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Abstract  

Many epidemiologic studies forgo probability sampling and turn to nonprobability volunteer-based 

samples because of cost, response burden, and invasiveness of biological samples. However, finite 

population inference is difficult to make from the nonprobability sample due to the lack of 

population representativeness. Aiming for making inferences at the population level using 

nonprobability samples, various inverse propensity score weighting (IPSW) methods have been 

studied with the propensity defined by the participation rate of population units in the 

nonprobability sample. In this paper, we propose an adjusted logistic propensity weighting (ALP) 

method to estimate the participation rates for nonprobability sample units. The proposed ALP 

method is easy to implement by ready-to-use software while producing approximately unbiased 

estimators for population quantities regardless of the nonprobability sample rate. The efficiency of 

the ALP estimator can be further improved by scaling the survey sample weights in propensity 

estimation. Taylor linearization variance estimators are proposed for ALP estimators of finite 

population means that account for all sources of variability. The proposed ALP methods are 

evaluated numerically via simulation studies and empirically using the naïve unweighted National 

Health and Nutrition Examination Survey III sample, while taking the 1997 National Health 

Interview Survey as the reference, to estimate the 15-year mortality rates. 

Keywords: Nonprobability sample, finite population inference, propensity score weighting, 

variance estimation, survey sampling 
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1. INTRODUCTION 

In the big data era, assembling volunteer-based epidemiologic cohorts within integrated healthcare 

systems that have electronic health records and a large pre-existing base of volunteers are 

increasingly popular due to their cost-and-time efficiency, such as the UK Biobank in the UK 

National Health Service. 1 However, samples of volunteer-based cohorts are not randomly selected 

from the underlying finite target population, and therefore cannot well represent the target 

population. As a result, the naïve sample estimates obtained from the cohort can be biased for the 

finite population quantities. For example, the estimated all-cause mortality rate in the UK Biobank 

was only half that of the UK population, 2 and the Biobank is not representative of the UK 

population with regard to many sociodemographic, physical, lifestyle and health-related 

characteristics.

Aiming for making inferences at the population level using nonprobability samples, various 

propensity-score weighting, and matching methods have been proposed to improve the population 

representativeness of nonprobability samples, by using probability-based survey samples as 

external references in survey research. 3-6 

Inverse propensity score weighting (IPSW) methods have been studied with the propensity 

defined by the participation rate of population units in the nonprobability sample. We review two 

methods—both assume that the units in the nonprobability sample are observed according to some 

random, but unknown, mechanism. Because that mechanism is unknown, the inclusion probability 

of each unit must be estimated. As described in section 2, all methods are based on estimating a 

pseudo log-likelihood, although the methods differ in their details. Valliant and Dever 7 estimated 

participation rates by fitting a logistic regression model to the combined nonprobability sample and 

a reference, probability sample. Sample weights for the probability sample were scaled by a 



4 

constant so that the scaled probability sample was assumed to represent the complement of the 

nonprobability sample. Each unit in the nonprobability sample was assigned a weight of one. This 

results in the sum of the scaled weights in the combined probability plus nonprobability sample 

being an estimate of the population size. This method will be referred to as the rescaled design 

weight (RDW) method. The participation rate for each nonprobability sample unit was estimated 

by the inverse of the estimated inclusion (or participation) probability. 

The RDW estimator is biased especially when the participation rate of the nonprobability 

sample is large, as noted by Chen et al. 4 As a remedy, Chen et al 4 estimated the participation rate 

by manipulating the log-likelihood estimating equation in a somewhat different way. The resulting 

estimator, denoted by CLW, is consistent and approximately unbiased regardless of the magnitude 

of participation rates. Compared to the CLW method, which requires special programming, the 

RDW method has the advantage of easy implementation by ready-to-use software such as R, Stata, 

or SAS. Survey practitioners can simply fit a logistic regression model with scaled survey weights 

in the probability sample to obtain the estimated participation rates.  

In this paper, we propose an adjusted logistic propensity weighting (ALP) method to 

estimate the participation rates for nonprobability sample units. Like the CLW, the proposed ALP 

method relaxes the assumptions required by the RDW method, 7, 8 by formulating the method in an 

innovative way. As in the RDW method, the proposed ALP method retains the advantage of easy 

implementation by fitting a propensity model with survey weights in ready-to-use software. Taylor 

linearization variance estimators are proposed for ALP estimates that account for variability due to 

differential pseudo-weights in the nonprobability sample, complex survey design of the reference 

probability survey, as well as the estimation of the propensity scores. The variance of the proposed 

estimator has the order of the inverse of the nonprobability sample size (as shown in Appendix C). 
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Moreover, under the logistic propensity model, the ALP method can flexibly scale the probability 

sample weights for propensity estimation to further improve efficiency. In summary, the 

contributions of the proposed ALP method include 1) easy implementation with ready-to-use 

software, 2) high efficiency, as well as 3) the justification of a set of pseudo-estimating equations 

(2.3.7) that underly the straightforward implementation in survey software.  

2. METHODS 

2.1. Basic setting 

Let 𝐹𝐹𝐹𝐹 = {1,⋯ ,𝑁𝑁} represent the finite population with size 𝑁𝑁. We are interested in estimating the 

finite population mean 𝜇𝜇 = 𝑁𝑁−1 ∑ 𝑦𝑦𝑖𝑖𝑖𝑖∈𝐹𝐹𝐹𝐹 . Suppose a volunteer-based nonprobability sample 𝑠𝑠𝑐𝑐 of 

size 𝑛𝑛𝑐𝑐 is selected from 𝐹𝐹𝐹𝐹 by a self-selection mechanism, with 𝛿𝛿𝑖𝑖
(𝑐𝑐) (= 1 if 𝑖𝑖 ∈ 𝑠𝑠𝑐𝑐; 0 otherwise) 

denoting the indicator of 𝑠𝑠𝑐𝑐 inclusion. The underlying participation rate of nonprobability sample 

for a finite population unit is defined as 

𝜋𝜋𝑖𝑖
(𝑐𝑐) = 𝐹𝐹( 𝑖𝑖 ∈ 𝑠𝑠𝑐𝑐 ∣∣ 𝐹𝐹𝐹𝐹 ) = 𝐸𝐸𝑐𝑐� 𝛿𝛿𝑖𝑖

(𝑐𝑐)
∣∣ 𝑦𝑦𝑖𝑖 ,𝒙𝒙𝑖𝑖 �, 𝑖𝑖 ∈ 𝐹𝐹𝐹𝐹 

where the expectation 𝐸𝐸𝑐𝑐 is with respect to the nonprobability sample selection, and 𝒙𝒙𝑖𝑖 is a vector 

of self-selection variables, i.e., covariates related to the probability of inclusion in 𝑠𝑠𝑐𝑐 . The 

corresponding implicit nonprobability sample weight is 𝑤𝑤𝑖𝑖 = 1/𝜋𝜋𝑖𝑖
(𝑐𝑐) for 𝑖𝑖 ∈ 𝐹𝐹𝐹𝐹. 

We consider the following assumptions for the nonprobability sample self-selection.

A1. The nonprobability sample selection is uncorrelated with the variable of interest given the 

covariates, i.e., 𝜋𝜋𝑖𝑖
(𝑐𝑐) = 𝐸𝐸𝑐𝑐� 𝛿𝛿𝑖𝑖

(𝑐𝑐)
∣∣ 𝑦𝑦𝑖𝑖 ,𝒙𝒙𝑖𝑖 � = 𝐸𝐸𝑐𝑐� 𝛿𝛿𝑖𝑖

(𝑐𝑐)
∣∣  𝒙𝒙𝑖𝑖 � for 𝑖𝑖 ∈ 𝐹𝐹𝐹𝐹.

A2. All finite population units have a positive participation rate, i.e., 𝜋𝜋𝑖𝑖
(𝑐𝑐) > 0 for 𝑖𝑖 ∈ 𝐹𝐹𝐹𝐹.
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A3. The indicators of participation in the nonprobability cohort are uncorrelated with each other 

given the self-selection variables, i.e., 𝑐𝑐𝑐𝑐𝑐𝑐� 𝛿𝛿𝑖𝑖
(𝑐𝑐),𝛿𝛿𝑗𝑗

(𝑐𝑐)
∣∣ 𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗 � = 0 for 𝑖𝑖 ≠ 𝑗𝑗.

 An independent reference probability-based survey sample 𝑠𝑠𝑝𝑝  of size 𝑛𝑛𝑝𝑝  is randomly 

selected from 𝐹𝐹𝐹𝐹. The sample inclusion indicator, selection probability, and the corresponding 

sample weights are defined by 𝛿𝛿𝑖𝑖
(𝑝𝑝)(=1 if 𝑖𝑖 ∈ 𝑠𝑠𝑝𝑝; 0 otherwise), 𝜋𝜋𝑖𝑖

(𝑝𝑝) = 𝐸𝐸𝑝𝑝 � 𝛿𝛿𝑖𝑖
(𝑝𝑝)

∣∣ 𝒙𝒙𝑖𝑖 �, and 𝑑𝑑𝑖𝑖 =

1/𝜋𝜋𝑖𝑖
(𝑝𝑝), respectively, where 𝐸𝐸𝑝𝑝 is with respect to the survey sample selection. 

2.2. Existing logistic propensity weighting method 

In this section, we first briefly introduce the existing RDW and CLW methods and discuss their 

pros and cons.  

2.2.1 Rescaled design weight method (RDW) 

Valliant and Dever 6, 7 assumed a logistic regression model for the participation rates 𝜋𝜋𝑖𝑖
(𝑐𝑐)(𝜸𝜸) 

 log �
𝜋𝜋𝑖𝑖

(𝑐𝑐)(𝜸𝜸)

1 − 𝜋𝜋𝑖𝑖
(𝑐𝑐)(𝜸𝜸)

� = 𝜸𝜸𝑇𝑇𝒙𝒙𝑖𝑖 , for 𝑖𝑖 ∈ 𝐹𝐹𝐹𝐹, (2.2.1) 

where 𝜸𝜸 is a vector of unknown parameters, and 𝒙𝒙𝑖𝑖 is a vector of covariates for 𝑖𝑖 ∈ 𝐹𝐹𝐹𝐹. To simplify 

the notation, we use 𝜋𝜋𝑖𝑖
(𝑐𝑐) below. They considered (implicitly) the population likelihood function of 

𝜋𝜋𝑖𝑖
(𝑐𝑐) as

 𝐿𝐿(𝜸𝜸) = � �𝜋𝜋𝑖𝑖
(𝑐𝑐)�

𝛿𝛿𝑖𝑖
(𝑐𝑐)

�1 − 𝜋𝜋𝑖𝑖
(𝑐𝑐)�

1−𝛿𝛿𝑖𝑖
(𝑐𝑐)

𝑖𝑖∈𝐹𝐹𝐹𝐹
, (2.2.2) 

Then, the log-likelihood function can be written as

 

𝑙𝑙(𝜸𝜸) = � �𝛿𝛿𝑖𝑖
(𝑐𝑐) log𝜋𝜋𝑖𝑖

(𝑐𝑐) + �1 − 𝛿𝛿𝑖𝑖
(𝑐𝑐)� log�1 − 𝜋𝜋𝑖𝑖

(𝑐𝑐)��
𝑖𝑖∈𝐹𝐹𝐹𝐹

 

= � log𝜋𝜋𝑖𝑖
(𝑐𝑐)

𝑖𝑖∈𝑠𝑠𝑐𝑐
+ � log�1 − 𝜋𝜋𝑖𝑖

(𝑐𝑐)�
𝑖𝑖∈𝐹𝐹𝐹𝐹−𝑠𝑠𝑐𝑐

, 
(2.2.3) 
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where the set 𝐹𝐹𝐹𝐹 − 𝑠𝑠𝑐𝑐  represents the finite population units that are not self-selected into the 

nonprobability sample. Since 𝐹𝐹𝐹𝐹 − 𝑠𝑠𝑐𝑐  is not available in practice, the pseudo-loglikelihood 

function was constructed to estimate 𝑙𝑙(𝜸𝜸) by 

 𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅(𝜸𝜸) = � 𝑤𝑤𝑖𝑖∗ log𝜋𝜋𝑖𝑖
(𝑐𝑐)

𝑖𝑖∈𝑠𝑠𝑐𝑐
+ � 𝑤𝑤𝑖𝑖∗ log�1 − 𝜋𝜋𝑖𝑖

(𝑐𝑐)�
𝑖𝑖∈𝑠𝑠𝑝𝑝

 
(2.2.4) 

where 𝑤𝑤𝑖𝑖∗ = �
1,                            for 𝑖𝑖 ∈ 𝑠𝑠𝑐𝑐
𝑑𝑑𝑖𝑖�𝑁𝑁�𝑝𝑝 − 𝑛𝑛𝑐𝑐�/𝑁𝑁�𝑝𝑝, for 𝑖𝑖 ∈ 𝑠𝑠𝑝𝑝

, with 𝑁𝑁�𝑝𝑝 = ∑ 𝑑𝑑𝑖𝑖𝑖𝑖∈𝑠𝑠𝑝𝑝  being the survey estimate of the 

target finite population size 𝑁𝑁. This leads to the total of the scaled weights across the probability 

sample units being ∑ 𝑤𝑤𝑖𝑖∗𝑖𝑖∈𝑠𝑠𝑝𝑝 =𝑁𝑁�𝑝𝑝 − 𝑛𝑛𝑐𝑐. The rationale for rescaling is to weight the survey sample to 

represent the complement of 𝑠𝑠𝑐𝑐 in the finite population, i.e., the set 𝐹𝐹𝐹𝐹 − 𝑠𝑠𝑐𝑐. Under the logistic 

regression model, the nonprobability sample participation rate 𝜋𝜋𝑖𝑖
(𝑐𝑐) for 𝑖𝑖 ∈ 𝑠𝑠𝑐𝑐 can be estimated by 

fitting Model (2.2.1) to the combined sample of 𝑠𝑠𝑐𝑐 and scaled-weighted 𝑠𝑠𝑝𝑝 with scaled weights 𝑤𝑤𝑖𝑖∗, 

leading to the RDW estimates.

The RDW method has been shown to effectively reduce the bias of the naïve nonprobability 

sample estimates. However, the summand ∑ log�1 − 𝜋𝜋𝑖𝑖
(𝑐𝑐)�𝑖𝑖∈𝐹𝐹𝐹𝐹−𝑠𝑠𝑐𝑐  in (2.2.3) is not a fixed finite 

population total because units in the nonprobability sample  are treated as being randomly 

observed. This leads to a bias as shown below.

 Comparing the expectation of the population log-likelihood function 𝑙𝑙(𝜸𝜸) in (2.2.3) and the 

expectation of the pseudo log-likelihood 𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅(𝜸𝜸) in (2.2.4), and letting 𝐸𝐸(⋅) = 𝐸𝐸𝑐𝑐𝐸𝐸𝑝𝑝(⋅) we have 

𝐸𝐸{𝑙𝑙(𝜸𝜸)} = � 𝜋𝜋𝑖𝑖
(𝑐𝑐) log𝜋𝜋𝑖𝑖

(𝑐𝑐)

𝑖𝑖∈𝐹𝐹𝐹𝐹
+ � �1 − 𝜋𝜋𝑖𝑖

(𝑐𝑐)� log�1 − 𝜋𝜋𝑖𝑖
(𝑐𝑐)�

𝑖𝑖∈𝐹𝐹𝐹𝐹
, and  

     𝐸𝐸�𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅(𝜸𝜸)� = 𝐸𝐸𝑐𝑐𝐸𝐸𝑝𝑝�𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅(𝜸𝜸)�

= 𝐸𝐸𝑐𝑐 �� 𝛿𝛿𝑖𝑖
(𝑐𝑐) log𝜋𝜋𝑖𝑖

(𝑐𝑐)

𝑖𝑖∈𝐹𝐹𝐹𝐹
� + 𝐸𝐸𝑝𝑝 �� 𝛿𝛿𝑖𝑖

(𝑝𝑝) ⋅
𝑁𝑁�𝑝𝑝 − 𝑛𝑛𝑐𝑐
𝑁𝑁�𝑝𝑝

𝑑𝑑𝑖𝑖 log�1 − 𝜋𝜋𝑖𝑖
(𝑐𝑐)�

𝑖𝑖∈𝐹𝐹𝐹𝐹
� 

cs
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=̇ � 𝜋𝜋𝑖𝑖
(𝑐𝑐) log𝜋𝜋𝑖𝑖

(𝑐𝑐)

𝑖𝑖∈𝐹𝐹𝐹𝐹
+ � �1 −

𝑛𝑛𝑐𝑐
𝑁𝑁
� log�1 − 𝜋𝜋𝑖𝑖

(𝑐𝑐)�
𝑖𝑖∈𝐹𝐹𝐹𝐹

 

by assuming 𝐸𝐸𝑝𝑝�𝑁𝑁�𝑝𝑝� = 𝑁𝑁. The difference of the two expectations, denoted by Δ𝑅𝑅𝑅𝑅𝑅𝑅, can be written 

as

Δ𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐸𝐸�𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅(𝜸𝜸)� − 𝐸𝐸{𝑙𝑙(𝜸𝜸)} = � �
𝑛𝑛𝑐𝑐
𝑁𝑁
− 𝜋𝜋𝑖𝑖

(𝑐𝑐)� log�1 − 𝜋𝜋𝑖𝑖
(𝑐𝑐)�

𝑖𝑖∈𝐹𝐹𝐹𝐹
 

which, in general, is nonzero. Accordingly, the nonprobability sample participation rates estimated 

by solving for 𝜸𝜸 in 𝜕𝜕𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅(𝜸𝜸)/𝜕𝜕𝜸𝜸 = 0 under Model (2.2.1) can be biased, unless either (i) the 

nonprobability sample units have small participation rates, i.e., both 𝑛𝑛𝑐𝑐/𝑁𝑁 and 𝜋𝜋𝑖𝑖
(𝑐𝑐) are close to 0 

for all 𝑖𝑖 ∈ 𝐹𝐹𝐹𝐹, in which case log�1 − 𝜋𝜋𝑖𝑖
(𝑐𝑐)� ≈ 0, or (ii) all population units are equally likely to 

participate in the nonprobability sample, i.e. 𝜋𝜋𝑖𝑖
(𝑐𝑐) ≡ 𝑛𝑛𝑐𝑐/𝑁𝑁. In many practical applications, (i) will 

hold. For example, suppose that 𝑛𝑛𝑐𝑐 = 1000 and the US population age 18 and over is the target 

population. The population size is approximately 210 million, so that 𝑛𝑛𝑐𝑐/𝑁𝑁 =̇ 5 × 10−6. If, instead, 

the population is for a small state like Wyoming where the 18+ population size is about 365,000, 

then 𝑛𝑛𝑐𝑐/𝑁𝑁 =̇ 0.0027 . In both examples, with such small sampling fractions, all �𝜋𝜋𝑖𝑖
(𝑐𝑐), 𝑖𝑖 ∈ 𝑠𝑠𝑐𝑐� 

should be near zero also. 

 

 CLW Method

Chen et al 4 proposed another IPSW method using the same likelihood function 𝐿𝐿(𝜸𝜸) in (2.2.2), but 

rewriting the population log-likelihood as

 𝑙𝑙(𝜸𝜸) = � log
𝜋𝜋𝑖𝑖

(𝑐𝑐)

1 − 𝜋𝜋𝑖𝑖
(𝑐𝑐)𝑖𝑖∈𝑠𝑠𝑐𝑐

+ � log�1 − 𝜋𝜋𝑖𝑖
(𝑐𝑐)�

𝑖𝑖∈𝐹𝐹𝐹𝐹
. (2.2.5) 
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In contrast to the RDW method, CLW estimated the population total of log�1 − 𝜋𝜋𝑖𝑖
(𝑐𝑐)� by a weighted 

reference sample total and constructed the pseudo log-likelihood as 

 𝑙𝑙𝐶𝐶𝐶𝐶𝑅𝑅(𝜸𝜸) = � log
𝜋𝜋𝑖𝑖

(𝑐𝑐)

1 − 𝜋𝜋𝑖𝑖
(𝑐𝑐)𝑖𝑖∈𝑠𝑠𝑐𝑐

+ � 𝑑𝑑𝑖𝑖 log�1 − 𝜋𝜋𝑖𝑖
(𝑐𝑐)�

𝑖𝑖∈𝑠𝑠𝑠𝑠
. (2.2.6) 

Under the same logistic regression model (2.2.1), the participation rate 𝜋𝜋𝑖𝑖
(𝑐𝑐)  was estimated by 

solving the pseudo estimation equation 

 �̃�𝑆(𝜸𝜸) =
1
𝑁𝑁
�� 𝒙𝒙𝑖𝑖

𝑖𝑖∈𝑠𝑠𝑐𝑐
−� 𝑑𝑑𝑖𝑖𝜋𝜋𝑖𝑖

(𝑐𝑐)𝒙𝒙𝑖𝑖
𝑖𝑖∈𝑠𝑠𝑠𝑠

� = 0, (2.2.7) 

derived from the pseudo log-likelihood (2.2.6). The resulting CLW weights are calculated as 

�𝑤𝑤𝑖𝑖𝐶𝐶𝐶𝐶𝑅𝑅 = 1 + exp−1(𝜸𝜸�𝑇𝑇𝒙𝒙𝑖𝑖), 𝑖𝑖 ∈ 𝑠𝑠𝑐𝑐� . Chen et al 4 proved that the CLW estimator of the finite 

population mean, �̂�𝜇𝐶𝐶𝐶𝐶𝑅𝑅 = �∑ 𝑤𝑤𝑖𝑖𝐶𝐶𝐶𝐶𝑅𝑅𝑖𝑖∈𝑠𝑠𝑐𝑐 �−1 ∑ 𝑤𝑤𝑖𝑖𝐶𝐶𝐶𝐶𝑅𝑅𝑦𝑦𝑖𝑖𝑖𝑖∈𝑠𝑠𝑐𝑐 , was design consistent when model 

(2.2.1) for the participation rates was correct. 

In contrast to the RDW method, CLW does not require condition (i) or (ii) in the RDW method 

for unbiased estimation of participation rates �𝜋𝜋𝑖𝑖
(𝑐𝑐), 𝑖𝑖 ∈ 𝑠𝑠𝑐𝑐�. In the next section, we propose an 

adjusted logistic propensity (ALP) method, which corrects the bias in the RDW method. The 

proposed ALP method provides consistent estimators of finite population means and is as easy to 

implement as the RDW method. 

2.3. Adjusted logistic propensity method (ALP) 

The ALP method also aims to estimate the cohort sample participation rates �𝜋𝜋𝑖𝑖
(𝑐𝑐), 𝑖𝑖 ∈ 𝑠𝑠𝑐𝑐� and use 

the inverse of estimated 𝜋𝜋𝑖𝑖
(𝑐𝑐)  as the pseudo-weight for 𝑖𝑖 ∈ 𝑠𝑠𝑐𝑐 . As a computational device, we 

construct a pseudo-population of 𝑠𝑠𝑐𝑐∗ ∪ 𝐹𝐹𝐹𝐹 , where 𝑠𝑠𝑐𝑐∗  is a copy of 𝑠𝑠𝑐𝑐  that has the same joint 

distributions of covariates 𝒙𝒙 and outcome 𝑦𝑦 with the original 𝑠𝑠𝑐𝑐. The number of units in 𝑠𝑠𝑐𝑐∗ ∪ 𝐹𝐹𝐹𝐹 is 
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𝑛𝑛𝑐𝑐 + 𝑁𝑁. In the union of 𝑠𝑠𝑐𝑐∗ ∪ 𝐹𝐹𝐹𝐹, 𝑠𝑠𝑐𝑐∗ and 𝑠𝑠𝑐𝑐 are treated as two different sets. We use 𝑅𝑅𝑖𝑖 to indicate 

the membership of 𝑠𝑠𝑐𝑐∗  in 𝑠𝑠𝑐𝑐∗ ∪ 𝐹𝐹𝐹𝐹  (=1 if 𝑖𝑖 ∈ 𝑠𝑠𝑐𝑐∗ ; 0 if 𝑖𝑖 ∈ 𝐹𝐹𝐹𝐹 ), and 𝑝𝑝𝑖𝑖 = 𝐹𝐹(𝑅𝑅𝑖𝑖 = 1) =

𝐹𝐹( 𝑖𝑖 ∈ 𝑠𝑠𝑐𝑐∗ ∣∣ 𝑠𝑠𝑐𝑐∗ ∪ 𝐹𝐹𝐹𝐹 ). Instead of directly modeling  𝜋𝜋𝑖𝑖
(𝑐𝑐) as in the RDW and CLW methods, we 

model 𝑝𝑝𝑖𝑖 as a function of 𝜋𝜋𝑖𝑖
(𝑐𝑐): 

 𝑝𝑝𝑖𝑖 =
𝜋𝜋𝑖𝑖

(𝑐𝑐)

1 + 𝜋𝜋𝑖𝑖
(𝑐𝑐) , or equivalently, 𝜋𝜋𝑖𝑖

(𝑐𝑐) =
𝑝𝑝𝑖𝑖

1 − 𝑝𝑝𝑖𝑖
. (2.3.1) 

The relationship between 𝑝𝑝𝑖𝑖 and 𝜋𝜋𝑖𝑖
(𝑐𝑐) follows because 

 
𝑝𝑝𝑖𝑖

1 − 𝑝𝑝𝑖𝑖
=
𝐹𝐹( 𝑖𝑖 ∈ 𝑠𝑠𝑐𝑐∗ ∣∣ 𝑠𝑠𝑐𝑐∗ ∪ 𝐹𝐹𝐹𝐹 )
𝐹𝐹( 𝑖𝑖 ∈ 𝐹𝐹𝐹𝐹 ∣∣ 𝑠𝑠𝑐𝑐∗ ∪ 𝐹𝐹𝐹𝐹 ) =

𝐹𝐹(𝑖𝑖 ∈ 𝑠𝑠𝑐𝑐)
𝐹𝐹(𝑖𝑖 ∈ 𝐹𝐹𝐹𝐹) = 𝐹𝐹( 𝑖𝑖 ∈ 𝑠𝑠𝑐𝑐 ∣∣ 𝐹𝐹𝐹𝐹 ) = 𝜋𝜋𝑖𝑖

(𝑐𝑐) (2.3.2) 

since 𝑠𝑠𝑐𝑐∗ is a copy of 𝑠𝑠𝑐𝑐 and 𝐹𝐹( 𝑖𝑖 ∈ 𝑠𝑠𝑐𝑐∗ ∣∣ 𝑠𝑠𝑐𝑐∗ ∪ 𝐹𝐹𝐹𝐹 ) = 𝐹𝐹( 𝑖𝑖 ∈ 𝑠𝑠𝑐𝑐 ∣∣ 𝑠𝑠𝑐𝑐∗ ∪ 𝐹𝐹𝐹𝐹 ). Notice that, derived from 

Formula (2.3.1), 

𝑝𝑝𝑖𝑖 ≤
1
2

, 

since 𝜋𝜋𝑖𝑖
(𝑐𝑐) ≤ 1 and the equality holds only if 𝜋𝜋𝑖𝑖

(𝑐𝑐) = 1, i.e., the 𝐹𝐹𝐹𝐹 unit 𝑖𝑖 participates in the cohort 

with certainty. As illustrated by the examples at the end of section 2.2.1, requiring 𝑝𝑝𝑖𝑖 ≤ 1/2 is not 

unrealistic in typical applications because 𝜋𝜋𝑖𝑖
(𝑐𝑐) is generally quite small. 

Suppose that 𝑝𝑝𝑖𝑖 can be modeled parametrically by 𝑝𝑝𝑖𝑖 = 𝑝𝑝(𝒙𝒙𝑖𝑖;𝜷𝜷) = expit(𝜷𝜷𝑇𝑇𝒙𝒙𝑖𝑖), where 𝜷𝜷 

is a vector of unknown model parameters. That is,

 log �
𝑝𝑝𝑖𝑖

1 − 𝑝𝑝𝑖𝑖
� = 𝜷𝜷𝑇𝑇𝒙𝒙𝑖𝑖 , for 𝑖𝑖 ∈ 𝑠𝑠𝑐𝑐∗ ∪ 𝐹𝐹𝐹𝐹 (2.3.3) 

Notice that 𝜷𝜷, the coefficients in Model (2.3.3), differ from the coefficients 𝜸𝜸 in Model (2.2.1) 

because the two logistic regression models have different dependent variables. Based on (2.3.1), 

expression (2.3.3) implies that 𝜋𝜋𝑖𝑖
(𝑐𝑐)  is being modeled as exp(𝜷𝜷𝑇𝑇𝒙𝒙𝑖𝑖) , which differs from the 
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RDW/CLW model in (2.2.1) where 𝜋𝜋𝑖𝑖
(𝑐𝑐) = exp(𝜸𝜸𝑇𝑇𝒙𝒙𝑖𝑖) {1 + exp(𝜸𝜸𝑇𝑇𝒙𝒙𝑖𝑖)}⁄ . The corresponding 

“likelihood” function can be written as 

 𝐿𝐿∗(𝜷𝜷) = � 𝑝𝑝𝑖𝑖
𝑅𝑅𝑖𝑖(1 − 𝑝𝑝𝑖𝑖)(1−𝑅𝑅𝑖𝑖)

𝑖𝑖∈𝑠𝑠𝑐𝑐∗∪𝐹𝐹𝐹𝐹 
, 

(2.3.4) 

where 𝑅𝑅𝑖𝑖 indicates the membership of 𝑠𝑠𝑐𝑐∗ in 𝑠𝑠𝑐𝑐∗ ∪ 𝐹𝐹𝐹𝐹 (=1 if 𝑖𝑖 ∈ 𝑠𝑠𝑐𝑐∗; 0 if 𝑖𝑖 ∈ 𝐹𝐹𝐹𝐹). We put “likelihood” 

in quotes because 𝐿𝐿∗(𝜷𝜷) varies depending on which set of units is selected for 𝑠𝑠𝑐𝑐∗. This contrasts 

with the population likelihood in (2.2.2) which applies regardless of which sample is selected. Note 

that 𝐿𝐿∗(𝜷𝜷) in (2.3.4) is written as if the units are independent when they are not. This is a standard 

procedure in pseudo-MLE estimation, and the resulting parameter estimators remain design-

consistent even when some units may be correlated due to, e.g., clustering. 9, 10 The quantity 𝐿𝐿∗(𝜷𝜷) 

should be viewed as motivation for developing the estimating equations given below in (2.3.6). The 

log-likelihood generated from 𝐿𝐿∗(𝜷𝜷) is

 

𝑙𝑙∗(𝜷𝜷) = � {𝑅𝑅𝑖𝑖 ⋅ log𝑝𝑝𝑖𝑖 + (1 − 𝑅𝑅𝑖𝑖) log(1 − 𝑝𝑝𝑖𝑖)}
𝑖𝑖∈𝑠𝑠𝑐𝑐∗∪𝐹𝐹𝐹𝐹 

 

= � 𝛿𝛿𝑖𝑖
(𝑐𝑐)log𝑝𝑝𝑖𝑖

𝑖𝑖∈𝐹𝐹𝐹𝐹
+ � log(1 − 𝑝𝑝𝑖𝑖)

𝑖𝑖∈𝐹𝐹𝐹𝐹
 

(2.3.5) 

Notice that the randomness of 𝐿𝐿∗(𝜷𝜷) and 𝑙𝑙∗(𝜷𝜷) comes from the cohort selection, i.e. 𝛿𝛿𝑖𝑖
(𝑐𝑐) in the first 

summand in the last line of (2.3.5). In reality, since the unit level information of 𝐹𝐹𝐹𝐹 is unknown, 

we replace the second summand in (2.3.5) by a survey sample estimate, ∑ 𝑑𝑑𝑖𝑖 log(1 − 𝑝𝑝𝑖𝑖)𝑖𝑖∈𝑠𝑠𝑝𝑝 , and 

obtain the maximum pseudo-likelihood estimator 𝜷𝜷� by solving the pseudo-estimating equation 

 �̃�𝑆∗(𝜷𝜷) =
1

𝑁𝑁 + 𝑛𝑛𝑐𝑐
�� (1 − 𝑝𝑝𝑖𝑖)

𝑖𝑖∈𝑠𝑠𝑐𝑐
𝒙𝒙𝑖𝑖 −� 𝑑𝑑𝑖𝑖𝑝𝑝𝑖𝑖𝒙𝒙𝑖𝑖

𝑖𝑖∈𝑠𝑠𝑝𝑝
� = 𝟎𝟎. (2.3.6) 

Assuming that 𝑝𝑝𝑖𝑖 is bounded by 0 and 1 2⁄  implies that 𝜋𝜋𝑖𝑖
(𝑐𝑐) is automatically bounded by 0 and 1. 

Note that (2.3.6) falls in a general class of estimating equations that ensure unique solutions of 
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parameters4, 11, 12 (e.g. equation (6) in CLW4 if their function ℎ(𝒙𝒙𝑖𝑖 ,𝜽𝜽)  is set equal to 

𝒙𝒙𝑖𝑖�1 + 𝜋𝜋𝑖𝑖
(𝑐𝑐)�

−1
).  

The ALP estimator of 𝜇𝜇 is 

 �̂�𝜇𝐴𝐴𝐶𝐶𝐹𝐹 =
∑ 𝑤𝑤𝑖𝑖

𝐴𝐴𝐴𝐴𝐴𝐴
𝑖𝑖∈𝑠𝑠𝑐𝑐 𝑦𝑦𝑖𝑖
∑ 𝑤𝑤𝑖𝑖

𝐴𝐴𝐴𝐴𝐴𝐴
𝑖𝑖∈𝑠𝑠𝑐𝑐

, (2.3.7) 

where 𝑤𝑤𝑖𝑖𝐴𝐴𝐶𝐶𝐹𝐹 = 1/𝜋𝜋𝑖𝑖
(𝑐𝑐)(𝜷𝜷�)  for 𝑖𝑖 ∈ 𝑠𝑠𝑐𝑐 . Although 𝐿𝐿∗(𝜷𝜷)  is not a standard likelihood, �̂�𝜇𝐴𝐴𝐶𝐶𝐹𝐹  is a 

consistent estimator of the population mean as shown in the theorem below. 

We consider the following limiting process for the theoretical development. 4, 13 Suppose 

there is a sequence of finite populations 𝐹𝐹𝐹𝐹𝑘𝑘 of size 𝑁𝑁𝑘𝑘, for 𝑘𝑘 = 1, 2,⋯. Cohort 𝑠𝑠𝑐𝑐,𝑘𝑘 of size 𝑛𝑛𝑐𝑐,𝑘𝑘 

and survey sample 𝑠𝑠𝑝𝑝,𝑘𝑘 of size 𝑛𝑛𝑝𝑝,𝑘𝑘 are sampled from 𝐹𝐹𝐹𝐹𝑘𝑘. The sequences of the finite population, 

the cohort and the survey sample have their sizes satisfy lim
𝑘𝑘→∞

𝑛𝑛𝑡𝑡,𝑘𝑘 𝑁𝑁𝑘𝑘⁄ → 𝑓𝑓𝑡𝑡, where 𝑡𝑡 = 𝑐𝑐 or 𝑝𝑝 and 

0 < 𝑓𝑓𝑡𝑡 ≤ 1 (regularity condition C1 in Appendix A). In the following the index 𝑘𝑘 is suppressed for 

simplicity. 

Theorem. Consistency of ALP estimator of finite population mean (see Appendix B)

Under the regularity conditions A1-A3, and C1-C5 in Appendix A, and assuming logistic regression 

model (2.3.3) for 𝑝𝑝𝑖𝑖, the ALP estimate �̂�𝜇𝐴𝐴𝐶𝐶𝐹𝐹 is design consistent for 𝜇𝜇, in particular �̂�𝜇𝐴𝐴𝐶𝐶𝐹𝐹 − 𝜇𝜇 =

𝑂𝑂𝑝𝑝�𝑛𝑛𝑐𝑐
−1/2 �, with the finite population variance 

 𝑉𝑉𝑉𝑉𝑉𝑉(�̂�𝜇𝐴𝐴𝐶𝐶𝐹𝐹) =̇ 𝑁𝑁−2� 𝑝𝑝𝑖𝑖(1 − 2𝑝𝑝𝑖𝑖) �
(𝑦𝑦𝑖𝑖 − 𝜇𝜇)

𝑝𝑝𝑖𝑖
− 𝒃𝒃𝑇𝑇𝒙𝒙𝑖𝑖�

𝑖𝑖∈𝐹𝐹𝐹𝐹

2

+ 𝒃𝒃𝑇𝑇𝑫𝑫𝒃𝒃, (2.3.8) 

where 𝑝𝑝𝑖𝑖 = expit(𝜷𝜷𝑇𝑇𝒙𝒙𝑖𝑖) , 𝒃𝒃𝑇𝑇 = {∑ (𝑦𝑦𝑖𝑖 − 𝜇𝜇)𝒙𝒙𝑖𝑖𝑇𝑇𝑖𝑖∈𝐹𝐹𝐹𝐹 }{∑ 𝑝𝑝𝑖𝑖𝒙𝒙𝑖𝑖𝒙𝒙𝑖𝑖𝑇𝑇𝑖𝑖∈𝐹𝐹𝐹𝐹 }−1 , and 𝑫𝑫 =

𝑁𝑁−2𝑉𝑉𝑝𝑝 �∑ 𝑑𝑑𝑖𝑖𝑝𝑝𝑖𝑖𝒙𝒙𝑖𝑖𝑖𝑖∈𝑠𝑠𝑝𝑝 �  is the design-based variance-covariance matrix under the probability 

sampling design for 𝑠𝑠𝑝𝑝.  

In practice, the ALP estimator of a finite population mean can be obtained by three steps:  
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Step 1: Search for covariates 𝒙𝒙 available in both the cohort (𝑠𝑠𝑐𝑐) and the reference survey sample 

(𝑠𝑠𝑝𝑝) and combine the two samples. Assign 𝑅𝑅𝑖𝑖 = 1 for 𝑖𝑖 ∈ 𝑠𝑠𝑐𝑐 and 𝑅𝑅𝑖𝑖 = 0 for 𝑖𝑖 ∈ 𝑠𝑠𝑝𝑝 in the combined 

sample. 

Step 2: Fit a logistic regression model for 𝑝𝑝𝑖𝑖 = 𝐹𝐹(𝑅𝑅𝑖𝑖 = 1) in the combined 𝑠𝑠𝑐𝑐  and weighted 𝑠𝑠𝑝𝑝, 

with the survey sample weights �𝑑𝑑𝑖𝑖 , 𝑖𝑖 ∈ 𝑠𝑠𝑝𝑝�, and obtain the estimate �̂�𝑝𝑖𝑖 for 𝑖𝑖 ∈ 𝑠𝑠𝑐𝑐. 

Step 3: Estimate the finite population mean by Formula (2.3.7) with the ALP pseudo weight 

𝑤𝑤𝑖𝑖𝐴𝐴𝐶𝐶𝐹𝐹 = �̂�𝑝𝑖𝑖/(1 − �̂�𝑝𝑖𝑖) for 𝑖𝑖 ∈ 𝑠𝑠𝑐𝑐. 

Notice that Step 2 can be accomplished by any existing survey software, such as svyglm in 

survey package of R, svy:logit in Stata, and PROC SURVEYLOGISTIC in SAS. In addition to 

being easy to implement, the ALP estimator from (2.3.7) does not require conditions (i) or (ii), 

unlike RDW. Moreover, we prove that in large samples, 𝑉𝑉𝑉𝑉𝑉𝑉(�̂�𝜇𝐴𝐴𝐶𝐶𝐹𝐹) = 𝑂𝑂(𝑛𝑛𝑐𝑐−1)  is as or more 

efficient compared to 𝑉𝑉𝑉𝑉𝑉𝑉(�̂�𝜇𝐶𝐶𝐶𝐶𝑅𝑅) = 𝑂𝑂 �min�𝑛𝑛𝑝𝑝,𝑛𝑛𝑐𝑐�
−1�  under their correct propensity model 

respectively, which depends on both the nonprobability and probability sample sizes (see Appendix 

C).

An alternative method would be to omit the odds transformation, which uses 𝑝𝑝𝑖𝑖  to 

approximate the participation rate 𝜋𝜋𝑖𝑖
(𝑐𝑐). Denote this method by FDW for full design weight, which 

contrasts to the scaling of the survey sample weights in the RDW method. Comparing the 

expectation of the population log-likelihood function 𝑙𝑙(𝜸𝜸) in (2.2.3) and the expectation of the 

pseudo log-likelihood 𝑙𝑙∗(𝜷𝜷) in (2.3.5) with 𝜋𝜋𝑖𝑖
(𝑐𝑐)  replacing 𝑝𝑝𝑖𝑖  by the FDW method, i.e., 𝑙𝑙∗(𝜸𝜸) =

∑ log𝜋𝜋𝑖𝑖
(𝑐𝑐)

𝑖𝑖∈𝑠𝑠𝑐𝑐 + ∑ 𝑑𝑑𝑖𝑖 log�1 − 𝜋𝜋𝑖𝑖
(𝑐𝑐)�𝑖𝑖∈𝑠𝑠𝑝𝑝 , we have their difference, denoted by Δ𝐹𝐹𝑅𝑅𝑅𝑅, written as

Δ𝐹𝐹𝑅𝑅𝑅𝑅 = 𝐸𝐸�𝑙𝑙∗(𝜸𝜸)� − 𝐸𝐸{𝑙𝑙(𝜸𝜸)} 

= � 𝜋𝜋𝑖𝑖
(𝑐𝑐) log𝜋𝜋𝑖𝑖

(𝑐𝑐)

𝑖𝑖∈𝐹𝐹𝐹𝐹
+ � log�1 − 𝜋𝜋𝑖𝑖

(𝑐𝑐)�
𝑖𝑖∈𝐹𝐹𝐹𝐹

−� 𝜋𝜋𝑖𝑖
(𝑐𝑐) log𝜋𝜋𝑖𝑖

(𝑐𝑐)

𝑖𝑖∈𝐹𝐹𝐹𝐹
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    −� �1 − 𝜋𝜋𝑖𝑖
(𝑐𝑐)� log�1 − 𝜋𝜋𝑖𝑖

(𝑐𝑐)�
𝑖𝑖∈𝐹𝐹𝐹𝐹

= � 𝜋𝜋𝑖𝑖
(𝑐𝑐) log�1 − 𝜋𝜋𝑖𝑖

(𝑐𝑐)�
𝑖𝑖∈𝐹𝐹𝐹𝐹

. 

The bias is zero only if 𝜋𝜋𝑖𝑖
(𝑐𝑐) for 𝑖𝑖 ∈ 𝐹𝐹𝐹𝐹 are all close to zero. Thus, the odds transformation step in 

ALP could be skipped if all nonprobability participation rates are extremely small; but, in general, 

that step is essential for unbiased estimation.

2.4. Variance estimation 

Using the finite population variance formula (2.3.8), the first summand can be consistently 

estimated by 

 �𝑁𝑁�(𝑐𝑐)�
−2

 � (1 − �̂�𝑝𝑖𝑖)(1 − 2�̂�𝑝𝑖𝑖) �
(𝑦𝑦𝑖𝑖 − �̂�𝜇𝐴𝐴𝐶𝐶𝐹𝐹)

�̂�𝑝𝑖𝑖
− 𝒃𝒃�𝑇𝑇𝒙𝒙𝑖𝑖�

𝑖𝑖∈𝑠𝑠𝑐𝑐

2

, (2.4.1) 

where �̂�𝑝𝑖𝑖  is the prediction for 𝑖𝑖 ∈ 𝑠𝑠𝑐𝑐 , 𝑁𝑁�(𝑐𝑐) = ∑ 𝑤𝑤𝑖𝑖𝐴𝐴𝐶𝐶𝐹𝐹𝑖𝑖∈𝑠𝑠𝑐𝑐 , and 𝒃𝒃�𝑇𝑇 = �∑ (𝑦𝑦𝑖𝑖 −𝑖𝑖∈sc

�̂�𝜇𝐴𝐴𝐶𝐶𝐹𝐹)𝒙𝒙𝑖𝑖𝑇𝑇��∑ �̂�𝑝𝑖𝑖𝒙𝒙𝑖𝑖𝒙𝒙𝑖𝑖𝑇𝑇𝑖𝑖∈𝑠𝑠𝑐𝑐 �−1 . The second summand 𝒃𝒃𝑇𝑇𝑫𝑫𝒃𝒃 is estimated by 𝒃𝒃�𝑇𝑇𝑫𝑫�𝒃𝒃�, where 𝑫𝑫�  is the 

survey design consistent variance estimator of D. For example, under stratified multistage cluster 

sampling with 𝐻𝐻  strata and 𝑉𝑉ℎ  primary sampling units (PSUs) in stratum ℎ  selected with 

replacement, 

 𝑫𝑫� = �𝑁𝑁�(𝑝𝑝)�
−2
⋅�

𝑉𝑉ℎ
𝑉𝑉ℎ − 1

� (𝒛𝒛𝑙𝑙 − 𝒛𝒛�)(𝒛𝒛𝑙𝑙 − 𝒛𝒛�)𝑇𝑇
𝑎𝑎ℎ

𝑙𝑙=1

𝐻𝐻

ℎ=1
, (2.4.2) 

where 𝑁𝑁�(𝑝𝑝) = ∑ 𝑑𝑑𝑖𝑖𝑖𝑖∈𝑠𝑠𝑝𝑝 , 𝒛𝒛𝑙𝑙 = ∑ 𝑑𝑑𝑖𝑖�̂�𝑝𝑖𝑖𝒙𝒙𝑖𝑖𝑖𝑖∈𝑠𝑠𝑝𝑝(ℎ𝑙𝑙)  is the weighted PSU total for cluster 𝑙𝑙 in stratum ℎ, 

𝑠𝑠𝑝𝑝(ℎ𝑙𝑙) is the set of sample elements stratum ℎ and cluster 𝑙𝑙, and 𝒛𝒛� = 𝑉𝑉ℎ−1 ∑ 𝒛𝒛𝑙𝑙
𝑎𝑎ℎ
𝑙𝑙  is the mean of the 

PSU totals in stratum ℎ.  
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2.5. Scaling survey weights in the likelihood for the ALP Method 

The proposed ALP can flexibly scale the survey weights in estimating equation (2.3.6) to improve 

efficiency. For case-control studies, Scott & Wild 14 and Li et al 15 previously used the technique 

we propose below to reduce variances of estimates of relative risks when weights for cases and 

controls are substantially different. We multiply the second summand in �̃�𝑆∗(𝜷𝜷) by a constant 𝜆𝜆, say 

𝜆𝜆 = 𝑛𝑛𝑐𝑐 �∑ 𝑑𝑑𝑖𝑖𝑖𝑖∈𝑠𝑠𝑝𝑝 �⁄ , so that the sum of the scaled survey weights (𝜆𝜆𝑑𝑑𝑖𝑖) is 𝑛𝑛𝑐𝑐. Accordingly, the score 

function becomes 

 �̃�𝑆𝜆𝜆∗(𝜷𝜷) = � (1 − 𝑝𝑝𝑖𝑖)
𝑖𝑖∈𝑠𝑠𝑐𝑐

𝒙𝒙𝑖𝑖 − 𝜆𝜆� 𝑑𝑑𝑖𝑖𝑝𝑝𝑖𝑖𝒙𝒙𝑖𝑖
𝑖𝑖∈𝑠𝑠𝑝𝑝

 
(2.5.1) 

Solving �̃�𝑆𝜆𝜆∗(𝜷𝜷) = 0 for 𝜷𝜷, and the resulting vector of estimates is denoted by 𝜷𝜷�𝜆𝜆 = ��̂�𝛽0,𝜆𝜆,𝜷𝜷�1,𝜆𝜆�, 

where �̂�𝛽0,𝜆𝜆 is estimate of the intercept. Similar derivations to those in Scott & Wild 10 and Li et al 

11 can be used to prove that 𝜷𝜷�1,𝜆𝜆 is design-consistent with various efficiency gains, depending on 

the variability of survey weights versus the nonprobability sample weights (with implicit common 

value of 1). However, the estimate of the intercept �̂�𝛽0,𝜆𝜆 can be badly biased with scaled weights. As 

a result, the estimate of participation rate exp�𝜷𝜷�𝜆𝜆𝑇𝑇𝒙𝒙𝑖𝑖� including �̂�𝛽0,𝜆𝜆 would also be biased. The bias 

of �̂�𝛽0,𝜆𝜆 , however, would not affect the estimate of population mean because the scaled ALP-

weighted mean, �̂�𝜇𝐴𝐴𝐶𝐶𝐹𝐹.𝑆𝑆, 

 �̂�𝜇𝐴𝐴𝐶𝐶𝐹𝐹.𝑆𝑆 =
∑ 𝑤𝑤𝑖𝑖𝐴𝐴𝐶𝐶𝐹𝐹.𝑆𝑆
𝑖𝑖∈𝑠𝑠𝑐𝑐 𝑦𝑦𝑖𝑖
∑ 𝑤𝑤𝑖𝑖𝐴𝐴𝐶𝐶𝐹𝐹.𝑆𝑆
𝑖𝑖∈𝑠𝑠𝑐𝑐

=
∑ exp−1�𝜷𝜷�1,𝜆𝜆

𝑇𝑇 𝒙𝒙𝑖𝑖�𝑖𝑖∈𝑠𝑠𝑐𝑐 𝑦𝑦𝑖𝑖
∑ exp−1�𝜷𝜷�1,𝜆𝜆

𝑇𝑇 𝒙𝒙𝑖𝑖�𝑖𝑖∈𝑠𝑠𝑐𝑐
, (2.5.2) 

depends on 𝜷𝜷�1,𝜆𝜆, but not �̂�𝛽0,𝜆𝜆, where 𝑤𝑤𝑖𝑖𝐴𝐴𝐶𝐶𝐹𝐹.𝑆𝑆 = exp−1�𝜷𝜷�1,𝜆𝜆
𝑇𝑇 𝒙𝒙𝑖𝑖� is the scaled ALP pseudo weight.

 It can be proved that �̂�𝜇𝐴𝐴𝐶𝐶𝐹𝐹.𝑆𝑆 is a consistent estimator of the finite population mean, 𝜇𝜇. The 

Taylor linearization (TL) variance estimator of �̂�𝜇𝐴𝐴𝐶𝐶𝐹𝐹.𝑆𝑆 can be obtained by substituting 𝑤𝑤𝑖𝑖𝐴𝐴𝐶𝐶𝐹𝐹, �̂�𝜇𝐴𝐴𝐶𝐶𝐹𝐹, 

𝜷𝜷� , �̂�𝑝𝑖𝑖  and 𝑑𝑑𝑖𝑖  by 𝑤𝑤𝑖𝑖𝐴𝐴𝐶𝐶𝐹𝐹.𝑆𝑆 , �̂�𝜇𝐴𝐴𝐶𝐶𝐹𝐹.𝑆𝑆 , 𝜷𝜷�𝜆𝜆 , �̂�𝑝𝑖𝑖,𝜆𝜆 = exp�𝜷𝜷�𝜆𝜆𝑇𝑇𝒙𝒙𝑖𝑖� and 𝜆𝜆𝑑𝑑𝑖𝑖 , respectively, in Formulae (2.4.1) 
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and (2.4.2). Details on the variance and the consistency of ALP.S are discussed in the dissertation 

by Wang. 16

3. SIMULATIONS 

3.1. Finite population generation and sample selection 

We applied simulation setups similar to those in Chen et al.4 In the finite population 𝐹𝐹𝐹𝐹 of size 𝑁𝑁 =

500,000, a vector of covariates 𝒙𝒙𝑖𝑖 = (𝑥𝑥1𝑖𝑖 , 𝑥𝑥2𝑖𝑖 , 𝑥𝑥3𝑖𝑖 , 𝑥𝑥4𝑖𝑖)𝑇𝑇  was generated for 𝑖𝑖 ∈ 𝐹𝐹𝐹𝐹  where 𝑥𝑥1𝑖𝑖 =

𝑐𝑐1𝑖𝑖, 𝑥𝑥2𝑖𝑖 = 𝑐𝑐2𝑖𝑖 + 0.3𝑥𝑥1𝑖𝑖, 𝑥𝑥3𝑖𝑖 = 𝑐𝑐3𝑖𝑖 + 0.2(𝑥𝑥1𝑖𝑖 + 𝑥𝑥2𝑖𝑖),  𝑥𝑥4𝑖𝑖 = 𝑐𝑐4𝑖𝑖 + 0.1(𝑥𝑥1𝑖𝑖 + 𝑥𝑥2𝑖𝑖 + 𝑥𝑥3𝑖𝑖), with 𝑐𝑐1𝑖𝑖 ∼

𝐵𝐵𝐵𝐵𝑉𝑉𝑛𝑛𝑐𝑐𝐵𝐵𝑙𝑙𝑙𝑙𝑖𝑖(0.5), 𝑐𝑐2𝑖𝑖 ∼ 𝑈𝑈𝑛𝑛𝑖𝑖𝑓𝑓𝑐𝑐𝑉𝑉𝑈𝑈(0, 2), 𝑐𝑐3𝑖𝑖 ∼ 𝐸𝐸𝑥𝑥𝑝𝑝𝑐𝑐𝑛𝑛𝐵𝐵𝑛𝑛𝑡𝑡𝑖𝑖𝑉𝑉𝑙𝑙(1), and 𝑐𝑐4𝑖𝑖 ∼ 𝜒𝜒2(4). The variable of 

interest 𝑦𝑦𝑖𝑖 ∼ 𝑁𝑁𝑐𝑐𝑉𝑉𝑈𝑈𝑉𝑉𝑙𝑙(𝜇𝜇𝑖𝑖 , 1) , where 𝜇𝜇𝑖𝑖 = −𝑥𝑥1𝑖𝑖 − 𝑥𝑥2𝑖𝑖 + 𝑥𝑥3𝑖𝑖 + 𝑥𝑥4𝑖𝑖  for 𝑖𝑖 ∈ 𝐹𝐹𝐹𝐹 . The parameter of 

interest was the finite population mean 𝜇𝜇 = 𝑁𝑁−1 ∑ 𝑦𝑦𝑖𝑖𝑖𝑖∈𝐹𝐹𝐹𝐹 = 3.97. 

The probability-based survey sample 𝑠𝑠𝑝𝑝 with the target sample size 𝑛𝑛𝑝𝑝 = 12,500 (sampling 

fraction 𝑓𝑓𝑝𝑝 = 2.5% ) was selected by Poisson sampling, with inclusion probability 𝜋𝜋𝑖𝑖
(𝑝𝑝) =

�𝑛𝑛𝑝𝑝 ⋅ 𝑞𝑞𝑖𝑖�/∑ 𝑞𝑞𝑖𝑖𝑖𝑖∈𝐹𝐹𝐹𝐹  for 𝑖𝑖 ∈ 𝐹𝐹𝐹𝐹, where 𝑞𝑞𝑖𝑖 = 𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠𝑡𝑡 + 𝑥𝑥3𝑖𝑖 + 0.03𝑦𝑦𝑖𝑖 with controlling for the variation 

of the survey weights, 𝑑𝑑𝑖𝑖 = 1/𝜋𝜋𝑖𝑖
(𝑝𝑝). We set 𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠𝑡𝑡 = −0.26 so that max 𝑞𝑞𝑖𝑖 / min 𝑞𝑞𝑖𝑖 = 20.  

 As noted in section 2, the ALP and CLW methods do assume somewhat different models 

for the participation rate. Thus, it is interesting to check their performances both when their 

underlying models are correct and when the assumed participation rate models fail. The volunteer-

based nonprobability sample 𝑠𝑠𝑐𝑐  (with a target sample size 𝑛𝑛𝑐𝑐 ) was also selected by Poisson 

sampling but with different inclusion probabilities 𝜋𝜋𝑖𝑖
(𝑐𝑐) for 𝑖𝑖 ∈ 𝐹𝐹𝐹𝐹. We considered two scenarios 

with different functional forms of 𝜋𝜋𝑖𝑖
(𝑐𝑐) so that the ALP (and FDW) or the CLW method had the true 

linear logistic regression propensity model in one scenario but not in the other. In Scenario 1, 𝜋𝜋𝑖𝑖
(𝑐𝑐) =

exp(𝛽𝛽0 + 𝜷𝜷𝑇𝑇𝒙𝒙𝑖𝑖) was the specified participation rate for the 𝑖𝑖𝑡𝑡ℎ population unit to be included into 
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the nonprobability sample. The underlying true propensity model for ALP (and FDW) methods, 

shown in (2.3.3), was logit(𝑝𝑝𝑖𝑖) = log�𝜋𝜋𝑖𝑖
(𝑐𝑐)� = 𝛽𝛽0 + 𝜷𝜷𝑇𝑇𝒙𝒙𝑖𝑖 , which implies logit�𝜋𝜋𝑖𝑖

(𝑐𝑐)� = 𝛽𝛽0 +

𝜷𝜷𝑇𝑇𝒙𝒙𝑖𝑖 − log�1 − 𝜋𝜋𝑖𝑖
(𝑐𝑐)�. This model differs from the underlying linear model (2.2.1) assumed by the 

CLW method by the addition of the term log�1 − 𝜋𝜋𝑖𝑖
(𝑐𝑐)�. In Scenario 2, 𝜋𝜋𝑖𝑖

(𝑐𝑐) = expit(𝛾𝛾0 + 𝜸𝜸𝑇𝑇𝒙𝒙𝑖𝑖) 

was specified so that logit�𝜋𝜋𝑖𝑖
(𝑐𝑐)� = 𝛾𝛾0 + 𝜸𝜸𝑇𝑇𝒙𝒙𝑖𝑖, which was the model (2.2.1) assumed by the CLW 

method. This model, however, implied that logit(𝑝𝑝𝑖𝑖) = log�𝜋𝜋𝑖𝑖
(𝑐𝑐)� = 𝛾𝛾0 + 𝜸𝜸𝑇𝑇𝒙𝒙𝑖𝑖 + log�1 − 𝜋𝜋𝑖𝑖

(𝑐𝑐)�, 

which was different from the model assumed by the ALP and the FDW method (by the extra term 

log�1 − 𝜋𝜋𝑖𝑖
(𝑐𝑐)� ). Hence, ALP and CLW estimates of the population mean are expected to be 

unbiased in one scenario but not the other since both methods assume a linear logistic propensity 

model. The biases of the FDW and RDW estimates, as measured by Δ𝐹𝐹𝑅𝑅𝑅𝑅 and Δ𝑅𝑅𝑅𝑅𝑅𝑅, depend on 

𝜋𝜋𝑖𝑖
(𝑐𝑐), and go to 0 as 𝜋𝜋𝑖𝑖

(𝑐𝑐) approached 0. The biases become larger as 𝜋𝜋𝑖𝑖
(𝑐𝑐) increases in either scenario.  

In both scenarios, the coefficients were set to be 𝜷𝜷 = 𝜸𝜸 = (0.18, 0.18,−0.27,−0.27)𝑇𝑇. The 

parameters were chosen so that 0 < 𝜋𝜋𝑖𝑖
(𝑐𝑐) < 1 for all units 𝑖𝑖 ∈ 𝐹𝐹𝐹𝐹.  The intercepts 𝛽𝛽0 and 𝛾𝛾0 were 

also controlled so that the expected number of nonprobability sample units 𝐸𝐸𝑐𝑐(𝑛𝑛𝑐𝑐) = ∑ 𝜋𝜋𝑖𝑖
(𝑐𝑐)

𝐹𝐹𝐹𝐹  was 

varied from 1,250, 2,500, 5,000, to 10,000 with the corresponding overall participation rate 𝑓𝑓𝑐𝑐 =

𝐸𝐸𝑐𝑐(𝑛𝑛𝑐𝑐) 𝑁𝑁⁄  being 0.5%, 5%, 10%, or 20%.  

3.2. Evaluation Criteria 

We examined the performance of five IPSW estimators of finite population mean 𝜇𝜇: (1)-(2) �̂�𝜇𝐴𝐴𝐶𝐶𝐹𝐹 

and �̂�𝜇𝐴𝐴𝐶𝐶𝐹𝐹.𝑆𝑆 described in Section 2.2-2.5; (3) �̂�𝜇𝐹𝐹𝑅𝑅𝑅𝑅 using weights from the ALP method omitting the 

odds transformation; (4) �̂�𝜇𝐶𝐶𝐶𝐶𝑅𝑅 proposed by Chen et al 4 ; and (5) �̂�𝜇𝑅𝑅𝑅𝑅𝑅𝑅 proposed by Valliant & 

Dever 6, compared with the naïve nonprobability sample mean (�̂�𝜇𝑁𝑁𝑎𝑎𝑖𝑖𝑁𝑁𝑁𝑁) that did not use weights, 
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and the weighted nonprobability sample mean, �̂�𝜇𝑇𝑇𝑅𝑅, with weights equal to the inverse of the true 

nonprobability sample inclusion probabilities. Note that �̂�𝜇𝑇𝑇𝑅𝑅 is unavailable in practice because the 

true nonprobability sample inclusion probabilities are unknown. Relative bias (%RB), empirical 

variance (𝑉𝑉 ), mean squared error (MSE) of the point estimates were used to evaluate the 

performance of the four IPSW point estimates, calculated by 

%RB= 1
𝐵𝐵
∑ 𝜇𝜇�(𝑏𝑏)−𝜇𝜇

𝜇𝜇
𝐵𝐵
𝑏𝑏=1 × 100, 𝑉𝑉 = 1

𝐵𝐵−1
∑ ��̂�𝜇(𝑏𝑏) − 1

𝐵𝐵
∑ �̂�𝜇(𝑏𝑏)𝐵𝐵
𝑏𝑏=1 �

2
𝐵𝐵
𝑏𝑏=1  , MSE= 1

𝐵𝐵
∑ ��̂�𝜇(𝑏𝑏) − 𝜇𝜇�𝐵𝐵
𝑏𝑏=1

2
, 

where 𝐵𝐵 = 4,000 is the number of simulation runs, �̂�𝜇(𝑏𝑏) is one of the point estimates obtained from 

the 𝑏𝑏th simulated sample, and 𝜇𝜇 is the true finite population mean. 

We also evaluated the variance estimates using the variance ratio (VR) and 95% confidence 

interval coverage probability (CP), which were calculated as 

VR=
1
𝐵𝐵∑ 𝑁𝑁�(𝑏𝑏)𝐵𝐵

𝑏𝑏=1

𝑉𝑉
× 100, and CP= 1

𝐵𝐵
∑ 𝐼𝐼�𝜇𝜇 ∈ 𝐶𝐶𝐼𝐼(𝑏𝑏)�𝐵𝐵
𝑏𝑏=1 , 

where 𝑐𝑐�(𝑏𝑏)  is the proposed analytical variance estimate in simulated sample b, and 𝐶𝐶𝐼𝐼(𝑏𝑏) =

��̂�𝜇(𝑏𝑏) − 1.96�𝑐𝑐�(𝑏𝑏), �̂�𝜇(𝑏𝑏) + 1.96�𝑐𝑐�(𝑏𝑏)� is the 95% confidence interval from the 𝑏𝑏-th simulated 

sample. 

3.3. Results 

Table 1 presents simulation results for the seven nonprobability sample estimators of the finite 

population mean. The naïve estimator �̂�𝜇𝑁𝑁𝑎𝑎𝑖𝑖𝑁𝑁𝑁𝑁  that ignored the underlying sampling scheme had 

relative biases ranging from -36.5% to -42.8% while the true weighted nonprobability sample 

estimator, �̂�𝜇𝑇𝑇𝑅𝑅, was approximately unbiased in all scenarios. The variance of �̂�𝜇𝑁𝑁𝑎𝑎𝑖𝑖𝑁𝑁𝑁𝑁  was much 

smaller than that of the other estimators, but its bias caused the MSE to be extremely high (not 

reported). 
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Consistent with the bias theory in section 2, the RDW point estimator �̂�𝜇𝑅𝑅𝑅𝑅𝑅𝑅 and the FDW 

point estimator �̂�𝜇𝐹𝐹𝑅𝑅𝑅𝑅  were approximately unbiased when 𝜋𝜋𝑖𝑖
(𝑐𝑐) was small for all 𝑖𝑖 ∈ 𝐹𝐹𝐹𝐹 and the 

overall participation rate 𝑓𝑓𝑐𝑐 = 𝑁𝑁−1 ∑ 𝜋𝜋𝑖𝑖
(𝑐𝑐)

𝑖𝑖∈𝐹𝐹𝐹𝐹  was low, but more biased as 𝑓𝑓𝑐𝑐  increased. The 

coverage probabilities decreased correspondingly.

As expected, the ALP estimators �̂�𝜇𝐴𝐴𝐶𝐶𝐹𝐹  and �̂�𝜇𝐴𝐴𝐶𝐶𝐹𝐹.𝑆𝑆  (or the CLW estimator �̂�𝜇𝐶𝐶𝐶𝐶𝑅𝑅 ) 

consistently provided unbiased point estimators in the scenarios where they were expected to be 

unbiased, i.e., scenario 1 for �̂�𝜇𝐴𝐴𝐶𝐶𝐹𝐹 and �̂�𝜇𝐴𝐴𝐶𝐶𝐹𝐹.𝑆𝑆, and scenario 2 for �̂�𝜇𝐶𝐶𝐶𝐶𝑅𝑅. When the underlying model 

was incorrect for an estimator, biases occurred. For example, the relative biases of �̂�𝜇𝐶𝐶𝐶𝐶𝑅𝑅 in scenario 

1 were 0.05%, 1.29%, 2.94%, and 7.80% as 𝑓𝑓𝑐𝑐 increased from 0.5%, 5%, 10%, to 20%, respectively. 

In scenario 2, the corresponding relative biases for �̂�𝜇𝐴𝐴𝐶𝐶𝐹𝐹 are -0.19%, -1.03%, -1.81%, and -2.85%.

Consistent with the theory in Section 2, the ALP estimator �̂�𝜇𝐴𝐴𝐶𝐶𝐹𝐹 was more efficient than 

�̂�𝜇𝐶𝐶𝐶𝐶𝑅𝑅  with consistently smaller empirical variances in all scenarios, especially when the 

nonprobability cohort size was much larger than the probability sample size. Among all considered 

methods, �̂�𝜇𝐴𝐴𝐶𝐶𝐹𝐹.𝑆𝑆 was approximately unbiased with the smallest variance under Scenario 1 of the 

correct model. Under Scenario 2 of a misspecified model, �̂�𝜇𝐴𝐴𝐶𝐶𝐹𝐹.𝑆𝑆 was biased but most efficient, and 

therefore achieved smallest MSE.

The variance estimators for �̂�𝜇𝐴𝐴𝐶𝐶𝐹𝐹, �̂�𝜇𝐴𝐴𝐶𝐶𝐹𝐹.𝑆𝑆 and �̂�𝜇𝐶𝐶𝐶𝐶𝑅𝑅 performed very well (with VR’s near 1), 

providing coverage probabilities close to the nominal level under the correct propensity models 

when 𝑓𝑓𝑐𝑐 was large. The lower coverage of the nominal level (about 88%) when 𝑓𝑓𝑐𝑐 = 0.5% was due 

to the small sample bias with skewed distributions of underlying sampling weights in the selected 

nonprobability sample. 
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4. REAL DATA EXAMPLE 

We use the same data example as Wang et al 6 for illustration purposes. We estimated prospective 

15-year all-cause, all-cancer, and heart disease mortality rates for adults in the US using the adult 

household interview part of The Third U.S. National Health and Nutrition Examination Survey 

(NHANES III) III conducted in 1988-1994, with sample size 𝑛𝑛𝑐𝑐 =  20,050 . We ignored all 

complex design features of NHANES III and treated it as a nonprobability sample. The coefficient 

of variation (CV) of sample weights is 125%, indicating highly variable selection probabilities, and 

thus low representativeness of the unweighted sample. For estimating mortality rates, we 

approximated that the entire sample of NHANES III was randomly selected in 1991 (the midpoint 

of the data collection time period). 

For the reference survey, we used 1994 U.S. National Health Interview Survey (NHIS) 

respondents to the supplement for monitoring achievement of the Healthy People Year 2000 

objectives. Adults aged 18 and older are included (sample size 𝑛𝑛𝑝𝑝 =  19,738). The 1994 NHIS 

used a multistage stratified cluster sample design with 125 strata and 248 pseudo-PSUs. 17,18 We 

collapsed strata with only one PSU with the next nearest stratum for variance estimation purposes. 

19 Both samples of NHANES III and NHIS were linked to National Death Index (NDI) for mortality, 

allowing us to quantify the relative bias of unweighted NHANES estimates, assuming the NHIS 

estimates as the gold standard. Notice that the mortality information was obtained by statistical 

linkage between the survey sample and NDI, 20 but not responses from the questionnaires. The all-

cancer and heart-disease mortality were classified according to National Center for Health Statistics 

death code. 21, 22

The usage of NHANES III as the “nonprobability cohort” has several advantages for 

illuminating the performance of the propensity weighting methods. The “nonprobability sample” 
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and the reference survey sample have approximately the same target population, data collection 

mode, and similar questionnaires. This ensures that the pseudo-weighted “nonprobability sample” 

could potentially represent the target population, and thus enables us to characterize the 

performance of the propensity weighting methods in real data. 

The distributions of selected common covariates and variables of interests in the two 

samples are presented in Table 2. As expected, the variables in the weighted samples of NHANES 

and 1994 NHIS have very close distributions because both weighted samples represent 

approximately the same finite population. In contrast, covariates distribute quite differently in the 

unweighted NHANES from the weighted samples, especially for design variables such as age, 

race/ethnicity, poverty, and region, which leads to large biases in mortality rates estimated from the 

unweighted NHANES.

The propensity model included main effects of common demographic characteristics (age, 

sex race/ethnicity, region, and marital status), socioeconomic status (education level, poverty, and 

household income), tobacco usage (smoking status, and chewing tobacco), health variables (body 

mass index [BMI], and self-reported health status), and a quadratic term for age. Appendix D shows 

the final propensity models for the five considered methods. 

To evaluate the performance of the five PS-based methods, we used relative difference from 

the NHIS estimate %RD= (�̂�𝜇 − �̂�𝜇𝑁𝑁𝐻𝐻𝑁𝑁𝑆𝑆) �̂�𝜇𝑁𝑁𝐻𝐻𝑁𝑁𝑆𝑆⁄ × 100, TL variance estimate (𝑉𝑉), and estimated 

MSE = (�̂�𝜇 − �̂�𝜇𝑁𝑁𝐻𝐻𝑁𝑁𝑆𝑆)2 + 𝑉𝑉, which treated the NHIS estimate as truth. Table 3 shows that the naïve 

NHANES III estimate of overall mortality was ~52% biased from the NHIS estimate because older 

people who have higher mortalities were oversampled (Table 2). All five IPSW methods 

substantially reduced the bias from the naïve estimate. Consistent with the simulation results, the 

ALP, FDW, RDW, and CLW method yielded close estimates when the sample fraction of the 
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nonprobability sample was small (𝑓𝑓𝑐𝑐 = 𝑛𝑛𝑐𝑐 𝑁𝑁�𝑝𝑝⁄ = 1.06 × 10−4  calculated from Table 2). The 

ALP.S method, by scaling the NHIS sample weights in propensity estimation, reduced more bias 

than the other methods, and was more efficient. Therefore, the ALP.S estimate had the smallest 

MSE. The results for inference of all-cancer mortality had the similar pattern as the results for all-

cause mortality. All pseudo-weighting methods removed most bias of the naïve NHANES estimate 

(with %RD= -3.21%~2.07% reduced from 24.68%). In contrast, for heart-disease mortality, all 

pseudo-weighting methods were substantially less biased than the naïve estimate, with %RD= 

42.58%~57.78% reduced from 133.66%, but the alternative estimators still had undesirably large 

biases themselves. The bias reduction is not as much as that for all-cancer or all-cause mortality, 

and this may be due to the omission of important predictors of having heart disease and of being 

observed in the nonprobability sample in the propensity model. 

5. DISCUSSION 

This paper proposed adjusted logistic propensity weighting methods for population inference using 

nonprobability samples. The proposed ALP method corrects the bias in the rescaled design weight 

method (RDW 7) by formulating the problem in an innovative way. As does the RDW method, the 

proposed ALP method retains the advantage of easy implementation by fitting a propensity model 

with survey weights in ready-to-use software. The proposed ALP estimators are design consistent 

if the assumed model for participation rate is correct. Taylor linearization variance estimators for 

ALP estimates are derived. Consistency of the ALP finite population mean estimators was proved 

theoretically and evaluated numerically. 

 A primary competitor to ALP is the CLW estimator developed by Chen, et al.4 If the 

nonprobability cohort is a small fraction of the population, ALP and CLW are very similar, although 



23 

ALP does have computational advantages regardless of the size of the sampling fraction. As the 

sampling fraction increases, ALP and CLW become more distinct.  

Both ALP and CLW methods fit a propensity model to the combined nonprobability sample 

and a weighted survey sample. Highly variable weights in the combined sample can lead to low 

efficiency of the estimated propensity model coefficients. Therefore, the variances of the ALP and 

the CLW estimators of the finite population means can be large in some applications. However, the 

proposed ALP is proved analytically and numerically to have a variance that is less than or equal 

to that of the CLW method regardless of whether the propensity model underlying ALP is correct. 

It worth noting that ALP and CLW methods assume different logistic regression models for 

propensity score estimation. Propensity is defined as 𝑝𝑝𝑖𝑖 = 𝐹𝐹( 𝑖𝑖 ∈ 𝑠𝑠𝑐𝑐 ∣∣ 𝑠𝑠𝑐𝑐∗ ∪ 𝐹𝐹𝐹𝐹 ) by ALP in (2.3.2) 

and 𝜋𝜋𝑖𝑖 = 𝐹𝐹( 𝑖𝑖 ∈ 𝑠𝑠𝑐𝑐 ∣∣ 𝐹𝐹𝐹𝐹 ) by CLW in (2.2.2). Model diagnostics should be developed to select 

which propensity model is more appropriate for a given data set and will be the focus of our future 

research. 

An alternative ALP with scaled survey weights in the logistic regression propensity model 

produces consistent propensity estimates and further improves efficiency as shown in the simulation 

and the real data example. The scaled ALP had the smallest MSE in every scenario in our simulation 

study regardless of underlying model and had the smallest MSE for two of the three mortality causes 

in our real data application. The CLW estimator with the scaled survey weights, albeit more 

efficient than the unscaled CLW, is biased (simulation results not shown). The extension of scaling 

technique to the CLW method and other binary regression propensity models requires further 

investigation. 

The theory for the ALP method implies that 𝑝𝑝𝑖𝑖 > 1 2⁄  since 𝑝𝑝𝑖𝑖 defines the probability of the 

nonprobability sample inclusion among the combined finite population (𝐹𝐹𝐹𝐹 ) units and the 
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nonprobability sample, i.e., 𝐹𝐹( 𝑖𝑖 ∈ 𝑠𝑠𝑐𝑐∗ ∣∣ 𝑠𝑠𝑐𝑐∗ ∪ 𝐹𝐹𝐹𝐹 ). In estimation, however, �̂�𝑝𝑖𝑖 > 1 2⁄  can happen, 

especially in the unusual case where the nonprobability sample 𝑠𝑠𝑐𝑐∗  is a large proportion of the 

population. Fortunately, this will not be a concern for the estimation of population mean or 

regression coefficients. By scaling survey weights in the propensity model for the ALP method, we 

can control for all ALP weights 𝑤𝑤𝑖𝑖𝐴𝐴𝐶𝐶𝐹𝐹.𝑆𝑆 = 1 𝜋𝜋�𝑖𝑖𝐴𝐴𝐶𝐶𝐹𝐹.𝑆𝑆⁄  to be greater than one. As proved in Section 

2.5, using scaled survey weights, 𝑤𝑤𝑖𝑖𝐴𝐴𝐶𝐶𝐹𝐹.𝑆𝑆 = 𝜆𝜆 ⋅ exp−1�𝜷𝜷�𝜆𝜆𝑇𝑇𝒙𝒙𝑖𝑖� = exp−1(�̂�𝛽0𝜆𝜆∗ + 𝜷𝜷�1𝜆𝜆𝑇𝑇 𝒙𝒙𝑖𝑖), would not 

bias the mean estimates. For population total estimation, an option is to estimate the population 

mean first and then multiply by a known or estimated population size from an independent source.  

Another approach to avoid estimated 𝑝𝑝𝑖𝑖 > 1 2⁄  is to solve the pseudo-estimating equations in 

(2.3.7) using a constrained optimization algorithm that requires �̂�𝑝𝑖𝑖 ≤ 1 2⁄  for all units. This would, 

of course, negate the computation advantage of the ALP estimator.  

Both ALP and CLW are inverse-propensity-score-weighting methods that directly use 

(functions of) the propensity score to estimate the cohort participation rate. They can be sensitive 

to propensity model misspecification (e.g., missing interaction terms in the fitted propensity model) 

due to inaccurate estimates of participation rates. Furthermore, extreme pseudo-weights can occur 

if the estimate of the participation rate is close to 0. In contrast, propensity-score-based matching 

methods (not included in this study) may be more robust to the model misspecification and less 

likely to produce extreme pseudo-weights, because they use propensity scores to measure the 

similarity between survey and cohort sample units and distribute survey sample weights to the 

cohort based on their similarity. Examples of matching methods are propensity-score adjustment 

by subclassification23, propensity-score-based kernel weighting methods5, 6, 16 and River’s matching 

method24.  
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There are a number of shortcomings associated with the estimation of propensity scores 

using logistic regression. First, the logistic model is susceptible to model misspecification, requiring 

assumptions regarding correct variable selection and functional form, including the choice of 

polynomial terms and multiple-way interactions. If any of these assumptions are incorrect, 

propensity score estimates can be biased, and balance may not be achieved when conditioning on 

the estimated PS. Second, implementing a search routine for model specification, such as repeatedly 

fitting logistic regression models while in/excluding predictor variables, interactions or 

transformations of variables can be computationally infeasible or suboptimal. In this context, 

parametric regression can be limiting in terms of possible model structures that can be searched 

over, particularly when many potential predictors are present (high dimensional data). Various 

machine learning methods for estimating the propensity score that incorporate survey weights will 

also be our future research interest. 
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Table 1 Results from 4,000 simulated survey samples and nonprobability samples with low to high 
participation rates under various propensity score models 

 
Scenario 1 

True propensity model for ALP  
Scenario 2

True propensity model for CLW

 %RB
V 

(× 105) VR
MSE

(× 105) CP5  %RB
𝑉𝑉 

(× 105) VR
MSE

(× 105) CP
𝑓𝑓𝑐𝑐 = 0.5%           
�̂�𝜇𝑁𝑁𝑎𝑎𝑖𝑖𝑁𝑁𝑁𝑁  -42.76 0.22 0.99    -42.61 0.22 1.00   
�̂�𝜇𝑇𝑇𝑅𝑅  -0.13 4.38 0.93 4.39 0.90  -0.12 4.38 0.93 4.38 0.90
�̂�𝜇𝑅𝑅𝑅𝑅𝑅𝑅 -0.29 3.73 0.93 3.75 0.87  -0.40 3.63 0.93 3.66 0.87
�̂�𝜇𝐹𝐹𝑅𝑅𝑅𝑅 -0.28 3.73 0.93 3.75 0.87  -0.40 3.63 0.93 3.66 0.87
�̂�𝜇𝐴𝐴𝐶𝐶𝐹𝐹 -0.07 3.70 0.93 3.77 0.88  -0.19 3.66 0.93 3.67 0.88
�̂�𝜇𝐶𝐶𝐶𝐶𝑅𝑅 0.05 3.87 0.93 3.87 0.89  -0.07 3.76 0.93 3.76 0.88
�̂�𝜇𝐴𝐴𝐶𝐶𝐹𝐹.𝑆𝑆 -0.11 3.54 0.92 3.54 0.87  -0.21 3.45 0.92 3.45 0.87
𝑓𝑓𝑐𝑐 = 5%           
�̂�𝜇𝑁𝑁𝑎𝑎𝑖𝑖𝑁𝑁𝑁𝑁  -42.74 0.02 0.99    -41.21 0.02 1.01   
�̂�𝜇𝑇𝑇𝑅𝑅  -0.04 0.50 0.98 0.50 0.92  -0.02 0.46 1.00 0.47 0.93
�̂�𝜇𝑅𝑅𝑅𝑅𝑅𝑅 -2.15 0.56 1.00 1.29 0.66  -3.05 0.43 1.01 1.89 0.45
�̂�𝜇𝐹𝐹𝑅𝑅𝑅𝑅 -2.05 0.57 1.00 1.23 0.68  -2.95 0.43 1.01 1.81 0.47
�̂�𝜇𝐴𝐴𝐶𝐶𝐹𝐹 -0.01 0.62 1.00 0.62 0.94  -1.03 0.47 1.01 0.64 0.85
�̂�𝜇𝐶𝐶𝐶𝐶𝑅𝑅 1.29 0.84 1.00 1.10 0.95  0.01 0.61 1.01 0.61 0.94
�̂�𝜇𝐴𝐴𝐶𝐶𝐹𝐹.𝑆𝑆 -0.05 0.45 1.00 0.45 0.92  -0.63 0.35 1.02 0.41 0.86
𝑓𝑓𝑐𝑐 = 10%           
�̂�𝜇𝑁𝑁𝑎𝑎𝑖𝑖𝑁𝑁𝑁𝑁  -42.74 0.01 1.11    -39.65 0.01 1.11   
�̂�𝜇𝑇𝑇𝑅𝑅  -0.01 0.25 1.02 0.25 0.94  -0.01 0.22 1.01 0.22 0.94
�̂�𝜇𝑅𝑅𝑅𝑅𝑅𝑅 -4.25 0.34 1.00 3.20 0.17  -5.62 0.22 0.99 5.20 0.02
�̂�𝜇𝐹𝐹𝑅𝑅𝑅𝑅 -3.87 0.35 1.00 2.71 0.24  -5.28 0.22 0.99 4.62 0.03
�̂�𝜇𝐴𝐴𝐶𝐶𝐹𝐹 0.01 0.42 1.00 0.42 0.95  -1.81 0.27 0.99 0.79 0.65
�̂�𝜇𝐶𝐶𝐶𝐶𝑅𝑅 2.94 0.80 1.00 2.16 0.76  0.03 0.42 0.99 0.42 0.95
�̂�𝜇𝐴𝐴𝐶𝐶𝐹𝐹.𝑆𝑆 -0.03 0.27 1.02 0.27 0.94  -0.86 0.18 1.01 0.29 0.81
𝑓𝑓𝑐𝑐 = 20%           
�̂�𝜇𝑁𝑁𝑎𝑎𝑖𝑖𝑁𝑁𝑁𝑁  -42.75 0.00 1.26    -36.50 0.01 1.21   
�̂�𝜇𝑇𝑇𝑅𝑅  -0.02 0.15 0.93 0.15 0.93  -0.02 0.11 0.96 0.11 0.93
�̂�𝜇𝑅𝑅𝑅𝑅𝑅𝑅 -8.58 0.21 0.95 11.83 0.00  -9.59 0.10 0.97 14.60 0.00
�̂�𝜇𝐹𝐹𝑅𝑅𝑅𝑅 -7.15 0.23 0.96 8.29 0.01  -8.51 0.11 0.98 11.53 0.00
�̂�𝜇𝐴𝐴𝐶𝐶𝐹𝐹 0.00 0.32 0.96 0.32 0.95  -2.85 0.16 0.98 1.44 0.19
�̂�𝜇𝐶𝐶𝐶𝐶𝑅𝑅 7.80 1.67 0.92 11.27 0.06  0.01 0.33 0.98 0.33 0.95
�̂�𝜇𝐴𝐴𝐶𝐶𝐹𝐹.𝑆𝑆 -0.03 0.19 0.96 0.19 0.94  -1.02 0.10 1.00 0.27 0.73
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Table 2 Distribution of selected common variables in NIH-AARP and NHIS 

  NHIS 1994  NHANES III
 Total Count 𝑛𝑛𝑠𝑠 =19738 𝑁𝑁�𝑠𝑠 =189608549  𝑛𝑛𝑐𝑐 =20050 𝑁𝑁�𝑠𝑠 =187647206 
Variable  % Weighted %  % Weighted %
Age 
Group 

18-24 years 10.5 13.3  15.8 15.8
25-44 years 42.9 43.7  35.4 43.7

 45-64 years 26.1 26.6  22.6 24.6
 65 years and older 20.5 16.4  26.2 16.0
Race NH-White 76.1 75.9  42.3 76.0
 NH-Black 12.6 11.2  27.4 11.2
 Hispanic 8.0 9.0  28.9 9.3
 NH-Other 3.3 4.0  1.5 3.5
Region Northeast 20.7 20.5  14.6 20.8
 Midwest 26.1 25.1  19.2 24.1
 South 31.5 32.5  42.7 34.3
 West 21.6 21.9  23.5 20.9
Poverty No 79.1 82.3  67.9 80.3
 Yes 13.1 10.6  21.4 12.1
 Unknown 7.8 7.0  10.7 7.6
Education Lower than High school 20.1 19.1  42.5 26.6
 High School/Some College 58.7 59.6  45.9 54.1
 College or higher 21.2 21.3  11.6 19.3
Health 
Status 

Excellent/Very good 60.5 62.0  39.0 51.6
Good 25.7 25.7  35.9 32.7

 Fair/Poor 13.8 12.3  25.1 15.7
Mortality All-Cause 20.8 17.6  26.7 17.1 
 Heart-Disease 9.43 5.69  4.95 4.04 
 All-Cancer 5.57 4.11  5.10 4.47 
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Table 3. Relative difference (%RD) of all-cause 15-year mortality estimates from the NHIS estimate with 
estimated variance (𝑉𝑉) and mean squared error (MSE)

Mortality Method Estimate (%) %RD V �× 𝟏𝟏𝟎𝟎𝟓𝟓� MSE �× 𝟏𝟏𝟎𝟎𝟓𝟓�
All cause  NHIS 17.6    
 Naïve 26.7 52.16   
 ALP 18.6 6.08 1.87 13.27
 FDW 18.6 6.08 1.87 13.28
 RDW 18.6 6.08 1.87 13.28
 CLW 18.6 6.07 1.87 13.24
 ALP.S 17.2 -2.05 1.08 2.37
All cancer NHIS 4.5    
 Naïve 5.6 24.68   
 ALP 4.6 2.07 0.38 0.46 
 FDW 4.6 2.07 0.38 0.46 
 RDW 4.6 2.07 0.38 0.46 
 CLW 4.6 2.06 0.37 0.46 
 ALP.S 4.3 -3.21 0.32 0.53 
Heart disease NHIS 4.0    
 Naïve 9.4 133.66   
 ALP 6.4 57.78 0.50 54.88 
 FDW 6.4 57.78 0.50 54.90 
 RDW 6.4 57.78 0.50 54.90 
 CLW 6.4 57.77 0.50 54.87 
 ALP.S 5.8 42.58 0.33 29.86 

 
 



1 

Adjusted Logistic Propensity Weighting Methods for Population Inference 

using Nonprobability Volunteer-Based Epidemiologic Cohorts 

Lingxiao Wang1, Richard Valliant2, and Yan Li1*

1The Joint Program in Survey Methodology, University of Maryland, College Park, U.S.A. 

2Research Professor Emeritus at the University of Michigan and University of Maryland 

*Address correspondence to Yan Li, 1218 Lefrak Hall, 7521 Preinkert Dr, College Park, MD 

20742; email: yli6@umd.edu  

  



2 

Abstract  

Many epidemiologic studies forgo probability sampling and turn to nonprobability volunteer-based 

samples because of cost, response burden, and invasiveness of biological samples. However, finite 

population inference is difficult to make from the nonprobability sample due to the lack of 

population representativeness. Aiming for making inferences at the population level using 

nonprobability samples, various inverse propensity score weighting (IPSW) methods have been 

studied with the propensity defined by the participation rate of population units in the 

nonprobability sample. In this paper, we propose an adjusted logistic propensity weighting (ALP) 

method to estimate the participation rates for nonprobability sample units. The proposed ALP 

method is easy to implement by ready-to-use software while producing approximately unbiased 

estimators for population quantities regardless of the nonprobability sample rate. The efficiency of 

the ALP estimator can be further improved by scaling the survey sample weights in propensity 

estimation. Taylor linearization variance estimators are proposed for ALP estimators of finite 

population means that account for all sources of variability. The proposed ALP methods are 

evaluated numerically via simulation studies and empirically using the naïve unweighted National 

Health and Nutrition Examination Survey III sample, while taking the 1997 National Health 

Interview Survey as the reference, to estimate the 15-year mortality rates. 

Keywords: Nonprobability sample, finite population inference, propensity score weighting, 

variance estimation, survey sampling 
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1. INTRODUCTION 

In the big data era, assembling volunteer-based epidemiologic cohorts within integrated healthcare 

systems that have electronic health records and a large pre-existing base of volunteers are 

increasingly popular due to their cost-and-time efficiency, such as the UK Biobank in the UK 

National Health Service. 1 However, samples of volunteer-based cohorts are not randomly selected 

from the underlying finite target population, and therefore cannot well represent the target 

population. As a result, the naïve sample estimates obtained from the cohort can be biased for the 

finite population quantities. For example, the estimated all-cause mortality rate in the UK Biobank 

was only half that of the UK population, 2 and the Biobank is not representative of the UK 

population with regard to many sociodemographic, physical, lifestyle and health-related 

characteristics.

Aiming for making inferences at the population level using nonprobability samples, various 

propensity-score weighting, and matching methods have been proposed to improve the population 

representativeness of nonprobability samples, by using probability-based survey samples as 

external references in survey research. 3-6 

Inverse propensity score weighting (IPSW) methods have been studied with the propensity 

defined by the participation rate of population units in the nonprobability sample. We review two 

methods—both assume that the units in the nonprobability sample are observed according to some 

random, but unknown, mechanism. Because that mechanism is unknown, the inclusion probability 

of each unit must be estimated. As described in section 2, all methods are based on estimating a 

pseudo log-likelihood, although the methods differ in their details. Valliant and Dever 7 estimated 

participation rates by fitting a logistic regression model to the combined nonprobability sample and 

a reference, probability sample. Sample weights for the probability sample were scaled by a 
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constant so that the scaled probability sample was assumed to represent the complement of the 

nonprobability sample. Each unit in the nonprobability sample was assigned a weight of one. This 

results in the sum of the scaled weights in the combined probability plus nonprobability sample 

being an estimate of the population size. This method will be referred to as the rescaled design 

weight (RDW) method. The participation rate for each nonprobability sample unit was estimated 

by the inverse of the estimated inclusion (or participation) probability. 

The RDW estimator is biased especially when the participation rate of the nonprobability 

sample is large, as noted by Chen et al. 4 As a remedy, Chen et al 4 estimated the participation rate 

by manipulating the log-likelihood estimating equation in a somewhat different way. The resulting 

estimator, denoted by CLW, is consistent and approximately unbiased regardless of the magnitude 

of participation rates. Compared to the CLW method, which requires special programming, the 

RDW method has the advantage of easy implementation by ready-to-use software such as R, Stata, 

or SAS. Survey practitioners can simply fit a logistic regression model with scaled survey weights 

in the probability sample to obtain the estimated participation rates.  

In this paper, we propose an adjusted logistic propensity weighting (ALP) method to 

estimate the participation rates for nonprobability sample units. Like the CLW, the proposed ALP 

method relaxes the assumptions required by the RDW method, 7, 8 by formulating the method in an 

innovative way. As in the RDW method, the proposed ALP method retains the advantage of easy 

implementation by fitting a propensity model with survey weights in ready-to-use software. Taylor 

linearization variance estimators are proposed for ALP estimates that account for variability due to 

differential pseudo-weights in the nonprobability sample, complex survey design of the reference 

probability survey, as well as the estimation of the propensity scores. The variance of the proposed 

estimator has the order of the inverse of the nonprobability sample size (as shown in Appendix C). 
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Moreover, under the logistic propensity model, the ALP method can flexibly scale the probability 

sample weights for propensity estimation to further improve efficiency. In summary, the 

contributions of the proposed ALP method include 1) easy implementation with ready-to-use 

software, 2) high efficiency, as well as 3) the justification of a set of pseudo-estimating equations 

(2.3.7) that underly the straightforward implementation in survey software.  

2. METHODS 

2.1. Basic setting 

Let 𝐹𝑃 = {1,⋯ ,𝑁} represent the finite population with size 𝑁. We are interested in estimating the 

finite population mean 𝜇 = 𝑁!" ∑ 𝑦##∈%& . Suppose a volunteer-based nonprobability sample 𝑠' of 

size 𝑛' is selected from 𝐹𝑃 by a self-selection mechanism, with 𝛿#
(') (= 1 if 𝑖 ∈ 𝑠'; 0 otherwise) 

denoting the indicator of 𝑠' inclusion. The underlying participation rate of nonprobability sample 

for a finite population unit is defined as 

𝜋#
(') = 𝑃( 𝑖 ∈ 𝑠' ∣∣ 𝐹𝑃 ) = 𝐸'7 𝛿#

(')
∣∣ 𝑦# , 𝒙# 9, 𝑖 ∈ 𝐹𝑃 

where the expectation 𝐸' is with respect to the nonprobability sample selection, and 𝒙# is a vector 

of self-selection variables, i.e., covariates related to the probability of inclusion in 𝑠' . The 

corresponding implicit nonprobability sample weight is 𝑤# = 1/𝜋#
(') for 𝑖 ∈ 𝐹𝑃. 

We consider the following assumptions for the nonprobability sample self-selection.

A1. The nonprobability sample selection is uncorrelated with the variable of interest given the 

covariates, i.e., 𝜋#
(') = 𝐸'7 𝛿#

(')
∣∣ 𝑦# , 𝒙# 9 = 𝐸'7 𝛿#

(')
∣∣ 	𝒙# 9 for 𝑖 ∈ 𝐹𝑃.

A2. All finite population units have a positive participation rate, i.e., 𝜋#
(') > 0 for 𝑖 ∈ 𝐹𝑃.
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A3. The indicators of participation in the nonprobability cohort are uncorrelated with each other 

given the self-selection variables, i.e., 𝑐𝑜𝑣C 𝛿#
('), 𝛿*

(')
∣∣ 𝒙# , 𝒙* D = 0 for 𝑖 ≠ 𝑗.

 An independent reference probability-based survey sample 𝑠+  of size 𝑛+  is randomly 

selected from 𝐹𝑃. The sample inclusion indicator, selection probability, and the corresponding 

sample weights are defined by 𝛿#
(+)(=1 if 𝑖 ∈ 𝑠+; 0 otherwise), 𝜋#

(+) = 𝐸+ C 𝛿#
(+)

∣∣ 𝒙# D, and 𝑑# =

1/𝜋#
(+), respectively, where 𝐸+ is with respect to the survey sample selection. 

2.2. Existing logistic propensity weighting method 

In this section, we first briefly introduce the existing RDW and CLW methods and discuss their 

pros and cons.  

2.2.1 Rescaled design weight method (RDW) 

Valliant and Dever 6, 7 assumed a logistic regression model for the participation rates 𝜋#
(')(𝜸) 

 log L
𝜋#
(')(𝜸)

1 − 𝜋#
(')(𝜸)

N = 𝜸,𝒙# , for	𝑖 ∈ 𝐹𝑃, (2.2.1) 

where 𝜸 is a vector of unknown parameters, and 𝒙# is a vector of covariates for 𝑖 ∈ 𝐹𝑃. To simplify 

the notation, we use 𝜋#
(') below. They considered (implicitly) the population likelihood function of 

𝜋#
(') as

 𝐿(𝜸) =R 7𝜋#
(')9

-!
(#)

71 − 𝜋#
(')9

"!-!
(#)

#∈%&
, (2.2.2) 

Then, the log-likelihood function can be written as

 

𝑙(𝜸) =T U𝛿#
(') log 𝜋#

(') + 71 − 𝛿#
(')9 log71 − 𝜋#

(')9W
#∈%&

 

=T log𝜋#
(')

#∈.#
+T log71 − 𝜋#

(')9
#∈%&!.#

, 
(2.2.3) 
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where the set 𝐹𝑃 − 𝑠'  represents the finite population units that are not self-selected into the 

nonprobability sample. Since 𝐹𝑃 − 𝑠'  is not available in practice, the pseudo-loglikelihood 

function was constructed to estimate 𝑙(𝜸) by 

 𝑙X/01(𝜸) =T 𝑤#∗ log 𝜋#
(')

#∈.#
+T 𝑤#∗ log71 − 𝜋#

(')9
#∈.%

 
(2.2.4) 

where 𝑤#∗ = Y
1,																												for	𝑖 ∈ 𝑠'
𝑑#Z𝑁[+ − 𝑛'\/𝑁[+, for	𝑖 ∈ 𝑠+

, with 𝑁[+ = ∑ 𝑑##∈.%  being the survey estimate of the 

target finite population size 𝑁. This leads to the total of the scaled weights across the probability 

sample units being ∑ 𝑤#∗#∈.% =𝑁[+ − 𝑛'. The rationale for rescaling is to weight the survey sample to 

represent the complement of 𝑠' in the finite population, i.e., the set 𝐹𝑃 − 𝑠'. Under the logistic 

regression model, the nonprobability sample participation rate 𝜋#
(') for 𝑖 ∈ 𝑠' can be estimated by 

fitting Model (2.2.1) to the combined sample of 𝑠' and scaled-weighted 𝑠+ with scaled weights 𝑤#∗, 

leading to the RDW estimates.

The RDW method has been shown to effectively reduce the bias of the naïve nonprobability 

sample estimates. However, the summand ∑ log71 − 𝜋#
(')9#∈%&!.#  in (2.2.3) is not a fixed finite 

population total because units in the nonprobability sample  are treated as being randomly 

observed. This leads to a bias as shown below.

 Comparing the expectation of the population log-likelihood function 𝑙(𝜸) in (2.2.3) and the 

expectation of the pseudo log-likelihood 𝑙X/01(𝜸) in (2.2.4), and letting 𝐸(⋅) = 𝐸'𝐸+(⋅) we have 

𝐸{𝑙(𝜸)} =T 𝜋#
(') log 𝜋#

(')

#∈%&
+T 71 − 𝜋#

(')9 log71 − 𝜋#
(')9

#∈%&
, and	 

					𝐸a𝑙X/01(𝜸)b = 𝐸'𝐸+a𝑙X/01(𝜸)b

= 𝐸' cT 𝛿#
(') log 𝜋#

(')

#∈%&
d + 𝐸+ eT 𝛿#

(+) ⋅
𝑁[+ − 𝑛'
𝑁[+

𝑑# log71 − 𝜋#
(')9

#∈%&
f 

cs



8 

=̇ T 𝜋#
(') log 𝜋#

(')

#∈%&
+T 71 −

𝑛'
𝑁9 log71 − 𝜋#

(')9
#∈%&

 

by assuming 𝐸+Z𝑁[+\ = 𝑁. The difference of the two expectations, denoted by Δ/01, can be written 

as

Δ/01 = 𝐸a𝑙X/01(𝜸)b − 𝐸{𝑙(𝜸)} =T 7
𝑛'
𝑁 − 𝜋#

(')9 log71 − 𝜋#
(')9

#∈%&
 

which, in general, is nonzero. Accordingly, the nonprobability sample participation rates estimated 

by solving for 𝜸 in 𝜕𝑙X/01(𝜸)/𝜕𝜸 = 0 under Model (2.2.1) can be biased, unless either (i) the 

nonprobability sample units have small participation rates, i.e., both 𝑛'/𝑁	and 𝜋#
(') are close to 0 

for all 𝑖 ∈ 𝐹𝑃, in which case log71 − 𝜋#
(')9 ≈ 0, or (ii) all population units are equally likely to 

participate in the nonprobability sample, i.e. 𝜋#
(') ≡ 𝑛'/𝑁. In many practical applications, (i) will 

hold. For example, suppose that 𝑛' = 1000 and the US population age 18 and over is the target 

population. The population size is approximately 210 million, so that 𝑛'/𝑁 =̇ 5 × 10!3. If, instead, 

the population is for a small state like Wyoming where the 18+ population size is about 365,000, 

then 𝑛'/𝑁 =̇ 0.0027 . In both examples, with such small sampling fractions, all 7𝜋#
('), 𝑖 ∈ 𝑠'9 

should be near zero also. 

 

 CLW Method

Chen et al 4 proposed another IPSW method using the same likelihood function 𝐿(𝜸) in (2.2.2), but 

rewriting the population log-likelihood as

 𝑙(𝜸) =T log
𝜋#
(')

1 − 𝜋#
(')#∈.#
+T log71 − 𝜋#

(')9
#∈%&

. (2.2.5) 
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In contrast to the RDW method, CLW estimated the population total of log71 − 𝜋#
(')9 by a weighted 

reference sample total and constructed the pseudo log-likelihood as 

 𝑙X451(𝜸) =T log
𝜋#
(')

1 − 𝜋#
(')#∈.#
+T 𝑑# log71 − 𝜋#

(')9
#∈.&

. (2.2.6) 

Under the same logistic regression model (2.2.1), the participation rate 𝜋#
(')  was estimated by 

solving the pseudo estimation equation 

 𝑆X(𝜸) =
1
𝑁 YT 𝒙#

#∈.#
−T 𝑑#𝜋#

(')𝒙#
#∈.&

q = 0, (2.2.7) 

derived from the pseudo log-likelihood (2.2.6). The resulting CLW weights are calculated as 

a𝑤#451 = 1 + exp!"(𝜸u,𝒙#), 𝑖 ∈ 𝑠'b . Chen et al 4 proved that the CLW estimator of the finite 

population mean, �̂�451 = Z∑ 𝑤#451#∈.# \!"∑ 𝑤#451𝑦##∈.# , was design consistent when model 

(2.2.1) for the participation rates was correct. 

In contrast to the RDW method, CLW does not require condition (i) or (ii) in the RDW method 

for unbiased estimation of participation rates 7𝜋#
('), 𝑖 ∈ 𝑠'9. In the next section, we propose an 

adjusted logistic propensity (ALP) method, which corrects the bias in the RDW method. The 

proposed ALP method provides consistent estimators of finite population means and is as easy to 

implement as the RDW method. 

2.3. Adjusted logistic propensity method (ALP) 

The ALP method also aims to estimate the cohort sample participation rates 7𝜋#
('), 𝑖 ∈ 𝑠'9 and use 

the inverse of estimated 𝜋#
(')  as the pseudo-weight for 𝑖 ∈ 𝑠' . As a computational device, we 

construct a pseudo-population of 𝑠'∗ ∪ 𝐹𝑃 , where 𝑠'∗  is a copy of 𝑠'  that has the same joint 

distributions of covariates 𝒙 and outcome 𝑦 with the original 𝑠'. The number of units in 𝑠'∗ ∪ 𝐹𝑃 is 



10 

𝑛' + 𝑁. In the union of 𝑠'∗ ∪ 𝐹𝑃, 𝑠'∗ and 𝑠' are treated as two different sets. We use 𝑅# to indicate 

the membership of 𝑠'∗  in 𝑠'∗ ∪ 𝐹𝑃  (=1 if 𝑖 ∈ 𝑠'∗ ; 0 if 𝑖 ∈ 𝐹𝑃 ), and 𝑝# = 𝑃(𝑅# = 1) =

𝑃( 𝑖 ∈ 𝑠'∗ ∣∣ 𝑠'∗ ∪ 𝐹𝑃 ). Instead of directly modeling  𝜋#
(') as in the RDW and CLW methods, we 

model 𝑝# as a function of 𝜋#
('): 

 𝑝# =
𝜋#
(')

1 + 𝜋#
(') , or	equivalently, 𝜋#

(') =
𝑝#

1 − 𝑝#
. (2.3.1) 

The relationship between 𝑝# and 𝜋#
(') follows because 

 
𝑝#

1 − 𝑝#
=
𝑃( 𝑖 ∈ 𝑠'∗ ∣∣ 𝑠'∗ ∪ 𝐹𝑃 )
𝑃( 𝑖 ∈ 𝐹𝑃 ∣∣ 𝑠'∗ ∪ 𝐹𝑃 )

=
𝑃(𝑖 ∈ 𝑠')
𝑃(𝑖 ∈ 𝐹𝑃) = 𝑃( 𝑖 ∈ 𝑠' ∣∣ 𝐹𝑃 ) = 𝜋#

(') (2.3.2) 

since 𝑠'∗ is a copy of 𝑠' and 𝑃( 𝑖 ∈ 𝑠'∗ ∣∣ 𝑠'∗ ∪ 𝐹𝑃 ) = 𝑃( 𝑖 ∈ 𝑠' ∣∣ 𝑠'∗ ∪ 𝐹𝑃 ). Notice that, derived from 

Formula (2.3.1), 

𝑝# ≤
1
2, 

since 𝜋#
(') ≤ 1	and the equality holds only if 𝜋#

(') = 1, i.e., the 𝐹𝑃 unit 𝑖 participates in the cohort 

with certainty. As illustrated by the examples at the end of section 2.2.1, requiring 𝑝# ≤ 1/2 is not 

unrealistic in typical applications because 𝜋#
(') is generally quite small. 

Suppose that 𝑝# can be modeled parametrically by 𝑝# = 𝑝(𝒙#; 𝜷) = expit(𝜷,𝒙#), where 𝜷 

is a vector of unknown model parameters. That is,

 log �
𝑝#

1 − 𝑝#
� = 𝜷,𝒙# , for	𝑖 ∈ 𝑠'∗ ∪ 𝐹𝑃 (2.3.3) 

Notice that 𝜷, the coefficients in Model (2.3.3), differ from the coefficients 𝜸 in Model (2.2.1) 

because the two logistic regression models have different dependent variables. Based on (2.3.1), 

expression (2.3.3) implies that 𝜋#
(')  is being modeled as exp(𝜷,𝒙#) , which differs from the 
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RDW/CLW model in (2.2.1) where 𝜋#
(') = exp(𝜸,𝒙#) {1 + exp(𝜸,𝒙#)}⁄ . The corresponding 

“likelihood” function can be written as 

 𝐿∗(𝜷) =R 𝑝#
/!(1 − 𝑝#)("!/!)

#∈.#∗∪%&	
, 

(2.3.4) 

where 𝑅# indicates the membership of 𝑠'∗ in 𝑠'∗ ∪ 𝐹𝑃 (=1 if 𝑖 ∈ 𝑠'∗; 0 if 𝑖 ∈ 𝐹𝑃). We put “likelihood” 

in quotes because 𝐿∗(𝜷) varies depending on which set of units is selected for 𝑠'∗. This contrasts 

with the population likelihood in (2.2.2) which applies regardless of which sample is selected. Note 

that 𝐿∗(𝜷)	in (2.3.4) is written as if the units are independent when they are not. This is a standard 

procedure in pseudo-MLE estimation, and the resulting parameter estimators remain design-

consistent even when some units may be correlated due to, e.g., clustering. 9, 10 The quantity 𝐿∗(𝜷) 

should be viewed as motivation for developing the estimating equations given below in (2.3.6). The 

log-likelihood generated from 𝐿∗(𝜷) is

 

𝑙∗(𝜷) =T {𝑅# ⋅ log 𝑝# + (1 − 𝑅#) log(1 − 𝑝#)}
#∈.#∗∪%&	

 

=T 𝛿#
(')log 𝑝#

#∈%&
+T log(1 − 𝑝#)

#∈%&
 

(2.3.5) 

Notice that the randomness of 𝐿∗(𝜷) and 𝑙∗(𝜷) comes from the cohort selection, i.e. 𝛿#
(') in the first 

summand in the last line of (2.3.5). In reality, since the unit level information of 𝐹𝑃 is unknown, 

we replace the second summand in (2.3.5) by a survey sample estimate, ∑ 𝑑# log(1 − 𝑝#)#∈.% , and 

obtain the maximum pseudo-likelihood estimator 𝜷[ by solving the pseudo-estimating equation 

 𝑆X∗(𝜷) =
1

𝑁 + 𝑛'
YT (1 − 𝑝#)

#∈.#
𝒙# −T 𝑑#𝑝#𝒙#

#∈.%
q = 𝟎. (2.3.6) 
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Assuming that 𝑝# is bounded by 0 and 1 2⁄  implies that 𝜋#
(') is automatically bounded by 0 and 1. 

Note that (2.3.6) falls in a general class of estimating equations that ensure unique solutions of 

parameters4, 11, 12 (e.g. equation (6) in CLW4 if their function ℎ(𝒙# , 𝜽) is set equal to 𝒙#71 + 𝜋#
(')9

!"
).  

The ALP estimator of 𝜇 is 

 �̂�85& =
∑ :!

()*
!∈&# ;!
∑ :!

()*
!∈&#

, (2.3.7) 

where 𝑤#85& = 1/𝜋#
(')(𝜷[)  for 𝑖 ∈ 𝑠' . Although 𝐿∗(𝜷)  is not a standard likelihood, �̂�85&  is a 

consistent estimator of the population mean as shown in the theorem below. 

We consider the following limiting process for the theoretical development. 4, 13 Suppose 

there is a sequence of finite populations 𝐹𝑃< of size 𝑁<, for 𝑘 = 1, 2,⋯. Cohort 𝑠',< of size 𝑛',< 

and survey sample 𝑠+,< of size 𝑛+,< are sampled from 𝐹𝑃<. The sequences of the finite population, 

the cohort and the survey sample have their sizes satisfy lim
<→?

𝑛@,< 𝑁<⁄ → 𝑓@, where 𝑡 = 𝑐	or 𝑝 and 

0 < 𝑓@ ≤ 1	(regularity condition C1 in Appendix A). In the following the index 𝑘 is suppressed for 

simplicity. 

Theorem. Consistency of ALP estimator of finite population mean (see Appendix B)

Under the regularity conditions A1-A3, and C1-C5 in Appendix A, and assuming logistic regression 

model (2.3.3) for 𝑝#, the ALP estimate �̂�85& is design consistent for 𝜇, in particular �̂�85& − 𝜇 =

𝑂+Z𝑛'
!"/B	\, with the finite population variance 

 𝑉𝑎𝑟(�̂�85&) =̇ 𝑁!BT 𝑝#(1 − 2𝑝#) Y
(𝑦# − 𝜇)
𝑝#

− 𝒃,𝒙#q
#∈%&

B

+ 𝒃,𝑫𝒃, (2.3.8) 

where 𝑝# = expit(𝜷,𝒙#) , 𝒃, = {∑ (𝑦# − 𝜇)𝒙#,#∈%& }{∑ 𝑝#𝒙#𝒙#,#∈%& }!" , and 𝑫 =

𝑁!B𝑉+ C∑ 𝑑#𝑝#𝒙##∈.% D  is the design-based variance-covariance matrix under the probability 

sampling design for 𝑠+.  
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In practice, the ALP estimator of a finite population mean can be obtained by three steps:  

Step 1: Search for covariates 𝒙 available in both the cohort (𝑠') and the reference survey sample 

(𝑠+) and combine the two samples. Assign 𝑅# = 1 for 𝑖 ∈ 𝑠' and 𝑅# = 0 for 𝑖 ∈ 𝑠+ in the combined 

sample. 

Step 2: Fit a logistic regression model for 𝑝# = 𝑃(𝑅# = 1) in the combined 𝑠'  and weighted 𝑠+, 

with the survey sample weights a𝑑# , 𝑖 ∈ 𝑠+b, and obtain the estimate �̂�# for 𝑖 ∈ 𝑠'. 

Step 3: Estimate the finite population mean by Formula (2.3.7) with the ALP pseudo weight 

𝑤#85& = �̂�#/(1 − �̂�#) for 𝑖 ∈ 𝑠'. 

Notice that Step 2 can be accomplished by any existing survey software, such as svyglm in 

survey package of R, svy:logit in Stata, and PROC SURVEYLOGISTIC in SAS. In addition to 

being easy to implement, the ALP estimator from (2.3.7) does not require conditions (i) or (ii), 

unlike RDW. Moreover, we prove that in large samples, 𝑉𝑎𝑟(�̂�85&) = 𝑂(𝑛'!")  is as or more 

efficient compared to 𝑉𝑎𝑟(�̂�451) = 𝑂 7minZ𝑛+, 𝑛'\
!"9  under their correct propensity model 

respectively, which depends on both the nonprobability and probability sample sizes (see Appendix 

C).

An alternative method would be to omit the odds transformation, which uses 𝑝#  to 

approximate the participation rate 𝜋#
('). Denote this method by FDW for full design weight, which 

contrasts to the scaling of the survey sample weights in the RDW method. Comparing the 

expectation of the population log-likelihood function 𝑙(𝜸) in (2.2.3) and the expectation of the 

pseudo log-likelihood 𝑙X∗(𝜷) in (2.3.5) with 𝜋#
(')  replacing 𝑝#  by the FDW method, i.e., 𝑙X∗(𝜸) =

∑ log 𝜋#
(')

#∈.# + ∑ 𝑑# logC1 − 𝜋#
(')D#∈.% , we have their difference, denoted by Δ%01, written as

Δ%01 = 𝐸a𝑙X∗(𝜸)b − 𝐸{𝑙(𝜸)} 
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=T 𝜋#
(') log 𝜋#

(')

#∈%&
+T log71 − 𝜋#

(')9
#∈%&

−T 𝜋#
(') log 𝜋#

(')

#∈%&
 

				−T C1 − 𝜋#
(')D log71 − 𝜋#

(')9
#∈%&

=T 𝜋#
(') log71 − 𝜋#

(')9
#∈%&

. 

The bias is zero only if 𝜋#
(') for 𝑖 ∈ 𝐹𝑃 are all close to zero. Thus, the odds transformation step in 

ALP could be skipped if all nonprobability participation rates are extremely small; but, in general, 

that step is essential for unbiased estimation.

2.4. Variance estimation 

Using the finite population variance formula (2.3.8), the first summand can be consistently 

estimated by 

 a𝑁[(')b
!B
	T (1 − �̂�#)(1 − 2�̂�#) Y

(𝑦# − �̂�85&)
�̂�#

− 𝒃[,𝒙#q
#∈.#

B

, (2.4.1) 

where �̂�#  is the prediction for 𝑖 ∈ 𝑠' , 𝑁[(') = ∑ 𝑤#85&#∈.# , and 𝒃[, = a∑ (𝑦# −#∈C,

�̂�85&)𝒙#,ba∑ �̂�#𝒙#𝒙#,#∈.# b!" . The second summand 𝒃,𝑫𝒃 is estimated by 𝒃[,𝑫[𝒃[ , where 𝑫[  is the 

survey design consistent variance estimator of D. For example, under stratified multistage cluster 

sampling with 𝐻  strata and 𝑎D  primary sampling units (PSUs) in stratum ℎ  selected with 

replacement, 

 𝑫[ = a𝑁[(+)b
!B
⋅T

𝑎D
𝑎D − 1

T (𝒛E − 𝒛�)(𝒛E − 𝒛�),
F-

EG"

H

DG"
, (2.4.2) 

where 𝑁[(+) = ∑ 𝑑##∈.% , 𝒛E = ∑ 𝑑#�̂�#𝒙##∈.%(-.)  is the weighted PSU total for cluster 𝑙 in stratum ℎ, 

𝑠+(DE) is the set of sample elements stratum ℎ and cluster 𝑙, and 𝒛� = 𝑎D!" ∑ 𝒛E
F-
E  is the mean of the 

PSU totals in stratum ℎ.  
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2.5. Scaling survey weights in the likelihood for the ALP Method 

The proposed ALP can flexibly scale the survey weights in estimating equation (2.3.6) to improve 

efficiency. For case-control studies, Scott & Wild 14 and Li et al 15 previously used the technique 

we propose below to reduce variances of estimates of relative risks when weights for cases and 

controls are substantially different. We multiply the second summand in 𝑆X∗(𝜷)	by a constant 𝜆, say 

𝜆 = 𝑛' C∑ 𝑑##∈.% D⁄ , so that the sum of the scaled survey weights (𝜆𝑑#) is 𝑛'. Accordingly, the score 

function becomes 

 𝑆XI∗(𝜷) =T (1 − 𝑝#)
#∈.#

𝒙# − 𝜆T 𝑑#𝑝#𝒙#
#∈.%

 
(2.5.1) 

Solving 𝑆XI∗(𝜷) = 0 for 𝜷, and the resulting vector of estimates is denoted by 𝜷[I = Z𝛽�J,I, 𝜷[",I\, 

where 𝛽�J,I is estimate of the intercept. Similar derivations to those in Scott & Wild 10 and Li et al 11 

can be used to prove that 𝜷[",I is design-consistent with various efficiency gains, depending on the 

variability of survey weights versus the nonprobability sample weights (with implicit common 

value of 1). However, the estimate of the intercept 𝛽�J,I can be badly biased with scaled weights. As 

a result, the estimate of participation rate expZ𝜷[I,𝒙#\ including 𝛽�J,I	would also be biased. The bias 

of 𝛽�J,I , however, would not affect the estimate of population mean because the scaled ALP-

weighted mean, �̂�85&.L, 

 �̂�85&.L =
∑ 𝑤#85&.L#∈.# 𝑦#
∑ 𝑤#85&.L#∈.#

=
∑ exp!"Z𝜷[",I, 𝒙#\#∈.# 𝑦#
∑ exp!"Z𝜷[",I, 𝒙#\#∈.#

, (2.5.2) 

depends on 𝜷[",I, but not 𝛽�J,I, where 𝑤#85&.L = exp!"Z𝜷[",I, 𝒙#\ is the scaled ALP pseudo weight.

 It can be proved that �̂�85&.L is a consistent estimator of the finite population mean, 𝜇. The 

Taylor linearization (TL) variance estimator of �̂�85&.L can be obtained by substituting 𝑤#85&, �̂�85& , 

𝜷[ , �̂�#  and 𝑑#  by 𝑤#85&.L , �̂�85&.L , 𝜷[I , �̂�#,I = expZ𝜷[I,𝒙#\ and 𝜆𝑑# , respectively, in Formulae (2.4.1) 
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and (2.4.2). Details on the variance and the consistency of ALP.S are discussed in the dissertation 

by Wang. 16

3. SIMULATIONS 

3.1. Finite population generation and sample selection 

We applied simulation setups similar to those in Chen et al.4 In the finite population 𝐹𝑃 of size 𝑁 =

500,000, a vector of covariates 𝒙# = (𝑥"# , 𝑥B# , 𝑥M# , 𝑥N#),  was generated for 𝑖 ∈ 𝐹𝑃  where 𝑥"# =

𝑣"#, 𝑥B# = 𝑣B# + 0.3𝑥"#, 𝑥M# = 𝑣M# + 0.2(𝑥"# + 𝑥B#), 	𝑥N# = 𝑣N# + 0.1(𝑥"# + 𝑥B# + 𝑥M#), with 𝑣"# ∼

𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑣B# ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 2), 𝑣M# ∼ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(1), and 𝑣N# ∼ 𝜒B(4). The variable of 

interest 𝑦# ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇# , 1) , where 𝜇# = −𝑥"# − 𝑥B# + 𝑥M# + 𝑥N#  for 𝑖 ∈ 𝐹𝑃 . The parameter of 

interest was the finite population mean 𝜇 = 𝑁!" ∑ 𝑦##∈%& = 3.97. 

The probability-based survey sample 𝑠+ with the target sample size 𝑛+ = 12,500 (sampling 

fraction 𝑓+ = 2.5% ) was selected by Poisson sampling, with inclusion probability 𝜋#
(+) =

Z𝑛+ ⋅ 𝑞#\/∑ 𝑞##∈%&  for 𝑖 ∈ 𝐹𝑃, where 𝑞# = 𝑐𝑜𝑛𝑠𝑡 + 𝑥M# + 0.03𝑦# with controlling for the variation 

of the survey weights, 𝑑# = 1/𝜋#
(+). We set 𝑐𝑜𝑛𝑠𝑡 = −0.26 so that max 𝑞# /min 𝑞# = 20.  

 As noted in section 2, the ALP and CLW methods do assume somewhat different models 

for the participation rate. Thus, it is interesting to check their performances both when their 

underlying models are correct and when the assumed participation rate models fail. The volunteer-

based nonprobability sample 𝑠'  (with a target sample size 𝑛' ) was also selected by Poisson 

sampling but with different inclusion probabilities 𝜋#
(') for 𝑖 ∈ 𝐹𝑃. We considered two scenarios 

with different functional forms of 𝜋#
(') so that the ALP (and FDW) or the CLW method had the true 

linear logistic regression propensity model in one scenario but not in the other. In Scenario 1, 𝜋#
(') =

exp(𝛽J + 𝜷,𝒙#) was the specified participation rate for the 𝑖@D population unit to be included into 
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the nonprobability sample. The underlying true propensity model for ALP (and FDW) methods, 

shown in (2.3.3), was logit(𝑝#) = log7𝜋#
(')9 = 𝛽J + 𝜷,𝒙# , which implies logit7𝜋#

(')9 = 𝛽J +

𝜷,𝒙# − log71 − 𝜋#
(')9. This model differs from the underlying linear model (2.2.1) assumed by the 

CLW method by the addition of the term log71 − 𝜋#
(')9. In Scenario 2, 𝜋#

(') = expit(𝛾J + 𝜸,𝒙#) 

was specified so that logit7𝜋#
(')9 = 𝛾J + 𝜸,𝒙#, which was the model (2.2.1) assumed by the CLW 

method. This model, however, implied that logit(𝑝#) = log7𝜋#
(')9 = 𝛾J + 𝜸,𝒙# + log71 − 𝜋#

(')9, 

which was different from the model assumed by the ALP and the FDW method (by the extra term 

log71 − 𝜋#
(')9 ). Hence, ALP and CLW estimates of the population mean are expected to be 

unbiased in one scenario but not the other since both methods assume a linear logistic propensity 

model. The biases of the FDW and RDW estimates, as measured by Δ%01 and Δ/01, depend on 

𝜋#
('),	and go to 0 as 𝜋#

(') approached 0. The biases become larger as 𝜋#
(') increases in either scenario.  

In both scenarios, the coefficients were set to be 𝜷 = 𝜸 = (0.18, 0.18, −0.27, −0.27),. The 

parameters were chosen so that 0 < 𝜋#
(') < 1 for all units 𝑖 ∈ 𝐹𝑃.  The intercepts 𝛽J	and 𝛾J were 

also controlled so that the expected number of nonprobability sample units 𝐸'(𝑛') = ∑ 𝜋#
(')

%&  was 

varied from 1,250, 2,500, 5,000, to 10,000 with the corresponding overall participation rate 𝑓' =

𝐸'(𝑛') 𝑁⁄  being 0.5%, 5%, 10%, or 20%.  

3.2. Evaluation Criteria 

We examined the performance of five IPSW estimators of finite population mean 𝜇: (1)-(2) �̂�85& 

and �̂�85&.L described in Section 2.2-2.5; (3) �̂�%01 using weights from the ALP method omitting the 

odds transformation; (4) �̂�451 proposed by Chen et al 4 ; and (5) �̂�/01	proposed by Valliant & 

Dever 6, compared with the naïve nonprobability sample mean (�̂�OF#PQ) that did not use weights, 
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and the weighted nonprobability sample mean, �̂�,1, with weights equal to the inverse of the true 

nonprobability sample inclusion probabilities. Note that �̂�,1 is unavailable in practice because the 

true nonprobability sample inclusion probabilities are unknown. Relative bias (%RB), empirical 

variance (𝑉 ), mean squared error (MSE) of the point estimates were used to evaluate the 

performance of the four IPSW point estimates, calculated by 

%RB= "
R
∑ ST(/)!S

S
R
UG" × 100, 𝑉 = "

R!"
∑ 7�̂�(U) − "

R
∑ �̂�(U)R
UG" 9

B
R
UG" 	, MSE= "

R
∑ a�̂�(U) − 𝜇bR
UG"

B
, 

where 𝐵 = 4,000 is the number of simulation runs, �̂�(U) is one of the point estimates obtained from 

the 𝑏th simulated sample, and 𝜇 is the true finite population mean. 

We also evaluated the variance estimates using the variance ratio (VR) and 95% confidence 

interval coverage probability (CP), which were calculated as 

VR=
0
1
∑ PV (/)1
/20

W
× 100, and CP= "

R
∑ 𝐼Z𝜇 ∈ 𝐶𝐼(U)\R
UG" , 

where �̄�(U)  is the proposed analytical variance estimate in simulated sample b, and 𝐶𝐼(U) =

C�̂�(U) − 1.96°𝑣(U), �̂�(U) + 1.96°�̄�(U)D is the 95% confidence interval from the 𝑏-th simulated 

sample. 

3.3. Results 

Table 1 presents simulation results for the seven nonprobability sample estimators of the finite 

population mean. The naïve estimator �̂�OF#PQ  that ignored the underlying sampling scheme had 

relative biases ranging from -36.5% to -42.8% while the true weighted nonprobability sample 

estimator,	�̂�,1 , was approximately unbiased in all scenarios. The variance of �̂�OF#PQ  was much 

smaller than that of the other estimators, but its bias caused the MSE to be extremely high (not 

reported). 
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Consistent with the bias theory in section 2, the RDW point estimator �̂�/01 and the FDW 

point estimator �̂�%01  were approximately unbiased when 𝜋#
(')  was small for all 𝑖 ∈ 𝐹𝑃 and the 

overall participation rate 𝑓' = 𝑁!"∑ 𝜋#
(')

#∈%&  was low, but more biased as 𝑓'  increased. The 

coverage probabilities decreased correspondingly.

As expected, the ALP estimators �̂�85&  and �̂�85&.L  (or the CLW estimator �̂�451 ) 

consistently provided unbiased point estimators in the scenarios where they were expected to be 

unbiased, i.e., scenario 1 for �̂�85& and �̂�85&.L, and scenario 2 for �̂�451. When the underlying model 

was incorrect for an estimator, biases occurred. For example, the relative biases of �̂�451 in scenario 

1 were 0.05%, 1.29%, 2.94%, and 7.80% as 𝑓' increased from 0.5%, 5%, 10%, to 20%, respectively. 

In scenario 2, the corresponding relative biases for �̂�85& are -0.19%, -1.03%, -1.81%, and -2.85%.

Consistent with the theory in Section 2, the ALP estimator �̂�85& was more efficient than 

�̂�451  with consistently smaller empirical variances in all scenarios, especially when the 

nonprobability cohort size was much larger than the probability sample size. Among all considered 

methods, �̂�85&.L was approximately unbiased with the smallest variance under Scenario 1 of the 

correct model. Under Scenario 2 of a misspecified model, �̂�85&.L was biased but most efficient, and 

therefore achieved smallest MSE.

The variance estimators for �̂�85&, �̂�85&.L and �̂�451 performed very well (with VR’s near 1), 

providing coverage probabilities close to the nominal level under the correct propensity models 

when 𝑓' was large. The lower coverage of the nominal level (about 88%) when 𝑓' = 0.5% was due 

to the small sample bias with skewed distributions of underlying sampling weights in the selected 

nonprobability sample. 
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4. REAL DATA EXAMPLE 

We use the same data example as Wang et al 6 for illustration purposes. We estimated prospective 

15-year all-cause, all-cancer, and heart disease mortality rates for adults in the US using the adult 

household interview part of The Third U.S. National Health and Nutrition Examination Survey 

(NHANES III) III conducted in 1988-1994, with sample size 𝑛' = 	20,050 . We ignored all 

complex design features of NHANES III and treated it as a nonprobability sample. The coefficient 

of variation (CV) of sample weights is 125%, indicating highly variable selection probabilities, and 

thus low representativeness of the unweighted sample. For estimating mortality rates, we 

approximated that the entire sample of NHANES III was randomly selected in 1991 (the midpoint 

of the data collection time period). 

For the reference survey, we used 1994 U.S. National Health Interview Survey (NHIS) 

respondents to the supplement for monitoring achievement of the Healthy People Year 2000 

objectives. Adults aged 18 and older are included (sample size 𝑛+ = 	19,738). The 1994 NHIS 

used a multistage stratified cluster sample design with 125 strata and 248 pseudo-PSUs. 17,18 We 

collapsed strata with only one PSU with the next nearest stratum for variance estimation purposes. 

19 Both samples of NHANES III and NHIS were linked to National Death Index (NDI) for mortality, 

allowing us to quantify the relative bias of unweighted NHANES estimates, assuming the NHIS 

estimates as the gold standard. Notice that the mortality information was obtained by statistical 

linkage between the survey sample and NDI, 20 but not responses from the questionnaires. The all-

cancer and heart-disease mortality were classified according to National Center for Health Statistics 

death code. 21, 22

The usage of NHANES III as the “nonprobability cohort” has several advantages for 

illuminating the performance of the propensity weighting methods. The “nonprobability sample” 
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and the reference survey sample have approximately the same target population, data collection 

mode, and similar questionnaires. This ensures that the pseudo-weighted “nonprobability sample” 

could potentially represent the target population, and thus enables us to characterize the 

performance of the propensity weighting methods in real data. 

The distributions of selected common covariates and variables of interests in the two 

samples are presented in Table 2. As expected, the variables in the weighted samples of NHANES 

and 1994 NHIS have very close distributions because both weighted samples represent 

approximately the same finite population. In contrast, covariates distribute quite differently in the 

unweighted NHANES from the weighted samples, especially for design variables such as age, 

race/ethnicity, poverty, and region, which leads to large biases in mortality rates estimated from the 

unweighted NHANES.

The propensity model included main effects of common demographic characteristics (age, 

sex race/ethnicity, region, and marital status), socioeconomic status (education level, poverty, and 

household income), tobacco usage (smoking status, and chewing tobacco), health variables (body 

mass index [BMI], and self-reported health status), and a quadratic term for age. Appendix D shows 

the final propensity models for the five considered methods. 

To evaluate the performance of the five PS-based methods, we used relative difference from 

the NHIS estimate %RD= (�̂� − �̂�OHXL) �̂�OHXL⁄ × 100, TL variance estimate (𝑉), and estimated 

MSE = (�̂� − �̂�OHXL)B + 𝑉, which treated the NHIS estimate as truth. Table 3 shows that the naïve 

NHANES III estimate of overall mortality was ~52% biased from the NHIS estimate because older 

people who have higher mortalities were oversampled (Table 2). All five IPSW methods 

substantially reduced the bias from the naïve estimate. Consistent with the simulation results, the 

ALP, FDW, RDW, and CLW method yielded close estimates when the sample fraction of the 
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nonprobability sample was small (𝑓�' = 𝑛' 𝑁[+⁄ = 1.06 × 10!N  calculated from Table 2). The 

ALP.S method, by scaling the NHIS sample weights in propensity estimation, reduced more bias 

than the other methods, and was more efficient. Therefore, the ALP.S estimate had the smallest 

MSE. The results for inference of all-cancer mortality had the similar pattern as the results for all-

cause mortality. All pseudo-weighting methods removed most bias of the naïve NHANES estimate 

(with %RD= -3.21%~2.07% reduced from 24.68%). In contrast, for heart-disease mortality, all 

pseudo-weighting methods were substantially less biased than the naïve estimate, with %RD= 

42.58%~57.78% reduced from 133.66%, but the alternative estimators still had undesirably large 

biases themselves. The bias reduction is not as much as that for all-cancer or all-cause mortality, 

and this may be due to the omission of important predictors of having heart disease and of being 

observed in the nonprobability sample in the propensity model. 

5. DISCUSSION 

This paper proposed adjusted logistic propensity weighting methods for population inference using 

nonprobability samples. The proposed ALP method corrects the bias in the rescaled design weight 

method (RDW 7) by formulating the problem in an innovative way. As does the RDW method, the 

proposed ALP method retains the advantage of easy implementation by fitting a propensity model 

with survey weights in ready-to-use software. The proposed ALP estimators are design consistent 

if the assumed model for participation rate is correct. Taylor linearization variance estimators for 

ALP estimates are derived. Consistency of the ALP finite population mean estimators was proved 

theoretically and evaluated numerically. 

 A primary competitor to ALP is the CLW estimator developed by Chen, et al.4 If the 

nonprobability cohort is a small fraction of the population, ALP and CLW are very similar, although 
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ALP does have computational advantages regardless of the size of the sampling fraction. As the 

sampling fraction increases, ALP and CLW become more distinct.  

Both ALP and CLW methods fit a propensity model to the combined nonprobability sample 

and a weighted survey sample. Highly variable weights in the combined sample can lead to low 

efficiency of the estimated propensity model coefficients. Therefore, the variances of the ALP and 

the CLW estimators of the finite population means can be large in some applications. However, the 

proposed ALP is proved analytically and numerically to have a variance that is less than or equal 

to that of the CLW method regardless of whether the propensity model underlying ALP is correct. 

It worth noting that ALP and CLW methods assume different logistic regression models for 

propensity score estimation. Propensity is defined as 𝑝# = 𝑃( 𝑖 ∈ 𝑠' ∣∣ 𝑠'∗ ∪ 𝐹𝑃 ) by ALP in (2.3.2) 

and 𝜋# = 𝑃( 𝑖 ∈ 𝑠' ∣∣ 𝐹𝑃 ) by CLW in (2.2.2). Model diagnostics should be developed to select 

which propensity model is more appropriate for a given data set and will be the focus of our future 

research. 

An alternative ALP with scaled survey weights in the logistic regression propensity model 

produces consistent propensity estimates and further improves efficiency as shown in the simulation 

and the real data example. The scaled ALP had the smallest MSE in every scenario in our simulation 

study regardless of underlying model and had the smallest MSE for two of the three mortality causes 

in our real data application. The CLW estimator with the scaled survey weights, albeit more 

efficient than the unscaled CLW, is biased (simulation results not shown). The extension of scaling 

technique to the CLW method and other binary regression propensity models requires further 

investigation. 

The theory for the ALP method implies that 𝑝# > 1 2⁄  since 𝑝# defines the probability of the 

nonprobability sample inclusion among the combined finite population (𝐹𝑃 ) units and the 
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nonprobability sample, i.e., 𝑃( 𝑖 ∈ 𝑠'∗ ∣∣ 𝑠'∗ ∪ 𝐹𝑃 ). In estimation, however, �̂�# > 1 2⁄  can happen, 

especially in the unusual case where the nonprobability sample 𝑠'∗  is a large proportion of the 

population. Fortunately, this will not be a concern for the estimation of population mean or 

regression coefficients. By scaling survey weights in the propensity model for the ALP method, we 

can control for all ALP weights 𝑤#85&.L = 1 �̄�#85&.L⁄  to be greater than one. As proved in Section 

2.5, using scaled survey weights, 𝑤#85&.L = 𝜆 ⋅ exp!"Z𝜷[I,𝒙#\ = exp!"(𝛽�JI∗ + 𝜷["I, 𝒙#), would not 

bias the mean estimates. For population total estimation, an option is to estimate the population 

mean first and then multiply by a known or estimated population size from an independent source.  

Another approach to avoid estimated 𝑝# > 1 2⁄  is to solve the pseudo-estimating equations in 

(2.3.7) using a constrained optimization algorithm that requires �̂�# ≤ 1 2⁄  for all units. This would, 

of course, negate the computation advantage of the ALP estimator.  

Both ALP and CLW are inverse-propensity-score-weighting methods that directly use 

(functions of) the propensity score to estimate the cohort participation rate. They can be sensitive 

to propensity model misspecification (e.g., missing interaction terms in the fitted propensity model) 

due to inaccurate estimates of participation rates. Furthermore, extreme pseudo-weights can occur 

if the estimate of the participation rate is close to 0. In contrast, propensity-score-based matching 

methods (not included in this study) may be more robust to the model misspecification and less 

likely to produce extreme pseudo-weights, because they use propensity scores to measure the 

similarity between survey and cohort sample units and distribute survey sample weights to the 

cohort based on their similarity. Examples of matching methods are propensity-score adjustment 

by subclassification23, propensity-score-based kernel weighting methods5, 6, 16 and River’s matching 

method24.  
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There are a number of shortcomings associated with the estimation of propensity scores 

using logistic regression. First, the logistic model is susceptible to model misspecification, requiring 

assumptions regarding correct variable selection and functional form, including the choice of 

polynomial terms and multiple-way interactions. If any of these assumptions are incorrect, 

propensity score estimates can be biased, and balance may not be achieved when conditioning on 

the estimated PS. Second, implementing a search routine for model specification, such as repeatedly 

fitting logistic regression models while in/excluding predictor variables, interactions or 

transformations of variables can be computationally infeasible or suboptimal. In this context, 

parametric regression can be limiting in terms of possible model structures that can be searched 

over, particularly when many potential predictors are present (high dimensional data). Various 

machine learning methods for estimating the propensity score that incorporate survey weights will 

also be our future research interest. 
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Table 1 Results from 4,000 simulated survey samples and nonprobability samples with low to high 
participation rates under various propensity score models 

 
Scenario 1 

True propensity model for ALP  
Scenario 2

True propensity model for CLW

 %RB
V 

(× 10!) VR
MSE

(× 10!) CP5  %RB
𝑉 

(× 10!) VR
MSE

(× 10!) CP
𝑓" = 0.5%           
�̂�#$%&'	 -42.76 0.22 0.99    -42.61 0.22 1.00   
�̂�)*  -0.13 4.38 0.93 4.39 0.90  -0.12 4.38 0.93 4.38 0.90
�̂�+,* -0.29 3.73 0.93 3.75 0.87  -0.40 3.63 0.93 3.66 0.87
�̂�-,* -0.28 3.73 0.93 3.75 0.87  -0.40 3.63 0.93 3.66 0.87
�̂�./0 -0.07 3.70 0.93 3.77 0.88  -0.19 3.66 0.93 3.67 0.88
�̂�1/* 0.05 3.87 0.93 3.87 0.89  -0.07 3.76 0.93 3.76 0.88
�̂�./0.3 -0.11 3.54 0.92 3.54 0.87  -0.21 3.45 0.92 3.45 0.87
𝑓" = 5%           
�̂�#$%&'	 -42.74 0.02 0.99    -41.21 0.02 1.01   
�̂�)*  -0.04 0.50 0.98 0.50 0.92  -0.02 0.46 1.00 0.47 0.93
�̂�+,* -2.15 0.56 1.00 1.29 0.66  -3.05 0.43 1.01 1.89 0.45
�̂�-,* -2.05 0.57 1.00 1.23 0.68  -2.95 0.43 1.01 1.81 0.47
�̂�./0 -0.01 0.62 1.00 0.62 0.94  -1.03 0.47 1.01 0.64 0.85
�̂�1/* 1.29 0.84 1.00 1.10 0.95  0.01 0.61 1.01 0.61 0.94
�̂�./0.3 -0.05 0.45 1.00 0.45 0.92  -0.63 0.35 1.02 0.41 0.86
𝑓" = 10%           
�̂�#$%&'	 -42.74 0.01 1.11    -39.65 0.01 1.11   
�̂�)*  -0.01 0.25 1.02 0.25 0.94  -0.01 0.22 1.01 0.22 0.94
�̂�+,* -4.25 0.34 1.00 3.20 0.17  -5.62 0.22 0.99 5.20 0.02
�̂�-,* -3.87 0.35 1.00 2.71 0.24  -5.28 0.22 0.99 4.62 0.03
�̂�./0 0.01 0.42 1.00 0.42 0.95  -1.81 0.27 0.99 0.79 0.65
�̂�1/* 2.94 0.80 1.00 2.16 0.76  0.03 0.42 0.99 0.42 0.95
�̂�./0.3 -0.03 0.27 1.02 0.27 0.94  -0.86 0.18 1.01 0.29 0.81
𝑓" = 20%           
�̂�#$%&'	 -42.75 0.00 1.26    -36.50 0.01 1.21   
�̂�)*  -0.02 0.15 0.93 0.15 0.93  -0.02 0.11 0.96 0.11 0.93
�̂�+,* -8.58 0.21 0.95 11.83 0.00  -9.59 0.10 0.97 14.60 0.00
�̂�-,* -7.15 0.23 0.96 8.29 0.01  -8.51 0.11 0.98 11.53 0.00
�̂�./0 0.00 0.32 0.96 0.32 0.95  -2.85 0.16 0.98 1.44 0.19
�̂�1/* 7.80 1.67 0.92 11.27 0.06  0.01 0.33 0.98 0.33 0.95
�̂�./0.3 -0.03 0.19 0.96 0.19 0.94  -1.02 0.10 1.00 0.27 0.73
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Table 2 Distribution of selected common variables in NIH-AARP and NHIS 

  NHIS 1994  NHANES III
 Total Count 𝑛4 =19738 𝑁14 =189608549  𝑛" =20050 𝑁14 =187647206 
Variable  % Weighted %  % Weighted %
Age 
Group 

18-24 years 10.5 13.3  15.8 15.8
25-44 years 42.9 43.7  35.4 43.7

 45-64 years 26.1 26.6  22.6 24.6
 65 years and older 20.5 16.4  26.2 16.0
Race NH-White 76.1 75.9  42.3 76.0
 NH-Black 12.6 11.2  27.4 11.2
 Hispanic 8.0 9.0  28.9 9.3
 NH-Other 3.3 4.0  1.5 3.5
Region Northeast 20.7 20.5  14.6 20.8
 Midwest 26.1 25.1  19.2 24.1
 South 31.5 32.5  42.7 34.3
 West 21.6 21.9  23.5 20.9
Poverty No 79.1 82.3  67.9 80.3
 Yes 13.1 10.6  21.4 12.1
 Unknown 7.8 7.0  10.7 7.6
Education Lower than High school 20.1 19.1  42.5 26.6
 High School/Some College 58.7 59.6  45.9 54.1
 College or higher 21.2 21.3  11.6 19.3
Health 
Status 

Excellent/Very good 60.5 62.0  39.0 51.6
Good 25.7 25.7  35.9 32.7

 Fair/Poor 13.8 12.3  25.1 15.7
Mortality All-Cause 20.8 17.6  26.7 17.1 
 Heart-Disease 9.43 5.69  4.95 4.04 
 All-Cancer 5.57 4.11  5.10 4.47 
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Table 3. Relative difference (%RD) of all-cause 15-year mortality estimates from the NHIS estimate with 
estimated variance (𝑉) and mean squared error (MSE)

Mortality Method Estimate (%) %RD V 2× 𝟏𝟎𝟓5 MSE 2× 𝟏𝟎𝟓5
All cause  NHIS 17.6    
 Naïve 26.7 52.16   
 ALP 18.6 6.08 1.87 13.27
 FDW 18.6 6.08 1.87 13.28
 RDW 18.6 6.08 1.87 13.28
 CLW 18.6 6.07 1.87 13.24
 ALP.S 17.2 -2.05 1.08 2.37
All cancer NHIS 4.5    
 Naïve 5.6 24.68   
 ALP 4.6 2.07 0.38 0.46 
 FDW 4.6 2.07 0.38 0.46 
 RDW 4.6 2.07 0.38 0.46 
 CLW 4.6 2.06 0.37 0.46 
 ALP.S 4.3 -3.21 0.32 0.53 
Heart disease NHIS 4.0    
 Naïve 9.4 133.66   
 ALP 6.4 57.78 0.50 54.88 
 FDW 6.4 57.78 0.50 54.90 
 RDW 6.4 57.78 0.50 54.90 
 CLW 6.4 57.77 0.50 54.87 
 ALP.S 5.8 42.58 0.33 29.86 
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