Supporting Document for Adjusted Logistic Propensity Weighting Methods for Population Inference using Nonprobability Volunteer-Based Epidemiologic Cohorts

By Lingxiao Wang, Richard Valliant, and Yan Li

A. Regularity Conditions

$\mathbf{C 1}$ The finite population size N, the cohort sample sizes n_{c}, and survey sample size n_{s} satisfy
$\lim _{\substack{N \rightarrow \infty \\ n_{c} \rightarrow \infty}} n_{c} / N=f_{c} \in(0,1)$, and $\lim _{\substack{N \rightarrow \infty, n_{p} \rightarrow \infty}} n_{p} / N=f_{p} \in(0,1)$.
$\mathbf{C 2}$ There exist constants c_{1} and c_{2} such that $0<c_{1} \leq N \pi_{i}^{(c)} / n_{c} \leq c_{2}$, and $0<c_{1} \leq$ $N \pi_{i}^{(p)} / n_{p} \leq c_{2}$ for all units $i \in F$.
$\mathbf{C 3}$ The finite population (FP) and the sample selection for s_{s} satisfy $N^{-1} \sum_{i \in s_{p}} d_{i} \boldsymbol{r}_{i}-$ $N^{-1} \sum_{i \in F P} \boldsymbol{r}_{i}=O_{p}\left(n_{p}^{-1 / 2}\right)$, where \boldsymbol{r}_{i} includes \boldsymbol{x}_{i} and y_{i} where the order in probability is with respect to the probability sampling mechanism used to select s_{p} and $d_{i}=1 / \pi_{i}^{(p)}$.
$\mathbf{C 4}$ The $F P$ and the propensity scores p_{i} 's satisfy $N^{-1} \sum_{i \in F P} y_{i}^{2}=O(1), N^{-1} \sum_{i \in F P}\left\|x_{i}\right\|^{3}=$ $O(1), N^{-1} \sum_{i \in F P} p_{i} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T}=O(1)$ being a positive definite matrix.
$\mathbf{C 5}$ The cohort participation and the survey sample selection satisfy $\operatorname{Cov}\left(\delta_{i}^{(c)}, \delta_{j}^{(p)}\right)=0$ for $i, j \in F P$.

Conditions C1-C3 are regularly used in practice. Under C1, sample fractions of the nonprobability and probability sample are bounded. Condition $\mathbf{C} \mathbf{2}$ indicates the (implicit) sample weights of nonprobability and probability sample units are bounded, i.e., $\pi_{i}^{(c)}=O\left(n_{c} / N\right)$ and $\pi_{i}^{(p)}=O\left(n_{p} / N\right)$, and the inclusion probabilities for the nonprobability and probability samples do not differ in terms of order of magnitude from simple random sampling. Condition C3 guarantees consistency of the Horvitz-Thompson estimators obtained from the probability sample. Condition C4 is the typical finite moment conditions to validate Taylor series expansions. Condition $\mathbf{C 5}$ requires that selection of the nonprobability and the probability samples be independent, which simplifies the asymptotic variance calculation.

B. Proof of Theorem

We consider the following limiting process (Krewski \& Rao, 1981; Chen, Li \&Wu, 2019).
Suppose there is a sequence of finite populations $F P_{k}$ of size N_{k}, for $k=1,2, \cdots$. Cohort $s_{c, k}$ of size $n_{c, k}$ and survey sample $s_{p, k}$ of size $n_{p, k}$ are sampled from each $F P_{k}$. The sequences of the finite population, the cohort and the survey sample have their sizes satisfy $\lim _{k \rightarrow \infty} n_{t, k} / N_{k} \rightarrow f_{t}$ where $t=c$ or p and $0<f_{t} \leq 1$ (regularity condition C1 in Appendix A). In the following the index k is suppressed for simplicity.

Let $\boldsymbol{\eta}^{T}=\left(\mu, \boldsymbol{\beta}^{T}\right)$. The ALP estimate of the finite population mean, $\hat{\mu}^{A L P}$, given in expression (2.3.6) in the main text, along with the estimates of propensity score model parameters, $\widehat{\boldsymbol{\beta}}$ (solution of $\tilde{S}^{*}(\boldsymbol{\beta})=0$ in expression (2.3.7) in the main text), can be combined as $\widehat{\boldsymbol{\eta}}^{T}=$ $\left(\hat{\mu}^{A L P}, \widehat{\boldsymbol{\beta}}^{T}\right)$, which is the solution to the joint pseudo estimating equations

$$
\Phi(\boldsymbol{\eta})=\left(\begin{array}{rl}
U(\mu) & =\frac{1}{N} \sum_{i \in F P} \delta_{i}^{(c)} \widetilde{w}_{i}\left(y_{i}-\mu\right) \tag{B.1}\\
\tilde{S}^{*}(\boldsymbol{\beta}) & =\frac{1}{N+n_{c}} \sum_{i \in F P} \delta_{i}^{(c)}\left(1-p_{i}\right) \boldsymbol{x}_{i}-\frac{1}{N+n_{c}} \sum_{i \in F P} \delta_{i}^{(p)} d_{i} p_{i} \boldsymbol{x}_{i}
\end{array}\right)
$$

where $\widetilde{w}_{i}=1 / \pi_{i}^{(c)}=\left(1-p_{i}\right) / p_{i}$. Under the joint randomization of the propensity model (i.e., self-selection of $\left.s_{c}\right)$ and the sampling design of s_{s}, we have $E\left\{\Phi\left(\boldsymbol{\eta}_{0}\right)\right\}=\mathbf{0}$, where $\boldsymbol{\eta}_{0}^{T}=\left(\mu_{0}, \boldsymbol{\beta}_{0}^{T}\right)$ with μ_{0} and $\boldsymbol{\beta}_{0}$ being the true value of μ and $\boldsymbol{\beta}$ respectively. The consistency of $\widehat{\boldsymbol{\eta}}$ follows similar arguments to those in Chen, $\mathrm{Li} \& \mathrm{Wu}$ (2019) (which cited Section 3.2 of Tsiatis (2007)). Under the conditions C1-C4, we have $\Phi(\widehat{\boldsymbol{\eta}})=\mathbf{0}$ By applying the first-order Taylor expansion, we have

$$
\begin{equation*}
\widehat{\boldsymbol{\eta}}-\boldsymbol{\eta}_{0} \doteq\left[E\left\{\phi\left(\boldsymbol{\eta}_{0}\right)\right\}\right]^{-1} \Phi\left(\boldsymbol{\eta}_{0}\right) \tag{B.2}
\end{equation*}
$$

where $E\{\phi(\boldsymbol{\eta})\}=E\left\{\frac{\partial \Phi(\boldsymbol{\eta})}{\partial \boldsymbol{\eta}}\right\}=\left(\begin{array}{cc}U_{\mu} & U_{\boldsymbol{\beta}} \\ \mathbf{0} & S_{\boldsymbol{\beta}}\end{array}\right)$, and
$U_{\mu}=E(\partial U / \partial \mu)=-\frac{1}{N} \sum_{i \in F P} \pi_{i}^{(c)} \widetilde{w}_{i}=-1$,

$$
\begin{aligned}
U_{\boldsymbol{\beta}}=E\left(\partial U / \partial \boldsymbol{\beta}^{T}\right) & =\frac{1}{N} \sum_{i \in F P} \pi_{i}^{(c)}\left(y_{i}-\mu\right) \frac{\partial \widetilde{w}_{i}}{\partial \boldsymbol{\beta}^{T}}=-\frac{1}{N} \sum_{i \in F P}\left(y_{i}-\mu\right) \boldsymbol{x}_{i}^{T} \\
S_{\boldsymbol{\beta}}=E\left(\partial \tilde{S}^{*} / \partial \boldsymbol{\beta}\right) & =-\frac{1}{N+n_{c}} \sum_{i \in F P} \pi_{i}^{(c)} \cdot p_{i}\left(1-p_{i}\right) \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T}-\frac{1}{N+n_{c}} \sum_{i \in F P} p_{i}\left(1-p_{i}\right) \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T} \\
& \left.=-\frac{1}{N+n_{c}} \sum_{i \in F P} p_{i} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T} \text { (negative definite by condition } \mathbf{C 4}\right)
\end{aligned}
$$

It follows that $\hat{\mu}=\mu_{0}+O_{p}\left(n_{c}^{-1 / 2}\right)$, and

$$
\begin{equation*}
\operatorname{Var}(\widehat{\boldsymbol{\eta}}) \doteq\left[E\left\{\phi\left(\boldsymbol{\eta}_{0}\right)\right\}\right]^{-1} \operatorname{Var}\left\{\Phi\left(\boldsymbol{\eta}_{0}\right)\right\}\left[E\left\{\phi\left(\boldsymbol{\eta}_{0}\right)\right\}^{T}\right]^{-1}, \tag{B.3}
\end{equation*}
$$

where $[E\{\boldsymbol{\phi}(\boldsymbol{\eta})\}]^{-1}=\left(\begin{array}{cc}-1 & \frac{N+n_{c}}{N} \boldsymbol{b}^{T} \\ \mathbf{0} & S_{\boldsymbol{\beta}}^{-1}\end{array}\right)$, and $\boldsymbol{b}^{T}=\left\{\sum_{i \in F P}\left(y_{i}-\mu\right) \boldsymbol{x}_{i}^{T}\right\}\left\{\sum_{i \in F P} p_{i} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T}\right\}^{-1}$. The
middle part of (B.3), i.e., $\operatorname{Var}\left\{\Phi\left(\boldsymbol{\eta}_{0}\right)\right\}$, can be calculated by partitioning $\Phi(\boldsymbol{\eta})=\Phi_{1}+\Phi_{2}$, where

$$
\Phi_{1}=\sum_{i \in F P}\left\{\begin{array}{c}
\frac{1}{N} \delta_{i}^{(c)} \widetilde{w}_{i}\left(y_{i}-\mu\right) \\
\frac{1}{N+n_{c}} \delta_{i}^{(c)}\left(1-p_{i}\right) \boldsymbol{x}_{i}
\end{array}\right\}, \Phi_{2}=\frac{-1}{N+n_{c}} \sum_{i \in F P}\left\{\begin{array}{c}
0 \\
\delta_{i}^{(p)} d_{i} p_{i} x_{i}
\end{array}\right\}
$$

Notice that Φ_{1} and Φ_{2} are independent under condition $\mathbf{C 5}$, because Φ_{1} only involves randomization of cohort participation while Φ_{1} only involves survey sample selection. Hence, $\operatorname{Var}\left\{\Phi\left(\boldsymbol{\eta}_{0}\right)\right\}=\operatorname{Var}\left(\Phi_{1}\right)+\operatorname{Var}\left(\Phi_{2}\right)$ where

$$
\operatorname{Var}\left(\Phi_{1}\right)=\sum_{i \in F P} p_{i}\left(1-2 p_{i}\right)\left\{\begin{array}{cc}
\frac{1}{N^{2}}\left(y_{i}-\mu\right)^{2} / p_{i}^{2} & \frac{1}{N\left(N+n_{c}\right)}\left(y_{i}-\mu\right) \boldsymbol{x}_{i}^{T} / p_{i} \\
\frac{1}{N\left(N+n_{c}\right)}\left(y_{i}-\mu\right) \boldsymbol{x}_{i} / p_{i} & \frac{1}{\left(N+n_{c}\right)^{2}} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T}
\end{array}\right\}
$$

under the assumption of Poisson sampling of the nonprobability sample, and

$$
\operatorname{Var}\left(\Phi_{2}\right)=\left(\begin{array}{cc}
0 & \mathbf{0}^{T} \\
\mathbf{0} & \boldsymbol{D}
\end{array}\right)
$$

with \boldsymbol{D} being the design-based variance-covariance matrix under the probability sampling design for sample s_{s}. For example, if survey sample is randomly selected by Poisson sampling, $\boldsymbol{D}=$ $\left(N+n_{c}\right)^{-2} \sum_{i \in F P}\left(d_{i}-1\right) p_{i}^{2} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T}$.

The finite population variance of $\hat{\mu}^{A L P}$ is the first diagonal element of $\operatorname{Var}(\widehat{\boldsymbol{\eta}})$, and given by

$$
\begin{aligned}
\operatorname{Var}\left(\hat{\mu}^{A L P}\right) & =\left(\begin{array}{ll}
-1 & \boldsymbol{b}^{T}
\end{array}\right) \cdot\left(\operatorname{Var}\left(\Phi_{1}\right)+\operatorname{Var}\left(\Phi_{2}\right)\right) \cdot\binom{-1}{\boldsymbol{b}} \\
& =N^{-2} \sum_{i \in F P} p_{i}\left(1-2 p_{i}\right)\left\{\frac{\left(y_{i}-\mu\right)}{p_{i}}-\boldsymbol{b}^{T} \boldsymbol{x}_{i}\right\}^{2}+\boldsymbol{b}^{T} \boldsymbol{D} \boldsymbol{b}
\end{aligned}
$$

Note $p_{i}=P\left(i \in s_{c}^{*} \mid s_{c}^{*} \cup F P\right) \leq 1 / 2$.

C. Comparing Orders of Magnitude of $\operatorname{Var}\left(\widehat{\mu}^{A L P}\right)$ and $\operatorname{Var}\left(\widehat{\boldsymbol{\mu}}^{C L W}\right)$

The pseudo-weighted nonprobability sample estimator of the population mean is written as

$$
\hat{\mu}=\frac{1}{\sum_{i \in s_{c}} \widetilde{w}_{i}} \sum_{i \in s_{c}} \widetilde{w}_{i} y_{i}
$$

where \widetilde{w}_{i} is the pseudoweight $w_{i}^{A L P}$ in the ALP estimator $\hat{\mu}^{A L P}$

$$
w_{i}^{A L P}=\frac{1-\hat{p}_{i}}{\hat{p}_{i}}=\exp ^{-1}\left(\widehat{\boldsymbol{\beta}}^{T} \boldsymbol{x}_{i}\right)
$$

or the pseudoweight $w_{i}^{C L W}$ in the CLW estimator $\hat{\mu}^{C L W}$

$$
w_{i}^{C L W}=\frac{1}{\hat{\pi}_{i}^{(c)}}=1+\exp ^{-1}\left(\widehat{\boldsymbol{\gamma}}^{T} \boldsymbol{x}_{i}\right)
$$

where $\widehat{\boldsymbol{\beta}}$ and $\widehat{\boldsymbol{\gamma}}$ are solutions of pseudo estimation equations $\tilde{S}^{*}(\boldsymbol{\beta})=0$ and $\tilde{S}(\boldsymbol{\gamma})=0$ in formulae (2.3.7) and (2.2.7) in the main text, respectively.

According to the law of total variance, finite population variance of $\hat{\mu}$ can be written as

$$
\begin{equation*}
V(\hat{\mu})=E_{w}\left[V_{c}(\hat{\mu} \mid \widetilde{\boldsymbol{w}})\right]+V_{w}\left[E_{c}(\hat{\mu} \mid \widetilde{\boldsymbol{w}})\right] \tag{C.1}
\end{equation*}
$$

where $\widetilde{\boldsymbol{w}}=\left(\widetilde{w}_{1}, \ldots, \widetilde{w}_{N}\right)$ is the vector of pseudo nonprobability sample weight for the finite population; E_{w} and V_{w} are with respect to the propensity model; V_{c} and E_{c} are with respect to the nonprobability sampling process, and we have

$$
\begin{gathered}
E_{c}(\hat{\mu} \mid \widetilde{\boldsymbol{w}})=\frac{\sum_{i \in F P} \pi_{i}^{(c)} \widetilde{w}_{i} y_{i}}{\sum_{i \in F P} \pi_{i}^{(c)} \widetilde{w}_{i}}+O\left(n_{c}^{-1}\right) \text { and } \\
V_{c}(\hat{\mu} \mid \widetilde{\boldsymbol{w}})=\frac{\sum_{i \in F P} \pi_{i}^{(c)}\left(1-\pi_{i}^{(c)}\right) \widetilde{w}_{i}^{2}\left(y_{i}-\frac{\sum_{i \in F P} \pi_{i}^{(c)} \widetilde{w}_{i} y_{i}}{\sum_{i \in F P} \pi_{i}^{(c)} \widetilde{w}_{i}}\right)^{2}}{\left(\sum_{i \in F P} \pi_{i}^{(c)} \widetilde{w}_{i}\right)^{2}}
\end{gathered}
$$

assuming Poisson sampling. The first term in (C.1), which is $E_{w}\left[V_{c}(\hat{\mu} \mid \widetilde{\boldsymbol{w}})\right]$, has order $O\left(n_{c}^{-1}\right)$ for both $\hat{\mu}^{A L P}$ and $\hat{\mu}^{C L W}$ under condition $\mathbf{C} 2$. The second term in (C.1) is approximately

$$
\begin{equation*}
V_{w}\left[E_{c}(\hat{\mu} \mid \widetilde{\boldsymbol{w}})\right] \doteq\left(\frac{\partial E_{c}(\hat{\mu} \mid \widetilde{\boldsymbol{w}})}{\partial \widetilde{\boldsymbol{w}}}\right) V(\widetilde{\boldsymbol{w}})\left(\frac{\partial E_{c}(\hat{\mu} \mid \widetilde{\boldsymbol{w}})}{\partial \widetilde{\boldsymbol{w}}}\right)^{T} \tag{C.2}
\end{equation*}
$$

The middle term in (C.2)is

$$
V(\widetilde{\boldsymbol{w}})=\left(\frac{\partial \widetilde{\boldsymbol{w}}}{\partial \widehat{\mathbf{B}}}\right) V(\widehat{\mathbf{B}})\left(\frac{\partial \widetilde{\boldsymbol{w}}}{\partial \widehat{\mathbf{B}}}\right)^{T}=\left\{\frac{\partial}{\partial \widehat{\mathbf{B}}} \exp ^{-1}\left(\widehat{\mathbf{B}}^{T} \boldsymbol{x}\right)\right\}\{V(\widehat{\mathbf{B}})\}\left\{\frac{\partial}{\partial \widehat{\mathbf{B}}} \exp ^{-1}\left(\widehat{\mathbf{B}}^{T} \boldsymbol{x}\right)\right\}^{T}
$$

where $\widehat{\mathbf{B}}=\widehat{\boldsymbol{\beta}}$ or $\widehat{\boldsymbol{\gamma}}$ are solutions of pseudo estimating equations $\tilde{S}^{*}(\boldsymbol{\beta})=0$ and $\tilde{S}(\boldsymbol{\gamma})=0$ in the formulae (2.3.7) and (2.2.7). Therefore

$$
V_{w}\left[E_{c}(\hat{\mu} \mid \widetilde{\boldsymbol{w}})\right] \doteq\left(\frac{\partial E_{c}(\hat{\mu} \mid \widetilde{\boldsymbol{w}})}{\partial \widetilde{\boldsymbol{w}}} \frac{\partial \widetilde{\boldsymbol{w}}}{\partial \widehat{\mathbf{B}}}\right) V(\widehat{\mathbf{B}})\left(\frac{\partial E_{c}(\hat{\mu} \mid \widetilde{\boldsymbol{w}})}{\partial \widetilde{\boldsymbol{w}}} \frac{\partial \widetilde{\boldsymbol{w}}}{\partial \widehat{\mathbf{B}}}\right)^{T}
$$

where

$$
\frac{\partial E_{c}(\hat{\mu} \mid \widetilde{\boldsymbol{w}})}{\partial \widetilde{\boldsymbol{w}}}=\left\{\pi_{1}^{(c)} \frac{y_{i}-E_{c}(\hat{\mu} \mid \widetilde{\boldsymbol{w}})}{\sum_{i \in F P} \pi_{1}^{(c)} \widetilde{w}_{1}}, \cdots, \pi_{N}^{(c)} \frac{y_{i}-E_{c}(\hat{\mu} \mid \widetilde{\boldsymbol{w}})}{\sum_{i \in F P} \pi_{N}^{(c)} \widetilde{w}_{N}}\right\}^{T},
$$

and

$$
\left(\frac{\partial E_{c}(\hat{\mu} \mid \widetilde{\boldsymbol{w}})}{\partial \widetilde{\boldsymbol{w}}} \frac{\partial \widetilde{\boldsymbol{w}}}{\partial \widehat{\mathbf{B}}}\right)=-\frac{\sum_{i \in F P}\left\{\pi_{i}^{(c)} \exp ^{-1}\left(\widehat{\mathbf{B}}^{T} \boldsymbol{x}_{i}\right)\left(y_{i}-E_{c}(\hat{\mu} \mid \widetilde{\boldsymbol{w}})\right) \boldsymbol{x}_{i}\right\}}{\sum_{i \in F P} \pi_{i}^{(c)} \widetilde{w}_{i}}=O
$$

for both ALP and CLW.
To solve the order of $V(\widehat{\mathbf{B}})$, we first write

$$
\begin{equation*}
\widehat{\mathbf{B}}-\mathbf{B}=I^{-1}(\mathbf{B}) S(\widehat{\mathbf{B}})+o_{p}(S(\widehat{\mathbf{B}})), \tag{C.3}
\end{equation*}
$$

where $\boldsymbol{B}=\boldsymbol{\beta}$ or $\boldsymbol{\gamma}$ are solutions to the census estimating equation $S(\mathbf{B})=0$, and $I(\mathbf{B})=\frac{\partial S}{\partial \mathbf{B}}(\mathbf{B})$ is the Hessian matrix.

Specifically, for the ALP method the census estimating equation can be obtained by rewriting expression (3) in the main text and differentiating with respect to $\boldsymbol{\beta}$, leading to

$$
S(\boldsymbol{\beta})=\frac{1}{N+n_{c}} \sum_{i \in s_{c}^{*} \cup F P}\left\{R_{i}-p_{i}(\boldsymbol{\beta})\right\} \boldsymbol{x}_{i}
$$

where R_{i} indicates the membership of s_{c}^{*} in $s_{c}^{*} \cup F P\left(=1\right.$ if $i \in s_{c}^{*} ; 0$ if $\left.i \in F P\right)$, and $p_{i}(\boldsymbol{\beta})=$ $E\left(R_{i} \mid \boldsymbol{x}_{i} ; \boldsymbol{\beta}\right)=\operatorname{expit}\left(\boldsymbol{\beta}^{T} \boldsymbol{x}_{i}\right)$ defined in Section 2.3 in the main text respectively.

The estimate $\widehat{\boldsymbol{\beta}}$ is solution to the pseudo estimating equation $\tilde{S}^{*}(\boldsymbol{\beta})=0$, where d_{i} is the basic design weights for $i \in s_{p}$ and $d_{i}=1$ for $i \in s_{c}$. We have

$$
\tilde{S}^{*}(\widehat{\boldsymbol{\beta}})=\frac{1}{N+n_{c}} \sum_{i \in s_{c} \cup^{*} s_{p}} d_{i}\left\{R_{i}-p_{i}(\widehat{\boldsymbol{\beta}})\right\} \boldsymbol{x}_{i}=S(\widehat{\boldsymbol{\beta}})+O_{p}\left(\frac{1}{\sqrt{n_{c}+n_{p}}}\right)=0
$$

under condition $\mathbf{C 3}$, where the union U^{*} allows for duplicated units in s_{c} and s_{p}. Combined with (C.3), this leads to $\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}=O_{p}\left(n_{c}+n_{p}\right)^{-1 / 2}$ with

$$
I(\boldsymbol{\beta})=\frac{\partial S}{\partial \boldsymbol{\beta}}(\boldsymbol{\beta})=-\frac{1}{N+n_{c}} \sum_{i \in s_{c}^{*} \cup F P} p_{i}(\boldsymbol{\beta})\left\{1-p_{i}(\boldsymbol{\beta})\right\} \boldsymbol{x}_{i}=O(1)
$$

under Condition C4. We have

$$
V(\widehat{\boldsymbol{\beta}})=O\left(\frac{1}{n_{c}+n_{p}}\right)
$$

For the CLW method, the census estimating equation is

$$
S(\boldsymbol{\gamma})=\frac{1}{N} \sum_{i \in F P}\left\{\delta_{i}-\pi_{i}^{(c)}(\gamma)\right\} \boldsymbol{x}_{i}
$$

where δ_{i} is the indicator of the population unit i being included in s_{c} ($=1$ if $i \in s_{c} ; 0$ otherwise), and $\pi_{i}(\boldsymbol{\gamma})=E\left(\delta_{i} \mid \boldsymbol{x}_{i} ; \boldsymbol{\gamma}\right)=\operatorname{expit}\left(\boldsymbol{\gamma}^{T} \boldsymbol{x}_{i}\right)$.

The estimate $\widehat{\gamma}$ is solution to the pseudo estimating equation $\tilde{S}(\boldsymbol{\gamma})=0$ shown below

$$
\begin{align*}
& \tilde{S}(\widehat{\boldsymbol{\gamma}})= \tag{C.4}\\
= & \frac{1}{N}\left\{\sum_{i \in s_{c}} \boldsymbol{x}_{i}-\sum_{i \in s_{p}} d_{i} \pi_{i}^{(c)}(\widehat{\boldsymbol{\gamma}}) \boldsymbol{x}_{i}\right\} \\
= & \frac{1}{N} \sum_{i \in F P} \delta_{i} x_{i}+\frac{1}{N} \sum_{i \in s_{p}} d_{i}\left\{\delta_{i}^{(c)}-\hat{\pi}_{i}^{(c)}\right\} \boldsymbol{x}_{i}-\frac{1}{N} \sum_{i \in s_{p}} d_{i} \delta_{i}^{(c)} \boldsymbol{x}_{i}=0 .
\end{align*}
$$

Under condition C3, we have the second and third term in (C.4)
$\frac{1}{N} \sum_{i \in s_{p}} d_{i}\left(\delta_{i}-\hat{\pi}_{i}^{(c)}\right) x_{i}=\frac{1}{N} \sum_{i \in F P}\left(\delta_{i}-\hat{\pi}_{i}^{(c)}\right) x_{i}+O_{p}\left(n_{p}^{-1 / 2}\right)$, and
$\frac{1}{N} \sum_{i \in s_{p}} d_{i} \delta_{i} x_{i}=\frac{1}{N} \sum_{i \in F P} \delta_{i} x_{i}+O_{p}\left(n_{p}^{-1 / 2}\right)$.
Hence

$$
\tilde{S}(\widehat{\gamma})=S(\widehat{\gamma})+O_{p}\left(n_{p}^{-1 / 2}\right)=0
$$

which, combined with (C.3), leads to $\widehat{\gamma}-\boldsymbol{\gamma}=O_{p}\left(n_{p}^{-1 / 2}\right)$ with

$$
I(\gamma)=-\frac{1}{N} \sum_{i \in F P} \pi_{i}^{(c)}(\gamma)\left\{1-\pi_{i}^{(c)}(\gamma)\right\} x_{i}^{T} x_{i}=O(1)
$$

under condition C6 in Chen, Li \& Wu (2019).
We have

$$
V(\widehat{\gamma})=O\left(\frac{1}{n_{p}}\right)
$$

As the result, the second term in (C.1) for the ALP and the CLW method has the order of $O\left(\frac{1}{n_{p}+n_{c}}\right)$ and $O\left(\frac{1}{n_{p}}\right)$, respectively. Combining the two terms in (C.1), we have

$$
V\left(\hat{\mu}^{A L P}\right)=O\left(\frac{1}{n_{p}}\right)+O\left(\frac{1}{n_{p}+n_{c}}\right)=O\left(\frac{1}{n_{c}}\right)
$$

and

$$
V\left(\hat{\mu}^{C L W}\right)=O\left(\frac{1}{n_{c}}\right)+O\left(\frac{1}{n_{p}}\right)=O\left(\frac{1}{\min \left(n_{c}, n_{p}\right)}\right) .
$$

Therefore, in large samples we have $V\left(\hat{\mu}^{A L P}\right) \leq V\left(\hat{\mu}^{C L W}\right)$, and the estimator $\hat{\mu}^{A L P}$ is more efficient than $\hat{\mu}^{C L W}$ especially when $n_{c} \gg n_{p}$.

Notice that Comparison in analytical efficiency of the CLW and the ALP methods is made under their respective pseudo estimating equations (2.2.7) and (2.3.7) in Appendix C. Although the CLW pseudoweights are specified as $w_{i}^{C L W}=1+\exp ^{-1}\left(\widehat{\boldsymbol{\gamma}}^{T} \boldsymbol{x}_{i}\right)$, the justification also follows when $w_{i}^{C L W}=\exp ^{-1}\left(\widehat{\boldsymbol{\gamma}}^{T} \boldsymbol{x}_{i}\right)$. The ALP estimator tends to have smaller variance especially when the nonprobability sample is relatively larger than the probability sample, assuming nonprobability cohort and the survey sample are selected independently.

D. Supplementary table on estimated coefficients of propensity models

		ALP		
	RDW	CLW	(FDW)	ALP.S
(Intercept)	-8.92	-8.92	-8.92	0.05

Age (in years)	-0.06	-0.06	-0.06	-0.06
Age ${ }^{2}$	0.00	0.00	0.00	0.00
Sex (ref: male)				
Female	-0.10	-0.10	-0.10	-0.03
Education level	-0.16	-0.16	-0.16	-0.11
Race/Ethnicity (ref: NH-White)				
NH-Black	1.33	1.33	1.33	1.47
Hispanic	1.62	1.62	1.62	1.64
NH-Other	-0.35	-0.35	-0.35	-0.28
Poverty (ref: No)				
Yes	0.15	0.15	0.15	0.11
Unknown	-0.01	-0.01	-0.01	0.01
Health Status	0.24	0.24	0.24	0.24
Region (ref: Northeast)				
Midwest	0.25	0.25	0.25	0.15
South	0.41	0.41	0.41	0.35
West	0.29	0.29	0.29	0.14
Marital Status (ref: married or living as married)				
Single	-0.19	-0.19	-0.19	-0.12
Previously married	-0.01	-0.01	-0.01	-0.02
Smoking (ref: Non-smoker)				
Former smoker	0.12	0.12	0.12	0.10
Current smoker	0.16	0.16	0.16	0.14
Household Income	-0.01	-0.01	-0.01	-0.01
Chewing tobacco (ref: No)				
Yes	-0.35	-0.35	-0.35	-0.34
BMI (ref: normal)				
Under-weight	-0.02	-0.02	-0.02	-0.12
Over-weight	0.03	0.03	0.03	0.01
Obese	-0.06	-0.06	-0.06	-0.04

Reference

Chen, Y., Li, P., Wu, C. (2019) Doubly Robust inference with nonprobability survey samples. Journal of the American Statistical Association.; 1-11.

Krewski, D., Rao, J.N. (1981) Inference from stratified samples: properties of the linearization,
jackknife and balanced repeated replication methods. The Annals of Statistics, 1010-9.
Tsiatis, A. (2007). Semiparametric theory and missing data. Springer Science \& Business Media.

Wang, L. (2020) Improving external validity of epidemiologic analyses by incorporating data from population-based surveys. Doctoral dissertation, University of Maryland, College Park.

