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21 Abstract

22 1. Studying functional traits and their relationships with tree growth has proved a powerful approach 

23 for understanding forest structure. These relationships are often expected to follow the classical 

24 resource economics perspective, where acquisitive leaves combined with acquisitive roots are 

25 expected to enhance resource uptake and tree growth. However, evidence for coordinated leaf and A
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26 roots trait effects on growth is scarce and it remains poorly understood how these traits together 

27 determine tree growth. Here, we tested how leaf and root trait combinations explain tree growth. 

28 2. We collected data on leaf and root traits of ten common tree species, and on soil carbon (C) and 

29 nitrogen (N) concentrations in a temperate forest in Michigan, US. Tree growth was calculated as 

30 the stem diameter increment between three censuses measured across 13000 trees and modelled 

31 as a function of different combinations of leaf and root traits and soil properties. 

32 3. The two best models explaining tree growth included both specific leaf area (SLA), root diameter, 

33 and soil C or N concentration, but their effects on growth were contingent on each other: thick 

34 roots were associated with high growth rates but only for trees with low SLA, and high SLA was 

35 related to fast growth but only for trees with thin roots. Soil C and N % negatively impacted the 

36 growth of trees with high SLA or high root diameter. 

37 4. Synthesis – In this study, resource economics did not explain the relationships between leaf and 

38 root traits and tree growth rates. First, for trees with low or intermediate SLA, thick roots may be 

39 considered as acquisitive, as they were associated with faster tree growth. Second, trees did not 

40 coordinate their leaf and root traits according to plant resource economics but enhanced their 

41 growth rates by combining thick (acquisitive) roots with conservative (low-SLA) leaves or vice 

42 versa. Our study indicates the need to re-evaluate the combined role of leaves and roots to unveil 

43 the interacting drivers of tree growth and, ultimately, of forest structure and suggests that 

44 different adaptive whole-tree phenotypes coexist. 

45

46 Key words: ForestGEO network; functional traits; leaves; resource economics; roots; soil gradient; 

47 temperate forest; tree growth

48

49 Introduction 

50 Studying the variation in functional traits has helped plant ecologists to explain the mechanisms that drive 

51 plant community structure (Grime, 1977). One of the processes through which traits structure forest 

52 communities is through their relationship with tree growth and survival, and resource availability. For 

53 example, forests where plant resources are readily available are often dominated by tree species with a 

54 high specific leaf area (SLA) and leaf nitrogen (N) concentration that allow efficient light interception 

55 and high photosynthetic rates and, therefore, fast tree growth (Aerts & Chapin, 2000; Reich, Tjoelker, 

56 Walters, Vanderklein, & Buschena, 1998). However, despite these established relationships, functional 

57 traits often explain only a small or moderate proportion of the variation in tree growth, potentially 

58 because studies often focus on either root but mostly on leaf traits when studying tree growth (Paine et al., 

59 2015; Poorter et al., 2008). Since tree growth depends on simultaneous above- (light, CO2) and 
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60 belowground (water, nutrients) resource acquisition, we examined which (combinations of) leaf and root 

61 traits involved in resource uptake best explained variation in growth rates across more than 13000 trees 

62 from ten common deciduous tree species in a temperate forest. 

63 Leaf trait effects on plant growth are mostly studied and interpreted from a resource economics 

64 perspective. The leaf economics spectrum demonstrates that at a global scale, species’ leaf traits are 

65 correlated in trait syndromes that either facilitate fast resource (light) acquisition and, hence, high growth 

66 rates, or allow long-term resource conservation and, consequently, high survival rates (Reich et al., 2003; 

67 Wright et al., 2004). Tree root traits in contrast, do not generally covary along a parallel root economics 

68 spectrum (Weemstra et al., 2016). For example, root trait expressions typically characterized as 

69 acquisitive, such as a high specific root length (SRL, root length / root dry mass), do not necessarily trade 

70 off against conservative root traits, like high root tissue density (root mass / root volume) (Bergmann et 

71 al., 2020; Kramer-Walter et al., 2016; Ma et al., 2018), nor do they always positively correlate with other 

72 presumably acquisitive traits, like root N concentration (Bergmann et al., 2020; Ma et al., 2018; 

73 Weemstra et al., 2016). Also, the classification of root diameter as an acquisitive or conservative trait is 

74 unclear. Traditionally, thick roots are categorized as a conservative trait (Mommer & Weemstra, 2012; 

75 Reich, 2014), because they presumably have low acquisition capacities owing to their relatively small 

76 surface area and slow growth and proliferation rates (Eissenstat, 1991, 1992), and high resource 

77 conservation rates due to their long lifespans (Adams et al., 2013; Gu et al., 2011; Hansson et al., 2013; 

78 McCormack et al., 2012). In contrast, Withington et al., (2006) show that tree root diameter does not 

79 necessarily correlate with root lifespan, and recent studies suggest that a high root diameter can also be 

80 considered as an acquisitive trait (Bergmann et al., 2020; McCormack & Iversen, 2019), because thick 

81 roots provide more colonization space for mycorrhizal fungi, through which trees enhance resource 

82 uptake (Brundrett, 2002; Comas et al., 2012). In addition, the concept of a root economics spectrum 

83 assumes that having acquisitive root traits corresponds to fast tree growth. In line with this, SRL 

84 positively correlated with the growth rate of seedlings of nine temperate tree species (Reich et al., 1998), 

85 and mature trees and seedlings of inherently fast-growing species had higher SRL than trees of closely 

86 related slow-growing species (Comas, Bouma, & Eissenstat, 2002; Comas & Eissenstat, 2004). In 

87 contrast, McCormack et al. (2012) found no correlations between tree growth (i.e., the diameter of a tree 

88 at ten years of age) and several root traits, with the exception of root lifespan. Direct relationships 

89 between root traits and actual growth rates of mature trees have thus not been firmly established. 

90 Although relationships between traits and tree growth are more consistent for leaves than roots, 

91 leaf traits often only explain a small proportion of the variation in tree growth; for instance, globally, SLA 

92 explained 3% of the variation in growth rate (Paine et al., 2015). The low predictive power of traits may 

93 result from examining the effects of only a single leaf trait (e.g., Gibert et al., 2016; Paine et al., 2015) or 
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94 root trait (Comas et al., 2002; Comas & Eissenstat, 2004), because such univariate or single-organ trait 

95 relationships with growth do not account for the relationships among traits that may strongly influence 

96 plant growth or survival (Laughlin & Messier, 2015) and may be too simplistic to represent the functional 

97 integration of multiple traits at the whole-tree level (Marks & Lechowicz, 2006; Umaña et al., in press; 

98 Weemstra et al., 2020). Alternately, relationships between leaf and/or root traits individually may be 

99 contingent on specific environmental conditions and may not be useful for predicting growth in varying 

100 environmental conditions. For example, when water availability limits growth, trees can enhance their 

101 root biomass (Weemstra et al., 2017), and/or their SRL to enhance water uptake (Freschet & Roumet, 

102 2017), and/or decrease their SLA to reduce water loss through evapotranspiration (Greenwood et al., 

103 2017; Poorter et al., 2009). In this case, the tree water balance can be modulated by the synergistic effects 

104 of root and leaf traits, so that different trait combinations may be adaptive in the same environment. These 

105 simultaneous trait adjustments should ultimately be reflected in the performance of trees, such that 

106 combinations of leaf and root traits better explain tree growth than the traits of single organs. 

107 The combined effects of leaf and root traits on tree growth should be particularly relevant across 

108 soil nutrient gradients. In the first place, nutrient availability directly drives variation in leaf and root 

109 traits; for example, both SLA and SRL have been found to increase with soil fertility (Ordoñez et al., 

110 2009; Ostonen, Lohmus, Helmisaari, Truu, & Meel, 2007). Secondly, the effect of trait variation on tree 

111 growth depends on the resource environment: species with conservative traits perform better (i.e., have 

112 higher survival rates) in low-resource environments where they are not outcompeted by acquisitive, fast-

113 growing species, while having acquisitive traits is beneficial to growth only when resources are readily 

114 available (Aerts & Chapin, 2000). Quantifying trait variation and how this influences tree growth, 

115 therefore, requires consideration of soil nutrient availability. 

116 The objective of this study is to improve our understanding of tree growth from underlying 

117 variation in leaf and root functional traits which ultimately enhances our knowledge of the functional 

118 processes that structure forest communities. To this end, we determine which, how and to what degree 

119 (combinations of) leaf and root traits influence growth rates across ten temperate tree species along a soil 

120 carbon (C) and N gradient. We expect that single leaf and/or root traits typically defined as ‘acquisitive’ 

121 (e.g., high SRL, SLA, leaf, and root N%) do not consistently lead to faster growth, because resource 

122 acquisition and tree growth can be enhanced through different synergistic trait combinations. We tested 

123 our expectation using growth data collected for more than 13000 trees of ten common deciduous, 

124 broadleaved species (Table 1) in a temperate forest in central Michigan, US, in three censuses between 

125 2003 and 2014. Growth data were combined with species’ leaf and root trait data and with data on soil N 

126 and C % collected on our study site to test which (combination) of these variables best explained the 

127 variation in growth rates across these trees. 
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128

129 Methods 

130 Study site and species

131 This study was carried out at the Big Woods Forest Dynamics Plot (hereafter, Big Woods) at the Edwin 

132 S. George Reserve (Pickney, Michigan, US: 42°27’46.5” N, 84°00’21.9” W) which is part of the 

133 ForestGEO network. The studied forest is subjected to a warm-summer humid continental climate with 

134 monthly average temperatures ranging from -5.3 º C (January) to 21.4 º C (July), and a mean annual 

135 precipitation of 857 mm, measured between 1981 and 2010 (Arguez et al., 2010). The plot is hilly due to 

136 glacial scouring with moraine and basin topography and an esker running through the plot; its elevation 

137 ranges between 270 – 305 m above sea level (Allen et al., 2018). Soils at Big Woods are generally sandy 

138 loam, shallow and mineral (Allen et al., 2020). The dominant vegetation is black oak – white oak – 

139 hickory, where the canopy is dominated by oak (Quercus spp.) and hickory (Carya spp.), and the sub- and 

140 mid-canopy strata are dominated by red maple (Acer rubrum L.), black cherry (Prunus serotina Ehrh.) 

141 and witch-hazel (Hamamelis virginiana L.) (Allen et al., 2018, 2020).

142 During the 2014 census, 45 woody species were counted at the Big Woods plot. Here, we focused 

143 on ten deciduous tree species (Table 1) common in the eastern USA and at Big Woods and that covered 

144 44 % of the total number of stems, and 71 % of the basal area of all woody vegetation censused in 2014 at 

145 the Big Woods plot. Their basal area and abundance in this forest at the time of each census are presented 

146 in Supplementary Table S1. 

147

148 Growth data

149 Each individual tree was tagged and identified to the species level in three censuses: 2003, 2007 – 2010, 

150 and 2014. The vast majority of trees measured between 2007 and 2010 were measured in 2008 so this 

151 census will here be referred to as the 2008 census (Allen et al., 2020). All dead and living tree and shrub 

152 stems ≥ 3.2 cm diameter at breast height (DBH) were recorded at each census and the DBH was measured 

153 for living trees. The 2003 and 2008 censuses were carried out in a 12-ha part of the current plot. Between 

154 2008 and 2010, 11 ha of adjacent forest were added to Big Woods, and the resultant 23-ha plot was 

155 censused in 2014 (Allen et al., 2020). Trees within 20 m distance from the forest edge or main roads were 

156 excluded from the analyses to avoid edge effects on tree growth. The DBH of multiple stems of the same 

157 individual was summed so that each tree is represented once per census in our dataset. Ultimately, this 

158 resulted in a dataset consisting of 19736 observations for 13368 different individuals (the same trees were 

159 measured at different censuses) of our ten study species across the three censuses. Relative growth rate 

160 (RGR) was then determined for each census interval and for each living tree as the DBH increment 

161 divided by the number of days between two consecutive censuses.
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162

163 Soil data 

164 Soil data were collected in June 2019. In each of 23 subplots of 1 ha that covered Big Woods 

165 (Supplementary Fig. S1), four soil samples were collected from the top 10 cm of the soil at their northern, 

166 eastern, southern, and western edges. Adjacent soil samples from two subplots (for example, the eastern 

167 sample of one plot and the western sample of the adjacent plot on its right) were pooled as they could not 

168 be considered spatially independent. The resultant 92 soil samples were air-dried and sieved, and soil C 

169 and total N concentrations were determined using dry combustion (Stable Isotope Core Laboratory, 

170 Washington State University). We assigned the soil C and N concentration and soil C:N ratio values of 

171 the nearest soil sample to each tree in the census dataset based on the tree’s coordinates in the plot. 

172

173 Leaf and root trait data 

174 In June 2019, three fully expanded and sun-exposed leaves were collected for between seven and 11 

175 mature individual trees per species (Table 1); the number of individuals sampled per species depended on 

176 the abundance of trees per species. Since healthy, mature Fraxinus americana trees were scarce at Big 

177 Woods, we collected leaves for only four trees of this species. Leaves were scanned with a portable leaf 

178 area meter (LI-3100C; LICOR, Lincoln, Nebraska, USA) and leaf area determined. Scanned leaves were 

179 weighed to determine their fresh weight and leaf dry weight was measured after oven-drying (48 h at 64º 

180 C). From these leaf measurements, we calculated SLA (fresh leaf area / leaf dry weight) and leaf dry 

181 matter content (leaf dry weight / leaf fresh weight). Leaves were then ground, and their C and N 

182 concentrations were determined using elemental combustion (Stable Isotope Core Laboratory, 

183 Washington State University) and expressed as a percentage of the total mass.

184 Roots were collected from three to four individual trees per species. Roots were dug up from the 

185 top 15 – 20 cm of the soil and traced back to the base of the stem for species identification. Roots were 

186 cleaned and, immediately after collection, first- to third-order roots were scanned (EPSON STD 4800, 

187 US). Root scans were analysed with WinRhizo (version: Regular 2019; Regent Instruments, Canada), 

188 providing data on total root length, mean root diameter and total root volume assuming a cylindrical 

189 shape. Scanned roots were oven-dried (48 h at 64º C),to obtain dry weight, and ground to determine their 

190 C and N concentrations using dry combustion (Stable Isotope Core Laboratory, Washington State 

191 University). We calculated SRL (total root length / root dry mass) and root tissue density (root dry mass / 

192 root volume); root mean diameter values were directly retrieved from WinRhizo. 

193 Plant growth rates may depend on the mycorrhizal association of species, and species associating 

194 with arbuscular mycorrhizal fungi may have higher growth rates than species associating with 

195 ectomycorrhizal fungi (Cornelissen et al., 2001). To account for these potential effects, we obtained 
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196 information on species’ mycorrhizal associations (Table 1) from Brundrett, Murase, & Kendrick (1990), 

197 and the Fine-Root Ecology Database (Iversen et al., 2018).

198

199 Statistical analyses

200 To test which traits and trait combinations influenced tree growth rates, we selected the following leaf and 

201 root traits based on their role in leaf and root resource strategies (Wright et al., 2004, Bergmann et al., 

202 2020): SLA, leaf dry matter content, leaf N %, SRL, root diameter, root tissue density, root N %. We also 

203 tested interspecific correlations among traits, and whether traits differed between arbuscular and 

204 ectomycorrhizal tree species (Pearson’s r). 

205 We determined the drivers of tree growth using mixed-effects models with RGR as response 

206 variable. We included combinations of species’ root and leaf traits (with a maximum of two traits to avoid 

207 overly complicated trait interactions that are difficult to interpret), soil C %, N % and C:N ratio, and their 

208 interactions as fixed explanatory variables. Tree DBH and census year at the time of measurement were 

209 included as fixed covariates to account for tree size-dependent variation and temporal variation, 

210 respectively, in RGR. Species’ identity nested in species’ mycorrhizal association (arbuscular or 

211 ectomycorrhizal) were included as intercept-specific random effects to account for inherent differences 

212 between species and mycorrhizal associations in RGR, and the 1-ha subplot was included as a random 

213 intercept to account for spatial autocorrelation. All variables were scaled by subtracting the overall mean 

214 from the individual observations and dividing this value by the overall standard deviation for each 

215 variable. Mixed-effect models were fitted using the ‘lmer’ function in the ‘lme4’ package (Bates et al., 

216 2015) in R Statistical Software (R Core Team, 2021). 

217 Growth models were run across 13368 unique individuals that were measured at two or three 

218 censuses. Full models were defined as: 

219

220 ���� =  �0 + �1 ����� ��������1 ×  �2����� ��������2 ×  �3����+ �4���+ �5������+  ���/� + ��
221 equation (1)

222

223 where ytsp is the predicted growth rates (i.e., log(RGR+1)) of each individual tree t of species s in subplot 

224 p; trait variable represents a given leaf or root trait; soil refers to a soil variable (i.e., soil C %, soil N %, 

225 or soil C:N); DBH refers to log-transformed DBH of t and Census to the census year in which t was 

226 measured, τmf/s represents the species nested in mycorrhizal type, and τp the subplot of t as random 

227 intercepts; β0 indicates the intercept; β1 – β5 indicate the slope associated with a respective explanatory 

228 variable. In addition to the full models, we ran reduced models that included subsets of these fixed effects, 

229 as well as a null model that included only the fixed covariates and random intercepts. 
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230 We selected the best growth model based on the Akaike Information Criteria (AIC; Akaike, 

231 1974) using maximum likelihood, and models whose AIC differed < 2 were considered equally good. We 

232 determined the goodness-of-fit of the models by computing marginal R2 (R2
m) and conditional R2 (R2

c) 

233 using the ‘r.squaredGLMM’ function in the ‘MuMIn’ package (Barton, 2019) in R Statistical Software (R 

234 Core Team, 2021). Marginal R2  indicates the variance explained by all fixed factors in the model relative 

235 to the total variance explained by the model as a whole (i.e., the sum of the variance of the fixed factors, 

236 random factors and error term) (Nakagawa & Schielzeth, 2013). Conditional R2 is calculated as the sum 

237 of the variance of the fixed and both random factors divided by the total variance of the model (Nakagawa 

238 & Schielzeth, 2013). Mixed-model probability (P) values were obtained with the ‘lmerTest’ package 

239 (Kuznetsova et al., 2017). Confidence intervals around the predicted growth rates were estimated with 

240 parametric bootstrapping (1000 iterations) using the ‘bootpredictlme4’ package (Duursma, 2021). 

241

242 Results

243 Soil properties

244 Throughout the Big Woods plot, soil C % and N % varied five times (soil C range: 1 – 5%, mean: 1.9%; 

245 soil N range: 0.06 – 0.29%, mean: 0.12%), and soil C:N ratio varied two times (range: 12 – 25, mean: 16) 

246 (Supplementary Fig. S1a-c). Soil C and N % were positively correlated across soil samples collected 

247 throughout the forest plot (Supplementary Fig. S1d).

248

249 Trait – growth relationships

250 Leaf and root trait expressions varied across species (Table 1, Supplementary Fig. S2). Among the ten 

251 study species, significant correlations were observed between root N % and SRL (positive), and between 

252 leaf dry matter content and leaf N % (negative) (Supplementary Table S2). Traits did not differ 

253 significantly between arbuscular and ectomycorrhizal tree species, except for root diameter which was 

254 higher for the former than for the latter group (Supplementary Table S3). 

255 Relative growth rate among trees ranged from 0 to 1.98 mm mm-1 y-1 and was on average 0.23 

256 mm mm-1 y-1. Based on the AIC of all models, there were two best models explaining tree growth 

257 (Supplementary Table S4). The fixed variables in Model 1 (Table 2) included root diameter, SLA, soil C 

258 %, tree DBH and census year and explained 22 % of the variation in tree growth (R2
m); the fixed factors 

259 and random intercepts together explained 30 % of the growth variation (R2
c). Model 2 (Table 2) included 

260 root diameter, SLA, soil N %, tree DBH and census year which explained 21 % of the variation in tree 

261 growth (R2
m), and fixed and random factors together explained 29 % of the variation in growth (R2

c).

262 Model 1 showed a significant positive effect of SLA but not of root diameter on growth (Table 2). 

263 However, the significant, negative two-way interaction between root diameter and SLA indicates that this 
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264 effect of SLA depended on and differed from the effects of root diameter (Fig. 1a): for trees with thin 

265 roots, trees with high SLA had faster growth rates than trees with low SLA (compare e.g., the RGR of 

266 high-SLA trees to the RGR of low SLA-trees at the same low root diameter), but for trees with thick 

267 roots, growth was similar regardless of variation in SLA (the RGR of high-SLA trees and of low SLA-

268 trees is similar at high root diameter). Furthermore, this interaction implies that root diameter has an 

269 increasingly positive effect on growth as SLA decreases (Fig. 1a: compare the slopes of the regression 

270 lines associated with variation in SLA). Soil C % had an overall negative impact on tree growth which 

271 also influenced trait effects on growth, as reflected by the significant, negative interactions between soil C 

272 % and root diameter, and between soil C % and SLA (Table 2). These interactions indicated that an 

273 increase in soil C % had a negative effect on the growth of trees with thick roots (Fig. 1b) or with a high 

274 SLA (Fig. 1c) but no or a marginal effect on the growth of trees with thin roots (Fig. 1b) or with low SLA 

275 (Fig. 1c). 

276 Outcomes of Model 2 were partly similar to those of Model 1 (Table 2), due to the high 

277 correlations between soil N % and soil C % (Supplementary Fig. S1d).  Model 2 showed a significant 

278 positive effect of SLA on tree growth, with a similar effect size (i.e., estimates) as Model 1 (Table 2). It 

279 also showed significant two-way interactions, with a negative interaction between root diameter and SLA 

280 (Supplementary Fig. S3a), a positive interaction between root diameter and soil N % (Supplementary Fig. 

281 S3b), and a negative interaction between SLA and soil N % (Supplementary Fig. S3c). 

282 In both Model 1 and Model 2, RGR did not vary with tree size (DBH), but it was significantly 

283 higher in the first census interval (2003 – 2008) compared to the second census interval (2008 – 2014) 

284 (Table 2).

285

286 Discussion 

287 Since tree growth depends on the simultaneous use and uptake of above- and belowground resources, 

288 combining above- and belowground traits to predict growth is needed to advance our knowledge of the 

289 underlying processes that drive forest community structure and composition. We studied variation in tree 

290 growth by testing the interacting effects of multiple leaf and root traits and soil properties on growth. Root 

291 diameter, SLA and soil C % or N % were found to be the best predictors of variation in tree growth. In 

292 contrast to the classical plant resource economics framework, our study identified high root diameter as 

293 an acquisitive trait for trees with conservative (low- or intermediate-SLA) leaves as it had a positive effect 

294 on the growth of these trees. In turn, high SLA was associated with fast tree growth, which is in line with 

295 plant resource economics, but mostly for trees with thin roots. These results imply that trait expressions 

296 (such as high root diameter and high SLA) can be acquisitive for some trees, but not for others, as their 

297 effects on tree growth depend on the expression of other traits. Furthermore, the growth of trees with 
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298 acquisitive leaves or roots was more sensitive to changes in soil C and N concentrations across the Big 

299 Woods plot than of trees with conservative traits. Our study provides new insights on how tree growth is 

300 the outcome of above- and belowground trait combinations and interactions as well as soil properties, that 

301 are not necessarily coordinated along the resource acquisitive – conservative trait spectrum. 

302

303 Interactions between leaf and root traits relate to tree growth rates

304 Together, the fixed factors of our best models – i.e., root diameter, SLA, and soil C % (Model 1) or soil N 

305 % (Model 2) – and the covariates (DBH and census year) explained just over 20 % of the variation in 

306 growth rates across more than 13000 trees. This is comparable to, or lower than observed in other models 

307 in forests. Martínez-Vilalta and collaborators (2010) found that single traits explained 17 % (leaf N %) to 

308 46 % (maximum plant height) of the variation in growth across up to 70000 trees of 44 species across 

309 Spain. However, in the same study, incorporating trait combinations and climatic data further increased 

310 the percentage of growth variation explained to 67 %. Similarly, across 40 – 120 tropical tree species, 

311 models that included combinations of traits (i.e., wood density, seed mass and adult size) explained three 

312 times more of the variation in tree growth than models including single traits only (20 – 60 % depending 

313 on the traits versus on average 8% of single-trait models (Visser et al., 2016). In our study, traits (SLA 

314 and root diameter) and soil properties (C % or N %) explained a moderate part of the variation in growth 

315 compared to the aforementioned studies. It is likely that other traits – for example, wood density, which is 

316 an important predictor of tree growth variation (Poorter et al., 2008) – and other environmental variables 

317 – for instance, light and water availability – would further enhance the predictive power of our model. 

318 Still, our work and that of others stress the importance of using a multi-trait approach and incorporating 

319 environmental variables to better explain tree growth.

320 For leaves, the positive effect of SLA on growth (especially for thin-rooted trees; Fig. 1a) is 

321 concordant with the concept of resource economics – with high-SLA leaves being more efficient at light 

322 interception which enhances tree growth (Cornelissen et al., 1996; Poorter et al., 2009). For roots, 

323 however, the positive effect of root diameter on growth observed on trees with low SLA contrasts 

324 expectations of the classical resource economics framework, which assumes that thick roots are 

325 ‘conservative’ (Mommer & Weemstra, 2012; Reich, 2014) owing to their relatively small surface area, 

326 slow growth rates (Eissenstat, 1991, 1992), and long lifespans (Adams et al., 2013; Gu et al., 2011; 

327 Hansson et al., 2013; McCormack et al., 2012). Other studies, however, indicate that thick roots may also 

328 be acquisitive, since they provide a larger colonization space for (arbuscular) mycorrhizal fungi 

329 (Brundrett, 2002; Comas et al., 2012), and are associated with higher mycorrhizal hyphal length for both 

330 ectomycorrhizal (Chen et al., 2018) and arbuscular mycorrhizal tree species (Eissenstat et al., 2015), 

331 through which trees can enhance soil resource uptake, and hence, their growth rates. Mycorrhizal 
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332 associations may thus partly explain why at Big Woods, thick roots were associated with faster tree 

333 growth, but it remains unclear why they presumably contribute to the growth of trees with low- or 

334 intermediate SLA, but not with high SLA. Our study indicates that linking root traits to actual measures 

335 of tree growth can further reveal their actual functionality in terms of plant performance, but also suggests 

336 that not only root and leaf traits should be combined, but the traits of their fungal partners as well. 

337 At the same time, we stress that the positive effects of root diameter on tree growth were 

338 contingent on SLA. Specifically, tree growth rates were enhanced through combinations of conservative 

339 (low-SLA) leaves and potentially acquisitive (thick) roots, or of acquisitive (high-SLA) leaves and less 

340 acquisitive (thin) roots, rather than through coordinated leaf and root traits. This is further underwritten by 

341 the lack of leaf and root trait correlations across species. If similar leaf and root traits were associated 

342 with above- and belowground resource uptake and would be coordinated at the whole-plant level, then 

343 leaf and root N %, SLA and SRL, or leaf dry matter content and root tissue density would correlate 

344 among species; however, we found no significant relationships between any leaf and root traits 

345 (Supplementary Table S2). The uncoupling of leaf and root traits that contributed to tree growth rates in 

346 this study, points towards the existence of multiple adaptive (i.e., improving growth) phenotypic designs 

347 (cf. Marks & Lechowicz, 2006). Our study however covers a relatively small number of temperate 

348 broadleaved tree species growing in the same forest plot, so it remains to be tested whether the same 

349 above- and belowground trait combinations also enhance the growth of trees in other systems or for other 

350 species. Still, our results suggest that different whole-plant phenotypes coexist at a small spatial scale, and 

351 that at least locally, leaf and root traits have no coordinated effects on tree growth as assumed by 

352 traditional resource economics.  

353

354 Trait effects on growth are contingent on soil properties

355 Overall, soil C % had a negative effect on tree growth. This is in line with the assumption that soils with 

356 higher C % have greater accumulation of organic matter, reflecting slower litter decomposition and lower 

357 nutrient availability, which could in turn, contribute to slower growth rates. Across the Big Woods plot, 

358 soil C % was positively correlated to soil N % which contrasts the assumption of lower nutrient 

359 availability; however, since we measured total and not available N, it is possible that the higher N levels 

360 that we observed on soils with higher C % were stored inside soil organic matter that is not readily 

361 available to plants. 

362 We found that increases in soil C and N % reduced the growth of species with high SLA or with 

363 thick roots but had only minor effects on the growth of trees with low SLA or low root diameter (Fig. 1b, 

364 c). According to plant resource economics, a high SLA is beneficial to growth only when resources are 

365 readily available (Aerts & Chapin, 2000), because fast C gain requires rapid resource supply. As resource 
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366 availability decreases, acquisitive leaves may become a disadvantage because their short lifespans incur 

367 high plant resource losses while resource-uptake rates remain low. Concordant with our results, trees with 

368 high SLA may thus be more sensitive to increases in soil C %, and corresponding decreases in nutrient 

369 availability, than trees with low SLA (Grime, 1977; Reich et al., 2003). Like aboveground patterns, trees 

370 with thick, long-lived roots are expected to be less susceptible to adverse environmental variation than 

371 trees with thin, short-lived roots, but here, we observed the reverse. The mechanisms behind the 

372 relationships between traits, soil fertility and tree growth are less evident for roots than leaves, potentially 

373 because the trade-off between resource acquisition and conservation is less straightforward for root 

374 diameter than for SLA. Thick, mycorrhized and long-lived roots may be simultaneously more acquisitive 

375 and more conservative than thin roots as also hypothesized by Kong et al. (2017), so that their impacts on 

376 tree growth along environmental gradients become less predictable. Additional information on 

377 mycorrhizal colonization rates or hyphal traits (as proxies for the resource uptake capacity of thick versus 

378 thin roots) and root lifespan (as a proxy of resource conservation), is needed for a more mechanistic test 

379 of how trade-offs between these (mycorrhizal) root properties determine the growth of trees.  

380

381 Consequences of considering root and leaf trait interactions for understanding tree growth 

382 Our study first highlights that root traits, like root diameter, may not fit the resource economics spectrum 

383 as leaf traits do. First, thick, low-SLA leaves are generally considered to be conservative (Reich et al., 

384 1997), whereas thick roots were here associated with fast growth and may thus be acquisitive, at least for 

385 trees with low to intermediate SLA, and potentially in interaction with mycorrhizal fungi. Second, the 

386 trade-off between resource acquisition and conservation of root traits did not explain tree growth 

387 responses to soil nutrient availability. Recent studies have called for a new, multidimensional trait space 

388 that accommodates these different belowground strategies (Bergmann et al., 2020; Kramer-Walter et al., 

389 2016; Weemstra et al., 2016); this study shows the consequences of such a new framework in the context 

390 of tree growth, and as such, provides new insights in the functionality of (mycorrhizal) root traits. 

391 Second, this work demonstrates that tree growth is not necessarily enhanced by root and leaf trait 

392 coordination along the resource acquisition – conservation continuum. These above-belowground trait 

393 modulations of growth imply that growth rates cannot necessarily be deduced from a single trait: 

394 additional traits may alter the relationships among traits, between a single trait and growth rates, and 

395 between traits, tree growth and soil fertility (Arnold, 1983; Laughlin & Messier, 2015; Marks & 

396 Lechowicz, 2006). This argument contradicts the resource economics theory which postulates that leaf 

397 and root traits tightly covary in trait syndromes (Reich, 2014; Wright et al., 2004) that in turn, correlate 

398 with plant demographic rates (Janse-Ten Klooster et al., 2007; Poorter et al., 2008). Instead, different leaf 

399 and root trait combinations – that do not necessarily covary unidirectionally in trait syndromes – 
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400 reflecting different adaptive phenotypes can lead to enhanced individual plant growth and ultimately 

401 fitness (this study; Marks & Lechowicz, 2006), may predict species’ distributions along environmental 

402 gradients (Chapin et al., 1987; Laughlin & Messier, 2015), and can explain species’ responses to 

403 environmental change (Kleyer & Minden, 2015). Understanding how these interacting above- and 

404 belowground traits affect tree growth contributes to grasping the mechanisms shaping forest structure. 

405
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436 Tables and Figures

437

438 Table 1. Study species, mycorrhizal association, and mean root and leaf traits (standard deviation between parentheses). MF, mycorrhizal fungal association: 

439 AM, arbuscular mycorrhizal; EcM, ectomycorrhizal; N Growth, number of observations included in growth models (total = 19736 observations across ten species 

440 and three censuses), number of individuals between parentheses (total = 13368 different trees measured repeatedly at different censuses); N Leaf, N Root, number 

441 of trees sampled per species for leaf trait and root trait measurements, respectively. SLA, specific leaf area (g cm-2); LN, leaf nitrogen concentration (%); LDMC, 

442 leaf dry matter content (g g-1); SRL, specific root length (m g-1); RN, root nitrogen concentration (%); RD, root diameter (mm); RTD, root tissue density (g cm-3).

443

Latin name
Common 

name
Family MF 

N 

Growth

N 

Leaf

N 

Root
SLA LN LDMC SRL RN RD RTD

Acer rubrum L. Red maple Sapindaceae AM1
7231

(4318)
9 3

81.17 

(10.47)

1.97 

(0.22)

0.41 

(0.04)

12.86 

(5.56)

0.79 

(0.1)

0.45 

(0.08)

0.54 

(0.1)

Fraxinus americana 

L.
White ash Oleaceae AM1

17

(11)
4 4

129.04 

(16.22)

2.78 

(0.29)

0.31 

(0.04)

22.19 

(8.44)

1.13 

(0.25)

0.43 

(0.05)

0.34 

(0.06)

Ostrya virginiana 

(Mill.) Koch

American 

hophornbeam
Betulaceae EcM1

421

(231)
10 4

110.9 

(17.75)

2.02 

(0.13)

0.47 

(0.03)

14.57 

(5.07)

1.04 

(0.08)

0.3 

(0.05)

1.08 

(0.25)

Prunus serotina 

Ehrh.
Black cherry Rosaeceae AM1

8025

(6014)
10 3

85.09 

(8.74)

2.06 

(0.44)

0.4 

(0.03)

12.03 

(5.83)

1.04 

(0.04)

0.39 

(0.07)

0.79 

(0.11)

Quercus alba L. White oak Fagaceae EcM1
1301

(866)
9 3

85.98 

(7.54)

2.72 

(0.29)

0.35 

(0.02)

16.61 

(3.48)

0.99 

(0.08)

0.31 

(0.04)

0.82 

(0.1)

Quercus rubra L. Red oak Fagaceae EcM1
161

(90)
11 3

83.35 

(9.7)

2.28 

(0.19)

0.37 

(0.02)

8.99 

(1.37)

0.8 

(0.11)

0.37 

(0.02)

1.04 

(0.04)

Quercus velutina 

Lam.
Black oak Fagaceae EcM1

1097

(785)
9 4

57.68 

(5.93)

2.45 

(0.2)

0.37 

(0.03)

24.45 

(8.9)

0.99 

(0.08)

0.35 

(0.04)

0.49 

(0.25)

Sassafras albidum 

(Nutt.) Nees
Sassafras Lauraceae AM2

828

(529)
7 3

109.44 

(16.12)

3.24 

(0.28)

0.26 

(0.01)

16.85 

(3.67)

1.04 

(0.36)

0.38 

(0.03)

0.56 

(0.2)
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Tilia americana L.
American 

basswood
Malvaceae EcM1

73

(40)
10 3

115.68 

(16.98)

2.92 

(0.2)

0.34 

(0.03)

14.14 

(4.67)

0.93 

(0.14)

0.34 

(0.05)

0.83 

(0.07)

Ulmus americana L.
American 

elm
Ulmaceae AM1

582

(484)
10 3

83.23 

(13.46)

2.18 

(0.33)

0.34 

(0.05)

8.81 

(0.86)

0.85 

(0.06)

0.46 

(0.03)

0.68 

(0.07)

444 1 Brundrett, Murase, & Kendrick (1990); 2 Fine-Root Ecological Database (Iversen et al. 2018)
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445 Table 2. Model statistics for the two best growth models (i.e., with the lowest AIC; Supplementary Table S4). RGR, 

446 relative growth rate; SLA, specific leaf area; Soil C, Soil N, soil carbon, soil nitrogen concentration, respectively; 

447 DBH, tree diameter at breast height; Estimate, fixed-variable estimate; P, probability value. Significant variables and 

448 corresponding estimates and P values are in bold (α = 0.05). Negative interaction estimates indicates that the effects 

449 of the different variables on growth differ in direction. The full model is described in the Methods section.  

450

Model 1: RGR ~ Root diameter * SLA * Soil C + DBH + Census year 

Fixed variable Estimate P

Intercept 0.20 0.375

Root diameter 0.05 0.267

SLA 0.02 0.007

Soil C -0.01 0.048

DBH 0.00 0.314

Year -0.03 0.000

Root diameter * SLA -0.01 0.014

Root diameter * Soil C -0.00 0.004

SLA * Soil C -0.00 0.004

Root diameter * SLA * Soil C 0.00 0.510

Model 2: RGR ~ Root diameter * SLA * Soil  N + DBH + Census year

Fixed variable Estimate P

Intercept 0.20 0.378

Root diameter 0.05 0.287

SLA 0.02 0.007

Soil N -0.01 0.169

DBH 0.00 0.323

Year -0.03 0.000

Root diameter * SLA -0.01 0.013

Root diameter * Soil N -0.00 0.002

SLA * Soil N -0.01 0.001

Root diameter * SLA * Soil N -0.00 0.236

451

452

453
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636

637 Figure legend

638 Figure 1. Observed (grey data points) and predicted (regression lines) tree growth by Model 1 (Table 2) 

639 for different values of (a) root diameter (RD) and specific leaf area (SLA), (b) root diameter and soil C %, 

640 and (c) SLA and soil C %. Coloured regression lines mark model predictions under (a, c) low, 

641 intermediate, and high SLA (60, 85, 130 cm2.g-1, respectively), and (b) low, intermediate, and high root 

642 diameter (0.30, 0.38, 0.46 mm, respectively). P values represent the significance of the interaction 

643 between model variables obtained from Table 2. Regression line for low-SLA trees in (a) is truncated, 

644 because the combination of low SLA and root diameter values < 0.31 mm was not observed in our data 

645 set. 
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