
864  |  	 wileyonlinelibrary.com/journal/phar� Pharmacotherapy. 2021;41:864–880.© 2021 Pharmacotherapy Publications, Inc.

1  |  INTRODUC TION

First identified in the early 1980s, extended-spectrum β-lactamases 
(ESBLs) are predominately a group of Ambler molecular class 
A β-lactamase enzymes that hydrolyze penicillins, oxyimino-
cephalosporins, and aztreonam and are typically encoded by 
plasmid-borne genes.1 ESBLs have increased in frequency in both 

inpatient and outpatient settings worldwide. The United States 
Centers for Disease Control and Prevention considers ESBLs 
to be a serious threat to public health that was associated with 
nearly 200,000 cases and 9100 deaths in 2017 with an estimated 
$1.2  billion in attributable health costs.2 Over 200 ESBLs have 
been characterized and are found most commonly in Escherichia 
coli and Klebsiella pneumoniae, but can be found in a wide range 
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Abstract
Extended-spectrum β-lactamase (ESBL)-producing Enterobacterales are a global 
threat to public health due to their antimicrobial resistance profile and, consequently, 
their limited available treatment options. Tazobactam is a sulfone β-lactamase in-
hibitor with in vitro inhibitory activity against common ESBLs in Enterobacterales, 
including CTX-M. However, the role of tazobactam-based combinations in treating 
infections caused by ESBL-producing Enterobacterales remains unclear. In the United 
States, two tazobactam-based combinations are available, piperacillin-tazobactam and 
ceftolozane-tazobactam. We evaluated and compared the roles of tazobactam-based 
combinations against ESBL-producing organisms with emphasis on pharmacokinetic/
pharmacodynamic exposures in relation to MIC distributions and established break-
points, clinical outcomes data specific to infection site, and considerations for down-
stream effects with these agents regarding antimicrobial resistance development. 
While limited data with ceftolozane-tazobactam are encouraging for its potential role 
in infections due to ESBL-producing Enterobacterales, further evidence is needed to 
determine its place in therapy. Conversely, currently available microbiologic, pharma-
cokinetic, pharmacodynamic, and clinical data do not suggest a role for piperacillin-
tazobactam, and we caution clinicians against its usage for these infections.

K E Y W O R D S
ceftolozane, Enterobacterales, extended-spectrum β-lactamases, microbiome, 
pharmacodynamics, pharmacokinetics, piperacillin, tazobactam

mailto:﻿
https://orcid.org/0000-0001-8251-458X
https://orcid.org/0000-0002-6644-6684
mailto:mmonogue@utexas.edu


    |  865MONOGUE et al.

of Enterobacterales and other gram-negative organisms including 
Pseudomonas aeruginosa.3

Carbapenems have traditionally been viewed as the gold stan-
dard treatment for serious ESBL-producing (ESBL+) Enterobacterales 
infections, but widespread utilization of carbapenems has driven 
carbapenem resistance which poses a serious threat to public 
health.1,4,5 Between 2000 and 2010, data from 71 countries demon-
strated that consumption of carbapenems increased by 45%.6 While 
the spread of carbapenem resistance is multifactorial, the potential 
to use carbapenem-sparing treatments for ESBL+ infections is an 
antimicrobial stewardship priority. While ceftazidime-avibactam 
displays potent in vitro activity and has demonstrated efficacy 
against a wide variety of ESBL infections, the use of this agent is 
generally reserved for carbapenem-resistant Enterobacterales, no-
tably Klebsiella pneumoniae carbapenemase (KPC) or OXA-48-like 
carbapenemase-producing strains.7–14

Tazobactam-containing therapies are of particular interest given 
tazobactam's more narrow spectrum inhibitory properties and the 
changing epidemiology of ESBLs. The majority of ESBLs used to 
be derived from TEM-1, TEM-2, and SHV-1; however, CTX-M-type 
ESBLs have undergone rapid global spread and are the most prevalent 
ESBL encountered in E. coli and K. pneumoniae in most settings.3,15 
CTX-M enzymes are inhibited by tazobactam with almost 10-fold 
greater activity than clavulanic acid.1,3,16,17 The purpose of this article 
is to understand the potential role of tazobactam-containing combi-
nations for the management of ESBL+ Enterobacterales infections. 
This will be accomplished by a thorough review of the pharmacology, 
pharmacokinetics, and pharmacodynamics of tazobactam, the clinical 
data for tazobactam-based combinations for ESBL+ Enterobacterales 
infections, and comparative selective pressure considerations for 
tazobactam-based combinations and carbapenems.

2  |  TA ZOBAC TAM OVERVIE W

2.1  |  Pharmacology of tazobactam

The role of β-lactam-β-lactamase inhibitor combinations (BLBLIs) is 
for the inhibitor to restore the antimicrobial activity of their part-
ner β-lactam compound when it is labile to hydrolysis by a given β-
lactamase. Following Food and Drug Administration (FDA) approvals 
of clavulanate and sulbactam, tazobactam was the third BLI brought 
to market by 1993.

Although structurally similar to β-lactam antimicrobials, tra-
ditional β-lactamase inhibitors possess specific structural differ-
ences that enhance their ability to inhibit β-lactamase enzymes. 
Tazobactam is a penicillinate sulfone β-lactamase inhibitor as de-
fined by the sulfone within the five-membered ring (Figure 1). This 
heteroatom serves as the leaving group responsible for the opening 
of the second ring and creating the intermediate that allows for hy-
drolysis of the β-lactamase.18,19 Furthermore, tazobactam exhibits a 
triazole group at the C-2 β-methyl position. This structural difference 
is hypothesized to improve tazobactam's inhibition by decreasing 

the concentration required to inhibit 50% of the β-lactam mediated 
hydrolysis by a particular β-lactamase, also known as the 50% inhibi-
tory concentration (IC50), and dissociation rates against Ambler class 
A and specific class C β-lactamases.18,20

Tazobactam's inhibitory spectrum includes many Ambler class A β-
lactamases (TEM-, SHV-, and CTX-M-type) and some class C (AmpC-
type) β-lactamases.18,21 Notably, not all β-lactamases and inhibitors 
are created equal, as demonstrated in Table 1 by the varying IC50s of 
tazobactam, clavulanic acid, and sulbactam.22–28 While tazobactam 
demonstrates low IC50 values against TEM- and SHV-type enzymes, 
its enhanced inhibitory activity against CTX-M-15, the most common 
ESBL present in Enterobacterales, is notable.23–25,27,28 Tazobactam 
lacks meaningful activity against KPC-type and most Ambler class B, 
C, and D enzymes. While tazobactam's IC50 values provide insight 
into enzyme inhibitory effect, there are limitations associated with 
the interpretation of these values.18 Instead, clinical decisions are 
often influenced by the minimum inhibitory concentration (MIC) and 
the susceptibility breakpoint of the combination product.

2.2  |  Dosing and susceptibility testing

In the United States, tazobactam is available intravenously in combi-
nation with piperacillin, a ureidopenicillin, or ceftolozane, an antip-
seudomonal cephalosporin. Piperacillin-tazobactam is formulated in 
an 8:1 ratio. Standard, non-renally adjusted doses range from 3.375 
to 4.5 g every 6–8 h. Ceftolozane-tazobactam is available in a 2:1 
ratio and dosing ranges from 1.5 to 3 g every 8 h.29,30

Clinically, tazobactam is administered in a predefined ratio with 
the partner β-lactam and thus, as with any drug, concentrations 
vary over a dosing interval. However, in vitro susceptibilities—as 
determined by the MIC of the combination product—use a fixed ta-
zobactam concentration of 4 µg/ml, irrespective of fluctuations in 
the concentration of the partner β-lactam. Consequently, this fixed 
tazobactam concentration is reflected in the established piperacillin-
tazobactam or ceftolozane-tazobactam susceptibility breakpoints.

For Enterobacterales, the Clinical & Laboratory Standards Institute 
(CLSI) susceptibility breakpoints for piperacillin-tazobactam and 

F I G U R E  1  Structure of tazobactam
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TA B L E  1  Inhibition of β-lactamases by Tazobactam, IC50 (nM)16,22–28

Characteristic active site
Molecular 
class β-lactamase Tazobactam

Clavulanic 
acid Sulbactam Reference

Serine A TEM-1 40 90 610 24

97 90 900 23

TEM-2 50 180 8700 24

17 22 2400 28

TEM-3 10 30 30 24

5 11 21 28

TEM-5 280 30 1200 24

TEM-6 170 120 450 24

TEM-7 180 100 620 24

TEM-9 340 290 900 24

77 9 270 23

TEM-10 80 30 340 24

87 4.4 940 23

TEM-26 77 8.4 350 23

TEM-E1 20 50 640 24

TEM-E2 50 90 1600 24

TEM-E3 60 20 200 24

TEM-E4 40 60 790 24

SHV-1 140 30 170 24

150 12 12,000 28

SHV-2 130 50 2800 24

SHV-3 100 40 2700 24

SHV-5 80 10 630 24

CTX-M-1 16 80 550 16

CTX-M-8 10 36 4000 16

CTX-M-15 1 14 212 27

6 9 – 16

1500 3400 5800 25

CTX-M-14 5–8 33–60 500–34,500 16

CTX-M-16 8 30 4500 16

CTX-M-55 600 800 1400 25

CTX-M-190 46,200 500 77,300 25

KPC-2 98,790 136,930 106,090 26

C P99 8.5 >100,000 5600 28

S2 6000 51,000 52,000 28

CMY-2 1640 30,800 5840 22

CMY-54 370 186,000 757 22

D OXA-1 1400 1800 4700 24

OXA-2 10 1400 140 24

OXA-4 5600 8400 16,000 24

OXA-5 250 3100 18,000 24

OXA-6 1700 1600 5100 24

OXA-7 610 360 40,000 24

Metallo (Zn2+) B CcrA 400,000 >500,000 >500,000 28

Sme-1 3000 14,000 3300 28

L1 >400,000 >400,000 >400,000 28

Abbreviation: nM, nanomolar.
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ceftolozane-tazobactam are ≤16/4 and ≤2/4  µg/ml, respectively.31 
Notably, the piperacillin-tazobactam breakpoint set by the European 
Committee on Antimicrobial Susceptibility Testing (EUCAST) is more 
conservative at an MIC of ≤8/4 µg/ml. These breakpoints fall at or 
above the epidemiologic cutoff for these organisms; however, sus-
ceptibility defined by the breakpoint does not guarantee a wild-type 
organism (eg, the absence of an ESBL producer).32,33

Using these breakpoints, both piperacillin-tazobactam and 
ceftolozane-tazobactam demonstrate in vitro susceptibility against 
ESBL+ Enterobacterales. In a collection of 63 ESBL+ E.  coli blood-
stream infections, with CTX-M-15 and CTX-M-27 representing the 
majority of the ESBLs, approximately 98% of the organisms demon-
strated susceptibility to piperacillin-tazobactam with MICs <16/4 μg/
ml. However, consistent with the inhibitory profile of tazobactam, the 
percentage of piperacillin-tazobactam susceptible isolates decrease if 
the isolates co-carry AmpC (Ambler class C) or OXA-1 (Ambler class 
D) enzymes in addition to the ESBL.34 Likewise, a collection of urine 
and bloodstream ESBL+ E. coli isolates demonstrated 81% and 70% 
susceptibility to piperacillin-tazobactam, respectively.35 Overall, the 
data suggest that the majority of ESBL+ E. coli isolates are piperacillin-
tazobactam susceptible at current breakpoints; however, this is not 
the case for Klebsiella species.36–38 North American data from 2010 
to 2014 demonstrated 69% of ESBL+ E. coli isolates were piperacillin-
tazobactam susceptible compared with only 26.9% of Klebsiella spp. 
isolates.39 Similar trends were observed in the Asia-Pacific region.38 
Limited in vitro data exist beyond ESBL+ E. coli and Klebsiella species.

Ceftolozane-tazobactam displays potent in vitro activity against 
E. coli and K. pneumoniae producing CTX-M-14 and CTX-M-15 ESBLs 
with over 70% of the organisms inhibited at an MIC of ≤2/4  µg/
ml.40 Shortridge et al.41 demonstrated that 88% of ESBL-positive 
Enterobacterales displayed MICs of ≤2/4 µg/ml. Similar to what is ob-
served with piperacillin-tazobactam, ceftolozane-tazobactam MICs 
tend to be lower against ESBL+ E. coli isolates than against K. pneu-
moniae ESBL+ isolates.42–44 In general, ceftolozane-tazobactam is 
more potent than piperacillin-tazobactam with MIC50/MIC90 values 
against ESBL+ isolates being several dilutions lower (Table 2).42,45–53 
In fact, greater in vitro activity is demonstrated with ceftolozane-
tazobactam despite having lower susceptibility breakpoints. This is 
due to ceftolozane demonstrating greater stability to hydrolysis by 
common ESBLs than piperacillin. Against low, moderate, and high 
levels of CTX-M-15 production in E. coli isolates, the MICs (in the 
absence of tazobactam) of ceftolozane were 4, 16, and 64  µg/ml 
compared to 128, >256, >256 µg/ml, with piperacillin.54,55 In other 
words, ceftolozane is less reliant than piperacillin on tazobactam's 
inhibitory properties, and this will be an important pharmacokinetic 
and pharmacodynamic consideration as described below.

3  |  PHARMACOKINETIC AND 
PHARMACODYNAMIC CONSIDER ATIONS

Optimization of an antimicrobial's pharmacokinetics (PK) and phar-
macodynamics (PD) is an essential component to the clinical success TA
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of an agent, as it impacts clinical efficacy and patient safety.56 
Pharmacokinetics describes the movement of drug throughout the 
body over time. Pharmacodynamics defines the relationship be-
tween drug concentration and pharmacologic or toxicologic effect.57 
Traditional indices employed to describe this antimicrobial concen-
tration/effect relationship are (1) the ratio of the peak free-drug con-
centration to the MIC (fCmax/MIC); (2) the ratio of the area under 
the free-drug concentration-time curve to the MIC (fAUC/MIC); or 
(3) the percentage of the free-drug concentration that exceeds the 
MIC over a defined time period (fT > MIC). However, β-lactamase 
inhibitor PK/PD is complex and often non-traditional, falling under 
the shadow of the partner β-lactam's PK/PD.58,59 It is important to 
note that this may or may not be reflected in current susceptibil-
ity breakpoints. For example, the piperacillin breakpoint of 16 µg/
ml is largely based on PK/PD considerations with commonly applied 
piperacillin dosing strategies; that is, the ability to achieve piperacillin 
fT > MIC targets in patients. The piperacillin-tazobactam breakpoint 
is 16/4  µg/ml, solely because the piperacillin breakpoint is 16  µg/ml, 
irrespective of whether or not a fixed concentration of 4 µg/ml of 
tazobactam in a test tube is reflective of the restorative ability of 
commonly employed doses of tazobactam to reestablish the activity 
of piperacillin if the MIC is ≤16/4 µg/ml. Understanding and applica-
tion of inhibitor PK/PD are of critical importance to determining the 
utility of tazobactam-based combinations in patients.

The limitations of β-lactamase inhibitor PK/PD are multifaceted. 
First, the ability to dose the inhibitor as an individual agent in the 
clinical setting is dictated by the partner agent given the compounds 
are formulated as a single product. For example, optimizing expo-
sures of the β-lactam partner via tactics such as increasing the dose 
or extending the infusion consequently also impacts the PK/PD 
of the inhibitor. Second, the partner β-lactam's concentration, and 
ultimately restorative effect, is highly dependent on the ratio of β-
lactamase inhibitor to β-lactamase production, which is a dynamic, 
fluctuating environment. Unfortunately, the rationale for the prod-
ucts ratio between parent β-lactam and inhibitor with tazobactam-
based combinations is lacking.55,60 Third, there is a lack of consistent 
methodology for quantifying the inhibitor effect dynamically. Not 
only to account for the changes in tazobactam concentration, but 
also the changes in the “concentration” of the β-lactamase. The de-
gree of β-lactamase transcription varies across both individual and 
populations of bacteria. The BLI effect has been described as direct 
enzyme inhibition or enhancement of the antimicrobial activity of 
the partner β-lactam. Additionally, any experiment that assesses 
the ability of an inhibitor to restore the activity of a parent drug is 
going to be dependent on the amount of parent drug given, which 
can further complicate translation of the findings to the patient level 
if the amount of parent drug given in the experiment is different 
from the amount given to patients as part of the fixed dose combina-
tions. Current approaches to characterize the PK/PD of β-lactamase 
inhibitors include normalizing the β-lactamase inhibitor exposures 
required to the BLBLI combination MIC, a defined “threshold,” or a 
dynamic/instantaneous MIC.60–63 In this setting, the term “thresh-
old concentration” refers to a serum concentration of the BLI (ie, 

tazobactam) that target exposures need to be normalized to that 
may or may not be reflected in the combination product MIC (eg, 
fT>1 µg/ml of tazobactam or a fT > piperacillin/tazobactam MIC). 
For the purpose of this review, we will focus on studies utilizing clini-
cally relevant doses and threshold concentrations that can be deter-
mined with basic microbiologic susceptibility data that are provided 
to the treating clinician.

3.1  |  Piperacillin-tazobactam PK/PD targets

The first studies to describe the PK/PD of tazobactam in combina-
tion with piperacillin utilized 24-h one-compartment in vitro infec-
tion models.54,64 In the first study by Nicasio and colleagues, three 
E. coli strains with varying levels of CTX-M-15 production (low, mod-
erate, and high) were exposed to dose-fractionated, free-drug con-
centrations of tazobactam. Piperacillin was infused into the model at 
doses equivalent to exposures in patients with 2 g or 4 g every 6 h. 
Using Hill-type models and nonlinear least-squares regression, the 
correlations of change in bacterial density (log10 CFU/ml) to fAUC, 
fCmax, and fT > threshold were determined. The PK/PD index best 
associated with tazobactam efficacy was fT > threshold (r2 = 0.84); 
importantly however, the threshold concentration changed as the 
CTX-M-15 transcription level increased. These threshold concentra-
tions ranged from 0.25 to 2 µg/ml for the three isolates. Tazobactam 
fT >  threshold exposures of 45, 63, and 85% were required to re-
store the ability of piperacillin to achieve net bacterial stasis, 1-, and 
2-log10 CFU/ml reduction at 24 h.54

While this study was informative, three main limitations restrict 
application to patient care. First, there would be no way of clinically 
knowing if there was low, medium, or high β-lactamase production 
occurring; therefore, the threshold tazobactam concentration to tar-
get would be unknowable. Second, the investigators did not trans-
late the threshold concentrations to piperacillin-tazobactam MICs, 
which is the only clinically available threshold concentration to 
practitioners. Without knowing how to use these thresholds in the 
context of MIC, clinical decisions cannot be made. Third, the various 
experiments that developed these threshold concentrations admin-
istered two different piperacillin background doses. As previously 
described, the amount of tazobactam necessary to restore the activ-
ity of piperacillin will depend on how much piperacillin is present. As 
some of the threshold concentrations described were determined in 
the backdrop of half (2 g every 6 h) of the daily dose of piperacillin, 
it is unclear how to apply these findings to a clinical scenario where 
twice as much piperacillin is administered.

To overcome these limitations, Vanscoy and colleagues sought 
to determine the “real-world” tazobactam exposure required to re-
store piperacillin's activity (4 g every 6 h administered as a 30-min 
infusion) against three clinical Enterobacterales isolates that had 
not only the presence of ESBLs, but also other resistance mecha-
nisms including other β-lactamases and porin/efflux alterations. The 
authors demonstrated that once again, tazobactam's fT  >  thresh-
old was the PK/PD exposure that optimally restored piperacillin's 
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antibacterial activity. Importantly however, they demonstrated that 
similar to the traditional PK/PD indices, the threshold concentra-
tion that was the most predictive threshold was the piperacillin-
tazobactam MIC (MICTZP). Tazobactam fT  >  MICTZP exposures of 
64% and 77% were required to restore the ability of standard dose 
piperacillin to achieve bacterial stasis and 1-log10 CFU/ml reduction. 
This study utilized traditional piperacillin dosing, providing a clean 
interpretation of the tazobactam effect. Furthermore, the PK/PD 
index predictive of efficacy is not different than our traditional PK/
PD indices, allowing for easy clinical translation.64

3.2  |  Ceftolozane-tazobactam PK/PD targets

As the previous studies demonstrated, the isolate and the level of 
enzyme production can dictate tazobactam target exposures. The 
partner β-lactam that is paired with tazobactam adds an additional 
layer of complexity, as the stability of each β-lactam antimicrobial 
against various β-lactamases differs.65 As previously discussed, 
ceftolozane-tazobactam tends to be more potent than piperacillin-
tazobactam against Enterobacterales as ceftolozane is more sta-
ble to hydrolysis than piperacillin, and therefore, tazobactam PK/
PD targets will differ when combined with ceftolozane compared 
to those with piperacillin.42,45,66,67 Using identical E.  coli produc-
ing CTX-M-15 isolates from the in vitro study by Nicasio and col-
leagues, VanScoy and colleagues conducted a similar in vitro model 
with ceftolozane as the partner β-lactam (in place of piperacillin).55 
In the dose fractionation studies, ceftolozane was administered as 
125 mg, 500 mg, and 1000 mg every 8 h for the isolates with low, 
moderate, and high-β-lactamase expression, respectively. Similar 
to piperacillin-tazobactam, fT  >  threshold was the exposure that 
best correlated with efficacy (r2 = 0.94). However, both the thresh-
old concentrations (0.05–0.25 µg/ml) and target exposures relative 
to those thresholds were lower in this model than when combined 
with piperacillin, reflecting the enhanced stability of ceftolozane. 
Tazobactam fT > threshold exposures of 35%, 50%, and 70% were 
required to restore the ability for ceftolozane to achieve net bacte-
rial stasis, 1-, and 2-log10 CFU/ml reduction at 24 h.55 As described 
above with piperacillin, the lack of a clinically translatable reference 
point for exposure and various doses of ceftolozane used in this 
study limited the clinical applicability of these data.

Acknowledging the threshold concentrations varied between 
isolates, VanScoy and colleagues further attempted to improve the 
clinical translatability of this measurement by correlating threshold 
with MIC. Similar to the aforementioned work with piperacillin-
tazobactam, seven clinical isolates and one ATCC strain with vary-
ing levels of CTX-M-15, AmpC, porin, and efflux expression were 
used. In the PK/PD analysis, the ceftolozane dose was 1000 mg for 
isolates with ceftolozane-tazobactam MICs of 0.5/4 and 1/4 µg/ml 
and 2000 mg for ceftolozane-tazobactam MICs of 2/4 and 4/4 µg/
ml. The fT > threshold of tazobactam required to restore the ability 
of ceftolozane to achieve bacterial stasis, 1-log10, and 2-log10 CFU 
reductions were 65.9%, 77.3%, and 90.2%. Importantly, the authors TA
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were again able to relate the threshold concentration necessary to 
the ceftolozane-tazobactam MIC provided to clinicians. The thresh-
old concentration that best equated with restoration was the product 
of 0.5 and the ceftolozane-tazobactam MIC (MICCT*0.5).62 For exam-
ple, if the ceftolozane-tazobactam MIC is 2/4 µg/ml, this would be 
mean that the threshold concentration of tazobactam is 1 µg/ml. This 
study improves the clinical applicability of the data given both that 
the threshold exposure necessary is translated to clinically reported 
MICs, and since ceftolozane was administered at clinically relevant 
doses. It is important to note however that some of the isolates had 
the threshold concentration determined in the background of stan-
dard dose (1000 mg every 8 h) ceftolozane, and thus if high dose is 
employed, lower thresholds of tazobactam may be demonstrated due 
to the increased dose of ceftolozane administered.

3.3  |  Tazobactam PK/PD target summary

Based on in vitro data, Table 3 summarizes the thresholds needed for 
various tazobactam-based combinations. Unfortunately, no clinical data 
exist validating the exposures of tazobactam required for the treatment 
of infections caused by β-lactamase-producing organisms. The avail-
able PK/PD data demonstrate that species, type of β-lactamase, quan-
tity of β-lactamase production, and the stability of the partner β-lactam 
to hydrolysis by these enzymes affect the tazobactam exposures re-
quired to optimize efficacy. Unfortunately, based on the standard ratios 
administered, tazobactam concentrations are inherently lower than 
piperacillin or ceftolozane; however, the required fT > threshold expo-
sures to restore bacterial kill are much higher for tazobactam compared 
with its β-lactam partners, leading to potential issues with susceptibility 
breakpoints driven by the partner β-lactam.67,68

To further understand and translate susceptibility of tazobactam 
combinations, a detailed assessment at tazobactam pharmacokinet-
ics with commonly employed doses is necessary. Unfortunately, data 
on the pharmacokinetics of tazobactam are extremely limited to 
healthy volunteer data found in the prescribing information for both 
piperacillin-tazobactam and ceftolozane-tazobactam and small studies 
in infected patients. The following section will discuss what is known 
about tazobactam pharmacokinetics and ultimately try and relate this 
to the exposures needed and appropriate susceptibility breakpoints.

3.4  |  Tazobactam pharmacokinetics

3.4.1  |  Healthy volunteer pharmacokinetics

Per the piperacillin-tazobactam package insert after a dose of 4.5 g 
(4 g of piperacillin 500 mg of tazobactam) every 6 h (30-min infusion) 
the tazobactam PK profile is described by a maximum free tazobac-
tam serum concentration (Cmax) of ~24  µg/ml, a drug clearance of 
12.4 L/h, a volume of distribution of 14.7 L, and a half-life of 0.82 h. 
In the context of maximizing tazobactam exposure, the greatest PK 
limitations of tazobactam are its relatively low serum concentrations 

and short half-life.69,70 Using package insert-based dosing, the high-
est MIC at which tazobactam will restore bacterial stasis (tazobac-
tam 64% fT > MICTZP) and 1-log kill (tazobactam 77% fT > MICTZP) 
of piperacillin are 1/4 and 0.5/4 µg/ml, respectively. This is problem-
atic given the piperacillin-tazobactam MIC50 against ESBL+ E.  coli 
organisms is ≥4/4  µg/ml and the CLSI susceptible breakpoint for 
Enterobacterales is 16/4 µg/ml (Table 3).

In the FDA-approved ceftolozane-tazobactam dose of 3 g (2 g 
ceftolozane, 1 g tazobactam) every 8 h (60-min infusion), tazobactam 
exposures appear to be more in line with those required to restore 
activity than with piperacillin-tazobactam due to its higher dose 
(3 g tazobactam/day) longer infusion (60-min), and lower suscepti-
bility breakpoint (2/4 µg/ml). Comparing heathy volunteer PK data, 
1000 mg of tazobactam with ceftolozane versus 500 mg of tazobac-
tam with piperacillin has higher clearance (20.9 vs. 12.4 L), larger vol-
ume of distribution (23.7 vs. 14.7 L), and slightly longer half-life (1.02 
vs. 0.82 h). However, the 1000 mg dose has a lower free Cmax (20 vs. 
24 µg/ml), likely reflecting the duration of infusion (60 vs. 30 min). 
Again applying basic pharmacokinetic equations to these values 
and translating to target ceftolozane-tazobactam exposures of 66% 
and 77% fT  >  (MICCT*0.5), the highest achievable MIC to restore 
bacterial stasis and 1-log kill of ceftolozane are 2/4 and 1/4 µg/ml, 
respectively, with high dose ceftolozane-tazobactam demonstrating 
less of a disconnect between the susceptibility breakpoint and the 
achievable exposures than with piperacillin.62

When reviewing the aforementioned package insert-based es-
timations, it is important to note that these are simply estimations 
based on average values (ie, the 50% percentile). PK/PD probability 
of target attainment (PTA) studies have much higher standards for 
determining whether or not exposures will be reliably achieved in a 
population of patients, and a PTA of 90% is considered the standard 
for whether or not an MIC can be targeted at a given dose. While 
these robust simulations of the BLI have not been performed with 
piperacillin-tazobactam or ceftolozane-tazobactam, they have been 
simulated with healthy volunteer pharmacokinetic data in a phase 
1 study of cefepime-tazobactam, and these findings further highlight 
the concerns with tazobactam doses, exposures, and breakpoints. In 
this cefepime-tazobactam model, tazobactam doses of 2 g every 8 h 
as a 90-min infusion (twice the daily dose given with ceftolozane and 
three times the daily dose given with piperacillin) will only have a PTA 
of ~90% or greater for achieving the threshold exposures associated 
with restoring stasis or 1-log10 kill with piperacillin or ceftolozane up 
to a threshold concentration of 0.5 µg/ml. This would suggest that 
even at these higher tazobactam doses administered as a prolonged 
infusion (which enhances the time above a threshold concentration), 
appropriate breakpoints for piperacillin-tazobactam and ceftolozane-
tazobactam would be 0.5/4 and 1/4 µg/ml, respectively.71

3.4.2  |  Infected patients’ pharmacokinetics

While healthy volunteer PK data provide insight into expected drug 
exposures, these are not the patients who ultimately receive the 
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drug. Therefore, it is essential to understand how PK is altered across 
different populations, especially infected patients, to better under-
stand if the chosen doses achieve our target PK/PD exposures; or 
perhaps more importantly, what MIC values can be targeted with 
the current labeled doses. Tazobactam PK data, in combination with 
ceftolozane, have been assessed from infected patients, including 
those with nosocomial pneumonia, as part of the recent drug de-
velopment program for this combination. Volumes of distribution 
appear ~twofold higher in infected patients compared with healthy 
volunteers, while clearance was consistent regardless of infection 
status. A higher volume of distribution will ultimately result in lower 
Cmax concentrations and potentially compromise PK/PD target at-
tainment. However, these PK changes will also lead to a longer half-
life, which depending on achieved Cmax values, might afford longer 
time above threshold concentrations.72,73 Additional data followed 
by robust pharmacokinetic simulations are needed in these specific 
patient populations to further appreciate the importance of these 

changes in PK in relation to optimizing tazobactam exposure in com-
bination with ceftolozane.

Tazobactam exposures, in combination with piperacillin, have re-
cently been explored in a real-world study in critically ill patients.74 
Tazobactam plasma samples from eighteen patients in the inten-
sive care unit were used to develop a 1-compatment pharmacoki-
netic model. While maximal free concentrations were, on average, 
similar, drug clearance was lower in infected patients with normal 
renal function when compared with healthy volunteers (5.3  L/h 
vs. 12.4 L/h).69 Using the population PK model from this study, we 
performed a 1000 patient Monte Carlo Simulation and assessed 
the tazobactam PTA for 77% fT > various threshold concentrations 
of tazobactam (the 1-log kill threshold exposures for piperacillin-
tazobactam and ceftolozane-tazobactam) with both labeled doses 
of 500 mg every 6 h (30-min infusion) or 1000 mg every 8 h (60-min 
infusion; Figure 2). For both of these tazobactam dosing regimens, 
the highest threshold concentration where ~90% PTA was achieved 

F I G U R E  2  Percent target attainment 
of tazobactam across thresholds in 
critically ill patients

Percent Target Attainment of Tazobactam across Thresholds in Critically Ill Patients

Tazobactam 500 mg every 6 hours

MIC (µg/mL)
0.25 0.5 1 2 4 8 16

CrCl 60 mL/min 99 98 96 90 76 40 0

CrCl 90 mL/min 98 96 93 85 69 32 0

CrCl 120 mL/min 98 95 91 83 64 28 0

Tazobactam 1000 mg every 8 hours

MIC (µg/mL)
0.25 0.5 1 2 4 8 16

CrCl 60 mL/min 99 97 95 91 82 63 28

CrCl 90 mL/min 97 95 92 87 76 55 21

CrCl 120 mL/min 96 94 90 84 72 51 18



872  |    MONOGUE et al.

was 2 µg/ml. Notably, this threshold is higher than those estimated 
from PK in healthy volunteers, likely due to the difference in drug 
clearance. While these data would support current ceftolozane-
tazobactam Enterobacterales susceptibility breakpoints, they would 
suggest that a more appropriate piperacillin-tazobactam susceptibil-
ity breakpoint would be 2/4 µg/ml. Importantly, this simulation was 
based on a small population of critically ill patients. A larger cohort 
is needed to validate these findings. Furthermore, the PK of tazo-
bactam was only performed in the presence of piperacillin. Future 
analyses should include patients receiving both ceftolozane or pip-
eracillin in combination with tazobactam as the PK of the BLI is po-
tentially impacted by the partner β-lactam.

3.5  |  PK/PD summary

The differences in tazobactam exposures, in addition to the ESBL 
stability of the partner β-lactam, must be taken into consideration 
when evaluating the clinical outcomes of tazobactam-based therapy 
for the treatment of ESBL+infections.33,75,76 Unfortunately, the ra-
tionale for clinically recommended doses and fixed ratios remains 
largely unsupported by PK/PD. Although limited tazobactam PK/
PD data exist, available healthy volunteer PK/PD would suggest 
breakpoints for piperacillin-tazobactam 4.5  g every 6  h (30-min 
infusion) of 0.5/4  µg/ml and ceftolozane-tazobactam 3  g every 
8 h (60-min infusion) of 1/4 µg/ml. Small studies in critically ill pa-
tients suggest higher MICs may be targeted but more robust data 
are needed. While ceftolozane-tazobactam's CLSI breakpoint of 
2/4  µg/ml may be within reach depending on patient-specific PK, 
piperacillin-tazobactam's CLSI breakpoint of 16/4 µg/ml makes ad-
equate tazobactam exposure unattainable, highlighting potential 
clinical failure concerns for “susceptible” β-lactamase-producing 
organisms. Further pharmacokinetic and clinical data are urgently 
needed to optimize tazobactam's efficacy against β-lactamase-
producing organisms.

4  |  CLINIC AL DATA

Early in vitro and clinical data hinted that tazobactam-based thera-
pies may be inadequate for ESBL+ organisms, particularly high-
inoculum infections. One small retrospective analysis of 21 patients 
with culture confirmed ESBL+ infections found patients treated 
with piperacillin-tazobactam had only 56% treatment success rate 
despite reported in vitro susceptibility.77 Time-kill studies showed 
cefepime, imipenem, and meropenem demonstrated bactericidal 
activity against ESBL+ isolates but piperacillin-tazobactam showed 
bactericidal killing against only 1 ESBL+ isolate investigated. At high 
inoculum, cefepime and piperacillin-tazobactam were unable to 
maintain activity against any of the ESBL+ isolates unlike the car-
bapenems.78 These data reinforced the paradigm that carbapenems 
were the drug of choice for invasive ESBL infections. This dogma 
was not significantly challenged until the early 2010’s.

4.1  |  Piperacillin-tazobactam for ESBL bacteremia

Between 2012 and 2016, a series of retrospective, observational 
trials comparing β-lactam/β-lactamase inhibitors (largely piperacil-
lin/tazobactam) and carbapenems for the empiric and/or defini-
tive treatment of bacteremia due to ESBL+ Enterobacterales were 
performed (Table  4) with conflicting results. Interpretation of the 
findings from these trials is challenging and limited by significant 
heterogeneity in the source of bacteremia, a range of both pipera-
cillin/tazobactam doses administered and MIC distributions of the 
Enterobacterales causing infection, significant confounding by indi-
cation where sicker or more complicated patients received carbap-
enems, and a substantial amount of cross-over between treatment 
arms (empiric piperacillin/tazobactam followed by definitive carbap-
enem therapy) in some of the publications.79–84

In general, piperacillin/tazobactam fared comparably to car-
bapenems in studies that assessed empiric and definitive therapy 
cohorts separately,79,83 those that primarily included patients with 
urinary or biliary sources of bacteremia,79,80,83 and those where 
piperacillin/tazobactam dosing was high and MIC distributions 
were low.79,80 Conversely, significant concerns with piperacillin/
tazobactam were raised in studies that focused on empiric use,81 
those that had a larger percentage of patients with higher burden 
sources (eg, pneumonia and central line),81,82 and those that uti-
lized lower piperacillin/tazobactam doses and/or had higher MIC 
distributions.80–82

The conflicting findings and the significant confounding by in-
dication in these retrospective analyses precluded the ability for 
conclusive recommendations for piperacillin-tazobactam for ESBL 
bacteremia. The MERINO trial, a prospective, multicenter, interna-
tional, open-label, randomized controlled non-inferiority study, was 
hoped to be the definitive answer to this question. Adult patients 
with ESBL+ bacteremia, defined as ceftriaxone-nonsusceptible 
E. coli or K. pneumoniae, were randomized to meropenem (1000 mg 
every 8 h as a 30-min infusion) or piperacillin-tazobactam (4.5 g IV 
every 6 h as a 30-min infusion) within 72 h of blood culture collec-
tion. Isolates had to be susceptible to both study drugs according to 
local laboratory susceptibility testing protocols. The study set out 
to enroll 454 patients to demonstrate non-inferiority of piperacillin-
tazobactam with a primary outcome of 30-day all-cause mortal-
ity. However, the trial was stopped early when an interim analysis 
showed increased mortality in the piperacillin-tazobactam group 
compared with the meropenem group (12.3% vs. 3.7%, risk differ-
ence 8.6%; p = 0.004).

Interestingly, this mortality difference was demonstrated de-
spite the study population largely consisting of “less severe” infec-
tions, with <10% of patients in the ICU and a median Pitt bacteremia 
score of 1 for both groups. The secondary endpoint of clinical and 
microbiologic success at Day 4 also favored meropenem patients 
(74.6% vs. 68.4%); however, the study was underpowered to assess 
this endpoint. Mortality rates in patients receiving piperacillin/ta-
zobactam were similar in patients with MICs ≤2  µg/ml (14.5%) or 
>2 µg/ml (12.7%).76
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A post hoc analysis re-evaluated outcomes based on MIC after 
a central laboratory performed broth microdilution MIC testing for 
157/188 patients who received piperacillin-tazobactam and 163/191 
patients who received meropenem. For isolates that initially tested 
piperacillin-tazobactam susceptible at the study site, but were con-
firmed to be piperacillin-tazobactam resistant (MICs >16  µg/ml), 
mortality was higher in piperacillin-tazobactam-treated patients 
(5/10, 50%) than those with susceptible isolates (13/147, 8.8%); 
p  =  0.002.33 The authors highlighted how the differences in the 
MERINO trial between piperacillin-tazobactam and meropenem be-
came less pronounced when limited to isolates “susceptible” to both 
drugs (13/147 (8.8%) vs. 6/155 (3.9%). However, it is important to 
note that mortality rates were still twice as high for patients receiv-
ing piperacillin-tazobactam. Furthermore, mortality rates were the 
highest (9/61; 14.8%) for patients receiving piperacillin-tazobactam 
with low MICs (≤2 mg/L), thereby limiting the relationship demon-
strated between MIC and outcome. This study also highlights the 
potential clinical impact of isolates that co-harbor other β-lactamase 
enzymes, such as narrow spectrum oxacillinases (OXA). The poten-
tial presence of other resistance mechanisms should be considered 
when evaluating the efficacy of tazobactam-based combinations.

Regardless of the role susceptibility testing may have played 
in amplifying the results, the striking difference in mortality rates, 
as well as numerically worse clinical and microbiological success 
rates in this study certainly, gives pause to the use of piperacillin-
tazobactam for ESBL+ gram-negative bloodstream infections, even 
in the “lower-risk” bacteremic patients with low-inoculum sources 
of infection.

4.2  |  Piperacillin-tazobactam for ESBL urinary 
tract infections

Although piperacillin-tazobactam fared poorly for bacteremia, the 
question remains whether or not it is appropriate for less severe in-
fections without bacteremia. While multiple retrospective studies 
exist addressing the potential role for piperacillin-tazobactam for 
the treatment of urinary tract infections, the majority of them are 
limited by small numbers, diagnostic uncertainty, and/or the inclu-
sion of bacteremic patients. Sharara and colleagues recently per-
formed a retrospective multicenter observational study comparing 
clinical outcomes of adults hospitalized with pyelonephritis (without 
bacteremia) caused by ESBL+ Enterobacterales who were primarily 
treated with piperacillin-tazobactam versus carbapenems, using an 
inverse probability of treatment-weighted propensity score analysis. 
Patients were included if they received study medication within 48 h 
of the time of the initial culture and it was continued for at least 
72  h. The primary outcome of recurrent cystitis or pyelonephritis 
occurred in 9/44 (20%) patients receiving piperacillin-tazobactam 
compared with 35/141 (25%) patients receiving a carbapenem. 
Similarly, there was no difference in the secondary outcomes of res-
olution of symptoms within 7 days (OR 1.79; 95% CI 0.50–6.46) or 
30-day mortality (OR 0.38; 95% CI 0.05–3.06) in patients receiving 

piperacillin-tazobactam or meropenem, respectively. While these 
data suggest a potential role for piperacillin-tazobactam for ESBL 
pyelonephritis, they suffer from significant limitations, similar to the 
initial bacteremia data that limit their interpretations. Although ad-
justed for in propensity score, some important comorbidities were 
more numerically frequent in the carbapenem group, notably as it 
related to immunocompromising conditions. Furthermore, patients 
in the piperacillin-tazobactam group were more likely to be started 
on study drug within 24 h (95.5% vs. 79.4%), more likely to transition 
to oral step-down therapy (20% vs. 7.8%), and received shorter dura-
tions of therapy. Moreover, the methods required 72 h of study drug 
and disallowed switches to the other treatment arm. Therefore, any 
patient started on piperacillin-tazobactam and switched to a carbap-
enem would be ineligible for inclusion in this cohort, biasing the re-
sults toward patients responding to empiric piperacillin-tazobactam 
therapy.85 These subtle differences in confounding by indication 
between the groups are reflected by numerically better results for 
every study endpoint in piperacillin-tazobactam-treated patients 
compared with those who received the gold standard carbapenem 
regimen and limit any inferences that can be made.

4.3  |  Ceftolozane-tazobactam for ESBL infections

Although there are currently no comparative real-world or rand-
omized controlled trial data comparing ceftolozane-tazobactam 
to carbapenems specifically for ESBL infections, there are some 
subgroup data from FDA registry trials comparing ceftolozane-
tazobactam's efficacy versus levofloxacin (complicated urinary 
tract infections) and meropenem (intra-abdominal infections, and 
hospital-acquired bacterial pneumonia). Popejoy and colleagues 
reported on the efficacy of ceftolozane-tazobactam (1.5  g every 
8 h) versus comparators for ESBL+ Enterobacterales from the uri-
nary tract and intra-abdominal infection trials. For the endpoint of 
clinical cure at test of cure, ceftolozane-tazobactam was superior to 
levofloxacin for complicated urinary tract infections (53/54 (98%) vs. 
38/46 (83%); p = 0.01) and similar to meropenem for complicated 
intra-abdominal infections (23/24 (96%) vs. 23/26 (89%); p > 0.05) 
due to ESBL+ Enterobacterales.86

Most recently, ceftolozane-tazobactam (3  g every 8  h) was 
studied versus meropenem (1000 mg every 8 h) for the treatment 
of nosocomial pneumonia. ESBL+ Enterobacterales were isolated 
from 157 (31%) patients in the study, 54 of which (32%) were re-
sistant (defined as an MIC >4/4 µg/ml) to ceftolozane-tazobactam. 
Twenty-eight-day mortality in patients with ESBL+ Enterobacterales 
was similar between patients receiving ceftolozane-tazobactam 
(18/84, 21%) and meropenem (21/73 (29%)) (difference 7.3% 
(−6.1 to 20.8). Clinical cure rates at test of cure were also similar 
between the groups (48/84 (57%) vs. 45/73 (62%); – 4.5 (−19.3 to 
10.7)) for ceftolozane-tazobactam and meropenem, respectively. 
Interestingly, clinical cure with ceftolozane-tazobactam was demon-
strated in 33/53 (62%) isolates with MICs ≤4/4 mg/L compared with 
15/31 (48%) above 4/4  µg/ml. Similar clinical cure rates (63% and 
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60%) were seen in patients who received meropenem, regardless of 
ceftolozane-tazobactam susceptibility.75

While these initial data are encouraging, more evidence is 
needed to support the role of ceftolozane-tazobactam for invasive 
ESBL infections and to ultimately change the current standard of 
care. The MERINO III trial, comparing ceftolozane-tazobactam and 
meropenem for bloodstream infections due to ESBL and/or AmpC-
producing Enterobacterales, plans to begin enrolling soon and will 
help fill this data void.

5  |  CONSIDER ATIONS FOR COLL ATER AL 
DAMAGE

One of the principal arguments for consideration of tazobactam-
based combinations for infections due to ESBL+ Enterobacterales 
is the notion that their “carbapenem-sparing” nature will decrease 
the selective pressure for carbapenem resistance and thus limit the 
urgent threat to public health of carbapenem-resistant organisms, 
most notably CRE. While this would represent an important consid-
eration if supported by evidence, it is of critical importance that this 
theory is fully vetted and deliberated.

5.1  |  Impact of tazobactam-based 
combinations and carbapenems on the 
human microbiome

At a surface level, the spectrum of activity of piperacillin-tazobactam, 
ceftolozane-tazobactam, and the carbapenems is broadly simi-
lar, with each having activity against common Enterobacterales, 
P.  aeruginosa, as well as gram-positives, and anaerobic organisms 
for piperacillin-tazobactam and carbapenems. Both piperacillin-
tazobactam and carbapenems appear to generally lead to a de-
crease in the relative abundance of Enterobacterales and increase 
the relative abundance of Enterococci, consistent with their known 
spectrum of activity.87,88 The effects of piperacillin-tazobactam and 
the carbapenems on anaerobic bacteria, including Bacteroides spp., 
are more variable.88 No data are available regarding the effect of 
ceftolozane-tazobactam on the microbiome. The clinical impact of 
these microbiome changes, along with the significance of any minor 
differences between agents, is not known.

5.2  |  Mechanistic basis of selection of carbapenem 
resistance in patients treated with tazobactam-based 
combinations and carbapenems

In general, there are two pathways by which a patient may become 
infected or colonized with carbapenem-resistant pathogens follow-
ing treatment for a defined infection. In the first case, a pre-existing 
organism may develop one or more spontaneous mutations or other 
genetic changes that are associated with antimicrobial resistance, 

with no need for acquisition of exogenous resistance elements or 
colonization by pre-existing antimicrobial-resistant mutants.89,90 In 
the Enterobacterales, spontaneous carbapenem resistance appears 
to develop primarily as a result of outer membrane porin loss or 
alterations in patients with previous ESBL or AmpC-producing or-
ganisms and subsequent carbapenem exposure.91–94 This resistance 
pathway leads to a phenotypically carbapenem-resistant organism 
without carbapenemase genes; such organisms typically have lower-
level resistance to carbapenems than do carbapenemase produc-
ers.95 Whether this mechanism is exclusively related to carbapenem 
exposure or if tazobactam-based combinations may exert similar 
selective pressure is unclear and is an active area of investigation.

The second pathway requires host acquisition of a genetically 
distinct organism harboring a resistance element. Acquisition of this 
organism may precede antimicrobial exposure, with subsequent an-
timicrobial use selecting for infection with the organism, or acqui-
sition may occur following administration when an ecologic niche 
for new organisms has been carved out. In contrast to spontaneous 
resistance mutations, which cause infections typically limited to a 
single host, acquisition of foreign antimicrobial-resistant patho-
gens leads to epidemic spread, as was seen with the KPC-harboring 
ST258 K. pneumoniae.96–98 Given the overlapping spectrums of ac-
tivity of tazobactam-based combinations and carbapenems, it would 
be expected that these agents would have a similar propensity to 
lead to antimicrobial resistance by these mechanisms.

5.3  |  Comparative clinical data for 
carbapenems and tazobactam-based combinations for 
selection of carbapenem-resistant organisms

Unfortunately, data assessing the comparative impact of treatment 
of ESBL infections with tazobactam-based combinations or car-
bapenems on the subsequent isolation of CRE or any piperacillin-
tazobactam-resistant organism are limited. Two comparative studies 
have investigated the isolation of resistant organisms on subsequent 
clinical cultures; however, the data in both cases are incomplete 
and no analyses have systematically examined colonization with 
carbapenem-resistant organisms.

In the MERINO trial, Harris and colleagues investigated the in-
cidence of secondary infections with a meropenem- or piperacillin-
tazobactam-resistant organism in patients randomized to either 
piperacillin-tazobactam or meropenem, which they defined as 
growth of a meropenem- or piperacillin-tazobactam-resistant gram-
negative organism from any clinical specimen collected from Day 
4 after randomization to Day 30. The rates of isolation of either a 
meropenem- or piperacillin-tazobactam-resistant gram-negative 
organism were 12/187 (6.4%) in patients receiving piperacillin-
tazobactam and 6/191 (3.1%) in patients receiving meropenem. 
The authors further stated that rates of carbapenem-resistant or-
ganism isolation were not different (3.2% vs. 2.1%) between the 
groups. Furthermore, only four patients in the study had isolation 
of meropenem- or piperacillin-tazobactam-resistant gram-negative 
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organisms from future blood cultures. All four of these patients 
were in the piperacillin-tazobactam arm (one with a meropenem-
susceptible E.  coli, two with meropenem-resistant K.  pneumoniae, 
and one with a carbapenem-resistant A. baumannii). In addition to 
the small numbers, an important consideration when interpret-
ing these data is that in the piperacillin-tazobactam cohort 14% of 
patients received empiric therapy and 20% of patients received 
“step-down” therapy with a carbapenem, which could influence the 
selection of future resistant isolates.76

In the retrospective cohort study by Sharara and colleagues 
comparing piperacillin-tazobactam and carbapenems for pyelone-
phritis caused by ESBL+ Enterobacterales, a secondary outcome 
was isolation of a carbapenem-resistant (ertapenem, meropenem, 
or imipenem) organism in the 30 days following treatment initia-
tion. 1/47 (2%) of piperacillin-tazobactam-treated patients had 
isolation of a carbapenem-resistant organism (P. aeruginosa) versus 
11/141 (8%; p  =  0.09) of those receiving carbapenems (3 E.  coli, 
4 K. pneumoniae, 3 P. aeruginosa, and 1 A. baumannii). These data 
are suggestive that selection of carbapenem-resistant organisms 
may be more common in patients treated with carbapenems; how-
ever, there are important limitations to consider in interpreting 
these data. These include likely confounding by indication biasing 
against the carbapenems, the lack of clarity of whether a history of 
carbapenem-resistant organisms prior to the study was considered, 
and no assessment of isolation of piperacillin-tazobactam-resistant 
organisms.85

The relative impact of piperacillin-tazobactam versus carbapen-
ems on antimicrobial resistance in general, versus carbapenem resis-
tance specifically, remains unclear. As this section illustrates, there is 
a lack of a clear theoretical rationale why tazobactam-based combi-
nations would be expected to be less likely to select for carbapenem-
resistant organisms than carbapenems, and the relative effect of 
selection of piperacillin-tazobactam or ceftolozane-tazobactam-
resistant organisms. There are limited clinical data available compar-
ing the two and to date, the only randomized study assessing these 
therapies failed to demonstrate any signal that decreased selection 
of carbapenem resistance with piperacillin-tazobactam does occur.

6  |  CONCLUSIONS AND FUTURE 
DIREC TIONS

Continued β-lactam use for the treatment of gram-negative infec-
tions is threatened by increasing antimicrobial resistance, includ-
ing ESBLs. BLIs, like tazobactam, may serve an essential role in 
reducing carbapenem use by protecting partner β-lactam antibiot-
ics from degradation and ultimately inactivity against these ESBL+ 
organisms. Optimizing tazobactam's inhibition potential is reliant 
on many factors, including the partner β-lactam antimicrobial and 
tazobactam-specific PK/PD.

Ceftolozane-tazobactam appears to offer several PK/PD advan-
tages over piperacillin-tazobactam when treating ESBL+ organisms. 
First, ceftolozane-tazobactam demonstrates more potent in vitro 

activity against ESBL+ Enterobacterales, with lower MIC50 and 
MIC90 values, which is likely due to ceftolozane's enhanced stabil-
ity to hydrolysis. Second, more tazobactam is given over a longer 
infusion when used in combination with ceftolozane based on stan-
dard doses. Third, ceftolozane-tazobactam's achievable “threshold” 
concentrations based on standard doses fall within the realm of 
the agent's established breakpoints, while piperacillin-tazobactam 
breakpoints may be several-fold higher than the achievable “thresh-
olds” for ESBL+ organisms. All of these factors play a role in tazo-
bactam's probability of PK/PD target attainment for susceptible 
organisms. Based on these differences, tazobactam when combined 
with ceftolozane may be more reliable in achieving appropriate 
exposures in respect to potential MICs of ESBL+ organisms. The 
clinical data for ceftolozane-tazobactam, while limited to industry 
sponsored trials in specific disease states, are supportive of this and 
are encouraging.

For piperacillin-tazobactam, the story is much more concerning. 
From a PK/PD perspective, even use of “high dose” piperacillin-
tazobactam raises alarms. Using data from healthy volunteers, the 
highest attainable MIC, where tazobactam can restore the activity 
of piperacillin, is 0.5/4 µg/ml. When applying the more favorable 
PK profile of this dosing regimen that was present in critically ill 
patients due to a decreased drug clearance, this PK/PD break-
point increases to 2/4 µg/ml. To put these values into perspective 
of the 9916 ESBL+ phenotype E. coli listed in the SENTRY online 
database, only 0.6% and 35.1% have piperacillin/tazobactam MICs 
≤0.5/4 and 2/4  µg/ml, respectively.99 The situation is even more 
dire when looking at the 8160 ESBL+ phenotype K.  pneumoniae 
isolates in this database where 0.1% and 5.4% are inhibited at MIC 
values of 0.5/4 and 2/4  µg/ml, respectively. When these PK/PD 
limitations are combined with the failure of piperacillin-tazobactam 
in the MERINO trial, it is difficult to see a clear path forward for 
piperacillin/tazobactam for systemic infections due to ESBL+ pro-
ducing Enterobacterales.

So the question is where do we go from here? Given the red 
flags with piperacillin-tazobactam and concerns of what widespread 
ceftolozane usage may do to P.  aeruginosa susceptibilities it ap-
pears prudent that rather than rushing into decisions based on the 
current limited data, focus should be placed on appropriate BLBLI 
drug development. For both agents, more robust pre-clinical PK/
PD analyses are urgently needed. The PK/PD target exposures dis-
cussed here were only assessed against E. coli isolates. It is import-
ant to understand whether the tazobactam exposure requirements 
change based on organism and different β-lactamase(s) present. 
Furthermore, in vivo studies validating these exposures currently do 
not exist. For piperacillin-tazobactam, it will be interesting to un-
derstand whether extended or continuous infusions of piperacillin-
tazobactam can better change the trajectory for that combination. 
Given that prolonged/continuous infusions will optimize the PK of 
both the parent beta-lactam and the inhibitor it is possible that a 
combination of lower thresholds (due to prolonged infusions of pip-
eracillin) and the ability to optimize the time above these thresh-
olds (due to prolonged infusions of tazobactam) might improve PTA 
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at higher MIC values. Additionally, as the analyses by VanScoy and 
colleagues only determined threshold exposures for isolates with 
MICs up to 4/4  µg/ml, assessment should be performed to deter-
mine whether threshold exposures of tazobactam translate to the 
piperacillin-tazobactam MIC in the same way at higher MICs. Work 
should also be performed to understand tazobactam pharmacoki-
netics in infected, hospitalized patients. Only if results of these pre-
clinical analyses are favorable, should further studies be initiated 
assessing piperacillin-tazobactam in these patients. Of note, the 
PETERPEN trial comparing piperacillin-tazobactam and meropenem 
for bacteremia due to third-generation cephalosporin-resistant 
Enterobacterales is ongoing (NCT03751967) and will further inform 
this discussion.

For ceftolozane-tazobactam, the path forward has different 
landmines. While PK/PD and clinical data are encouraging, further 
PTA analyses of tazobactam exposures in critically ill patients in 
the FDA registry trials will better describe the ability to achieve 
threshold exposures at different MIC targets with this agent, and 
MERINO 3 will provide outcomes data in ESBL+ bacteremia. The 
bigger question for ceftolozane-tazobactam, and even piperacillin-
tazobactam should it be able to move forward, is whether or not 
the “collateral damage” with this combination is superior, inferior, 
or neutral when compared to the carbapenems. As ceftolozane 
use is preferred for DTR P.  aeruginosa,100 careful study of the 
comparative resistance selection of these agents will be import-
ant to critically assess if the desire for carbapenem-sparing thera-
pies will backfire leading to increased resistance to other last line 
agents. Therefore, in the absence of compelling data that these 
agents are effective for the treatment of infections due to ESBL+ 
Enterobacterales, appropriate setting of susceptibility breakpoints, 
and supportive data that there is in fact a collateral damage benefit 
to tazobactam-based combinations, carbapenems should remain 
the preferred treatment for any ESBL+ infection warranting intra-
venous beta-lactam therapy.
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