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Many epidemiologic studies forgo probability sampling and turn to nonprobabil-
ity volunteer-based samples because of cost, response burden, and invasiveness
of biological samples. However, finite population (FP) inference is difficult
to make from the nonprobability sample due to the lack of population rep-
resentativeness. Aiming for making inferences at the population level using
nonprobability samples, various inverse propensity score weighting methods
have been studied with the propensity defined by the participation rate of popu-
lation units in the nonprobability sample. In this article, we propose an adjusted
logistic propensity weighting (ALP) method to estimate the participation rates
for nonprobability sample units. The proposed ALP method is easy to implement
by ready-to-use software while producing approximately unbiased estimators
for population quantities regardless of the nonprobability sample rate. The effi-
ciency of the ALP estimator can be further improved by scaling the survey
sample weights in propensity estimation. Taylor linearization variance estima-
tors are proposed for ALP estimators of FP means that account for all sources
of variability. The proposed ALP methods are evaluated numerically via simu-
lation studies and empirically using the naïve unweighted National Health and
Nutrition Examination Survey III sample, while taking the 1997 National Health
Interview Survey as the reference, to estimate the 15-year mortality rates.
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1 INTRODUCTION

In the big data era, assembling volunteer-based epidemiologic cohorts within integrated healthcare systems that have
electronic health records and a large preexisting base of volunteers are increasingly popular due to their cost-and-time
efficiency, such as the UK Biobank in the UK National Health Service.1 However, samples of volunteer-based cohorts
are not randomly selected from the underlying finite target population, and therefore cannot well represent the target
population. As a result, the naïve sample estimates obtained from the cohort can be biased for the finite population (FP)
quantities. For example, the estimated all-cause mortality rate in the UK Biobank was only half that of the UK population,2
and the Biobank is not representative of the UK population with regard to many sociodemographic, physical, lifestyle,
and health-related characteristics.
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Aiming for making inferences at the population level using nonprobability samples, various propensity-score weight-
ing, and matching methods have been proposed to improve the population representativeness of nonprobability samples,
by using probability-based survey samples as external references in survey research.3-6

Inverse propensity score weighting (IPSW) methods have been studied with the propensity defined by the participa-
tion rate of population units in the nonprobability sample. We review two methods—both assume that the units in the
nonprobability sample are observed according to some random, but unknown, mechanism. Because that mechanism is
unknown, the inclusion probability of each unit must be estimated. As described in Section 2, all methods are based on
estimating a pseudo log-likelihood, although the methods differ in their details. Valliant and Dever7 estimated participa-
tion rates by fitting a logistic regression model to the combined nonprobability sample and a reference, probability sample.
Sample weights for the probability sample were scaled by a constant so that the scaled probability sample was assumed to
represent the complement of the nonprobability sample. Each unit in the nonprobability sample was assigned a weight
of one. This results in the sum of the scaled weights in the combined probability plus nonprobability sample being an
estimate of the population size. This method will be referred to as the rescaled design weight (RDW) method. The partici-
pation rate for each nonprobability sample unit was estimated by the inverse of the estimated inclusion (or participation)
probability.

The RDW estimator is biased especially when the participation rate of the nonprobability sample is large, as noted
by Chen et al.4 As a remedy, Chen et al4 estimated the participation rate by manipulating the log-likelihood estimating
equation in a somewhat different way. The resulting estimator, denoted by CLW, is consistent and approximately unbiased
regardless of the magnitude of participation rates. Compared with the CLW method, which requires special programming,
the RDW method has the advantage of easy implementation by ready-to-use software such as R, Stata, or SAS. Survey
practitioners can simply fit a logistic regression model with scaled survey weights in the probability sample to obtain the
estimated participation rates.

In this article, we propose an adjusted logistic propensity weighting (ALP) method to estimate the participation rates
for nonprobability sample units. Like the CLW, the proposed ALP method relaxes the assumptions required by the RDW
method,7,8 by formulating the method in an innovative way. As in the RDW method, the proposed ALP method retains
the advantage of easy implementation by fitting a propensity model with survey weights in ready-to-use software. Tay-
lor linearization (TL) variance estimators are proposed for ALP estimates that account for variability due to differential
pseudo-weights in the nonprobability sample, complex survey design of the reference probability survey, as well as the
estimation of the propensity scores. The variance of the proposed estimator has the order of the inverse of the nonproba-
bility sample size (as shown in Appendix C). Moreover, under the logistic propensity model, the ALP method can flexibly
scale the probability sample weights for propensity estimation to further improve efficiency. In summary, the contribu-
tions of the proposed ALP method include (1) easy implementation with ready-to-use software, (2) high efficiency, as
well as (3) the justification of a set of pseudo-estimating equation (14) that underly the straightforward implementation
in survey software.

2 METHODS

2.1 Basic setting

Let FP = {1, · · · ,N} represent the FP with size N. We are interested in estimating the FP mean 𝜇 = N−1 ∑
i∈FP yi. Suppose

a volunteer-based nonprobability sample sc of size nc is selected from FP by a self-selection mechanism, with 𝛿
(c)
i (= 1 if

i ∈ sc; 0 otherwise) denoting the indicator of sc inclusion. The underlying participation rate of nonprobability sample for
a FP unit is defined as

𝜋
(c)
i = P(i ∈ sc |FP) = Ec{𝛿(c)i |yi, xi}, i ∈ FP,

where the expectation Ec is with respect to the nonprobability sample selection, and xi is a vector of self-selection variables,
that is, covariates related to the probability of inclusion in sc. The corresponding implicit nonprobability sample weight
is wi = 1∕𝜋(c)

i for i ∈ FP.
We consider the following assumptions for the nonprobability sample self-selection.
A1. The nonprobability sample selection is uncorrelated with the variable of interest given the covariates, that is,

𝜋
(c)
i = Ec{𝛿(c)i |yi, xi} = Ec{𝛿(c)i |xi} for i ∈ FP.

A2. All FP units have a positive participation rate, that is, 𝜋(c)
i > 0 for i ∈ FP.
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A3. The indicators of participation in the nonprobability cohort are uncorrelated with each other given the
self-selection variables, that is, cov(𝛿(c)i , 𝛿

(c)
j |xi, xj) = 0 for i ≠ j.

An independent reference probability-based survey sample sp of size np is randomly selected from FP. The sam-
ple inclusion indicator, selection probability, and the corresponding sample weights are defined by 𝛿

(p)
i (=1 if i ∈ sp; 0

otherwise), 𝜋(p)
i = Ep(𝛿(p)i |xi), and di = 1∕𝜋(p)

i , respectively, where Ep is with respect to the survey sample selection.

2.2 Existing logistic propensity weighting method

In this section, we first briefly introduce the existing RDW and CLW methods and discuss their pros and cons.

2.2.1 RDW method

Valliant and Dever6,7 assumed a logistic regression model for the participation rates 𝜋(c)
i (𝜸)

log

{
𝜋
(c)
i (𝜸)

1 − 𝜋
(c)
i (𝜸)

}
= 𝜸Txi, for i ∈ FP, (1)

where 𝜸 is a vector of unknown parameters, and xi is a vector of covariates for i ∈ FP. To simplify the notation, we use
𝜋
(c)
i below. They considered (implicitly) the population likelihood function of 𝜋(c)

i as

L(𝜸) =
∏
i∈FP

{𝜋(c)
i }𝛿

(c)
i {1 − 𝜋

(c)
i }1−𝛿(c)i . (2)

Then, the log-likelihood function can be written as

l(𝜸) =
∑
i∈FP

[𝛿(c)i log𝜋(c)
i + {1 − 𝛿

(c)
i } log{1 − 𝜋

(c)
i }] =

∑
i∈sc

log 𝜋(c)
i +

∑
i∈FP−sc

log{1 − 𝜋
(c)
i }, (3)

where the set FP − sc represents the FP units that are not self-selected into the nonprobability sample. Since FP − sc is not
available in practice, the pseudo-loglikelihood function was constructed to estimate l(𝜸) by

l̃RDW(𝜸) =
∑
i∈sc

w∗
i log𝜋(c)

i +
∑
i∈sp

w∗
i log{1 − 𝜋

(c)
i }, (4)

where w∗
i =

{
1, for i ∈ sc
di(N̂p − nc)∕N̂p, for i ∈ sp

, with N̂p =
∑

i∈sp
di being the survey estimate of the target FP size N. This leads

to the total of the scaled weights across the probability sample units being
∑

i∈sp
w∗

i = N̂p − nc. The rationale for rescaling
is to weight the survey sample to represent the complement of sc in the FP, that is, the set FP − sc. Under the logistic
regression model, the nonprobability sample participation rate 𝜋

(c)
i for i ∈ sc can be estimated by fitting Model (1) to the

combined sample of sc and scaled-weighted sp with scaled weights w∗
i , leading to the RDW estimates.

The RDW method has been shown to effectively reduce the bias of the naïve nonprobability sample estimates. How-
ever, the summand

∑
i∈FP−sc

log{1 − 𝜋
(c)
i } in (3) is not a fixed FP total because units in the nonprobability sample sc are

treated as being randomly observed. This leads to a bias as shown below.
Comparing the expectation of the population log-likelihood function l(𝜸) in (3) and the expectation of the pseudo

log-likelihood l̃RDW(𝜸) in (4), and letting E(⋅) = EcEp(⋅) we have

E{l(𝜸)} =
∑
i∈FP

𝜋
(c)
i log 𝜋(c)

i +
∑
i∈FP

{1 − 𝜋
(c)
i } log{1 − 𝜋

(c)
i }, and

E{̃lRDW(𝜸)} = EcEp{̃lRDW(𝜸)} = Ec

[∑
i∈FP

𝛿
(c)
i log 𝜋(c)

i

]
+ Ep

[∑
i∈FP

𝛿
(p)
i ⋅

N̂p − nc

N̂p
di log{1 − 𝜋

(c)
i }

]
=̇
∑
i∈FP

𝜋
(c)
i log 𝜋(c)

i +
∑
i∈FP

{
1 − nc

N

}
log{1 − 𝜋

(c)
i }
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by assuming Ep(N̂p) = N. The difference of the two expectations, denoted by ΔRDW, can be written as

ΔRDW = E{̃lRDW(𝜸)} − E{l(𝜸)} =
∑
i∈FP

{nc

N
− 𝜋

(c)
i

}
log{1 − 𝜋

(c)
i }

which, in general, is nonzero. Accordingly, the nonprobability sample participation rates estimated by solving for 𝜸 in
𝜕lRDW(𝜸)∕𝜕𝜸 = 0 under Model (1) can be biased, unless either (i) the nonprobability sample units have small participation
rates, that is, both nc∕N and 𝜋

(c)
i are close to 0 for all i ∈ FP, in which case log{1 − 𝜋

(c)
i } ≈ 0, or (ii) all population units are

equally likely to participate in the nonprobability sample, that is, 𝜋(c)
i ≡ nc∕N. In many practical applications, (i) will hold.

For example, suppose that nc = 1000 and the US population age 18 and over is the target population. The population size
is approximately 210 million, so that nc∕N =̇ 5 × 10−6. If, instead, the population is for a small state like Wyoming where
the 18+ population size is about 365 000, then nc∕N =̇ 0.0027. In both examples, with such small sampling fractions, all
{𝜋(c)

i , i ∈ sc} should be near zero also.

2.2.2 CLW method

Chen et al4 proposed another IPSW method using the same likelihood function L(𝜸) in (2), but rewriting the population
log-likelihood as

l(𝜸) =
∑
i∈sc

log
𝜋
(c)
i

1 − 𝜋
(c)
i

+
∑
i∈FP

log{1 − 𝜋
(c)
i }. (5)

In contrast to the RDW method, CLW estimated the population total of log{1 − 𝜋
(c)
i } by a weighted reference sample

total and constructed the pseudo log-likelihood as

l̃CLW(𝜸) =
∑
i∈sc

log
𝜋
(c)
i

1 − 𝜋
(c)
i

+
∑
i∈sp

di log{1 − 𝜋
(c)
i }. (6)

Under the same logistic regression model (1), the participation rate𝜋(c)
i was estimated by solving the pseudo estimation

equation

S̃(𝜸) = 1
N

⎧⎪⎨⎪⎩
∑
i∈sc

xi −
∑
i∈sp

di𝜋
(c)
i xi

⎫⎪⎬⎪⎭ = 0, (7)

derived from the pseudo log-likelihood (6). The resulting CLW weights are calculated as {wCLW
i = 1 + exp−1(𝜸̂Txi), i ∈ sc}.

Chen et al4 proved that the CLW estimator of the FP mean, 𝜇CLW =
(∑

i∈sc
wCLW

i

)−1 ∑
i∈sc

wCLW
i yi, was design consistent

when model (1) for the participation rates was correct.
In contrast to the RDW method, CLW does not require condition (i) or (ii) in the RDW method for unbiased estimation

of participation rates {𝜋(c)
i , i ∈ sc}. In the following section, we propose an ALP method, which corrects the bias in the

RDW method. The proposed ALP method provides consistent estimators of FP means and is as easy to implement as the
RDW method.

2.3 ALP method

The ALP method also aims to estimate the cohort sample participation rates {𝜋(c)
i , i ∈ sc} and use the inverse of estimated

𝜋
(c)
i as the pseudo-weight for i ∈ sc. As a computational device, we construct a pseudo-population of s∗c ∪ FP, where s∗c is a

copy of sc that has the same joint distributions of covariates x and outcome y with the original sc. The number of units in
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s∗c ∪ FP is nc + N. In the union of s∗c ∪ FP, s∗c and sc are treated as two different sets. We use Ri to indicate the membership
of s∗c in s∗c ∪ FP (=1 if i ∈ s∗c ; 0 if i ∈ FP), and pi = P(Ri = 1) = P(i ∈ s∗c |s∗c ∪ FP). Instead of directly modeling 𝜋

(c)
i as in the

RDW and CLW methods, we model pi as a function of 𝜋(c)
i ∶

pi =
𝜋
(c)
i

1 + 𝜋
(c)
i

, or equivalently, 𝜋
(c)
i =

pi

1 − pi
. (8)

The relationship between pi and 𝜋
(c)
i follows because

pi

1 − pi
=

P(i ∈ s∗c |s∗c ∪ FP)
P(i ∈ FP|s∗c ∪ FP)

= P(i ∈ sc)
P(i ∈ FP)

= P(i ∈ sc|FP) = 𝜋
(c)
i (9)

since s∗c is a copy of sc and P(i ∈ s∗c |s∗c ∪ FP) = P(i ∈ sc|s∗c ∪ FP). Notice that, derived from Formula (8),

pi ≤
1
2
,

since 𝜋
(c)
i ≤ 1and the equality holds only if 𝜋(c)

i = 1, that is, the FP unit i participates in the cohort with certainty. As
illustrated by the examples at the end of section 2.2.1, requiring pi ≤ 1∕2 is not unrealistic in typical applications because
𝜋
(c)
i is generally quite small.

Suppose that pi can be modeled parametrically by pi = p(xi; 𝜷) = expit(𝜷Txi), where 𝜷 is a vector of unknown model
parameters. That is,

log
{

pi

1 − pi

}
= 𝜷Txi, for i ∈ s∗c ∪ FP (10)

Notice that 𝜷, the coefficients in Model (10), differ from the coefficients 𝜸 in Model (1) because the two logistic
regression models have different dependent variables. Based on (8), expression (10) implies that 𝜋(c)

i is being modeled as
exp(𝜷Txi), which differs from the RDW/CLW model in (1) where 𝜋

(c)
i = exp(𝜸Txi)∕{1 + exp(𝜸Txi)}. The corresponding

“likelihood” function can be written as

L∗(𝜷) =
∏

i∈s∗c∪FP
pRi

i (1 − pi)(1−Ri), (11)

where Ri indicates the membership of s∗c in s∗c ∪ FP (=1 if i ∈ s∗c ; 0 if i ∈ FP). We put “likelihood” in quotes because L∗(𝜷)
varies depending on which set of units is selected for s∗c . This contrasts with the population likelihood in (2) which applies
regardless of which sample is selected. Note that L∗(𝜷) in (11) is written as if the units are independent when they are not.
This is a standard procedure in pseudo-MLE estimation, and the resulting parameter estimators remain design-consistent
even when some units may be correlated due to, for example, clustering.9,10 The quantity L∗(𝜷) should be viewed as
motivation for developing the estimating equations given below in (13). The log-likelihood generated from L∗(𝜷) is

l∗(𝜷) =
∑

i∈s∗c∪FP
{Ri ⋅ log pi + (1 − Ri) log(1 − pi)} =

∑
i∈FP

𝛿
(c)
i log pi +

∑
i∈FP

log(1 − pi). (12)

Notice that the randomness of L∗(𝜷) and l∗(𝜷) comes from the cohort selection, that is, 𝛿(c)i in the first summand in
the last line of (12). In reality, since the unit level information of FP is unknown, we replace the second summand in (12)
by a survey sample estimate,

∑
i∈sp

di log(1 − pi), and obtain the maximum pseudo-likelihood estimator 𝜷 by solving the
pseudo-estimating equation

S̃∗(𝜷) = 1
N + nc

⎧⎪⎨⎪⎩
∑
i∈sc

(1 − pi)xi −
∑
i∈sp

dipixi

⎫⎪⎬⎪⎭ = 0. (13)
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Assuming that pi is bounded by 0 and 1∕2 implies that 𝜋(c)
i is automatically bounded by 0 and 1. Note that (13) falls in

a general class of estimating equations that ensure unique solutions of parameters4,11,12 (eg, equation (6) in CLW4 if their
function h(xi,𝜽) is set equal to xi{1 + 𝜋

(c)
i }−1).

The ALP estimator of 𝜇 is

𝜇ALP =
∑

i∈sc
wALP

i yi∑
i∈sc

wALP
i

, (14)

where wALP
i = 1∕𝜋(c)

i (𝜷) for i ∈ sc. Although L∗(𝜷) is not a standard likelihood, 𝜇ALP is a consistent estimator of the
population mean as shown in the theorem below.

We consider the following limiting process for the theoretical development.4,13 Suppose there is a sequence of FPs FPk
of size Nk, for k = 1, 2, · · ·. Cohort sc,k of size nc,k and survey sample sp,k of size np,k are sampled from FPk. The sequences
of the FP, the cohort and the survey sample have their sizes satisfy limk→∞ nt,k∕Nk → ft, where t = c or p and 0 < ft ≤ 1
(regularity condition C1 in Appendix A). In the following the index k is suppressed for simplicity.

Theorem. Consistency of ALP estimator of FP mean (see Appendix B).
Under the regularity conditions A1 to A3, and C1 to C5 in Appendix A, and assuming logistic regression model (10)

for pi, the ALP estimate 𝜇ALP is design consistent for 𝜇, in particular 𝜇ALP − 𝜇 = Op(n−1∕2
c ), with the FP variance

Var(𝜇ALP) =̇ N−2
∑
i∈FP

pi(1 − 2pi)
{

(yi − 𝜇)
pi

− bTxi

}2

+ bTDb, (15)

where pi = expit(𝜷Txi), bT =
{∑

i∈FP(yi − 𝜇)xT
i

}{∑
i∈FP pixixT

i

}−1, and D = N−2Vp

(∑
i∈sp

dipixi

)
is the design-based

variance-covariance matrix under the probability sampling design for sp.
In practice, the ALP estimator of a FP mean can be obtained by three steps:

Step 1 Search for covariates x available in both the cohort (sc) and the reference survey sample (sp) and combine the two
samples. Assign Ri = 1 for i ∈ sc and Ri = 0 for i ∈ sp in the combined sample.

Step 2 Fit a logistic regression model for pi = P(Ri = 1) in the combined sc and weighted sp, with the survey sample
weights {di, i ∈ sp}, and obtain the estimate p̂i for i ∈ sc.

Step 3 Estimate the FP mean by Formula (14) with the ALP pseudo weight wALP
i = p̂i∕(1 − p̂i) for i ∈ sc.

Notice that Step 2 can be accomplished by any existing survey software, such as svyglm in survey pack-
age of R, svy:logit in Stata, and PROC SURVEYLOGISTIC in SAS. In addition to being easy to implement,
the ALP estimator from (14) does not require conditions (i) or (ii), unlike RDW. Moreover, we prove that in
large samples, Var(𝜇ALP) = O(n−1

c ) is as or more efficient compared with Var(𝜇CLW) = O{min (np,nc)−1} under their
correct propensity model, respectively, which depends on both the nonprobability and probability sample sizes
(see Appendix C).

An alternative method would be to omit the odds transformation, which uses pi to approximate the participation rate
𝜋
(c)
i . Denote this method by FDW for full design weight, which contrasts to the scaling of the survey sample weights in the

RDW method. Comparing the expectation of the population log-likelihood function l(𝜸) in (3) and the expectation of the
pseudo log-likelihood l̃∗(𝜷) in (12) with𝜋

(c)
i replacing pi by the FDW method, that is, l̃∗(𝜸) =

∑
i∈sc

log 𝜋(c)
i +

∑
i∈sp

di log(1 −
𝜋
(c)
i ), we have their difference, denoted by ΔFDW, written as

ΔFDW = E{̃l∗(𝜸)} − E{l(𝜸)} =
∑
i∈FP

𝜋
(c)
i log 𝜋(c)

i +
∑
i∈FP

log{1 − 𝜋
(c)
i }

−
∑
i∈FP

𝜋
(c)
i log𝜋(c)

i −
∑
i∈FP

(1 − 𝜋
(c)
i ) log{1 − 𝜋

(c)
i } =

∑
i∈FP

𝜋
(c)
i log{1 − 𝜋

(c)
i }.

The bias is zero only if 𝜋(c)
i for i ∈ FP are all close to zero. Thus, the odds transformation step in ALP could be

skipped if all nonprobability participation rates are extremely small; but, in general, that step is essential for unbiased
estimation.



WANG et al. 5243

2.4 Variance estimation

Using the FP variance formula (15), the first summand can be consistently estimated by

{N̂(c)}−2
∑
i∈sc

(1 − p̂i)(1 − 2p̂i)
{

(yi − 𝜇ALP)
p̂i

− b̂
T

xi

}2

, (16)

where p̂i is the prediction for i ∈ sc, N̂(c) =
∑

i∈sc
wALP

i , and b̂
T
=
{∑

i∈sc
(yi − 𝜇ALP)xT

i

}{∑
i∈sc

p̂ixixT
i

}−1
. The second sum-

mand bTDb is estimated by b̂
T

D̂b̂, where D̂ is the survey design consistent variance estimator of D. For example, under
stratified multistage cluster sampling with H strata and ah primary sampling units (PSUs) in stratum h selected with
replacement,

D̂ = {N̂(p)}−2 ⋅
H∑

h=1

ah

ah − 1

ah∑
l=1

(zl − z)(zl − z)T , (17)

where N̂(p) =
∑

i∈sp
di, zl =

∑
i∈sp(hl)

dip̂ixi is the weighted PSU total for cluster l in stratum h, sp(hl) is the set of sample
elements stratum h and cluster l, and z = a−1

h
∑ah

l zl is the mean of the PSU totals in stratum h.

2.5 Scaling survey weights in the likelihood for the ALP method

The proposed ALP can flexibly scale the survey weights in estimating equation (13) to improve efficiency. For case-control
studies, Scott and Wild14 and Li et al15 previously used the technique we propose below to reduce variances of estimates of
relative risks when weights for cases and controls are substantially different. We multiply the second summand in S̃∗(𝜷)
by a constant 𝜆, say 𝜆 = nc∕

(∑
i∈sp

di

)
, so that the sum of the scaled survey weights (𝜆di) is nc. Accordingly, the score

function becomes
S̃∗
𝜆(𝜷) =

∑
i∈sc

(1 − pi)xi − 𝜆
∑
i∈sp

dipixi. (18)

Solving S̃∗
𝜆
(𝜷) = 0 for 𝜷, and the resulting vector of estimates is denoted by 𝜷𝜆 = (𝛽0,𝜆, 𝜷1,𝜆), where 𝛽0,𝜆 is estimate of

the intercept. Similar derivations to those in Chambers and Skinner10 and Beaumont11 can be used to prove that 𝜷1,𝜆
is design-consistent with various efficiency gains, depending on the variability of survey weights vs the nonprobability
sample weights (with implicit common value of 1). However, the estimate of the intercept 𝛽0,𝜆 can be badly biased with
scaled weights. As a result, the estimate of participation rate exp(𝜷

T
𝜆xi) including 𝛽0,𝜆 would also be biased. The bias of

𝛽0,𝜆, however, would not affect the estimate of population mean because the scaled ALP-weighted mean, 𝜇ALP.S,

𝜇ALP.S =
∑

i∈sc
wALP.S

i yi∑
i∈sc

wALP.S
i

=
∑

i∈sc
exp−1(𝜷

T
1,𝜆xi)yi∑

i∈sc
exp−1(𝜷

T
1,𝜆xi)

, (19)

depends on 𝜷1,𝜆, but not 𝛽0,𝜆, where wALP.S
i = exp−1(𝜷

T
1,𝜆xi) is the scaled ALP pseudo weight.

It can be proved that 𝜇ALP.S is a consistent estimator of the FP mean, 𝜇. The TL variance estimator of 𝜇ALP.S can be
obtained by substituting wALP

i , 𝜇ALP, 𝜷, p̂i, and di by wALP.S
i , 𝜇ALP.S, 𝜷𝜆, p̂i,𝜆 = exp(𝜷

T
𝜆xi), and 𝜆di, respectively, in Formulae

(16) and (17). Details on the variance and the consistency of ALP.S are discussed in the dissertation by Wang.16

3 SIMULATIONS

3.1 FP generation and sample selection

We applied simulation setups similar to those in Chen et al.4 In the FP of size N = 500 000, a vector of covariates
xi = (x1i, x2i, x3i, x4i)T was generated for i ∈ FP where x1i = v1i, x2i = v2i + 0.3x1i, x3i = v3i + 0.2(x1i + x2i), x4i = v4i + 0.1
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(x1i + x2i + x3i), with v1i ∼ Bernoulli(0.5), v2i ∼ Uniform(0, 2), v3i ∼ Exponential(1), and v4i ∼ 𝜒2(4). The variable
of interest yi ∼ Normal(𝜇i, 1), where 𝜇i = −x1i − x2i + x3i + x4i for i ∈ FP. The parameter of interest was the FP mean
𝜇 = N−1 ∑

i∈FP yi = 3.97.
The probability-based survey sample sp with the target sample size np = 12 500 (sampling fraction fp = 2.5%)

was selected by Poisson sampling, with inclusion probability 𝜋
(p)
i = (np ⋅ qi)∕

∑
i∈FP qi for i ∈ FP, where qi = const + x3i +

0.03yi to control for the variation of the survey weights, di = 1∕𝜋(p)
i . We set const = −0.26 so that max qi∕min qi = 20.

As noted in Section 2, the ALP and CLW methods do assume somewhat different models for the participation rate.
Thus, it is interesting to check their performances both when their underlying models are correct and when the assumed
participation rate models fail. The volunteer-based nonprobability sample sc (with a target sample size nc) was also
selected by Poisson sampling but with different inclusion probabilities 𝜋(c)

i for i ∈ FP. We considered two scenarios with
different functional forms of 𝜋(c)

i so that the ALP (and FDW) or the CLW method had the true linear logistic regression
propensity model in one scenario but not in the other. In Scenario 1, 𝜋(c)

i = exp(𝛽0 + 𝜷Txi) was the specified participation
rate for the ith population unit to be included into the nonprobability sample. The underlying true propensity model for
ALP (and FDW) methods, shown in (10), was logit(pi) = log{𝜋(c)

i } = 𝛽0 + 𝜷Txi, which implies logit{𝜋(c)
i } = 𝛽0 + 𝜷Txi −

log{1 − 𝜋
(c)
i }. This model differs from the underlying linear model (1) assumed by the CLW method by the addition of the

term log{1 − 𝜋
(c)
i }. In Scenario 2, 𝜋(c)

i = expit(𝛾0 + 𝜸Txi) was specified so that logit{𝜋(c)
i } = 𝛾0 + 𝜸Txi, which was the model

(1) assumed by the CLW method. This model, however, implied that logit(pi) = log{𝜋(c)
i } = 𝛾0 + 𝜸Txi + log{1 − 𝜋

(c)
i },

which was different from the model assumed by the ALP and the FDW method (by the extra term log{1 − 𝜋
(c)
i }). Hence,

ALP and CLW estimates of the population mean are expected to be unbiased in one scenario but not the other since both
methods assume a linear logistic propensity model. The biases of the FDW and RDW estimates, as measured by ΔFDW
and ΔRDW, depend on 𝜋

(c)
i , and go to 0 as 𝜋(c)

i approaches 0. The biases become larger as 𝜋(c)
i increases in either scenario.

In both scenarios, the coefficients were set to be 𝜷 = 𝜸 = (0.18, 0.18,−0.27,−0.27)T . The parameters were chosen so
that 0 < 𝜋

(c)
i < 1 for all units i ∈ FP. The intercepts 𝛽0 and 𝛾0 were also controlled so that the expected number of non-

probability sample units Ec(nc) =
∑

FP 𝜋
(c)
i was varied from 1250, 2500, 5000, to 10 000 with the corresponding overall

participation rate fc = Ec(nc)∕N being 0.5%, 5%, 10%, or 20%.

3.2 Evaluation criteria

We examined the performance of five IPSW estimators of FP mean 𝜇: (1) to (2) 𝜇ALP and 𝜇ALP.S described in Sections 2.2
to 2.5; (3) 𝜇FDW using weights from the ALP method omitting the odds transformation; (4) 𝜇CLW proposed by Chen et al4;
and (5) 𝜇RDWproposed by Wang et al,6 compared with the naïve nonprobability sample mean (𝜇Naive) that did not use
weights, and the weighted nonprobability sample mean, 𝜇TW, with weights equal to the inverse of the true nonprobability
sample inclusion probabilities. Note that 𝜇TW is unavailable in practice because the true nonprobability sample inclusion
probabilities are unknown. Relative bias (%RB), empirical variance (V), mean squared error (MSE) of the point estimates
were used to evaluate the performance of the four IPSW point estimates, calculated by

%RB = 1
B

B∑
b=1

𝜇(b) − 𝜇

𝜇
× 100,V = 1

B − 1

B∑
b=1

{
𝜇(b) − 1

B

B∑
b=1

𝜇(b)

}2

,MSE = 1
B

B∑
b=1

{𝜇(b) − 𝜇}2,

where B = 4000 is the number of simulation runs, 𝜇(b) is one of the point estimates obtained from the bth simulated
sample, and 𝜇 is the true FP mean.

We also evaluated the variance estimates using the variance ratio (VR) and 95% confidence interval coverage
probability (CP), which were calculated as

VR =
1
B

∑B
b=1v̂(b)

V
× 100, and CP = 1

B

B∑
b=1

I(𝜇 ∈ CI(b)),

where v̂(b) is the proposed analytical variance estimate in simulated sample b, and CI(b) = (𝜇(b) − 1.96
√

v̂(b), 𝜇(b) +
1.96

√
v̂(b)) is the 95% confidence interval from the bth simulated sample.
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T A B L E 1 Results from 4000 simulated survey samples and nonprobability samples with low to high participation rates under various
propensity score models

Scenario 1
True propensity model for ALP

Scenario 2
True propensity model for CLW

%RB V (×105) VR MSE (×105) CP5 %RB V (×105) VR MSE (×105) CP

fc = 0.5%

𝜇Naive −42.76 0.22 0.99 −42.61 0.22 1.00

𝜇TW −0.13 4.38 0.93 4.39 0.90 −0.12 4.38 0.93 4.38 0.90

𝜇RDW −0.29 3.73 0.93 3.75 0.87 −0.40 3.63 0.93 3.66 0.87

𝜇FDW −0.28 3.73 0.93 3.75 0.87 −0.40 3.63 0.93 3.66 0.87

𝜇ALP −0.07 3.70 0.93 3.77 0.88 −0.19 3.66 0.93 3.67 0.88

𝜇CLW 0.05 3.87 0.93 3.87 0.89 −0.07 3.76 0.93 3.76 0.88

𝜇ALP.S −0.11 3.54 0.92 3.54 0.87 −0.21 3.45 0.92 3.45 0.87

fc = 5%

𝜇Naive −42.74 0.02 0.99 −41.21 0.02 1.01

𝜇TW −0.04 0.50 0.98 0.50 0.92 −0.02 0.46 1.00 0.47 0.93

𝜇RDW −2.15 0.56 1.00 1.29 0.66 −3.05 0.43 1.01 1.89 0.45

𝜇FDW −2.05 0.57 1.00 1.23 0.68 −2.95 0.43 1.01 1.81 0.47

𝜇ALP −0.01 0.62 1.00 0.62 0.94 −1.03 0.47 1.01 0.64 0.85

𝜇CLW 1.29 0.84 1.00 1.10 0.95 0.01 0.61 1.01 0.61 0.94

𝜇ALP.S −0.05 0.45 1.00 0.45 0.92 −0.63 0.35 1.02 0.41 0.86

fc = 10%

𝜇Naive −42.74 0.01 1.11 −39.65 0.01 1.11

𝜇TW −0.01 0.25 1.02 0.25 0.94 −0.01 0.22 1.01 0.22 0.94

𝜇RDW −4.25 0.34 1.00 3.20 0.17 −5.62 0.22 0.99 5.20 0.02

𝜇FDW −3.87 0.35 1.00 2.71 0.24 −5.28 0.22 0.99 4.62 0.03

𝜇ALP 0.01 0.42 1.00 0.42 0.95 −1.81 0.27 0.99 0.79 0.65

𝜇CLW 2.94 0.80 1.00 2.16 0.76 0.03 0.42 0.99 0.42 0.95

𝜇ALP.S −0.03 0.27 1.02 0.27 0.94 −0.86 0.18 1.01 0.29 0.81

fc = 20%

𝜇Naive −42.75 0.00 1.26 −36.50 0.01 1.21

𝜇TW −0.02 0.15 0.93 0.15 0.93 −0.02 0.11 0.96 0.11 0.93

𝜇RDW −8.58 0.21 0.95 11.83 0.00 −9.59 0.10 0.97 14.60 0.00

𝜇FDW −7.15 0.23 0.96 8.29 0.01 −8.51 0.11 0.98 11.53 0.00

𝜇ALP 0.00 0.32 0.96 0.32 0.95 −2.85 0.16 0.98 1.44 0.19

𝜇CLW 7.80 1.67 0.92 11.27 0.06 0.01 0.33 0.98 0.33 0.95

𝜇ALP.S −0.03 0.19 0.96 0.19 0.94 −1.02 0.10 1.00 0.27 0.73

Abbreviations: ALP, adjusted logistic propensity; CP, coverage probability; MSE, mean squared error; VR, variance ratio.

3.3 Results

Table 1 presents simulation results for the seven nonprobability sample estimators of the FP mean. The naïve esti-
mator 𝜇Naive that ignored the underlying sampling scheme had relative biases ranging from −36.5% to −42.8% while
the true weighted nonprobability sample estimator, 𝜇TW, was approximately unbiased in all scenarios. The variance
of 𝜇Naive was much smaller than that of the other estimators, but its bias caused the MSE to be extremely high
(not reported).
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Consistent with the bias theory in Section 2, the RDW point estimator 𝜇RDW and the FDW
point estimator 𝜇FDW were approximately unbiased when 𝜋

(c)
i was small for all i ∈ FP and the over-

all participation rate fc = N−1 ∑
i∈FP 𝜋

(c)
i was low, but more biased as fc increased. The CPs decreased

correspondingly.
As expected, the ALP estimators 𝜇ALP and 𝜇ALP.S (or the CLW estimator 𝜇CLW) consistently provided unbi-

ased point estimators in the scenarios where they were expected to be unbiased, that is, scenario 1 for 𝜇ALP and
𝜇ALP.S, and scenario 2 for 𝜇CLW. When the underlying model was incorrect for an estimator, biases occurred. For
example, the relative biases of 𝜇CLW in scenario 1 were 0.05%, 1.29%, 2.94%, and 7.80% as fc increased from 0.5%,
5%, 10%, to 20%, respectively. In scenario 2, the corresponding relative biases for 𝜇ALP are −0.19%, −1.03%, −1.81%,
and −2.85%.

Consistent with the theory in Section 2, the ALP estimator𝜇ALP was more efficient than𝜇CLW with consistently smaller
empirical variances in all scenarios, especially when the nonprobability cohort size was much larger than the probability
sample size. Among all considered methods, 𝜇ALP.S was approximately unbiased with the smallest variance under Sce-
nario 1 of the correct model. Under Scenario 2 of a misspecified model, 𝜇ALP.S was biased but most efficient, and therefore
achieved smallest MSE.

The variance estimators for 𝜇ALP, 𝜇ALP.S, and 𝜇CLW performed very well (with VR’s near 1), providing CPs close to the
nominal level under the correct propensity models when fc was large. The lower coverage of the nominal level (about
88%) when fc = 0.5% was due to the small sample bias with skewed distributions of underlying sampling weights in the
selected nonprobability sample.

4 REAL DATA EXAMPLE

We use the same data example as Wang et al6 for illustration purposes. We estimated prospective 15-year all-cause,
all-cancer, and heart disease mortality rates for adults in the US using the adult household interview part of The
Third U.S. National Health and Nutrition Examination Survey (NHANES III) III conducted in 1988 to 1994, with
sample size nc = 20 050. We ignored all complex design features of NHANES III and treated it as a nonproba-
bility sample. The coefficient of variation of sample weights is 125%, indicating highly variable selection prob-
abilities, and thus low representativeness of the unweighted sample. For estimating mortality rates, we approxi-
mated that the entire sample of NHANES III was randomly selected in 1991 (the midpoint of the data collection
time period).

For the reference survey, we used 1994 U.S. National Health Interview Survey (NHIS) respondents to the supplement
for monitoring achievement of the Healthy People Year 2000 objectives. Adults aged 18 and older are included (sample size
np = 19 738). The 1994 NHIS used a multistage stratified cluster sample design with 125 strata and 248 pseudo-PSUs.17,18

We collapsed strata with only one PSU with the next nearest stratum for variance estimation purposes.19 Both samples
of NHANES III and NHIS were linked to National Death Index (NDI) for mortality, allowing us to quantify the relative
bias of unweighted NHANES estimates, assuming the NHIS estimates as the gold standard. Notice that the mortality
information was obtained by statistical linkage between the survey sample and NDI,20 but not responses from the ques-
tionnaires. The all-cancer and heart-disease mortality were classified according to National Center for Health Statistics
death code.21,22

The usage of NHANES III as the “nonprobability cohort” has several advantages for illuminating the performance of
the propensity weighting methods. The “nonprobability sample” and the reference survey sample have approximately the
same target population, data collection mode, and similar questionnaires. This ensures that the pseudo-weighted “non-
probability sample” could potentially represent the target population, and thus enables us to characterize the performance
of the propensity weighting methods in real data.

The distributions of selected common covariates and variables of interests in the two samples are presented
in Table 2. As expected, the variables in the weighted samples of NHANES and 1994 NHIS have very close dis-
tributions because both weighted samples represent approximately the same FP. By contrast, covariates distribute
quite differently in the unweighted NHANES from the weighted samples, especially for design variables such as age,
race/ethnicity, poverty, and region, which leads to large biases in mortality rates estimated from the unweighted
NHANES.

The propensity model included main effects of common demographic characteristics (age, sex race/ethnicity, region,
and marital status), socioeconomic status (education level, poverty, and household income), tobacco usage (smoking
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T A B L E 2 Distribution of selected common variables in NIH-AARP and NHIS

NHIS 1994 NHANES III

np = 19 738 N̂p = 189 608 549 nc = 20 050 N̂c = 187 647 206

Variable Total count % Weighted % % Weighted %

Age Group 18-24 years 10.5 13.3 15.8 15.8

25-44 years 42.9 43.7 35.4 43.7

45-64 years 26.1 26.6 22.6 24.6

65 years and older 20.5 16.4 26.2 16.0

Race NH-White 76.1 75.9 42.3 76.0

NH-Black 12.6 11.2 27.4 11.2

Hispanic 8.0 9.0 28.9 9.3

NH-other 3.3 4.0 1.5 3.5

Region Northeast 20.7 20.5 14.6 20.8

Midwest 26.1 25.1 19.2 24.1

South 31.5 32.5 42.7 34.3

West 21.6 21.9 23.5 20.9

Poverty No 79.1 82.3 67.9 80.3

Yes 13.1 10.6 21.4 12.1

Unknown 7.8 7.0 10.7 7.6

Education Lower than high school 20.1 19.1 42.5 26.6

High school/Some college 58.7 59.6 45.9 54.1

College or higher 21.2 21.3 11.6 19.3

Health status Excellent/Very good 60.5 62.0 39.0 51.6

Good 25.7 25.7 35.9 32.7

Fair/Poor 13.8 12.3 25.1 15.7

Mortality All-cause 20.8 17.6 26.7 17.1

Heart-disease 9.43 5.69 4.95 4.04

All-cancer 5.57 4.11 5.10 4.47

status, and chewing tobacco), health variables (body mass index and self-reported health status), and a quadratic term for
age. Appendix D shows the final propensity models for the five considered methods.

To evaluate the performance of the five PS-based methods, we used relative difference from the NHIS estimate
%RD = (𝜇 − 𝜇NHIS)∕𝜇NHIS × 100, TL variance estimate (V), and estimated MSE = (𝜇 − 𝜇NHIS)2 + V , which treated the
NHIS estimate as truth. Table 3 shows that the naïve NHANES III estimate of overall mortality was ∼52% biased from
the NHIS estimate because older people who have higher mortalities were oversampled (Table 2). All five IPSW meth-
ods substantially reduced the bias from the naïve estimate. Consistent with the simulation results, the ALP, FDW, RDW,
and CLW method yielded close estimates when the sample fraction of the nonprobability sample was small (̂fc = nc∕N̂p =
1.06 × 10−4 calculated from Table 2). The ALP.S method, by scaling the NHIS sample weights in propensity estima-
tion, reduced more bias than the other methods, and was more efficient. Therefore, the ALP.S estimate had the smallest
MSE. The results for inference of all-cancer mortality had the similar pattern as the results for all-cause mortality. All
pseudo-weighting methods removed most bias of the naïve NHANES estimate (with %RD=−3.21%∼ 2.07% reduced from
24.68%). By contrast, for heart-disease mortality, all pseudo-weighting methods were substantially less biased than the
naïve estimate, with %RD = 42.58%∼ 57.78% reduced from 133.66%, but the alternative estimators still had undesirably
large biases themselves. The bias reduction is not as much as that for all-cancer or all-cause mortality, and this may be
due to the omission of important predictors of having heart disease and of being observed in the nonprobability sample
in the propensity model.
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T A B L E 3 Relative difference (%RD) of all-cause 15-year mortality estimates from the NHIS estimate
with estimated variance (V) and mean squared error (MSE)

Mortality Method Estimate (%) %RD V (×105) MSE (×105)

All cause NHIS 17.6

Naïve 26.7 52.16

ALP 18.6 6.08 1.87 13.27

FDW 18.6 6.08 1.87 13.28

RDW 18.6 6.08 1.87 13.28

CLW 18.6 6.07 1.87 13.24

ALP.S 17.2 −2.05 1.08 2.37

All cancer NHIS 4.5

Naïve 5.6 24.68

ALP 4.6 2.07 0.38 0.46

FDW 4.6 2.07 0.38 0.46

RDW 4.6 2.07 0.38 0.46

CLW 4.6 2.06 0.37 0.46

ALP.S 4.3 −3.21 0.32 0.53

Heart disease NHIS 4.0

Naïve 9.4 133.66

ALP 6.4 57.78 0.50 54.88

FDW 6.4 57.78 0.50 54.90

RDW 6.4 57.78 0.50 54.90

CLW 6.4 57.77 0.50 54.87

ALP.S 5.8 42.58 0.33 29.86

Abbreviations: ALP, adjusted logistic propensity; RDW, rescaled design weight.

5 DISCUSSION

This article proposed ALP weighting methods for population inference using nonprobability samples. The proposed ALP
method corrects the bias in the RDW method7 by formulating the problem in an innovative way. As does the RDW method,
the proposed ALP method retains the advantage of easy implementation by fitting a propensity model with survey weights
in ready-to-use software. The proposed ALP estimators are design consistent if the assumed model for participation rate
is correct. TL variance estimators for ALP estimates are derived. Consistency of the ALP FP mean estimators was proved
theoretically and evaluated numerically.

A primary competitor to ALP is the CLW estimator developed by Chen et al.4 If the nonprobability cohort is a small
fraction of the population, ALP and CLW are very similar, although ALP does have computational advantages regardless
of the size of the sampling fraction. As the sampling fraction increases, ALP and CLW become more distinct.

Both ALP and CLW methods fit a propensity model to the combined nonprobability sample and a weighted sur-
vey sample. Highly variable weights in the combined sample can lead to low efficiency of the estimated propensity
model coefficients. Therefore, the variances of the ALP and the CLW estimators of the FP means can be large in some
applications. However, the proposed ALP is proved analytically and numerically to have a variance that is less than
or equal to that of the CLW method regardless of whether the propensity model underlying ALP is correct. It worth
noting that ALP and CLW methods assume different logistic regression models for propensity score estimation. Propen-
sity is defined as pi = P(i ∈ s∗c |s∗c ∪ FP) by ALP in (9) and 𝜋i = P(i ∈ sc|FP) by CLW in (2). Model diagnostics should be
developed to select which propensity model is more appropriate for a given dataset and will be the focus of our future
research.
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An alternative ALP with scaled survey weights in the logistic regression propensity model produces consistent propen-
sity estimates and further improves efficiency as shown in the simulation and the real data example. The scaled ALP had
the smallest MSE in every scenario in our simulation study regardless of underlying model and had the smallest MSE for
two of the three mortality causes in our real data application. The CLW estimator with the scaled survey weights, albeit
more efficient than the unscaled CLW, is biased (simulation results not shown). The extension of scaling technique to the
CLW method and other binary regression propensity models requires further investigation.

The theory for the ALP method implies that pi > 1∕2 since pi defines the probability of the nonprobability sam-
ple inclusion among the combined FP units and the nonprobability sample, that is, P(i ∈ s∗c |s∗c ∪ FP). In estimation,
however, p̂i > 1∕2 can happen, especially in the unusual case where the nonprobability sample s∗c is a large propor-
tion of the population. Fortunately, this will not be a concern for the estimation of population mean or regression
coefficients. By scaling survey weights in the propensity model for the ALP method, we can control for all ALP weights
wALP.S

i = 1∕𝜋ALP.S
i to be greater than one. As proved in Section 2.5, using scaled survey weights, wALP.S

i = 𝜆 ⋅ exp−1(𝜷
T
𝜆xi) =

exp−1(𝛽∗0𝜆 + 𝜷
T
1𝜆xi), would not bias the mean estimates. For population total estimation, an option is to estimate the pop-

ulation mean first and then multiply by a known or estimated population size from an independent source. Another
approach to avoid estimated pi > 1∕2 is to solve the pseudo-estimating equations in (14) using a constrained optimiza-
tion algorithm that requires p̂i ≤ 1∕2 for all units. This would, of course, negate the computation advantage of the ALP
estimator.

Both ALP and CLW are inverse-propensity-score-weighting methods that directly use (functions of) the propensity
score to estimate the cohort participation rate. They can be sensitive to propensity model misspecification (eg, missing
interaction terms in the fitted propensity model) due to inaccurate estimates of participation rates. Furthermore, extreme
pseudo-weights can occur if the estimate of the participation rate is close to 0. By contrast, propensity-score-based match-
ing methods (not included in this study) may be more robust to the model misspecification and less likely to produce
extreme pseudo-weights, because they use propensity scores to measure the similarity between survey and cohort sam-
ple units and distribute survey sample weights to the cohort based on their similarity. Examples of matching methods are
propensity-score adjustment by subclassification,23 propensity-score-based kernel weighting methods,5,6,16 and River’s
matching method.24

There are a number of shortcomings associated with the estimation of propensity scores using logistic regression. First,
the logistic model is susceptible to model misspecification, requiring assumptions regarding correct variable selection
and functional form, including the choice of polynomial terms and multiple-way interactions. If any of these assump-
tions are incorrect, propensity score estimates can be biased, and balance may not be achieved when conditioning on the
estimated PS. Second, implementing a search routine for model specification, such as repeatedly fitting logistic regres-
sion models while in/excluding predictor variables, interactions, or transformations of variables can be computationally
infeasible or suboptimal. In this context, parametric regression can be limiting in terms of possible model structures that
can be searched over, particularly when many potential predictors are present (high-dimensional data). Various machine
learning methods for estimating the propensity score that incorporate survey weights will also be our future research
interest.
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