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ABSTRACT

One of the time-consuming software maintenance tasks is the localization of soft-

ware bugs especially in large systems. Developers have to follow a tedious process

to reproduce the abnormal behavior then inspect a large number of files in order to

resolve the bugs. Furthermore, software developers are usually overwhelmed with

several reports of critical bugs to be addressed urgently and simultaneously. The

management of these bugs is a complex problem due to the limited resources and

the deadlines-pressure. Another critical task in this process is to assign appropriate

priority to the bugs and eventually assign them to the right developers for resolution.

Several studies have been proposed for bugs localization, the majority of them are

recommending classes as outputs which may still require high inspection effort. In

addition, there is a significant difference between the natural language used in bug re-

ports and the programming language which limits the efficiency of existing approaches

since most of them are mainly based on lexical similarity. Most of the existing studies

treated bug reports in isolation when assigning them to developers. They also lack the

understanding of dynamics of changing bug priorities. Thus, developers may spend

considerable cognitive efforts moving between completely unrelated bug reports. To

address these challenges, we proposed the following research contributions:

1. We proposed an automated approach to find and rank the potential classes and

methods in order to localize software defects. Our approach finds a good bal-

ance between minimizing the number of recommended classes and maximizing

the relevance of the proposed solution using a hybrid multi-objective optimiza-

tion algorithm combining local and global search. Our hybrid multi-objective

xii



approach is able to successfully locate the true buggy methods within the top 10

recommendations for over 78% of the bug reports leading to a significant reduc-

tion of developers’ effort comparing to class-level bug localization techniques.

2. We proposed an automated bugs triage approach based on the dependencies

between several open bug reports. We defined the dependency between two

bug reports as the number of common files to be inspected to localize the bugs.

Then, we adopted multi-objective search to rank the bug reports for program-

mers. The results show a significant time reduction of over 30% in localizing the

bugs simultaneously comparing to the traditional bugs prioritization technique

based on only priorities.

3. We performed an empirical study to observe and understand the changes in

bugs’ priority in order to build a 3-W model on Why and When bug priorities

change, and Who performs the change. We conducted interviews and a survey

with practitioners as well as performed a quantitative analysis large database

of bugs reports. As a result, we observed frequent changes in bug priorities

and their impact on delaying critical bug fixes especially before shipping a new

release.
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CHAPTER I

Introduction

1.1 Research Context

A software bug is a coding error that may cause abnormal behaviors and incorrect

results when executing the software system Bruegge and Dutoit (2004). After identi-

fying an unexpected behavior of the software project, a user or developer will report

it in a document, called a bug report Zimmermann et al. (2010). Thus, a bug report

should provide useful information to identify and fix the bug. The number of these

bug reports can be large. For example, MOZILLA had received more than 420,000

bug reports Bettenburg et al. (2008). These reports are important for managers and

developers during their daily development and maintenance activities including bug

localization Fischer et al. (2003). The process of finding the relevant source code

fragments (methods, classes, etc.) that need to be modified to fix the bug according

to a bug report description is defined as bug localization Wang and Lo (2014a).

The bug report is supposed to contain all information to (i) describe the bug, (ii)

how to reproduce the bug, (iii) end users affected by the bug, (iv) the version of the

software affected by the bug, (v) comments or feedback from other developers on the

bug. Also, bug report has attributes such as (i) bug priority, (ii) bug severity, (iii)

information about the creator of the bug and the developer assigned to work on the

bug, (iv) the component or package related to the bug, (v) the date time stamp of

1



bug creation and last modifications, (vi) the status of the bug or resolution needed

to happen to fix the bug.

Software maintenance involves, typically, localizing and fixing a large number of

defects that arise during development and evolution of systems Zhang et al. (2016).

Localizing these software defects is expensive and time-consuming process which typ-

ically requires highly skilled and knowledgeable developers of the system. The local-

ization process includes a manual search through the source code of the project in

order to localize a single bug at a time Jones (2008). Due to the large number of re-

ported bugs in successful projects, it is critical to efficiently manage them to improve

developers productivity and quickly localize and fix these bugs Zou et al. (2018).

Bug priority is one of most critical attribute which describes the urgency on fixing

the bug and therefore the scheduling to resolve the bug in the system. Bug severity is

the impact of the bug in the software and therefore it describes how severe the bug is

affecting the end users and the functionality of the software. Bug priority is the main

factor that helps bug triagers to rank and analyze their bug reports before assigning

them to programmers. Thus, a lot of research works Tian et al. (2013); Yang et al.

(2014); Sharma et al. (2012); Kumari and Singh (2018); Tian et al. (2015) have been

done to study bug priority and predicate or recommend the appropriate priority of a

bug.

1.2 Challenges Summary

A developer always uses a bug report to reproduce the abnormal behavior to

find the origin of the bug. However, the poor quality of bug reports can make this

process tedious and time-consuming due to missing information. To find the cause

of a bug, developers are not only using their own knowledge to investigate the bug

report but interact with peer developers to collect additional information. An efficient

automated approach for locating and ranking important code fragments for a specific

2



bug report may lead to improve the productivity of developers by reducing the time

to find the cause of a bug Fischer et al. (2003).

The majority of existing bug localization studies are mainly based on lexical

matching scores between the statements of bug reports and the name of code el-

ements in software systems Sun et al. (2010); Nguyen et al. (2011); Ashok et al.

(2009). However, there is a significant difference between the natural language used

in bug reports and the programming language which limits the efficiency of existing

approaches.

Although several techniques have been proposed to localize bugs Wong et al.

(2016); Almhana et al. (2016) and predict the severity of bugs Uddin et al. (2017);

Chaturvedi and Singh (2012); Zhang et al. (2016), the existing studies related to the

management of bugs report are mainly based on the priority scores to rank and assign

bug reports without looking to the possible dependencies between them Zheng et al.

(2006); Canfora et al. (2011); Li et al. (2006). Thus, developers may get assigned bug

reports related to completely different files to be inspected which may increase the

cognitive effort of the developers navigating between these independent bug reports.

Assigning appropriate priority to bugs is critical for timely addressing important

software maintenance issues. An underlying aspect is the effectiveness of assigning

priorities: if priorities of a fair number of bugs are changed, it could indicate delays

in fixing critical bugs. To the best of our knowledge, there has been little prior work

on understanding the dynamics of changing bug priorities.

1.3 Research Objectives

• We will evaluate the current software bugs localization solutions in order to

find solutions to bridge the gaps and make improvements. We will design a pro-

posal for our solution and implement the suitable application to solve industrial

challenges and to enable researchers for another research venue.

3



Figure 1.1: Our research contributions

• We will evaluate the current related work about managing software defects’

reports, study the pros and cons of the state of the art solutions, and discover

the challenges needed to improve the process of managing the reports of software

defects. We will design and implement a solution to fit industrial needs and open

the door for areas of improvements.

• We will observe the dynamics in priority of software defects. We will study

and detect the behavioral patterns and technical challenges come with changes

in software defect’s priority. We will conduct a survey to collect stakehold-

ers’ feedback. We will build our solution’s model to recommend and present

our findings. We will design and improve the state of the art mechanism in

predicating defect’s priority.

1.4 Proposed Contributions

To achieve our research objectives, we propose the research methodology as shown

in Figure 1.1
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1.4.1 Contribution 1: Method-Level Bug Localization Using Hybrid Multi-

objective Search

Due to lack of details, large number of files to inspect, and high inspection efforts

to to localize bugs in a software, we have initiated our research by proposing method-

level bugs localization.

We propose an automated approach to find and rank the potential methods in

order to localize the source of a bug based on a bug report description. Our ap-

proach finds a good balance between minimizing the number of recommended classes

and maximizing the relevance of the proposed solution using a hybrid multi-objective

optimization algorithm combining local and global search. The relevance of the rec-

ommended code fragments is estimated based on the use of the history of changes and

bug-fixing, and the lexical similarity between the bug report description and the API

documentation. Our approach operates on two main steps. The first step is to find

the best set of classes satisfying the two conflicting criteria of relevance and the num-

ber of classes to recommend using a global search based on NSGA-II. The second step

is to locate the most appropriate methods to inspect, using a local multi-objective

search based on Simulated Annealing (MOSA) from the list of classes recommended

by the first step. We evaluated our system on 6 open source Java projects, using the

version of the project before fixing the bug of many bug reports. Our hybrid multi-

objective approach is able to successfully locate the true buggy methods within the

top 10 recommendations for over 78% of the bug reports leading to a significant re-

duction of developers’ effort comparing to class-level bug localization techniques. The

experimental results show that the search-based approach significantly outperforms

four state-of-the-art methods in recommending relevant files for bug reports.
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1.4.2 Contribution 2: Considering Dependencies Between Bug Reports

to Improve Bugs Triage

Due to high number of open bugs reports to be addressed urgently and simultane-

ously, lack of efficient way to prioritize bugs reports and therefore provide a smooth

transition for developers between multiple bugs reports. We propose multi-objective

search to rank the bug reports for programmers based on both their priorities and

the dependency between them.

We propose an automated bugs triage approach based on the dependencies be-

tween the open bug reports. Our approach starts by localizing the files to be inspected

for each of the pending bug reports. We defined the dependency between two bug

reports as the number of common files to be inspected to localize the bugs. Then,

we adopted multi-objective search to rank the bug reports for programmers based

on both their priorities and the dependency between them. We evaluated our ap-

proach on a set of open source programs and compared it to the traditional approach

of considering bug reports in isolation based mainly on their priority. The results

show a significant time reduction of over 30% in localizing the bugs simultaneously

comparing to the traditional bugs prioritization technique based on only priorities.

1.4.3 Contribution 3: Understanding and Characterizing Changes in Bugs

Priority: The Practitioners’ Perceptive

Due to the importance of bugs priority in addressing critical bugs resolution,

observing delays in fixing bugs and deploying software updates, and lack of prior

work on understanding the dynamics of changing bug priorities. We conducted a

survey with practitioners as well as performed a quantitative analysis on several bugs

reports to better understand the dynamics of changing bug priorities and to enable

researchers to build automated tools for checking and validating requests for bug

priority changes.
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We performed an empirical study to observe and understand the changes in bugs’

priority in order to build a 3-W model on Why and When bug priorities change, and

Who performs the change. We conducted interviews and a survey with practitioners

as well as performed a quantitative analysis of X bugs reports, developers’ comments,

and source code changes from Y open source systems. The interviews with 11 devel-

opers from eBay aim to establish an initial model to characterize the changes in bugs

priority. The survey with an additional 38 developers is to understand their experi-

ence in why and when bug priorities change, and who performs the change. Then,

we conducted a manual inspection of the collected data on open source projects to

compare our final bugs priority change model with changes identified in practice. Our

quantitative results confirmed the outcomes of our interviews and surveys. For in-

stance, we observed frequent changes in bug priorities and their impact on delaying

critical bug fixes especially before shipping a new release. Our findings can enable

(1) researchers to build automated tools for checking and validating requests for bug

priority changes, (2) practitioners to use a standard format in documenting and ap-

proving bug priority changes, and (3) educators to teach the better management of

bug priorities.

The above contributions led to different publications including:

• Rafi Almhana, Wiem Mkaouer, Marouane Kessentini, Ali Ouni: Recommend-

ing relevant classes for bug reports using multi-objective search. ASE 2016

conference, acceptance rate 16% : 286-295, IEEE

• Almhana, R., Ferreira, T., Kessentini, M. and Sharma, T., 2020, September.

Understanding and Characterizing Changes in Bugs Priority: The Practitioners’

Perceptive. In 2020 IEEE 20th International Working Conference on Source

Code Analysis and Manipulation (SCAM) (pp. 87-97), acceptance rate 24%.

IEEE
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• Almhana, R., Kessentini, M. and Mkaouer, W., 2020. Method-Level Bug Local-

ization Using Hybrid Multi-objective Search. Information and Software Tech-

nology Journal, Volume 131, 32 pages, Elsevier, Impact Factor 2.73

• Almhana, R. and Kessentini, M., 2020. Detecting Dependencies Between Bug

Reports to Improve Bugs Triage. Automated Software Engineering Journal, 26

pages, to appear, Impact Factor 1.97

1.5 Organization of the Dissertation

This dissertation is organized as follows: Chapter II introduces the current state

of the art and related works to this dissertation. Chapter III presents method-level

bug localization using hybrid multi-objective search. Chapter IV describes our pro-

posed approach to improve bugs triage considering dependencies between bug re-

ports. Chapter V describes our proposed model for understanding and characterizing

changes in bugs priority, constructed from practitioners’ perspective. Finally, a sum-

mary and future research directions are presented in VI.
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CHAPTER II

State of the Art

2.1 Introduction

In this chapter, we cover the necessary background information related to our work

followed by an overview of existing studies Kessentini et al. (2010); Ghannem et al.

(2011); Kessentini et al. (2013a,b); Ghannem et al. (2014); Mansoor et al. (2015);

Almhana et al. (2016); Kessentini and Ouni (2017); Alizadeh et al. (2018); AlOmar

et al. (2019). We classified existing work in three main categories: 1) Bug localization;

2) Bug reports management and 3) Bug’s priority.

2.2 Bug Localization

The problem of bug localization can be considered as searching the source of a

bug given its description. To address this problem, the majority of existing studies

is based on the use of Information-Retrieval (IR) techniques through the detection

of textual and semantic similarities between a newly given report and source code

entities Sun et al. (2010). Several IR techniques have been investigated, namely the

Latent Semantic Indexing (LSI) in work of Dumais et al. Dumais (2004), Latent

Dirichlet Allocation (LDA) in work of Blei et al. Blei et al. (2003) and the Vector

Space Model (VSM) in work of Salton et al. Salton et al. (1975). Also, hybrid models
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extracted from these IRs techniques to tackle the problem of bug localization were

proposed Ye et al. (2014).

We summarize, in the following, the different tools and approaches proposed in

the literature based on the above IR techniques. BugScout in work of Nguyen et al.

Nguyen et al. (2011) is a topic-based approach using LDA to analyze the bug related

information (description, comments, external links, etc.) to detect the source of a

bug and duplicated bug reports. The main limitation of BugScout is the dependency

of the results on the keywords entered by the user. DebugAdvisor’s in work of Ashok

et al. Ashok et al. (2009) is a bug investigation system that takes as input a bug

report in terms of text queries then uses them to mine existing fixed bug repository

and generate a graph of possible reports. However, DebugAdvisor accuracy depends

on the accuracy of the report’s description and its accuracy when describing the bug

and its related code entities.

BugLocator in work of Zhou et al. Zhou et al. (2012) combines several similarity

scores from previous bug reports for bug localization. It generates a VSM model to

extract suspect source files for a given bug report. Then, BugLocator mines previously

fixed bug reports along with related files involved to rank suspect code fragments.

The main issue raised in this work is the proneness of the weight density to the noise

in the large files. To overcome this limitation, the work of Wong et al. Wong et al.

(2014) added segmentation and stack trace analysis to improve the performance of

the BugLocator approach. The limitation of this extension is that execution traces

are not necessarily available in bug repositories.

BLUiR, the work of Saha et al. Saha et al. (2013) has been proposed also to

compare a bug report to the structure of source files. It decomposes reports into

summaries and then uses the structural retrieval to calculate similarities between

these tokenized elements and source code ones to rank source code files. Saha et al.

Saha et al. (2014) extended BLUiR to consider similar reports information, similarly
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to BugLocator as an additional similarity score. DHbPd in the workf of Rao et al.

Rao and Kak (2011) incorporated code change information for bug localization. The

main idea is to consider recently changed source code elements as potential candidates

for hosting a bug.

Ye et al. Ye et al. (2014) have modeled the similarity between bug reports and

source code through several characteristics that are captured through the use of 6

similarity features that describe the projects’ domain knowledge. The combination

of these measures is fed to a ranking heuristic called learning-to-rank. The ranking

model returns the top candidate source files to investigate for a given bug report.

The main originality of their work is the use of project’s API description and auto-

generated documentation as one of the features to utilize to reduce the lexical gap

between the human description and the source code.

Ye et al. Ye et al. (2016a) extended their previous work by extending their ranking

features utilized by learning-to-rank from 6 to 19. Besides the existing surface lexical

similarity, API-based lexical similarity, collaborative filtering, code elements naming

similarity, fixed bugs frequency, they included other source code characteristics that

can be extracted from the projects such as summaries, naming conventions, interclass

dependencies, etc. Although taking these features into account has given better

results in terms of better files ranking, such information may not be available in all

projects and sometimes it may be outdated and that may deteriorate the localization

accuracy.

AmaLgam Wang and Lo (2014b) introduced the aggregation of relevant similari-

ties extracted from source files, version history data and previously resolved bugs to

calculate a global score for ranking files. This approach has given promising results

compared to the previous techniques as it does not only combines code structure with

previous reports but also it involves historical data to maximize the bug information

coverage and enhance the localization accuracy.
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Lamkanfi et al. developed a binary classifier to determine whether or not a bug

is severeLamkanfi et al. (2010). The report features were used as a training set to

conduct a comparison between several classifiers, namely SVM, Näıve Bayes, Multi-

nomial Näıve Bayes, and Nearest Neighbor. The experiments have shown that these

classifiers outperform random severity assignment formulations. Similarly, the work

of Lo et al. Tian et al. (2013) presented a classification engine labeled GRAY that

extends the linear regression to predict the priority of bugs, but not bugs localiza-

tion, while taking into account various external and internal report characteristics,

extracted as features, then used to train the model.

Table 2.1 shows the most recent and relevant studies to our approach. It illustrates

the differences among those studies in terms of input, output, and technique used to

solve the bug localization problem. We notice that among all the studies listed in

Table 2.1, the majority of them are related to recommend classes using Information

Retrieval (IR) techniques. There are four different studies that addressed method-

level bug localization. In the work of Youm et al. Youm et al. (2017), the authors

utilized bug report description with code changes, source code, comments and stack

traces and developer’s log to find relevant methods.

Another approach is proposed by Lukins et al. Lukins et al. (2010) to localize

bugs at the methods level using a static Latent Dirichlet allocation (LDA) technique

which is solely based fon source code. In another study Ye et al. (2016a), Ye et al.

used learning to rank technique to develop a ranking model in which they assign a

weight for each source code file as a result of several features such as source code, bug

description, code changes history and bugs-fixing history. The proposed approach

can be adopted for both class and method levels. We used this approach as one of

the baselines to evaluate the performance of our approach since the authors provided

a replication package.
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Study Input Output Technique Date Category
Huang, Qiao, et al.
Huang et al. (2017)

Bug Report,
Source code

Package IR, ML Oct
2017

Information
RetrievalWen, Ming, et al.

Wen et al. (2016)
Developer’s
log, Software
Changes.

Class IR Sep
2016

Youm, Klaus
Changsun, et al.
Youm et al. (2017)

Comments,
Stack Traces,
Developer’s
Log and Code
Changes.

Method IR Feb
2017

Lukins, Stacy K.,
et al. Lukins et al.
(2010)

Source Code Method IR (LDA) Sep
2010

Tantithamthavorn,
Chakkrit, et al.
Tantithamthavorn
et al. (2018)

Source Code,
Bug Report

Method IR-based
Classifier

Oct
2018

Ye, Xin, et al. Ye
et al. (2015)

Source Code,
Bug Descrip-
tion, Code
Changes

Method Ranking
Model

Sep
2015

Ranking
Model

Pablo Loyola, et al.
Loyola et al. (2018)

Code
Changes

Class Ranking
Model

Oct
2018

An Ngoc Lam, et
al. Lam et al.
(2017)

Source code,
Bug Report

Class IR
(rVSM),
neural
network

May
2017

Neural
Network

Yan Xiao, et al.
Xiao et al. (2018)

Bug Report Class deep learn-
ing trans-
lation

July
2018

Almhana, Rafi, et
al. Almhana et al.
(2016)

Source code,
Bug Report,
History of
Bug Report

Class Search
Based
Software
Engineer-
ing

Sep
2016

Search
Based

Table 2.1: Recent Studies

13



2.3 Bugs Reports Management

A survey on bug prioritization was proposed in Uddin et al. (2017). The authors

collected 84 papers about bug prioritization or related topics from 2000 to 2015, they

eliminated 32 papers after 2 steps review process. The majority of those papers used

information retrieval technique such as Naive Bayes, Support Vector Machine (SVM)

and Neural Networks for bugs prioritization. The survey focused mainly on predicting

bugs priority and to estimate the severity of the bugs.

Table 2.2 summarizes the main studies related to bugs management and prioriti-

zation.

Kanwal et al. Kanwal and Maqbool (2012) proposed a classification based ap-

proach to develop a tool which uses the Naive Bayes and Support Vector Machine

(SVM) classifiers. This tool mines the bug data from a bug repository so that it builds

a piece of knowledge about the software to be inspected and its bugs repository and

eventually rank or classify bugs.

The authors in Alenezi and Banitaan (2013) proposed an approach to predict the

priority of bug report using different machine learning algorithms like Naive Bayes,

Decision Trees, and Random Forest.

Xuan et al. Xuan et al. (2012) proposed a new way to prioritize bugs based on 3

different stages from mining the social interactions between developers.

Search-Based Software Engineering (SBSE) uses a computational search approach

to solve optimization problems in software engineering Harman and Jones (2001).

Once a software engineering task is framed as a search problem, by defining it in

terms of solution representation, fitness function, and solution change operators, there

is a multitude of search algorithms that can be applied to solve that problem. Many

search-based software testing techniques have been proposed for test cases generation

Núñez et al. (2013), mutation testing Henard et al. (2014), regression testing Shelburg

et al. (2013) and testability transformation. However, the problem of bugs localization
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Study Input Output Technique Published
Yu et al. Yu et al.

(2010)
Bug

reports
Predict bug

priority
Neural

Networks
2010

Jaweria Kanwal Kanwal
and Maqbool (2010)

Bug
reports

Recommend
bug priority

SVM 2010

Lamkanfi et al.
Lamkanfi et al. (2011)

Bug
reports

Predict the
severity of bug

Naive
Bayes

2010

Chaturvedi and Singh
Chaturvedi and Singh

(2012)

Bug
reports

Determine bug
severity

Naive
Bayes

2012

Abdelmoez et al.
Abdelmoez et al. (2012)

Bug
reports

Predict bug
fix-time

Naive
Bayes

2012

Dommati et al.
Dommati et al. (2013)

Bug
reports

Classify bug
reports

Naive
Bayes

2012

Kanwal and Maqbool
Kanwal and Maqbool

(2012)

Bug
reports

Prioritize bug
reports

SVM 2012

Sharma et al. Sharma
et al. (2012)

Bug
reports

Predict bug
priority

SVM 2012

Thung et al. Thung
et al. (2012)

Bug
reports

Predict bug
priority

SVM 2012

Tian et al. Tian et al.
(2012)

Bug
reports

Predict the
severity of bug

Nearest
Neighbors

2012

Xuan et al. Xuan et al.
(2012)

Developer
prioriti-
zation

Predict the
severity of bug

NB, SVM 2012

Alenezi and Banitaan
Alenezi and Banitaan

(2013)

Bug
reports

Predict bug
priority

Decision
Tree,

Random
Forests

2013

Zanetti et al. Zanetti
et al. (2013)

Bug
reports

Classify bug
reports

SVM 2013

Behl et al. Behl et al.
(2014)

Bug
reports

Predict the
severity of bug

TF-IDF 2014

Garcia and Shihab
Valdivia Garcia and

Shihab (2014)

Bug
reports

predicting
blocking bugs

Decision
trees

2014

Goyal et al. Goyal et al.
(2015)

Bug
reports

Predict bug
priority

Bayes Net,
Random
Forest,

2015

Table 2.2: Overview of bug prioritization related work
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was not addressed before using SBSE. The closest problem addressed using SBSE

techniques is the bugs prioritization problem Dreyton et al. (2015). A mono-objective

genetic algorithm was proposed to find the best sequence of bugs resolution that

maximizes the relevance and importance of the bugs to fix while minimizing the

cost. The main limitation of this work is the use of a mono-objective technique that

aggregates two conflicting objectives. To overcome the limitation of aggregating two

attributes that may experience conflicts, they extended their work Dreyton et al.

(2016) to better find the trade-off between bugs with low relevance to the users may

have high severity scores.

The problem of bug localization can be considered as searching the source of a

bug given its description. To address this problem, the majority of existing studies

is based on the use of Information-Retrieval (IR) techniques through the detection

of textual and semantic similarities between a newly given report and source code

entities Sun et al. (2010). Several IR techniques have been investigated, namely the

Latent Semantic Indexing (LSI) Dumais (2004), Latent Dirichlet Allocation (LDA)

Blei et al. (2003) and the Vector Space Model (VSM) Salton et al. (1975). Also, hybrid

models extracted from these IRs techniques to tackle the problem of bug localization

were proposed Ye et al. (2014).

2.4 Bug’s Priority

Most of existing defect management studies focused on the prediction of bug sever-

ity/priority from bug reports Tian et al. (2013, 2015); Yang et al. (2014); Sharma

et al. (2012); Alenezi and Banitaan (2013). Machine learning algorithms were exten-

sively used for that purpose such as Support Vector Machine, Naive Bayes, K-Nearest

Neighbors and Neural Networks. To the best of our knowledge, there is no existing

study about understanding the changes in bug’s priority and their rationale. We

present, in the following, the closest studies to this thesis but a more comprehensive
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summary can be found in Table 2.3 about the prediction of bugs’ priority.

Yang et al. Yang et al. (2014) proposed an approach to manage the bug triage by

predicting the workload. They were also able to extract and identify multi-feature

(e.g., Component, product, priority and severity) from bug report in order to assign

developers to bugs and predict severity of those bugs Yang et al. (2014).

Tian et al. Tian et al. (2013, 2015) proposed an automated approach using ma-

chine learning to recommend a priority level based on information available in bug

reports. Their method used several factors such as temporal, textual, author, related-

report, severity, and product, to predict the priority level of a bug report Tian et al.

(2013, 2015).

In the work of Sharma et al. Sharma et al. (2012), they use different machine

learning techniques such as Support Vector Machine, Naive Bayes, K-Nearest Neigh-

bors and Neural Network in predicting the priority of bugs. Also, they evaluated the

performance by performing cross project validation Sharma et al. (2012). Similarly,

Kumari et al. Kumari and Singh (2018) built classifiers using machine learning and

Näıve Bayes and Deep Learning techniques. These classifiers considered the severity,

summary weight and entropy attribute to recommend the priority of bugs Kumari

and Singh (2018).

Yu et al. Yu et al. (2010) used neural network techniques to predict the priorities

of bugs, adopted evolutionary training process to solve problems associated with

reducing features, and reused data sets from similar software systems to speed up the

convergence of training Yu et al. (2010).

Kanwal et al. Kanwal and Maqbool (2012), proposed a priority recommendation

module based on Näıve Bayes and Support Vector Machine. Also, they provided

another comparative study to evaluate which classifier performs better in terms of

accuracy Kanwal and Maqbool (2012).

Alenezi et al. Alenezi and Banitaan (2013) presented an approach to predict the

17



priority of a reported bug using different machine learning algorithms namely Naive

Bayes, Decision Trees, and Random Forest. They also evaluated the performance of

each one of these algorithms in predicting the priority of bug reports Alenezi and

Banitaan (2013).

As a summary, all existing research papers focus on predicting the priority of bugs

and therefore it helps in the bugs triage process and assigning developers to given

bugs. More details can be found in Table 2.3.

Study Description / Technique Used Have they ad-
dressed prior-
ity changes?

Yang et al. Yang
et al. (2014)

Extract and identify multi-feature (e.g.,
Component, product, priority and sever-
ity) from bug report

No

Tian et al. Tian
et al. (2013,
2015)

Use several factors such as temporal, tex-
tual, author, related-report, severity, and
product, to predict the priority level of a
bug report

No

Sharma et al.
Sharma et al.
(2012)

Use Support Vector Machine, Naive
Bayes, K-Nearest Neighbors and Neural
Network in predicting the priority of bugs

No

Kanwal et al.
Kanwal and
Maqbool (2010,
2012)

Propose a priority recommendation mod-
ule based on Näıve Bayes and Support
Vector Machine.

No

Yu et al. Yu
et al. (2010)

Utilize neural network techniques to pre-
dict the priorities of bugs

No

Alenezi et al.
Alenezi and
Banitaan (2013)

Present an approach to use different ma-
chine learning algorithms namely Naive
Bayes, Decision Trees, and Random For-
est

No

Kumari et al.
Kumari and
Singh (2018)

Build classifiers using machine learning
and Näıve Bayes and Deep Learning tech-
niques

No

Table 2.3: Summary of previous studies about bug priority predictions.
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CHAPTER III

Method-Level Bug Localization Using Hybrid

Multi-objective Search

3.1 Introduction

A software bug is a coding error that may cause abnormal behaviors and incorrect

results when executing the system Bruegge and Dutoit (2004). After identifying an

unexpected behavior of the software project, a user or developer will report it in

a document, called a bug report Zimmermann et al. (2010). Thus, a bug report

should provide useful information to identify and fix the bug. The number of these

bug reports can be large. For example, MOZILLA had received more than 420,000

bug reports Bettenburg et al. (2008). These reports are important for managers and

developers during their daily development and maintenance activities including bug

localization Fischer et al. (2003). The process of finding the relevant source code

fragments (methods, classes, etc.) that need to be modified to fix the bug according

to a bug report description is defined as bug localization Wang and Lo (2014a).

A developer always uses a bug report to reproduce the abnormal behavior to

find the origin of the bug. However, the poor quality of bug reports can make this

process tedious and time-consuming due to missing information. To find the cause

of a bug, developers are not only using their own knowledge to investigate the bug
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report but interact with peer developers to collect additional information. An efficient

automated approach for locating and ranking important code fragments for a specific

bug report may lead to improve the productivity of developers by reducing the time

to find the cause of a bug Fischer et al. (2003).

The majority of existing bug localization studies are mainly based on lexical

matching scores between the statements of bug reports and the name of code el-

ements in software systems Sun et al. (2010); Nguyen et al. (2011); Ashok et al.

(2009). However, there is a significant difference between the natural language used

in bug reports and the programming language which limits the efficiency of existing

approaches.

We considered, in this work, the following important observations. First, API

documentation of the classes can be more useful than the name of code elements or

comments to estimate the similarity between code fragments and bug reports Aman

et al. (2019). Second, code fragments associated with previously fixed bug reports

may be relevant also to the current report if these previously fixed bug reports are

similar to a current bug report Ye et al. (2016b). Third, a code fragment that was

fixed recently is more likely to still contain bugs than another class that was last

fixed a long time ago Zimmermann et al. (2010). Fourth, a code fragment that has

been frequently fixed, tend to be fault-prone and may cause more than one abnormal

behavior in the future Liblit et al. (2003). Finally, the recommendation of a large

number of classes to inspect may make the process of finding the cause of a bug

time-consuming.

To address some of these challenges, we proposed in our previous work Almhana

et al. (2016) a comprehensive approach for bugs localization based on bug reports

description. We utilized a multi-objective optimization algorithm Deb et al. (2002)

to find a balance between maximizing lexical and history-based similarity, and min-

imizing the number of recommended classes. The problem is formulated as a search
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for the best combination and sequence of classes from all the classes of the system

that optimize as much as possible the balance between the above two conflicting ob-

jectives. The main feedback received from the participants of our experiments is that

the file/class level recommendations are still time-consuming to explore and they very

much prefer a precise localization at the method level.

In this work, we extended our previous workAlmhana et al. (2016) to provide

method-level bug localization, instead of the class-level bug localization. Our ap-

proach optimizes the trade-off between minimizing the number of recommended classes

and maximizing the relevance of the proposed solution using a hybrid multi-objective

optimization algorithm combining local and global search. The relevance of the rec-

ommended code fragments is estimated based on the use of the history of changes

and bug-fixing, and the lexical similarity between the bug report description and the

API documentation. Our approach includes two main steps: finding the best set of

classes satisfying the two conflicting criteria of relevance and the number of classes

to recommend and locating the most appropriate methods to inspect in those classes.

We accomplish the former using a global search based on NSGA-II and the latter

using a local multi-objective search based on Simulated Annealing (MOSA)Czyzżak

and Jaszkiewicz (1998).

We have executed an extensive empirical evaluation of 6 large open-source software

projects with more than 22,000 bug reports in total based on an existing benchmark

Ye et al. (2014). The experimental results show that the search-based approach

significantly outperforms four state-of-the-art techniques in recommending relevant

files for bug reports including our previous work at the class Nguyen et al. (2011); Ye

et al. (2016a); Zhou et al. (2012); Almhana et al. (2016) and method Ye et al. (2016a)

levels. In particular, our hybrid multi-objective approach can successfully locate the

true buggy methods within the top 10 recommendations at the methods level for over

78% of the bug reports.
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The primary contributions of this these can be summarized as follows:

• To the best of our knowledge and based on recent surveys Harman et al. (2012),

the thesis proposes one of the first search-based software engineering approaches

to address the problem of finding relevant code fragments for bug reports. The

approach combines the use of lexical and history-based similarity measures to

locate and rank relevant code fragments for bug reports while minimizing the

number of recommended classes.

• We extended our previous work by proposing a new hybrid multi-objective for-

mulation, using NSGA-II and Mono Objective Simulated Annealing (MOSA),

that combines global and local search to localize bugs at the method level in-

stead of the class level.

• The thesis reports the results of an empirical study with an implementation of

our hybrid multi-objective approach. The obtained results provide evidence to

support the claim that our proposal is more efficient, on average, than existing

techniques for bugs localization at the method and class levels Nguyen et al.

(2011); Ye et al. (2016a); Zhou et al. (2012) based on a benchmark of 6 open

source systems Almhana and Kessentini (2020b). We also compared the results

of our hybrid multi-objective approach with a mono-objective formulation to

make sure that our objectives are conflicting and our previous work which based

only on a global search.

The remainder of this chapter is as follows: Section 2 describes the proposed

approach and the hybrid search algorithm. The evaluation of our approach and its

results on some research questions are explained in Section 3. Finally, concluding

remarks and future work are provided in Section 4.

22



3.2 Approach

We first present an overview of our hybrid multi-objective approach to identify

and prioritize relevant methods for bug reports, and then we describe the details of

our formulation.

3.2.1 Approach Overview

Our approach aims at exploring a large search space to find relevant methods,

to inspect by developers, given a description of a bug report. The search space is

determined not only by the number of possible method combinations to recommend

but also by the order in which they are proposed to the developer. In fact, bug reports

may require the inspection of more than one method to identify and fix bugs.

Due to this large search space of potential solutions to explore, we propose a

heuristic-based optimization method including two main steps. The first step, based

on a global search, operates on the classes level while the second one, based on a

local search, operates on the methods level of selected classes after the first step. A

local search is used in the second step due to the reasonable size of the search space

that consists of the methods of identified classes. We note that the search space at

the method level after the first filtering step at the class level is still a large search

problem due to the typical large size of classes. We noticed in our previous work

for bugs localization at the class level that each file might have on average over 20

methods per class.

The difference between the two search strategies is not related to the objective

space but to the change operators and population size/generation. In global search,

we use a population of several solutions at each iteration, and both crossover and

mutation operators to create a significant perturbation of the solutions at each itera-

tion. However, the local search is limited to one solution (not a population) at each

iteration and only a limited change operator (mutation) to create a limited variation
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at each iteration when generating a new solution. The rationale behind the difference

of both search strategies that the population and both change operators can help to

explore a large search space to identify relevant solutions using the global search (all

the classes of the systems). Once these relevant solutions are identified then a local

search can be applied to a smaller search space (limited number of classes that may

contain the bug) using one solution at each iteration and only a mutation operator.

The local search is faster than running another global search due to the limited search

space.

The general structure of our approach is sketched in Figure 3.1. It takes 5 inputs

as follows:

• The source code of the project to be inspected,

• The API specifications,

• The description of the bug report,

• A list of previous bug reports of the project,

• The history of the applied changes in previous releases of the project.

Our approach generates as output, in the first step, a near-optimal sequence of ranked

classes that maximizes the relevance to the bug report and minimizes the number of

recommended classes. The list of identified classes for inspection can be checked by the

developer, as an optional step, to further reduce the number of class recommendations

as shown in Figure 3.2. Then, the second step is executed to generate as output a near-

optimal sequence of ranked methods that maximize the relevance to the bug report

and minimizes the number of recommended methods out of the classes identified in

the first step.

Both heuristic-based optimization steps are formulated based on two main con-

flicting objectives. The first objective is the correctness function that includes two
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routines:

• Maximizing the Lexical similarity between recommended code fragments (e.g.

classes for the first step and methods for the second step) and the description

of the bug report (including the API and name of code elements similarity);

• Maximizing the history-based function score that includes the number of rec-

ommended code fragments that have been fixed in the past, recent changes

introduced by the developers to these code fragments and similarities with pre-

vious bug reports.

The second objective is to minimize the number of code fragments to recommend.

It is obvious that those two objectives are conflicting since maximizing the rele-

vance of recommended code fragments may lead to low precision and thus increase

the number of recommended code fragments. Thus, we consider, in this thesis, the

task of bugs localization as a hybrid multi-objective optimization problem. We used

the non-dominated sorting genetic algorithm (Non-dominated Sorting Genetic Algo-

rithm (NSGA-II)) as a global search for the class level Deb et al. (2002) and the multi-

objective Simulated Annealing algorithm (MOSA)Czyzżak and Jaszkiewicz (1998) as

a local search for the method level.

When comparing the relative fitness of generated solutions, both NSGA-II and

MOSA utilize the idea of Pareto optimality using dominance as a basis for comparison

as described in the following definitions [1,2]. The set of trade-off solutions is called

Pareto optimal solutions or non-dominated solutions, and the image of this set in the

objective space is called the Pareto front. Hence, the output of NSGA-II and MOSA

consists in approximating the entire Pareto front as described in the definition [3].

The definition of Pareto optimality states that x∗ is Pareto optimal if no feasible

vector exists that would improve some objectives without causing a simultaneous

worsening in at least one other objective.
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Definition 1: Pareto optimality

A solution x∗ ∈ Ω is Pareto optimal if ∀x ∈ Ω and I = {1, ...,M} either ∀m ∈ I
we have fm(x) = fm(x∗) or there is at least one m ∈ I such that fm(x) > fm(x∗) .

Definition 2: Pareto dominance

A solution u = (u1, u2, ..., un) is said to dominate another solution v = (v1, v2, ..., vn)
( denoted by f(u) ≺ f(v) ) if and only if f(u) is partially less than f(v). In
other words, ∀m ∈ {1, ...,M} we have fm(u) ≤ fm(v) and ∃m ∈ {1, ...,M} where
fm(u) < fm(v) .

In addition to Pareto Optimality and Pareto Dominance, we need to define Pareto

Optimal set and Pareto Optimal Front.

In the following, we describe an overview of both algorithms, the solution rep-

resentation, a formal formulation of the two objectives to optimize and the change

operators.

3.2.2 NSGA-II

In this thesis, we adapted one of the widely used multi-objective algorithms called

NSGA-II Deb et al. (2002). NSGA-II is a powerful global search method stimulated

by natural selection that is inspired by the theory of Darwin. Hence, the basic idea

of NSGA-II is to make a population of candidate solutions evolve toward the near-

optimal solution in order to solve a multi-objective optimization problem. NSGA-II

is designed to find a set of optimal solutions, called non-dominated solutions, also

Pareto set. A non-dominated solution is the one which provides a suitable compro-

mise between all objectives without degrading any of them. The first step in NSGA-II

is to create randomly a population P0 of individuals encoded using a specific repre-

sentation. Then, a child population Q0 is generated from the population of parents P0

Definition 3: Pareto optimal set

For a given MOP f(x), the Pareto optimal set is

P ∗ = {x ∈ Ω|¬∃x′ ∈ Ω, f(x′) ≺ f(x)}.
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Figure 3.1: Approach Overview
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Figure 3.2: The proposed bugs localization tool.
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using genetic operators such as crossover and mutation. Both populations are merged

into an initial population R0 of size N. As a consequence, NSGA-II starts by generat-

ing an initial population based on a specific representation that will be discussed later

in Solution Representation section of this chapter. This initial population consists

of a list of classes from the studied system. Thus, this population stands of a set of

solutions represented as sequences of classes to inspect, which are randomly selected

and ordered, for a specific bug report description taken as input.

The whole population that contains N individuals (solutions) is sorted using the

dominance principle into several fronts. The dominance level becomes the basis of a

selection of individual solutions for the next generation. Fronts are added successively

until the parent population Pt+1 is filled with N solutions. When NSGA-II has to

cut off a front Fi and select a subset of individual solutions with the same dominance

level, it relies on the crowding distance to make the selection. This front Fi to be split,

is sorted in descending order, and the first (N − |Pt+1|) elements of Fi are chosen.

Then a new population Qt+1 is created using selection, crossover, and mutation. This

process will be repeated until reaching the last iteration according to stop criteria.

The following three subsections describe more precisely our adaption of NSGA-II to

the model change detection problem.

3.2.3 Multi-Objective Simulated Annealing (MOSA)

Multi-objective Simulated Annealing is a local search heuristic inspired by the

concept of annealing in metallurgy where metal is heated, raising its energy and

relieving it of defects due to its ability to move around more easily Ulungu et al.

(1999). As its temperature drops, the metal’s energy drops and eventually it settles

in a more stable state and becomes rigid. The local search algorithm of the Simulated

Annealing is very suitable for exploring reasonable search spaces in terms of the size

like in our case Ulungu et al. (1999).
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Definition 4: Pareto optimal front

For a given MOP f(x) and its Pareto optimal set P ∗, the Pareto front is PF ∗ =
{f(x), x ∈ P ∗}.

The first step of the MOSA algorithm is to initialize a total of five parameters:

temperature parameter T0, cooling factor α and cooling step NStep, final temperature

TStop and the maximum number of iteration NStop.

In MOSA, the mutated solution will be kept and used for the next iteration if it

dominates or is in the same non-dominating front as the solution from the previous

iteration. To determine the probability that the mutated solution dominated by

the solution from the previous iteration will be kept and used for the next iteration

of MOSA, there are several possible acceptance probability functions that can be

utilized.

Since the previous works Shelburg et al. (2013); Ulungu et al. (1999) have noted

that the average cost criteria yields good performance we have utilized this metric.

The average cost criteria simply takes the average of the differences of each objective

value between two solutions, i and j, over all objectives D, as shown in Equation 1.

The final acceptance probability function used in MOSA is shown in Equation 2.

c(i, j) =

∑|D|
k=1 ck(j)− ck(i)

|D|
(3.1)

AcceptProb(i, j, temp) = e
−abs(c(i,j))

temp (3.2)

Where temp is the current temperature and ck(i) is the objective value for solution

i. As explained in the next sections, MOSA will be used at the method level of our

bug localization approach in order to recommend the most relevant methods of the

classes identified by the first step of our approach based on NSGA-II.
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3.2.4 Fitness Functions

Both steps of our approach use two main fitness functions that are applied at the

class level (global search) and the method level (local search). The first objective

consists of the size of the solution which corresponds to the number of recommended

classes or methods. The second objective of correctness is defined as the average of

two functions: lexical-based similarity (LS) and history-based similarity (HS). Thus,

we formally define this function as:

f1 =
LS +HS

2
(3.3)

The lexical-based similarity (LS) consists of an average of two functions. The first

function is based on a cosine similarity Tan et al. (2006) between the description of a

bug report and the source code while the second one checks the similarity between the

description of a bug report and the API documentation. We used the whole content

of a source code file (the code and comments). The vocabulary was extracted from

the names of variables, classes, methods, parameters, types, etc. We used the Camel

Case Splitter to perform the Tokenization for prepossessing the identifiers Enslen

et al. (2009).

During the tokenization process, we used a standard information retrieval stop

words to eliminate irrelevant information such as punctuation, numbers, etc. In addi-

tion, the words are reduced to their stem based on a Porter Stemmer. This operation

reduces the deviation between related words such as ”designing” and ”designer” to

the same stem ”design”. Then, the cosine similarity measure is used to compare

between the description of a bug report and the source code (classes or methods).

Equation 3.4 calculates the cosine similarity between two vectors. Each actor

is represented as an n dimensional vector, where each dimension corresponds to a

vocabulary term. The cosine of the angle between two vectors is considered as an
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indicator of similarity. Using cosine similarity, the conceptual similarity between two

vectors c1 and c2 is determined as follows:

Sim(c1, c2) = cos(−→c1 ,−→c2 ) =
−→c1 .−→c2

‖−→c1‖ × ‖−→c2‖

=

∑n
i=1(wi,1 × wi,2)√∑n

i=1(wi,1)2 ×
∑n

i=1(wi,2)2
∈ [0, 1]

(3.4)

where −→c1 = (w1,1, ..., wn,1) is the term vector corresponding to actor c1 and −→c2 =

(w1,2, ..., wn,2) is the term vector corresponding to c2. The weights wi,j is computed

using information retrieval based techniques such as the Term Frequency - Inverse

Term Frequency (TF-IDF) method.

The second component of the correctness objective is the history-based similarity.

This measure is an average of three functions. The first function counts the number

of times that a code snippet (i.e. classes or methods) was fixed to eliminate bugs

based on the history of bug reports. In fact, a source code that was fixed several

times has a high probability of being buggy and includes new bugs. Formally, this

function will be normalized between [0,1] and defined as:

H1 =

∑Size(S)
i=1 NbFixedBugs(report, Ci)

Size(S)×Max(NbFixedBugs(report, Ci))
(3.5)

where S is a solution containing a number of recommended classes

S = {c1, c2, . . . , csize(S)}. The second function checks if a code snippet (i.e. classes

or methods) was recently changed or fixed. In fact, a source code that was modified

recently has a higher probability of containing a bug. Thus, this function compares

between the date of the bug report and the last date where the source code was

modified. If a suggested code snippet was modified on the same day of the bug report

then the value of this function is 1. We define this normalized function, normalized
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in the range of [0,1] as following:

H2 =

∑Size(S)
i=1

1
report.data−last(report,ci)+1

Size(S)
(3.6)

The third function evaluates the consistency between the recommended source

code based on previous bug reports. The code snippets that are recommended to-

gether for similar previous bug reports have a high probability to include a bug

evolving most of them. To this end, this function calculates the cardinality, Cbr, of

the largest intersection set of code snippets (i.e. classes or methods) between the

solution S and the sets of code snippets (i.e. classes or methods) recommended for

each of previous bug reports. Then, this measure is normalized between [0,1] and

defined as follows:

H3 =
Cbr

Size(S)
(3.7)

3.2.5 Class-Level Solution Approach

3.2.5.1 Solution Representation

To represent a candidate solution (individual), we used a vector representation.

Each dimension of the vector represents a class to recommend for a specific bug report.

Thus, a solution is defined as a sequence of classes to recommend for inspection by

the developer to locate the bug.

When created, the order of recommended classes corresponds to their positions

in the vector. The classes to recommend are dependent since a bug can be located

in different classes. In addition, the goal is to recommend a minimum set of classes

while maximizing the correctness objective.

For instance, A solution to find possible relevant classes for the bug report of

Figure 3.3, extracted from our experiments, that shows an example of a bug report
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Figure 3.3: BIRT Bug Report Example (ID 101751)

from BIRT project (ID 101751) is a vector of several ranked classes to be inspected.

This bug report describes a defect in the image handling mechanism. The solution

consists of a sequence of classes to inspect extracted from the BIRT project.

3.2.5.2 Fitness Functions

The first lexical similarity function is defined as the sum of the cosine similarity

scores between a description of a bug report and the source code of each of the sug-

gested classes divided by the total number of recommended classes. As described in

Figures 3.4 and 3.5, the description of the bug report example includes several similar

words with one of the recommended classes to inspect, the class HTMLServerImage-

Handler. Thus, the cosine similarity function applied between the source code of that

class and the description of the bug report will detect such similarities. However,

using only this similarity function may not be enough.

The text of a bug report is expressed in a natural language; however, a large
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Figure 3.4: A code fragment from the class HTMLServerImageHandler
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Figure 3.5: API Specification of the interface IHTMLImageHandler

part of the content of source code is described in a programming language (except

comments). Thus, the similarity score between a bug report description and a source

code will be higher in case of extensive use of comments in the code or if the bug

report clearly uses the names of code elements or code snippet (which is not always

the case in bug reports). Thus, we added the new similarity measure between the bug

reports and the APIs description to deal with situations where there is no enough

comments in the code or no code snippet in the bug report.

The second lexical function is based on the use of cosine similarity between the

bug report description and the API specification of each method of a recommended

buggy class. Thus, it is defined as the sum of the maximum of the cosine similarity

scores between a description of a bug report and each of the methods composing

the suggested class divided by the total number of recommended classes. Figure

3.5 shows the API specification of the IHTMLImageHandler interface that includes

different terms such as image and handler that also exists in the bug report description

of Figure 3.4. Thus, the lexical similarity between the API specification and the

description of a bug report may also help to better identify relevant buggy classes.

In addition to lexical functions, we also add another component to represent the

historical measure which composes of three functions. The first function counts the

number of times a particular class was fixed. Normally, the more times developers
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Bug# Commit Description Date

Bug 243553 HTMLServerImageHander returns wrong
ImageUrl when using HTMLRenderOption

Aug 2008

Bug 101751 Enhance IImagehandler interface to allow
full customization of birt image handling
mechanism

July 2005

Bug 200187 Deprecated HTMLServerImageHandler
methods are not marked as deprecated

July 2007

Table 3.1: List of commits reported on the same file (HTMLServerImageHander) for
Birt Project

make changes in a class, the more defects could be introduced in this particular file in

the future. The second history-based function is to measure how recent a particular

class has been changed because making some changes today might cause some defects

to happen tomorrow. The last function in this category is to evaluate the consistency

between what we recommend in terms of classes to what has been touched by the

developers in the past to fix a particular defect. Table 3.1 shows a list of commits

reported on the same file in Figure 3.4, we use the history of bug reports to find the

similarity in the description of several commits/bug reports and therefore find the

classes or methods that were fixed in the past in order to build our solution for the

current reported bug.

3.2.6 Method-Level Solution Approach

3.2.6.1 Solution Representation

We used a vector of elements to represent a candidate solution, each element rep-

resents a method along with its class name in order to recommend for a given bug.

Thus, a solution is defined as a sequence of methods to recommend for inspection by

the developer to locate the bug. The recommended methods are sorted and ranked in

their vector to represent their degree of importance to be reviewed by the developers.
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Figure 3.6: A simplified method-level solution representation

The methods to recommend are dependent since a bug can be located in different

methods among different classes while maintaining the balance between minimizing

the set of methods to recommend and maximizing the value of the correctness objec-

tive.

Figure 3.6 shows a simplified solution generated to find possible relevant methods

for the bug report of Figure 3.3 extracted from the BIRT project (ID 101751).

3.2.6.2 Fitness Functions

We adapted the fitness functions defined at the class level to calculate the new

method level measures. Lexical similarity functions are used to weigh the similarity

between the source code of a suggested method from one side or the description of

a bug report and the API specification of each method from the other side. As

highlighted in Figure 3.7, the description of the bug report includes a few keywords

that already exist in the handleImage method. Therefore, the similarity measure

between the source code of that method and the description of the bug report is

high. History-based fitness functions are used on a particular method by looking at

its recently applied changes; along with the consistency between our recommended

methods to previously fixed methods of similar bugs in the past.

3.3 Evaluation

In order to evaluate our approach for recommending relevant methods to inspect

for bug reports, we conducted a set of experiments based on different versions of 6

open source systems listed in Table 3.2. Each experiment is repeated 30 times, and
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Figure 3.7: A code fragment from the method handleImage

the obtained results are subsequently statistically analyzed. Our aim is to compare

our hybrid multi-objective approach with a variety of existing approaches:

• Approaches not based on heuristic search such as Nguyen et al. (2011); Ye et al.

(2016a); Zhou et al. (2012); Ye et al. (2016a) at the class and methods level.

• Our previous multi-objective work Almhana et al. (2016), a one step multi-

objective formulation based on NSGA-II to identify relevant classes

• A mono-objective formulation.

In this section, we present our research questions followed by experimental settings

and parameters. Finally, we discuss our results for each of those research questions.

3.3.1 Research Questions

In our study, we assess the performance of our approach by finding out whether

it could identify the most relevant classes and methods to inspect for bug reports.

39



Project # bugs Time # API #
files

in
the

project
(av-

erage
per
ver-

sion)

#
meth-

ods
in

the
project
(me-

dian)

#
fixed

files/-
classes

per
bug
re-

port
(me-

dian)

#
fixed

meth-
ods
per
bug
re-

port
(me-
dian)

Eclipse
UI

6495 10/2001-
01/2014

1314 3454 29582 2 2

Birt 4178 06/2005-
12/2013

957 6841 57329 1 3

JDT 6274 10/2001-
01/2014

1329 8184 30240 2 2

AspectJ 593 03/2002-
01/2014

54 4439 21346 2 2

Tomcat 1056 07/2002-
01/2014

389 1552 17970 1 2

SWT 4151 02/2002-
01/2014

161 2056 28355 3 5

Table 3.2: Studied Projects
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Our study aims at addressing the following research questions outlined below. We

also explain how our experiments are designed to address these questions. The main

question to answer is to what extent the proposed approach can propose meaningful

bug localization solutions based on the description of a bug report? To this end, we

defined the following research questions:

• RQ1. (Effectiveness) To what extent can the proposed approach identify rele-

vant methods to localize bugs based on bug reports description?

• RQ2. (Comparison to search techniques) How does the proposed hybrid ap-

proach performs comparing to our previous multi-objective work Almhana et al.

(2016), a one step multi-objective formulation based on NSGA-II to identify rel-

evant methods, random search, and a mono-objective formulation?

• RQ3. (Comparison to state-of-the-art) How does our approach perform com-

pared to existing bugs localization techniques not based on heuristic search?

To answer RQ1, we validate the proposed multi-objective technique on six medium

to large-size open-source systems, as detailed in the next section, to evaluate the

correctness of the recommended methods to inspect for a bug report. To this end, we

used the following evaluation metrics:

• Precision@k is the fraction of two components. The numerator component

is the number of correct recommended methods in the top k of recommended

methods (or files) in the solution. The denominator component is the mini-

mum number of methods (or files), between k and the number of recommended

methods/files to inspect in the ranked recommendations list.

• Recall@k is the fraction of two components. The numerator component is the

number of correct recommended methods in the top k of recommended methods

(or files) in the solution. The denominator component is the total number of

expected methods (or files) to recommend that contain the bug.
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• Accuracy@k measures the percentage of bug reports for which at least one

correct recommendation was provided in the top k ranked methods (or files).

To answer RQ2, we compared, using the above metrics, the performance of our

hybrid multi-objective approach, called Hybrid Multi-objective Approach (HMOA),

with our previous multi-objective work Almhana et al. (2016), a one step multi-

objective formulation based on NSGA-II to identify relevant methods (called One

Step Multi-objective Formulation based on NSGA-II (hNSGA-II)), random search

and a mono-objective formulation, based on a Genetic Algorithm, aggregating all the

objectives into one objective with equal weight. We note that hNSGA-II is using only

NSGA-II using the same fitness functions but applied directly at the methods level

(minimizing the number of recommended methods and maximizing the relevance of

recommended methods). Furthermore, we implemented three mono-objective formu-

lations: 1.with an equal aggregation of both objectives (Genetic Algorithm (GA));

2. a mono-objective algorithm with the only objective of lexical similarity (Lexical

Similarity (LS)); and 3. a mono-objective algorithm with the only objective of history

similarity (History Similarity (HS)). Random search and the mono-objective formu-

lation are applied for both levels (class and method levels) similar to our approach

so we can ensure a fair comparison. hNSGA-II is used to show the value of using a

two levels approach.

If Random Search outperforms a guided search method thus, we can conclude that

our problem formulation is not adequate. It is important also to determine if our ob-

jectives are conflicting and outperform a mono-objective technique. The comparison

between a multi-objective technique with mono-objective ones is not straightforward.

The first one returns a set of non-dominated solutions while the second one returns a

single optimal solution. To this end, we choose the nearest solution to the Knee point

Deb et al. (2002) (i.e., the vector composed of the best objective values among the

population members) as a candidate solution to be compared with the single solution
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returned by the mono-objective algorithm. We did not invent the knee point method

and we used it as recommended by the current literature Keller (2019); Emmerich

and Deutz (2018); Deb and Gupta (2011). The two common ways are the use of the

reference point and the knee point. The definition of the reference point (best region

of the Pareto front) can be subjective for most real-world problems since it depends

on the preferences Keller (2019). The knee point represents the maximum trade-off

between the objectives thus it is reasonable to compare it with a mono-objective solu-

tion with equal weights of the different objectives aggregated in one fitness function.

The fact that we are comparing a mono-objective formulation with equal weights to a

knee point (representing the maximum possible trade-off) ensures a fair comparison.

The hNSGA-II algorithm identifies relevant methods for bug reports using the

same fitness functions, applied at the methods level, of the proposed approach but

only using one step. Thus, the solutions of hNSGA-II are a sequence of methods that

are generated and evolved using NSGA-II. The comparison with hNSGA-II is impor-

tant to confirm the relevance of using a hybrid approach combining both a global and

local search algorithms. In comparison with our previous class level work Almhana

et al. (2016), we considered the files of the methods to ensure a fair comparison. This

comparison can evaluate the impact of adding the MOSA component on the quality

of the results especially in terms of finding the best ranking of the classes/files.

To answer RQ3, we compared our multi-objective approach to different existing

techniques not based on heuristic search:

• BugScout Nguyen et al. (2011) identifies relevant classes based on the use of

Latent Dirichlet Allocation measure Blei et al. (2003).

• BugLocator Zhou et al. (2012) ranks classes using both textual and structural

similarity.

• Learning-to-rank (LRank) Ye et al. (2016a) technique ranks methods using a
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machine learning technique to learn from the history of previous bug reports.

While this technique can be adopted to both class and methods level like our

approach, we configured the implementation to recommend methods as output.

Also, we compared our work with two additional baselines. The first one is only

based on the use of the lexical measure (LS) to rank classes and the second one

is based on the only use of the history measure (HS). These two baselines may

justify or not the need of considering complementary information from both the

lexical and history similarities in our multi-objective formulation.

We considered the files of the methods to ensure a fair comparison with class level

recommendation tools (BugScout, BugLocator and our previous work Almhana et al.

(2016)) and we considered comparisons of the results at the methods level with Ye

et al. (2016a). Thus, we have two categories of comparison: 1) the class-level ap-

proaches are compared to our approach using the evaluation metrics applied at the

files (precision, recall and accuracy); and 2) the methods-level approaches are com-

pared to our approach using the evaluation metrics applied at the methods (precision,

recall and accuracy).

3.3.2 Software Projects and Experimental Setting

As described in Table 3.2, we extended a benchmark data sets for six open-source

systems Ye et al. (2014, 2016a) from the class to the methods level and we are making

this new benchmark available to the community Almhana and Kessentini (2020b).

The data is a spreadsheet where rows are bugs and columns are attributes of the

bug. Columns are bug id, bug description, bug summary/commit, bug commit id,

bug resolved date. Besides, we added two more columns, the first column contains

a list of classes that have been changed in order to resolve the bug, and the second

contains a list of methods that have been fixed. Both of those columns (classes list and

method list) have been generated using Git (version code system) which provides us
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the ability to extract a list of files or methods that have been changed in each commit

along with date and developer (committer). The whole data has been generated using

data from Git or Bugzilla (bug tracking system).

• Eclipse UI is the user interface of the Eclipse development framework.

• Tomcat implements several Java EE specifications.

• AspectJ is an aspect-oriented programming (AOP) extension created for the

Java programming language.

• Birt provides reporting and business intelligence capabilities.

• SWT is a graphical widget toolkit.

• JDT provides a set of tool plug-ins for Eclipse.

In Table 3.2 shows the different statistics of the analyzed systems including the

time range of the bug reports, the number of bug reports, the number of classes and

methods in a project, the number of APIs, the number of fixed classes per bug report,

and the number of fixed methods per bug report. The total number of collected bug

reports and associated classes and methods is more than 22,000 bug reports for the

six open source systems. All these projects are using BugZilla tracking system and

GIT as a version control system. The ground truth used in our evaluation is the bug

location and its respective bug report. To avoid using a fixed version of the source

code, we associated a before-fixed version of the source code to each bug report.

Therefore, for each bug report in our evaluation, we used the version of the source

code just before the fix was committed. Based on the collected data, we created two

sets: one for the training data and the other for the test data. The bug reports for

each system were sorted chronologically based on the time dimension. The sorted bug

reports are then split into 10 folds with equal sizes, where fold1 contains the most
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oldest bug reports and the last fold, fold10, contains the recent ones. In addition, the

oldest fold is split into 70% training (history of bug reports) and 30% validation. The

approach is trained on fold i+ 1 and tested on foldi, for all i from 1 to 10. The best

recommended solution is then compared with the expected solution of classes and

methods that contain the bug. Thus, fold1 contains the oldest bug reports whereas

fold10 contains the latest bug reports. Since the folds are arranged chronologically,

this means that the system is always trained on the most recent bug reports with

respect to the testing fold.

3.3.3 Parameters Tuning and Statistical Tests

Since metaheuristic algorithms are stochastic optimizers, they can provide differ-

ent results for the same problem instance from one run to another.

We used the Wilcoxon rank sum test Wilcoxon et al. (1970) in a pairwise fashion in

order to detect significant performance differences between the algorithms (HMOA vs

each of the competitors) under comparison based on 30 independent runs. BugScout

and BugLocator are both deterministic thus we did not perform 30 independent

runs.The Wilcoxon test allows testing the null hypothesis H0 that states that both

algorithms medians’ values for a particular metric are not statistically different against

H1 which states the opposite. The Wilcoxon test does not require that the data sets

follow a normal distribution since it operates on values’ ranks instead of operating on

the values themselves. Since we are comparing more than two different algorithms,

we performed several pairwise comparisons based on Wilcoxon test to detect the

statistical difference in terms of performance. To compare two algorithms based on

a particular metric, we record the obtained metric’s values for both algorithms over

30 runs. For deterministic techniques, we considered one value of each metric on

each system. After that, we compute the metric’s median value for each algorithm.

Besides, we executed the Wilcoxon test with a 95% confidence level (α = 5%) on
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the recorded metric’s values using the Wilcoxon MATLAB routine. If the returned

p-value is less than 0.05 then we reject H0 and we can state that one algorithm

outperforms the other, otherwise we cannot say anything in terms of performance

difference between the two algorithms.

The Wilcoxon test allows verifying whether the results are statistically different

or not. However, it does not give any idea about the difference in magnitude. To

this end, we used the Vargha and Delaney’s A statistics which is a non-parametric

effect size measure. In our context, given the different performance metrics (such

as Precision and Recall), the A statistics measures the probability that running an

algorithm B1 (HMOA) yields better performance than running another algorithm B2

(such as GA). If the two algorithms are equivalent, then A = 0.5.

An often-omitted aspect in metaheuristic search is the tuning of algorithm pa-

rameters. In fact, the parameter setting significantly influences the performance of a

search algorithm on a particular problem. For this reason, for each search algorithm

and each system, we performed a set of experiments using several population sizes:

10, 20, 30, 40 and 50. The stopping criterion was set to 100,000 fitness evaluations

for all search algorithms to ensure fairness of comparison. We used a high number

of evaluations as a stopping criterion since our approach requires multiple objectives.

Each algorithm was executed 30 times with each configuration and then the compar-

ison between the configurations was performed based on different metrics described

previously using the Wilcoxon test. The other parameters values were fixed by trial

and error and are as follows: (1) crossover probability = 0.4; mutation probability =

0.3 where the probability of gene modification is 0.1. In fact, we decided to reduce the

diversity of the generated solutions at each iteration since a local search exploration

will be executed as well as a second step.

MOSA was performed with a starting temperature of 0.0002 and an alpha value

of 0.99995. The starting temperature and alpha values were chosen because they
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yielded the best results in empirical preliminary tests. All probability distributions

used by the search process (e.g., to determine the type of mutation to execute or code

fragments to select) were such that each discrete possibility had an equal chance of

being selected.

3.3.4 Results

3.3.4.1 Results for RQ1

The results of Table 3.3 and Figures 3.8-3.13 confirm the effectiveness of our

hybrid multi-objective approach (HMOA) to identify the most relevant classes and

methods for bug reports that include the bugs on the 6 open source systems. Table

3.3 shows the average precision@k results of our HMOA technique on the different

six systems, with k ranging from 5 to 20. For example, most of the recommended

methods to inspect in the top 5 (k=5) are relevant with a precision of 83%. The

lowest precision is around 71% for k=20 which still could be considered acceptable

due to the low granularity/abstraction level (methods). In terms of recall, Table 3.3

confirms that the majority of the expected methods to recommend are located in the

top 20 (k=20) with an average recall score of 83%. An average of more than 73% of

methods recommended in the top 5 covers the expected buggy methods. The average

accuracy@k results on the different six systems are described in Table 3.3 showing

that an average of 67%, 74%, 86%, and 91% are achieved for k = 5, 10, 15, and 20

respectively.

Figures 3.11-3.13 summarize the results of the precision@10, recall@10 and accu-

racy@10 for each of the studied systems. The obtained results clearly show that most

of the buggy methods were recommended correctly by our hybrid multi-objective ap-

proach in the top 10 with a minimum precision of 82% for AspectJ, a minimum recall

of 84% for Eclipse and a minimum accuracy of 81% for Eclipse as well. Thus, we

noticed that our technique does not have a bias towards the evaluated system. As
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Figure 3.8: Median Precision@10 at the class level on the different systems for 30
independent runs.

described in Figures 3.11-3.13, in all systems, we had almost similar average scores

of precision, recall, and accuracy. All these results based on the different measures

were statistically significant on 30 independent runs using the Wilcoxon test with a

95% confidence level (α < 5%) as detailed in Table 3.5.

To answer RQ1, the obtained results on the six open source systems using the

different evaluation metrics of precision, recall, and accuracy clearly validate the hy-

potheses that our hybrid multi-objective approach can recommend efficiently relevant

buggy methods to inspect for each bug report.

3.3.4.2 Results for RQ2

Concerning RQ2, we have two categories of comparison. The first category is

dedicated to the comparison of HMOA with other method level approaches (LS,

LRank, HS, GA, RS, hNSGA-II) to our approach. The second category is related

to the comparison of HMOA with our previous multi-objective work Almhana et al.

(2016) for bugs localization at the class level. Thus, the comparison in the second

category is performed at the class level (similar to RQ3).

Tables 3.3-3.4 and Figures 3.8-3.10 confirm that HMOA is better, in average, than
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Figure 3.9: Median Recall@10 at the class level on the different systems for 30 inde-
pendent runs.

Figure 3.10: Median Accuracy@10 at the class level on the different systems for 30
independent runs.
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Figure 3.11: Median Precision@10 at the methods level on the different systems for
30 independent runs.

Figure 3.12: Median Recall@10 at the methods level on the different systems for 30
independent runs.
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K Precision @ K

hNSGA-II HMOA LR LS HS RS GA

5 76 83 72 62 66 32 69

10 71 79 68 54 58 26 71

15 68 76 61 51 54 28 63

20 64 71 52 44 49 21 54

K Recall @ K

hNSGA-II HMOA LR LS HS RS GA

69 73 61 49 51 21 58

72 78 67 54 56 24 63

75 81 69 59 62 27 71

79 83 72 63 66 21 74

K Accuracy @ K

hNSGA-II HMOA LR LS HS RS GA

5 64 67 58 39 34 23 51

10 69 74 64 52 48 27 57

15 81 86 77 61 57 29 63

20 86 91 83 68 66 33 72

Table 3.3: Median Precision@k, Recall@k and Accuracy@k on 30 independent runs
at the methods level.
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K Precision @ K

NSGA-II HMOA Bug Scout Bug Locator

5 89 100 76 78

10 82 92 71 74

15 74 84 63 69

20 68 81 48 51

K Recall @ K

NSGA-II HMOA Bug Scout Bug Locator

72 84 59 62

81 86 64 67

87 89 69 72

94 100 74 80

K Accuracy @ K

NSGA-II HMOA Bug Scout Bug Locator

5 68 83 41 44

10 86 86 62 69

15 94 97 74 78

20 97 100 79 82

Table 3.4: Median Precision@k, Recall@k and Accuracy@k on 30 independent runs
at the class/files level.
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Figure 3.13: Median Accuracy@10 at the methods level on the different systems for
30 independent runs.

random search, the one-step multi-objective methods level formulation (hNSGA-II),

and the three mono-objective formulations (LS, HS and GA) based on the three

metrics of precision, recall and accuracy on all the 6 systems.

The average accuracy, precision, and recall values of random search (RS) on the

six systems are lower than 32% as described in Table 3.3. This can be explained

by the huge search space to explore to identify the best order of methods to inspect

for bugs localization. The performance of the three mono-objective algorithms was

much better than random search but lower than the multi-objective formulations.

The aggregation of both objectives into one objective generates better results on all

the six systems than the two other algorithms considering each objective separately.

Thus, an interesting observation is the clear complementary between the history-

based similarity function and the lexical-based measure. In fact, we found that the

buggy methods that are not detected by one of the two algorithms were identified

by the other algorithm. The average precision, recall, and accuracy of each of the

two algorithms (LH and HS) was between 61% and 73% but the aggregation of both

objectives into one in our multi-objective formulations improve a lot the obtained

results. In addition, since the three multi-objective formulations (NSGA-II, MOHA,
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and hNSGA-II) outperform the mono-objective GA then it is clear that the two

objectives of correctness/relevance and the number of recommended methods are

conflicting.

Table 3.4 confirms also the outperformance of our hybrid multi-objective algorithm

comparing to the remaining multi-objective formulations (hNSGA-II and NSGA-II).

It is clear that HMOA results are better than hNSGA-II in terms of precision, recall

and accuracy. This may confirm that the use of MOSA as a local search to identify

methods helped for a better exploration of the large space of possible method compar-

ing to the one-step NSGA-II approach. Furthermore, the results of Figures 3.8-3.10

show that both HMOA have better precision, recall and accuracy, on average, than

previous work Almhana et al. (2016). Thus, it is also clear that adaptation of the

methods level fitness functions is more adequate than our previous work to localize

bugs and their impact on the ranking of the classes to be explored by the developers

in a positive way.

All these results were statistically significant on 30 independent runs using the

Wilcoxon test with a 95% confidence level (α < 5%) as described in Table 3.5. We

have also found the following results of the Vargha Delaney A12 statistic : a) On large

and medium scale systems (Birt, JDT, Eclipse UI, and AspectJ ) HMOA is better

than all the other algorithms based on all the performance metrics with an A effect

size higher than 0.89; b) On small scale systems (Tomcat, SWT), HMOA is better

than all the other algorithms with an A effect size higher than 0.91.

We conclude that there is empirical evidence that our hybrid multi-objective for-

mulation surpasses the performance of random search and other search-based ap-

proaches thus our formulation is adequate (this answers RQ2).
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3.3.4.3 Results for RQ3

Since it is not sufficient to compare our approach with only search-based algo-

rithms, we compared the performance of NSGA-II with three different bug localiza-

tion techniques not based on heuristic search Nguyen et al. (2011); Ye et al. (2016a);

Zhou et al. (2012). Similar to the comparison with NSGA-II, we used class-level

comparison measures for Nguyen et al. (2011); Zhou et al. (2012) and method-level

comparison for Ye et al. (2016a). Tables 3.3 and 3.4, and Figures 3.8-3.13 present

the precision@k, recall@k and accuracy@k results for the 3 implemented methods,

with k ranging from 5 to 20. HMOA achieves better results, on average, than the

other three methods on all six projects. For example, our approach achieved, on

average, Precision@k of 92%, 87%, 79% and 76% are achieved for k= 5, 10, 15 and

20 respectively as described in Table 3.4. In comparison, BugLocator achieved an

average Precision@k of 68%. BugScout and Lrank achieved an average Precision@k

of 66% and 72%, respectively. Similar observations are also valid for the recall@k and

accuracy@k.

Based on the results of Figures 3.11-3.13 Birt and Tomcat are two projects where

Lrank performs close to the HMOA approach. For many bug reports in Birt, most of

the buggy methods are those that have been frequently fixed in previous bug reports

which explain the relatively high performance obtained by Lrank and HMOA. Since

the bug fixing information is exploited by both the NSGA-II approach and Lrank, it

is expected that they obtain the best performance results.

To answer RQ3, the obtained results on the six open source systems using the

different evaluation metrics of precision, recall and accuracy clearly validate the hy-

potheses that our hybrid multi-objective approach outperforms several bugs localiza-

tion techniques not based on heuristic search both at the method and class levels.
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Precision hNSGA-II NSGA-II BugScout BugLocator Lrank LS HS RS GA

Eclipse UI 0.012 0.024 0.014 0.021 0.032 0.023 0.001 0.003 0.027

Tomcat 0.038 0.013 0.017 0.011 0.017 0.017 0.013 0.012 0.014

AspectJ 0.022 0.024 0.021 0.017 0.037 0.021 0.004 0.017 0.011

Birt 0.016 0.047 0.018 0.003 0.032 0.031 0.012 0.031 0.023

SWT 0.038 0.014 0.022 0.014 0.024 0.011 0.024 0.004 0.014

JDT 0.021 0.035 0.017 0.019 0.017 0.023 0.012 0.014 0.027

Recall hNSGA-II NSGA-II BugScout BugLocator Lrank LS HS RS GA

Eclipse UI 0.023 0.020 0.027 0.023 0.027 0.026 0.017 0.002 0.031

Tomcat 0.031 0.017 0.004 0.007 0.032 0.011 0.031 0.012 0.023

AspectJ 0.014 0.019 0.016 0.016 0.018 0.007 0.014 0.006 0.014

Birt 0.022 0.014 0.011 0.012 0.019 0.024 0.022 0.011 0.017

SWT 0.031 0.023 0.016 0.032 0.031 0.016 0.016 0.013 0.023

JDT 0.023 0.011 0.021 0.037 0.043 0.018 0.027 0.014 0.019

Accuracy hNSGA-II NSGA-II BugScout BugLocator Lrank LS HS RS GA

Eclipse UI 0.026 0.032 0.026 0.018 0.034 0.007 0.013 0.024 0.011

Tomcat 0.028 0.017 0.017 0.022 0.021 0.016 0.017 0.008 0.023

AspectJ 0.031 0.024 0.032 0.016 0.038 0.023 0.022 0.013 0.017

Birt 0.017 0.019 0.021 0.024 0.027 0.009 0.031 0.011 0.032

SWT 0.024 0.027 0.019 0.019 0.021 0.017 0.024 0.021 0.037

JDT 0.006 0.021 0.024 0.027 0.013 0.023 0.011 0.017 0.021

Table 3.5: The Wilcoxon rank sum test results in a pairwise fashion (HMOA vs each
of the competitors) to detect significant performance differences between
the algorithms under comparison using the Precision, Recall and Accuracy
measures.
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3.4 Discussion

We executed our hybrid multi-objective algorithm on a desktop computer with

CPU Intel(R) Core(TM) i7 3.2 GHz and 20G RAM. Figure 3.14 presents the average

execution time of our approach on 30 independent runs for the different six systems.

This average execution time is to parse all bug reports for single system and generate

the recommended solutions. We have also compared the HMOA execution time to

our previous work based on NSGA-II to evaluate the cost of adding the new MOSA

component to localize bugs at the method level. The average execution time on the

different systems was around 23 minutes. The highest execution time was observed

on the Eclipse system with 28 minutes and the lowest one was around 19 minutes for

AspectJ. We believe that the execution is reasonable since bug localization is not a

real-time problem. We also found that the execution time depends on the number

of files to parse and the history of bug reports. Furthermore, the cost of adding the

MOSA local search is low with an average of 6 minutes comparing to our previous

work based on NSGA-II at the class level. Furthermore, we compared the execution

time between our approach and hNSGA-II which shows that the local search based

on MOSA is actually faster than applying NSGA-II for the methods-level search (an

average of around 3 mins per system). In fact, the hNSGA-II formulation is executed

at the methods level which is a much larger search space than the use of local search

on a smaller search space of classes identified after a number of iterations of NSGA-II

at the class level.

To evaluate the impact of increasing the size of the data used (history of previous

bug reports and changes), we executed a scenario on the JDT project in which we

increased the size of the dataset incrementally fold by fold until we include all the

9 folds in the dataset. It is clear from Figure 3.15 that for all the three metrics of

Precision@k, Recall@k and Accuracy@k that increasing the size of the previous bug

reports does not improve all the three metrics. This can be explained by the fact that
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Figure 3.14: Average execution time (in minutes) of NSGA-II, hNSGA-II and HMOA,
on the different systems for 30 independent runs on the different systems

recent bug reports and history of changes are the most important part of the data.

The obtained results confirm also that our hybrid multi-objective approach did not

require a large set of data to generate good results in terms of finding possible buggy

methods for bug reports. One interesting observation from the recall results is that

this measure did not decrease when more bugs reports are added to the datasets. It

could be explained by the fact that the the history-based part of the fitness function

is only part of the objective, thus the noise introduced by older bug reports is not

very impactful. Futhermore, our approach is not based on machine learning to learn

from all the dataset. It is based on metaheuristics search guided by fitness functions

thus the results are likely less susceptible to noise.

3.5 Threats to Validity

We want to acknowledge several threats to the validity of the paper such as the

factors that can bias our empirical study. These factors can be classified into three

categories: internal validity, construct internal, and external validity. Construct va-
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Figure 3.15: Impact of the data training size (folds) on the three evaluation metrics
based on the JDT project for the HMOA algorithm.

lidity concerns the relation between the theory and the observation. Internal validity

concerns possible bias with the results obtained by our proposal. Finally, external va-

lidity is related to the generalization of observed results outside the sample instances

used in the experiment.

In our experiments, construct validity threats are related to the absence of similar

work that uses bug localization technique to generate a dependency graph among

several bug reports and therefore recommend those bugs in sequential order. For

that reason, we compared our proposal with different mono-objective formulations

that use one metric only like the score of bug priority. The developers were asked

to evaluate different systems using different tools. We did not allow developers to

evaluate different tools on the same system. The developers were distributed among

the systems and tools based on their background/expertise to ensure almost the same

level for all systems and tools. When each developer is asked to evaluate one different

tool per system, we reduce the potential bias in the experiments since they are using

the tools for the first time and they are exploring each time a new system. Our

results show that the productivity has gotten better for the majority of our developers
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regardless of their experience and skills set.

External validity refers to the fact that our survey has been conducted by 29

developers with a variety of skills and number of experience. Thus, we can affirm

that our results will hold its accuracy with a different set of developers with different

level of expertise or knowledge. Also, time collection was left to each individual

developer who manually noted the time they started and finished localizing a defect.

This could have resulted in introducing error as every developer performed differently.

Finally, External validity could be related to the type of projects we used in the

survey in which we used six different widely-used open-source systems belonging to

the different domains and with different sizes. However, we cannot assert that our

results can be generalized to other applications, other programming languages, and

to other practitioners.

Conclusion validity is concerned with the statistical relationship between the treat-

ment and the outcome. the parameter tuning of the different optimization algorithms

used in our experiments creates another internal threat that we need to evaluate in

our future work. The parameters’ values used in our experiments are found by trial-

and-error, which is commonly used in the SBSE community. However, it would be

an interesting perspective to design an adaptive parameter tuning strategy for our

approach so that parameters are updated during the execution in order to provide

the best possible performance.

3.6 Conclusion

We propose, in this thesis, an automated approach to localize and rank potential

relevant methods for bug reports as an extension of our previous work limited to

class level recommendations. Our approach finds a trade-off between minimizing the

number of recommended methods and maximizing the correctness of the proposed so-

lution using a hybrid multi-objective algorithm. The correctness of the recommended
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methods is estimated based on the use of the history of changes and bug-fixing, and

the lexical similarity between the bug report description and the API documentation.

Our approach uses the main steps, the first step finds the best set of classes satis-

fying the two conflicting criteria of relevance and number of classes to recommend

using a global search based on NSGA-II. The second step is to locate the most appro-

priate methods to inspect, using a local multi-objective search based on Simulated

Annealing (MOSA) from the list of classes identified in the first step.

This thesis presents the results of an empirical study with an implementation of

our hybrid multi-objective approach based on 22,000 bug reports. The obtained re-

sults provide evidence to support the claim that our proposal is more efficient, on

average, than state of the art techniques on 6 open source systems. As part of our

future work, we plan to extend our work to consider the severity of the bugs when

identifying relevant files. Furthermore, we are planning to address the problem of

finding the qualified developers to fix the bugs based on the outputs of our bug local-

ization approach. Finally, we will extend our work to handle multiple bugs reports at

the same time and consider the dependency between them when recommending code

fragments to the developers.

62



CHAPTER IV

Considering Dependencies Between Bug Reports

to Improve Bugs Triage

4.1 Introduction

Software maintenance involves, typically, localizing and fixing a large number of

defects that arise during development and evolution of systems Zhang et al. (2016).

Localizing these software defects is expensive and time-consuming process which typ-

ically requires highly skilled and knowledgeable developers of the system. The local-

ization process includes a manual search through the source code of the project in

order to localize a single bug at a time Jones (2008). The number of these bug reports

can be large. For example, MOZILLA had received more than 420,000 bug reports

Bettenburg et al. (2008). These reports are important for managers and developers

during their daily development and maintenance activities including bug localization

Fischer et al. (2003). Due to the large number of reported bugs in successful projects,

it is critical to efficiently manage them to improve developers productivity and quickly

localize and fix these bugs Zou et al. (2018).

Each bug report has a set of attributes such as the bug summary/title, description,

reported date, reporter or bug report creator and bug severity/priority as a scale that

goes from P1 to P5. In general, developers and project managers have to analyze and
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assign a level of severity on each bug then assigning developers to localize and fix the

bugs that are ranked based on their level of severity. This bug triage process plays an

important role in software maintenance since the timely localization and correction

of bugs are critical for the reputation of the organization and customers’ satisfaction.

Once a bug report is assigned to a team, one of the developers uses it to reproduce

the abnormal behavior to find the origin of the bug. However, the poor quality

of bug reports can make this process tedious and time-consuming due to missing

information. An efficient automated approach for locating and ranking important

code fragments for a specific bug report may lead to improve the productivity of

developers by reducing the time to find the cause of a bug Fischer et al. (2003).

Although several techniques have been proposed to localize bugs Wong et al.

(2016); Almhana et al. (2016) and predict the severity of bugs Uddin et al. (2017);

Chaturvedi and Singh (2012); Zhang et al. (2016), the existing studies related to the

management of bugs report are mainly based on the priority scores to rank and assign

bug reports without looking to the possible dependencies between them Zheng et al.

(2006); Canfora et al. (2011); Li et al. (2006). Thus, developers may get assigned bug

reports related to completely different files to be inspected which may increase the

cognitive effort of the developers navigating between these independent bug reports.

For instance, a developer may spend time understanding files A and B for Bug report

B1 then he needs to check again these same files for bug report after working on three

other independent bugs reports. We start, in this thesis, from the hypothesis that

a better way to manage bugs reports is to group together those with a similar level

of priorities and also sharing a common number of files to be inspected and fixed.

In fact, several empirical studies show that the majority of bugs may not appear in

isolation and they are related to each other Zheng et al. (2006); Canfora et al. (2011);

Li et al. (2006). These dependent bug reports have several common files to inspect

to localize the bugs.
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To the best of our knowledge, we propose one of the first studies that consider

the dependencies between bug reports in order to rank and group them while still

considering their priorities. The proposed approach is mainly to validate the hypoth-

esis that ranking and grouping bug reports based on the dependencies between them

(classes to be inspected) besides the bugs priority can improve the productivity of

developers and help them to localize bugs faster and more efficiently than considering

them in isolation based only on the priority scores of the bug.

Our approach aims to find a trade-off between ranking the bug reports based on

(1) their dependency and (2) their priority. The dependencies are extracted based on

the list of files to be inspected from the bug report description using our previous bugs

localization work Almhana et al. (2016) using a combination of lexical and history

based measures. We selected that technique due to its high accuracy in localizing

relevant files with over 80% in precision and recall. After extracting the list of files to

inspect for each bug report, we adopted a multi-objective search, based on NSGA-II

Deb et al. (2002), to find a trade-off between bugs priority and dependencies to rank

the bug reports when assigned to developers. Thus, the manager or developer can

select the best schedule of the bugs based on his/her preferences from the list of non-

dominated ranking solutions generated by NSGA-II. For instance, a solution with

high priority score and low dependency can be selected when the goal is to mainly

focus on localizing the most severest bugs independently from the required effort. We

selected NSGA-II algorithm since it is widely used in similar software engineering

problems such as the next release problem Geng et al. (2018).

An experiment has been conducted to compare our approach with the only use of

bugs priority to rank bug reports Yu et al. (2010); Goyal et al. (2015); Xuan et al.

(2012); Alenezi and Banitaan (2013); Lamkanfi et al. (2011); Kanwal and Maqbool

(2010). We conducted a pre-study and post-study survey to evaluate our the perfor-

mance of our tool with participants based on 4 open source projects. The results show
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significant time reduction of over 30% in correctly localizing the bugs simultaneously

comparing to the traditional bugs prioritization technique based on priority.

The remainder of this chapter is as follows: Section 2 is dedicated to describing the

problem and our motivation to find a solution for it. Section 3 describes the proposed

approach to localize bugs and then prioritize them. The evaluation of our approach

and its results on several research questions with the answers and the discussions on

those research questions are explained in Section 4. Finally, concluding remarks and

future work is provided in Section 5.

4.2 Problem Statement

The bug triage process involves intensive time and resources in order to manage

and analyze all reported bugs on a daily basis. Typically, project managers need to

understand the reported bug, tweak the bug description and check for duplication,

then assign priority or severity of a bug and finally assign it to a developer.

As of May 2019, the Mozilla bug database contains over 172,000 for only Firefox

project only and the Eclipse bug database over 210,000 bug reports for Eclipse project

only. On average, Mozilla received 212 and Eclipse 224 new bug reports on each

week. Thus, clearly, the manual management defects for large software projects is

not practical to prioritize and reank a large load of reported bugs. Furthermore, it is

important to efficiently assign these bugs to reduce potential delays in localizing and

fixing them.

Most of the existing work on the bugs prioritizing mainly focus on the assigned

priority or severity to a bug either manually or automatically using static/dynamic

analysis and the history of changes/bugs Yu et al. (2010); Goyal et al. (2015); Xuan

et al. (2012); Alenezi and Banitaan (2013); Lamkanfi et al. (2011); Kanwal and Maq-

bool (2010). They treated bug reports in isolation despite that recent empirical studies

show that a large number of simultaneous bugs were located on the same files Zheng
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et al. (2006); Canfora et al. (2011); Li et al. (2006). To the best of our knowledge,

none of those techniques considered finding the dependencies among several bugs

when ranking and grouping them to assign to developers. Recommending a list of

bugs that share some common potential files to be inspected would be helpful to min-

imize the cognitive effort spent by a developer to jump from package to package or

from file to file that are not related. Recent studies show that reducing such cognitive

effort is a key to improve the productivity of developers working on multiple tasks

Zheng et al. (2006); Canfora et al. (2011); Li et al. (2006).

Table 4.1 shows a list of 4 bug reports from the Eclipse Birt project that they

were reported on Bugzilla within two days. By looking at the bugs description and

their resolution on Github, we found that all of them are related to the core com-

ponent/module of the software and require inspecting almost the same files and/or

directory to localize and fix them. Typically, developers prefer to work on defects that

are dependent on each other so that they can focus on one set of files rather getting

disrupted with multiple not related bugs. Our hypothesis that the bug triage process

will significantly save time and resources if we consider the dependencies between

bugs as an additional criterion to the bugs severity.

4.3 Approach

4.3.1 Approach Overview

Our approach aims at exploring a large number of possible combination to find the

best ranking of bug reports based on the dependency between them and their priority.

The search space is determined not only by the number of possible dependencies

between bug reports but also by the order in which they are proposed to the developer.

Our approach aims at exploring a large search space to find relevant classes to

inspect by developers, given a description of a bug report. In fact, bug reports may
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Bug
ID

Bug Summary Bug
Reported

Inspected Files

Bug
456730

Missing default value
in initializing
scriptContext

2015-01-05 core/
org.eclipse.birt.core/
src/org/eclipse/birt/-

core/..
/ScriptContext.java

Bug
456725

Optimize the
performance of

ULocale.forLocale

2015-01-05 core/
org.eclipse.birt.core/
src/org/eclipse/birt/-

core/..
/LocaleUtil.java

Bug
456723

org.eclipse.birt.
core.util.IOUtil

doesn’t check EOF

2015-01-05 core/
org.eclipse.birt.core/
src/org/eclipse/birt/-

core/..
/IOUtil.java

Bug
456847

BirtDateTime
function in chart’s
onRender function

causes render failure

2015-01-06 core/
org.eclipse.birt.core/
src/org/eclipse/birt/-

core/..
/CategoryWrap-

per.java

Table 4.1: List of 4 bugs in Eclipse Birt project
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require the inspection of more than one class to identify and fix bugs Zheng et al.

(2006). Our previous work for bugs localization Almhana et al. (2016) is executed

to identify relevant files to inspect for all the pending bug reports. The identified

common files between the bug reports will represent the dependencies of all reported

bugs we want to prioritize. Then, our bug prioritization component takes as input

these dependencies along with the bug priority that has been assigned to each bug

report. Our multi-objective search algorithm generates the best possible scheduling

solutions to inspect the bugs to find a balance between priorities and dependencies

of bugs. We represented the solution as a graph to guide developers to which bug

needs to be resolved first, taking into consideration the two objectives of maximizing

the number of files to inspect (maximize the intersection between consecutive bug

reports in terms of files to inspect) and the bugs priority/severity that has been

assigned manually by the users.

The general structure of our approach is sketched in Figure 4.1. It takes two

inputs, the bug priority assigned by the user and recommended classes generated

by the bugs localization tool (dependencies). The output is a set of non-dominated

solutions of ranked bugs to inspect by the developer. Our heuristic-based optimization

steps are formulated based on two main conflicting objectives. The first objective is

to minimize the number of new classes to inspect between each pair of consecutively

reported bugs. The second objective is to maximize the number of high priority

bugs to be ranked first in the sequence of reported bugs. Thus, we consider, in this

thesis, the task of prioritizing bugs as a multi-objective optimization problem using

the non-dominated sorting genetic algorithm (NSGAII) Deb et al. (2002).

4.3.2 NSGA-II

In this thesis, we adapted one of the widely used multi-objective algorithms called

NSGA-II Deb et al. (2002). NSGA-II is a powerful global search method stimu-
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Figure 4.1: Approach Overview

lated by natural selection that is inspired by the theory of Darwin. We selected this

multi-objective search algorithm since it was used for similar problems in software

engineering Almhana et al. (2016); Geng et al. (2018); Ramirez et al. (2019).

The basic idea of NSGA-II is to make a population of candidate solutions evolve

toward the near-optimal solution in order to solve a multi-objective optimization prob-

lem. NSGA-II is designed to find a set of optimal solutions, called non-dominated

solutions, also Pareto set. A non-dominated solution is the one which provides a suit-

able compromise between all objectives without degrading any of them. As described

in Algorithm 1, the first step in NSGA-II is to create randomly a population P0 of

individuals encoded using a specific representation (line 1). Then, a child population

Q0 is generated from the population of parents P0 using genetic operators such as

crossover and mutation (line 2). Both populations are merged into an initial popula-

tion R0 of size N (line 5). As a consequence, NSGA-II starts by generating an initial

population based on a specific representation that will be discussed later, using the

exhaustive list of bugs from the bug reports to resolve given as input. Thus, this

population stands of a set of solutions represented as sequences of defects to resolve,

which are randomly selected and ordered Almhana et al. (2016).

The whole population that contains N individuals (solutions) is sorted using the
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Algorithm 1 High level pseudo code for NSGA-II
1: Create an initial population P0

2: Create an offspring population Q0

3: t = 0
4: while stopping criteria not reached do
5: Rt = Pt ∪Qt

6: F = fast-non-dominated-sort(Rt)
7: Pt+1 = ∅ and i = 1
8: while | Pt+1 | + | Fi |6 N do
9: Apply crowding-distance-assignment(Fi)

10: Pt+1 = Pt+1 ∪ Fi

11: i = i + 1
12: end while
13: Sort(Fi,≺ n)
14: Pt+1 = Pt+1 ∪ Fi[N− | Pt+1 |]
15: Qt+1 = create-new-pop(Pt+1)
16: t = t+1
17: end while

dominance principle into several fronts (line 6). The dominance level becomes the

basis of a selection of individual solutions for the next generation. Fronts are added

successively until the parent population Pt+1 is filled with N solutions (line 8). When

NSGA-II has to cut off a front Fi and select a subset of individual solutions with

the same dominance level, it relies on the crowding distance to make the selection

(line 9). This front Fi to be split, is sorted in descending order (line 13), and the first

(N−|Pt+1|) elements of Fi are chosen (line 14). Then a new population Qt+1 is created

using selection, crossover, and mutation (line 15). This process will be repeated until

reaching the last iteration according to stop criteria (line 4) Almhana et al. (2016).

The following subsections describe more precisely our adaption of NSGA-II to the

bugs triage problem.

4.3.3 Solution Representation

Figure 4.2 shows a simplified representation of a solution (recommended schedule

of bugs to resolve) generated by our web-based tool for bugs selected randomly from

the bug repository (Bugzilla website) of Eclipse Birt project. This solution represents
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Figure 4.2: A simplified example of solution representation

a possible sequence to resolve the reported bugs in Table 4.1 for Eclipse Birt project.

The recommended classes of those defects share the same package or directory (core/

org.eclipse.birt.core/ src/ org/ eclipse/ birt/ core) that needs to be inspected by

programmer. Thus, we group those defects together and recommend this cluster of

bugs to one developer to resolve as a sequence. This simplified representation may

not be sufficient to show the dependencies between the bug reports thus we adopted

a graph-based representation that can be visualized to the users.

Figure 4.3 shows the sequence of bugs suggested by our web-based tool for 10 pend-

ing bugs selected randomly from the bug repository (Bugzilla website) of Eclipse Birt

project. The user can interact with the graph to interactively change the proposed

schedule and choose one path among several proposed paths (solutions). The differ-

ent bugs scheduling solutions that can be explored by the developers or managers are

represented in Figure 4.4 balancing the two objectives of severity and dependencies.

4.3.4 Fitness Functions

There are two fitness functions used in our multi-objective search based algorithm.

The first fitness function measure encourages keeping high priority bugs first in a

sequence and low priority bugs last in a sequence. The first fitness function is to

maintain low cognitive effort between each pair of consecutively reported bugs. Our

goal is to minimize as much as possible the number of new classes to inspect when the

developer moves from one bug to the next consecutive bug in the sequence. Equation

4.1 preserves the level of dependencies between each pair of consecutive bugs, a higher

value represents high similarity in dependencies (recommended classes) among bug

reports. The objective of the formula is to maximize the intersection (in number of
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Figure 4.3: A graph that shows the order of each recommended solutions generated
by our web-based software for particular set of pending bugs in Eclipse
Birt Project

Figure 4.4: The Pareto Front of recommended solutions generated by our web-based
software for pending bugs in Eclipse Birt Project to balance both severity
(X-Axis) and dependencies (Y-Axis).
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inspected files) between two consecutive bug reports. NumFilesi,i+1 represents the

total number of distinct files to inspect for bug(i) and bug(i+1). Bug(i) represents

the set of classes that are related to bug (i) and similarly Bug(i+1) represents the set

of classes that are related to bug (i+1), where (n) represents the number of bugs.

f1 =
i=n∑
i=1

Bugi
⋂
Bugi+1

NumFilesi,i+1

(4.1)

The objective of the second fitness function is to minimize the differences between

the priority of bug reports and the order of recommendations to solve the reported

bug reports. Equation 4.2 calculates the difference in priority for a bug between the

bug report and the recommended solution. We build a vector of reported bugs and

sort them based on the priority value reported in the bug report. Then, we compare

the position of a reported bug Bi in recommended solution with the position of the

same bug Bi in the original order of reported bugs which is based on priority value

reported on bug reports. Equation 4.2 calculates the difference between the priority

value in bug report and the priority value in the recommended solution which is

the position of the bug in the solution vector. Equation 4.2 calculates the sum of

differences in priority between bug report and the recommended solution for each of

the bugs where (n) represents the number of bugs.

f2 =
i=n∑
i=1

|IndexOfBugi,solution − IndexOfBugi,report| (4.2)

The above two objectives are conflicting since minimizing the number of new

classes to inspect between each pair of consecutively reported bugs may lead to re-

solving some low priority bugs however the scheduling solution may improve the

overall productivity.

Table 4.2 shows the Pareto Front sketched by our web-based tool for 10 bugs
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No. Solution Objective
1

Objective
2

1 28974, 29186, 29665, 28919, 29684,
29662, 29693, 29689, 29691, 29699

0.84 0.22

2 28974, 29693, 29689, 29662, 29665,
29691, 29699, 29684, 28919, 29186

0.85 0.16

3 29699, 29684, 28974, 29689, 28919,
29665, 29691, 29693, 29662, 29186

0.87 0.10

4 29699, 29186, 29662, 29689, 28919,
29684, 29693, 29665, 29691, 28974

0.90 0.095

Table 4.2: Pareto Front Results

selected randomly from bug repository (Bugzilla website) of Eclipse Birt project.

This is an example of Pareto Front results (the recommended solutions) generated by

our web-based software for particular set of bugs in Eclipse Birt Project.

4.3.5 Change Operators

In a search algorithm, the variation operators play the key role of moving within

the search space with the aim of driving the search towards better solutions. We

randomly select individuals for mutation and crossover. The probability to select an

individual for crossover and mutation is directly proportional to its relative fitness

in the population. In each iteration, we select half of the population in iteration i.

These selected individuals will give birth to another half of the population of new

individuals in iteration i + 1 using a crossover operator. Therefore, new two-parent

individuals are selected for next iteration/generation.

The one point crossover operator allows creating two offspring P1 and P2 from

the two selected parents P1 and P2. It is defined as follows: a random position, k, is

selected. The first k bugs of P1 become the first k elements of P1. Similarly, the first

k bugs of P2 become the first k elements of P2. Our crossover operator could create a
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child that contains redundant recommended bugs. In order to resolve this problem,

for each obtained child, we verify whether there are redundant bugs or not. In the

case of redundancy, we do not apply crossover operation on this particular bug.

An example of crossover operation, consider there are (2) vectors of recommended

solutions as follows:

Solution 1 → (bug A, bug B, bug C, bug D, bug E)

Solution 2 → (bug F, bug G, bug H, bug I, bug J)

After applying crossover operator on both solutions, the outcome will be as follows:

Solution 1 → (bug A, bug B, bug H, bug I, bug J)

Solution 2 → (bug F, bug G, bug C, bug D, bug E)

4.4 Evaluation

In order to evaluate our approach for prioritizing multiple defects for developers,

we conducted a human validation to evaluate the benefits of our work. The experi-

ments included a pre-study survey to gather some personal information and technical

background of the participants then a post-study survey to gather developer’s feed-

back about our tool with some insights about future improvements to the tool. The

obtained results are subsequently statistically analyzed with the aim to compare our

multi-objective approach with three other approaches. The first approach is a tradi-

tional bug priority based approach and the second one is based on the dependencies

between bug reports without considering the score of the priority reported in the

bug report. The third approach is based on a first come first served resolution based

approach. In this section, we present our research questions followed by experimen-

tal settings and parameters. Then, we discuss our results for each of the research

questions. The data related to our experiments can be found in the following link

Almhana and Kessentini (2020a)
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4.4.1 Research Questions

In our study, we wanted to assess the performance of our approach by finding out

whether it could identify the most appropriate sequence of bugs to resolve by devel-

opers. In order to examine our web-based software prioritization tool, we explored

two primary research questions outlined below. The goal of this experiment is to

check whether our proposed approach can propose a meaningful sequence of defects

in which developers can localize and fix related bugs quickly and therefore companies

can save some efforts in terms of time, resource and cost to make their systems more

responsive to most recent bug reports. To this end, we defined the following research

questions:

• RQ1: (Effectiveness) To what extend can the proposed approach recommend

an appropriate sequence of bugs to resolve by developer?

• RQ2: (Comparison to other techniques) How does our approach perform com-

pared to typical bugs management techniques?

The goal of RQ1 is to measure the effectiveness of our approach by calculating

three different metrics mentioned in this paper whereas the RQ2 aims to compare

our approach with other approaches to measure the effectiveness compared to three

other approaches (FCFS, 2 mono-objectives approaches).

To answer RQ1, we evaluate the effectiveness of the recommended order of bugs

to resolve by programmers. The effectiveness is evaluated by measuring the following

metrics:

• Number of Bugs denotes the number of bugs that one individual developer

can resolve within a time frame. The goal for this measure is to maximize the

number of bugs that developer can finalize in order to have better productivity.
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• Resolution Time denotes the time spent by developer to understand, identify,

and resolve a single particular bug. Our goal is to minimize this measure in order

to save resource cost.

• Disruption Cost measures the cost of transition time that developer may

spend between each pair of bugs. Our approach aims to minimize this cost by

recommending most related sequence of bugs.

To answer RQ2, we compared, using the above metrics, the performance of our

multi-objective approach with first come first serve approach. Furthermore, we imple-

mented two mono-objective formulations. The first one is a mono-objective algorithm

with the only objective of bug priority score and a second one is a mono-objective

algorithm with the only objective of bug dependency. Disruption cost means the

time in which a developer spends to make the transition between one bug to another

unrelated bug. This transition involves the time to change the developer’s focus to

understand the information given to the developer in the new bug and the time to

examine the files related to the new bugs. This disruption cost is important because

it can show the cognitive effort required by developers to move from one bug to the

other when they are not related. Equation 4.3 formulates the distribution cost where

n is the number of bugs to resolve. To best of our knowledge, there is no similar prior

work to compare with that uses currently similar objectives of our approach.

DisruptionCost =
i=n∑
i=1

(|EndTimeBugi − StartT imeBugi+1|) (4.3)

One way to show if the two objectives are conflicting is to compare the performance

of the multi-objective search with a mono-objective formulation (aggregation of all

the objectives). The comparison between a multi-objective technique with a mono-

objective one is not straightforward. The multi-objective technique returns a set

of non-dominated solutions while the mono-objective technique one returns a single

78



optimal solution. To this end, we choose the nearest solution to the Knee point

Deb et al. (2002) (i.e., the vector composed of the best objective values among the

population members) as a candidate solution to be compared with the single solution

returned by the mono-objective algorithm.

The knee point represents the maximum trade-off between the objectives thus it

is reasonable to compare it with a mono-objective solution with equal weights of the

different objectives aggregated in one fitness function. The fact that we are comparing

a mono-objective formulation with equal weights to a knee point (representing the

maximum possible trade-off) ensures a fair comparison. We used the knee point

method as recommended by the current literature Keller (2019); Emmerich and Deutz

(2018); Deb and Gupta (2011)

Both surveys (pre-study and post-study questionnaire) were conducted on twenty-

nine developers who have a variety of skills and expertise. Table 3.2 shows a list of

six open source systems that developers use in the experiment. The survey tells us

whether our approach was successful to save cost and time in resolving bugs.

4.4.2 Software Projects and Experimental Setting

As described in Table 3.2, we used six open-source systems:

• Eclipse UI is the user interface of the Eclipse development framework.

• Eclipse Jetty is a Java HTTP server and Java Servlet container.

• Eclipse AspectJ is an aspect-oriented programming (AOP) extension created

for the Java programming language.

• Eclipse Birt provides reporting and business intelligence capabilities.

• Eclipse SWT is a graphical widget toolkit.

• Eclipse JDT provides a set of tool plug-ins for Eclipse.
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Project #
Bugs

# Re-
solved
Bugs

#
Devel-
opers

Average
Reso-
lution
Time

Time
Frame

Eclipse
UI

84,136 57,251 778 89 days Oct-2001 to
May-2019

Eclipse
Birt

23,218 19,452 154 40 days Jan-2005 to
May-2019

Eclipse
JDT

58,822 34,050 272 52 days Oct-2001 to
May-2019

Eclipse
As-

pectJ

3021 2270 22 38 days Sep-2002 to
May-2019

Eclipse
Jetty

3813 1184 14 43 days Mar-2009 to
May-2019

Eclipse
SWT

24,049 19,559 184 61 days Oct-2001 to
May-2019

Table 4.3: Studied Projects

Project # of
Devel-
opers

Avg. # of
Experience

AspectJ 15 9.5 years

Birt 18 7 years

SWT 15 10 years

Jetty 14 10.5 years

Eclipse
UI

24 6 years

JDT 21 6.5 years

Table 4.4: List of developers participated in the experiment and their disruption
among several projects along with the number of years of experience
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Table 3.2 shows the different statistics of the analyzed systems including the time

range of the bug reports, the number of bug reports, the number of closed and resolved

bugs in a project, the number of developers involved with project and the average of

time spent to resolve a bug and close its corresponding bug report. The total number

of collected unresolved bug reports is about 63,000 bug reports for the six open source

systems. All these projects are using BugZilla tracking system and GIT as a version

control system.

4.4.3 Meta-heuristic Parameters Tuning

An often-omitted aspect in meta-heuristic search is the tuning of algorithm param-

eters. In fact, parameter setting influences significantly the performance of a search

algorithm on a particular problem. For this reason, for each search algorithm and

each system, we performed a set of experiments using several population sizes: 10,

20, 30, 40 and 50. The stopping criterion was set to 100,000 fitness evaluations for all

search algorithms in order to ensure fairness of comparison. We used a high number

of evaluations as a stopping criterion since our approach requires multiple objectives.

Each algorithm was executed 30 times with each configuration and then the compar-

ison between the configurations was performed based on different metrics described

previously using the Friedman test. The other parameters values were fixed by trial

and error and are as follows: (1) crossover probability = 0.4; mutation probability =

0.3 where the probability of gene modification is 0.1. Almhana et al. (2016)

4.4.4 Results

4.4.4.1 Results for RQ1

For this research question, we examined the number of bugs that the develop-

ers were able to resolve within the 2-hour window. Figure 4.5 shows the difference

in performance between our multi-objective approach and the first come first serve
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approach. Furthermore, we measured the performance of the mono-objective ap-

proaches by considering sperately the score of bug priority or bug dependency. The

results show that the multi-objective combining the benefits of both mono-objective

approaches are presenting much better results in terms of fixing bugs.

Figure 4.6 describes the average time spent by the developer to resolve one single

defect in a certain project. This figure shows the difference in the number of minutes

between our multi-objective approach and other three different approaches such as

first come first serve, bug priority, and bug dependency approach. We found that

the familiarity with the associated files to a bug play an important factor in the time

that the developer may spend on one individual bug which explains the signficant

outperformance of our approach.

Figure 4.7 presents the disruption cost or cognitive efforts needed to completely

shift from one bug to another. We found that this cost is too high in First Come

First Serve (FCFS) and medium in Bug Priority but it drops significantly in Bug

Dependency or multi-objective approach which shows the benefit of considering bugs

dependency to improve the productivity of the developers.

To conclude, it is clear that the multi-objective approach significantly reduce

the efforts spent by the developers to fix bugs when they are ranked based on a

combination of their dependency and priority.

4.4.4.2 Results for RQ2

Figure 4.5 and Figure 4.6 confirm the efficiency of our multi-objective approach

over other techniques used to prioritize bug reports based on severity or first come first

served. In Figure 4.5, our approach shows an average of 3 defects in 2-hour window for

all evaluated projects whereas first come first serve (FCFS) and Bug Priority approach

shows an average of 1 defect in a given time window. Bug Dependency technique

produces a promising result with an average of 2.5 which is very close to multi-
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objective approach’s outcome and that is due to the importance of recommending

the bugs that share the same set of files/classes to inspect. The complexity of the

project plays an important role in localizing and fixing bugs, developers localized and

fixed 2 to 3 bugs in Eclipse UI or JDT projects as opposed to 5 bugs in Jetty.

In Figure 4.6, the multi-objective approach has as low as 21 minutes and as high

as 78 minutes on average to resolve a single defect. Bug dependency comes next in

efficiency after the multi-objective approach with a low of 28 and high of 67 minutes.

The third approach is Bug Priority with unremarkable results of 78 minutes on aver-

age. FCFS result is considered the worst with an average of 123 minutes since it does

not follow any dynamic strategy in choosing the next bug in line to resolve. We no-

ticed a big gap between FCFS and others as FCFS does not consider the complexity,

size, severity, and urgency of the bug but rather goes from one bug to another. Our

approach helps to reduce the resolution time even in the large and complicated sys-

tems, 187, 176, and 154 minutes were recorded for FCFS in Birt, Eclipse UI, and JDT

respectively and 66, 44, and 78 minutes were recorded in multi-objective approach

for those same projects.

Figure 4.7 shows an average of 6 minutes in multi-objective and 8 minutes in Bug

Dependency approach. One of the reasons that make the localization and fixing time

too high in FCFS is the high disruption time of 39 minutes on average. Bug Priority

does slightly better than FCFS with 22 minutes but Bug Priority is still far away

from Bug Dependency or multi-objective approach. Furthermore, we noticed that

the disruption cost increases when the size of the project becomes larger. Birt is an

example of a large project which required 10 minutes of disruption cost whereas it is

around 5 minutes for other smaller projects like Jetty.

To conclude, the proposed multi-objective approach outperforms mono-objective

ones which confirm the need to consider bugs dependencies when scheduling them to

be repaired by developers.
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Figure 4.5: Comparison of number of bug to resolve a particular bug using our pri-
oritization tool versus FCFS tool along with two of mono-objective ap-
proaches for each of the six tools

Figure 4.6: Comparison of average time spent to resolve a particular bug using our
prioritization tool versus FCFS tool along with two of mono-objective
approaches for each of the six tools
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Figure 4.7: Comparison of disruption cost to transit from one bug to another using
our prioritization tool versus FCFS tool along with two of mono-objective
approaches for each of the six tools

4.4.4.3 Pre-study Survey Results

All the participants have a job in industry as software engineer or technical lead.

87% of our participants hold a bachelor degree in computer science, Table 4.4 shows

the list of six (6) open source software used in the study along with the number of

developers who participate in each of those projects with average years of experience of

those participants. Figure 4.8 shows the distribution of expertise for our participants

regarding the 5 different categories listed in the questionnaire. 16 participants were

working on software testing and bug repair tasks as part of their regular duties, which

was one of the main criteria used to solicit their participation, based on our previous

collaborations and contacts.

4.4.4.4 Post-study Survey Results

Chart 4.9 shows the results we gathered from our participants about the three

post-study survey’s questions. For Q1, we found that 72% thought that the recom-

mended solution (the order of resolving the bugs) made the whole task easier than
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Figure 4.8: Distribution of Expertise for the participants in the pre-study survey

Figure 4.9: Post-study survey results

normal. For Q2, the majority, over 50% found that the new approach tends to save

developers’ time to localize bugs and resolve. For Q3, we found that our participants

have noticed the difference between First Come First Serve (FCFS) and our approach

in which 12 developers reported that task was difficult, and 10 developers found it

neutral where they did not notice any improvements.

4.5 Threats to Validity

We want to acknowledge several threats to the validity of the paper such as the

factors that can bias our empirical study. These factors can be classified into three
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categories: internal validity, construct internal, and external validity. Construct va-

lidity concerns the relation between the theory and the observation. Internal validity

concerns possible bias with the results obtained by our proposal. Finally, external va-

lidity is related to the generalization of observed results outside the sample instances

used in the experiment.

In our experiments, construct validity threats are related to the absence of similar

work that uses bug localization technique to generate a dependency graph among

several bug reports and therefore recommend those bugs in sequential order. For

that reason, we compared our proposal with different mono-objective formulations

that use one metric only like the score of bug priority. The developers were asked

to evaluate different systems using different tools. We did not allow developers to

evaluate different tools on the same system. The developers were distributed among

the systems and tools based on their background/expertise to ensure almost the same

level for all systems and tools. When each developer is asked to evaluate one different

tool per system, we reduce the potential bias in the experiments since they are using

the tools for the first time and they are exploring each time a new system. Our

results show that the productivity has gotten better for the majority of our developers

regardless of their experience and skills set.

External validity refers to the fact that our survey has been conducted by 29

developers with a variety of skills and number of experience. Thus, we can affirm

that our results will hold its accuracy with a different set of developers with different

level of expertise or knowledge. Also, time collection was left to each individual

developer who manually noted the time they started and finished localizing a defect.

This could have resulted in introducing error as every developer performed differently.

Finally, External validity could be related to the type of projects we used in the

survey in which we used six different widely-used open-source systems belonging to

the different domains and with different sizes. However, we cannot assert that our
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results can be generalized to other applications, other programming languages, and

to other practitioners.

Conclusion validity is concerned with the statistical relationship between the treat-

ment and the outcome. the parameter tuning of the different optimization algorithms

used in our experiments creates another internal threat that we need to evaluate in

our future work. The parameters’ values used in our experiments are found by trial-

and-error, which is commonly used in the SBSE community. However, it would be

an interesting perspective to design an adaptive parameter tuning strategy for our

approach so that parameters are updated during the execution in order to provide

the best possible performance.

4.6 Conclusion

We proposed an approach for bugs management by taking into consideration both

the severity and dependencies between reports. Our solution is based on the use of

multi-objective search to find a trade-off between these two conflicting objectives. The

validation of our work shows that there were significant time savings when developers

inspected bugs comparing to existing methods treating each bug individually as first

come first serve or relaying on priority scores only.

As part of our future work, we envision the extension of this approach to improve

the bugs management process by recommending developers to be assigned for bugs

based on their background and prior expertise. The users can interact more with

the suggested recommendations in order to update the assignments. In addition, we

are planning to extend our current work with multiple other bug repository systems

beyond Bugzilla. We also would like to validate the proposed tool on proprietary

software systems to generalize the obtained results.
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CHAPTER V

Understanding and Characterizing Changes in

Bugs Priority: The Practitioners’ Perceptive

5.1 Introduction

A bug is a software defect that causes abnormal or erroneous behavior according to

functional or non-functional requirements (such as security and performance) Chung

et al. (2000); Zaman et al. (2011); Guo et al. (2010); Zimmermann et al. (2012);

Shihab et al. (2013). Different bugs impact the software system differently based on

the degree of severity associated with each bug Chaturvedi and Singh (2012); Lamkanfi

et al. (2011); Xia et al. (2014). Therefore, it is critical to efficiently manage bugs

priority Tian et al. (2013); Kumari and Singh (2018); Kanwal and Maqbool (2010);

Yu et al. (2010); Tian et al. (2015). In this context, the effectiveness of assigning

priorities becomes important—if priorities of a fair number of bugs are changed, it

indicates delays in fixing critical bugs Tian et al. (2013); Kumari and Singh (2018);

Kanwal and Maqbool (2010); Yu et al. (2010); Tian et al. (2015).

Several studies explored methods to predict bugs priority in software systems Tian

et al. (2013); Yang et al. (2014); Sharma et al. (2012); Kumari and Singh (2018); Tian

et al. (2015); Zaman et al. (2012); Uddin et al. (2017). To the best of our knowledge,

there has been little prior work on understanding the dynamics of changing bug

89



priorities. Understanding changes in bugs priority can help us to quickly fix severe

bugs and avoid delays, identify areas that need tool support for automated validation

of bug priority change requests and better documentation of these changes. The goal

of this thesis is to characterize the overall change process of bugs priority.

We advocate that a critical and fundamental step in providing an efficient support

for manager and developers to enable them validating bugs priority change is to

understand the bugs priority dynamics; it involves discover and characterize Why and

When bug priorities change, and Who performs the change. Thus, the primary goal of

this thesis is to observe and understand the changes in bugs priority in order to build

a 3-W (Why, When, and Who) model. In this pursuit, we used two complementary

methods in our study. As a first step, we discovered insights about the rationale of

bug priority changes, their frequency, and when/why these changes were observed by

interviewing 11 software developers, managers, and executives from eBay as part of

a funded project. We established an initial model for characterising changes in bug

priority as an outcome of this first step. In a second step, we performed a survey

with an additional 38 developers to enquire about their experiences with finding,

validating, and documenting the changes in bugs priority. During these two steps, we

answered the following three research questions (RQ).

RQ1:Why does priority of a bug change?

RQ2:Who changes the priority of a bug?

RQ3: When does the priority of a bug change?

We propose a 3-W bugs priority change model obtained from the interviews and

the survey. We have also conducted a manual inspection of X bugs reports, developers’

comments, and source code changes from Y open source systems to compare the final

3-W bugs priority changes model with actual bugs priority changes extracted from

open-source projects to answer the following research question.

We have also compared in this thesis the experience of developers in finding,
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validating, and documenting bugs priority changes with samples of actual ones reveal

areas for improvement. We found that developers indeed change the priority of bugs

multiple times. Table 5.1 shows an example of a bug report with its log of activities

that show the number of times developers change the priority along with the bug

priority both before and after the change.

Our 3-W model suggests the following rationale of changes in bugs priority: 1)

lack of time to complete the task, 2) the category of the bug such as security related

bugs or functionality related bugs or user interface related bugs, 3) the type or the

domain of project such as security related projects, desktop application or web-based

application, a plugin tool or standalone program, 3) dependencies to other bugs, 4)

lack of understanding or misunderstanding the bug report, and 5) accidental changes

by mistake. In addition, we also found that some developers do not follow “ethical”

practices while changing bugs priority. For instance, they may reduce bugs priority

just to bypass quality gates and to release code quickly.

Our findings can enable (1) researchers to automatically validate bugs priority

changes and understanding their rationale, (2) educators to teach and emphasize the

management of bugs and prioritize software maintenance activities, and (3) practi-

tioners to use a standard format for documenting and discussing changes in bugs

priority. Though we identified a set of essential components of changes in bugs pri-

ority, adoption of the components remains context-dependent in practice. Using our

model, software development teams can design their organization-specific guidelines

to include or exclude the proposed components for validating changes in bugs priority.

The primary contributions of this thesis are as follows:

1. A detailed model to understand changes in bugs priority based on the perspec-

tive of practitioners.

2. A study of the experiences of software developers requiring, finding, and docu-

menting changes in bug reports.
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Who When Before After Attributes
Changed

User1 2008-05-11 P3 P5 -

User2 2008-05-20 P5 P3 Target
Milestone

User3 2008-08-03 P3 P5 -

User2 2008-08-21 P5 P3 Status &
Resolution

User1 2009-05-18 P3 P5 Target
Milestone

User2 2009-05-26 P5 P3 Target
Milestone

Table 5.1: Bug Report# 221310 from BIRT project to show the activities that hap-
pened on the priority of this bug report.

3. Investigation of areas for improvement in current practices of changing bugs re-

port. Identifying gaps will provide valuable recommendations for researchers to

develop tools for validating changes in bug reports and developers and managers

wanting to improve their current pipeline to manage bug reports.

Replication Package. All material and data of the bugs report used in our

study as well as the developers’ anonymized answers are available in our replication

package Almhana and Kessentini (2020c).

The remainder of this chapter is as follows: Section 2 describes the design of our

empirical study including the research questions. The results are described in Section

3. Finally, concluding remarks and future work are provided in Section 4.

5.2 Approach: Study Design

Our study aims to understand the rationale of changes in bugs priority and there-

fore will guide the automation of validating change requests by developers. As de-
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scribed in Figure 5.1, we first used unstructured interviews with 11 developers, man-

agers, and executives from eBay, as part of a funded project, to discover the rationale

of changes in bugs priority and thereby, design an initial model. These interviews

allowed rich conversations and insights. These brainstorming sessions helped us to

establish the initial thoughts in characterizing the changes in bugs priority to dis-

cover the reasons behind changes the priority, the time of changing the priority, and

the individuals who perform the changes. Then, we extended the obtained initial

documentation model with a larger number of 38 practitioners using a survey. The

practitioners answered our questions about their experiences in performing, finding,

and documenting these bugs priority changes. Finally, we conducted a quantitative

validation to compare the outcomes of the interviews and survey with actual changes

in bugs priority extracted from X open-source systems. The use of these mixed meth-

ods has been widely employed by several other studies of software developers Codoban

et al. (2015); Hilton et al. (2017); Easterbrook et al. (2008); Tao et al. (2012).

Figure 5.1: Study design
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5.2.1 Research Questions

We defined the following main three research questions.

[ RQ1:Why does the priority of a bug change? The aim of this first research

question is to gather exhaustive possible reasons behind changing the priority of bugs.

An understanding of the rationale will help (a) practitioners to better document

priority changes of bugs; and (b) researchers to build tools for automatically checking

the requests of changing bug’s priority.

[ RQ2:Who does change priority of a bug? The aim of this research question is

to identity the main stockholders who change the priority of bugs and their role in the

team or in the project (e.g. tester, manager, and owner of the bug). The outcome of

this research question can help us to understand the needs for changing the priority

based on the role of the people who made the change.

[ RQ3: When does priority of a bug change? Since there are no restrictions,

in general, on when bugs priority can change, the aim of this research question is

to study the possible correlations between the dates of priority changes and bug’s

creation, release date, or the date of assigning a developer on the bug. The outcomes

of this research question may inform us about temporal patterns to change bugs

priority in suspicious time such as new release deadline.

To summarize the outcome of this contribution, our aim is to compare the out-

comes of both the interviews and the survey with actual changes of bugs priority

extracted from open source systems. Observations from the comparison between the

practitioners’ need and actual priority changes found through a quantitative analysis

could lead us to the areas of improvement for researchers and practitioners to address

them.
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5.2.2 Phase 1: Interviews with Developers to Design a Model for Bugs

Priority Changes

5.2.2.1 Interview setup

The goal of this first phase of our research was to build a model to characterize

the dynamics related to bug’s priority, to understand why and when they happen,

and to identify the individuals’ role who make the change or get impacted by the

change.

Prior to starting the interview sessions, we performed an in-depth analysis of

previous studies that are related to bug’s priority changes or bug’s priority in general.

We list them in Table 5.2 and discuss them in detail in the related-work section. The

aim of this in-depth analysis is to understand the current state-of-the-art and to

gather insights on WHY priorities change, WHEN do they change, and WHO makes

the change. The majority of existing literature focuses on bug’s priority prediction

and, in some cases, recommending developers to fix bug reports. To the best of our

knowledge, none of them analyzed the historical changes in priority levels to build

a model that can validate the accuracy of changes in priority made by developers.

Typically, textual and temporal components of a bug report, author’s information

with historical bug reports are the four most used components or metrics for predicting

bug’s priority. We considered these observations from the current literature about

bugs priority in our unstructured interviews with eBay developers, managers, and

executives.

5.2.2.2 Participants Selection

We advertised our study in mailing lists that covered developers from many in-

dustrial partners, including those who collaborated with us in the past, to validate

our approach in characterizing the overall change process of bugs priority. We inter-
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viewed 11 participants, after eliminating three other practitioners because they were

not able to attend the whole interview session and provided very limited and quick

feedback in the discussion.

5.2.2.3 Interview with selected volunteers

We started the face-to-face interviews by providing examples of several bug-

tracking systems such as Jira 1 and BugZilla 2. We presented the process of logging

a bug report and setting the bug’s priority. Then, we showed the mechanism by

using several examples of changing the priority in those bug-tracking systems. We

also demonstrated tracking a change or restricting certain users from performing a

change at certain period of time. We showed the interviewees some examples of bug

reports in which the priority has changed along with related information such as the

time, who did the change, and relevant comments about the priority changes. The

exhibited examples set the context and scope for our discussion with the participants.

Then, we asked them to tell us some real-world situations when they needed to

carefully check a change in bugs priority. These steps helped stimulate the practition-

ers’ memories as well. As a next step, we asked them to think about an exhaustive

set of reasons to change bugs priority after describing their experiences in changing,

finding, and documenting these bugs priority so that it does not slow down addressing

critical bugs while respecting deadlines and dealing with available resources. Based

on these unstructured interviews, we built an initial 3-W model for bugs priority

changes. We validated the initial model later with more participants via surveys and

a quantitative validation using data collected from open-source systems.

1https://www.atlassian.com/software/jira
2https://www.bugzilla.org
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5.2.3 Phase 2: Survey about the 3-W Model for Bugs Priority Changes

After deriving a bugs priority change model from the interviews, we designed a

survey to understand their experiences and opinions about changes in bug’s priority.

The survey also aimed to elicit the individual roles who are responsible for changing

bug’s priority and when they make these changes along with the reasons that lead to

increasing or decreasing the priority.

We distributed our 12-question survey to multiple software engineering groups,

software testing groups, and software maintenance groups on several social media

channels and a list of private emails of researchers with related background in software

engineering and testing. We used the snowball sampling of the interviews for our

survey by reaching out to our industry partners and asking them to advertise it to

their contacts.

Table 5.3 shows a list of questions of our survey which was was carried out using

Qualtrics 3. The table shows the connections between our research questions and the

questions of the survey. In the first section, we prepared three questions to capture

demographic information about the background of the participants (number of years

in the field, the level of education, and their current role/occupation).

Our intention in the second section of the survey is to gather information about

the rationale of changing the priority of the bugs reports. So we asked our participants

to choose from a list of possible reasons collected from the interviews from Phase 1

or propose a new reason to be added to our findings. Furthermore, we asked the

participants whether they leave a comment about the rationale when they themselves

change bug’s priority and whether they change other attributes/fields in bugs reports

while they are changing the priority. The goal of this question is to identify a possible

correlation between bug’s priority and other attributes, as well as to discover other

reasons of changing bug’s priority. Finally, we asked the participants whether they

3https://www.qualtrics.com
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consider the priority to rank their list of tasks and organize their schedules around it.

The third section of the survey focused on when bugs priority are changed com-

paring to other temporal events such as the date of bug’s creation, the data of bug’s

resolution, the date on which developers are assigned to the bug, and the date of the

deployment or releasing new version of the software. Also, we asked our participants

if they follow an approval or voting process or any other mechanisms prior to changing

the priority of the bug.

In the last section, we asked the participants whether they change the priority

themselves and how often they change it. We were also interested to know the group

of people who changes the priority including their profiles, current occupations, and

their role in the project. Furthermore, we asked the frequency of changing a bug’s

priority in general.

We discarded three responses based on the short time that they spent to take the

survey (less than 5 minutes). We considered 38 survey responses (after discarding

three responses), the participants took between 8 to 12 minutes to finish the survey.

5.2.4 Phase 3: Quantitative Analysis

Figure 5.4 shows the list of open-source systems that we analyzed in this study.

The table shows the number of bugs and comments in bug reports for each project.

We used Bugzilla API to fetch all bugs reports and the list of related comments along

with changes on any attributes of the bug reports. Furthermore, we have collected

all the commits belonging to all the considered project on their GitHub repositories.

Overall, we have collected a total of 225, 534 bug reports belonging to 24 projects.

Those bugs reports included more than 1.79 million changes in bugs reports and 1.35

million developers’ comments related to these changes. In addition, these projects

have 302, 760 GitHub commits with 15, 000 releases.

A bug report from Bugzilla is composed of several attributes listed below.
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• Creator: The login name of the person who filed this bug (the reporter).

• Creation time: When the bug was created.

• Keywords: Each keyword mentioned on this bug.

• Severity: The current severity of the bug.

• Resolution: The current resolution of the bug, or an empty string if the bug is

open.

• Summary: A summary of this bug.

• Status: The current status of the bug.

• Priority: The current priority of the bug.

• Assignee: The login name of the user to whom the bug is assigned.

We collected every change that happened on any attribute on the bug reports and

extracted the following fields corresponding to each change.

• Field Name: The field that is changed.

• Time: The date-time stamp on when the change happened.

• Old Value: The value of the field before it has been changed.

• New Value: The value of the field after it has been changed.

• Person: The login name of the user who changed the value of the field.

The collected data is used to answer our research questions and find potential

gaps between the developers’ perception to changes in bugs priority and actual ones

observed in the practice.
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5.3 Evaluation

In this section, we answer the research questions by combining the results of the

survey and the outcomes of the quantitative analysis on several open-source projects.

Figure 5.2 represents the demographic information of the 38 participants of the sur-

vey. Their current occupation ranges between researcher, senior and junior software

engineers, and QA/testers.

Figure 5.2: Current occupation and years of experience

5.3.1 RQ1: Why does the priority of a bug change?

Figure 5.3 shows that the majority of our participants agree that they consider

bug’s priority to manage their workload. Eight participants mentioned that they use

the priority sometimes, and only 2 participants highlighted that they rarely look at

the priority to manage their tasks. None of the participants expressed that they never

consider the bug’s priority. Our quantitative analysis shows that 100% of collected

bugs have a priority assigned to them which proves the importance of bug’s priority

in managing bugs reports.

Figure 5.4 shows that only 2 participants said that they never changed bug’s

priority where the majority of them agree to the fact that they do need to change the
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bug’s priority frequently. Furthermore, Figure 5.5 shows that most of the developers

agree to change the priority once, twice, or more in general. Our quantitative analysis

shows that more than 10% of collected bugs reports have their priority changed at

least one time, and over 86% of those bugs had their priority changed at least two

times.

Figure 5.3: Survey Question: Do you consider bug’s priority to manage your work-
load?

Figure 5.6 show the distribution of the votes among several possible reasons of

changing bug’s priority. It is clear that the dependencies between the bugs has high

impact on changing the priority. From the response, we observe that the dependencies

between the bugs is the biggest reason for changing bug’s priority. Lack of time and

high workload has the next biggest impact on priority change with 19 and 17 votes,

respectively. There are 13 participants said that the initial priority value is always

not accurate and hence they have to correct it to match the reality of the issue. We

also found that 10 participants agree that the domain of project or the category of

the bug report may affect the clarity of the bug report which makes a big difference

whether changing the priority is needed or not. Other participants confirmed that

changing priority by mistake does happen but it is not frequent.
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Figure 5.4: Survey Question: Do you change the priority of bugs?

Our quantitative analysis shows that 14% of the bug reports with priority changes

have their priority changed twice from high to low and then from low to high. This

outcome shows that bug’s assignee may change the priority once it gets assigned to

them to reduce the perceived urgency of the bug and to delay the delivery of the

solution to the end-users. While it may not be among the best practices to change

priorities to reduce the workload, the quantitative analysis of the bug reports show

that this aspect is common when bugs priority are lowered.

We found that developers may change the priority based on their present workload

in order to avoid any interruptions in the current sprint or simply due to lack of time.

In fact, we looked into developers’ comments in the collected bug reports and we

found some comments complaining about workload or lack of time. We also found

comments mentioning dependency with other bugs/issues from other teams/projects.

Examples #1, #3, and #7 in Table 5.5 show the details of those comments.

Another finding is that developers might not see the necessity of assigned high

priority or they might see the urgency in the assigned high priority of a bug. Examples

#4 and #8 of Table 5.5 show that developers change the priority to better match the
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Figure 5.5: Survey Question: How many times do you change, in general, the priority
per bug?

reality.

We also noticed that when the initial bug’s description is not clear or not detailed

enough, developers tend to introduce priority changes after some investigation based

on the analysis of the comments in bug reports. We found also that there are some

projects that do not have any priority changes, the reasons could be the lack of using

the bug’s priority to prioritize their workload or the bug’s description is clear enough

to make an accurate estimation of the priority of the bug.

Figure 5.6: Survey Question: Why do you change bug’s priority?
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Regarding the documentation of bugs priority changes, most of the participants

in our survey confirmed that they tend to leave a comment explaining the change;

only nine responses said that they rarely or never document these changes. However,

we found that developers are not following specific guidelines in documenting these

changes and they are documented in an informal way.

We also noticed that description, status, and severity attributes are the most com-

mon attributes that get changed upon changing the priority. Based on participants’

responses, only five of them mentioned that they have to pass through an approval

process before changing the priority. The remaining participants agree that there is

no process that restrict some developers from changing the priority at any time and

for any bug report. The lack of this process to check and validate priority changes

can be a reason for some suspicious changes due to high workload, release deadlines,

showing less impact of a bug created by a developer, etc.

We found in our quantitative analysis that status, resolution, assignee, and target

milestone are the fields that get changed when priority attribute is changed. In

27% of priority changes activities, we noticed that the assignee field changed. It may

indicates that assigning the right developer to fix the bug is important to get the right

estimation of the priority. We also discovered that 37% of priority change activities

where priority changed at the same time with status and target milestone fields. We

consider those activities as suspicious because they tend to delay the deliverable of

the project by lowering the priority because there is an upcoming release deadline. To

confirm this observation, we investigated and found that 44% of these bug reports get

back to the same level of priority after a short period of time that can be associated

with a release deadline.

By exploring some comments among developers in several of the bug reports in

open-source projects, we found that many discussions are about raising or lowering

priority or simply asking for clarity about the bug’s description itself. This obser-
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vation may confirm that there are some discussions happening before changing the

priority between developers which can contribute to better explaining the reasons

behind the changes. On the other hand, we found, by looking at the comments of

developers, that bug’s priority gets changed by accident as described in example #5

of Table 5.5. These accidental changes confirms again the importance of adding a

mechanism in the pipeline of localizing and fixing bugs to validate the priority changes.

ö Key findings: The priority changes for the following reasons:

t The dependency of another bug’s fix

t Incorrect priority

t Type / Domain of project

t Category of the bug report

t Lack of time / Heavy workload / Tight schedule

t Accident

t Hot-fix request

t Business requirements

ö Key findings: Bugs tracking systems track the changes of the bug’s priority but

they lack the ability to document the reasons to do such a change.

5.3.2 RQ2: Who does change priority of a bug?

Figure 5.7 shows that most of priority changes are carried out by developers, team

leaders, or project managers. Out of 38, 31 responses show that developers change

the bug’s priority making them playing the biggest role in the change. It is not
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surprising because they are the ones who work on localizing and fixing the bugs. Other

responses, 22 and 26, suggest that team leaders or project managers/owners could

also change the priority to rush certain software features or meet future expectations

or milestones.

In the quantitative analysis, we found that 28% of bugs reports with priority

changes have been changed by their assignee. In addition, there is 19% of bug reports

with priority changes where the priority is changed by their reporter or creator of

the bug. We assume that the rest of the priority changes were performed by project

leader, business analyst, or another developer. The lack of information to describe

the role or the profile of each of the team members is also an issue in the open-source

software and bug tracking systems. We note that there is no mechanism or approval

process by which project’s stakeholders can request the change and apply the change

to the bug report.

ö Key findings: Most priority changes get changed by various project’s stakeholders

starting from developers to team leaders and project managers.

ö Key findings: Bug tracking systems track the individuals who make the changes

on the priority but they lack the ability to:

t Restrict certain individuals to change the priority since they may not have the

required knowledge and expertise of the addressed bug.

t Capture profile or role information about project’s stakeholders.

5.3.3 RQ3: When does priority of a bug change?

Figure 5.8 shows that most of priority changes happen between the date in which

bug gets assigned to the developer and date before releasing a new version of the

software. Some answers claim that it is necessary to change the priority by the

project manager who is assigning them because each developer has their own tasks
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Figure 5.7: Survey Question: Who does change priority of a bug?

and therefore the priority should be tuned based on the type and the number of

tasks assigned to the developer. Other explanation comes from best practices of agile

methodology where they are advised to change the priority after scrum planning

sessions with the development and business teams.

Figure 5.8: When do you change, in general, the priority of bugs?

In the quantitative analysis on bug reports from open-source projects, we found

that the a bug’s priority changes 2 times on an average with minimum of one time

and maximum of 18 times. Interestingly, we found that a bug’s priority changes in a
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relatively short period of time with an average 15 days from releasing a new version

of the software. More surprisingly, we identified that there are about 44% of the bugs

where the priority has been changed twice—the first change is to lower the priority

and the second one is to reset it to the original priority of the bug. Thus, the bug’s

priority changes twice, once after developer or assignee reviews it, another time comes

in a short period after the release date. This bad practice should be avoided since

developers may tend to ship their code quickly with bugs in that some of them could

be critical.

ö Key findings: Most priority changes happen between the date when the bug

gets assigned to the developer and the date just before releasing new version of the

software.

ö Key findings: Bug tracking systems track the timestamp when changes have

happened but they lack the ability to:

t Lock the priority so that it cannot be changed after certain time or restrict

certain individuals to change the priority after it passes a period of time or

when it reaches certain status.

t Capture project’s milestones along with their due date.

To summarize, we collected all our findings in the survey and the results of quan-

titative analysis. The outcome is presented in Table 5.6 as 3-W model to show the

consolidated findings from both the survey and the quantitative analysis. We also

present a list of recommendations for any future improvements by industrial and re-

search communities. Therefore, we classified our findings and recommendations into

three different groups to answer each of our research questions.

The first group is designed to answer the first research question as to why does

the priority change. We found that the dependency of another bug could be one of
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the reasons besides some other obstacles that programmers encounter such as lack

of time, heavy workload, or tight schedule. Also, we identified some cases where

developers set incorrect priority for bug reports in which they are not knowledgeable

enough to do so. Another reasons could be related to business requirements where

they have to prioritize some bugs over other bugs considering the severity of the bugs.

Likewise, the priority may need to be changed if the bug report is considered to be a

hot-fix request and thus it needs to be tackled by the development team right away.

According to our quantitative analysis, we noticed that some projects do not have

any changes in priority due to the clarity of the description of the bug report, the

size of the project, or the size of the development team. Similarly, we found that the

changes in the priority of some bug reports are different than the priority of other bug

reports in the same project due to the category of the bug report such as security,

functionality, or user interface related bugs. Lastly, we noticed some cases where

the developers changed the priority by accident. As a recommendation, due to lack

of documentation upon changing the priority, we recommend that all bug tracking

systems should have the ability to track the changes in priority with an appropriate

documentation noted by the user who makes the change. Capturing such information

will help in priority predication process to accurately predicate the priority of bug

reports and therefore improve the bug triage process. Also, we recommend adapting

a standard in bug report documentation to avoid an ambiguity in the process.

The next group is focused to answer the second research question as to who changes

the priority. According to our findings from both the survey and the quantitative

analysis, we discovered that there is no rule on who is allowed or not allowed to

change a priority. We encounter several cases where developers, team leaders, or

project owners have the permission to change the priority without prior approval

process or team decision making. As a recommendation, we suggest that bug tracking

software should have the ability to prevent some users from changing the priority and
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doing so by knowing more about the team structure or hierarchy.

The last group is to answer the third research question as to when does a priority

change. We discovered that a priority gets changed anytime as long as the bug has

not been resolved. We have seen examples where it gets changed after the creation,

before assigning to the developer, after assigning to the developer, before or upon

closing the bug report. More importantly, we noticed that the priorities get changed

in the last phase of bug resolution—a short period of time just before closing the bug

report and set a resolution for it. We recommend that bug tracking systems should

be aware of project’s future releases, milestones, and the current bugs and features

pipeline targeted to the release. Subsequently, the bug tracking software should be

able to restrict certain users from changing the priority in a critical time to prevent

any delays in resolving the bug reports.

5.4 Threats to Validity

We want to acknowledge several threats to the validity of the paper such as the

factors that can bias our empirical study. These factors can be classified into three

categories: internal validity, construct internal, and external validity. Construct va-

lidity concerns the relation between the theory and the observation. Internal validity

concerns possible bias with the results obtained by our proposal. Finally, external va-

lidity is related to the generalization of observed results outside the sample instances

used in the experiment.

In our experiments, construct validity threats are related to the absence of similar

work that uses bug localization technique to generate a dependency graph among

several bug reports and therefore recommend those bugs in sequential order. For

that reason, we compared our proposal with different mono-objective formulations

that use one metric only like the score of bug priority. The developers were asked

to evaluate different systems using different tools. We did not allow developers to
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evaluate different tools on the same system. The developers were distributed among

the systems and tools based on their background/expertise to ensure almost the same

level for all systems and tools. When each developer is asked to evaluate one different

tool per system, we reduce the potential bias in the experiments since they are using

the tools for the first time and they are exploring each time a new system. Our

results show that the productivity has gotten better for the majority of our developers

regardless of their experience and skills set.

External validity refers to the fact that our survey has been conducted by 29

developers with a variety of skills and number of experience. Thus, we can affirm

that our results will hold its accuracy with a different set of developers with different

level of expertise or knowledge. Also, time collection was left to each individual

developer who manually noted the time they started and finished localizing a defect.

This could have resulted in introducing error as every developer performed differently.

Finally, External validity could be related to the type of projects we used in the

survey in which we used six different widely-used open-source systems belonging to

the different domains and with different sizes. However, we cannot assert that our

results can be generalized to other applications, other programming languages, and

to other practitioners.

Conclusion validity is concerned with the statistical relationship between the treat-

ment and the outcome. the parameter tuning of the different optimization algorithms

used in our experiments creates another internal threat that we need to evaluate in

our future work. The parameters’ values used in our experiments are found by trial-

and-error, which is commonly used in the SBSE community. However, it would be

an interesting perspective to design an adaptive parameter tuning strategy for our

approach so that parameters are updated during the execution in order to provide

the best possible performance.
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5.5 Conclusions

In this thesis, we used a combination of interviews, a survey, and bug reports

analysis to understand the changes in bugs priority and their rationale. We started

first with a set of interviews with practitioners to define a bugs priority change model.

Then, we performed a large online survey to gather the experiences of practitioners

with the rationale, frequency, and experiences of changing the priority of bugs. We

have also collected a large data-set of bugs priority change on open-source projects.

We looked into actions that happen in bug reports such as the date when prior-

ity changes happen, the reasons beyond changing the priority documented in the

comments, and the profile of the users who changed the priority. The quantitative

validation on this created data-set revealed several areas of improvements as discussed

in the implications section.

The outcomes of this empirical study can be used to build tools for automatically

validating the changes’ request of bugs priority. We are planning as part of our future

work to leverage machine learning to check and validate the bugs priority changes

submitted by developers based on the data-set collected in this study Almhana and

Kessentini (2020c).
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Study Description / Technique Used Have they ad-
dressed prior-
ity changes?

Yang et al. Yang
et al. (2014)

Extract and identify multi-feature
(e.g., Component, product, priority
and severity) from bug report

No

Tian et al. Tian
et al. (2013,
2015)

Use several factors such as temporal,
textual, author, related-report, sever-
ity, and product, to predict the priority
level of a bug report

No

Sharma et al.
Sharma et al.
(2012)

Use Support Vector Machine, Naive
Bayes, K-Nearest Neighbors and Neu-
ral Network in predicting the priority
of bugs

No

Kanwal et al.
Kanwal and
Maqbool (2010,
2012)

Propose a priority recommendation
module based on Näıve Bayes and Sup-
port Vector Machine.

No

Yu et al. Yu
et al. (2010)

Utilize neural network techniques to
predict the priorities of bugs

No

Alenezi et al.
Alenezi and
Banitaan (2013)

Present an approach to use different
machine learning algorithms namely
Naive Bayes, Decision Trees, and Ran-
dom Forest

No

Kumari et al.
Kumari and
Singh (2018)

Build classifiers using machine learning
and Näıve Bayes and Deep Learning
techniques

No

Table 5.2: Summary of previous studies about bug priority predictions.
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Question# Survey question Research Question
/ Intention

1 What is your highest level of education
related to Computer Science?

Background Informa-
tion

2 What is your current occupation?

3 How many years have you worked with
software?

4 Why do you change bug’s priority? Why does the priority
of the bug change?

5 Do you leave a comment about the ra-
tionale when you change bug’s priority?

6 What are the attributes that you
change when you change bug’s prior-
ity?

7 Do you consider bug’s priority to man-
age your workload?

8 When do you change, in general, the
priority of bugs?

When does the prior-
ity of the bug change?

9 Is there any approval process or pol-
l/vote mechanism to check your change
of bug’s priority?

10 Who does change bug’s priority? Who does change the
priority of the bug?

11 Do you change the priority of bugs?

12 How many times do you change, in gen-
eral, the priority per bug?

Table 5.3: The traceability between our research questions and survey questions
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Project
Name

#Bugs #Comments #Commits #Versions

Eclipse
Plat-
form

118309 761180 8190 5201

BIRT 23270 111178 41290 437

AspectJ 3049 16666 46910 112

JDT 59780 367172 24222 5723

Buildship 482 2304 3314 37

JGit 1351 7254 7655 174

openj9 9 36 41948 42

PDT 6062 31580 9490 487

TCF 1238 5896 4830 28

SW360 2 5 512 12

Antenna 2 4 773 28

Hawkbit 2 2 2267 21

Californium 61 212 1927 32

Kapua 4 13 4078 24

GEF 3167 14612 5113 7

Ditto 2 2 4343 19

Vorto 160 467 1987 31

Titan 563 1857 8237 15

Jetty 3813 16661 66427 340

BPEL 386 1341 1047 9

e4 3788 21057 993 1122

Milo 1 1 759 24

Che 31 96 8372 163

OMR 2 12 8076 1

Table 5.4: List of studied projects along with the number of bugs, comments, Github
commits, and releases
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Example# Bug ID Project Comment

1 150807,
151061

JDT Downgrading priority since we
will probably not have time for
this.

2 33897,
34076,
35075

Eclipse
Plat-
form

There are no plans for the UI
team to work on this defect un-
til higher priority items are ad-
dressed.

3 217891,
233481

JDT Ownership has changed for the
javadoc comments bugs, but I
surely will not have enough time
to fix your bug during the 3.5 de-
velopment process,

4 151612,
170140

Eclipse
Plat-
form

Lowering priority to better match
reality.

5 75829 Eclipse
Plat-
form

My apology, I inadvertently
changed the priority when I
changed the severity, I’m chang-
ing it back now.

6 50888,
52115

JDT Resetting priority to P3. Will be
reassessed for the next release.

7 191927 BIRT Firefox hasn’t fix this bug yet.
Set the priority to p5.

8 21652 Eclipse
Plat-
form

Lowering priority to P2 (P1
means that this is a ”stop-ship”
bug report)

Table 5.5: Developers’ comments from several open source software regarding the
changes on the priority of the bug.
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Research
Question

Findings Recommendations

Why does the
priority of a bug
change?

t The dependency of an-
other bug’s fix
t Incorrect priority
t Heavy workload /Tight
schedule
t Category of bug report
t Hot-fix request
t Business requirements
t Type of project
t On accident

Å Bug tracking systems
should have the ability to
document the reasons of
changing priority
Å Priority predication sys-
tems should rely on prior-
ity changes to improve their
predication model
Å Standardize documen-
tation methods based on
different projects’ domains
and bugs’ categories

Who does
change priority
of a bug?

t Stakeholders including
developers, team leaders,
project owners

Å Bug tracking systems
should have the ability to
restrict certain users from
changing the priority if they
don’t have permissions to
do so.
Å Bugs tracking systems
should be aware of team
structure and the role of
each stakeholder.

When does pri-
ority of a bug
change?

t Priority changes happen
between the date the bug
gets assigned to the devel-
oper and date before releas-
ing new version of the soft-
ware.

Å Bugs tracking systems
should prevent stakehold-
ers from changing the prior-
ity unnecessarily if the bug
milestone is close to the re-
lease date or if the bug in
active or pending status.
Å Bugs tracking systems
should be aware of project’s
milestones and timelines.

Table 5.6: 3-W Model Findings and Recommendations
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CHAPTER VI

Conclusion

6.1 Summary and Future Work

The main contributions of the proposed work can be summarized as follows:

• We propose an automated approach to localize and rank potential relevant

methods for bug reports as an extension of our previous work limited to class

level recommendations. Our approach finds a trade-off between minimizing the

number of recommended methods and maximizing the correctness of the pro-

posed solution using a hybrid multi-objective algorithm. The correctness of the

recommended methods is estimated based on the use of the history of changes

and bug-fixing, and the lexical similarity between the bug report description

and the API documentation. Our approach uses the main steps, the first step

finds the best set of classes satisfying the two conflicting criteria of relevance

and number of classes to recommend using a global search based on NSGA-II.

The second step is to locate the most appropriate methods to inspect, using a

local multi-objective search based on Simulated Annealing (MOSA) from the

list of classes identified in the first step.

• We propose an approach for bugs management by taking into consideration

both the severity and dependencies between reports. Our solution is based on
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the use of multi-objective search to find a trade-off between these two conflicting

objectives. The validation of our work shows that there were significant time

savings when developers inspected bugs comparing to existing methods treating

each bug individually as first come first serve or relaying on priority scores only.

• we use a combination of interviews, a survey, and bug reports analysis to un-

derstand the changes in bugs priority and their rationale. We started first with

a set of interviews with practitioners to define a bugs priority change model.

Then, we performed a large online survey to gather the experiences of practi-

tioners with the rationale, frequency, and experiences of changing the priority

of bugs.

As part of our future work, we envision the extension of this approach to improve

the bugs management process by recommending developers to be assigned for bugs

based on their background and prior expertise. The users can interact more with the

suggested recommendations in order to update the assignments. On the other hand,

we are planning as part of our future work to leverage machine learning to check and

validate the bugs priority changes submitted by developers.

6.2 Publications List

• Rafi Almhana, Wiem Mkaouer, Marouane Kessentini, Ali Ouni: Recommend-

ing relevant classes for bug reports using multi-objective search. ASE 2016

conference, acceptance rate 16% : 286-295, IEEE

• Almhana, R., Ferreira, T., Kessentini, M. and Sharma, T., 2020, September.

Understanding and Characterizing Changes in Bugs Priority: The Practitioners’

Perceptive. In 2020 IEEE 20th International Working Conference on Source

Code Analysis and Manipulation (SCAM) (pp. 87-97), acceptance rate 24%.

IEEE
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• Almhana, R., Kessentini, M. and Mkaouer, W., 2020. Method-Level Bug Local-

ization Using Hybrid Multi-objective Search. Information and Software Tech-

nology Journal, Volume 131, 32 pages, Elsevier, Impact Factor 2.73

• Almhana, R. and Kessentini, M., 2020. Detecting Dependencies Between Bug

Reports to Improve Bugs Triage. Automated Software Engineering Journal, 26

pages, to appear, Impact Factor 1.97
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Dreyton, D., A. A. Araújo, A. Dantas, R. Saraiva, and J. Souza (2016), A multi-
objective approach to prioritize and recommend bugs in open source repositories,
in International Symposium on Search Based Software Engineering, pp. 143–158,
Springer.

Dumais, S. T. (2004), Latent semantic analysis, Annual review of information science
and technology, 38 (1), 188–230.

Easterbrook, S., J. Singer, M.-A. Storey, and D. Damian (2008), Selecting empirical
methods for software engineering research, in Guide to advanced empirical software
engineering, pp. 285–311, Springer.

Emmerich, M. T., and A. H. Deutz (2018), A tutorial on multiobjective optimization:
fundamentals and evolutionary methods, Natural computing, 17 (3), 585–609.

Enslen, E., E. Hill, L. Pollock, and K. Vijay-Shanker (2009), Mining source code to
automatically split identifiers for software analysis, in Mining Software Reposito-
ries, 2009. MSR’09. 6th IEEE International Working Conference on, pp. 71–80,
IEEE.

Fischer, M., M. Pinzger, and H. Gall (2003), Analyzing and relating bug report data
for feature tracking, in WCRE, vol. 3, p. 90.

Geng, J., S. Ying, X. Jia, T. Zhang, X. Liu, L. Guo, and J. Xuan (2018), Supporting
many-objective software requirements decision: An exploratory study on the next
release problem, IEEE Access, 6, 60,547–60,558.

Ghannem, A., M. Kessentini, and G. El Boussaidi (2011), Detecting model refactoring
opportunities using heuristic search, in Proceedings of the 2011 Conference of the
Center for Advanced Studies on Collaborative Research, pp. 175–187.

Ghannem, A., G. El Boussaidi, and M. Kessentini (2014), Model refactoring using
examples: a search-based approach, Journal of Software: Evolution and Process,
26 (7), 692–713.

Goyal, N., N. Aggarwal, and M. Dutta (2015), A novel way of assigning software
bug priority using supervised classification on clustered bugs data, in Advances in
Intelligent Informatics, pp. 493–501, Springer.

Guo, P. J., T. Zimmermann, N. Nagappan, and B. Murphy (2010), Characteriz-
ing and predicting which bugs get fixed: an empirical study of microsoft win-
dows, in Proceedings of the 32Nd ACM/IEEE International Conference on Software
Engineering-Volume 1, pp. 495–504.

123



Harman, M., and B. F. Jones (2001), Search-based software engineering, Information
and software Technology, 43 (14), 833–839.

Harman, M., S. A. Mansouri, and Y. Zhang (2012), Search-based software engineer-
ing: Trends, techniques and applications, ACM Computing Surveys (CSUR), 45 (1),
11.

Henard, C., M. Papadakis, and Y. Le Traon (2014), Mutation-based generation of
software product line test configurations, in International Symposium on Search
Based Software Engineering, pp. 92–106, Springer.

Hilton, M., N. Nelson, T. Tunnell, D. Marinov, and D. Dig (2017), Trade-offs in
continuous integration: assurance, security, and flexibility, in Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering, pp. 197–207.

Huang, Q., D. Lo, X. Xia, Q. Wang, and S. Li (2017), Which packages would be af-
fected by this bug report?, in 2017 IEEE 28th International Symposium on Software
Reliability Engineering (ISSRE), pp. 124–135, IEEE.

Jones, J. A. (2008), Semi-automatic fault localization, Ph.D. thesis, Georgia Institute
of Technology.

Kanwal, J., and O. Maqbool (2010), Managing open bug repositories through bug
report prioritization using svms, in Proceedings of the International Conference on
Open-Source Systems and Technologies, Lahore, Pakistan, pp. 22–24.

Kanwal, J., and O. Maqbool (2012), Bug prioritization to facilitate bug report triage,
Journal of Computer Science and Technology, 27 (2), 397–412.

Keller, A. A. (2019), Multi-Objective Optimization in Theory and Practice II: Meta-
heuristic Algorithms, Bentham Science Publishers.

Kessentini, M., and A. Ouni (2017), Detecting android smells using multi-objective
genetic programming, in 2017 IEEE/ACM 4th International Conference on Mobile
Software Engineering and Systems (MOBILESoft), pp. 122–132, IEEE.

Kessentini, M., A. Bouchoucha, H. Sahraoui, and M. Boukadoum (2010), Example-
based sequence diagrams to colored petri nets transformation using heuristic search,
in European Conference on Modelling Foundations and Applications, pp. 156–172,
Springer, Berlin, Heidelberg.

Kessentini, M., P. Langer, and M. Wimmer (2013a), Searching models, modeling
search: On the synergies of sbse and mde, in 2013 1st International Workshop
on Combining Modelling and Search-Based Software Engineering (CMSBSE), pp.
51–54, IEEE.

Kessentini, M., R. Mahaouachi, and K. Ghedira (2013b), What you like in design use
to correct bad-smells, Software Quality Journal, 21 (4), 551–571.

124



Kumari, M., and V. Singh (2018), An improved classifier based on entropy and deep
learning for bug priority prediction, in International Conference on Intelligent Sys-
tems Design and Applications, pp. 571–580, Springer.

Lam, A. N., A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen (2017), Bug localization
with combination of deep learning and information retrieval, in 2017 IEEE/ACM
25th International Conference on Program Comprehension (ICPC), pp. 218–229,
IEEE.

Lamkanfi, A., S. Demeyer, E. Giger, and B. Goethals (2010), Predicting the severity
of a reported bug, in Mining Software Repositories (MSR), 2010 7th IEEE Working
Conference on, pp. 1–10, IEEE.

Lamkanfi, A., S. Demeyer, Q. D. Soetens, and T. Verdonck (2011), Comparing mining
algorithms for predicting the severity of a reported bug, in 2011 15th European
Conference on Software Maintenance and Reengineering, pp. 249–258, IEEE.

Li, Z., L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai (2006), Have things changed
now?: an empirical study of bug characteristics in modern open source software, in
Proceedings of the 1st workshop on Architectural and system support for improving
software dependability, pp. 25–33, ACM.

Liblit, B., A. Aiken, A. X. Zheng, and M. I. Jordan (2003), Bug isolation via remote
program sampling, in ACM Sigplan Notices, vol. 38, pp. 141–154, ACM.

Loyola, P., K. Gajananan, and F. Satoh (2018), Bug localization by learning to rank
and represent bug inducing changes, in Proceedings of the 27th ACM International
Conference on Information and Knowledge Management, pp. 657–665, ACM.

Lukins, S. K., N. A. Kraft, and L. H. Etzkorn (2010), Bug localization using latent
dirichlet allocation, Information and Software Technology, 52 (9), 972–990.

Mansoor, U., M. Kessentini, P. Langer, M. Wimmer, S. Bechikh, and K. Deb (2015),
Momm: Multi-objective model merging, Journal of Systems and Software, 103,
423–439.

Nguyen, A. T., T. T. Nguyen, J. Al-Kofahi, H. V. Nguyen, and T. N. Nguyen (2011),
A topic-based approach for narrowing the search space of buggy files from a bug
report, in Proceedings of the 2011 26th IEEE/ACM International Conference on
Automated Software Engineering, pp. 263–272, IEEE Computer Society.
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