area is defined as the watershed area
that drains to the stream gage location, and in our
study has units of square kilometers. The partial de-
pendence plot in Fig. 6 indicates that lower probabil-
ity predictions generally tend to have higher drainage
areas. The partial dependence plot is flat for very
high values of drainage area where there are very few
data points. The ECDF plot shows that stream gages
in the lowest PAFR cluster generally tend to have
larger drainage areas. This may be due to greater
spatial variation in storm events and resulting runoff
generation in larger watersheds than in smaller
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Fig 6. Partial dependence and empir-
ical cumulative distribution function
(ECDF) plots for drainage area.

Fig 7. Partial dependence and empir-
ical cumulative distribution function
(ECDF) plots for mean annual peak
discharge.

watersheds where precipitation events are more
likely to impact the entire watershed concurrently
and land use may be more consistent. Another pos-
sible reason for this outcome is that large drainage
basins in the Mid-Atlantic region tend to experience
extremely high/tail events due to extreme storms
like tropical cyclones. Smaller watersheds may expe-
rience high discharge events due to different types
of storms, including thunderstorms, extra-tropical
cyclones, and tropical systems. A relatively high
discharge event can occur more frequently in the
smaller watersheds (Gamble, 1997), with the statisti-
cal characteristics of the stream gage record (mean,
skew, standard deviation), the 100-year discharge
estimate, and the PAFR all reflecting this difference.

4.2.3. Mean Annual Peak Discharge

The mean of the log of the stream gage annual
peak discharge serves as an indicator of the magni-
tude of the annual peak discharge time series at each
gage. The partial dependence plot in Fig. 7 shows
that the lowest probability predictions tend to have
higher mean annual peak discharge values, generally
above 3.5. The ECDF plot also indicates that the low-
est PAFR cluster tends to have slightly higher mean
annual peak discharge values than the other clusters.
This result is consistent with the drainage area re-
sult. While other watershed characteristics influence
flow generation, watersheds with higher mean annual

peak discharge would generally tend to come from
watersheds with larger drainage areas.

4.2.4. Mean Watershed Slope

This covariate represents the mean watershed
slope as a percent, which is a key factor in driving wa-
tershed runoff. Watersheds with a higher mean slope
will potentially generate higher peak runoff values
than similar watersheds with a lower mean slope. The
partial dependence plot in Fig. 8 indicates that wa-
tershed slope values in the 3–13% range correspond
to higher PAFR. As watershed slope increases in the
13 to 25 percent range, PAFR decreases. The ECDF
plot shows that clusters 1 and 2 tend to have steeper
watershed slopes than the higher PAFR clusters. This
indicates that watersheds with steeper average slopes
may be more prone to low PAFR values.

4.2.5. Comparison

In reviewing the partial dependence plots, the
marginal influence of the weighted skew covariate
spans a range of 0.15. The marginal influence for
each the other covariates is less, spanning ranges
of about 0.06 for drainage area and 0.03 for mean
annual peak discharge, the next most important
covariates, to 0.007 for mean watershed slope. While
the marginal influence of these covariates is some-
what small, summing these influences could result in
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Fig 8. Partial dependence and em-
pirical cumulative distribution func-
tion (ECDF) plots for mean watershed
slope.

significant influence on the response variable. Higher
weighted skew values, larger drainage areas, higher
mean annual peak discharge, and higher mean water-
shed slope are watershed characteristics associated
with lower PAFR. The ECDF plots corroborate the
findings of the partial dependence plots. This points
to the conclusion that the accuracy of standard FFA
results may not be equivalent for all watersheds.

4.3. Bootstrapped Data Analysis

Using the covariates included in the Random
Forest B model, a Random Forest model was cre-
ated for each of the 10 bootstrapped samples. The
purpose of this analysis was to determine whether
the same covariates had high variable importance in
randomly selected sets of equal record length. Be-
cause each bootstrapped gage data set contained ex-
actly 40 years of record, only a limited number of
discrete PAFR values were possible. Therefore, the
response variable was treated as categorical for this
analysis. In each bootstrapped model, weighted skew
was the most important covariate. The importance
of the other covariates varied. In addition to the
four covariates of higher importance in our origi-
nal model, covariates with high importance in the
models for some of the bootstrapped data sets in-
cluded fragmentation index, standard deviation of
gage record, mean watershed elevation, watershed
percent forested, and watershed percent developed.

Additionally, the range of variable importance
for each covariate in the bootstrapped models was
evaluated, and boxplots of the relative importance
of the covariates are displayed on Fig. 9. Because
the magnitude of variable importance values differs
for each Random Forest run, the variable impor-
tance is plotted as a percent of total variable impor-
tance, so that the different runs can be compared
(Tonn, Guikema, Ferreira, & Quiring, 2016). Review
of Fig. 9 indicates that the variable importance values
for weighted skew and mean watershed slope in the

original model are near the median percent impor-
tance for these covariates in the bootstrapped analy-
sis. Variable importance for drainage area and mean
annual peak discharge for the original model are at
the upper end of the range of importance for these
covariates in the bootstrapped analysis. The boot-
strapped analysis reinforced the finding of the im-
portance of the top four covariates from the original
analysis.

5. CONCLUSIONS

The synthetic streamflow record analysis indi-
cates that for the Mid-Atlantic region as a whole, the
Bulletin 17B method is generally producing results
in line with expectations. While the results gener-
ally match expectations, the method indicates fewer
low PAFR and slightly more very high PAFR gages
than should theoretically be expected. Given the ex-
tensive use of FFA results for flood risk manage-
ment, it would be useful to be able to identify stream
gages that are likely to have low PAFR values when
judged relative to a Bulletin 17B analysis and to iden-
tify watershed characteristics that may be correlated
with PAFR. This would allow risk managers to iden-
tify stream gages where they might want to consider
more advanced flood frequency and flood risk analy-
sis methods versus those where they might be more
comfortable using basic FFA results. This study is
an effort to apply statistical learning methods to this
problem to generate a model of PAFR versus water-
shed characteristics.

Choosing a response variable for this analysis
was challenging, and PAFR was selected as the most
feasible option. Using PAFR as a response variable
allows for stream gages with differing record lengths
to be analyzed as a set. It provides a value for analysis
that gives an indication of the likelihood or expect-
edness of a discharge estimate. However, there are
limitations associated with the use of this response
variable. The definition of the response variable is
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Fig 9. Percent variable importance for bootstrapped data analysis (box plots) and percent variable importance from original model (trian-
gular points).

somewhat convoluted, and the value does not give an
indication of whether a low or high probability value
is due to an excess or a deficit of 100-year events.
Other potential response variables, such as ratio of
actual to expected years with 100-year events, or
deviation from the expected number of years with
100-year events, have limitations associated with
disparate periods of record.

Beta regression, CART, and Random Forest
models with different covariate selections were com-
pared, and a Random Forest model was selected for
further analysis. Variable importance and partial de-
pendence plots were generated and analyzed to in-
terpret model output. Clustered data analysis was
performed to further analyze the relationship be-
tween the covariates and probability of outcome. Co-
variates that are associated with lower PAFR in the
Mid-Atlantic region included higher weighted skew,
larger drainage area, higher mean annual peak dis-
charge, and higher watershed slope. The clustering
analysis reinforced the findings of the Random For-
est model, and showed that cumulatively, gages with
a low probability of outcome had values for sev-
eral covariates that were generally higher or lower
than most other gages. In both the original anal-
ysis and an analysis of 10 bootstrapped data sets,

weighted skew was the most important covariate. In
evaluating the ECDF plot for weighted skew, there
was clear separation in skew values for the lowest
probability cluster as compared to the other clusters.
Higher weighted skew values are clearly correlated
with lower PAFR values, which makes sense given
that gages with high skew values have distributions
that are right-skewed and given the significance of
the skew value in the Bulletin 17B calculations.

The results of this study identify the covariates
that are most important in modeling PAFR at stream
gages in the Mid-Atlantic region. The key finding
is that certain watershed characteristics are corre-
lated with PAFR, indicating that the results of stan-
dard FFA may not be equivalent across differing wa-
tersheds. Analysts may want to consider enhanced
flood frequency methods for watersheds with these
characteristics. These results can be used in evaluat-
ing floodplain maps generated using the Bulletin 17B
methods, such as FEMA FIRMs. Watershed charac-
teristics could be compared to those found to be im-
portant in this study to determine if a watershed area
is more likely to experience an unexpected outcome
(i.e., the floodplain map is less reliable).

While our model provided an improvement in
predictive accuracy over the other evaluated models
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including a mean-only model, the model accuracy
is limited. Flood frequency is highly dependent on
random weather events and other meteorological
conditions that could not be captured by this study.
This study was limited to stream gages in the Mid-
Atlantic region of the United States, and the findings
may not apply to other regions. The study included
only the 100-year return period, and results might
differ for other return periods. This study focused
on the Bulletin 17B flood frequency method, and
the new 17C method (England et al., 2019) could be
evaluated in a similar manner. The main method-
ological improvements associated with 17C apply to
low outliers, historic and paleoflood data, regional
skew approximation, and confidence interval calcu-
lation. Any changes to our study results associated
with a switch from 17B to 17C would likely be most

pronounced for Virginia gages, for which we used
the Bulletin 17B generalized skew coefficients map.
Furthermore, some of the covariates included in our
study such as the percent forested and percent de-
veloped land are subject to change over time but are
modeled as stationary values due to data limitations.
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