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ABSTRACH:

Anecdotal ion indicates that streams in the Mid-Atlantic region of the U.S. experience more
extreme fl ts than might be expected. This leads to the question of whether this is an
unfoundede or if these extreme events are actually occurring more than should be expected.
If the latter 1s tru€, is this due solely to randomness, or alternately to characteristics that make certain
watersheds more prone to repeated events that may be defined as 100-year or greater floods? These

questions i tigated through analysis of flood events based on standard flood frequency
analysis. 100- streamflow rates for stream gages were estimated using Bulletin 17B flood
frequency @nalysis methods, and the probability of the annual peak flow record for each gage was
calculated. robabilities were compared to a set of synthetic probabilities to evaluate their
distributio isggomparison indicates that for the Mid-Atlantic region as a whole, the Bulletin 17B
method do tematically over or underestimate flood frequency. A Random Forest model of
probability al flood record (PAFR) versus watershed and stream gage characteristics was
develo to understand if certain characteristics are associated with PAFR. This analysis
indicated t ected numbers of large flood events in a stream gage period of record can be
attributed _pwiarily to randomness, but there is some correlation with watershed and gage
charact ding weighted skew, drainage area, and mean annual peak discharge. The results

indicate that watersheds with high values of these characteristics may warrant advanced flood

frequency sthods.

KEY WO >Flood frequency; Random Forest; 100-year flood

1. INTR

A formation indicates that along some rivers and streams in the U.S. Mid-Atlantic
region, 1008year flood events occur more frequently than might be expected. News headlines such as
“100-Year r the Second Straight Year” (Clines, 2002) and “Potomac ‘100-year flood’ hits

s” (Roylance, 1996) reinforce the perception that the occurrence of these floods
may not fojctations. The terminology used — 100-year flood — creates confusion amongst the
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general public who may assume that only one 100-year flood can occur in a 100-year period. The
term 1% annual flood is used alternatively to address this concern (USGS, 2016). In either case, some
rivers and streams experience repeat occurrences of these extreme events, which leads to the question
of wheﬂHe attributed solely to randomness, or alternately to some characteristics of these

watersheds aagdssceams that make them more prone to repeated events that may be defined as 100-
year or gre @ Is based on standard flood frequency analysis (FFA) methods.

S F Aglsgdasgmmonly used tool for quantifying flood risk. There are different types of FFA,
and widelygused methods include statistical analysis of local flood or regional flood records and
rainfall-ru ling (Merz & Bloschl, 2008). Within the categories of statistical analysis of
records andginfall-runoff modeling, many different methods exist (Villarini & Smith, 2010, Villarini
et al., 201 1§QPaquesket al., 2013). The focus of this paper is FFA involving statistical analysis of local
stream gage records in order to estimate peak discharge for specified recurrence intervals. While FFA
is useful amused, it is based on data sets with limited records and uncertainty in the methods
is consider: (M€rz & Thieken, 2005). Sources of uncertainty include the magnitude of future
hydrologic se of simplified models, economic and social uncertainty that influence land use
change, performan;: of water-control measures like levees, dams, and stormwater management
features, a and length of observations, other flood-influencing variables, and climate non-
stationarityE, 1996; Morss et al., 2005). Recent advances in FFA have employed
probabilisti§and synthetic hydrographs (Ahmadisharaf et al., 2018; Brunner et al. 2017, 2018a,
2018b), bivariate or multivariate return periods (Brunner et al., 2016; Graler et al., 2013), and

watershed mistics (Rogger et al., 2012).
Additional statistical analysis may serve to better evaluate flood risk and identify conditions

for whi FA may misestimate flood risk. This project uses statistical analysis to evaluate
whether or no m gages in the Mid-Atlantic region experience unexpected numbers of 100-year
or great events based on standard FFA. It also uses statistical analysis to investigate whether
the like observed flood frequency record is at least partially explained by watershed
characteristics and stream gage statistical characteristics. The focus of this research is extreme

streamflow@@vents (100-year or greater) in the Mid-Atlantic region, and the results are intended for
use in iden atersheds where advanced FFA methods may be warranted.

O @ irst steps typically completed in assessing and managing flood risk is FFA. FFA
is often folld by hydraulic modeling to estimate flood elevations at specific locations and to

generate ﬂgmaps. Floodplain maps are used by communities as tools to regulate development
in floodplailas and are developed by FEMA for setting flood insurance rates. Many flood risk
management decisions are based on FFA. Use of the 100-year event, which is common in floodplain
maps, wae a preliminary approach, but has become a de facto standard for flood risk

managemegnited States (Galloway, 2011). Quite often the 100-year flood (the flow rate

with a 1% probability of being exceeded in a given year) is used for design, analysis, and decision-
making wi
is underway tog

in the fd tﬁ

and studies a

egard for how uncertainty factors into this figure (Christian et al., 2013). Research
prove standard FFA methods (Stedinger, 2008). However, flood frequency results

ederal Emergency Management Agency (FEMA) flood insurance rate maps (FIRMs)
ide use, and even with improved FFA methods, uncertainty is still considerable.
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Bulletin 17B is a standard FFA method used in the U.S. IACWD, 1982), and is the method
employed in this study. The Bulletin 17B methods are not necessarily efficient, but they are
consistent. Their adoption seeks to have all 20,000+ floodplains in the U.S. demarcated by the same
methodsHes by engineers (Merz & Thieken, 2005). This method and the associated narrow

decision-malgmggprocess is deeply uncertain, as the analysis is primarily based on available stream
gage data ﬂood frequency distribution in practice (Merz & Thieken, 2005).

S Omgsqmmon issues with FFA methods including Bulletin 17B are the lack of a physical
basis for dgermining the underlying flood frequency distribution, and the need to look at flood risk
for return nger than the period of stream gage record (Lettenmaier et al., 1987). Flood
frequency 1ts%t stream gages vary, and a single type of distribution for flood frequency may not
work equalliy well @t different gage locations (Benson, 1962a). Villarini and Smith (2010) noted that
spatial heterogeneity was apparent in flood peaks at stream gages in the eastern U.S. and should be
addressed. m et al. (2011) observed a heavier-tailed flood frequency distribution in the Eastern
U.S. than i west and identified relationships between watershed characteristics and
distributio ers. Some gages experience more 100-year events than would be expected based
on FFA given the périod of record, while others experience fewer. Additionally, 100-year streamflow
may signi ncrease in some regions of the U.S. due to climate change and land use change
driven by growth (Kollat et al., 2012). From a risk analysis perspective, it would be useful
to understalid whether standard FFA is regularly over or underestimating the frequency of low
likelihood events in the Mid-Atlantic region, and to have some estimate of which stream gage
locations ience records that standard FFA results suggest would be unlikely. This would
aid in risk- isions around flood risk (Rosner et al., 2014) in applications such as siting of

madisharaf et al., 2016), reservoir management (Naz et al., 2018), managing land

ose of this study is to address these issues through the use of statistical learning
methods: te the likelihood of the flood frequency outcomes at stream gages in the Mid-
Atlantic region as a whole, and then identify watershed characteristics that are associated with
conditionss which observed records would be judged to have higher or lower likelihoods based on

Bulletin 1 . That is, we seek to identify watershed and gage record characteristics that are
associated robability of record.

The this paper is organized as follows. Section 2 provides background information on
FFA, wate racteristics, and uncertainty. Section 3 describes the data and methods. Section 4
includes a pkesentation and discussion of results, and Section 5 presents conclusions from the study.
2. BAC

Va es of FFA that are widely used include statistical analysis of local flood records,
statistical i regional flood records, and rainfall-runoff modeling (Merz & Bloschl, 2008).
The FFA method used in this study is the Log Pearson Type III method as implemented in Bulletin
17B, dev y the Interagency Advisory Committee on Water Data (IACWD, 1982). This

cted due to its wide usage and acceptance in the U.S., including regulatory
requirements to the method for certain applications, such as FEMA flood insurance rate mapping.
The Bulletin 17B method is an evolution of previous methods developed by the U.S. Water Resources

This article is protected by copyright. All rights reserved.



Council and was developed in an effort to provide an accurate and standard method to estimate flood

frequency based on stream gage data. Bulletin 17B estimates are based primarily on stream gage

records for the stream being studied and use the method-of-moments approach with a log-Pearson

Type IHH to determine the statistical parameters for a given gage station. Bulletin 17B

includes methedsyto incorporate the systematic record, as well as historic data, regional data, and
@ d on precipitation records (IACWD, 1982). The method is reasonable and

3 8d to other potential methods (Stedinger, 2008).

flood esti
performs

I . ) .
Alspdate of 17B was released in 2018 and incorporates proposed improvements such as the

use of hist interval data, regional skew computation and precision, and confidence intervals.

Generally, i unclear what the contribution of nonstationarity is to uncertainty and whether

estimates W@uld bgfimproved by including it, and difficulties in resolving the skew may still remain

include more substantial use of historic or paleoflood data (Kirby & Moss,
storic data are often limited, and there is no certainty that historic data can be
found or wikim e flood frequency estimates (Payrastre et al., 2011). “A simple model with well-
understood flaws miay be preferable to a sophisticated model whose correspondence to reality is
uncertain” Cohn, 2011). Because these FFA methods add complexity, it would be useful to
identify WE‘EI' stream gages characteristics for which advanced methods are warranted due to
poor perforfgance of the standard method.

St been performed to explain how flood magnitudes vary based on physical and
climatic ch@ra ics of a watershed. A study by Benson (1962b) found that drainage area, main
channel slope, and surface area of lakes and ponds were important variables. Watershed
also been widely used in developing regional regression equations and in

harge at ungaged watersheds (Lettenmaier et al., 1987; Pandey & Nguyen, 1999;

. Statistical characteristics of gage records have also been used in the development of
ttenmaier et al., 1987; Burn, 1988). A study by Kidson and Richards (2005)
suggests that it is impossible to determine which FFA tool is best for a given watershed and that a
multi-disci:inary approach employing physical modeling supplemented with regional, historic, and
paleoflood ion may be best. Studies correlating Bulletin 17B performance with watershed or

gage recordgfharagteristics seem to be lacking, but one study found that Bulletin 17B had poor
performang & ersheds with negative skew values (Wallis & Wood, 1985).

Ev roposed improvements to FFA methods, uncertainty is still considerable, and the
flood recordat some stream gages may be considered a low probability outcome (e.g., three 100-year

floods in 50 years ii record where a 100-year flood is estimated by Bulletin 17B methods), with

“outco s the number of flood events over the period of record. A low-probability
outcome ¢ nsidered an indication that the FFA method is less accurate for a particular
watershed. It couldbe a signal that more uncertainty exists at a gage location, or that flood risk is
either grea aller in and around that 100-year floodplain than Bulletin 17B suggests.
Conversely, itg@®®1d be the result of random meteorological events. Given the extensive use of the

flood fri
low probability omes and to identify watershed and stream gage record characteristics that are
associated with probability of outcome. This would allow risk managers to identify study locations

results for flood risk management, it would be useful to understand which gages have
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where they might want to consider more advanced flood frequency and risk analysis methods versus
those where they might be more comfortable using simpler flood frequency methods. This study
applies statistical learning methods to this problem to generate a model of probability of outcome
versus aracteristics. The use of probability of outcome as a measure of flood frequency

model accu is,a novel approach.
3. METHmATA

Stream gage data for this project were obtained from the United States Geological Survey
(USGS) N@ater Inventory System (NWIS) website (2018). Annual peak streamflow data
were retrie e stream gages with at least 40 years of record in the states of Delaware,
Maryland, Pgn ania, West Virginia, Virginia, and North Carolina. Only stream gages with 40
years or mm—regulated flow were included in the analysis, resulting in a total of 515 gages.
The record IChgths for the gages used in this analysis ranged from 40 to 123 years, with an average
record len ears. Fig. 1 provides a histogram of the gage record lengths. Additionally, a
subset of mwith 80 or more years of record was identified. These gages were used to
develop train and test datasets. The train dataset consisted of peak flows from the start of the gage
record up t@'the last 40 years of record. The test dataset consisted of the last 40 years of record for
each of the

FF rformed for each stream gage using the PeakFQ software, which implements the
s. FFA was performed on the train and test dataset as well. Streamflow

were evaluated and peaks were disqualified based on the specifications in the
Flynn et al., 2006). This included peaks affected by dam failure and known effects
ization, or other watershed change. Adjustments were made for low outliers,

ere retained without adjustment per the Bulletin 17B guidance for analysis where
useful historic information is not available to adjust for high outliers IACWD, 1982). Weighted skew
values based on the station skew and generalized regional skew were used. Sources of generalized
skew value state are presented in Table I. No historic or other adjustments (e.g. two-station

comparisons) were included in order to maintain consistency with the simplest implementation of the

Table I: Regional Skew Value Data

State ! Source of Regional Skew Values

DelaWaIH U.S. Geological Survey (USGS) (Ries & Dillow, 2006)

Maryland 5 Maryland Hydrology Panel (2010)
North Carolina USGS (Weaver et al., 2009)

US Army Corps of Engineers (USACE) Delaware River Basin (Goldman
et al., 2009) and statewide (Roland & Stuckey, 2008)
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Virginia Generalized skew coefficients map in Bulletin 17B, with values generated
in PeakFQ based on station location (Austin et al., 2011)

West VW USGS (Wiley & Atkins, 2010)

O =year discharge was estimated for each gage, this value was compared to the
annual péalE@ISERAF e time-series for each gage to determine the actual number of years in the period
hich the annual peak discharge met or exceeded the estimated 100-year discharge. This
ears for each gage that include a 100-year or greater discharge event is termed the

or purposes of this study. The probability of this specific number of floods
occurring ¢ g the length of gage record was calculated and is termed the “probability of actual
flood recordsi ( ). Higher values of PAFR indicate a gage that experienced a number of floods
over the pWord that is more probable while lower values of PAFR represent a number of
floods that is less probable. Particularly low values of PAFR indicate gages with rare outcomes. We
explore these gages, to understand whether these very low, potentially unexpected, values may be
attributed t hastic nature of floods or indicates a poor fit of the FFA method for certain types

of watershe
Th, or each gage was calculated using the binomial equation presented as equation 1.

In this equation, 7z is the number of years of record for the gage, k is the number of years in which the
annual peak’d1 e met or exceeded the 100-year discharge, p is 0.01, which is the probability of
experienci one 100-year or greater discharge event in any year, and X is the observed

numbe t the peak annual discharge at the gage met or exceeded the 100-year discharge. In
this calcu he likelihood of a 100-year flood event occurring in any given year remains constant
over the enti d of record and is independent of events occurring in other years. For example, a
stream one annual peak that met or exceeded the 100-year discharge in 50 years of

record would have a probability of 0.31.

X=h= ")
Jn—ion o
AFE

P lotted and evaluated geospatially to identify any potential spatial trends. A
density pliof PAFR was also generated. In order to determine whether the distribution of the PAFR
values gages as a whole was as should be expected given the number of stream gages
and the Word for each of the gages, a synthetic record analysis was completed. For each
stream gage, a synthetic record of number of 100-year events (events that meet or exceed the 100-year

discharge) was ramlomly generated using the actual number of years of record for each gage and a
probability 100-year event occurring in a given year. The probability of this record was then

calculated, yiel one replication for that gage. One hundred thousand replications were performed
d the set of synthetic probabilities for all gages was used to generate a synthetic
obability of record. The density of this synthetic distribution was plotted along with
the density of the probabilities based on the actual data set to evaluate how the actual probabilities
compare to theoretical expected probabilities, given the length of record at each of the gages.
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Watershed data were obtained from the USGS Geospatial Attributes of Gages Evaluating
Streamflow II (2011) data set. This data set contains watershed characteristic data for USGS stream
gages. Covariates were chosen to reflect commonly used watershed characteristics that could
conceiv ed to either the accuracy of the FFA method, the runoff generating mechanisms

od, o1 the meteorological conditions at the watershed location. The covariates fall into
i @ ries: basin identification, basin classification, basin morphology, climate,
geology, hydfeleg drologic modifications, landscape patterns, land use, population and
infrastraetunemseilgand topography. The full list of the 60 covariates used in the analysis is included

as Append! A.

In a@ditiSyto the watershed characteristics, the mean annual peak discharge (log), standard

deviation ean@nnual peak discharge, and weighted skew were calculated for each stream gage.
These values are critical elements of the 17B analysis, as they are used to fit the station data to the
log-Pearsom using the method of moments. Considering them was important not only in
completing 178 analysis but also in understanding whether certain ranges of these key values are
more likel in low probability outcomes. The weighted skew is of particular interest given
the role of the skesm characterizing the tails of the distribution.

3.2 Statisﬁ‘eling
Staiste alysis was performed using the R software (R Development Core Team, 2008).

gharacteristics analysis, several models appropriate for the response variable,

probabilit ime, constrained to the 0 to 1 interval were selected and run, including beta
regression, fication and Regression Trees (CART), and Random Forest. Random Forest is a
non-pa i mble decision tree method. In the method, a large number of regression trees are
developed, ch tree based on a bootstrapped sample of the data set. The prediction is averaged
from the s s. Random Forest models are good for data sets with non-linear relationships,
outliers astie et al., 2001). Two sets of models were generated — one using p(x=k) as the

response variable and one using p(x<k). For each set of models, multiple versions were run, including
models wi!the full set of watershed characteristics as covariates, models with the full set of

watershed istics plus the gage mean, standard deviation, and weighted skew, and models
with a redu f watershed characteristics selected to reduce redundancies from a physical
perspectiv

Th Is were tested in two ways. First, train and test datasets based on the subset of
128 gages With at least 80 years of record were used. The model was fitted using the train dataset and
tested u! dataset. Second, holdout analysis was run on the full set of 515 gages with 50
repeated“ldouts with a randomly selected 20% of the data held out each time. The
predictive of the models was compared amongst the models and to a mean-only model

where predictions Were made using only the mean probability for all gages.

The mo tested provided improvements in predictive accuracy as compared to a mean-only
model. els using p(x=k) as the response variable provided better accuracy improvement over
the mea odel than those using p(x<k). Results presented herein reflect the p(x=k) models.
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3.3. Clustering

To further explore the relationship between key covariates and the PAFR, k-means clustering
was per eans clustering is a method to partition a data set into a specified number of non-
overlap based on data values (James et al., 2013). The purpose of this analysis was to
determine ertain ranges of covariate values might be associated with low PAFR values.
Based on p# gvaluation of the most functional number of clusters for purposes of this
analysisyfqueclusters were chosen for the PAFR k-means analysis, and the stream gages were
separated imgo four clusters based solely on PAFR. Empirical Cumulative Distribution Function
(ECDF) plgenera‘[ed for each cluster, for each of the four most important covariates from the

Random F mel and are presented alongside the partial dependence plots for each covariate.

3.4. Bootst

Data Analysis

In @rdger tofpartially address the limitations of our study pertaining to the variation in years of
record for stf€am*gages, we generated ten bootstrapped samples of 40 years of record for each gage.
Because cai rapped sample had exactly 40 randomly drawn years of record, we eliminated the
effect of differi eam gage record lengths. This yielded ten separate bootstrapped data sets.
Results from the bootstrapped analysis were compared to the results of the analysis of the full data set
to determinl€ 1t the same variables had high importance, and how the variable importance differed
amongst t S.

4. RESUL DISCUSSION
4.1. PAFR

To ize how PAFR varied geographically, a map of the study area and the PAFR (p=k)
for each s ge was generated and is included as Fig. 2. The red dots on the map represent the
stream e lowest PAFR values. Because of the nature of precipitation and flooding

events, some grouping of low PAFR stream gages was expected. However, visual analysis of Fig. 2
fails to shogy any spatial grouping of similar probability gages. This indicates that low PAFR values
are not corh

geospatiall e watershed boundaries are not displayed on Fig. 2, review of these results along
with HUCed boundaries indicates no obvious grouping by watershed. Fig. 2 also illustrates
that the low¢ R

record lengiie®

certain geographic portion of the study area and are not generally grouped

gages include some with long record lengths (80+ years) and some with shorter

Fig. 3 that the actual and expected PAFR align reasonably well for the set of 515
stream gMas analyzed. However, there are fewer low-PAFR gages and slightly more very
high-PAF an would be expected. For the gages evaluated in the Mid-Atlantic region, the
17B method does Mot appear to result in systematic over or under estimation of flood frequency, but

there are s rences between the actual and expected set of probabilities.

aluation of Fig. 3 reveals no systematic over or underestimation of flood frequency,
ntation of low-PAFR gages does nof mean that these are not problematic from a risk

perspective. These®ages have flood risk that is either higher or lower than Bulletin 17B would
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suggest. Understanding if watershed and stream gage characteristics are associated with these low-
PAFR estimates, and how so, is a major goal of this paper.

4.2. StaWel and Clustering Analysis

evaluate the accuracy of the models and to choose the model with the best

predictive 3 ¥, two types of testing were performed as described in Section 3.2. The results of
the testing are presented in Table II. While additional variations of the models were run, including

models Wit set of 60 watershed characteristics, only a few of the more accurate models are
presented “A” models include a subset of 33 watershed covariates selected to reduce
physical reduind while the “B” models include the same 33 watershed covariates plus the mean,

standard deYiation fand weighted skew of the gage record. In generating these models, covariates
representin 1 physical characteristics were removed. For instance, the average basin
temperatur ined, while the maximum basin temperature was removed.

In compating the models, Beta regression B had the lowest average mean absolute error
(MAE) an mean squared error (MSE) across the test/train analysis, while Random Forest B
had the lo and MSE in the holdout testing. A comparison of the models indicated that the
same three covariates were of highest importance in both Beta regression B and Random Forest B.

IS

For simplidity in presentation of results, only the Random Forest B model was utilized for further
analysis.

Table 11 ison of model predictive accuracy based on average Mean Average Error (MAE)

and Mean Square Error (MSE)

ahn

Test/train analysis Holdout analysis

Model ovariates included Avg. MAE Avg. MSE  Avg. MAE Avg. MSE
(std.dev.) (std.dev.) (std.dev.) (std.dev.)

v

Beta Subset of watershed 0.2136 0.0539 0.1199 0.0235
ariates (0.0912) (0.0406) (0.0073) (0.0025)

[

regression

Beta set of watershed 0.1764 0.0415 0.1108 0.0198
regression ariates plus gage (0.1023) (0.0405) (0.0047) (0.0019)
acteristics

0

h

CART set of watershed 0.2130 0.0535 0.1189 0.0230

copariates (0.0906) (0.0402) (0.0074) (0.0026)

!

CART B set of watershed 0.1968 0.0461 0.1146 0.0209
coMariates plus gage (0.0864) (0.0376) (0.0055) (0.0017)

aracteristics

LI

Rando Subset of watershed 0.2058 0.0524 0.1149 0.0215
Forest A variates (0.1006) (0.0446) (0.0073) (0.0023)

A

Random Subset of watershed 0.1993 0.0481 0.1091 0.0190
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Forest B covariates plus gage (0.0921) (0.0386) (0.0057) (0.0016)

characteristics
Mean OMn of PAFRfor all 0.2582 0.1054 0.1151 0.0223
tream gages in the (0.1976) (0.1229) (0.0078) (0.0021)
ing set used as
igiion for the holdout
= Sth

L

Tofdletermilaie whether model accuracy could be improved by using a subset of the most
important ¢ iafes from the selected model, recursive feature elimination was performed using the
egression Training (CARET) package in R with 200 bootstrap samples. In
recursive ination, backwards selection of covariates is performed based on importance
ranking. Less important covariates are sequentially removed to identify the subset of predictors that
provides the mo curate model. The output indicated that a reduction in covariates from the

d not result in a more accurate model. Thus, the selected model (Random Forest

Classificati

selected m

B) was used remainder of the analysis.
In idering Table II with regard to the question of whether watershed and stream gage

orrelated with PAFR, it is apparent that there is some correlation since the model
ement in fit over the mean only model. We believe that this model provides useful

characteristics are

vatersheds that might be at higher risk for low PAFR values. However, the

el is limited, and it is clear that randomness plays a significant role in flood

es. Variable importance is calculated as the percent increase in MSE resulting from
riate and recording the out-of-bag prediction error (James et al., 2013). Thisis a
ibution of each variable to the out of sample predictive accuracy of the model.
Fig. 4 shows the top fifteen most important covariates, based on the Random Forest variable
importance, As shown in Fig. 4, weighted skew was the most important covariate, followed by
drainage arh annual peak log discharge, and watershed slope. Weighted skew, drainage area,
peak log discharge were also the most important covariates in the Beta Regression B
rces the importance of these covariates. A correlation matrix for the top fifteen

and mean ang

model, whi
covariates 1 fled in Appendix B. While there is some correlation between certain covariates,

most nort developed and population density, Random Forest models are generally robust

to correlati@n in covariates.

urther analyze the influence of the covariates, partial dependence plots and ECDF
plots we% for each of the four covariates. Partial dependence plots show the marginal
influence of a coVagiate on the response variable after integrating out the other covariates (James et
al., 2013). f the partial dependence plots, the influence of the covariate changes with the
covariate values

"‘% itioned the response variable into four groups using k-means clustering and then
or each of the four groups in order to better understand how different or similar
the covariates are across different ranges of the response variable. The objective was to identify
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differences in covariate values that are associated with low PAFR values. The four clusters are
described in Table 111, including the value of the center (centroid or median) PAFR of the cluster and
the range of PAFR in the cluster. The partial dependence and ECDF plots for each of the six
covariat“a in Figs. 5 through 8. The results of these ECDFs and the partial dependence
ssed for each of the top four covariates. The partial dependence plots indicate the
i @ bf the covariate on the response variable (probability). For our top covariate, the
SNigER the range of 0.31 to 0.46. Covariates of lesser importance have a narrower
partial depemdemeesrange. The ECDF plots show the distribution of the covariate values for each of

the four ch!ters described above.

Table III: k-means clustering

‘ ’ ’ Number of stations Cluster PAFR center Cluster PAFR
range
Cluster 1 s 83 0.14 0.03-0.22

112 0.31 0.27-0.35

180 0.38 0.35-0.48

Clu:
Clu
Clu Q‘ 140 0.57 0.48-0.67

4.2.1. WeighteEw
The sk am gage record (station skew) represents the asymmetry of the values about the

mean and the regional skew represents an average skew value for gages within a geographic area.

The weighted skew is a weighted average of the station and regional skew. Weighted skew is
included a in the 17B FFA method. The partial dependence plot in Fig. 5 shows that

predicted prepabibity tends to decrease with increasing weighted skew. In the ECDF plot, the stream
gages in thAFR cluster (cluster 1) tend to have higher weighted skew values than the stream
gages in the'® lusters. Weighted skew is used in the Bulletin 17B method to fit the stream gage
record to tgrson type III distribution. A higher skew value would indicate that the shape of
the distribufion is wider on the right side than on the left side, that is, it is right-skewed. This

indicates tha gagei with a greater number of annual peak discharge values at the high end of the

distribuf e likely to have low PAFR values, which is likely due to a poor fit with the thin-
tailed log pe 111 distribution.

4.2.2. Drai a

efined as the watershed area that drains to the stream gage location, and in our study
re kilometers. The partial dependence plot in Fig. 6 indicates that lower probability
predictions gene tend to have higher drainage areas. The partial dependence plot is flat for very
high values of drainage area where there are very few data points. The ECDF plot shows that stream

This article is protected by copyright. All rights reserved.



gages in the lowest PAFR cluster generally tend to have larger drainage areas. This may be due to
greater spatial variation in storm events and resulting runoff generation in larger watersheds than in
smaller watersheds where precipitation events are more likely to impact the entire watershed
concurr“nd use may be more consistent. Another possible reason for this outcome is that
large drainageghasins in the Mid-Atlantic region tend to experience extremely high/tail events due to
extreme st @ tropical cyclones. Smaller watersheds may experience high discharge events due
to different#ypesiofsidms, including thunderstorms, extra-tropical cyclones, and tropical systems. A
relatively higlmdiseharge event can occur more frequently in the smaller watersheds (Gamble, 1997),
with the stafistical characteristics of the stream gage record (mean, skew, standard deviation), the 100-
year disch ate, and the PAFR all reflecting this difference.

4.2.3. MeamAnnudll Peak Discharge

The mean of the stream gage annual peak discharge serves as an indicator of the magnitude
of the annmischarge time series at each gage. The partial dependence plot in Fig. 7 shows
that the lo;x:f: f:fi;ability predictions tend to have higher mean annual peak discharge values,
generally above 3.8, The ECDF plot also indicates that the lowest PAFR cluster tends to have slightly

higher me peak discharge values than the other clusters. This result is consistent with the

Drainage t. While other watershed characteristics influence flow generation, watersheds
with highefmean annual peak discharge would generally tend to come from watersheds with larger
drainage ar€as

watershed slope increases in the 13 to 25 percent range, PAFR decreases. The ECDF plot shows that
clusters 1 and 2 tend to have steeper watershed slopes than the higher PAFR clusters. This indicates
that watersw steeper average slopes may be more prone to low PAFR values.

4.2.5. Com
In reviewin rtial dependence plots, the marginal influence of the weighted skew covariate
spans a ra 5. The marginal influence for each the other covariates is less, spanning ranges of

gmming these influences could result in significant influence on the response

variable. Hi ighted skew values, larger drainage areas, higher mean annual peak discharge,
and higher mean watershed slope are watershed characteristics associated with lower PAFR. The

ECDF plot orate the findings of the partial dependence plots. This points to the conclusion
that the acc standard FFA results may not be equivalent for all watersheds.
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4.3. Bootstrapped Data Analysis

Using the covariates included in the Random Forest B model, a Random Forest model was
created We ten bootstrapped samples. The purpose of this analysis was to determine
whether the'same covariates had high variable importance in randomly selected sets of equal record
length. Beg# ach bootstrapped gage data set contained exactly 40 years of record, only a limited
number of discietéRALR values were possible. Therefore, the response variable was treated as
categorigal forthis analysis. In each bootstrapped model, weighted skew was the most important
covariate. @he importance of the other covariates varied. In addition to the four covariates of higher
importancLiginal model, covariates with high importance in the models for some of the
bootstrapp@ts included fragmentation index, standard deviation of gage record, mean

vatiof,

watershed watershed percent forested, and watershed percent developed.

Additi , the range of variable importance for each covariate in the bootstrapped models
was evalua oxplots of the relative importance of the covariates are displayed on Fig. 9.

Because th itnde of variable importance values differs for each Random Forest run, the variable
importancew as a percent of total variable importance, so that the different runs can be
compared (

weighted s ean watershed slope in the original model are near the median percent
importanceffor these covariates in the bootstrapped analysis. Variable importance for drainage area

al., 2016). Review of Fig. 9 indicates that the variable importance values for

and mean ak discharge for the original model are at the upper end of the range of importance
for these ¢ in the bootstrapped analysis. The bootstrapped analysis reinforced the finding of
the importahc e top four covariates from the original analysis.

5.CO

The s ic streamflow record analysis indicates that for the Mid-Atlantic region as a

whole, 17B method is generally producing results in line with expectations. While the
results generally match expectations, the method indicates fewer low PAFR and slightly more very
high PAFR gages than should theoretically be expected. Given the extensive use of FFA results for
flood risk &ﬁﬁﬂ

low PAFR va

ent, it would be useful to be able to identify stream gages that are likely to have
es when judged relative to a Bulletin 17B analysis and to identify watershed

may be correlated with PAFR. This would allow risk managers to identify stream
ight want to consider more advanced flood frequency and flood risk analysis

methods ve ¢ where they might be more comfortable using basic FFA results. This study is
an effort tofapply statistical learning methods to this problem to generate a model of PAFR versus
watershl istics.

z!ﬂlosmg a response variable for this analysis was challenging, and PAFR was selected as the

most feasi . Using PAFR as a response variable allows for stream gages with differing
record len analyzed as a set. It provides a value for analysis that gives an indication of the
likelihood or expegtedness of a discharge estimate. However, there are limitations associated with the

nse variable. The definition of the response variable is somewhat convoluted, and the
ive an indication of whether a low or high probability value is due to an excess or a
deficit of 100-yca®events. Other potential response variables, such as ratio of actual to expected
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years with 100-year events, or deviation from the expected number of years with 100-year events,
have limitations associated with disparate periods of record.

Wion, CART, and Random Forest models with different covariate selections were
compared, and a Random Forest model was selected for further analysis. Variable importance and
partial depg dplots were generated and analyzed to interpret model output. Clustered data

med to further analyze the relationship between the covariates and probability of
outcomg, Coyapates that are associated with lower PAFR in the Mid-Atlantic region included higher
weighted skew, larger drainage area, higher mean annual peak discharge, and higher watershed slope.
The cluste\L'sis reinforced the findings of the Random Forest model, and showed that
cumulative with a low probability of outcome had values for several covariates that were

d

generally higher oflower than most other gages. In both the original analysis and an analysis of ten
bootstrapped data sets, weighted skew was the most important covariate. In evaluating the ECDF plot
for weightdd sk€wRthere was clear separation in skew values for the lowest probability cluster as

compared t er clusters. Higher weighted skew values are clearly correlated with lower PAFR

>

values, wh sense given that gages with high skew values have distributions that are right-

skewed and given fhe significance of the skew value in the Bulletin 17B calculations.

u

Th f this study identify the covariates that are most important in modeling PAFR at
stream gaggs in the Mid-Atlantic region. The key finding is that certain watershed characteristics are
correlated R, indicating that the results of standard FFA may not be equivalent across
. Analysts may want to consider enhanced flood frequency methods for
watersheds@wi e characteristics. These results can be used in evaluating floodplain maps
generated using the Bulletin 17B methods, such as FEMA FIRMs. Watershed characteristics could be
compar

Fl

differing w,

s

und to be important in this study to determine if a watershed area is more likely
to experience a xpected outcome (i.e. the floodplain map is less reliable).

Vi

odel provided an improvement in predictive accuracy over the other evaluated
models including a mean-only model, the model accuracy is limited. Flood frequency is highly
dependent gn random weather events and other meteorological conditions that could not be captured

F

by this stu issstudy was limited to stream gages in the Mid-Atlantic region of the U.S., and the
findings ma apply to other regions. The study included only the 100-year return period, and
results mior other return periods. This study focused on the Bulletin 17B flood frequency
method, and* *w 17C method (England et al., 2019) could be evaluated in a similar manner. The

main meth 1 improvements associated with 17C apply to low outliers, historic and paleoflood
data, regional skew approximation, and confidence interval calculation. Any changes to our study

i

[

results associated with a switch from 17B to 17C would likely be most pronounced for Virginia gages,
for whic e Bulletin 17B generalized skew coefficients map. Furthermore, some of the
covariates in our study such as the percent forested and percent developed land are subject to
change over time, Bt are modeled as stationary values due to data limitations.
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‘ 2 APPENDIX A: LIST OF MODEL COVARIATES

Covariite_ Abbreviation Units Included
in RFB
Drainage /L DRAIN_SQKM square Yes
kilometers
Hydrologi@-\ce Index HYDRO DISTURB IN | unitless Yes
DX
Watershed g @ggnCss ratio BAS COMPACTNESS | unitless Yes
ation for the basin PPTAVG_BASIN centimeters Yes
Average anntal aff temperature for the T AVG BASIN degrees C Yes
watershed
Average monthl Ximum air temperature T MAX BASIN degrees C No
Watershed average number of days of WD_BASIN days Yes
measurabl tion (based on 30 year
average)
Site average number of days of measurable WD_SITE days No
precipitatigf(Q&S8@ on 30 year average)
Watershed\ave @ f monthly maximum WDMAX BASIN days No
number of days of'measureable precipitation
f monthly minimum WDMIN_BASIN days No
number of da easureable precipitation
Site aver onthly maximum number of WDMAX SITE days No
days o precipitation
Site average of monthly minimum number of WDMIN_SITE days No
days of measureable precipitation
Maximum tream order in watershed STRAHLER MAX unitless Yes
Sinuosity of main stream line MAINSTEM_SINUOUS | unitless Yes
ITY
Percent of stream(s) coded as artificial | ARTIFPATH MAINST | Percent Yes
path in NHDPI EM PCT
Percenm area covered by HIRES LENTIC PCT percent Yes
lakes/pondgand reggrvoirs
W\, BFI_AVE percent Yes
Dunne ove PERDUN Percentage of | Yes
i total
streamflow
Horton over PERHOR Percentage of | Yes
total
streamflow
Topographic wetness index TOPWET In(meters) Yes
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Estimated average annual watershed runoff RUNAVE7100 mm/year Yes
Percent of watershed stream lengths which are PCT_1ST_ORDER percent Yes
first order streams
Percent stream lengths which are PCT 2ND ORDER percent Yes
second ord€r streams
m DDENS 2009 number of Yes
dams/100 km
5q
Major dam,density (2009) MAJ DDENS 2009 Number of No
major
dams/100 km
O sq
Fragmenta of undeveloped land in the | FRAGUN_BASIN unitless Yes
watershed =
veloped, 2006 DEVNLCDO06 Percent Yes
Watershed péfcerd®torest, 2006 FORESTNLCDO06 Percent Yes
Watershed riculture, 2006 PLANTNLCDO06 Percent Yes
Watershed percent Fen water, 2006 WATERNLCDO06 Percent Yes
Mainstem ffer developed MAINS100 DEV Percent No
Mainstem gfer forest area MAINS100_FOREST Percent No
Mainstem ¥00 m buffer planted/cultivated MAINS100 PLANT Percent No
(agricultur
Mainstem MORRGETTer open water area MAINS100 11 Percent No
Mainstem m u fer developed area MAINS800 DEV Percent No
Mainstem 800 m"Btiffer forest area MAINS800 FOREST Percent No
Mainst fer agricultural area MAINS800 PLANT Percent No
Mainstem § fer open water area MAINSS800 11 Percent No
Riparian fer developed area RIP100_DEV Percent No
Ripari r forested area RIP100_FOREST Percent No
Riparian 100 m buffer agricultural area RIP100_ PLANT Percent No
Riparian 100 m buffer open water area RIP100_11 Percent No
Riparian 8hr developed area RIPS800_DEV Percent No
Riparian 800 gagbuffer forested area RIP800_FOREST Percent No
Riparian 8 n bulfer agricultural area RIPS00 PLANT Percent No
Riparian 80 er open water area RIPS00 11 Percent No
in the watershed (2000) PDEN _ 2000 BLOCK Persons/sq km | Yes
ROADS KM SQ KM | km/sq km No
m intersections RD_STR _INTERS Number of Yes
intersections/k
m of stream
length
IMPNLCDO06 Percent Yes
HGA Percent Yes
HGAD Percent No
HGD Percent Yes
HGCD Percent No
Mean watershed elevation ELEV_MEAN M BASI | Meters No
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N

Elevation at gage location ELEV SITE M Meters Yes
Elevation-relief ratio RRMEAN unitless Yes

Me SLOPE_PCT percent Yes
Aspect northness (range -1 to 1 with 1 meaning | ASPECT NORTHNESS | Unitless Yes
watershed f@ drains due north and -1 means

due south)
Aspect eastness (range -1 to 1 with | meaning ASPECT _EASTNESS unitless Yes
ces/drains due east and -1 means

watershed
due west)

APPENDIX B: MATRIX OF CORRELATION*

G ag R
a eMe PDE G R DE W
e N ag M v D_
S SLO STRAH T AV 2000 RUN e E PLAN NL FORES B WATE
ke PEP LERM GBA BLO AVE7 S A TNLC CD TNLC AS RNLC
A CT AX SIN CK 100 D N D06 06 D06 IN D06
1. 0.
1 -
GageSke 0.05 - 5 0.0 0.0 0.0
w 0.108  -0.006 -0.165  0.042 0.013 3 68  0.070 29 -0.061 34 -0.021

0.
2 - -
- 6 00 0.0 0.0
0.050  0.166 -0.124  0.075 -0.044 5 92 0.012 91 0.064 35 0202
0.
5 - -
- 2 03 0.1 0.2
0.338 0.325 -0.211  0.164 0.081 4 18  -0.139 92 0317 24 0221
0.
2 - -
- 3 0.2 0.3 0.5
1.000  0.099 -0.428 0275 0417 0 16 -0.513 47 0.768 65  -0.225
0.
0 - -
- 8§ 00 0.0 0.0
0.099  1.000 -0.081  0.050 0.030 5 91  0.020 44 0.105 37 0.119
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0. 0.

T - - 3 - -
TAVG. 6 01 021 - 0 00 0.1 0.6
BASIN W 0428 -0.081  1.000 0133 -0.535 2 77 0204 93 0442 82  -0.001

0. 0.

PDEN 2 0 0 -
000 BL 4 - 501 0.8 02
OCK 275 4 0275 -0.050  0.133  1.000 -0.116 5 37 -0.121 94 -0477 05 -0.077

H I

O-L 0.

0 3 -

RUNAV 1 0.0 8 - 9 00 0.1 0.6
E7100 3 W44 0417  0.030 0535 0116 1.000 9 08 -0296 20 0363 96 -0.024

0. L.

- 0 -

5 52 - 0 00 0.0 0.5
GageSD 3 0230 -0.085 0302 0055 -0399 0 53 0231 73 0239 24 -0.165

0. s 0.

0 4 0
RRMEA 6 31 - 5 1.0 0.1 0.1
N s@o2 8 0216 -0.091  -0.077 0137 0008 3 00 -0.119 29 -0.093 17 -0.011

0. 0.

0 2 - - -
PLANT 70 0 13 - - 301 0.0 04
NLCDO6 0 Gl 0513 0.020 0204 0121 -0296 1 19 1000 78  -0.687 09  0.003

0.
0 -
DEV - 701 1.0 02
NLCDO06 0347 -0.044 0193 0894 -0120 3 29 0078 00 -0575 56 -0.024
0.
2 - -
FOREST - 300 0.5 0.5
NLCDO06 0.768  0.105 0442 0477 0363 9 93 0687 75 1000 56 -0.059
0.
5 -
WD_ - 201 0.2 1.0
BASIN 0.565  0.037 0.682 0205 069 4 17 0409 56 0556 00 -0.034
0.
1 - - -
WATER - - 6 00 0.0 0.0
NLCDO06 0225 0.119 20.001 0077 -0024 5 11 0003 24  -0.059 34  1.000

*Refer Q A for descriptions associated with covariate abbreviations
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Fig. 1: Histogram of stream gage record length
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QMap of PAFR (p) and record length (N) in the stream gages analyzed
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Fig. 3: i PAFR and Q-Q plot (inset). Red represents density of PAFR for the 515 studied

str&ms. Blue represents density of PAFR from the synthetic probability analysis.

Variable Importance

Weighted Skew

Drainage Area

Mean Annual Peak Discharge
Mean Watershed Slope
Max. Strahler Stream Order
Mean Basin Temperature
Population Density

Avg. Annual Runoff

Gage Standard Deviation
Elevation-Relief Ratio
Percent Agriculture

Percent Developed

Percent Forested

Avg. Min. Monthly Days with Precip

Percent Open Water

e}
%)
(=]
w
8

150 200
% Increase in MSE

o
n
o
=
Q
=]

T
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