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Restricted sub-tree learning to estimate an optimal dynamic
treatment regime using observational data
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Michigan, Ann Arbor, Michigan Dynamic treatment regimes (DTRs), consisting of a sequence of tailored treat-
ment decision rules that span multiple stages of care, present a unique opportu-
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enjoyed much success in meeting this goal. Often, however, it is necessary for
clinical, practical, or ethical reasons to restrict certain covariates that should be
used when making treatment decisions. Herein we present restricted sub-tree
learning (ReST-L), a flexible and robust, sub-tree-based method to estimate an
optimal multi-stage multi-treatment DTR that enables restrictions to the set
of prespecified candidate tailoring variables. ReST-L employs a purity measure
derived from an augmented inverse probability weighted estimator for the coun-
terfactual mean outcome, using observational data to build multi-stage decision
trees that are restricted in sub-tree spaces defined by the corresponding prescrip-
tive covariates. We show that ReST-L is able to correctly estimate the optimal
DTR searching over a large number of variables with relatively small sample
sizes and improves upon competing estimation methods. We demonstrate the
utility of ReST-L to estimate a two-stage fluid resuscitation strategy for patients

admitted to an intensive care unit with acute emergent sepsis.
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1 | INTRODUCTION

There is a drive in the healthcare field toward evidence-based and personalized medicine, which has the potential
to both improve patient outcomes, lower costs, and allocate healthcare resources in more efficient ways. One such
avenue to achieve this goal is through dynamic treatment regimes, which have become of great recent interest in several
medical specialties including oncology, as well as in social and clinical psychology and behavioral health. Dynamic treat-
ment regimes,!3 also known commonly as DTRs, individualized treatment rules, or adaptive interventions, represent
multi-stage, prescribed treatment sequences that are tailored to the individual based on their baseline and time-varying

Abbreviations: CART, classification and regression tree; DTR, dynamic treatment regime; ED, emergency department; ICU, intensive care unit;
MIMIC, Medical Information Mart for Intensive Care; NUCA, no unmeasured confounders; ReST-L, restricted sub-tree learning; T-RL, tree-based
reinforcement learning
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characteristics and are a vehicle to operationalize the manner in which patient care for chronic diseases is delivered in
practice more efficiently.

A primary statistical objective in the field of DTRs is to estimate stage-specific decision rules that will optimize the
expected long-term counterfactual outcomes of patients when applied across the population of interest. Given the poten-
tial value of DTRs for both improving long-term patient outcomes and optimizing the allocation of resources needed for
patient care, there are understandably a myriad of methods that have been developed to estimate optimal DTRs. Exist-
ing methods are vast and may be classified by their dependence on parametric or semi-parametric, or nonparametric
assumptions. Tree-based methods that offer flexibility and robustness in estimation are desirable given, often, an abun-
dance of observational data, as well as a high degree of uncertainty with regard to the complex relationships among
variables. Additionally, because optimal DTR estimation is exploratory in nature and communication with clinicians is
crucial, methods with interpretable results are particularly favored. Tree-based methods informing optimal DTR con-
struction in a single stage and/or with binary treatment decisions*® have been expanded to accommodate a multi-stage
and multi-treatment setting. Zhang et al® propose a robust and flexible method yielding interpretable estimated regimes
in the form of a decision list, but these lists incorporate only two covariates per rule and grow unidimensionally. Tao
et al' introduce tree-based reinforcement learning (T-RL), a semi-parametric approach combining the flexibility of a
decision tree (eg, Breiman et al'!) with a purity measure that is derived from a doubly robust augmented inverse prob-
ability weighted estimator of the counterfactual mean outcome.® Although T-RL has desirable properties and is able to
accommodate multiple treatments across multiple stages, the algorithm requires all observed covariates to be considered
as possible tailoring variables in an optimal DTR, which is unlikely to exclusively occur in practice.

Consider the case of a patient admitted to the intensive care unit (ICU) with acute emergent sepsis, a clinical syn-
drome that is associated with one of the highest rates of mortality among conditions commonly treated in the emergency
department (ED).'? Current practice recommends treating all patients with early liberal fluid resuscitation.!> However,
this recommendation is given with a stated “low quality of evidence” due to the fact that results across studies have been
inconsistent with indirect evidence, imprecise results, and a likelihood of bias. When observational data are used to eluci-
date a causal relationship, all measured covariates may be used to evaluate the treatment assignment mechanism. Many
of these covariates, including ethnic/racial identity or type of insurance, for example, would, for a variety of reasons, be
considered inappropriate to include as a potential tailoring variable to make a treatment decision. We therefore seek a
flexible and robust causal method with desirable statistical properties and interpretable results to estimate an optimal
multi-stage DTR that is restricted in its prescriptive covariates.

In this article, we propose restricted sub-tree learning (ReST-L), which utilizes a decision tree framework but restricts
the covariate space, according to subject-matter knowledge, to build an estimated, optimal DTR based on a sub-tree, a
topic that to our knowledge has not yet been explored in the statistical literature. In order to determine the binary splits
of the covariate space that define the decision tree at each stage, we propose a purity measure derived using the AIPW
estimator of the counterfactual mean outcome, but with an important modification. Whereas the AIPW estimator of
the counterfactual mean outcome is estimated using the full set of observed covariates, which is necessary for a causal
interpretation, we restrict the set of candidate tailoring variables to only those deemed reasonable based on clinical or sci-
entific expertise. In simulation studies we demonstrate that, when clinical knowledge substantiates consideration of only
a subset of covariates as candidate tailoring variables but other covariates may define the treatment assignment mecha-
nism or may be related to the outcome, ReST-L provides a flexible, semi-parametric analysis approach with interpretable
estimates of an optimal, multi-stage DTR that demonstrates superior performance to existing methods.

2 | MATHEMATICAL FORMULATION AND ASSUMPTIONS
2.1 | Notation and formulation

Suppose one of K; treatments (k; = 1, ... ,Kj; K; > 2) is administered to every subjecti =1, ... ,nateachofj=1, ... ,J
stages. The actual treatment received by the ith patient at stage j is denoted A;;. As is customary, we use the convention
of using a capital letter to refer to the random variable and lowercase to refer to a realized value. For simplicity, we omit
the subscript i from future notation when no confusion exists. Let us denote the jth stage covariates that are observed
and available when making the jth treatment decision as X;. Assuming that only a subset of covariates among X; may
be used to define the jth stage decision rule, we distinguish between Xgp; and X6 = X; \ Xsubj, Where Xqpj repre-

sub,j
sents a p;-dimensional vector of multi-scale data (p; > 1) corresponding to measured covariates that a clinician would
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consider as candidates to include in a treatment decision rule at stage j. Conversely, Xglbj is a g;-dimensional vector of

multi-scale data (g; > 1) corresponding to the set of measured covariates that may not be included in a clinical treat-
ment decision rule. In the context of our application example to determine an optimal treatment regime to treat patients
with acute emergent sepsis, Xgy, includes variables such as the Elixhauser comorbidity index and prior treatment with
vasopressors or mechanical ventilation—all of which a clinician would consider as possible tailoring variables—whereas
Xsc;b includes the patient’s racial/ethnic identity, gender, the time of year in which care was delivered, and other vari-
ables that a clinician would not use to assign treatment. After each jth treatment stage, measurements are made on
a set of covariates X;,;, which may also include an intermediate outcome, Y;. Such an intermediate outcome Y; may
reflect a certain response from previous treatments or may be a function of the previous treatment history and other
observed covariates, and may be used to determine treatment for the (j + 1)th stage. Thus, Y; may also be an element
of Xgup,j+1)- Following convention, we use overbar to denote history, that is, all observations collected at stages on or
before the jth stage. For example, ij = (X1,X>, ... ,Xj) represents all covariate data collected and available to the clinician
prior to the jth treatment decision. Similarly, Zj_l represents the set of all treatments received prior to the jth treatment
decision, that is, Zj_l = (A1, Az, ... ,Aj_1), and 1_/]-_1 = (Y1,Y3, ... ,Yj1) represents the set of all intermediate outcomes
observed prior to the jth treatment decision. Suppose the final outcome of interest Y = h(Y1,Y>, ... , Yy), which may be
a function of stage-specific intermediate outcomes Y1, Y3, ... , Yy, is assumed to be continuous and approximately nor-
mally distributed. Here h(-) represents some clinically relevant, prespecified function (eg, sum or last value). The full
history prior to the decision at stage j is then expressed as H; = (Zj_l,}_(j). Hgypj = (Zj_l,)_(sub,j) includes the full treat-
ment history prior to the treatment decision at stage j and covariate history only from the subset )_(mb’j that may be

used in a clinical decision rule. Using a similar convention, Hgm,j = }_(scub,j includes covariate history through stage j for
variables not considered for a treatment regime. Next let g = (g1,82, ... ,gy) denote a J-stage DTR. Each stage-specific
decision rule g; is a function only of covariates that can be used to make treatment decisions at each stage, that is,
g Hsub,j g Aj.

As we are interested in making a causal claim related to an estimated optimal DTR, we employ Rubin’s potential
outcome framework.!* At stage J we let Y*(A4y, ... ,A;_1,ay), or simply Y*(a;), denote the counterfactual outcome, also
known as a potential outcome, for a patient treated with a; € .A; conditional on prior treatment history A;_;. Notably,
only one counterfactual outcome—the one consistent with the treatment actually received—will be observed. In the con-
text of our estimation problem, we can similarly define Y*{g(Hgu)} as the counterfactual outcome under the multi-stage
DTR g(Hgub)- As mentioned above, only one counterfactual outcome will be observed, although in this case the observed
counterfactual will be the potential outcome consistent with the DTR followed by the individual. We measure the perfor-
mance of a multi-stage DTR, g(Hup), using the counterfactual mean outcome E [Y* {g(Hsub)}], the higher the better by
convention, and define the optimal DTR g°*(Hyyp) as the one that satisfies

E[Y*{g” (Hap)}] > E [Y* {g(Hsuw)}

for all g(Hgw) = (g1,&2, --. &7 € Taup, Where Gy, is the class of all potential regimes constructed using Hgyp, only.
Our statistical goal, therefore, can be summarized as follows: to estimate an interpretable, optimal, J-stage treatment
regime, g°P'(Hyyp), from observational data such that, if all patients were to be assigned to multi-stage treatment using
this regime, the expected counterfactual outcome of our population of interest would be maximized: goP'(Hgyp) =

argmaxgcq E [Y*{g(Hsuv) }]-

2.2 | Link to observed data

The above optimization objective features Y*{g(Hgup)}, the counterfactual outcome under DTR g(Hyp); however, as is
widely known in causal inference, only one of the potential outcomes is observed, making estimation of a causal effect
impossible without a series of assumptions. To proceed with estimation of an optimal DTR under Rubin’s potential out-
comes framework, we make three foundational assumptions: consistency, positivity, and no unmeasured confounders
(NUCA). Under an assumption of consistency, the potential outcome under the observed treatment agrees with that of the
observed outcome Y. For a single stage treatment, we can express this as: Y = ZleY*(a)I(A = a), where I(-) is an indi-
cator function that returns a value of 1 if the argument is true and a value of 0 otherwise. Consistency further assumes that
there is no interference between units, which means that one patient’s observed and counterfactual outcomes are inde-
pendent of the treatment(s) of all other patients. Following positivity, 0 < 7 < Pr(4; = a|H;) < 1 foralla € A,H; € H,
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where 7 is a positive constant, that is, the probability to be assigned to each possible treatment is bounded away from
0. Finally, we assume that there are no unmeasured confounders, that is, data on all variables associated with both the
assignment of treatment A and the outcome Y have been observed. That is, given history H, Y;(1), ... , YZ(K) 1L A|H,
where Il denotes statistical independence.

In contrast to previous work with tree-based reinforcement learning,'%!> our interest is to estimate a g°* that is based
only on covariates in Hgy,. Because Y*{g(Hgy)} = ZleY*(a)I{ g(Hgup) = a}, the optimal decision rule g for a single

) [Zf=1 Y*(a)I{g(Hsyp) = a}] . After taking an iterated expectation and

conditioning on history H, and in accordance with our assumptions of consistency, positivity, and NUCA, we can express
the optimal decision rule as follows:

stage can be expressed as g°P (Hgyp) = argmax,

a=1

K
8P (Hsup) = argmax,.; E[Y*{g(Hsub)}] = argmax,; Eu [Z E{Y|A =g(Hsw) =a,H} | .

3 | RESTRICTED SUB-TREE LEARNING

3.1 | Estimator of counterfactual mean outcome under regime g(Hsyup) for a single
treatment stage

Consider estimation of the optimal decision rule g°P*(Hygy,) for a single stage with K possible treatments: g°P' : Hgy, —
{1,2, ... ,K}. Define C as a compatibility indicator, with C = Zlel(A =a)- I{g(Hgyp) = a}, which is equivalent to
T{A = g(Hgyp)}, meaning that the actual treatment received is consistent with the treatment assigned by rule g(Hgyp)-
Next define z,(H) = Pr(A = a|H) as the propensity score for treatment assignment, noticing that this potentially depends
on all variables in H—not just variables in Hgy,. Also, denote z-(H) as the probability of receiving treatment consis-
tent with g(Hgup). Assuming we have observational data, we would posit a propensity model z,(H; y), for example, using
multinomial logistic regression, to estimate y. We see that:

K

a=1 a=1

K
zc(H) = Pr(C=1H) =E(C/H) = E l I(A=a)  I{gHsuw) = a}lﬂl = Z mo(H) - T{A = g(Hsup) = a}.

Under the three assumptions in Section 2.2, consider the IPW estimator of E[Y*{g(Hgy)}], that is, E[Y*{g(Hgup)}] =

P, { = fﬁy-y) } where C and 7z¢(H) are defined above, P,(-) represents the empirical mean operator evaluated over all
C i

patients i, and Y represents our outcome of interest. Under an assumption of consistency and positivity:

cC-Y C
E|——| =E|—Y"{g(Hy, .
[ﬁc(Hm] [ﬁC(H; SHR b)}]

Taking an iterated expectation conditional on H and under the assumption of NUCA, the above is equivalent to:

c . _ 1{A = g(Hqw)} .
Ey |E A—Y {g(Hsub)}lH =FEqy |E Y IH E[Y {g(Hsub)}lH] .
Pr(C=1[H) Pr{A = g(Hgw)|H}

If #¢(H) is correctl ifi E[_AI{A=g<Hsub>}
7#c(H) is correctly specified, Pr{A=g(Hsub)|H}|

large samples for estimating the counterfactual mean outcome E[Y*{g(Hgyp)}] under a regime g(Hgyp):

H] = 1, which demonstrates that an IPW-style estimator is consistent in

cC-Y

E[Y* H, =P, | ————
[Y*{g(Hsup)}] [frc(H;?)

] =P E[Y" {g(Hsuwp)}].

However, because the IPW estimator of the counterfactual mean can quickly become unstable as the number of treat-
ment stages increases, estimation can be improved by utilizing a doubly robust estimator of the counterfactual mean, also
known as the augmented inverse probability weighted (AIPW) estimator. It has been shown that P, { ﬁaAIPW(H)} is a con-

sistent estimator for E{Y*(a)} (Tao et al'® and others), where ,af,“PW(H) is defined as follows, with ji,(H) = E(Y|A = a, H)
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representing the conditional mean model:

~ AIPW _IA=0q) _IA=a0 ,
fa (H)_—fra(H) Y+{1 ) } o(HD.

Now considering the decision rule g(Hg,), we propose to extend the AIPW estimator to estimate the counterfactual mean
under regime g(Hgyp), that is, E[Y* {g(Hgup)}], as P, [Zf;l ﬁaAIPW(H) T{g(Hgp) = a}] , which can also be expressed as:

- _ C _Cc .
E[Y* {g(Hsup)}] = Py [—ﬁC(H)Y + {1 7D } Mc(H)] :

where both C and z¢(H) are as defined above, and ji-(H) = E{Y|A = g(Hsy) = a, H}. The AIPW estimator of the
counterfactual mean outcome for treatment A = a under regime g(Hg,p) is then expressed as:

Py

I{A = g(Hgyp) = a} I{A=gHyp) =a} | .
Y - H)| .
#(H) * {1 #(H) } el )]

It is important here to highlight the fact that the full set of covariates, H, are used in both the propensity and conditional
mean models. This AIPW estimator is doubly robust in the sense that it will provide a consistent estimator of the counter-
factual mean outcome under regime g(Hyg,p) if either the models of #¢(H) or the conditional mean outcome model ji-(H)
is correctly specified.

3.2 | Tree-based estimation

With the above knowledge, we propose ReST-L, a new statistical learning procedure akin to the classification and regres-
sion tree!’ (CART), to estimate g(Hgy). One important feature of CART methods, which will also be an important
component of ReST-L, is the purity measure. A purity measure is used to quantify the degree of similarity—or “purity”—of
observations with respect to a target variable. Specifically, the measured purity is used to determine binary covariate
splits, mimicking the branching of a tree, such that observations within each “leaf” node are relatively homogeneous
with respect to a target variable—and then to use the estimated partition of the covariate space to predict the target
variable for a set of new observations. The process of splitting nodes of the tree into binary partitions of the covari-
ate space continues until the prespecified depth of the tree is achieved or until the improvement in the purity falls
below a prespecified level. Examples of purity measures frequently used with CART include entropy, the Gini index,
and the sum of squared prediction errors.'® A similarity between CART and ReST-L, as introduced above, includes the
fact that a partition of the covariate space is made such that observations within each subset are relatively homoge-
neous. A notable difference, however, is the fact that the target of estimation for ReST-L is an optimal decision rule,
which determines optimal treatment assignment based on observed covariates, but is not directly observed. Further-
more, ReST-L, in contrast to CART methods, rests within the causal inference framework. Therefore, we propose for
ReST-L a new purity measure suitable for our goal of estimating a decision rule based on only a subset of covariates
while also preserving a causal interpretation. Specifically, we exploit the consistent, large-sample, doubly robust AIPW
estimator of the counterfactual mean outcome for a decision rule based only on a subset of covariates introduced in
Section 3.1. We define our purity measure, P(Q, ), represented by the binary partition created by split w of node Q as
follows:

K
PQ )= max Py |Y at"™V(H) T{A=gua .0, Ha) =a} I(Huw €Q)|,
a=1

a,,a,EA

where g,,q,.4, denotes a decision rule such that patients in w are assigned treatment a, while patients in the complemen-
tary set o are assigned to a,, with a; # a,. Note that the purity measure is constructed such that all covariates H may
be used when constructing the AIPW estimator of the counterfactual mean outcome under regime g(Hgyp), but only a
subset, Hqyup, is selected as potential tailoring variables. Using this purity measure, ReST-L is implemented as described
in Section 3.4.
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3.3 | Estimation for multiple treatment stages

We now extend ReST-L to a setting with multiple treatment stages, j =1, ... ,J, with 2 or more treatment options per
stage, that is, K; > 2. Because of the potential for confounding by indication, a problem that can introduce substantial bias
in a multi-stage estimation, ReST-L is implemented recursively using backward induction,'” beginning with estimation
of the final stage. Backward induction is an iterative process of reasoning backward in time, first determining the opti-
mal solution at the final stage, followed by successively earlier stages, and has become the standard for determining the
optimal solution in a multi-stage problem in a causal framework.

We first consider estimation of the decision rule for the final, Jth, stage. We perform this estimation in the same
manner in which we estimate a single stage decision rule. Following our exposition in Section 3.1,

. I(A;=ay)
AV EH) = =Ly g {1 -
g Zr.a,(Hy)

IA;=ay)

= Ay (Hy),
Z1.a,(Hy) } 7

where fi 1.a,(Hy) = E[Y|A; = a;, H;]. The estimator of the Jth stage counterfactual mean outcome for A; = a; under
regime g;(Hgup;) can then be expressed as:

P <1{AJ = gr(Hswy) = as}

I{A; = gi(Hswy) = a;}] N >
Y+ |1- H)) ),
%1, (H) + [ Ac,(Hy)

#irc,(Hy)

where ¢ (Hy) = E{Y|A; = g/(Hsu3) = a7, Hy}. Likewise, we define the purity measure for the Jth stage decision rule
g7(Hgyp) under a binary split @ (and »°) of node Q as:

KJ
Pi(Q )= max P, lz Ara " (Hy) T{As = groa0, Hsuby) = a7} T(Houny € 9)] :

a;,a,€A
1:8,€A; a,=1

Having completed estimation of the Jth stage, we generalize estimation now for the jth stage, each estimated in back-
ward sequence forj =J — 1, ... , 1. Our goal in a multi-stage setting is to estimate a DTR such that the expected long-term
counterfactual outcome is optimized. When estimating the decision rule for the jth treatment stage, we must also account
for the fact that the patient was treated with the optimal treatment at all future stages. Therefore, when performing esti-
mation for any stage prior to the last, it is necessary to calculate a stage-specific pseudo-outcome ¥; that represents the
predicted counterfactual outcome at the jth stage contingent upon the patient receiving the optimal treatments at all

future stages, j + 1, ... ,J. Mathematically this can be expressed as: Y; = E{Y*(4;, ... , A, g;)f;, o, g;’pt)}, as well as in

. S A S t . A S -

recursive form, Y; = E{Y;1]4j41 = g;)fl(Hsub j+1)s Hsupj+1}. Denoting E(Y;|A; = a;j, Hgupj) as yj,aj(Hsub j)» We can express

the jth stage pseudo-outcome as Yj = fjy & (Hgyp j+1)- Similar to the delineation above, under the assumptions of con-
Oj+1

sistency, positivity, and NUCA, we express the optimal decision rule at the jth stage as a function of the pseudo-outcome
as follows:

e

gjl')pt(Hsub) = argmanjegsthE[Yj{g(Hsub)}] = argmanjegwaEH. ﬁj+1,aj+1 (Hsupj)Z{A; = gi(Hsupj) = a;}

J
ajl

Defining ﬁ;\;_l’W(Hj) as:
4

~ I(A] = aj) ~ I(A} = aj) »
Bl V(H)) = ———= ¥+ ¢ 1= ——— b i (H)),
/ Tja; (Hj) Nja; (Hj)

where ;, (H)) is E(Y;|A;j = a;, H)), then the ReST-L purity measure used at the jth treatment stage is:

K
PiQo)= max Pyl Y ™ (H) T{A) = gioa.a,Haby) = 6} T(Hanj € Q).

a;,a,€EA;
1°%2 ‘j aj=1
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3.4 | Implementation

At each stage, several user-defined inputs are needed to implement ReST-L. First, it is necessary to specify a positive
value, 4;, which is used to determine whether or not a binary split of a node identifies a meaningful difference in purity.
For example, if & (Q,,) represents the purity of node €,, in the absence of a binary split and & (Q,,, w) represents the
“new” purity of node Q,, under a split defined by partition w (and its complement »°), we would expect a split to
occur only if a meaningful improvement in purity is achieved, that is, % (Q,,, @) — & () > A;. Here 4; may be selected
based on practical or clinical considerations or using cross-validation, as explained in Tao et al.!® Additional user-defined
inputs include the desired minimum size of terminal nodes and the maximum depth of the tree to be estimated, both
of which may also vary by stage j. The minimum node size, ngj, reflects the minimum number of observations that
can fall into each of the leaf nodes once a split of a parent node is made. The depth of the tree (d;) refers to the num-
ber of times recursive splitting of the root node may occur. A smaller minimum node size and larger tree depth result
in more complex tree structures with a possible concern of overfitting whereas the converse may result in underfitting.
There is an abundance of literature related to selecting optimal tuning parameters for decision-tree type estimation (eg,
Hastie et al'® and Boehmke and Greenwell'®); in general the choices depend on the desired complexity of the resulting
estimated stage j decision rule and often are chosen adaptively from the data. Mantovani et al'® suggest that optimal
minimum node size for a CART type estimation ranges from 1 to 20 and a depth of 5 is often a good starting point.'8
Another strategy frequently employed is to grow a large tree and then prune it as needed using a cost metric,'%%20 for
example.

We briefly summarize the set of criteria for recursive partitioning of the covariate space for each stage j=J,J —
1, ..., 1. Refer to Tao et al'® for additional details. Inputs into the algorithm at the jth stage include the purity mea-
sure %;(Qn, w); the (pseudo)-outcomes calculated via ﬂﬁgw(H ;) and ﬁﬁ;?w(Hj) for the Jth or jth stages, respectively; the
minimum cut-off level for improvement in purity 4;; the minimum tern{inal node noj; and the maximum tree depth d;.
Beginning with the root node at the jth stage, a series of recursive, binary splits of the covariate space Hgp,j are made at
the level of each node Q,,, where the split is identified by w, if the following criteria are met:

1. The node Q,, resides at a shallower depth than the maximum, prespecified tree depth d;.
2. There are at least 2ny; observations in the node €2, and at least n; observations in each resulting child node.
3. P (Qp,w) — P () > A, where P (Q,,) refers to the purity in the absence of a split.

If these criteria are met, we compute the estimated optimal split " = argmax,,{ %;(Q, w)}. Recursive partitioning
continues for the jth stage across each node until at least one of the criteria is not met, at which point the node becomes
a terminal node. Once all nodes within the jth stage estimation become terminal, estimation for the jth stage ends. The
optimal j-stage decision rule is then determined by the partition of the covariate space at the jth stage, with each partition
being assigned the optimal treatment that maximizes the mean counterfactual (pseudo)-outcome. Estimation continues
backward through all stages from the final stage J to stage 1.

4 | SIMULATION STUDIES
4.1 | Two-stage simulation to evaluate the bias of a naive implementation of T-RL

This first simulation demonstrates the need of our proposed method. As introduced previously, the ReST-L purity
measure is constructed using the full set of covariates, H, which are used in the AIPW estimator of the counterfac-
tual mean outcome, but only a restricted subset of covariates are considered as candidate tailoring variables when
constructing the decision tree. Given that the full set of variables can be reduced to a smaller set of variables, that
is, Hgyp, one may be tempted to input only those variables in Hg,, into the T-RL algorithm, that is, to estimate the
AIPW estimator of the counterfactual mean outcome using only variables in Hgy,. We refer to this method as “Naive
T-RL.”

Assuming a two-stage DTR with three treatment options per stage and a sample size of n = 1000, we generate indepen-
dent observations under varying conditions, including different levels of covariate correlations (p), number of variables in
the full covariate history H and the subset Hg,p, and with both underlying tree-type and nontree-type DTRs. The full data
generation mechanism and relevant analysis assumptions are described in detail in Supplemental Content Section 1.4.
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TABLE 1 Simulation results comparing Naive T-RL and ReST-L in estimating an optimal two-stage dynamic treatment regime (DTR)
with three treatments per stage and a high degree of confounding, demonstrating the need for our new method, ReST-L

Naive T-RL ReST-L
Abs bias Abs bias

|H|/|Hsub| P E{Y*@"™")} IQR) (Rel %) %opt (IQR)  E{Y*(&*™")} (IQR) (Rel %) %opt (IQR)
Tree-type DTR
20/7 0 4.542(0.588) 0.869 (16.1) 55.0(20.8) 5.133(0.269) 0.278 (5.1) 86.5(10.6)
20/7 0.2 4.569 (0.552) 0.842 (15.6) 57.5(20.4) 5.114 (0.256) 0.297 (5.5) 85.3(10.2)
20/7 0.6 4.569 (0.490) 0.842 (15.5) 55.5(20.1) 5.123(0.290) 0.288 (5.3) 85.4(10.5)
50/10 0 4.491 (0.525) 0.920 (17.0) 54.1(18.6) 5.114 (0.251) 0.297 (5.5) 85.4(11.4)
50/10 0.2 4.589 (0.523) 0.822 (15.2) 57.2(21.6) 5.106 (0.265) 0.305 (5.6) 85.2(12.0)
50/10 0.6 4.525(0.538) 0.886 (16.4) 54.3(19.9) 5.093 (0.292) 0.318 (5.9) 84.4(12.1)
50/35 0 4.489 (0.558) 0.922 (17.0) 53.8(16.9) 5.056 (0.290) 0.355 (6.6) 82.3(13.6)
50/35 0.2 4.485 (0.553) 0.926 (17.1) 54.0 (19.0) 5.049 (0.298) 0.362 (6.7) 82.3(13.2)
50/35 0.6 4.483 (0.541) 0.928 (17.2) 52.3(20.2) 5.049 (0.267) 0.362 (6.7) 81.1(11.9)
100/20 0 4.475 (0.587) 0.936 (17.3) 53.4(19.0) 5.030(0.319) 0.381 (7.0) 82.0(13.5)
100/20 0.2 4.560 (0.543) 0.851 (15.7) 56.2 (19.7) 5.030 (0.306) 0.381 (7.0) 82.7 (11.6)
100/20 0.6 4.519 (0.510) 0.892 (16.5) 54.9 (20.1) 5.030(0.328) 0.381 (7.0) 81.6 (12.9)
Nontree-type DTR
20/7 0 4.797 (0.763) 0.614 (11.3) 66.3 (26.3) 5.132(0.373) 0.279 (5.2) 82.8(17.2)
20/7 0.2 4.656 (0.701) 0.755 (14.0) 64.2 (25.7) 5.107 (0.350) 0.304 (5.6) 82.3(15.9)
20/7 0.6 4.612 (0.666) 0.799 (14.8) 63.1(19.1) 5.118 (0.364) 0.293 (5.4) 81.4(15.2)
50/10 0 4.740 (0.737) 0.671 (12.4) 65.7 (25.1) 5.092 (0.428) 0.319 (5.9) 81.6 (20.4)
50/10 0.2 4.646 (0.678) 0.765 (14.1) 64.5(24.0) 5.118 (0.407) 0.293 (5.4) 82.7 (18.4)
50/10 0.6 4.506 (0.593) 0.905 (16.7) 60.4 (16.2) 5.047 (0.461) 0.364 (6.7) 80.0 (21.6)
50/35 0 4.708 (0.715) 0.703 (13.0) 64.0 (25.1) 5.027 (0.520) 0.384 (7.1) 77.6 (20.5)
50/35 0.2 4.659 (0.715) 0.752 (13.9) 64.3(24.4) 5.004 (0.466) 0.407 (7.5) 79.4 (19.4)
50/35 0.6 4.465 (0.482) 0.946 (17.5) 58.0 (14.6) 4.971 (0.564) 0.440 (8.1) 76.6 (22.6)
100/20 0 4.706 (0.712) 0.705 (13.0) 65.4(24.3) 5.002 (0.575) 0.409 (7.6) 78.6 (22.7)
100/20 0.2 4.594 (0.663) 0.817 (15.1) 63.3(21.6) 5.013 (0.537) 0398 (7.4) 79.0 (22.4)

0.6 4.479 (0.540) 0.932 (17.2) 59.4 (16.3) 4.988 (0.507) 0.423 (7.8) 76.7 (21.3)

Note: Medians (and IQRs) of E[Y* {8°P'(Hy,)}] and %opt, as well as absolute and relative bias, are presented. |H|, number of variables in covariate history H;
|Hgyp |, number of variables in subset of covariate history Hg,,; p, the correlation coefficient used to generate covariates in H; ReST-L, restricted sub-tree
learning; Naive T-RL, Naive tree-based reinforcement learning; E{Y*(g°™")} represents the estimated counterfactual mean under the estimated optimal
treatment assignment; IQR, interquartile range; Abs bias, absolute bias; Rel %, relative percent bias; %opt, percent of test set (Nysy = 1000) classified to its
optimal treatment using a DTR estimated using the applicable method.

In summary, we assume that only variables in Hg,, may be included in an estimated optimal DTR, but that variables from
either Hgyp or Hg,b may define the intermediate outcomes and the treatment assignment mechanisms. Under optimal
treatment allocation, E[Y*{ g% (Hyyp)}] = 5.4.

Results for this simulation study are presented in Table 1. It can easily be seen that, under all data generation settings,
Naive T-RL will generate a substantial bias in its estimate of the counterfactual mean outcome and a substantially lower
percentage of observations correctly classified to their optimal two-stage treatment regime than ReST-L. For a tree-type
DTR with 20 covariates and a correlation of p = 0.2, for example, we observe a relative bias in estimation of the optimal
counterfactual mean outcome of 15.6% for Naive T-RL compared with 5.5% for ReST-L. The corresponding percentage of
observations in the test set (Nest = 1000) that were correctly classified to their optimal treatment assignment for Naive
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T-RL and ReST-L are 57.5% and 85.3%, respectively. Refer to Supplemental Content Section 1.4 for additional simulation
results reflecting this data generation setting.

4.2 | Single stage simulation to evaluate relative performance of ReST-L

We evaluate the relative performance of ReST-L in a single stage setting with three treatment options. Parameters var-
ied across this simulation study include the sample size, the number of covariates in H and Hgy,, the correlation used
to generate the correlation matrix for covariates in H, and the true, underlying structure of the decision rule (ie, tree- or
nontree-type). Data is generated assuming independent observations. Covariate data with dimension n x |H| are gener-
ated using the multivariate normal distribution with a mean of 0, and an autoregressive (AR1) correlation structure
with specified p and mimicking the specific correlation structure used for the simulation in Section 4.1. [Supplemental
simulations using a simple exchangeable correlation structure with p = 0.2 revealed similar results to those presented
herein (results not shown).] The actual treatment received, A, is randomly generated from the multinomial distribution
with probabilities =g, 71, 7; where 7y =1 — 71 — 72, w1 = exp(0.5X¢1 + 0.5X7)/[1 + exp(0.5X¢; + 0.5X7) + exp(0.5X ¢, —
0.5X7)] and 7, = exp(0.5Xc> — 0.5X7)/[1 + exp(0.5X¢1 + 0.5X7) + exp(0.5X ¢, — 0.5X7)], where X¢1, X, represent the first
two covariates in Hscub, that is, confounding variables not considered as candidate tailoring variables. The outcome
Y = exp{1.5+0.3X¢; — |1.5X; — 2| - (A — g°P")?} + ¢, where € ~ N(0,1). The true, underlying tree-type decision rule is
defined as follows: If X; > —1 & X, > 0.5, then g°* = 2; if X; > —1 & —0.5 < X; < 0.5, then g°"* = 1; otherwise, g°P* = 0.
The nontree-type decision rule is defined as: g°** = T{log,(|X1|+1) <2 & X, < 0.25} + T {X22 < 0.5}. Importantly, the
outcome and actual treatment assignment are defined using variables in both Hg,, and Hglb. The optimal decision rule,
based on the methodologic assumptions of ReST-L, includes only variables in Hg,,. Under optimal treatment allocation
E[Y* {gOPt(Hsub) J1=47.

We compare the estimated performance of ReST-L with five competing methods: tree-based reinforcement learning
(T-RL), standard Q-learning using linear modeling (Q-L), restricted linear Q-learning (Q-L-R), Q-learning using non-
parametric modeling (Q-NP), and restricted nonparametric Q-learning (Q-NP-R). With the exception of T-RL, which
represents the unrestricted counterpart to ReST-L, we restrict our comparisons to Q-learning methods because these
are the only existing methods to our knowledge that can accommodate a subset of variables in the estimated treatment
regime. For both ReST-L and T-RL, we assume that there is an additive linear relationship between the outcome Y and
covariate or treatment history that includes all observed covariates, as well as a treatment-interaction with either all
observed covariates (T-RL) or with a subset of candidate tailoring variables (ReST-L). We further assume that the propen-
sity model used in ReST-L and T-RL is correctly specified. (Performance results under an incorrectly specified propensity
model are presented for a two-stage simulation in the Supplemental Content Section 1.1.) Restricted Q-learning methods
are modifications of the standard Q-learning models such that only variables in Hgy, are considered as possible candi-
date tailoring variables (ie, treatment interactions), which differs from standard Q-learning in which all variables in H
are possible treatment tailoring variables. Linear Q-learning assumes a linear relationship between the covariates and
the outcome. Nonparametric Q-learning methods allow a more flexible relationship for the Q-functions, estimated using
random forests (randomForest in R?!). Performance is evaluated using two metrics: (1) the optimal treatment regime
using data from the training set with sample size n and use a test set (N5 = 1000) to determine the percentage of observa-
tions correctly classified to their optimal treatment, %opt; and (2) E[Y*{8°P"(Hsup) } ], the expected counterfactual outcome
had everyone in the patient population been treated optimally based on the estimated optimal regime, estimated using
the test set. For each design setting, we tabulate the median and interquartile range (IQR) of %opt and E[Y*{g°P'(Hsup)}]
across all B = 500 Monte Carlo iterations.

Estimated performance for tree-type and nontree-type decision rules are displayed in Table 2. As observed in the
tabulated results, ReST-L selects the optimal treatment decision rule well when the underlying decision rule is either
tree-type or nontree-type. Across all data generating settings, for a tree-type decision rule the percent of observations
from the test set that are correctly classified to their optimal treatment ranges from about 85% for smaller sample sizes
and fewer variables in H and Hg,, to more than 95% for larger sample sizes (and a correspondingly larger number of
variables in H). ReST-L performance improves as the sample size increases, as expected; for example, refer to results for
sample sizes of n = 500 and n = 750 when |H| = 100. For the same sample size and number of variables in the covari-
ate history H, performance improves as the proportion of variables in Hg,, relative to H decreases. For example, for 50
covariates in H, a sample size of n = 300 and a correlation p = 0.2, estimated performance improves from 86.5% to 90.0%
correct classification when the number of variables in Hgy, decreases from 35 to 10. ReST-L performance in estimating
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the optimal decision rule is similar across different degrees of correlation among covariates when all other parameters
are held constant. Finally, we observe that the variability for ReST-L in estimating the optimal regime increases when the
true, underlying decision rule is nontree-type, and is generally higher with a smaller sample size or as the proportion of
variables in Hgy}, increases. Furthermore, ReST-L estimates the empirical counterfactual mean outcome under the opti-
mal treatment regime, E[Y* {g°P'(Hyp) } ], with a high degree of accuracy and relatively low variability across Monte Carlo
iterations, particularly as the sample size increases. As an example, assuming a tree-type decision rule, |H| = 100, and
n = 750, ReST-L estimates the counterfactual mean under the estimated optimal treatment assignment to be 4.6, which
is very close to the true empirical counterfactual mean of 4.7.

ReST-L consistently performs better than all other methods across all one-stage data generating settings
presented—for both tree- and nontree-type decision rules. For estimation with an underlying tree-type decision rule,
the variability of ReST-L in estimating the optimal regime is smaller than that of T-RL and similar to restricted non-
parametric Q-learning. For a nontree-type decision rule, variability of ReST-L in estimating %opt is larger than that of
restricted nonparametric Q-learning, but generally remains smaller than that of T-RL overall. Across all simulation set-
tings, restricted Q-learning methods perform better than their standard Q-learning counterparts. Both linear Q-learning
methods (restricted and unrestricted) perform poorly in all scenarios whether the underlying decision rule is tree-type
or nontree-type. With a larger sample size, restricted nonparametric Q-learning does a reasonable job of estimating the
optimal treatment regime for an underlying tree- and nontree-type decision rule; with n = 500 and 100/20 variables in
H/Hg,, for example, restricted nonparametric Q-learning achieves higher than 85% correct classification.

4.3 | Two-stage simulation to evaluate relative performance of ReST-L

We next evaluate the performance of ReST-L in a two-stage estimation setting with three possible treatment options
per stage. It can easily be seen that random allocation of one of three treatments in each of two stages would select
the optimal two-stage treatment assignment about 1 out of every 3* times, which is about 11% of the time. All set-
tings for generating first stage data, including the covariate matrix X, the treatment assignment mechanism for A,
the intermediate outcome Y7, and optimal treatment g'l)pt(Hsub), are the same as those used in the single stage setting
described above. The second stage treatment A, is randomly generated using the multinomial distribution with prob-
abilities 7y, 721, 72 Where 7y = 1 — w31 — 722, 721 = {exp(0.2Y7; — 0.5)}/[1 + {exp(0.2Y; — 0.5)} + {exp(0.5X>)}], and
7wy = {exp(0.5Xc2)}/[1 + {exp(0.2Y; — 0.5)} + {exp(0.5X;)}]. The intermediate outcome is Y, = exp{1.18 + 0.2X, —
[1.5X5 + 2| - (A — ggpt)z} + ¢, where e ~ N(0, 1), and the overall outcome Y = Y7 + Y,. When a tree-type DTR is assumed,

ggpt(Hsub) is assigned as follows: If X3 > —1 & Y; > 2, then ggpt =2;ifX3>-1&0<Y; <2, then ggpt = 1; otherwise,

ggpt = 0. Under an assumed nontree-type DTR: ggpt =1(|X3| > 0.6 & Y1 > 0.4) + I(Y? > 2.5). Both the intermediate out-
comes and actual treatment assignments depend on variables in both Hg,, and Hscub. However, the optimal DTR are set
to include only variables in Hgy,. Under optimal treatment allocation E[Y*{g°P'(Hgy)}] = 8.0. Similar to the single stage
setting, ReST-L and T-RL assume a correctly specified propensity model and an incorrectly specified conditional mean
model.

The performance of ReST-L and other competing methods for estimating the optimal two-stage regime with either
an underlying tree-type or nontree-type DTR are displayed in Table 3. Across all sample size and variable settings with a
tree-type DTR, ReST-L does a reasonably good job of selecting the optimal treatment, with correct classification generally
between 85% and 90%. As in a single stage estimation setting, performance improves with sample size, with an improve-
ment in percent correct classification from 89.6% to 95.2% for sample sizes of n = 600 to n = 1000 (p = 0.2). Additionally,
performance improves with fewer variables in Hg,, relative to H: The percent correct classification with 50 variables in H
and p = 0.2 improves from 87.0% to 89.8% as the number of variables in Hgy, is reduced from 35 to 10. With an underlying
nontree-type DTR, larger sample sizes are needed to obtain a similar estimated correct classification rate. For example,
with a sample size of n = 600, p = 0.2, and |H| = 100 variables, the percent of observations correctly classified to their
optimal treatment is just over 70% for the nontree-type DTR compared with nearly 90% for a tree-type DTR; however,
with the same specifications but with n = 1000, the percent correct classification are similar for tree- and nontree-type
DTRs (95.2% and 93.8%, respectively). Variability of estimation of the percent correct treatment allocation of ReST-L is
lower for a tree-type DTR than for nontree-type DTR and is larger on average than that observed in a single stage set-
ting. Finally, for ReST-L, the estimated counterfactual mean outcome is closer to the empirical mean when sample size
increases; when n = 1000, ReST-L achieves an estimated counterfactual mean outcome of 7.8 compared to the empirical
mean of 8.0.
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For a two-stage, tree-type DTR, ReST-L improves more upon T-RL at lower sample sizes and when the proportion
of variables in Hgy, relative to H decreases. With larger sample sizes, for example, when n = 1000, both ReST-L and
T-RL achieve more than 90% correct treatment classification although ReST-L still slightly outperforms T-RL in this case.
For a nontree-type DTR, ReST-L improves upon T-RL across all settings, although in particular the benefit of ReST-L is
observed with a larger number of covariates. When n = 1000 and p = 0.2, for example, the percent of observations in the
test set that were correctly classified to their optimal treatment is 93.8% for ReST-L compared with 84.8% for T-RL. As in
a single stage setting, we observe that the restricted versions of Q-learning improve upon their unrestricted counterparts,
although linear Q-learning demonstrates poor performance across all settings, never exceeding more than 25% correct
treatment classification. Restricted nonparametric Q-learning, on the other hand, achieves good performance, nearing
90% correct classification for a tree-type DTR with a large sample size.

4.4 | Supplemental simulation experiments

Supplemental simulation studies were conducted to evaluate the performance of ReST-L in a variety of other scenarios.
The simulation setups and results are presented in Supplemental Content Section 1. Specifically, we apply ReST-L and
T-RL in a two-stage setting using an incorrectly specified propensity model (Supplemental Content Section 1.1); or modify
the data generating mechanisms to remove confounding of the treatment assignments A and outcomes Y by variables in
HSCub (Supplemental Content Section 1.2); or modify the data generating mechanisms for g such that variables defining
the true optimal DTR may be in HSCub (Supplemental Content Section 1.3); or evaluate the relative performance of ReST-L
compared with other methods under stronger confounding with a binary covariate Z € Hglb (Supplemental Content
Section 1.4) which mimics the data generation model from Section 4.1. In Supplemental Content Section 1.5, we present
simulation results involving a three-stage estimation setting in order to illustrate how these methods can apply to more
than two stages.

5 | APPLICATION TO PERSONALIZE EARLY FLUID RESUSCITATION
STRATEGIES IN ACUTE SEPTIS PATIENTS

Sepsis is a clinical syndrome characterized by systemic inflammation and infection and is associated with one of the
highest rates of mortality among conditions commonly treated in EDs and ICUs.'? Due to the large degree of heterogeneity
in presentation, which may include varying degrees of organ dysfunction, sepsis is a difficult condition to diagnose and
even more difficult to successfully treat. Sepsis is routinely treated using fluid resuscitation, antibiotics, and may also
include treatment with vasopressors, mechanical ventilation, and others. The established clinical guidelines for treating
sepsis, known as the “Surviving Sepsis Campaign,”?® strongly recommends that resuscitation of at least 30 mL/kg of IV
fluid be given within the first 3 hours. However, this recommendation is given with a stated “low quality of evidence” due
to the fact that results across studies have been inconsistent with indirect evidence, imprecise results, and a likelihood of
bias.

Due to the paucity of strong evidence as to the most beneficial fluid resuscitation strategy in the early hours of
treatment, we estimate an optimal two-stage DTR in septic patients admitted to an ICU after presenting to the ED.
Using electronic medical record and administrative data from the Medical Information Mart for Intensive Care III
(MIMIC-III),?2# a retrospectively collected and freely available database accessible through PhysioNet?® that contains
de-identified and anonymized data for patients treated in an ICU at a tertiary care medical facility, we evaluate whether
treatment with fluid restrictive or fluid liberal strategies can be further tailored in order to minimize organ dysfunction
scores. Stage 1 treatment was defined as either a fluid restrictive (<30 mL/kg) or a fluid liberal (>30 mL/kg) strategy
within the first 3 hours after admission to the ICU. Baseline covariates considered as candidate tailoring variables for a
first-stage treatment rule included age, Elixhauser comorbidity score, 2027 and BMI. Covariates excluded from considera-
tion as a possible Stage 1 tailoring variable were racial/ethnic identity, gender, the ICU unit in which the patient was first
treated, and the time of year in which the patient was treated. Stage 2 treatment is defined as either a fluid restrictive (<30
mL/kg) or a fluid liberal (>30 mL/kg) strategy between 3 and 24 hours after ICU admission. Intermediate variables col-
lected prior to Stage 2 treatment included indicators of treatment with mechanical ventilation and vasopressors within
the first 3-hour time period, as well as the patient’s SOFA score evaluated at 3 hours post-admission. The final outcome
of interest is the Sequential Organ Failure Assessment (SOFA)? score evaluated at 24 hours post-admission. Refer to
Supplemental Content for specific cohort eligibility and additional analysis details.
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TABLE 4 Characteristics of the analysis cohort
Stage 1 Stage 2

Overall Restrictive Liberal Restrictive Liberal

(n = 708) (n = 265) (n = 443) (n = 458) (n = 250)
Patient characteristics
Age (years) 68 [53-81] 70 [55-81] 66 [52-80] 68 [54-81] 68 [53-80]
Gender
Male 379 (54) 150 (57) 229 (52) 242 (53) 137 (55)
Female 329 (46) 115 (43) 214 (48) 216 (47) 113 (45)
Race/ethnicity
White 540 (76) 197 (74) 343 (77) 353 (77) 187 (75)
Nonwhite 168 (24) 68 (26) 100 (23) 105 (23) 63 (25)
Weight (kg) 78 [65-92] 81 [69-98] 75 [63-90] 80 [68-94] 74 [62-89]
BMI (kg/m?) 27.2[23.2-31.7] 28.9 [24.2-34.5] 26.8 [22.5-30.7] 28.0 [24.1-32.7] 26.4 [22.0-30.1]
LOS (days) 8.9 [5.7-15.8] 10.5 [6.0-17.5] 8.2 [5.6-14.3] 8.8 [5.5-15.6] 9.7 [6.2-16.9]
0 to 3 hours post-admission
Use of Mech Vent 204 (29) 93 (35) 111 (25) 150 (33) 54 (22)
Use of Vasos 139 (19) 24(9) 114 (26) 86 (19) 52 (21)
Total input (L) 3.0 [1.6-5.0] 1.2[0.8-2.0] 4.0 [3.0-5.5] 2.5[1.2-4.0] 4.0 [2.5-5.2]
Total input (mL/kg) 38.0 [20.5-57.8] 16.1 [9.8-22.4] 53.3 [40.0-70.9] 31.7 [15.4-51.1] 49.8 [33.5-70.6]
SOFA (3 hours) 41[2-6] 41[2-6] 5[2-7] 5[3-6] 4[2-6]
3 to 24 hours post-admission
Use of Mech Vent 341 (48) 138 (52) 203 (46) 203 (44) 138 (55)
Use of Vasos 294 (42) 80 (30) 214 (48) 148 (32) 146 (58)
Total input (L) 2.0 [1.0-4.5] 1.4[0.8-2.5] 3.0 [1.0-5.0] 1.0 [0.5-1.5] 4.5[3.1-6.0]
Total input (mL/kg) 16.8 [0.0-44.1] 6.7 [0.0-21.2] 26.8 [6.1-59.0] 5.2 [0.0-15.4] 57.2 [42.2-86.1]
SOFA (24 hours) 5[3-7] 5[3-6] 5[3-8] 5[3-6] 6 [3-9]

Note: Summary statistics of demographics, treatment, and outcomes for MIMIC-III analysis cohort are included. n, sample size; Stage 1, 0 to 3 hours
post-admission; Stage 2, 3 to 24 hours post-admission; R, restrictive fluid resuscitation (<30 mL/kg); L, liberal fluid resuscitation (>30 mL/kg); IQR,
interquartile range; kg, kilogram; LOS, length of hospital stay; Mech Vent, mechanical ventilation; Vasos, vasopressors; L, liters; mL/kg, milliliters per

kilogram; SOFA, sequential organ failure assessment; hrs, hours. Median (IQR) are presented for continuous variables; frequency (percentage) are
provided for categorical variables.

Seven hundred eight patients were included in the analysis cohort. The average patient was a 68 year old, overweight,
white (76%), male (54%) with 0 reported Elixhauser comorbidities (Table 4). The median length of hospital stay was 8.9
days with an interquartile range (IQR) of 5.7 to 15.8. The median fluid input received within 0 to 3 hours and 3 to 24 hours
post-admission is 38.0 mL/kg (IQR: 20.5-57.8) and 16.8 mL/kg (IQR: 0.0-44.1), respectively. Summary statistics stratified
by treatment stage (ie, 0-3 hours and 3-24 hours post-ICU admission) demonstrate covariate imbalance for age, gender,
and race/ethnicity across fluid resuscitation strategies in the first treatment stage, and for weight, BMI, and the use of
mechanical ventilation and vasopressors across fluid resuscitation strategies for both stages, suggesting that confounding
is an issue that must be addressed in our analysis in order to make causal inference.

As can be observed in Figure 1, it is recommended that all patients with a BMI classification of either “normal” or
“overweight” (ie, 18.5-29.9 kg/m?) should receive liberal fluid resuscitation (>30 mL/kg) within the first 3 hours following
admission to the ICU for treatment of acute emergent sepsis, but restrictive fluid resuscitation if the patient is classified as
either “obese” (>30.0 kg/m?) or “underweight” (<18.5 kg/m?). Within 3 to 24 hours post-admission, all patients should
receive a restrictive fluid resuscitation strategy in order to minimize the SOFA score at 24 hours. This estimated DTR
reflects a SOFA improvement of roughly 0.1.
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Stage 1: Within 3 hours of admission to ICU from ED with sepsis

BMI between

18.5 - 29.9
(kg/m~2)

Yes No

v v

Early high volume Lower volume fluid
fluid resuscitation: resuscitation:
>=30ml/kg <30ml/kg

Stage 2: Treatment within 3-24 hours following ICU admission

All Patients

Lower volume fluid
resuscitation:
<30ml/kg

FIGURE 1 Estimated two-stage fluid resuscitation strategy to minimize a measure of organ failure at 24 hours following admission for
acute septic patients presenting to the emergency department (ED) with subsequent admission to an intensive care unit (ICU). Within the
first three hours following admission, ReST-L estimates a first-stage decision rule based on the patient’s body mass index (BMI) classification:
If the patient has a BMI classified as “normal” (18.5-24.9 kg/m?) or “overweight” (25.0-29.9 kg/m?), the patient should be treated with early
liberal fluid resuscitation (> 30 ml/kg), but with restrictive fluid resuscitation otherwise. Between 3 and 24 hours following admission,
ReST-Lestimates that all patients should receive lower volume fluid resuscitation to optimize outcomes. ml/kg = milliliters per kilogram

Although the question of how to optimally treat septic patients is complex and multi-faceted, we applied a robust and
flexible causal method with interpretable results to determine whether tailoring of fluid resuscitation strategies at each
of two stages within the first 24 hours after ICU admission can be used to improve outcomes overall. In contrast to the
Surviving Sepsis Campaign, which recommends early liberal fluid resuscitation for all septic patients, our estimated opti-
mal DTR assigns only patients in an average BMI class (ie, either normal or overweight) to early liberal fluid resuscitation
within the first 3 hours following admission. Given that the volume of fluids administered in resuscitation strategies is
defined using the patient’s weight, our results suggest that additional investigation into the application of weight-based
dosing strategies to treat acute septic patients may be needed.

6 | DISCUSSION

Personalized medicine reflects a goal of providing the right treatment to the right person at the right time. ReST-L provides
a flexible, data-driven approach grounded in causal inference for estimating an interpretable, optimal multi-stage DTR
using observational data when only a subset of covariates, based on clinical or other knowledge, should be considered
as candidate tailoring variables. Importantly, ReST-L addresses a clinical scenario that has not yet been addressed to our
knowledge in the literature for tree-based, optimal DTR estimation. We have shown that there is an improvement over
other estimation methods when a clinically meaningful or ethical treatment decision should be made without certain
variables and, given that ReST-L reduces to T-RL when the full set of covariates are considered, this provides an important
extension of previous work. ReST-L utilizes a purity measure that is based upon a consistent and doubly robust estimator
of the counterfactual mean outcome under a sub-tree regime when either the propensity model or the conditional mean
model are correctly specified, resulting in a causal estimator with double protections against model misspecifications.
We demonstrate that ReST-L can estimate the optimal, multi-stage DTR in the presence of a moderately large degree of
covariates and we base simulation studies on a reasonably complex relationship that is intended to be reflective of data
generating mechanisms that may be seen in the real world.

Our results reflect a small number of possible data generating scenarios and it is likely that performance esti-
mates would change under different simulation settings. We do, however, conduct simulation studies under varying



SPETH AND WANG Statistics “WIL EY—Iﬁ

assumptions and believe these comprehensive results provide a solid understanding of ReST-L performance. For estima-
tions in a two-stage setting, we observe a high degree of variability in the estimated percentage of observations correctly
classified to their optimal treatment using ReST-L. While the variability is much lower than the variability observed
in T-RL, it is much larger than that estimated using restricted Q-learning with nonparametric modeling assumptions.
However, the median estimated performance is also consistently higher for ReST-L in a two-stage setting than it is for
restricted nonparametric Q-learning, suggesting that a trade of higher variability for higher estimated performance could
be warranted. As was shown in the supplemental content, ReST-L also presents a reasonable solution for estimating DTRs
with three or more stages. In practice, however, we do find that it is often difficult to obtain sufficient data to answer a
well-constructed three-stage research question. Therefore, eagerness in these instances should be tempered with pragma-
tism. Finally, in our simulation studies, we assume that the conditional mean models are incorrectly specified. Although
this is useful in order to provide an understanding of performance as an “out of the box” solution for optimal DTR esti-
mation, model selection and diagnostics can be used to select either the propensity or the conditional mean model, or
both. This was not explored, but this may be considered in data applications and/or in future research.

There is one final point we would like to point out that we believe is of interest to readers. ReST-L is a method for DTR
estimation, but does not at this time provide a solution for inference. Given that our estimand is a multi-stage treatment
regime and not a point estimate per se, a confidence interval would be impractical. We believe a primary question of
interest, however, is whether a particular estimated DTR provides a statistically significant improvement in outcomes
compared with another (nested) DTR. At this time, ReST-L addresses “meaningful improvements” in outcome through
the use of the tree-building tuning parameter A. In the future, however, we could conceivably approach this need by
estimating confidence intervals for the expected outcome under a specific regime or, perhaps, by using a hypothesis testing
approach at the level of the binary covariate splits. Regardless, we believe this is an interesting and important question
for future work.
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