

Influence of Rain on Vision-Based Algorithms in the Automotive Domain

by

Yazan F. Hamzeh

A dissertation submitted in partial fulfillment

 of the requirements for the degree of

Doctor of Philosophy

(Electrical and Computer Engineering)

in the University of Michigan-Dearborn

2021

Doctoral Committee:

Associate Professor Samir A. Rawashdeh, Chair

Assistant Professor Abdallah Chehade

Assistant Professor Jaerock Kwon

Assistant Professor Alireza Mohammadi

Yazan F. Hamzeh

yhamzeh@umich.edu

ORCID ID: 0000-0002-0795-1429

© Yazan F. Hamzeh 2021

ii

Dedication

I would like to dedicate this dissertation

to my wife Eman, who was forever supportive of me while pursuing my dream and took over more

than her fair share of responsibility, to keep our small family going.

to my daughter Zeina and son Jude, who were anxious about concluding my journey. We made it

kids!

to my mother Nabiha, who taught me by example that perseverance was the only sure way to

achieve your goal, no matter how hard the circumstances were. Thank you, Dr. Faraj.

iii

Acknowledgments

I would like to thank Dr. Samir Rawashdeh for his excellent guidance and support throughout

my research work. I sincerely thank my dissertation committee, In alphabetical order: Dr.

Abdallah Chehade, Dr. Jaerock Kwon, and Dr. Alireza Mohammadi, for their valuable time and

advice. Special Thanks to Amanda Donovan and Michael Hicks for all the administrative support

you provided over the years.

iv

Table of Contents

Dedication ... ii

Acknowledgments.. iii

List of Tables ... ix

List of Figures .. xi

Abstract ... xvii

Chapter 1 Introduction ... 1

1.1 Motivation .. 1

1.2 Falling Rain Simulation ... 2

1.3 Falling Rain De-Raining Algorithm ... 2

1.4 Adherent Raindrop Simulator .. 3

1.5 The Correlation Between Image Quality and The Performance of Target Vision

Algorithm ... 3

Chapter 2 Background ... 4

2.1 Image Processing Techniques .. 4

2.1.1 Image Blurring .. 4

2.1.2 Blob Detection .. 6

2.1.3 Depth Estimation ... 8

2.1.4 Brightness Adjustment .. 10

2.1.5 Barrel Effect Removal ... 11

2.1.6 Image Inpainting ... 13

v

2.2 Image Quality Metrics .. 16

2.2.1 Mean Square Error .. 16

2.2.2 Peak Signal-To-Noise Ratio .. 18

2.2.3 Least Absolute Deviations and Least Squares Error ... 20

2.2.4 Normalized Cross-Correlation .. 21

2.2.5 Structural Similarity Index .. 22

2.2.6 Earth Movers Distance .. 24

2.3 Model Performance Metrics ... 27

2.3.1 Precision Metric .. 28

2.3.2 Recall Metric ... 28

2.3.3 Accuracy Metric .. 28

2.3.4 Dice Coefficient .. 29

2.3.5 Jaccard Index ... 29

2.3.6 Average Precision (AP) ... 31

Chapter 3 Rain Detection and Removal Techniques ... 33

3.1 Introduction .. 33

3.2 Summary .. 34

3.3 Conclusion .. 40

Chapter 4 Framework For Simulating and Removing Rain in Stereo-Image Videos 42

4.1 Introduction .. 42

4.2 Rain Simulation Model .. 43

4.2.1 Method .. 43

4.2.2 Experiments and Results ... 52

4.3 Rain Detection and Removal Model .. 54

vi

4.3.1 Method .. 54

4.3.2 Experiments and Results ... 56

4.4 Conclusion .. 61

Chapter 5 Effect of Adherent Rain on Vision-Based Object Detection Algorithms 62

5.1 Introduction .. 62

5.2 Method ... 63

5.2.1 Data Set ... 63

5.2.2 Detection Algorithms .. 65

5.2.3 Quality Metrics .. 66

5.3 Experiments and Results .. 67

5.3.1 Image Quality Test Results ... 67

5.3.2 Object Detection Test Results ... 69

5.3.2.1 SSD Results ... 71

5.3.2.2 Faster R-CNN Results ... 74

5.3.2.3 YOLOv3 Results ... 77

5.4 Analysis and Discussion... 80

5.5 Conclusion .. 81

Chapter 6 Dynamic Adherent Raindrop Simulator for Automotive Vision Systems.............. 83

6.1 Introduction .. 83

6.2 Method ... 84

6.2.1 Data Collection .. 84

6.2.2 Quality Metrics .. 85

6.3 Adherent Rain Simulator .. 85

6.3.1 Select Raindrop Shape, Size, and Position.. 88

vii

6.3.2 Applying Lens Distortion .. 89

6.3.3 Blurring, Resizing, Rotating ... 90

6.3.4 Adding Raindrop to Image .. 91

6.3.5 Capturing Adherent Raindrop Dynamics .. 91

6.4 Results and Analysis .. 93

6.4.1 Detection Confidence Level Versus Image Degradation Level 95

6.4.2 Precision and Recall Metrics Versus Image Degradation Level 100

6.4.3 Comparative Analysis ... 102

6.5 Conclusion .. 104

Chapter 7 Improving the Performance of Automotive Vision-based Applications Under

Rainy Conditions .. 108

7.1 Introduction .. 108

7.2 Method ... 109

7.3 Data Collection and Data Preprocessing .. 111

7.3.1 Object Detection Datasets ... 111

7.3.2 Image Segmentation Datasets ... 114

7.4 Models Training Process and Testing .. 116

7.4.1 The Object Detection Model ... 116

7.4.1.1 Baseline Model Setup and Training .. 116

7.4.1.2 Train the Automotive-specific Object Detector .. 117

7.4.1.3 Train the Rain-free Object Detector .. 118

7.4.1.4 Train the Rained Object Detector .. 121

7.4.2 The Image Segmentation Model ... 122

7.4.2.1 Baseline Model Setup and Training .. 122

viii

7.4.2.2 Testing the Baseline_Segmentation_DNN Model with Rained and De-

Rained Datasets .. 125

7.4.2.3 Retraining the Baseline_Segmentation_DNN ... 128

7.5 Results and Analysis .. 130

7.6 Conclusion .. 134

Chapter 8 Conclusions ... 136

8.1 Dissertation Summary .. 136

8.2 Limitations and Future Work ... 138

8.2.1 Falling Rain Streaks Simulator ... 138

8.2.2 Falling Rain Detection and Removal .. 139

8.2.3 Adherent Raindrop Simulator ... 139

8.2.4 Using Relearning to Improve Performance of DNN-Based Vision Algorithms140

 References .. 141

ix

List of Tables

Table 2-1: Properties of ℓ1 versus ℓ2 loss functions.. 21

Table 2-2: Similarity metric results for the binary classifier example.. 31

Table 3-1: Raindrop models.. 35

Table 3-2: Raindrop detection - classical approaches... 35

Table 3-3: Raindrop-degraded image recovery. ... 37

Table 3-4: Deep learning and CNN approach to image de-raining. .. 38

Table 5-1: The correlation coefficient between image quality and detection performance for

different data series, using the SSD object detector. .. 74

Table 5-2: The correlation coefficient between image quality and detection performance for

different data series, using the Faster R-CNN object detector. ... 77

Table 5-3: The correlation coefficient between image quality and detection performance for

different data series, using the YOLOv3 object detector. ... 80

Table 6-1: Calibration parameters for generating simulated raindrops for each image frame 89

Table 6-2: Correlation is calculated between detection confidence and image quality for real and

simulated rained images. Comparable correlation scores for real and simulated rained image

objects. Some objects show weak to no correlations. ... 99

Table 6-3: Correlation is calculated between detection confidence and image quality for real and

simulated rained images. Comparable correlation scores for real and simulated rained image

objects. Some objects show weak to no correlations. ... 101

Table 6-4: Mean and standard deviation of object detection confidence levels show statistical

similarity of results under real and simulated rain datasets. ... 104

Table 6-5: Mean and standard deviation of object detection recall scores show statistical

similarity of results under real and simulated rain datasets. ... 104

x

Table 7-1: Differences between input denoising and network retraining approaches for

improving vision system performance .. 110

Table 7-2: A list of the datasets used in our research for training and testing the object detection

and segmentation networks ... 116

Table 7-3: The average precision and log-average miss rate scores, as calculated for the five

object classes in the automotive-domain object detector. Larger average precision scores and

smaller log-average miss rate scores are desirable for better detection performance. 118

Table 7-4: The average precision and log-average miss rate scores, as calculated for the three

object classes in the rain-free object detector. As shown in the table, there is a big degradation in

detection performance when using rained images, and an even larger degradation when de-rained

images are used. .. 119

Table 7-5: The average precision and log-average miss rate scores, as calculated for the three

object classes in the rained object detector. As shown in the table, this retrained detector seems to

perform as well as the rain-free detector that is trained and tested on rain-free images............. 122

Table 7-6: The average precision and log-average miss rate scores, as calculated for the three

object classes in the rained object detector. As shown in the table, this retrained detector seems to

perform as well as the rain-free detector when tested with rain-free images. 122

Table 7-7: The Accuracy, IoU, and MeanBFScore segmentation quality metrics are shown for

the classes that are identifiable by the baseline model across all images in the rain-free test

dataset ... 125

Table 7-8: Segmentation quality of the baseline model when tested with the rained image set.

Noticeable drop in segmentation quality between rain-free and rained segmentation test, as

shown by the three segmentation quality metrics. .. 126

Table 7-9: The segmentation quality metrics show lower performance of the rain-free (baseline)

segmentation model with the de-rained dataset than that under rained dataset. Performance drop

was highest for “sky” and “vehicle” classes and the least drop was observed for the “road” class

... 128

Table 7-10: The segmentation performance metrics show that the retrained segmentation model

performs on the rained dataset at levels comparable to the performance of the rain-free

segmentation model that is tested with the clear dataset. ... 129

Table 7-11: Testing the retrained rained segmentation model shows no degradation in

performance over the original rain-free segmentation model, both tested on the same rain-free

dataset. .. 130

xi

List of Figures

Figure 2-1: The blurred image (right) is created by applying a blurring effect using a 2D

Gaussian filter with a standard deviation of 4.5 to the original image (left). Sharp edges are

smoothed out, which can be noticed on the traffic sign text becoming unreadable in the blurred

image. .. 5

Figure 2-2: On-board cameras are equipped with optics that create focused images of far objects

in the environment. Light rays from closer images are projected to the image plane on a disk,

commonly known as the blur circle or disk of confusion. .. 6

Figure 2-3: Starting with a rainy image (top left), blob detection is used to identify blobs in the

image (top right). An ellipse that best contains the blobs is identified and the aspect ratio of its

major-to-minor axes is used to eliminate non-rain streak blobs (bottom left). Ellipse orientation is

finally used to eliminate more blobs that do not satisfy the rain streak orientation constraint

(bottom right). ... 8

Figure 2-4: The position disparity of scene points as captured on stereo camera image planes can

be used to estimate the distance to scene points. Distance is inversely related to disparity

measure, meaning that further scene points exhibit smaller disparity than closer ones to the

cameras ... 9

Figure 2-5: Some techniques to adjust the brightness of the image (top left) include adding a

fixed bias (top right), using histogram equalization (bottom left), and intensity remapping

(bottom right). ... 11

Figure 2-6: The original image (top) is captured using rectilinear lenses. The fisheye image

(middle) is captured using a captured with a wide-angle lens. Using a long-range lens causes

pincushion distortion (bottom) .. 12

Figure 2-7: For a rainy image (top), the raindrop detection algorithm identifies areas of a

raindrop in the image (middle). Image inpainting is then used to restore the image, effectively

removing rain from the image (bottom).. 15

Figure 2-8: A Clear Image (top) is corrupted with 'salt and pepper' noise (middle) and 'speckle'

noise (bottom). .. 17

Figure 2-9: A Clear Image (top) is corrupted with 'salt and pepper' noise (middle) and ‘Gaussian’

noise (bottom). .. 19

xii

Figure 2-10: When comparing an image to itself (top left), MSE =0, PSNR=infinity, and SSIM

=1, as expected. MSE and PSNR scores, however, are not aligned to human perception of image

quality, unlike SSIM. .. 24

Figure 2-11: The EMD metric can be used to track the progression of image quality with

increased/decreased noise in a series (top left to bottom left or top right to bottom right). It is not,

however, used the measure image degradation between different images qualitatively (left to

right). ... 26

Figure 2-12: A binary classifier tries to determine if a sample belongs to the diamond shape or

not. .. 30

Figure 2-13: AP score was originally calculated as simply the Area Under the Curve that

represents the precision as a function of the recall. To eliminate the fluctuations in the precision

values, the precision at any point with recall r is set to the maximum precision value of points to

the right of it (r’>=r). As shown in the plot above, the (new) AP score is different from the

original AP score that was calculated as the AUC. .. 32

Figure 4-1: Ideally, the size of an object projection in an image is inversely proportional to the

distance of that object from the camera image plane .. 44

Figure 4-2: Left/ Right image pairs captured with the Zed camera under clear and overcast

weather conditions. ... 45

Figure 4-3: Semi-Global matching generates smoother, continuous .. 46

Figure 4-4: Disparity is calculated as the difference between distances of the matching pixels in

the left and right images from the epipoler plane. The epipoler plane is the plane connecting the

left and right image origins (O, O’) and scene point X. ... 47

Figure 4-5: The Disparity map (c) is generated for the left (a) and right (b) image pair 49

Figure 4-6: Based on the disparity map (b) generated for the scene image pair in (a), rain streak

masks are randomly generated. Masks representing nearby planes show longer and less dense

streaks (d), compared to shorted and more dense streaks for farther planes (c) 50

Figure 4-7: The falling rain simulator generates rained images (c), (d) from clear images (a), (b).

The rain streaks in the left and right rained images are matched according to the disparity map

generated for the original clear images. .. 52

Figure 4-8: Our generated rained image versus the KITTI one. The rain streaks in our image are

closer to real rain streaks but the KITTI data set was captured under overcast conditions, which

made their final images with generated rain visually convincing. .. 54

Figure 4-9: Rain candidates are generated based on brightness levels only. Aspect ratio

constraints and orientation constraints eliminate “fake” rain pixels. .. 56

xiii

Figure 4-10: Left: Rained, De-rained, and Rain-free Images with light Intensity falling rain (a, b,

and c). Right: Rained, De-rained, and Rain-free Images with medium Intensity falling rain (d, e,

and f). .. 58

Figure 4-11: SSIM scores for rained and de-rained images against clear ones, in both low and

medium-intensity rain datasets, show that the quality de-rained image in most frames was better

than the rained one, identified by a higher SSIM score. ... 59

Figure 4-12: PSNR scores for rained and de-rained images against clear ones do not give a

conclusive indication of image quality improvement due to removed rain streaks. 60

Figure 5-1:Section of the mapped track of test drive cycles. .. 64

Figure 5-2: Clear and rained image set from the Moving Vehicle dataset 65

Figure 5-3:Clear and rained image set from the Parked Vehicle dataset 65

Figure 5-4: SSIM measure for image quality using moving vehicle series, during the windshield

wiping event .. 69

Figure 5-5: SSIM measure for image quality using Parked vehicle series, during the windshield

wiping event .. 69

Figure 5-6: Calculating IoU scores for two different bounding boxes to the same detected object.

If NMS = 0.25, then Box 1 would be used rather than Box 2 .. 70

Figure 5-7: More objects are detected using SSD in the clear image (a and c) than in the rained

image (b and d). Moreover, some misclassifications are found in the rained image (d). For

detected objects, detection confidence in the rained images is lower than that in the clear images.

... 72

Figure 5-8: Applying SSD on parking lot series, we observe a clear trend of increasing Recall

values with increased SSIM Score (a). In addition, the number of detected objects is almost

constant from one frame to the other in the clear image dataset but fluctuates a lot in the rained

image dataset (b). .. 73

Figure 5-9: More objects are detected using Faster R-CNN in the clear image (a and c) than in

the rained image (b and d). For detected objects, detection confidence in the rained images is

lower than that in clear ones. .. 75

Figure 5-10: Applying Farter R-CNN on parking lot series, we observe a clear trend of

increasing Recall values with increased SSIM Score (a). In addition, the number of detected

objects is almost constant from one frame to the other in the clear image dataset but fluctuates a

lot in the rained image dataset (b). .. 76

Figure 5-11: More objects are detected using YOLOv3 in the clear image (a and c) than in the

rained image (b and d). For detected objects, detection confidence in the rained images is lower

than that in clear ones. .. 78

xiv

Figure 5-12: Applying YOLOv3 on the parking lot series, we observe a clear trend of increasing

Recall values with increased SSIM Score (a). In addition, the number of detected objects is

almost constant from one frame to the other in the clear image ... 79

Figure 6-1: Example of captured image sets, clear(a) and wet (b). .. 85

Figure 6-2: Main stages of raindrop generation include image preprocessing, barrel (fisheye)

transformation, raindrop image processing, brightness adjustment, and blurring and edge

smoothing. ... 87

Figure 6-3: Adherent raindrops can come in different shapes, sizes, and orientations. Photo by

Good Stock Photos. ... 88

Figure 6-4: Starting with a clear image frame (a), the simulator generates arbitrary values for

simulated raindrop location, size, and orientation (b). .. 89

Figure 6-5: Applying translational transformation on an image produces the barrel effect (a). The

distorted region is blurred, resized, and rotated to match desired raindrop characteristics (b). ... 90

Figure 6-6: Generated raindrops are added to a clear image (top) that matches real raindrops of

the same scene, captured under rainy conditions (bottom). Each raindrop pair (real, generated) is

encapsulated with an ellipse of the same color. Real and generated raindrops are visually very

similar, as perceived by a human observer. .. 92

Figure 6-7: Similarity between individual Real and Simulated raindrops is measured using EMD

(top) and SSIM (bottom) metrics and the histograms of scores calculated for each metric. The

figure shows a strong similarity between the real and generated raindrops 94

Figure 6-8: Using EMD (a) and SSIM (b) as similarity measures of real rained image and clear

image with simulated rain added shows a clear trend towards improving similarity, with the

addition of simulated raindrops. Lower EMD scores and higher SSIM scores both mean

increased similarity levels between compared images. .. 95

Figure 6-9: Objects are detected in real (a) and simulated rained images (b), with different

confidence levels (using YOLOv3). Bigger objects are detected with higher confidence levels

than smaller ones. The detectors order the detected objects according to their detection

confidence levels. .. 97

Figure 6-10: Detection Confidence level of Object #2 increases with decreased image

degradation in both real and simulated rain images. The mean of sample detection confidence

levels (center of error bars) has a strong correlation to image quality. ... 98

Figure 6-11: For small objects in the image (e.g., Object #10), the detection confidence level is

low, even at low image degradation levels. The correlation between detection confidence and

image quality is also weaker than larger and brighter objects in the same image (e.g., Object #2).

... 99

xv

Figure 6-12: Histograms of correlation of detection confidence and image quality for both real

(left) and simulated (right) rained images show the strongest correlation levels under both real

and simulated rain. Only a few objects had weak correlation, and around half the objects showed

relatively strong correlation levels (above 0.5)... 100

Figure 6-13: Calculating the recall score of detected objects over all captured frames of rained

images, with different rain intensities, shows a trend of decreased recall score with increased

image quality, represented by the EMD similarity score. As the degradation in image quality

increases, objects are detected less often, and recall score correlation to image quality becomes

weaker. .. 101

Figure 6-14: Images with raindrops that were generated by the ray-tracing method (left) and our

method (right). Our model generates raindrops with more varieties in size, shape, and orientation

compared to the ray-tracing model. The transparency levels in our generated raindrops are closer

to that of real drops and are generally lower than that of raindrops generated by the ray-tracing

model... 103

Figure 6-15: Examples of Clear, Real, and randomly generated raindrop images from our

dataset. rain intensity ranges from light (set 1) to relatively heavy (set 4). The generated

raindrops are perceptually convincing to a human observer. ... 107

Figure 7-1: Image samples from the different datasets we used in our research work. The KITTI

dataset was captured under clear weather conditions, whereas our dataset was captured under

rainy conditions. .. 113

Figure 7-2: Datasets used for training and testing the image segmentation network. KITTI

Semantic and Instance Segmentation Evaluation dataset, (a) and (b) is used to train the baseline

segmentation network. We added an overcast effect and generated rain to the image sets in (c)

and (d) to train and test the segmentation network under rainy conditions. 115

Figure 7-3: A Flow diagram showing the different YOLOv3 model training stages and the

training dataset used in each stage .. 117

Figure 7-4: An example of the output of the Yolov3 detector that was trained in stage 1. The

objects are identified with a bounding box, with a class tag and detection confidence level shown

for each object. .. 118

Figure 7-5: An example of the output of the Yolov3 detector that was trained in stage 2 using

clear, rained, and de-rained datasets. The objects are identified with a bounding box, with a class

tag and detection confidence level shown for each object. Not much rain content was removed by

the de-raining algorithm and no detection performance improvement in the de-rained image

compared to the rained one. .. 120

Figure 7-6: The process for training the rained semantic segmentation model. Starting with a pre-

trained DeepLapv3+ network, we train the model on a dataset that is more specific to automotive

domain applications. We then retrain the segmentation model with simulated-rain images, to

improve system robustness to rain-induced image degradation. .. 123

xvi

Figure 7-7: The confusion matrix shows the percentage of correct and incorrect segmentation of

all classes supported by the segmentation model. The diagonal cells represent the percentage of

correct class segmentation, and the off-diagonal cells represent the percentage of incorrect

segmentation of the pixels of a given class as belonging to another class. 125

Figure 7-8: The confusion matrix shows a drop in the correct segmentation percentage and an

increase in incorrect segmentation percentage across all classes. The “person” class shows the

largest percentage drop since its relatively small size makes it more susceptible to the presence

of raindrops in the image. ... 127

Figure 7-9: the confusion matrix for class segmentation results shows that only "background"

and "road" classes still show more correct than incorrect segmentation under de-rained dataset

and rain-free segmentation model mix. It also shows that the “background” class contributed to

the most percentage of incorrect classifications. .. 128

Figure 7-10: Testing the retrained rained segmentation model with a real rain dataset shows that

A higher percentage of pixels are correctly segmented for each class than incorrectly segmented.

... 129

xvii

Abstract

The Automotive domain is a highly regulated domain with stringent requirements that

characterize automotive systems’ performance and safety. Automotive applications are required

to operate under all driving conditions and meet high levels of safety standards. Vision-based

systems in the automotive domain are accordingly required to operate at all weather conditions,

favorable or adverse. Rain is one of the most common types of adverse weather conditions that

reduce quality images used in vision-based algorithms. Rain can be observed in an image in two

forms, falling rain streaks or adherent raindrops. Both forms corrupt the input images and

degrade the performance of vision-based algorithms. This dissertation describes the work we did

to study the effect of rain on the quality images and the target vision systems that use them as the

main input. To study falling rain, we developed a framework for simulating failing rain streaks.

We also developed a de-raining algorithm that detects and removes rain streaks from the images.

We studied the relation between image degradation due to adherent raindrops and the

performance of the target vision algorithm and provided quantitive metrics to describe such a

relation. We developed an adherent raindrop simulator that generates synthetic rained images, by

adding generated raindrops to rain-free images. We used this simulator to generate rained image

datasets, which we used to train some vision algorithms and evaluate the feasibility of using

transfer-learning to improve DNN-based vision algorithms to improve performance under rainy

conditions.

1

Chapter 1

Introduction

1.1 Motivation

Autonomous driving gained a lot of momentum in the last few years, and many Original

Equipment Manufacturers (OEMs) started commercializing some self-driving vehicles, with

different levels of autonomous driving capabilities. Ford Motor Company, for example, has

completed a 500,000-mile test in April 2021 of its “BlueCruise” hands-free highway driving

technology. Other OEMs offer similar hands-free driving assist technology, such as GM’s

“Super Cruise”, and Tesla’s “Autopilot”. Advanced Driver-Assist Systems (ADAS) are the

building blocks for autonomous driving and are already integrated into most new vehicles. For

best performance and improved robustness, these ADAS applications usually employ two or

more sensing systems, including Radar, Lidar, ultrasonic, and cameras. On-board cameras are

very attractive sensing options, due to their relatively low cost and the rich amount and type of

information they can provide. Research on the effect of adverse weather conditions on the

performance of vision-based algorithms for automotive tasks has had significant interest.

Safety and robustness are critical aspects of all automotive applications. This means that these

applications must operate under all driving conditions and, in case of failure, need to fail safely,

for both vehicle occupants and others sharing the road with the target vehicle. Vision-based

systems in the automotive domain must similarly operate at high performance and robustness

2

status, including operating under all weather conditions. It is generally accepted that adverse

weather conditions reduce the quality of captured images and have a detrimental effect on the

performance of vision-based algorithms that rely on these images. To guarantee a safe and robust

operation of vision-based systems, the effect of adverse weather conditions must be addressed,

either by denoising the source of input, or making the system less sensitive to such input noise.

Rain is a common and major source of image quality degradation. In our research, we focused

on studying the effect of rain in its two forms, falling and adherent, on image quality, and

extended this to the overall effect of rain on the operation of vision-based systems that consume

these corrupt images. Our research work included the following aspects:

1.2 Falling Rain Simulation

One of the main hurdles to test the performance of vision-based systems in the automotive

domain is the lack of reliable and large datasets, of matched rained and clear images. this is due

to the uncontrollable and unpredictable nature of rain, and the irreversible degradation it causes

to input images. We developed a falling rain simulator, that can generate synthetic rained

images, with rain streaks added to the image scenes.

1.3 Falling Rain De-Raining Algorithm

Falling rain reduces visibility by occluding objects in the image scene it may also reduce

illumination levels in the vehicle environment which degrades the performance of vision-based

systems. We developed an algorithm that detects falling rain in rained images and restores

images to the state that is very close to the rain-free images. We used datasets that were

generated through out falling rain simulator to test this de-raining algorithm.

3

1.4 Adherent Raindrop Simulator

We developed an adherent raindrop simulator to generate images with added synthetic raindrops.

Adherent raindrops are close to the image plane which means they occupy bigger segments of

the not only occlude parts of the scene, but also quality It occludes parts of the input image used

in vision-based algorithms and blurs background texture in regions covered by them.

We used datasets that were generated through this simulator for retraining DNN-based

algorithms in some later research work we conducted.

1.5 The Correlation Between Image Quality and The Performance of Target Vision

Algorithm

While most prior work in the field of rain detection and removal focuses on the image restoration

aspects, they typically do not provide quantitative measures of the effect of degraded image

quality on the performance of image-based algorithms. Rain introduces uncontrollable and

irreversible distortions in input images, that even the state-of-the-art de-raining algorithms

cannot fully correct. We studied the effect of degradation to rain on input images, and it relates

to the performance of the target vision system that consumes them. Based on that, we presented a

quantitative measure of the correlation between image quality and performance of vision-based

algorithms.

In the following sections, we will describe these different research areas in detail.

4

Chapter 2

Background

This chapter provides a background on some image processing techniques and image quality

metrics that were used in this rain detection and removal research work.

2.1 Image Processing Techniques

2.1.1 Image Blurring

Image blurring may be a by-product of an image denoising operation, intended to remove high-

frequency noise from images. Gradient Decent (GD) of image pixels is calculated based on their

intensity levels, and pixels with GD greater than a predefined threshold are considered noise

pixels. 2D lowpass filtering has the effect of averaging the intensity level of pixels in a filter

window, which reduces the intensity GD, and thus reducing high-frequency noise in an image.

consists of pixel areas with intensity gradient decent

Figure 2-1 shows how a 2D Gaussian filter can be used to smooth create a blurring effect in an

image.

5

Figure 2-1: The blurred image (right) is created by applying a blurring effect using a 2D Gaussian filter

with a standard deviation of 4.5 to the original image (left). Sharp edges are smoothed out, which can be

noticed on the traffic sign text becoming unreadable in the blurred image.

The blurring effect is also used to simulate the effect of camera lenses on captured images. On-

board general-purpose cameras used in automotive applications are usually of fixed optics that

allow light rays emitted from far objects to be projected on the camera sensor, which represents

the image plane. The focal point of light rays emitted from closer objects fall behind the image

plane, creating on the image plane what is known as blur circle or disk of confusion. Figure 2-2

shows a representation of the blur circle caused by optics with fixed focal length. The diameter of

the blur circle is given by:

 𝜖 =
∆𝑔𝑓2

𝑂(𝑔 − ∆𝑔)(𝑔 − 𝑓)
 (2.1)

where O is the camera aperture size, f is the focal length, g is the distance between the camera

lens and far objects and g is the difference in distance between far and near objects. Adding a

blurring effect to simulated objects in an image improves visual accuracy and potentially

improves the learning performance of deep-learning vision applications.

6

Figure 2-2: On-board cameras are equipped with optics that create focused images of far objects in the

environment. Light rays from closer images are projected to the image plane on a disk, commonly known

as the blur circle or disk of confusion.

2.1.2 Blob Detection

In image processing, a blob is an acronym for Binary Large OBjects and is defined as a

collection of adjoint connected pixels that share a common attribute (e.g., intensity level, color)

that distinguishes them from their neighboring pixels. Secondary attributes are usually extracted

from these blobs, that are used to describe the image content in a condensed model, leaving the

structural integrity of the image intact. These secondary attributes include, for example, blob size

in pixels, the orientation of the smallest ellipse that encompasses the blob area, and the width and

breadth of such an ellipse.

As described by Kong et al. [1], blob detection algorithms can be either based on derivative

expressions or local extrema in intensity landscape. Laplacian of Gaussian (LoG) [2] was

proposed by is the earliest derivative-based blob detection algorithm. An intensity image

function, 𝑓(𝑥, 𝑦) is first convolved with a two-dimensional Gaussian function

 𝐺(𝑥, 𝑦) =
1

√2𝜋𝜎2
𝑒

(−
𝑥2+𝑦2

2𝜎2)
 (2.2)

where 𝜎 is the standard deviation, to attenuate the image and remove noise. A Laplacian operator

7

 ∇2=
𝜕2𝑓

𝜕𝑥2
+

𝜕2𝑓

𝜕𝑦2
 (2.3)

 is applied to highlight regions of high-intensity changes. The two operators can be linearly

combined as

 ∇2𝐺(𝑥, 𝑦) =
𝑥2 + 𝑦2 − 2𝜎2

𝜋𝜎4
𝑒

(−
𝑥2+𝑦2

2𝜎2)
 (2.4)

.

To detect a blob of radius s, a standard deviation of 𝜎 =
𝑠−1

3
 is recommended, since 99% of a

Gaussian is concentrated within 3𝜎 [1]. Many approaches were proposed to detect blobs of

various shapes in an image by varying the size of 𝜎 [1, 3].

One approach to identify failing rain streaks candidates in a rainy image is to first detect blobs,

then select the ones that match certain criteria of rain streaks, including breadth-to-width ratio,

orientation, and average blob intensity, relative to surrounding pixels. Figure 2-3 shows how

blob detection can be used to identify rain streak candidates in a falling rain detection algorithm.

8

Figure 2-3: Starting with a rainy image (top left), blob detection is used to identify blobs in the image (top

right). An ellipse that best contains the blobs is identified and the aspect ratio of its major-to-minor axes is

used to eliminate non-rain streak blobs (bottom left). Ellipse orientation is finally used to eliminate more

blobs that do not satisfy the rain streak orientation constraint (bottom right).

2.1.3 Depth Estimation

Depth estimation means estimating the distance of different objects in the environment, from an

observer. The observer can be the human eye or any sensing mechanism that is sensitive to

distance changes, including Radar, Lidar, and ultrasonic. Many applications in the automotive

domain, such as 3-D mapping, navigation, and augmented reality use depth estimations as an

integral part of their algorithms. Sensor fusion of different senor inputs, like camera and

ultrasonic) is usually used, since it increases depth estimation accuracy and improves system

reliability. For vision-based depth estimation, depth from stereo images is the most commonly-

used approach, though good progress has been reported on depth estimation through deep-

learning, using monocular images (e.g., see Godard et al. [4]). Stereo depth estimation is based

9

on measuring the location disparities of scene points, captured by stereo camera set. As shown in

Figure 2-4, the same scene point P is projected at different positions on the image planes of the

two-camera stereo system. Through simple trigonometry, we can show that the disparity d = X1 –

X2 can be used to calculate the distance Z of point P from the cameras as

 𝑍 =
𝑓. 𝑏

𝑑
 (2.5)

where f is the camera focal length and b is the distance between the camera centers.

Figure 2-4: The position disparity of scene points as captured on stereo camera image planes can be used

to estimate the distance to scene points. Distance is inversely related to disparity measure, meaning that

further scene points exhibit smaller disparity than closer ones to the cameras

10

2.1.4 Brightness Adjustment

Brightness adjustment refers to the process of shifting the intensity of image pixels from the

original level, to a more desirable one. This is an important step in vision algorithms that are

sensitive to intensity changes. Feature matching and image restoration are two common image

processing applications that may benefit from brightness adjustment. The brightness adjustment

can be achieved by linearly shifting all image pixels with a fixed bias, or by nonlinearly shifting

the brightness zone (minimum to maximum intensity range) to a different zone. Figure 2-5

shows different methods for applying the brightness adjustment process to an image. A fixed

bias can be added to image pixel intensities, resulting in a brighter image with almost no change

in contrast (top right). In the bottom left image, the histogram equalization technique was used to

redistribute the original image intensity range over the whole [0-255] range. In the bottom right

image, the original image intensity range was remapped to a new (tighter) range, resulting in a

darker image with less contrast.

11

Figure 2-5: Some techniques to adjust the brightness of the image (top left) include adding a fixed bias

(top right), using histogram equalization (bottom left), and intensity remapping (bottom right).

2.1.5 Barrel Effect Removal

Barrel or fisheye distortion is one of two common curvilinear distortions, caused by camera

lenses, the other being pincushion distortion. The further the image points are from the center of

the camera imaging sensor, the more curved inwards the image lines appear. Pincushion

distortion is caused by low range or telescopic lenses and is opposite to barrel distortion, in a

sense that the further the image points are from the center of the camera imaging sensor, the

more curved outwards the image lines appear. For best performance, we ideally want to rectify

distorted images, to get as close to a rectilinear image as possible. Figure 2-6 shows how barrel

and pincushion distortions affect a rectilinear image.

12

.

Figure 2-6: The original image (top) is captured using rectilinear lenses. The fisheye image (middle) is

captured using a captured with a wide-angle lens. Using a long-range lens causes pincushion distortion

(bottom)

13

In automotive applications, barrel distortion is more common, since many vehicle onboard

cameras use wide-angle lenses to capture as much as possible of the scene around the vehicle.

Mathematically, barrel distortion is approximated as a single-parameter polynomial as [5]

𝑥𝑢 − 𝑥0 = (𝑥𝑑 − 𝑥0)(1 + 𝜆𝑟𝑑
2)

𝑦𝑢 − 𝑦𝑜 = (𝑦𝑑 − 𝑦𝑜)(1 + 𝜆𝑟𝑑
2)

(2.6)

Or equivalently:

𝑟𝑢 = 𝑟𝑑(1 + 𝜆𝑟𝑑
2)

𝑟𝑑 = √(𝑥𝑑 − 𝑥𝑜)2 + (𝑦𝑑 − 𝑦𝑜)2

𝑟𝑢 = √(𝑥𝑢 − 𝑥𝑜)2 + (𝑦𝑢 − 𝑦𝑜)2

(2.7)

where (𝑥𝑜 , 𝑦𝑜) are the coordinates of the image center, (𝑥𝑢, 𝑦𝑢) are the coordinates of the

undistorted image pixels, (𝑥𝑑 , 𝑦𝑑) are the coordinates of the pixels in the distorted image,

𝑟𝑑 is the Euclidian distance from distorted image pixels to the image center, 𝑟𝑢 is the Euclidian

distance from undistorted image pixels to the image center, and 𝜆 is the distortion faction that is

dependent on the type of lenses used.

2.1.6 Image Inpainting

Image inpainting refers to the collection of techniques used to replace certain sections of an

image with other sections, either from the same image or from another one with similar

characteristics. Inpainting is generally used to remove undesired elements of an image or

reconstructing corrupt sections of an image, due to noise or occlusion. The most common

Inpainting techniques are structural-based inpainting, texture-based inpainting, and exemplar-

based inpainting [6, 7]. In structural-based inpainting, Partial differential equations are used to

diffuse pixels from surrounding regions to the target region, preserving the direction of isophotes

14

(lines with constant light intensity). The process continues until all pixels are replaced. This

technique produces a blurring effect that helps remove small defects in the image. It is not

suitable, however, for large areas and to reconstruct regions with rich texture [7]. Texture-based

inpainting is done by selecting patches from the source region and copying them to the missing

sections of the target region until all target area is covered. Exemplar-based inpainting can be

considered a hybrid inpainting technique that borrows the patch copy-and-paste from texture-

based inpainting, and the diffusion approach from structure-based inpainting. The process starts

by identifying the missing sections in the target region that requires inpainting. Fill priorities are

then assigned to target pixels which determines the order in which these pixels are replaced.

Next, patches that best match the target regions are selected and used to iteratively fill gaps in the

target region. After each iteration, the target region boundary is updated, and fill priorities are

updated [8]. In rain removal applications, image inpainting is used to restore areas of the rainy

image that are corrupted or occluded by the rain presence. Figure 2-7 shows how image

inpainting can be used to restore image areas corrupted with raindrops.

15

Figure 2-7: For a rainy image (top), the raindrop detection algorithm identifies areas of a raindrop in the

image (middle). Image inpainting is then used to restore the image, effectively removing rain from the

image (bottom)

16

2.2 Image Quality Metrics

This section includes a summary of some of the most common metrics used in literature for

evaluating the quality of images. Wang et al. [9], classified Objective image quality metrics as

full-reference, reduced-reference, or no-reference, depending on the availability of the original,

distortion-free image or a set of extracted features, representing that image. Mean Squared Error

(MSE), Peak Signal to Noise Ratio (PSNR), and Structural Similarity Index (SSIM) are examples

of full-reference quality metrics. Blind/ Referenceless Image Spatial Quality Evaluator

(BRISQUE) and Perception-based Image Quality Evaluator (PIQE) are examples of the no-

reference quality metrics [10].

2.2.1 Mean Square Error

MSE measures the average of the square of errors in the estimation of reference values.

Mathematically it is given by:

 𝑀𝑆𝐸 =
1

𝑛
∑ (𝑋𝑖 − 𝑋̂𝑖)

2𝑛
𝑖=1 (2.8)

where 𝑋 and 𝑋̂ are the reference and estimated sets, respectively and 𝑛 is the total number of

estimations. Due to its simplicity, MSE is sometimes used as a cost function in deep-learning

networks, instead of the more common ℓ1 and ℓ2 metrics (see for example Qian et al. [11]). Figure

2-8 shows one critical weakness of MSE, namely that it is not a good representation to image

quality, as perceived by the human eye. Despite being much clearer to human perception, the

speckle noise image scored worse in terms of image quality (higher MSE) than the almost

unrecognized salt-and-pepper one.

17

Figure 2-8: A Clear Image (top) is corrupted with 'salt and pepper' noise (middle) and 'speckle' noise

(bottom).

18

2.2.2 Peak Signal-To-Noise Ratio

Peak signal-to-Noise Ratio (PSNR) is the ratio between the maximum power of a signal and the

power of noise corrupting the signal and is usually expressed in logarithmic scale (base 10). PSNR

can be expressed in terms of MSE as follows [12]:

 𝑃𝑆𝑁𝑅 = −10 log10 (
𝑀𝑆𝐸

𝑀𝐴𝑋𝐼
2) = 20log10(𝑀𝐴𝑋𝐼) − 10log10(𝑀𝑆𝐸) (2.9)

where 𝑀𝐴𝑋𝐼 is the maximum possible pixel value of the image and PSNR is given in dB. For an

8-bit image, 𝑀𝐴𝑋𝐼 = 255, and PSNR can be given as 𝑃𝑆𝑁𝑅 = 48.13 − 10log10(𝑀𝑆𝐸).

This last formula shows that PSNR is strongly (inversely) related to MSE. It is no surprise that,

like MSE, PSNR scores do not align well with human perception of image quality, as shown in

Figure 2-9. One could argue that despite the blurriness, a human observer may recognize more of

the image content in the Gaussian noise image, than the salt and pepper noise image. PSNR score

for the two noisy images, however, does not align with human perception of image quality.

19

Figure 2-9: A Clear Image (top) is corrupted with 'salt and pepper' noise (middle) and ‘Gaussian’ noise

(bottom).

20

2.2.3 Least Absolute Deviations and Least Squares Error

Least Absolute Deviations, also known as Least Absolute Error (LAE) is commonly used in

Convolutional Neural Networks (CCN) as a loss function (ℓ1loss). The goal of a CNN is to

minimize this error to convert to a satisfactory solution. It is a simple metric that can be given

mathematically as

 𝐿𝐴𝐸 = ∑|𝑦𝑖 − 𝑓(𝑥𝑖)|

𝑛

𝑖=1

 (2.10)

where 𝑦𝑖 is the target (reference) value, 𝑓(𝑥𝑖) is the estimated value for an input 𝑥𝑖, and 𝑛 is the

number of samples.

Least Squares Error (LSE) is another metric commonly used as a loss function in CNN-based

systems(ℓ2 loss). Mathematically it is given as

 𝐿𝑆𝐸 = ∑(𝑦𝑖 − 𝑓(𝑥𝑖))2

𝑛

𝑖=1

 (2.11)

We notice that MSE differs from LSE only by the sample averaging factor
1

𝑛
 .

Both ℓ1 and ℓ2 are usually added as penalty terms to the regularization process in CNN-based

algorithms which is designed to prevent overfitting during the training stage. The topic of using

ℓ1 versus ℓ2 and the difference between the two loss functions has been discussed in many

machine-learning blogs. The following Table 2-1 shows some of the differences outlined by N.

Tyagi [13]

21

Table 2-1: Properties of ℓ1 versus ℓ2 loss functions

Loss function Attribute ℓ1 ℓ2

Penalization method Penalizes the sum of the

absolute value of weights

penalizes the sum of square

weights.

Sparsity Has a sparse solution Does not have a sparse

solution

Robustness to outliers Robust to outliers Not Robust to outliers

Solution uniqueness No unique solution A Unique solution can be

reached

2.2.4 Normalized Cross-Correlation

Normalized Cross-Correlation (NCC) is a (normalized) measure of similarity of two series, as a

function of the displacement of one relative to the other [14]. In image processing, NCC is used

mostly for template matching and image restoration. A segment in a reference image is considered

a match to one in a target image if NCC between them is highest. Normalization is achieved by

subtracting from each series its mean, then dividing the result by its standard deviation. This helps

alleviate the effect of variations of illumination intensities or due to using different sensors to

capture each image (e.g., in stereo-vision applications). mathematically, NCC can be given by:

 𝑁𝐶𝐶 =
1

𝑛𝜎𝑟𝜎𝑡
∑(𝑋𝑟 − 𝜇𝑟)(𝑋𝑡 − 𝜇𝑡)

𝑛

𝑖=1

 (2.12)

where 𝑛 is the total number of pixels tested in each image, 𝑋𝑟,𝑡 are the reference and target images,

and 𝜇𝑟,𝑡 𝑎𝑛𝑑 𝜎𝑟,𝑡 are their corresponding means and standard deviations, respectively.

22

2.2.5 Structural Similarity Index

The quality metrics disused so far are simple to calculate and understand but they do not reflect

the human perceived visual quality. Wang et al. [9] presented an image example with different

types of distortions applied to it. As we showed in Figure 2-8, the speckle-distorted image scored

worse than the one distorted with salt and pepper noise in terms of image quality (per MSE

metric), even though its perceptual quality was much better. The structural information of the

reference image was preserved in the contrast-stretched image and could be recovered via linear

transform which was not the case with other types of distortion. Natural image signals are highly

structured and the human visual system is adapted to extract structural information from images.

Structural similarity (SSIM) is an image quality assessment measure designed around the human

visual system (HVS). It makes use of structural information change to provide an approximation

to perceived image distortion. The SSIM metric is constructed as a combination of luminance,

contrast, and structure comparators as follows [9]:

1- The luminance of each image signal is estimated using its mean intensity:

 𝜇𝑥 =
1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1

 (2.13)

where 𝜇𝑥 is the mean intensity of signal 𝑥, N is the total number of pixels and 𝑥𝑖 is the intensity at

pixel 𝑖.

2- Luminance comparison function 𝑙(𝑥, 𝑦) is then given by:

 𝑙(𝑥, 𝑦) =
2𝜇𝑥𝜇𝑦 + 𝐶1

𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1
 (2.14)

where the constant 𝐶1is added to protect for the near-zero denominator.

3- The contrast of each image signal is approximated by its standard deviation 𝜎𝑥,𝑦:

23

 𝜎𝑥 = (
1

𝑁 − 1
∑(𝑥𝑖 − 𝜇𝑥)2

𝑁

𝑖=1

)

1
2

 (2.15)

4- Contrast comparison function 𝑐(𝑥, 𝑦) is then given by:

 𝑐(𝑥, 𝑦) =
2𝜎𝑥𝜎𝑦 + 𝐶2

𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2
 (2.16)

where constant 𝐶2 is added to protect for the near-zero denominator.

5- Image signal structure is associated with the unit vectors
𝑥−𝜇𝑥

𝜎𝑥
 and

𝑦−𝜇𝑦

𝜎𝑥𝑦

6- The structure comparison function is defined as:

𝑠(𝑥, 𝑦) =
𝜎𝑥𝑦 + 𝐶3

𝜎𝑥𝜎𝑦 + 𝐶3

𝜎𝑥𝑦 =
1

𝑁 − 1
∑(𝑥𝑖 − 𝜇𝑥)(𝑦𝑖 − 𝜇𝑦)

𝑁

𝑖=1

(2.17)

where 𝐶3 is added to protect for the near-zero denominator.

7- Structure similarity index SSIM is then given by:

 𝑆𝑆𝐼𝑀(𝑥, 𝑦) = [𝑙(𝑥, 𝑦)]𝛼. [𝑐(𝑥, 𝑦)]𝛽 . [𝑠(𝑥, 𝑦)]𝛾 (2.18)

Figure 2-10 shows how SSIM is more aligned to human perception compared to MSE and PSNR

metrics.

24

Figure 2-10: When comparing an image to itself (top left), MSE =0, PSNR=infinity, and SSIM =1, as

expected. MSE and PSNR scores, however, are not aligned to human perception of image quality, unlike

SSIM.

2.2.6 Earth Movers Distance

In image processing, EMD reflects the cost of moving one image, represented by some feature

signature (e.g., intensity histogram), to a reference image, represented with the same signature

type. Given two images, Image1 and Image2, one or more features are selected and clustered, to

create signatures, [15]

𝑆 = {(𝑠1, 𝑤𝑠1) , (𝑠2, 𝑤𝑠2) , … , (𝑠3, 𝑤𝑠𝑚)}

𝑇 = {(𝑡1, 𝑤𝑡1) , (𝑡2, 𝑤𝑡2) , … , (𝑡𝑚, 𝑤𝑡𝑚)}

(2.19)

for Image1 and Image2, respectively.

25

 𝑠𝑖, 𝑤𝑠𝑖 for 1 ≤ 𝑖 ≤ 𝑚 and 𝑡𝑗 , 𝑤𝑡𝑗 for 1 ≤ 𝑗 ≤ 𝑛 represent the cluster Ids and weights for the

two signatures. A feasible flow 𝐹 = [𝑓𝑖,𝑗] between the two signatures must satisfy the following

constraints:

𝑓𝑖,𝑗 ≥ 0, ∀ 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛

∑ 𝑓𝑖,𝑗 ≤𝑚
𝑖=1 𝑤𝑠𝑖, 1 ≤ 𝑖 ≤ 𝑚

∑ 𝑓𝑖,𝑗 ≤𝑛
𝑗=1 𝑤𝑡𝑗 , 1 ≤ 𝑗 ≤ 𝑛

∑ ∑ 𝑓𝑖,𝑗 = 𝑚𝑖𝑛{∑ 𝑤𝑠𝑖 , ∑ 𝑤𝑡𝑗
𝑛
𝑗=1

𝑚
𝑖=1 }𝑛

𝑗=1
𝑚
𝑖=1

(2.20)

Given a ground distance 𝐷 = [𝑑𝑖,𝑗] between the two clusters, EMD represents the solution that

minimizes the work (flow times distance) to move one signature to match the other.

Mathematically, this is given by [15]

 𝐸𝑀𝐷(𝑆, 𝑇) = 𝑚𝑖𝑛 ∑ ∑ 𝑓𝑖,𝑗 𝑑𝑖,𝑗 =
∑ ∑ fi,j di,j

n
j=1

m
i=1

∑ ∑ fi,j
n
j=1

m
i=1

 𝑛
𝑗=1

𝑚
𝑖=1 (2.21)

Figure 2-11 shows how the EMD metric represents the cost of restoring a progressively degraded

image, corrupted with different types of noise. One issue with the EMD metric is that there is no

clear correlation between human perceived image quality and EMD score. Salt and pepper noise

image series generally had lower EMD scores, though perceptually they are worse than the

Gaussian-degraded images. Based on this, the EMD metric is maybe suitable to track the

progression of image quality in, for example, a learning algorithm from one integration to the

next. It may not, however, be suitable for assessing the degradation levels of different images,

compared to a reference.

26

Figure 2-11: The EMD metric can be used to track the progression of image quality with

increased/decreased noise in a series (top left to bottom left or top right to bottom right). It is not,

however, used the measure image degradation between different images qualitatively (left to right).

27

2.3 Model Performance Metrics

Regression and classification are the two main problems that machine learning (including deep-

learning) models are designed to solve. A regression model maps an input x to an out y through a

specific mapping function. Mathematically, this is given by

 𝑦𝑖 = 𝑓(𝑥𝑖 , 𝛽) + 𝑒𝑖 (2.22)

where 𝛽 represents a set of unknown parameters and 𝑒𝑖 is an additive error term.

MSE, RMSE (Root-MSE), and MAE are some commonly-used metrics to evaluate the

performance of a regression model.

Classification models, on the other hand, try to answer the question: to which class of available

classes does a sample input most likely belong? The classification can have one of the following

four outcomes:

1. Sample input is correctly classified to belong to the specific class. This represents a True

Positive (TP).

2. Sample input is correctly classified as not belonging to a specific class. This represents a

True Negative (TN).

3. Sample input is incorrectly classified to belong to a specific class. This represents a False

Positive (FP).

4. Sample input is incorrectly classified as not belonging to a specific class. This represents

a False Positive (TP).

Accuracy, Precision, Recall, Jaccard index, and Dice Metrics are designed to evaluate

classification performance, based on the outcome of classifying inputs samples.

28

2.3.1 Precision Metric

Precision is also called positive predictive values (PPV) and it represents the portion of positive

results that are true positive. It is given by

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2.23)

The precision metric is desirable when the cost of false positives is high in the classification model.

In an automotive predictive brake system, for example, too many false classifications of obstacles

in the path of the ego vehicle may result in the excessive application of the braking system and

reduction in brakes' expected lifetime.

2.3.2 Recall Metric

The recall is also known as Sensitivity and it represents the portion of positive results that are

correctly predicted positive. It is given by

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2.24)

The recall is desirable when the cost of false negatives is high in the classification model. For the

same braking system described above, misclassifying an imminent collision scenario as a no-

collision event may cause a crash event that is prohibitively expensive in terms of safety. This

example explains why the Recall and Precision metrics are rarely considered in isolation. It is

worth noting that both Precision and recall provide some information on the rate and type of

classification error but both ignore the negative cases since TN outcomes are not part of the

calculation.

2.3.3 Accuracy Metric

The accuracy of a classifier system is an indication of overall classification performance. It is the

ratio of correct predictions (TP or TN) to all prediction outcomes. It is given by,

29

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (2.25)

2.3.4 Dice Coefficient

Sørensen–Dice coefficient or F1 score is a similarity metric that represents the harmonic mean of

Precision and Recall metrics [16]. Mathematically, it is given by

 𝐷𝑖𝑐𝑒 =
2|𝑡𝑎𝑟𝑔𝑒𝑡 ∩ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛|

|𝑡𝑎𝑟𝑔𝑒𝑡| + |𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛|
 (2.26)

where |𝑥| represent the cardinality (number of elements) of set 𝑥. For Boolean data, this metric

can be given by [16],

 𝐷𝑖𝑐𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (2.27)

2.3.5 Jaccard Index

Jaccard index, also known as Intersection over Union (IoU), is another similarity metric that is

closely related to Dice. It is given by [17],

 𝐼𝑜𝑈 =
𝑡𝑎𝑟𝑔𝑒𝑡 ∩ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑡𝑎𝑟𝑔𝑒𝑡 ∪ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
 (2.28)

Or for Boolean data,

 𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (2.29)

From which the relation between Jaccard index and Dice can be given by [18]:

𝐷𝑖𝑐𝑒 =
2𝐼𝑜𝑈

𝐼𝑜𝑈 + 1

𝐼𝑜𝑈 =
𝐷𝑖𝑐𝑒

2 − 𝐷𝑖𝑐𝑒

(2.30)

30

Though the two metrics are almost functionally equivalent, IoU scores tend to be closer to worst-

case performance, whereas Dice scores are closer to average performance [19]. IoU score is used

in many classification applications as a predefined threshold to determine whether any given

prediction is considered a TP or an FP. This threshold is sometimes referred to as the penalty

threshold. In an object threshold algorithm, for example, setting the threshold to an IoU=0.5 means

that at least 50% of the pixels in the predicted object must match those of the ground truth object,

for the detection outcome to be accepted (TP). Figure 2-12 and shows the results of a binary

classifier that attempts to classify sample points as either belonging to the diamond-shaped area or

not. Table 2-2 shows the results of calculating accuracy, precision, recall, dice, and IoU metrics

for the classification results.

Figure 2-12: A binary classifier tries to determine if a sample belongs to the diamond shape or not.

31

Table 2-2: Similarity metric results for the binary classifier example.

Variable/ Method TP TN FP FN Precision Recall Accuracy IoU Dice

Measurement/ calculation 4 18 4 2 0.5 0.667 0.786 0.4 0.571

2.3.6 Average Precision (AP)

One common technique in the evaluation of the performance of classification models is to plot

the precision-recall curve, for a given classification confidence level threshold (penalty

threshold) as mentioned earlier, IoU is commonly used to represent this penalty threshold. This

curve has an average negative slope since for a given penalty threshold, precision tends to

decrease as recall increases. This curve is useful in representing the tradeoffs of precision versus

recall for a given classification model.

AP is one way to capture the characteristics of the precision-recall curve in one metric and is

calculated as the Area Under the Curve (AUC) of the function representing precision as a

function of recall. The PASCAL VOC2011 [20] challenge slightly modified how AP is

calculated, to eliminate the oscillatory pattern in the precision-recall curve. In this version, the

precision for recall 𝑟 is set to the maximum precision calculated for any 𝑟′ ≥ 𝑟. This method

simplifies the AP calculation since the new AUC is now a collection of rectangles with easily

calculated areas. Figure 2-13 shows an example of a precision-recall curve and the AUC as

defined in the original and the modified AP calculations. In either method of calculation, a

higher AP score is associated with the better overall performance of the classification algorithm,

at a given penalty threshold. A family of precision-recall curves can be plotted on the same

figure, each representing a class in the classifier. A set of curves can also be plotted, representing

the precision-recall relations at different penalty thresholds. These two plots are related to the

32

way the Mean Average Precision (mAP) is calculated, which is not standard across vision

challenges. In the PASCAL VOC2011 [20] challenge only one penalty threshold is used at

IoU=0.5 to generate the precision-recall curves for all classes. mAP, in this case, is the average

of the AP scores across all classes. The COCO [21] challenge, on the other hand, calculates the

AP at penalty threshold IoU range from 0.50 to 0.95, at 0.05 resolution, for each class. The mean

AP is then calculated per class and the mAP is the average of these means over all classes.

Figure 2-13: AP score was originally calculated as simply the Area Under the Curve that represents the

precision as a function of the recall. To eliminate the fluctuations in the precision values, the precision at

any point with recall r is set to the maximum precision value of points to the right of it (r’>=r). As shown

in the plot above, the (new) AP score is different from the original AP score that was calculated as the

AUC.

33

Chapter 3

Rain Detection and Removal Techniques

3.1 Introduction

Rain, a source of adverse weather conditions, deteriorates the quality of the images and

negatively affects the performance of vision-based algorithms which use these images as the

main source of information [22] [23] [24]. Rain can be presented in an image in two forms,

falling rain streaks and adherent raindrops that accumulate on the camera lens cover or the

vehicle windshield. The characteristics of rain in its two forms are different, and the distortion it

introduces to the image is accordingly different. Because of this, researchers tackle the rain-

induced issue as two separate problems, and the solution to one form of rain distortion does not

usually work well for the other form. The image quality metrics according to Wang et al. [9], can

be classified as no-reference, reduced reference, or full-reference, based on the availability of

original (distortion-free) images for evaluation. In the context of rained images, distortion and

image quality refer to the quality of the rained images as compared to the rain-free ones. Rain

introduces irreversible degradations to the image by distorting its pixels, modifying some of the

image characteristics, and occluding certain objects in the image background that are of interest

to the target vision-based algorithms. The falling rain is both uncontrollable and unpredictable

which makes it impossible to construct a reference (ground truth) dataset for reconstructing a

rain-free image from a rained one. In that sense, rained images fall under the no-reference

category based on Wang et al.'s [9] definition. Image restoration techniques try to make use of

34

certain features in the rain-free images, such as brightness and texture, to recover the sections of

rained images that are distorted by rain. This brings the complexity of image restoration from the

no-reference level to the reduced reference one. Attempts have been proposed to use

synthetically-generated rain that is added to rain-free images, to create perfectly matched rain-

free/ rained datasets. This brings the image restoration problem closer to the full-referenced level

of complexity, but it remains highly dependable on the quality of the rain simulator algorithm

used in the process.

We published a survey paper on the different approaches for adherent raindrop modeling,

detection, and removal [25]. The survey described algorithms based on machine learning, as well

as deep learning techniques.

3.2 Summary

In this section, we summarize in tabular format, the most important aspects of the adherent

raindrop removal systems that were described our survey paper [25]. Table 3-1 lists the different

raindrop models that were described in this paper. Table 3-2 summarizes the common classical

approaches for raindrop detection. A list of different de-raining techniques is shown in Tables 3-

3. Table 3-4 shows a comparison of the Deep Learning and CNN approaches to image de-raining

that were described in that survey paper.

35

Table 3-1: Raindrop models.

ID Basic Idea Potential limitations

Cord et al.

[26]

Assume elliptical shape for raindrops and use

axes aspect ratio, size, and brightness constraints

as a model for raindrops.

It May not account for irregular raindrop

shapes and the effect of background texture

on raindrop appearance.

Kurihata et

al. [27]

Used a PCA algorithm to generate eigendrop

templates

Does not account for the effect of texture on

raindrop appearance.

Fouad et al.

[28]

Use a declivity operator to describe raindrops as

a sequence of peaks and valleys.

Do not consider the background

composition's role in the appearance of

raindrops.

Halimeh et al.

[29]

Developed a complex model (RIGSEC) for a

raindrop, based on its geometric and photometric

properties.

Assuming part of a sphere for a raindrop and

ignoring the blurring effect of a raindrop

may limit model accuracy.

Roser et al.

[30]

Added blurriness effect to RIGSEC and limited

the rendering of raindrop models to certain

regions of the image to reduce rendering time.

Generating raindrop models at specific

regions in the image may lower the rate of

matching with real raindrops.

Sugimoto et

al. [31]

Used MSER to improve the initial detection of

potential raindrops and spheroid for raindrop

approximation.

Added complexity may make the model less

appropriate for real-time applications.

Stuppacher et

al. [32]

Modeled raindrops using height maps,

considering raindrop dynamics and water content

losses and gains for moving raindrops.

The model is more suitable for CGI

applications to generate realistic raindrop

effects.

Roser et al.

[33]
Modeled raindrops using Bézier Curves.

Reliance on approximations of raindrop size

from correlations between 2D ratios and tilt

angles reduces model accuracy.

Table 3-2: Raindrop detection - classical approaches.

ID Application Approach Potential limitations

Yan et al. [34] Weather

classification in

the automotive

domain

Use AdaBoost to combine two weak

classifiers, HGA and HSV. Classifies

weather as Rainy, Cloudy or Sunny

Applications of weather classifiers

are limited in the automotive

domain to ADAS warnings and

windshield wiper triggers.

Wu et al. [35] Raindrop

detection in the

automotive

domain

Use AdaBoost to combine color,

shape, and texture saliency maps.

Create a raindrop visual descriptor

and use SVM to classify the weather.

Assumes circular 2D shape of a

raindrop and fails under heavy

rain conditions

Liao et al. [36] Raindrop

detection in the

automotive

domain

Segment the scene into the roadway

and building areas. Identify raindrop

candidates through edge detection and

binarization and compare their

dimensions to the closest ellipse.

The detection algorithm might be

slow for real-time automotive

applications and it fails to handle

background noise and large

raindrops.

Ishizuka et al.

[37]

Raindrop

detection in the

automotive

domain

Daytime Detector uses Sobel for

initial identification, then texture

The optical flow approach used

assumes straight-line driving and

may fail on winding roads. It may

also cause incorrect classification

36

ID Application Approach Potential limitations

information, and optical flow to detect

real raindrop pixels.

Nighttime Detector eliminates light

source pixels, then uses a temporal

intensity change feature to identify

raindrop pixels.

as raindrops, objects that are

moving at the same speed as the

test vehicle. (e.g. other vehicles).

Kurihata et al.

[27]

Raindrop

detection in the

automotive

domain

Use similarity degree between

potential raindrops and eigendrop

template to identify raindrop regions

Does not account for the effect of

background variations on raindrop

characteristics (texture,

brightness).

Yamashita et

al. [38]

Raindrop

detection in

surveillance

applications

Match images from different cameras,

then analyze intensity variance under

low and high texture image

backgrounds to detect raindrops.

Requires multiple cameras which

reduces the common FOV, and

assumes raindrops do not occlude

the same section of the restored

image.

Yamashita et

al. [39]

Raindrop

detection in

surveillance

applications

Capture successive image frames and

identify them as raindrop segments,

those that are detected near the

expected location and satisfy size

ratio constraints.

Requires precise knowledge of

rotation angle and assumes idle

raindrops between frames which

is true only under light rain

conditions.

Yamashita et

al. [40]

Raindrop

detection in

surveillance

applications

Similar to [39] but rotation angle is

estimated and raindrop decision is

made on a pixel base, by measuring

the noise existence rates in the

original and rotated image.

Assumes idle raindrops between

frames which is true only under

light rain conditions.

Yamashita et

al. [41]

Raindrop

detection in

surveillance

applications

Match stereo image pixels using NCC

and apply one-on-one matching to

eliminate noise. Compare measured to

the expected disparity of raindrops to

determine true raindrops.

Raindrops are blurry and may not

result in good disparity

measurements. Also, the long

computational time is observed as

a result of pixel-based

calculations.

Yamashita et al

[40]

Raindrop

detection in

surveillance

applications

Create a compound image from the

temporal image sequence and select

raindrop pixels that show “often” in

the noise candidate trajectory curve.

Requires many frames and

involves many pixel projections.

Roser et al.

[42]

Weather

classification in

the automotive

domain

Use feature histogram to create a bag

of features, and use SVM to classify

weather as Clear, Light rain, or Heavy

rain.

Relatively slow, due to the large

descriptor. Error rate increases

with background complexity

increase.

Cord et al. [43] Weather

classification in

the automotive

domain

Compare the intensity gradient image

to the threshold image and pick the

strongest candidates. Pick raindrop

regions based on dimensions and

eccentricity constraints and through

temporal analysis.

System Requires focused

raindrops (camera needs to be

attached far away from the

windshield). Raindrop size is

relatively small (3-10 pixels)

which may cause reduced

accuracy.

37

ID Application Approach Potential limitations

Cord et al. [26] Raindrop

detection in the

automotive

domain

Segment the image then uses either

watershed or background subtraction

to identify potential drops. Use size,

shape, and temporal constraints to

identify real raindrops.

The algorithm runs slow due to

implementation in MATLAB.

Adding more frames improves

performance but adds delay to the

overall system operation time.

Nashashibi et

al. [44]

Raindrop

detection in the

automotive

domain

Detect potential raindrops through

temporal intensity change and shape

roundness. Use a lack of clear contour

as a raindrop characteristic, then

verify selection by spatially matching

raindrop regions in consecutive

frames.

Detection of unfocused is

challenging and the algorithm

fails under bright background

conditions.

Table 3-3: Raindrop-degraded image recovery.

ID Approach Potential limitations

Liao et al.

[36]

For buildings ROI, replace the raindrop

area with the closest non-rain area (using

an 8-connected area template). For road

ROI, use inpainting or morphological

operations.

Removal time is long (0.44 to 0.68 seconds per

frame) and it is proportional to rain density.

The restoration of the road mark sections of the

image is not perfect, due to the limitations of

the inpainting method.

Wu et al.

[35]

Use the inpainting technique through smooth

propagation in the equal intensity line

direction.

Limited to low and medium rain intensity.

Inpainting based on intensity does not preserve or

recover the textural characteristics of the recovered

regions.

Yamashita

et al. [39]

Create a composite image of the original and

rotated one, with a parameter that controls

how much each image is contributing to the

final composite one.

Chromatic variations between original and rotated

images may still exist, even with correction. This

affects the quality of the recovered image. The

algorithm fails if the difference between original

and rotated images is large.

Yamashita

et al. [40]

Decompose the image into structure and

texture images. Apply inpainting process on

structure image and texture synthesis process

on the other.

The Spatio-temporal analysis may be needed to

improve texture recovery but this, in turn, may add

delay to the processing time.

Yamashita

et al [41]

Use disparity information to identify proper

regions from the complementary image in the

pair for raindrop pixel substitution.

Relies on imperfect disparity map data to select

substation pixels. Also, the approach fails if

raindrop noise is present in both images.

Roser et al.

[30]

Estimate translational and rotational

parameter vector h probabilistically, then use

multi-band blending to recover rained

regions.

While producing good results, this algorithm, both

in its detection and recovery section seems to be

too computationally expensive for automotive

applications.

38

Table 3-4: Deep learning and CNN approach to image de-raining.

Raindrop

Removal System

Network Architecture Datasets and

Testing

Potential Limitations

Dirt and Rain

Noise Removal

(Eigen et al. [45])

multilayer convolutional

network with two hidden layers

with 512 units each.

Pictures of a glass plate

with dirt and water drops

were taken. Patches of size

64 X64 for dirt and were

paired with clear patches

and used to train and test

the rain and dirt remover

system.

Restored images showed

visible artifacts and were

blurred where the raindrop/

dirt particle was removed.

Attention GAN

Raindrop Removal

Algorithm (Qian et

al. [11])

1. Generative Network:

a. Attention Map (3 layers of

ResNet + 1 LSTM)

b. Autoencoder (16 conv-

ReLU with skip

connection).

2. Discriminative Network:

7 convolution layers with

the kernel size (3 x 3), a

fully connected layer of

1024 neurons, and a

single neuron with a

sigmoid activation

function

1119 pairs of images

(rainy and clear), with

various background scenes

and raindrops. Raindrops

are synthesized by

spraying water on a glass

plate.

Limited dataset for

training and testing.

Need for raindrop

mask for supervised

learning

Joint Shape-

Channel Attention

GAN Raindrop

Removal

Algorithm (Quan

et al. [46])

GAN-based on encoder-

decoder architecture with

ResBlocks in between and

short and long skip

connections. Joint physical and

channel attention blocks

Used Qian et al. [11]

dataset for training and

testing. Uses PSNR and

SSIM were used for

evaluation and

benchmarking.

Dataset limitations for

training and testing. PSNR

and SSIM scores were only

marginally better than

other algorithms evaluated.

Improved

Raindrop Removal

with Synthetic

Raindrop

Supervised

Learning (Hoa et

al. [47])

The system consists of three

sub-networks

rain detection network, (I-

CNNN with 5 Conv layers +

BN and ReLU activation, and 6

Resblocks

reconstruction network, same

as detection network with 8

ResBlocks

refine network, 2 Conv layers,

and 2 ResBlocks

Synthesized rainy images

and used them for training

and testing. Adam

optimizer [48]was used for

setting up training

parameters. PSNR and

SSIM were used for

evaluation and

benchmarking.

The quality of images

generated by the Rain

Synthesized needs more

independent evaluation

against real rainy images.

Raindrop-Aware

GAN for Coastal

Video

Encoder/decoder architecture

with short and long skip

connections.

Used Qian et al. [11]

dataset as well as Anmok

beach videos and paired

image sets for training and

Though outperforming

other methods in the

coastal setup, for urban

setup no clear

39

Raindrop

Removal System

Network Architecture Datasets and

Testing

Potential Limitations

Enhancement (Kim

et al. [49])

testing. PSNR, NIQE [50],

and SSIM were used for

evaluation and

benchmarking.

improvement was observed

over Qian et al. [11].

Self-Supervised

Attention Maps

with Spatio-

Temporal GAN

(Alletto et al. [51])

The system is made of two

stages.

1. Single-Image Removal, with

location map estimator and

raindrop remover networks.

both constructed based on

encoder/decoder architecture.

2. Spatio-temporal Raindrop

Removal, flow estimator

provides optical flow is learned

from previous frames and

concatenated with rainy image

and estimated location map in a

decoder/ encoder GAN

architecture.

Used Qian et al. [11]

dataset as well as data set

of augmented videos from

DR(eye)VE dataset [52]

with synthetically-

generated raindrops.

PSNR and SSIM were

used for evaluation and

benchmarking.

The quality of images

generated by the Rain

Synthesized needs more

independent evaluation

against real rainy images.

Concurrent

channel-spatial

attention and long-

short skip

connections (Peng

et al. [53])

The system was built on the

encoder/ decoder architecture,

with channel and spatial

attention blocks added. Short

and long connections were also

introduced.

Used Qian et al. [11]

dataset for training and

testing. Uses PSNR and

SSIM were used for

evaluation and

benchmarking.

Dataset limitations for

training and testing. The

approach is similar to Quan

et al. [46] with differences

in network architecture.

Would be interesting to

compare the performance

of one against the other.

Separation-

Restoration-Fusion

Network for Image

Raindrop Removal

(Ren et al. [54])

the system consists of three

modules.

1. Region separation module

was implemented as an image

pipeline with classical

techniques

2. Region restoration module

MFGAN built on pyramid

topology was used.

3. region Fusion module

IODNet connection network

using DenseASPP [55] was

used to construct fusing

module

Used Qian et al. [11]

dataset for training and

testing. Uses PSNR and

SSIM were used for

evaluation and

benchmarking.

Images need preprocessing

to classify regions of the

image based on the

severity of the raindrop.

The classification was

based on experimental

results from a limited

dataset and may not apply

to other scenarios.

40

3.3 Conclusion

We described a range of research works in the field of adherent raindrop detection and removal,

with a focus on applications in the automotive domain. Based on the reviewed research work in

this paper, we conclude the following:

1- Adherent raindrop detection and removal is a more challenging problem than falling rain

detection and removal, due to the persistence of adherent raindrops over many image frames

and the irregularity of raindrop shapes and sizes.

2- Due to the closeness to the image plane, adherent raindrops look blurry and occlude larger

areas of the captured image.

3- Due to the above, most reviewed algorithms performed poorly under heavy rain conditions or

fast-changing scenes with many moving objects.

4- Simple detection algorithms were based on observed optical or physical characteristics of

adherent raindrops and performed well if the presumed conditions were met. Performance is

degraded quickly for any deviation from these conditions, including change of background

image texture or illumination and the introduction of moving objects in the scene background.

5- Complex detection algorithms performed very well under low and medium rain conditions.

The added complexity, however, can introduce unacceptable latencies in real-time applications

for processing rained images and removing adherent rain.

6- Compromises were discussed to improve processing time that included limiting the ROI,

reducing the number of model templates, and dimension reduction, among other things.

7- The application of Deep-learning and CNN seems to be a very promising approach for solving

the raindrop detection and rain removal problems.

41

8- The use of PSNR and SSIM metrics may not be the best choice for performance evaluation

and benchmarking among different CNN-based algorithms. Results reported by different

researchers showed marginal improvement in PSNR and SSIM scores which may very much

be within the statistical margin of error.

42

Chapter 4

Framework For Simulating and Removing Rain in Stereo-Image Videos

4.1 Introduction

Raindrops fall at high velocities relative to the exposure time of the camera, producing severely

motion-blurred streaks in images. Fluctuations in image intensity that are caused by rain “can

severely degrade the performance of a wide range of outdoor vision algorithms, including, feature

detection, stereo correspondence, tracking, segmentation, and object recognition.” [22] Some

work was done to study the effect of rain and de-raining on the performance of vision-based

systems [23] [56] but their work was limited to certain aspects of vision-based systems (e.g. feature

extraction and feature tracking). Controllability of test environment and repeatability of test results

are integral requirements to any scientific experiment. Falling rain is uncontrollable in nature and

it is costly to simulate in a dynamic setup which may include a moving vehicle and moving objects

in the background. It is also prohibitively costly to create repeatable drive cycles under clear and

rainy conditions. As a result, any image quality metrics for vision-based systems under rainy and

de-rained conditions will fall under the no-reference class, as per Wang et al. [9] classification.

For research purposes, however, this obstacle can be overcome by one of the following

approaches:

A. Capture images of videos for a static background under rainy and clear conditions. This

approach is simple enough and allows the researcher to focus on studying rain effects in an

43

image or video. It is, however, not suitable for dynamic scenes, where either the camera,

background elements or both are dynamically moving.

B. Capture images or videos in a dynamic, but controlled environment. This allows for studying

more broad scenarios than the static background version but it is more complex and expensive

to set up the test environment.

C. Add rain effect artificially to recorded videos or captured images. This technique provides

maximum flexibility and control over rain variables such as speed, density, orientation, etc.

The drawback is that added rain may not exactly be true rain in an image scene.

In this section, we present a stereo-based rain simulation and rain removal framework that facilities

the study of the effect of rain and de-raining on vision-based automotive applications. Our work

[57] is built on previous work presented by S. Starik et al. [58] and P. Barnum et al. [56] for rain

simulation and rain removal techniques.

4.2 Rain Simulation Model

4.2.1 Method

We built our rain simulation model based on the following characteristics of falling rain in an

image.

i. Falling Raindrops appear as rain streaks, due to the falling speed of raindrops and the

exposure time per image frame. As described in section 3.2, Garg and Nayar [59]

explained that a falling raindrop can occlude multiple image pixels on its way down,

during each shutter exposure period.

44

ii. Rain streak pixels are generally brighter than their surrounding background pixels. This

feature was attributed by Garg and Nayar [59] to the fact that raindrops act as tiny lenses,

collecting light beams from their surroundings.

iii. The closer the rain streaks to the camera are, the longer they appear on the captured

image. As shown in Figure 4-1, the mapping of any environment point P(𝑋, 𝑌) and the

image pixel p(𝑥, 𝑦) that represents it is a function of the lens focal length 𝑓, and the

distance from the image plane 𝑧.

Figure 4-1: Ideally, the size of an object projection in an image is inversely proportional to the distance of

that object from the camera image plane

For a fixed focal length, the magnitude of the pixel’s 𝑥 and y is inversely proportional to

the distance 𝑧, as given in the equations below

𝑥 = 𝑓

𝑋

𝑧

𝑦 = 𝑓
𝑌

𝑧

(4.1)

iv. The further the rain streaks from the camera are, the higher their density in the image

becomes. This is also related to the projection of environment points onto image pixels. A

far-away plane in the environment is projected into a smaller section of the image, as

45

compared to a closer plane. in other words, for the same real estate section in the image,

more pixels are captured that represent further objects than closer ones from the image

plane of the camera.

Based on these characteristics, we developed our falling rain simulator as follows:

A. Capture a set of images for scenes that we want to add falling rain into, using a stereo camera.

We used the Zed" stereo-vision camera [60] that was mounted on the roof of a sedan car to

capture videos of drives around the University of Michigan, Dearborn campus, at 20Hz rate

and 720p resolution. We captured datasets for drive cycles during different weather conditions

including clear and overcast. Figure 4-2 shows examples of some images we captured in these

datasets.

(a) Left Image Clear (b) Right Image Clear

(c) Left Image Overcast (d) Right Image Overcast

Figure 4-2: Left/ Right image pairs captured with the Zed camera under clear and overcast weather

conditions.

46

B. Calculate disparity maps from each stereo image pair and estimate the distance of objects from

the camera accordingly. Disparity refers to the difference in the matching pixel locations,

present in the left and right images of the stereo image pair. This process involves the

following steps,

i. Find the matching pixels in the left and right images. Any matching algorithm can be used

in this step. In MATLAB, the disparity function provides a choice between block-matching

and semi-global block matching. In our implementation, we used the semi-global block

matching since, as shown in figure 4-3, gave a smoother and more continuous disparity

display, compared to the block matching one.

Figure 4-3: Semi-Global matching generates smoother, continuous disparity maps, as compared to the

Block matching technique.

ii. Select a reference image (e.g., right image) and then rectify the other image, such that the

corresponding pixels are located on the same rows of the reference image.

iii. Calculate the disparity 𝐷 according to the equation

 𝐷 = 𝑥 − 𝑥′ =
𝐵𝑓

𝑍
 (4.2)

where 𝑥 and 𝑥′ are the distances of the matched pixels in the left and right image from the

epipolar plane, and B is the distance (Baseline) between the center of the left and right

47

imaging sensor. As shown in Figure 4-4, the epipolar plane is the plane connecting the two

imaging sensor centers to scene point X.

Figure 4-4: Disparity is calculated as the difference between distances of the matching pixels in the left

and right images from the epipoler plane. The epipoler plane is the plane connecting the left and right

image origins (O, O’) and scene point X.

iv. Estimate the distance of image objects from the camera, based on their disparity values.

Pixels of close objects have higher disparity values than pixels of further objects. For our

application, we used relative distance from the camera which has an inverse relation to the

disparity score.

v. Matching algorithms look for interesting features in the images, to match pixels in one

image to those in the other. Some sections of the image, however, do not have sufficient

features for matching, due to lack of gradient changes in the image characteristics (e.g.,

brightness), that translate to features of interest. Examples of these feature-poor segments

may include the blue sky and the gray, unmarked road.

If the pixels cannot be matched, the disparity cannot be calculated. To rectify this issue, we

employed a simple technique that proved effective in filling the missing disparity gaps. We

assumed that any areas with missing disparities above a certain level (less than a y-axis

48

value threshold) in the image plane, were likely to belong to the sky segment, and we

assigned to it the lowest disparity value (very far means very low disparity). For segments

below a certain level in the image that were missing disparity scores, we assumed they

belonged to the road segment, and we gave them a higher disparity value.

C. Calculate disparity maps from each stereo image pair and estimate the distance of objects from

the camera.

Objects close to the camera have larger disparity values than objects farther from the cameras. This

is because for a light source far from the camera, the light rays are almost parallel to both the left

and right camera in the stereo camera system. Light rays emitted from closer objects arrive at the

two cameras at different angles, thus are perceived by different areas of the vision sensors in each

camera. Mathematically, from equation 4.2,

 lim
𝑧→∞

𝐷 = lim
𝑧→∞

𝐵𝑓

𝑍
 =0 (4.3)

Based on this, depth information can roughly be estimated from the disparity map of the image

frame. Figure 4-5 shows an example of left and right scene images, along with the calculated

disparity map for them using MATLAB disparity function.

49

(a) Left Image (b) Right Image

 (c) Disparity Map

Figure 4-5: The Disparity map (c) is generated for the left (a) and right (b) image pair

D. Generate random rain streak masks that have the same dimensions as that of the scene images.

The model can be configured to generate any number of masks from 2 to16 masks, each

representing rain streaks at one distance level from the cameras. Each rain streak starts as a

random pixel in a mask buffer. A series of erosion and dilation processes are applied to these

random images to generate rain streaks. We varied the length of rain streaks and their density

as a function of the relative distance represented by each mask. One rain streak mask is

generated at the end of this step, by combining the different masks. Figure 4-6 shows a scene

image (left camera), the generated disparity map, and rain streak masks at two levels.

50

(a) Scene Image (left) (b) Disparity Map

(c) Mask level 2 (far) (d) Mask level 8 (near)

Figure 4-6: Based on the disparity map (b) generated for the scene image pair in (a), rain streak masks are

randomly generated. Masks representing nearby planes show longer and less dense streaks (d), compared

to shorted and more dense streaks for farther planes (c)

E. Add rain masks to the image and apply a local and global blurring effect. In this step, we

split the RGB color image into its three image channels (Red, Green, and Blue), then we add

the rain mask to each image channel individually. Rain streak brightness is balanced using

its surrounding pixels (background). As described earlier, rain streaks tend to be slightly

brighter than their background. The blurring effect is then applied to the rain streaks, to

account for the distortion caused by the camera lens, as described earlier. The three image

channels are finally combined to create one rained image.

51

F. For images taken under clear weather conditions, we add an overcast effect by reducing the

brightness level of the image pixels. This step is not required if the original images were

taken under overcast weather conditions.

G. Use the disparity map data to shift the rain streaks generated for the reference image (e.g.,

left) to the other image. This step is introduced to reduce the time needed for generating

masks for left and right images individually. It also guarantees that the rain streaks for the

left and right images are matched, and accurately shifted, per the generated disparity map of

the clear image pair. Steps E and, optionally F, is then applied to account for photometric

characteristics of the rain streaks and rained images. This step (G) is not required if the

desired output is a mono rained image rather than stereo image pair. Figure 4-7 shows one

image pair before and after rain streaks are added.

52

(a) Clear image (left) (b) Clear image (right)

(c) Rained image (left) (d) Rained image (right)

Figure 4-7: The falling rain simulator generates rained images (c), (d) from clear images (a), (b). The rain

streaks in the left and right rained images are matched according to the disparity map generated for the

original clear images.

4.2.2 Experiments and Results

We implemented the falling rain streaks simulator in MATLAB 2018b. for model parameters

fine-tuning, we experimented with the following aspects

i. The number of masks. We tested generating a different number of masks, each

representing one disparity (inverse depth) level. For our setup, we found that 6 to 8 masks

provided a good balance between execution time and sufficiently capturing the

distribution of rain streaks in an image, as perceived by a human observer.

ii. Smoothing filter weights. For seamless integration of rain streaks into the original image,

the brightness of the rain streak must be adjusted to match, but slightly exceed, those of

surrounding pixels. We experimented with averaging the brightness of 8-neighboring and

53

4-neighboring pixels to the rained image to use it as initial brightness for the streak pixel

and found little difference in most cases, so we used the simpler 4-neighboring average.

We then adjusted the brightness of the rain streak pixel to be lighter than its surroundings.

iii. Blurring filter weights. Blurring effect is added on local levels around raindrops and also

globally to the overall image. We experimented with different filters to implement the

desk of confusion idea and found out that a Gaussian filter with sigma = 0.8 was best for

local blurring. For global blurring, a Gaussian filter with sigma = 0.3 provided the best

visual results.

iv. We experimented with two methods for applying the overcast effect. The first involves

bringing the brightness levels closer to the mean value at each color channel, effectively

reducing the color content of the image. The other is a simple reduction of brightness by

a given factor (e.g., 0.8). The prior showed slightly better results but we ended up using

the latter for simplicity.

We compared our generated rained images to those published as part of the KITTI Vision

Benchmark Suits [61]. As shown in Figure 4-8, our model generated more visually

convincing rain streaks as compared to the KITTI dataset. The original images for the KITTI

dataset were captured under overcast conditions which made the overall rained image more

realistic.

54

(a) Example rained image from our Simulator

model

(b) Example of a synthetically-generated rained

image from KITTI Dataset

Figure 4-8: Our generated rained image versus the KITTI one. The rain streaks in our image are closer to

real rain streaks but the KITTI data set was captured under overcast conditions, which made their final

images with generated rain visually convincing.

4.3 Rain Detection and Removal Model

4.3.1 Method

We developed our rain detection and removal model based on the following rain streak

characteristics

i. Rain streaks can be represented by an elliptical shape with a length-to-breadth aspect ratio

(AR) that is bounded by minimum and maximum values.

ii. Rain Streaks roughly have the same orientation that is measured by the angle of the

majority axes of the representing ellipse with the horizon.

iii. Rain Streaks pixels are generally brighter than their surrounding background pixels

iv. The brightness of pixels in a rain streak is generally constant from one frame to the other,

provided the lack of background movements.

Based on these assumptions, we developed our falling rain detection and removal as follows

A. Identify pixels groups of pixels that are adjacent and are brighter than others in the image.

This method is the same one that Garg and Nayar [59] used in their rain streak detection

55

model, where the difference between the brightness of a rain streak pixels(𝐼𝑛) at frame n and

those in the frames before (𝐼𝑛−1) and after (𝐼𝑛+1) can be given as,

 ∆𝐼 = 𝐼𝑛 − 𝐼𝑛−1 = 𝐼𝑛 − 𝐼𝑛+1 > 𝑐 (4.4)

 where c is a predefined threshold.

We used the “BlobAnalysis” object from the “vision” toolbox in MATLAB 2018B to identify

these groups of pixels which are rain streaks candidates. The blob function returns information

about these blobs, including their size, majority and minority axes, and orientation.

1) Remove blobs that are too small to be considered raindrops. This step may incorrectly discard

very small streaks but these usually do not degrade the quality of the image as much as bigger

ones.

2) Eliminate blobs with an aspect ratio that does not fall within the accepted range.

3) Calculate a histogram for the remaining blob orientations and eliminate the outliers that show

low occurrences in the histogram

4) The remaining blobs are considered true rain streaks and are eliminated by substituting their

pixel brightness by the average of the brightness of the same pixels in the previous and

following frames. This is a simple, yet effective, technique for recovering image pixels

occluded by rain streaks. The brightness of image pixels from consecutive frames is likely to

remain the same or show little change. Averaging the brightness of pixels in the preceding

and following frames to the rained frame is thus a reasonable approach. In addition, rain

streaks are not likely to linger for more than one image frame so it is logical to assume that

the pixels in the preceding and following frames are clear ones. Mathematically, the rain streak

pixel substitution process can be given as,

56

 𝐼𝑛 =
𝐼𝑛−1 + 𝐼𝑛+1

2
 (4.5)

Figure 4-9 shows the main stages of rain streak detection in our implementation. Potential rain

streaks are extracted from rainy images, then aspect ratio and orientation constraints are applied to

reject potential “fake” rain pixels.

(a) Rained image (b) Falling rain streak candidates

(c) Falling rain streak candidates after applying

aspect ratio constraint

(d) Falling rain streaks after applying the

orientation constraint
Figure 4-9: Rain candidates are generated based on brightness levels only. Aspect ratio constraints and

orientation constraints eliminate “fake” rain pixels.

4.3.2 Experiments and Results

To quantify the performance of the rain removal system, we used the PSNR and the SSIM metrics,

 described in detail in sections 2.2.2 and 2.2.5., respectively.

57

Figure 4-10 shows images with light and medium intensity levels of simulated falling rain, after

applying the de-raining algorithm. Most of the rain in the original image was removed in both

rained images. Very little distortion was introduced to the de-rained images, which is an indication

that the detection part of the algorithm did not have a lot of false positives. In addition, the images

were taken in at a slow-moving ego vehicle, meaning that was little variation in the image

background, from one frame to the next. Figure 4-11 shows the SSIM score for a rained and de-

rained sequence of 100 images under low and medium rain intensity. We should point out the low

and medium classifications of falling rain was done were subjectively selected through visual

observation of rain streaks in the images. The average quality improvements from rained to de-

rained images, as given by the SSIM were 2.18% percent for medium-intensity rain, and 1.26%

for the low-intensity rain dataset. Figure 4-12 shows the PSNR plots for the same 100 samples of

rained and de-rained images. unlike the SSIM, the difference in PSNR between rained and de-

rained images, both measured against clear images is very small. This is due to the way PSNR is

calculated as a pixel-based metric and thus it does not align well with human perception of the

image quality.

58

(a) Rained Image with light Intensity falling rain (d) Rained Image with medium Intensity falling

rain

(b) De-rained Image with light Intensity falling rain (e) De-rained Image with medium Intensity falling

rain

(c) Original rain-free Image (f) Original rain-free Image

Figure 4-10: Left: Rained, De-rained, and Rain-free Images with light Intensity falling rain (a, b, and c).

Right: Rained, De-rained, and Rain-free Images with medium Intensity falling rain (d, e, and f).

59

(a) SSIM scores for the medium-intensity falling rain.

(b) SSIM scores for the low-intensity falling rain.

Figure 4-11: SSIM scores for rained and de-rained images against clear ones, in both low and medium-

intensity rain datasets, show that the quality de-rained image in most frames was better than the rained

one, identified by a higher SSIM score.

60

(a) PSNR scores for the medium-intensity falling rain.

(b) PSNR scores for the low-intensity falling rain.

Figure 4-12: PSNR scores for rained and de-rained images against clear ones do not give a conclusive

indication of image quality improvement due to removed rain streaks.

61

4.4 Conclusion

We implemented a framework for simulating and removing rain that can be used to study adverse

conditions on the performance of image-based systems. Simulated rain looked realistic both in

terms of rain streak size and rain density. There is, however, no technique to quantitatively measure

simulated rain vs. real rain. Using disparity maps provided a quick but crude estimation for image

depth. This method fell short where disparity values could not be calculated reliably, which is

usually, but not always, observed on segments of the image with small variations in intensity and

texture. The De-raining system removed most of the visible rain in the images but added distortion.

It was clear from test results that de-raining system parameters affect the quality of the de-rained

image and the amount of rain removed. The system parameters need to be adjusted according to

the density of rain in the image. Utilizing rain density information may help to improve de-raining

system performance.

62

Chapter 5

Effect of Adherent Rain on Vision-Based Object Detection Algorithms

5.1 Introduction

Adverse weather conditions degrade the quality of images used in vision-based advanced driver

assistance systems (ADAS) and autonomous driving algorithms. Garg and Nayar [62] broadly

classify adverse weather conditions into steady (fog, mist, and haze) or dynamic (rain, snow, and

hail). Image degradation takes many forms, depending on the type of adverse condition causing

it. Fog and haze, as examples of adverse weather conditions, cause loss of contrast and fidelity in

captured images, due to light absorption and scattering in the turbid medium of particles and

water droplets in the atmosphere [63, 64].

The degradation effect of haze and fog is due to the aggregate effect of a large number of droplets,

despite their small individual droplet size (1 - 10 µm). Raindrops, on the other hand, are larger

(0.1-10mm), and their individual effect on image pixels can be visible by the camera [59].

 Adherent raindrops onto a vehicle’s windshield occlude parts of the input image and blur

background texture in regions covered by them. Rain also changes image intensity and disturbs

the chromatic properties of color images. Most research work in the field of rain detection and

removal focused on the image restoration aspects of the issue, without providing qualitative

measures to the effect of input image degradation on the performance of image-based algorithms

that use them as their main input.

63

In this section, we describe the research work we did to quantitatively evaluated the effect of

raindrop distortion of input images, on some state-of-the-art deep-learning-based object detection

algorithms. We compared each detector’s performance with distorted image sets to that using

rain-free ones, and provided quantitative scores for performance, using commonly-used quality

metrics.

5.2 Method

5.2.1 Data Set

We used ELP Dual Lens Stereo Camera Module (ELP-960P2CAM-V90-VC) to capture MJPEG

videos

 (2560X960 resolution at 60 frames per second) of real drive cycles. The drive cycles were

approximately 40 minutes each and included both highway and local driving segments. A total of

23 videos were captured, 17 of them were during variant levels of rainfall intensities. Figure 5-1

shows a mapped section of these drive cycles.

To create the data sets of image pairs, we captured frames right before and right after that event

as the rained (wet) and clear ground truth images, respectively. To reduce the effect of

background variations on detection performance, we collected some datasets in a parking lot

setup. The background in these datasets was quiz-static, except for some street light fluctuations

and the occasional passing of faraway objects. Figure 5-2 and Figure 5-3 show samples of the

moving and parked vehicle datasets, under clear and rained conditions.

64

Figure 5-1:Section of the mapped track of test drive cycles.

65

(a) Rain-free Image (b) Rained Image

Figure 5-2: Clear and rained image set from the Moving Vehicle dataset

(a) Rain-free Image (b) Rained Image

Figure 5-3:Clear and rained image set from the Parked Vehicle dataset

5.2.2 Detection Algorithms

We selected three state-of-the-art object detectors to be our test subjects, in evaluating the effect

of rain-degraded images on detection performance. The three object detectors we selected Were

the Single Shot Detector (SSD) [65], Faster Region-based Convolutional Neural Network (R-

CNN) [17], and You Only Look Once Version 3 (YOLOv3) [66].

For the SSD, we used the model from the Wolfram Neural Net Repository implementation [67],

which was based on the SSD-VGG-300 architecture, and used a combination of the PASCAL

VOC2007

(http://host.robots.ox.ac.uk/pascal/VOC/voc2007/) dataset and PASCAL VOC2012

(http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html) dataset for training.

http://host.robots.ox.ac.uk/pascal/VOC/voc2007/
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html

66

For the Yolov3 model, we used the Wolfram Neural Net Repository implementation [68], which

used the Open Image dataset (https://storage.googleapis.com/openimages/web/index.html) for

training.

For the Faster R-CNN detector, we used the implementation by Chen et al. [69], which was

based on ResNet50 feature encoder architecture, and trained with the COCO dataset

(https://cocodataset.org/#home).

5.2.3 Quality Metrics

To evaluate performance, we used two types of metrics. To assess the image quality and provide

a quantitative measure of the image distortion due to rain, we used the Structural Similarity

Index Metric (SSIM).

As described by Wang et al. [9], SSIM is an image quality assessment measure designed around

the human visual system (HVS). It makes use of structural information change to provide an

approximation to perceived image distortion. Unlike error-sensitivity approaches, such as Mean

Squared Error (MSE) [70], that estimate image quality degradation using perceived errors, SSIM

measures degradation as the level of variations in image structural information [9]. SSIM is a

commonly-used metric that was used by many researchers to evaluate image quality (see for

example, [11] [47]). SSIM is calculated as a combination of luminance 𝑙, contrast 𝑐, and

structure 𝑠 comparator functions of two images. The structure similarity index for images x and y

can be given by [9],

 𝑆𝑆𝐼𝑀(𝑥, 𝑦) = [𝑙(𝑥, 𝑦)]𝛼. [𝑐(𝑥, 𝑦)]𝛽 . [𝑠(𝑥, 𝑦)]𝛾 (5.1)

where 𝛼, 𝛽, and 𝛾 are configuration parameters that control the contribution level of each

comparator to the overall index (they usually are set to 1). For a more detailed description of the

SSIM, please refer to section 2.2.5.

https://storage.googleapis.com/openimages/web/index.html
https://cocodataset.org/#home

67

To evaluate the performance of the detector as a function of detected objects in each frame, we

used Precision and Recall metrics.

Precision is classified as positive predictive values (PPV) and it represents the portion of

positive results that are true positive [71]. It is given in terms of True Positive (TP) and False

Positive (FP) predictions as,

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃

(5.2)

In our experiments, TP represents the number of objects correctly detected in a test frame, and

𝐹𝑃 is the number of objects incorrectly detected in the same test frame, both relative to objects

detected in the ground truth frame.

Precision is a commonly used metric for the assessment of vision-based algorithms (see, for

example [30], [35]), but it is usually used in combination with the Recall metric. For a more

detailed description of the Precision metric, please refer to section 2.3.1.

Recall is also known as sensitivity and it represents the fraction of relevant instances that have

been retrieved over the total amount of relevant instances [71]. It is given by,

𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(5.3)

 where 𝐹𝑁 (False Negative) represents the number of objects not detected in the test frame, as

compared to the ground truth frame. For a more detailed description of the Precision metric,

please refer to section 2.3.2.

5.3 Experiments and Results

5.3.1 Image Quality Test Results

We created a simple MATLAB script to detect wiper wipe events and used the script to generate

test samples. Each test sample is made of one frame before (Wet) and one frame after (clear

68

ground truth) the wipe event. We used a simple template-matching approach in this wipe event

model, where the wiper pixels were used to create different templates at different stages of the

wipe event. The algorithm then looked for these templates in each frame of the image sequences

and identified the starting and conclusion of the wipe event.

To evaluate the quality of the SSIM as reliable measures of image quality degradation under the

rain, we applied this measure on short data sets, each containing one wipe event and few frames

before and after that event. The SSIM scores were used as an indicator of the degree of similarity

between test images and ground truth images. Figure 5.4 shows the result of measuring SSIM on

a moving vehicle series and figure 5.5 shows the result for the idle car series.

The following observations can be made:

i. As the wiping event proceeds, the SSIM score increases the closer we get closer to the

ground truth image (rain-free) image frame. This rain-free image is around image frame

202 in the moving vehicle sequence, and around frame 1428 for the idle vehicle series.

ii. As rain starts to accumulate after the conclusion of the wipe event, the SSIM score starts

dropping and continues to drop as more rain is accumulated on the windshield.

iii. SSIM scores for moving vehicle series range from 50% for the rained image to 100% for

clear one (ground truth). For the parking lot series, the difference was about 20%. The

difference in “useful” ranges is attributed to the strong effect of changing background

scenes in moving vs. idle vehicles.

Based on the above, we concluded that the SSIM was a reliable metric for assessing the quality

of the image and the level of degradation caused by the presence of raindrops. In addition, we

focused our analysis on the data sets with a static background (parked vehicle series), to reduce

the effect of changing background due to factors other than rain presence in the input images.

69

Figure 5-4: SSIM measure for image quality using moving vehicle series, during the windshield wiping

event

Figure 5-5: SSIM measure for image quality using Parked vehicle series, during the windshield wiping

event

5.3.2 Object Detection Test Results

In this section, we present the results of object detection, using different DNN models: SSD [65],

Faster R-CNN [72] , and YOLOv3 [66]. We used the parked vehicle datasets in all our

70

experiments. For all the DNN models used, the parameters Confidence Threshold (CT) and Non-

Maximum Suppression (NMS), were set to 0.5 and 0.4, respectively. Only objects that had a

detection score greater than or at least equal to the CT were considered in the analysis. The NMS

parameter reflects how close the predicted location and size of an object is to its actual location

and size in the image. Object detectors use bounding boxes of different sizes and try to match the

detected objects to one or more of these boxes. Ideally, there shall be one bounding box per

detected object, but it is usually the case that an object can fit inside more than one box. The

NMS is used as a metric to optimize the process and select the box that best fits a given object.

As shown in Figure 5-6, the NMS value is compared to the Intersection over Union (IoU) score

for each Bounding box, which results in selecting Box 1 with a higher IoU than the NMS value,

over Box 2.

(a) IoU(Box 1) = 0.293 (b) IoU(Box 2) = 0.238

Figure 5-6: Calculating IoU scores for two different bounding boxes to the same detected object. If NMS

= 0.25, then Box 1 would be used rather than Box 2

71

The results of the three object detectors are shown below.

5.3.2.1 SSD Results

We used the SSD model to detect objects in our captured datasets, for an idle and moving

vehicle, and different adherent raindrop densities. Figure 5-7 shows an example of wet and clear

images, with objects detected using SSD. We notice that under rainy conditions, the SSD

detectors failed to detect many objects in the parked vehicle series and did not detect the truck in

the moving vehicle series, compared to the clear image. Also, in the rained moving vehicle

image, the SSD incorrectly detected (FN) a boat object in the scene, where lots of raindrop

content was observed. Figure 5-8 shows a plot of recall versus SSIM for one parking lot series

(a), and the number of detected objects in each image frame, using the SSD object detector. In

Figure 5-8 (a), the SSD detector’s performance seems to improve as the SSIM increases but

saturates around an SSIM score of about 0.82. Using SSIM as an indicator of image quality

under different rain conditions, we can conclude that the SSD detector shows robustness to rain-

induced image degradation up to a certain level. Looking at this from a different perspective, if

de-raining is used to clear input images before they are used by the SSD object detector, then it is

sufficient to clean the images to meet the sensitivity level of the detector. Any cleaning beyond

this level will not cause a noticeable improvement in the detector’s performance.

72

(a) Example of SSD output on a rain-free image from

the Parked vehicle sequence

(b) Example of SSD output on a rained image from the

Parked vehicle sequence

(c) Example of SSD output on a rain-free image from

the moving vehicle sequence

(d) Example of SSD output on a rained image from the

moving vehicle sequence

Figure 5-7: More objects are detected using SSD in the clear image (a and c) than in the rained image (b

and d). Moreover, some misclassifications are found in the rained image (d). For detected objects,

detection confidence in the rained images is lower than that in the clear images.

Figure 5-8 (b) shows that in the clear dataset, the SSD steadily detected seven or eight objects

per frame (out of 11 actual objects in the parking lot scene). For the rained dataset, however, the

number of objects detected sharply fluctuated between zero and eight, depending on the

degradation level (due to raindrop presence) in each frame.

73

(a) Recall vs. SSIM for SSD object detector, using parked vehicle dataset

(b) Number of objects detected in each image frame by the SSD detector, using one parked

vehicle dataset

Figure 5-8: Applying SSD on parking lot series, we observe a clear trend of increasing Recall values with

increased SSIM Score (a). In addition, the number of detected objects is almost constant from one frame

to the other in the clear image dataset but fluctuates a lot in the rained image dataset (b).

We calculated the correlation between image quality, given as an SSIM score, and the Recall, for

different data sets. The results are shown in Table 5-1. For the parking lot series, results show a

strong correlation between image quality and object detection performance. For moving car sets,

74

the relation is observable for short data series but is weak in the longer ones. This is because, in

the moving vehicle case, the changing background plays a bigger role than the raindrop presence

deviating a given image frame from the series reference frames. The longer the series is, the

move variations in the background occur and the less similar a frame becomes to the reference

frame. Since the SSD detector’s performance is still dependent on the input image quality, the

correlation between the recall and the SSIM scores is low for moving vehicle series.

Table 5-1: The correlation coefficient between image quality and detection performance for different data

series, using the SSD object detector.

Data Series ID Vehicle condition Correlation coefficient Number of Images

16_52_17_Pro_L Idle 0.7560 84

16_52_17_Pro_LR Idle 0.7600 168

16_21_25_Pro Moving 0.5596 117

16_19_56_Pro_R Moving 0.0580 310

5.3.2.2 Faster R-CNN Results

Using the Faster R-CNN detector, we repeated the test we had conducted using the SSD detector,

using both parked and moving datasets. Figure 5-9 shows an example of wet and clear images,

with objects detected using Faster R-CNN. We notice that under rainy conditions, the Faster R-

CNN detectors failed to detect many objects in both the parked and moving vehicle series. Figure

5-10 shows a plot of recall versus SSIM for one parking lot series (a), and the number of

detected objects in each image frame, using the Faster R-CNN object detector (b). As in the SSD

case, we observe a trend of increasing recall as the image quality (given as SSIM score)

increases, and that the recall scores saturate after some SSIM value (around .835), and any

increase in SSIM values after that does not translate to noticeable recall score.

75

(a) Example of Faster R-CNN output on a rain-free

image from the Parked vehicle sequence

(b) Example of Faster R-CNN output on a rained

image from the Parked vehicle sequence

(c) Example of Faster R-CNN output on a rain-free

image from the moving vehicle sequence

(d) Example of Faster R-CNN output on a rained

image from the moving vehicle sequence

Figure 5-9: More objects are detected using Faster R-CNN in the clear image (a and c) than in the rained

image (b and d). For detected objects, detection confidence in the rained images is lower than that in clear

ones.

We also observe that there are more fluctuations in the recall scope versus SSIM score than what

is observed in the SSD case, using the same data sets. This might be an indication that the Faster

R-CNN model we used is more susceptible to image quality degradations than the SSD model.

As for the number of detected objects per frame, Figure 5-10 shows that the Farter R-CNN

detector performs slightly better than the SSD one on the same datasets tested, with detected

objects ranging from nine to twelve per frame. The detected objects in the rained dataset show

lots of fluctuations from one frame to the other, based on the amount of rain (image degradation

level) in each frame.

76

(a) Recall vs. SSIM for Farter R-CNN object detector, using parked vehicle dataset

(b) Number of objects detected in each image frame by the Farter R-CNN detector, using one parked vehicle

dataset

Figure 5-10: Applying Farter R-CNN on parking lot series, we observe a clear trend of increasing Recall

values with increased SSIM Score (a). In addition, the number of detected objects is almost constant from

one frame to the other in the clear image dataset but fluctuates a lot in the rained image dataset (b).

77

As before, we calculated the correlation between image quality, given as an SSIM score, and the

Recall, for different data sets. The results are shown in Table 5-2.

Table 5-2: The correlation coefficient between image quality and detection performance for different data

series, using the Faster R-CNN object detector.

Data Series ID Vehicle condition Correlation coefficient Number of Images

16_52_17_Pro_L Idle 0.6857 84

16_52_17_Pro_LR Idle 0.7157 168

16_21_25_Pro Moving 0.6091 117

16_19_56_Pro_R Moving 0.0495 310

For the parking lot series, results show a strong correlation between image quality and object

detection performance. For moving car sets, the relation is still observable for short data series

but is weak in the longer one, similar to the relations we got using the SSD detector. In general,

the Faster R-CNN detected more objects on average in both rained and clear datasets, as

compared to the SSD and YOLOv3 models we used.

5.3.2.3 YOLOv3 Results

We repeated the same experiments as before using the YOLOv3 object detector. Just like in the

case of SSD and Faster R-CNN, Figure 5-11 shows the YOLOv3 detecting a smaller number of

images in the wet samples than the clear ones. The detection confidence levels for images in the

wet images are lower than those in clear ones. Figure 5-12 shows similar trends to those

observed with the SSD and Faster R-CNN object detectors.

Table 5-3 also shows that, as in the SSD and Faster R-CNN, the correlation between detection

performance and image quality is strong for the parked vehicle datasets but weaker for moving

vehicles using long image sequence as an input.

78

(a) Example of Faster YOLOv3 output on a rain-free

image from the Parked vehicle sequence

(b) Example of Faster YOLOv3 output on a rained

image from the Parked vehicle sequence

(c) Example of YOLOv3 output on a rain-free image

from the moving vehicle sequence

(d) Example of Faster YOLOv3output on a rained

image from the moving vehicle sequence

Figure 5-11: More objects are detected using YOLOv3 in the clear image (a and c) than in the rained

image (b and d). For detected objects, detection confidence in the rained images is lower than that in clear

ones.

79

(a) Recall vs. SSIM for YOLOv3 object detector, using parked vehicle dataset

(b) Number of objects detected in each image frame by the YOLOv3 detector, using one parked vehicle dataset

 Figure 5-12: Applying YOLOv3 on the parking lot series, we observe a clear trend of increasing Recall

values with increased SSIM Score (a). In addition, the number of detected objects is almost constant

from one frame to the other in the clear image.

80

Table 5-3: The correlation coefficient between image quality and detection performance for

different data series, using the YOLOv3 object detector.

Data Series ID Vehicle condition Correlation coefficient Number of Images

16_52_17_Pro_L Idle 0.7793 84

16_52_17_Pro_LR Idle 0.8750 168

16_21_25_Pro Moving 0.4087 117

16_19_56_Pro_R Moving 0.0099 310

5.4 Analysis and Discussion

As shown in the previous section, there is a strong relation between image quality, presented in

the form of SSIM value, and the performance of object detectors. For the parked vehicle series,

results show a rather strong correlation between image quality and object detection performance.

For moving car sets, the relation is observable for short data series but is very weak when

considering long series. As discussed earlier, variations in objects content in wet and clear

images negatively affect both image quality (similarity) calculations and object detection

performance. The longer the series is, the less reliable the correlation coefficient gets as a means

of establishing a relationship. In terms of object detectors, we observed that, in general, more

objects were detected by YOLOv3 and Faster R-CNN than with SSD. This can be partially

attributed to the larger class of objects these two detectors are trained to detect (COCO labels), as

compared to SSD (PASCAL VOC labels). One more thing to consider is that since we are using

the three object detectors as “test instruments” to study the relation between raindrop-degraded

input images and the performance of vision-based systems, any deficiency in the design of the

test instrument is in effect a latent variable. Each of the detector models we used seemed, to

suffer some inconsistencies in the detection results. In some data series, for example, the number

of objects detected in two consecutive frames was noticeably different, even though the scene

81

setup, raindrops, and background objects, did not change much between the two frames. In other

cases, a detector would identify an object in the rained images but fail to detect the same object

in the matching clear image frame. We predict that this latent variable has an effect on the

correlation measure but there is no easy way to measure that effect. No clear pattern or bias was

observed for this latent variable representing imperfections in the detection accuracy. To reduce

the effect of this latent variable we calculated the correlation scores based on a large size of

image samples.

5.5 Conclusion

We studied the effect of image degradation due to the presence of adherent raindrops on the

performance of a state-of-the-art object detection algorithm. We used SSIM and Recall metrics to

assess the quality of rained images relative to the clear ones for the same image scenes. In the

absence of moving objects in the background of the image sequence datasets, both metrics showed

a strong correlation between the image quality and the presence of adherent raindrops. We then

used the clear and rained image datasets as inputs to the object detention models and recorded the

number of detected objects per frame and the detection confidence for each object. We also

calculated the Recall score and used it as an indicator of the object detector performance. We then

analyzed the relationship between image quality (SSIM and Recall) and the detector performance

(Recall, number of objects, and detection confidence level). A strong correlation score was

calculated between the image quality and detector performance for all the object detectors we used

in our experiments. One interesting observation was that all the object detector models we tested

had a level of tolerance to the image degradation due to rain. This level was different from one

detector to the other. The difference is likely due to the design of the individual detectors, as well

as the implementation of the designs that we used in our work. If a de-raining stage was used

82

before the object detection system, it is likely, based on this observation, that the detectors would

yield satisfactory results (for the target system), even with less-than-perfect de-raining results. As

a result, smaller models and less training time for the de-raining models could be used, without

sacrificing the performance of the target vision-based system, being the object detectors in our

case.

83

Chapter 6

Dynamic Adherent Raindrop Simulator for Automotive Vision Systems

6.1 Introduction

Most vision-based systems developed for automotive applications assume optimal visibility

conditions. Deviations from these optimal conditions usually result in performance degradations

or complete failure of vision-based systems. Reduced lighting level, for example, causes

performance degradations in intensity-based vision algorithms, and may cause a total system

failure in color-based algorithms that are usually more susceptible to illumination level variations.

Raindrops that adhere to the vehicle windshield blocks certain zones of the image and introduce

lens effects that cause both spatial and dynamic distortions to the image.

The automotive environment is unpredictable in general. Testing vision-based automotive

systems, to verify their robustness against noise factors requires collecting a great deal of data, to

cover all possible operational conditions. Collecting representative rained image data is not

optimal, since both raindrop sample properties and scene background are uncontrollable. It is not

possible to control the size and intensity of real adherent raindrops. This means that many

datasets of rained images need to be collected, analyzed, and classified based on adherent

raindrop characteristics, before being used for robustness testing and system optimization. Lack

of background controllability means that the clear-image ground-truth cannot be established,

since it is not possible to repeat the exact drive cycle with and without rain, due to variations in

background elements in different drive cycles. De-raining of rainy images presents an option for

84

estimating ground-truth, rain-free, data. This, however, is not an optimal solution either. De-

raining algorithms cannot remove all existing raindrops in an image with high accuracy and

reliability. They also add distortion, in terms of incorrectly de-raining clear sections of a rained

image and adding spatial and intensity distortions to the de-rained image. In this section, we

present a rain simulator system, that adds rain to clear images, collected from real drive cycles.

The system is dynamic, meaning that it shows the progressive accumulation of adherent

raindrops on a vehicle windshield. The amount of rain and rate of accumulation is controllable,

to provide the most flexibility for generating test sets at different rain conditions. Moreover, this

section expands on and follows some of the approaches used in our prior work [24] to assess the

effects of adherent Rain on deep learning-based object detectors, and compares it with simulated

dynamic adherent rain.

6.2 Method

6.2.1 Data Collection

For data collection, we used a dual-lens stereo camera (ELP-960P2CAM-V90-VC) that was

attached to the vehicle dashboard, approximately 10 cm away from the windshield. We captured

around 15 hours of videos of real drive cycles, under clear and rainy conditions, at 60

frames/second rate and 1280X960 resolution per image frame. We wrote an algorithm in

MATLAB scripting language to detect the beginning and end of the wipe events. The frames

previous to a wipe event were captured as rained image samples, and the few frames right after

that event were considered to represent the clear reference images. Figure 6-1 shows an example

of clear (a) and wet (b) images from the data sets.

85

6.2.2 Quality Metrics

We used two similarity metrics to test the closeness of images with real vs. simulated rain,

namely the Structural SIMilarity (SSIM) index, and the Earth Mover Distance (EMD). A

description of the SSIM can be found in section 2.2.5.

 We used the “ssim” function as implemented in MATLAB 2018-b.

(a) Clear Image (b) Rained Image

Figure 6-1: Example of captured image sets, clear(a) and wet (b).

The EMD “is a measure of distance between two probability distributions over a region D” [15].

A description of the EMD can be found in section 2.2.6.

We also developed a MATLAB script to calculate Precision and Recall measures for object

detector performance with real and simulated rain input. A description of the Precision and

Recall metrics can be found in sections 2.3.1 and 2.3.2, respectively.

6.3 Adherent Rain Simulator

We start with the following assumptions while designing our adherent raindrop simulator:

1) Adherent raindrops can take many irregular shapes, but they can be approximated with an

ellipse, as a starting point.

86

2) An Adherent raindrop acts as a lens, adding fish-eye or barrel distortion to the image

3) Adherent raindrops in an image are blurry and lack clear borders that define their shapes.

4) Adherent raindrops are semi-static, in the sense that there is a very little observed movement

of a raindrop from one frame to the next.

Figure 6-2 shows the main stages of our raindrop generation process, which are described as

follows:

87

Figure 6-2: Main stages of raindrop generation include image preprocessing, barrel (fisheye)

transformation, raindrop image processing, brightness adjustment, and blurring and edge smoothing.

88

6.3.1 Select Raindrop Shape, Size, and Position

As shown in Figure 6-3, adherent raindrops can come in different shapes and sizes, and align in

any possible orientation. We start with an ellipse to approximate the shape of the adherent

raindrop (Figure 6-4). Subsequent steps distort this ideal elliptical shape, adding more realism to

the simulated raindrop shape.

The size, orientation, and position of raindrops in each frame are arbitrarily selected from a

calibratable raindrop characteristics table. Table 6-1 shows the raindrop calibration parameters,

with some example ranges.

Figure 6-3: Adherent raindrops can come in different shapes, sizes, and orientations. Photo by Good

Stock Photos.

89

(a) Initial clear image (b) Simulated Raindrop position

Figure 6-4: Starting with a clear image frame (a), the simulator generates arbitrary values for simulated

raindrop location, size, and orientation (b).

Table 6-1: Calibration parameters for generating simulated raindrops for each image frame

Parameter Description

DropsPerFrame Number of raindrops added to a single frame [1-3]

DropPosition Position of a raindrop (default is the whole image area)

DropRotation The orientation of a raindrop [80° - 150°]

DropSize

Size of a raindrop defined in terms of major and minor axes of an ellipse in pixels

[10-35 x 3-10]

6.3.2 Applying Lens Distortion

Adherent raindrops on a windshield cause a lens distortion, similar to the fisheye or barrel effect.

This distortion can be represented as a nonlinear spatial translation of image points into the

raindrop pixels. This translational transformation can be approximated by [73],

 𝑃𝑛 = 𝑃𝑜 + 𝐷𝐹 ∗ 𝑃𝑜
3 (6.1)

where 𝑷𝒏 is the distorted pixel in the raindrop, 𝑷𝒐 is the original (environment) pixel that is

influenced by the raindrop distortion, and 𝑫𝑭 is the distortion factor. We use the MATLAB

function “geometricTransform2d” to represent this lens distortion effect of a raindrop. Figure 6-5

(a) shows the distorted region after applying the lens effect.

90

6.3.3 Blurring, Resizing, Rotating

Since the vehicle camera used in vision-based applications is usually focused on the

environment, any close images, raindrops included, would look blurry [74, 30].

(a) Raindrop region showing barrel distortion (b) Blurred, resized, and rotated raindrop.

Figure 6-5: Applying translational transformation on an image produces the barrel effect (a). The

distorted region is blurred, resized, and rotated to match desired raindrop characteristics (b).

We used the MATLAB function “imfilter” to add the blurring effect to our simulated raindrops.

For focus-blurring, we selected the correlation option and set the blur window size to a proper

value. For motion-blurring, we used the “fspecial” function to create a special filer type, with the

‘motion’ option, and the X and Y motion-blurring levels set appropriately. This motion type is

then used by the imfilter function to add a motion-blurring effect. The parameters for focus and

motion blurring were determined experimentally. We then resize and rotate the raindrop image,

to approximately match the encapsulating ellipse we have started with. Figure 6-5 (b) shows the

raindrop region, after blurring and applying the resize and rotation operations.

91

6.3.4 Adding Raindrop to Image

Adherent raindrops tend to be slightly brighter than their surrounding background, since they

collect light from all areas of the image, due to the lens effect. As stated earlier, raindrops lack

strong boundaries that separate them from their background and give them specific shapes. We

use intensity adjustment and border dilation and filtering to allow for seamless addition of

generated raindrops to the original (clear) image. Figure 6-6 shows samples of generated

raindrops compared to real raindrops in a wet image.

6.3.5 Capturing Adherent Raindrop Dynamics

Raindrops remain adhered to the windshield surface so long as the forces exerted surface tension

and gravitational pull are balanced. You et al. [74] found that the observed raindrop speed was

around 0.01 pixel/s, as seen by a camera mounted on a vehicle moving at a speed of 30 km/h.

They also observed that the motion seen inside a raindrop was 20 to 30 times slower than that

seen in other areas of the image. In our raindrop simulator, the raindrop dynamic behavior is

implemented as follows:

1) No movement is applied to raindrops from one frame to the next, a reasonable approximation

to the quasi-static movement observed by You et al. [74] .

2) New Raindrops are added arbitrarily to the raindrops generated on previous image frames.

92

(a) Simulated (b) Real

Figure 6-6: Generated raindrops are added to a clear image (top) that matches real raindrops of the same

scene, captured under rainy conditions (bottom). Each raindrop pair (real, generated) is encapsulated with

an ellipse of the same color. Real and generated raindrops are visually very similar, as perceived by a

human observer.

3) If a new raindrop is generated that intersects with an existing one, the distorted area is

generated as a simple addition of the two raindrops. This method allows for approximating

complex raindrop shapes as a combination of elliptical shapes.

4) For simplicity, the process of refactoring large raindrops to smaller droplets (see Stuppacher

and Supan [32]) is not implemented. This simplification holds reasonably well under light-

to-moderate raindrop intensity since the size of raindrops does not grow fast, due to the low

probability of arbitrary raindrops intersecting over a short period.

5) Raindrops’ mask is refreshed (all raindrops regenerated) every 20 to 30 frames

(programmable), to account for the dynamic changes of background scene elements and, at

the same time, making use of You et al. [74] observation about the slow change of raindrop

pixels compared to non-raindrop areas.

93

6.4 Results and Analysis

To validate the quality of our generated raindrops against real ones, we started with a

clear/rained image set of the same scene. We individually picked raindrops from the rained

image and measured their positions, sizes, and orientations. We then used our simulator to

generate raindrops with the same characteristics as the real ones. We used SSIM and EMD

metrics to measure the level of similarity of our generated raindrops to their real counterparts.

We took each rain raindrop image and compared it to the corresponding simulated raindrop,

which was generated by using the same orientation, size, and position of the real raindrop image.

Figure 6-7 shows the similarity measure histogram between real and simulated raindrops, as

calculated using EMD and SSIM metrics. Figure 6-8 shows that the similarity level between a

real rained image and an image with generated raindrops increases with the addition of extra

simulated raindrops.

94

Figure 6-7: Similarity between individual Real and Simulated raindrops is measured using EMD (top) and

SSIM (bottom) metrics and the histograms of scores calculated for each metric. The figure shows a strong

similarity between the real and generated raindrops

95

Figure 6-8: Using EMD (a) and SSIM (b) as similarity measures of real rained image and clear image

with simulated rain added shows a clear trend towards improving similarity, with the addition of

simulated raindrops. Lower EMD scores and higher SSIM scores both mean increased similarity levels

between compared images.

In the second level of testing, we generated rained images by adding generated raindrops to clear

images. Real and simulated rain image frames are then selected based on the degradation level of

each image frame as compared to the clear image frame of the same scene. SSIM and EMD

metrics were used as indicators of image degradation, in the sense that a worse similarity score

of these metrics was taken as a direct indication of increased image degradation caused by

raindrops. Only “parking-lot” data sets were used in this series of tests, to eliminate any

degradation from the movement of the test vehicle, relative to other objects in the scene. The

matched real and simulated rained images are then used as inputs to three deep learning-based

object detectors, namely Single Shot Detector (SSD), You Only Look Once version 3

(YOLOv3), and Faster Region-based Convolutional Neural Network (RCNN). Detected objects

are evaluated and matched, and detection performance is evaluated in two ways:

6.4.1 Detection Confidence Level Versus Image Degradation Level

The confidence level that is generated by the object detectors and assigned to each detected

object (0-100%), is inspected against image degradation (dissimilarity to the clear image), over

(a) EMD vs generated raindrops (b) SSID vs generated raindrops

96

all dataset frames. This process is repeated for both real and simulated rained images. Figure 6-9

shows matched image frame pair of real and simulated rain, with objects detected in each image

with different confidence levels. Figure 6-10 shows plots of confidence levels of one object

(Object #2) in the image scene, against SSIM and EMD, used as measures of distortion. There is

a clear trend of increased confidence level with decreased degradation (less rain) of rained

images. This trend is observed in both real and simulated rained images. The error bars represent

the mean (center of the bar) and standard deviation (length of the bar) of sample point segments,

each segment containing sample points that have the same range of SSIM or EMD scores.

97

(a) Real rained image

(b) Image with simulated rain

Figure 6-9: Objects are detected in real (a) and simulated rained images (b), with different confidence

levels (using YOLOv3). Bigger objects are detected with higher confidence levels than smaller ones. The

detectors order the detected objects according to their detection confidence levels.

98

(a) Detection Confidence vs. rained-to-clear image similarity using

SSIM metric
(b) Detection Confidence vs. rained-to-clear image similarity

using EMD metric

Figure 6-10: Detection Confidence level of Object #2 increases with decreased image degradation in both

real and simulated rain images. The mean of sample detection confidence levels (center of error bars) has

a strong correlation to image quality.

Figure 6-11 shows a plot of another object (Object #10) detection confidence levels versus image

degradation levels. The trend is still visible on both real and simulated rain images but not as

strong as the first object. We calculated the correlation between detection confidence and image

degradation for several objects in the real and simulated datasets. The results are shown in Table

6-2. As expected, object 2 showed a strong correlation between its detection score and image

quality. The correlation scores for real and simulated rained images for object 2 were also very

comparable. Object 10, on the other hand, showed a weaker correlation score, which explains

why the trend was observed in Figure 6-11. The table also shows that object 1 and object 15

show no clear correlation between detection confidence and image degradation level. Further

analysis showed that object 1 was the largest one (car) in the image scenes, and its detection

confidence remained high under all levels of image degradation. Object 15 was the opposite. It

was very small and its detection confidence was low at all levels of image degradation. In both

cases, detection confidence levels were not strongly correlated to image degradation, caused

mainly by adherent raindrops.

99

(a) Detection Confidence vs. rained-to-clear image similarity

using SSIM metric
(b) Detection Confidence vs. rained-to-clear image similarity

using EMD metric

Figure 6-11: For small objects in the image (e.g., Object #10), the detection confidence level is low, even

at low image degradation levels. The correlation between detection confidence and image quality is also

weaker than larger and brighter objects in the same image (e.g., Object #2).

Table 6-2: Correlation is calculated between detection confidence and image quality for real and

simulated rained images. Comparable correlation scores for real and simulated rained image objects.

Some objects show weak to no correlations.

 Correlation between Confidence and

EMD

Correlation between Confidence and

SSIM

Object

ID

Real Simulated Real Simulated

1 -0.3007 0.3422 0.2536 -0.4207

2 -0.7440 -0.6641 0.7690 0.7390

3 -0.6552 -0.2923 0.6453 0.6167

4 -0.7019 -0.8262 0.6827 0.8427

5 -0.3589 -0.7343 0.4529 0.7421

6 -0.4145 -0.5397 0.4538 0.5034

10 -0.2617 -0.3070 0.2141 0.3390

15 0.3912 -0.0365 -0.2431 -0.3717

Figure 12 shows histograms of correlations between detection confidence and image quality, for

fifteen objects in the scenes of the images, calculated for both real and simulated rained image

sets.

100

Figure 6-12: Histograms of correlation of detection confidence and image quality for both real (left) and

simulated (right) rained images show the strongest correlation levels under both real and simulated rain.

Only a few objects had weak correlation, and around half the objects showed relatively strong correlation

levels (above 0.5).

6.4.2 Precision and Recall Metrics Versus Image Degradation Level

The other means of assessing the performance of our raindrop simulator is using precision and

recall metrics, instead of just confidence levels, against image degradation levels. Initially, we

ran detection algorithms on clear image sets and used them as the ground truth for our precision

and recall calculations. A detection is considered true positive (TP) if the detected object in the

rained image (real or simulated) matched that found in the clear image. A false negative (FN) is

considered when an object in the clear image is not detected in the rained one. A false positive

(FP) is when the classifications of the objects detected in clear and rained images do not match

(e.g., car vs. boat). Figure 6-13 shows the plot of recall against image degradation, represented

with EMD measure. As can be seen from Figure 6-13, there is a clear trend of decreased recall

scores with the increase of image degradation, represented by the EMD similarity metric. The

trend is observed in both real and simulated rained image sets.

101

Figure 6-13: Calculating the recall score of detected objects over all captured frames of rained images,

with different rain intensities, shows a trend of decreased recall score with increased image quality,

represented by the EMD similarity score. As the degradation in image quality increases, objects are

detected less often, and recall score correlation to image quality becomes weaker.

Table 6-3 shows the correlation value of recall score versus image quality (EMD and SSIM) for

both real and simulated rained sets.

Table 6-3: Correlation is calculated between detection confidence and image quality for real and

simulated rained images. Comparable correlation scores for real and simulated rained image objects.

Some objects show weak to no correlations.
Recall vs. EMD Recall vs. SSIM

Real Simulated Real Simulated

-0.7645 -0.8097 0.7253 0.8356

Precision scores calculated on the same datasets did not show a clear dependency on the

degradation levels of rained images. Examining the detection results, we found that the dominant

failure mode was false negative rather than false positive. This can be explained as follows. The

object detectors were trained with full or partial images of common objects that can be found on

the street. A raindrop may occlude sections of an object, but the remaining un-occluded section

may still be sufficient features to correctly classify the object. Only when the occlusion is

102

significantly large enough, that the detector fails to detect (false negative) the raindrop-occluded

object. It is much less likely that the occlusion would leave sections of the object, which would

cause the detector to classify it incorrectly (false positive). Since precision is calculated as
𝑇𝑃

𝑇𝑃+𝐹𝑃

, it is clear why the precision score came as one for most of the samples, and thus was weakly

correlated to the degradation level. The recall, however, is calculated as
𝑇𝑃

𝑇𝑃+𝐹𝑁
 so it was more

correlated to the degradation level and showed a significant decrease with the increase of the

degradation level.

6.4.3 Comparative Analysis

To evaluate the performance of our raindrop simulator against the state-of-the-art ray-tracing-

based raindrop simulators, we used Carlin’s [75] model to generate rainy images from clear

500x500 pixel images, that we selected from our original dataset. A total of 128 images with

different rain patterns were used. Figure 6-14 shows an example of an image with generated

raindrops using our model and Carlin’s model. Carlin’s model generates raindrops with similar

shape and orientation, compared to raindrops generated from our model that vary in size, shape,

and orientation. Roser et al. [33] modeled raindrops using Bezier curves and showed that the area

of a raindrop as seen on a windshield is proportional to its volume and maximum thickness. For

real raindrops, the bigger the raindrop volume is, the less transparent the raindrop becomes.

Raindrop transparency level in Carlin’s model is also higher than that generated by our model,

and higher than what is normal for the size of raindrops generated by his model.

For quantitative comparison, we evaluated the performance of CNN-based object detectors, using

rained images generated by both Carlin’s model and ours. We used two metrics in our evaluation,

detection confidence level, and detection recall score. For the confidence level evaluation, we

103

matched objects in the rained images that were generated by both models to those detected in real

rained images. We then calculated the differences in detection confidence for each object detected

in real and simulated rain images. Table 6-4 shows a summary of some statistical metrics for the

object detection confidence level, using real and simulated rain datasets The two models seem to

produce similar results in terms of object detection confidence levels, as indicated by the mean

and standard deviation metrics of the results.

Figure 6-14: Images with raindrops that were generated by the ray-tracing method (left) and our method

(right). Our model generates raindrops with more varieties in size, shape, and orientation compared to the

ray-tracing model. The transparency levels in our generated raindrops are closer to that of real drops and

are generally lower than that of raindrops generated by the ray-tracing model.

Table 6-4 shows a summary of some statistical metrics for the object detection confidence level,

using real and simulated rain datasets The two models seem to produce similar results in terms of

object detection confidence levels, as indicated by the mean and standard deviation metrics of the

results.

104

Table 6-4: Mean and standard deviation of object detection confidence levels show statistical similarity of

results under real and simulated rain datasets.

 Statistical metrics of detection confidence
results

Datasets Mean Standard Deviation
Real rain dataset 0.8029 0.1702

Our generated rain dataset 0.8013 0.1852
Ray-tracing generated dataset 0.8108 0.1857

For the Recall score metric, we matched the image objects detected in simulated rained images

from the two models, to the ones detected in the clear image (reference) dataset. Recall score is

calculated for each image frame and the results are compared to the recall score of detection with

real rained images. Table 6-5 shows a summary of some statistical metrics for the object detection

recall score, using real and simulated rain datasets. The object detection recall scores are closer for

our model to those with real raindrops than the scores calculated for the ray-tracing model.

Table 6-5: Mean and standard deviation of object detection recall scores show statistical similarity of

results under real and simulated rain datasets.

 Statistical metrics of detection Recall
results

Datasets Mean Standard Deviation
Real rain dataset 0.6484 0.1956
Our generated rain dataset 0.7601 0.1742
Ray-tracing generated dataset 0.8132 0.0864

6.5 Conclusion

Our proposed simulator generated a visually convincing adherent raindrop on a vehicle windshield.

The model performs best when generating simple raindrops that can be approximated with an

ellipse. For more complex raindrop shapes, the model can be programmed to generate several

intersecting elliptical raindrops, each approximating one section of the complex raindrop shape.

This technique was tested by trying to mimic real raindrops of complex shapes using our simulator.

Results showed great improvement of raindrops similarity, compared to using a single ellipse

105

representation of complex shapes. The object detection tests we conducted using three CNN-based

deep learning object detectors showed similar behavior using real or simulated rained datasets.

This “behavior” can be described as follows:

1) The correlation values between recall score and image quality were very close on all datasets

tested and using both YOLOv3 and Faster-RCNN detectors

2) The correlation values between detection confidence levels and image quality were also close

on all datasets and the same detectors.

3) Big objects showed Resilience to raindrop-induced image degradation, and that behavior was

similar in both real and simulated rained image datasets. Smaller objects in the image were

more susceptible to the presence of raindrops and this susceptibility was similarly observed in

both real and simulated rained datasets.

EMD and SSIM were good metrics for evaluating degradation in image quality at different levels

of raindrop content in an image. They, however, are not perfect. Special attention needed to be

applied to limit the influence of dynamic background objects, whether being a distant vehicle,

moving clouds, or even flickering street lights. We also observed that they do not always agree

when representing image similarities, in a sense that increased SSIM score does not always mean

a decrease in EMD score, for the same sets of images compared. This meant that these two metrics

cannot be used interchangeably for individual image matching. For observing trends that extend

over many samples, the metrics show similar behavior and they appropriately track the progression

of image degradation, caused by increased raindrop presence.

Comparison of rained images generated by the state-of-the-art ray-tracing-based model showed

very close results, both in visual perception or the generated raindrops, and the usability of

generated rained images in object detection system validation.

106

In terms of performance speed, we developed our raindrop simulator using MATLAB 2018b

scripting language, with no specific optimizations. We ran it on a PC with an AMD FX-8350

microprocessor, 16 GB of DDR3 RAM, a 500 GB SSD hard drive, and running Windows 10

operating system. It took on average 600 ms to generate each raindrop, using the full (1280 x 650)

image as an input. Figure 6-15 shows samples of our generated raindrop images, alongside the

original, clear images, and real rained images with roughly the same level of rain-caused

degradation, as our generated ones.

107

S
e
t 1

C
le

a
r Im

a
g

e

C
le

a
r Im

a
g

e

S
e
t 2

R
e
a
l R

a
in

R
e
a
l R

a
in

G
e
n

e
ra

te
d

 R
a

in

G
e
n

e
ra

te
d

 R
a

in

C
le

a
r Im

a
g

e

C
le

a
r Im

a
g

e

S
e
t 4

W
ith

 R
e

a
l R

a
in

R
e
a
l R

a
in

G
e
n

e
ra

te
d

 R
a

in

G
e
n

e
ra

te
d

 R
a

in

Figure 6-15: Examples of Clear, Real, and randomly generated raindrop images from our dataset. rain

intensity ranges from light (set 1) to relatively heavy (set 4). The generated raindrops are perceptually

convincing to a human observer.

108

Chapter 7

Improving the Performance of Automotive Vision-based Applications Under Rainy

Conditions

7.1 Introduction

Automotive systems including vision-based applications are highly regulated and are required to

meet high performance and safety standards. This means that these systems must operate under

all conditions, favorable or adverse. The quality of the system inputs has a direct impact on its

performance, in the sense that noisy inputs usually result in degradation in system performance.

Two approaches are usually implemented to reduce the effect of noisy inputs on system

performance, denoising the inputs, or reducing system sensitivity to noise. Filtering analog

signals and debouncing digital ones are two examples of common input signal denoising

techniques. Predictive modeling and sensor fusion are system design techniques that lead to

reduced system sensitivity to noisy inputs. Rain is a type of adverse weather condition that

degrades the quality of images and the performance of vision-based systems that consume them.

In our research work [24], we showed that the performance of state-of-the-art object detectors

(including YOLOv3, RCNN, and SSD) greatly degrades when applied to image sets with

adherent raindrops content in them. Test results showed the drop in performance of the tested

object detectors was as high as 77%, as measured by the total number of objects detected and the

recall metric.

109

The majority of research work (see, for example, [28, 37, 45]) is focused on denoising the rain-

degraded input images to vision systems, by removing rain content from these Images.

As we have shown in our survey paper on adherent raindrop removal techniques [25] , none of

the reviewed de-raining algorithms could perfectly restore the rained images to resemble the

clear ones. Classical de-raining techniques use some set of physical properties, such as raindrop

shape, size, moving speed to create the raindrop detection model [33]. Other algorithms are

based on the optical properties of the raindrop, including its reflective and refractive behavior

[27], and its color and texture properties [35]. Spatio-temporal analyses are sometimes added to

improve the detection quality of raindrops [40].

The improvements in deep-learning and convolution neural networks (CNN) [45, 53, 54] opened

the door for a new set of de-raining techniques that, generally, achieved better performance

levels compared with classical machine learning algorithms.

CNN models, however, require large sets of data for training. For some de-raining algorithms, an

accurate mask of raindrops is needed to train the CNN model. This requires a large set of

matched clear and rained images to generate such a mask. Constructing such a dataset of paired

images is not an easy task, due to the unpredictability of rain and the background objects, and

due to the variations of the raindrop sizes, shapes, and orientations.

7.2 Method

We propose a different approach to improving vision-based system performance under rainy

conditions. Rather than denoising (de-raining) the input images, we propose to reduce the

system’s sensitivity to noisy inputs. This can be achieved by retraining models that are already

trained with clear image sets, with matching sets of rained images. This approach eliminates the

need for developing and training the de-raining network. Furthermore, retraining networks

110

designed for common automotive vision applications (e.g., traffic sign recognition, object

detection, lane detection) is efficient and fast, since it employs transfer-learning, whereas

training a de-raining network may need to be done from scratch. Table 7-1 shows some

differences between the input denoising approach and the network retraining one.

Table 7-1: Differences between input denoising and network retraining approaches for improving vision

system performance

Performance boost approach De-raining of input images Retraining model with

rained images Comparison points

Training type Training from scratch Transfer learning

Training dataset size Large Relatively small

Input type (Clear, Rained) pair dataset

plus raindrop mask and/or

structure or texture maps

(Clear, Rained) pair dataset

Objects of interest Natural raindrops with

weak borders and variable

shapes, sizes, and

orientations

Man-made objects with

strong boundaries and

uniform shapes (e.g.,

Vehicles, traffic signs, road

marks)

To test our hypothesis, we trained an object detector and semantic segmentation models a clear

image set, then retrained it with generated raindrops dataset. A comparison of the detector’s

performance with clear, rained, and de-rained images showed that the retraining approach

showed better performance improvement than the de-raining approach.

111

7.3 Data Collection and Data Preprocessing

We used different datasets for training and testing the object detection network and for training

and testing the image semantic segmentation network.

7.3.1 Object Detection Datasets

 We used the 2d “Object Detection Evaluation” from the KITTI Vision Benchmark Suite [61] to

train the baseline Yolo3 for detecting objects under rain-free conditions1. This dataset consists of

training and testing datasets, but we have used the training dataset for both training and testing

since it comes with object label text files. The dataset includes 7482 color images with common

objects encountered in a drive cycle shown in the background. We modified the format of the

label text files to be compatible with MathWorks’s deep-learning object label format. The five

object classes we chose for the baseline were 'Pedestrian', 'Truck', 'Car', 'Cyclist', and 'Van'.

We collected our own dataset of paired clear and rained images, captured under different driving

conditions and showing common road objects in the background. We used the (ELP-

960P2CAM-V90-VC) dual-lens stereo camera that was positioned approximately 10 cm away

from the windshield. We used the wiping event as a trigger to capture rained and clear image

pairs where the frame before the wipe event was captured as the rained image and the frame after

it as the clear image. We selected 1162 image pairs to construct our dataset, based on the number

of background images in the frames and the degree of similarity between clear and rained image

pairs, looking for the highest values in both cases. We then used MALTLAB’s ‘Image

Labeler’ app to label objects in the clear and rained image sets. We chose 'Pedestrian', 'Truck',

1 KITTI Vision Benchmark Suite is one of the leading vision benchmark suites, that is constantly being updated to

match the latest improvements in vision research. It incudes datasets to support research on stereo vision, scence-

flow, depth prediction and completion, odomerty, object detection, and other vision research domains.

112

'Car', and 'None' as the classes for the retrained Yolo3 network. The selection of different object

classes from the baseline model was intentional since we wanted to mimic a real-life scenario

where transfer learning is used to retrain a baseline network, using different training data and for

a different desired output. We used the rained images from our dataset to test the performance of

the retrained Yolo3 object detector.

We applied a state-of-the-art de-raining algorithm that was developed by Quan et al. [46] [76] on

the same rained dataset, to create a de-rained data set from our rained one, and used it for

performance comparison analysis. Quan’s de-raining algorithm requires a set of ‘edge’ images

that are generated from the rained image2. Figure 7-1 shows image samples from the different

datasets we used in the object detection training and testing. There are other publically available

implementations of other DNN-based algorithms, including the implementation of Qian et al.

[11] [77], and Yasarla and Patel [78] [79].

We chose Quan et al. [76]3 implementation since, first, it was an improvement over Qian’s

algorithm for image de-raining, given that Qian’s algorithm [11] is becoming the new standard

of adherent raindrop deraining. Quin et al. [77] also reported de-raining results that surpassed

other DNN-based algorithms, including Eigen et al. [45] and Isola et al. [80]. Yasarl and Patel’s

algorithm was developed for de-raining of falling rain streaks from images. As shown by Peng et

al. [53], these rain streak removal algorithms do not yield satisfactory results compared to the

2 We should mention that Quan’s algorithm was trained tested a publicly available dataset that was created by Qian

et al. [89]. We did not use this dataset in our analysis, since most images did not include enough background objects

that could be detected by the object detector. In addition, the dataset was created with synthesized rain, rather than

real rain, by spraying waterdrops on a glass surface in front of the camera.
3 To avoid any issue that may stem from inaccurate implementation the de-raining algorithm Proposed by Quan et

al. [48], we used their implementation of that algorithm [88] with no modifications.

113

ones designed for adherent raindrop removal, even when they retrained those algorithms on the

same adherent raindrop datasets used to train the adherent raindrop removal ones4.

(a) KITTI Object Dataset (b) Our Dataset - Clear

(c) Our Dataset - Rained (c) Our Dataset – De-rained

Figure 7-1: Image samples from the different datasets we used in our research work. The KITTI dataset

was captured under clear weather conditions, whereas our dataset was captured under rainy conditions.

4 The falling rain streaks and adherent raindrops are two different problems in terms of type of degradation they

cause to input images. The characteristics (features) of rain streaks and adherent raindrops which the DNN system

uses for learning are also different. it is not surprising based on the above that retraining a rain streak removal DNN

on adherent raindrop datasets does not yield satisfactory results.

114

7.3.2 Image Segmentation Datasets

For the image segmentation, we used the “Semantic and Instance Segmentation Evaluation”

dataset from the KITTI Vision Benchmark Suite [61], to train the baseline image segmentation

network. The dataset consists of 200 images of street scenes, taken under clear weather

conditions. Pixel-level color and gray-scale segmented images and instance-level segmented

images are also included in the dataset. We grouped the 35 segmentation labels that the KITTI

dataset provided, into six labels, ‘Sky’, ‘Vehicle’, ‘Person’, ‘Background’, ‘Road’, and

‘Unlabeled’. We used the clear images and the color pixel-level segmented images to train the

segmentation network. We added generated rain at different levels to the original dataset, to

create three synthetic raindrop datasets, Low_Rain, Medium_Rain, and Heavy_Rain. We

Structural Similarity Index (SSIM) as an indicator of the amount of rain-induced image

degradation. We used a raindrop simulator model that we had previously developed [81] to

added generated raindrops to clear images, to create the Low_Rain, Medium_Rain, and Heavy

_Rain datasets. An overcast effect was added to simulate real rain lighting conditions since the

original KITTI dataset was captured under clear conditions. To do this, the color image is first

split into its Red, Green, and Blue channels. The mean intensity for each color channel is then

calculated, and the pixel intensities are remapped into a tighter intensity range around the mean

intensity. This effectively reduces the color content for each channel, a natural consequence of

reduced illumination under overcast conditions. In addition, the recombined color image from

the three-channel images has a reduced overall intensity, as a result of reduced intensities in each

of its color channels. The final overcast image looks darker and less color-rich than the rain-free

one. We used the first two generated rain sets to retrain the segmentation network and the last

115

one (Heavy_Rain) for testing. Figure 7-2 shows examples of the image datasets we used to train

and test the segmentation network.

(a) KITTI clear image DataSet (b) Color pixel-level segmented image

(c) Training image dataset with low-medium

raindrops content

(d) Testing image dataset, with High raindrops

content

Figure 7-2: Datasets used for training and testing the image segmentation network. KITTI Semantic and

Instance Segmentation Evaluation dataset, (a) and (b) is used to train the baseline segmentation network.

We added an overcast effect and generated rain to the image sets in (c) and (d) to train and test the

segmentation network under rainy conditions.

Table 7-2 shows a summary of the datasets we used in the object detection and image

segmentation networks.

116

Table 7-2: A list of the datasets used in our research for training and testing the object detection and

segmentation networks

Set ID Usage

KITTI_Objects Train the baseline detector using the KITTI dataset.

Clear_Objects Retrain the baseline detector using our rain-free dataset

GeneratedRain_Objects Retrain the baseline detector using our generated-rain dataset

RealRain_Objects

Test the baseline and retrained detector under real-rain

conditions.

Derained_Objects Test the baseline detector using de-rained.

KITTI_Segmentation Train the baseline segmentation model using the KITTI dataset.

GeneratedRain_Segmentation_Train

Retrain the baseline segmentation model using generated-rain

dataset

GeneratedRain_Segmentation_Test Test the retrain segmentation model using generated-rain dataset

Derained_Segmentation Test the baseline segmentation model using de-rained images

7.4 Models Training Process and Testing

In this section, we will describe the training process and test cases we conducted for the object

detection and semantic image segmentation models.

7.4.1 The Object Detection Model

7.4.1.1 Baseline Model Setup and Training

We used MathWorks’s Yolov3 object detector example [82] as our starting model. The detector

was based on SqueezeNet [83] Deep Neural Network (DNN). This SqueezeNet, as the name

implies, has a relatively small architecture but it produces accurate results comparable to much

larger DNNs, such as AlexNet [84]. This allowed us to conduct all our training and testing on a

desktop with relatively outdated specifications (AMD FX-8350 with 16 GB of DDR3 RAM and

117

an Nvidia 1050Ti GPU). Figure 7-3 shows the training stages and datasets used in each stage for

the YOLOv3 object detector model.

Figure 7-3: A Flow diagram showing the different YOLOv3 model training stages and the training dataset

used in each stage

The training process is described below.

7.4.1.2 Train the Automotive-specific Object Detector

We trained the starting model using the “KITTI_Objects” dataset, split as 70% training and 30%

testing. The maximum number of epochs was set to 200, with a minimum batch size of 8 and a

maximum learning rate of 0.001. We used image augmentation to increase input dataset size,

without actually adding more images to the training dataset. We used six anchors to improve

image object fitting. Both data augmentation and anchor box calculation functions are part of

MathWorks’s YOLOv3 model. Table 7-3 shows the statistical results of testing the resultant

object detector using the remaining 30% of the “KITTI_Objects” dataset. Some metrics

commonly used for detection performance assessment are the Average Precision (AP) and Log-

Average Miss Rate (LAMR). In MATLAB, the function “evaluateDetectionPrecision” can be

used to calculate the AP score, which was based on the PASCAL VOC2011 [20] definition of

AP. To calculate the LAMR score, MATLAB provides the function

“evaluateDetectionMissRate” which is implemented based on Dollar et al. pedestrian detection

118

evaluation paper [85]. Figure 7-4 shows an example image from the test dataset with detected

objects annotated.

Table 7-3: The average precision and log-average miss rate scores, as calculated for the five object classes

in the automotive-domain object detector. Larger average precision scores and smaller log-average miss

rate scores are desirable for better detection performance.

Object Class Average Precision Log-Average Miss Rate

Pedestrian 0.59 0.45

Truck 0.90 0.08

Car 0.81 0.37

Cyclist 0.64 0.34

Van 0.81 0.19

Figure 7-4: An example of the output of the Yolov3 detector that was trained in stage 1. The objects are

identified with a bounding box, with a class tag and detection confidence level shown for each object.

7.4.1.3 Train the Rain-free Object Detector

In this stage, we used the “RealRain_Objects” dataset to retrain the Yolov3 network from the

previous stage, to detect three different object classes, ‘Pedestrian’, ‘Truck’ and ‘Car’. Through

the power of transfer learning, we managed to retrain the object detector with very little change

to the actual DNN structure. Since the dataset size in this stage is smaller than the one used in the

previous stage, we had to run the training process for 300 epochs but we kept all other training

parameters the same. We then tested the retrained detector using the “RealRain_Objects” real

119

rainy image set, to evaluate the detection performance degradation due to the presence of

raindrops. We also tested the retrained object detector on the “Derained_Objects” dataset, to

evaluate if there were any performance improvements using de-rained images versus rained

ones.

Table 7-4 shows a summary of the AP and LAMR performance metrics for the three object

classes using rain-free, rained, and de-rained images. Figure 7-5 shows an example image of

object detection at this stage. As expected, the detection performance of the YOLOv3 detector

that was trained on a clear image degraded considerably with rained image set used as an input.

This is indicated in both decreased AP scores and increased LAMR scores for all three object

classes. In addition, it seems like the de-raining process degraded the detection performance even

further than the performance under the original rained images.

Table 7-4: The average precision and log-average miss rate scores, as calculated for the three object

classes in the rain-free object detector. As shown in the table, there is a big degradation in detection

performance when using rained images, and an even larger degradation when de-rained images are used.

 Rain-free Rained De-rained

Object

Class

Average

Precision

Log-Average

Miss Rate

Average

Precision

Log-Average

Miss Rate

Average

Precision

Log-Average

Miss Rate

Car 0.92 0.09 0.36 0.63 0.18 .81

Truck 0.94 0.11 0.73 0.46 0.57 0.65

Pedestrian 0.64 0.36 0 1 0 1

120

Figure 7-5: An example of the output of the Yolov3 detector that was trained in stage 2 using clear,

rained, and de-rained datasets. The objects are identified with a bounding box, with a class tag and

detection confidence level shown for each object. Not much rain content was removed by the de-raining

algorithm and no detection performance improvement in the de-rained image compared to the rained one.

121

7.4.1.4 Train the Rained Object Detector

For this stage, we used the “GeneratedRain_Objects” dataset to retrain the YOLOv3 object

detector that we had trained in the previous stage. This dataset represents simulated rainy

conditions, where generated raindrops are added to the clear images in the “RealRain_Objects”

dataset. We then tested the retrained detector using the “RealRain_Objects” real rainy image set.

Table 7-5 shows the AP and LAMR performance metrics for the three object classes under

rained conditions. The detection performances for the ‘Car’ and ‘Truck’ classes were on-bar with

those reported with the detector that was trained and tested with a Rain-free image dataset. In

other words, retraining the rain-free object detector model with simulated rained images allowed

it to overcome the raindrop-related image degradation, and perform at levels comparable to those

under rain-free conditions. The detection performance for the Pedestrian class is still very low

(AP0, LAMR1). This is because there are much fewer instances of Pedestrians in the dataset

than cars and trucks. The AP metric is calculated as the area under the curve that represents the

Precision-to-Recall relation. Similarly, the LAMR is calculated as the area under the curves that

represent the mapping between Miss Rate (MR) and False Positive Per Image (FFPI) metrics.

This type of calculation is useful since it represents the entire curve (Precision/ Recall or

MR/FPPI) by a single reference [85]. It does seem, however, to penalize classes with low-

occurring instances in the form of very low AP and very high LAMR scores.

122

Table 7-5: The average precision and log-average miss rate scores, as calculated for the three object

classes in the rained object detector. As shown in the table, this retrained detector seems to perform as

well as the rain-free detector that is trained and tested on rain-free images.

Object Class Average Precision Log-Average Miss Rate

Car 0.91 0.06

Truck 0.95 0.08

Pedestrian 0 1

To verify that the retraining with simulated rain did not affect the performance of the object

detector under clear rain conditions, we tested the rained detector with the original rain-free

dataset, “Clear_Objects “. As shown in table 7-6, there is no change in performance between the

rained detector and rain-free detector, both tested with rain-free images.

Table 7-6: The average precision and log-average miss rate scores, as calculated for the three object

classes in the rained object detector. As shown in the table, this retrained detector seems to perform as

well as the rain-free detector when tested with rain-free images.

Object Class Average Precision Log-Average Miss Rate

Car 0.92 0.09

Truck 0.94 0.11

Pedestrian 0.64 0.36

7.4.2 The Image Segmentation Model

7.4.2.1 Baseline Model Setup and Training

We used MathWorks’s semantic segmentation example [86] as our starting model. The example

describes the process to train Deeplab v3+ [87] which in the MATLAB example was based on a

pre-trained Resnet-18 network [88]. Figure 7-6 shows the training process flow that we used to

train the semantic segmentation model to segment rained images. To create a baseline

123

segmentation model for the automotive domain applications, we train the Deeplab v3+ with the

“KITTI_Segmentation” dataset.

Figure 7-6: The process for training the rained semantic segmentation model. Starting with a pre-trained

DeepLapv3+ network, we train the model on a dataset that is more specific to automotive domain

applications. We then retrain the segmentation model with simulated-rain images, to improve system

robustness to rain-induced image degradation.

We split the dataset as 75% training, 10% validation, and 15% testing datasets. We set the

maximum epochs to 300 and the minimum batch size to 8. We set the initial learning rate to

0.001 which is reduced after each concluded epoch. Data augmentation is used to increase the

“effective” training dataset size without adding more images. As a common solution to

mismatched representations of segmentation classes in the training dataset (i.e., some segments

are much more present in the dataset than others), the training weights are adjusted to be

inversely proportional to the frequency of occurrence of any given segmentation class. Both

functionalities (data augmentation and training weight adjustment) are provided as functions in

the MATLAB starting model. The output of this stage is the Baseline_Segmentation_DNN

model which we tested using the test part of “KITTI_Segmentation”. We used the Intersection

over Union (IoU), Accuracy, and MeanBFScore quality metrics to evaluate the quality of

segmentation provided by the model. MathWorks provides a good explanation to IoU, Accuracy,

and MeanBFScore quality metrics as follows [89]

124

Accuracy is the ratio of correctly classified pixels in each class to the total actual pixel in that

class. Using the True Positive (TP), and False Negative (FN) numbers, Accuracy can be given

as:

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (7.1)

“IoU is the ratio of correctly classified pixels to the total number of ground truth and predicted

pixels in that class” [89]. Using TP, FN, and False Positive (FP) numbers, IoU can be given as:

 𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (7.2)

MeanBFScore is a measure of the mean Boundary F1 (BF) which indicates how well the

predicted boundary of a given class is aligned with the actual boundary of that class.

In MATLAB, the function “evaluateSemanticSegmentation” can be used to calculate these three

metrics in image segmentation applications.

Table 7-7 shows a summary of model performance using the above-described metrics and Figure

7-7 shows the confusion matrix for the different segmentation classes detected by the model. The

table shows that the segmentation model performs well for all classes, except the “person” class.

This is because this class is much smaller in terms of pixels compared to the others, so it would

be more sensitive to any mismatches between predicted and actual, as calculated by the three

metrics. The confusion matrix in Figure 7-7 shows a high rate of correct segmentation per class

(diagonal cells) versus a low rate of incorrect classifications (off-diagonal cells).

125

Table 7-7: The Accuracy, IoU, and MeanBFScore segmentation quality metrics are shown for the classes

that are identifiable by the baseline model across all images in the rain-free test dataset

Accuracy IoU MeanBFScore

unlabeled 0.724 0.266 0.417

sky 0.983 0.964 0.929

vehicle 0.967 0.828 0.837

person 0.328 0.153 0.400

background 0.940 0.924 0.923

road 0.958 0.923 0.868

Figure 7-7: The confusion matrix shows the percentage of correct and incorrect segmentation of all

classes supported by the segmentation model. The diagonal cells represent the percentage of correct class

segmentation, and the off-diagonal cells represent the percentage of incorrect segmentation of the pixels

of a given class as belonging to another class.

7.4.2.2 Testing the Baseline_Segmentation_DNN Model with Rained and De-Rained

Datasets

To evaluate the effect of rain on the semantic segmentation process, we tested the

Baseline_Segmentation_DNN model using GeneratedRain_Segmentation_Test as the input

dataset. As described earlier, this dataset contains the simulated rained images with heavy

126

raindrop content. Table 7-8 summarizes the segmentation performance for each label, using the

same statistical metrics as before. Figure 7-8 shows the confusion matrix for the different

segmentation classes detected by the model under rained conditions. As expected, the quality

metrics show noticeable degradation in segmentation quality when the rain-free segmentation

model was used on the rained dataset. We can see from the confusion matrix that the correct

segmentation percentage is still much larger than the incorrect segmentation percentage under

rained images, except for the “person” class.

Table 7-8: Segmentation quality of the baseline model when tested with the rained image set. Noticeable

drop in segmentation quality between rain-free and rained segmentation test, as shown by the three

segmentation quality metrics.

Metric Accuracy IoU MeanBFScore

Label

unlabeled 0.100 0.054 0.150

sky 0.84 0.809 0.740

vehicle 0.750 0.463 0.482

person 0.0749 0.046 0.060

background 0.920 0.813 0.825

Road 0.812 0.772 0.677

127

Figure 7-8: The confusion matrix shows a drop in the correct segmentation percentage and an increase in

incorrect segmentation percentage across all classes. The “person” class shows the largest percentage

drop since its relatively small size makes it more susceptible to the presence of raindrops in the image.

We then tested the Baseline_Segmentation_DNN model using “Derained_Segmentation” as the

input dataset. As described earlier, this dataset is generated by feeding the

GeneratedRain_Segmentation_Test dataset to Quan et al. [46] de-raining model, to remove

raindrops from images. Table 7-9 summarizes the segmentation performance for each label,

using a de-rained dataset, and Figure 7-9 shows the associated confusion matrix for the different

segmentation classes supported by the segmentation model. The quality metrics show noticeable

degradation in segmentation quality when using a de-rained dataset over the original rained one.

The largest drop in segmentation quality is observed in the “sky” and “vehicle” classes. The

confusion matrix shows that only “road” and “background” classes have a higher correct

segmentation percentage than incorrect ones. Another interesting observation is that the majority

of incorrect observations are classified as “background” class. The same phenomenon was

observed under rain-free and rained segmentation testing which indicates a possible

segmentation bias towards the “background” class, even though we used the wights reverse-

frequency technique in our design and training.

128

Table 7-9: The segmentation quality metrics show lower performance of the rain-free (baseline)

segmentation model with the de-rained dataset than that under rained dataset. Performance drop was

highest for “sky” and “vehicle” classes and the least drop was observed for the “road” class

Accuracy IoU MeanBFScore

unlabeled 0.040732 0.00975 0.055519

sky 0.37414 0.24427 0.41851

vehicle 0.21466 0.1054 0.24246

person 0 0 0.002181

background 0.7009 0.52471 0.68721

road 0.71426 0.57007 0.59807

Figure 7-9: the confusion matrix for class segmentation results shows that only "background" and "road"

classes still show more correct than incorrect segmentation under de-rained dataset and rain-free

segmentation model mix. It also shows that the “background” class contributed to the most percentage of

incorrect classifications.

7.4.2.3 Retraining the Baseline_Segmentation_DNN

We retrained the Baseline_Segmentation_DNN model from the previous steps using the

“GeneratedRain_Segmentation_Train” dataset. The dataset consists of 400 images with low and

medium intensity of generated raindrops added. We split the dataset 75% training, 10%

validation, and 15% testing and ran the training process for 200 epochs. All other

hyperparameters we left intact from the previous training process. As shown in Table 7-10, there

is a big improvement in the segmentation with the rained model compared with the rain-free

129

model, both tested with real rain image dataset. The confusion matrix in Figure 7-10 shows

more correct to incorrect segmentation for each class recognizable by the segmentation model.

We then retested the rained segmentation model on the rain-free image set to verify that the

retraining with rained dataset did not degrade the segmentation quality for rain-free images. The

results shown in Table 7-11 confirm that the segmentation model performance improved with

retraining which highlights one unintended benefit from using simulated data for retraining.

Table 7-10: The segmentation performance metrics show that the retrained segmentation model performs

on the rained dataset at levels comparable to the performance of the rain-free segmentation model that is

tested with the clear dataset.

Accuracy IoU MeanBFScore

unlabeled 0.28243 0.11976 0.22585

sky 0.96257 0.87067 0.8123

vehicle 0.78133 0.54641 0.57202

person 0.3907 0.14859 0.15047

background 0.89598 0.83996 0.84477

road 0.89585 0.83921 0.76265

Figure 7-10: Testing the retrained rained segmentation model with a real rain dataset shows that A higher

percentage of pixels are correctly segmented for each class than incorrectly segmented.

130

Table 7-11: Testing the retrained rained segmentation model shows no degradation in performance over

the original rain-free segmentation model, both tested on the same rain-free dataset.

Accuracy IoU MeanBFScore

unlabeled 0.92465 0.36152 0.50471

sky 0.98597 0.94929 0.90088

vehicle 0.98732 0.83456 0.80705

person 0.98332 0.3391 0.64998

background 0.93301 0.92611 0.91499

road 0.9565 0.92825 0.88841

7.5 Results and Analysis

We trained a YOLOv3 model to detect common objects encountered in a common drive cycle

and tested it using rain-free, rained, and de-rained image sets. The detector performed well on

rain-free images, but its performance degraded under rained image set input, as expected. The

performance degraded even further for the de-rained image set test, a result we did not expect

when we formed our hypothesis. Our results, however, align with the task-driven evaluation

results reported by Li et al. [90]. Based on their tests using different object detection algorithms,

they concluded that “all existing de-raining algorithms will deteriorate the detection performance

compared to directly using the rainy image” [90]. They hypothesized that the de-raining

algorithms might need to be optimized to the goal of object detection. This, however, may

require a specific de-raining solution to the target vision-based application and consequently

reduces the useability and generalizability of the de-raining algorithms.

By analyzing the de-raining algorithm that had been developed by Quan et al. [46], we believe

their model was too specific to the training and testing dataset they had used. This made it less

useful for the real rain datasets we used in our research, due to the following two factors:

131

1. Quan’s model used a training dataset that used synthetic raindrops for rained images.

Real raindrops exhibit more variety in shape and size than the simple droplets formed by

spraying water on a glass surface. This likely made raindrop detection harder with real

raindrops than synthetic ones.

2. The synthetic dataset used in Quan’s model was also taken under optimal lighting

conditions which made it easier for raindrops to be detected. The overcast in the

background of the real rain dataset, on the other hand, made it harder to identify

raindrops by a human observer. This overcast in the real rain dataset likely affected the

ability to learn raindrops by the de-raining DNN in [46]

The retrained YOLOv3 model with a simulated raindrop dataset showed great improvement of

the rain-free object detector, both tested with the real-rain dataset.

The only class that did not show improved detection with the retrained rained detector was the

“Pedestrian” class. We believe that two factors contributed to this limitation:

1. The size of the objects representing the “Pedestrian” class was mostly smaller than the

other two class objects. This meant that these objects were more susceptible to the

presence of rain, which usually occluded and distorted all or most of the pixels

representing this class in the image.

2. The number of occurrences of the “Pedestrian” object in the dataset we used for training

was much smaller than the other two. We counted 15 “Pedestrian” object instances in the

whole training dataset, compared to the thousands of occurrences for the other two

classes. Our dataset was collected on motorways in Michigan and under rainy conditions,

so the presence of pedestrians was the exception rather than the norm.

132

We also verified that the retrained detector performance did not degrade under rain-free

conditions by retesting the rained detector with the original rain-free dataset. The retrained rained

model performance was similar to that of the rain-free detector under the rain-free dataset which

made us conclude that the retrained detector retained the information learned by the original rain-

free-trained detector model.

The semantic segmentation test cases provided similar results to the object detection ones. The

rain-free segmentation model performed well under rain-free conditions, but its performance

degraded when tested with rained image dataset. The degradation level was not as severe as that

observed in the object detection application. This can be partially attributed to the fact that in the

segmentation model, the classes were much larger than those in the object detection application,

and thus less susceptible to the presence of raindrops in the input images.

The segmentation model trained on the rain-free dataset performed worse on the de-rained

images dataset than on the original rained images dataset. The performance of the retrained

image segmentation model showed considerable improvement in segmenting rained images after

the baseline rain-free model was trained with the simulated raindrops dataset. Retesting the

retrained image segmentation model with the rain-free dataset showed a performance

improvement over the rain-free model. The performance gain can be partially attributed to

retraining the rain-free model with simulated rained images that were based on the rain-free

ones. We argue that the rained images acted as a transformed version of the original ones, even if

the transformation caused some level of image quality degradation. In that sense, the rained

images augmented the original rain-free dataset, and image augmentation is a standard technique

used in the training of the DNN to improve performance. One may argue that the retraining

process tuned the detection and segmentation model parameters, which allowed them to denoise

133

(de-rain) the input images, before being used for the detection and segmentation tasks. We

present the following evidence to refute that argument.

1. The data sets used for retraining did not include any information about the raindrops

(raindrop labels) to help the system identify them and “work around them” for the

detection and segmentation tasks. Rather than raindrops, the labeled objects of interest in

both models were commonly encountered in a drive cycle, including cars, trucks, sky,

road, and pedestrians.

2. Only rained datasets were used for retraining, not matched pairs of clear and rained

images. so even if the detection and segmentation networks could learn raindrops, they

were not fed with datasets to facilitate this presumed learning capability.

3. The DNN architectures we built our detection and Segmentation models on were not of

the GAN “family” so it was unlikely that they could discriminate raindrops and

eliminating them through training.

4. Training a DNN designed for the de-raining task takes a lot more training time and a

bigger training set than what we used in our detection and segmentation models. The

default setting for epochs in the implementation of Quin et al. algorithm was set to 4000

[11]. The implementers of Quan et al. reported needing one hundred thousand epochs of

training to achieve their results [76]. We, in comparison needed around 300 epochs to

train either one of our models to a good level of performance.

5. The performance improvement was observed on both models that were developed with

different architectures. If we could arguably assume that the DNN architecture of one

model allowed for raindrop detection and removal, it is less likely that another model’s

DNN achieved the same deed.

134

As we mentioned earlier, the experiments involving using de-rained datasets that were

generated by a state-of-the-art de-raining algorithm showed worse performance than the

ones using rained datasets without de-raining. The same findings were reported by Li et

al. [90] and another one on haze removal done by Pei et al. [91]. “since those deraining

algorithms were not trained/optimized towards the end goal of object detection, they are

unnecessary to help this goal, and the deraining process itself might have lost

discriminative, semantically meaningful true information” [91]. We believe that there

may be no de-raining add-on fix to this problem, in a sense that a general-purpose de-

raining algorithm can be plugged into the specific vision system (e.g., traffic light

recognition) that would improve the system performance under rainy conditions. We

believe it is possible to have a hybrid solution, employing both de-raining (denoising) of

input images and reducing system sensitivity to raindrops through re-learning and

transfer learning (system desensitization). This hybrid approach, however, requires

further examination of what important features are removed in the de-raining process,

that a given vision application is looking for, to perform its intended functionality.

7.6 Conclusion

We started with a hypothesis that it would be possible to improve the performance of vision

algorithms developed as DNN models under rained conditions, by retraining these models with

rained image samples. We also hypothesized that the performance improvements could be in-bar

with the improvements achieved by de-raining the input images. To put it in more generic terms,

we proposed that decreasing the system’s sensitivity to noise could provide similar levels of

overall system performance as those achieved by denoising the noisy system inputs.

135

To verify our hypothesis, we selected two common vision applications, namely object detection,

and semantic image segmentation, and developed and trained their models using different rain-

free and rained image datasets. The results proved that retraining improves vision system

performance under rainy conditions, actively expanding the useful application domain to include

both clear and rained conditions.

Unexpectedly, the de-raining process degraded both system performances even more than under

rained image dataset as the system input. The state-of-the-art de-raining algorithms aim to

optimize the de-rained output image in terms of similarity to a clear one. It might be that, though

visually similar to a clear image, the de-rained image has some features masked or distorted

through the de-raining process, that otherwise would have been used by a target vision

application (e.g., objection detection) to learn desirable characteristics of the image and its

components. We conclude that due to the lack of a generic de-raining module that can be

plugged in before any vision algorithm, retraining with rained images is the better solution to the

problem.

We also showed the benefit of using synthetic data sets, in the form of images with generated

raindrops, in retraining both object detection and image segmentation application models. Labels

objects or segments in the original (clear) images can be reused with the synthetic dataset

unchanged. Both the object detector and semantic segmentation models were successfully trained

with synthetic datasets and, when tested with real rain datasets, showed great performance

improvements. In addition, the synthetic dataset seems to play a secondary role as an image

augmenter to the rain-free dataset which contributes to further performance improvements under

clear rain conditions.

136

Chapter 8

Conclusions

The automotive domain is a highly regulated domain with a strong focus on safety and

robustness under all driving conditions. Self-driving vehicles and autonomous driving have

gained lots of momentum in the last few years, and different vehicle OEMs are already

producing vehicles with some level of self-driving capabilities. Vision-based systems play an

integral role in many of these self-driving vehicles. The recent improvements of deep-learning

vision algorithms further increased the dependency on vision-based systems to the extent that

Tesla has recently announced that its new models will drop in-vehicle RADAR systems for

autonomous driving, and solely rely on vision-based systems [92].

It is imperative to have a clear understanding of the limitations of vision-based systems,

performing under different conditions, including adverse weather conditions. This dissertation

presents a comprehensive study of rain as a type of adverse weather condition and its effect on

the degradation of input images and vision-based algorithms. It also describes some novel

techniques for simulating rain presence in input images, and techniques to improve the

performance of vision-based algorithms under rainy conditions.

8.1 Dissertation Summary

Rain in input images can be present in two main forms, as falling rain streaks or as adherent

raindrops on lens covers or vehicle windshields. In the automotive domain, falling rain is the

137

main source of degradation of input images for infrastructure applications, such as automatic

traffic lights control and traffic monitoring. The cameras for these applications are usually

covered in a way that protects the lens and lens covers from direct contact with rain. We

developed a falling rain simulation model that randomly generates rain streaks and adds them to

rain-free source images. the output is a stereo pair of color images, with rain streaks varying in

size, density, and brightness, based on local and global characteristics of the source image scene,

and those of the rain streaks. We also developed a falling rain de-raining algorithm, based on

some selected properties of rain streaks in the image. We used the generated images from our

falling rain simulator to test the performance of the de-raining algorithm.

In the case of ego moving vehicle with an in-vehicle camera, and in some surveillance

applications, adherent raindrops to vehicle windshields and lens protective covers becomes the

dominant source of degradation to input images of vision-based applications. we developed a

novel adherent raindrop simulator model, that takes rain-free images and adds realistic adherent

raindrops to them. The result is a color, rained image, with adherent raindrops of different sizes,

shapes, and positions, all controllably randomized. Unlike the main-stream ray-tracing approach

for simulating adherent raindrops, we employed the raindrop lens barrel effect and image

transformation techniques to generate realistic adherent raindrops in images.

We studied the effect of the image degradation caused by the adherent raindrops on the

performance of some vision-based algorithms. Although there is a general acceptance in the

research body of the detrimental effect of degraded images on the overall performance of vision-

based algorithms, there has not been a complete quantitative study of that effect, to the best of

our knowledge. We measured the performance of some state-of-the-art object detection

algorithms on clear and rained image sets, and showed a clear correlation between image quality

138

and the performance of these object detectors, both in terms of the percentage of correct

detections, and the confidence levels of detection of the identified objects.

One observation from this quantitative analysis was that the object detectors under test showed

some level of robustness to raindrop presence in the input images. This made us wonder if we

can further improve this robustness, by further decreasing the sensitivity of the vision-based

algorithms to the image degradation due to raindrops. We hypothesized that by applying

transfer-learning and relearning with rained images, we could achieve a performance boost of the

vision-based algorithms that were in-bar with using a de-raining stage to preprocess the input

images. We tested our hypothesis on state-of-the-art object detection and semantic

segmentation models. The models were first trained with rain-free image sets, then retrained with

rained images that we generated from our adherent raindrop simulation model. We tested the

performance of the two algorithm models on real rain datasets that we had previously collected

from real drive cycles and showed clear performance boosts in both. The de-rained images did

not provide a similar performance boost but rather showed lower performance compared to using

the original rained images as input to the two models. We will describe this drawback further in

the section.

8.2 Limitations and Future Work

This section describes some limitations we encountered in our work and some ideas for future

improvements.

8.2.1 Falling Rain Streaks Simulator

Our simulation model produced images with rain streaks that resemble real falling rain from the

perspective of a human observer. We could not however quantitatively test these results since we

lacked a good dataset of real falling rain images. to the extent of our knowledge, there is no

139

publicly available dataset of images with falling rain streaks, that is captured with dedicated

outdoor cameras. It is beneficial to create such a dataset, with cameras of a type similar to the

ones used for traffic control or automatic traffic light activation.

8.2.2 Falling Rain Detection and Removal

We developed an algorithm for falling rain streaks detection that was based on the physical and

brightness properties of the rain streaks. This technique worked well in most cases but there were

still instances where irregular rain streaks (per our constraints) were not detected. Adding

chromatic properties may improve the detection rate of rain streaks. Deep-learning algorithms

showed good results in restoring images with rain streaks to their rain-free versions. As we

described in this dissertation, these algorithms were trained on synthesized rain streaks and it

would be interesting to see how well they perform on real falling rain datasets.

Moving objects in the image background introduced lots of noise in the falling rain streaks

removal process. Scene flow information may improve image restoration if it is integrated into

the falling rain streak detection process.

8.2.3 Adherent Raindrop Simulator

Our simulator produced images with realistic raindrops that were generated by employing optical

properties of the raindrops (the fisheye lens effect), and intensity and chromatic properties. We

developed our model under the Mathworks suite, using functions from the image processing

toolset in MATLAB 2021a. The algorithm was not optimized for speed and it would be

interesting to rewrite some time-consuming functions using more efficient languages (e.g., C++)

or even rewriting the whole algorithm in a language with built-in image-processing capabilities,

such as Python.

140

8.2.4 Using Relearning to Improve Performance of DNN-Based Vision Algorithms

Our research showed clear improvement in the performance of algorithms for object detection

and semantic segmentation. The de-raining approach, on the other hand, degraded the

performance even more than using rained images on detection and segmentation models that

were not retrained with rained images. The de-raining algorithm may have removed some

important features from the input images that otherwise would have helped in the detection of

objects and segmentation of image scenes. To test this hypothesis, we can examine the DNN

features learned in the final layers of the DNNs, closest to the output layer. By comparing the

type of features learned with rained, de-rained, and rain-free image sets, we may be able to

determine which features were omitted or modified by the de-raining process. This study, if

successful, may help design better de-raining algorithms that preserve the features critical for the

vision-based algorithm under development.

141

References

[1] H. Kong, H. C. Akakin and S. E. Sarma, "A Generalized Laplacian of Gaussian Filter for

Blob Detection and Its Applications," IEEE Transactions on Cybernetics, vol. 43, no. 6,

pp. 1719-1733, 12 2013.

[2] D. Marr and E. Hildreth, "Theory of Edge Detection," Proceedings of the Royal Society of

London. Series B. Biological Sciences, vol. 207, no. 1167, pp. 187-217, 1980.

[3] G. Wang, C. Lopez-Molina and B. D. Baets, "Automated blob detection using iterative

Laplacian of Gaussian filtering and unilateral second-order Gaussian kernels," Digital

Signal Processing, vol. 96, p. 102592, 2020.

[4] C. Godard, O. M. Aodha and G. J. Brostow, "Unsupervised Monocular Depth Estimation

with Left-Right Consistency," in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition , 2017.

[5] D. C. BROWN and E. Gallie, "Decentering Distortion of Lenses.," Photogrammetric

Engineering, vol. 32, no. 3, pp. 444-462, 1966.

[6] R. Vreja and R. Brad, "Image Inpainting Methods Evaluation and Improvement," The

Scientific World Journal, vol. 2014, no. https://doi.org/10.1155/2014/937845, 2014.

[7] Y. Liu and C. Shu, "A comparison of image inpainting techniques," in Sixth International

Conference on Graphic and Image Processing (ICGIP 2014), Beijing, China, 2015.

[8] S. Shivaranjani and R. Priyadharsini, "A Survey on Inpainting Techniques," in

International Conference on Electrical, Electronics, and Optimization Techniques

(ICEEOT), Chennai, India, 2016.

[9] Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, "Image Quality Assessment:

From Error Visibility to Structural Similarity," IEEE Transactions on Image Processing,

vol. 13, no. 4, pp. 600 - 612, 4 APRIL 2004.

[10] MathWorks, "Image Quality Metrics," MathWorks, Inc., 1 1 2021. [Online]. Available:

https://www.mathworks.com/help/images/image-quality-metrics.html. [Accessed 8 5

2021].

[11] R. Qian, R. T. Tan, W. Yang, J. Su and J. Liu, "Attentive Generative Adversarial Network

for Raindrop Removal from A Single Image," in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Salt Lake City, Utah, 2018.

142

[12] Wikipedia contributors, "Peak signal-to-noise ratio," 14 4 2019. [Online]. Available:

https://en.wikipedia.org/w/index.php?title=Peak_signal-to-noise_ratio&oldid=887764757.

[Accessed 26 5 2019].

[13] N. Tyagi, "L2 and L1 Regularization in Machine Learning," Analytic Steps, 28 2 2021.

[Online]. Available: https://www.analyticssteps.com/blogs/l2-and-l1-regularization-

machine-learning. [Accessed 9 5 2021].

[14] D. Padfield, "Generalized Normalized Cross Correlation," MathWorks, 19 4 2012.

[Online]. Available: https://www.mathworks.com/matlabcentral/fileexchange/29005-

generalized-normalized-cross-correlation. [Accessed 1 10 2019].

[15] Y. Rubner, C. Tomasi and L. J. Guibas, "A metric for distributions with applications to

image databases," in Sixth International Conference on Computer Vision, Bombay, India,

1998.

[16] D. M. W. Powers, "Evaluation: From Precision, Recall and F-Factor to ROC,

Informedness, Markedness & Correlation," School of Informatics and Engineering,

Flinders University of South Australia, Adelaide, 2007.

[17] Wikipedia contributors, "Jaccard index," 1 4 2019. [Online]. Available:

https://en.wikipedia.org/w/index.php?title=Jaccard_index&oldid=890384326. [Accessed

26 5 2019].

[18] Wikipedia contributors, "Sørensen–Dice coefficient," 9 4 2019. [Online]. Available:

https://en.wikipedia.org/w/index.php?title=S%C3%B8rensen%E2%80%93Dice_coefficie

nt&oldid=891683118. [Accessed 26 5 2019].

[19] W. Mantzel, "F1/Dice-Score vs IoU," 13 11 2017. [Online]. Available:

https://stats.stackexchange.com/q/276144. [Accessed 26 5 2019].

[20] M. Everingham and J. Winn, "The PASCAL Visual Object Classes Challenge 2011

(VOC2011) Development Kit," in Visual Object Classes Challenge 2011 (VOC2011),

2011.

[21] "Evaluate," COCO Consortium , 29 6 2021. [Online]. Available:

https://cocodataset.org/#detection-eval. [Accessed 8 8 2021].

[22] K. Garg and S. K. Nayar, "When Does a Camera See Rain?," in Proceedings of the Tenth

IEEE International Conference on Computer Vision (ICCV’05), New York, New York,

2005.

[23] W. C. Chia, L. S. Yeong and S. I. Ch'ng, "The effect of rainfall on feature points

extraction and image stitching," in International Conference on Information Science,

Electronics and Electrical Engineering, Sapporo, Japan, 2014.

[24] Y. Hamzeh, Z. El-Shair and S. A. Rawashdeh, "Effect of Adherent Rain on Vision-Based

Object Detection Algorithms," SAE International Journal of Advances and Current

Practices in Mobility, vol. 2, pp. 3051-3059, 2020.

143

[25] Y. Hamzeh and S. A. Rawashdeh, "A Review of Detection and Removal of Raindrops in

Automotive Vision Systems," Journal of Imaging, vol. 7, no. 3, p. 52, 2021.

[26] A. Cord and N. Gimonet, "Detecting Unfocused Raindrops In-Vehicle Multipurpose

Cameras," IEEE Robotics & Automation Magazine, vol. 21, no. 1, pp. 49-56, 2014.

[27] H. Kurihata, T. Takahashi, k. Ide, Y. Mekada, H. Murase, Y. Tamatsu and T. Miyahara,

"Rainy Weather Recognition from In-Vehicle Camera Images for Driver Assistance," in

IEEE Proceedings. Intelligent Vehicles Symposium, Las Vegas, NV, USA, USA, 2005.

[28] E. Fouad, E. Abdelhak and A. Salma, "Modelisation of raindrops based on declivity

principle," in 13th International Conference on Computer Graphics, Imaging and

Visualization (CGiV), Beni Mellal, Morocco, 2016.

[29] J. C. Halimeh and M. Roser, "Raindrop Detection on Car Windshields Using Geometric-

Photometric Environment Construction and Intensity-Based Correlation," in 2009 IEEE

Intelligent Vehicles Symposium (IV), Xi’an, Shaanxi, China, 2009.

[30] M. Roser and A. Geiger, "Video-based raindrop detection for improved image

registration," in 2009 IEEE 12th International Conference on Computer Vision

Workshops, ICCV Workshops, Kyoto, Japan, 2009.

[31] M. Sugimoto, N. Kakiuchi, N. Ozaki and R. Sugawara, "A Novel Technique for Raindrop

Detection on a Car Windshield using Geometric-Photometric Model," in 15th International

IEEE Conference on Intelligent Transportation Systems, Anchorage, Alaska, USA, 2012.

[32] I. Stuppacher and P. Supan, "Rendering of Water Drops in Real-Time," in Central

European Seminar on Computer Graphics for Students, 2007.

[33] M. Roser, J. Kurz and A. Geiger, "Realistic Modeling of Water Droplets for Monocular

Adherent Raindrop Recognition using Bézier Curves," in Asian Conference on Computer

Vision, Springer, Berlin, Heidelberg, 2010.

[34] X. Yan, Y. Luo and X. Zheng, "Weather Recognition Based on Images Captured by

Vision System in Vehicle," in Advances in Neural Networks - 6th International

Symposium on Neural Networks (ISNN 2009), Wuhan, China, 2009.

[35] Q. Wu, W. Zhang and B. V. Kumar, "RAINDROP DETECTION AND REMOVAL

USING SALIENT VISUAL FEATURES," in 2012 19th IEEE International Conference

on Image Processing, Orlando, FL, USA, 2012.

[36] H.-C. Liao, J. Shin, D.-Y. Wang and C.-L. Yang, "Video-based Water Drop Detection and

Removal Method for a Moving Vehicle," Information Technology Journal, vol. 12, no. 4,

pp. 569-583, 2013.

[37] J. Ishizuka and K. Onoguchi, "Detection of Raindrop with Various Shapes on a

Windshield," in 5th International Conference on Pattern Recognition Applications and

Methods (ICPRAM 2016),, Roma, Italy , 2016.

144

[38] A. Yamashita, M. Kuramoto, T. Kaneko and K. T. Miura, "A Virtual Wiper – Restoration

of Deteriorated Images by Using Multiple Cameras –," in IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS 2003), Las Vegas, NV, USA, 2003.

[39] A. Yamashita, T. Kaneko and K. T. Miura, "A Virtual Wiper –Restoration of Deteriorated

Images by Using a Pan-Tilt Camera-," in IEEE International Conference on Robotics and

Automation, New Orleans, LA, USA,, 2004.

[40] A. Yamashita, I. Fukuchi, T. Kaneko and K. T. Miura, "Removal of Adherent Noises from

Image Sequences by Spatio-Temporal Image Processing," in IEEE International

Conference on Robotics and Automation, Pasadena, CA, USA, 2008.

[41] A. Yamashita, Y. Tanaka and T. Kaneko, "Removal of Adherent Waterdrops from Images

Acquired with Stereo Camera," in IEEE/RSJ International Conference on Intelligent

Robots and Systems, Edmonton, Alta., Canada, 2005.

[42] M. Roser and F. Moosmann, "Classification of Weather Situations on Single Color

Images," in IEEE Intelligent Vehicles Symposium, Eindhoven, The Netherlands, 2008.

[43] A. Cord and D. Aubert, "Towards Rain Detection through use of In-Vehicle Multipurpose

Cameras," in 2011 IEEE Intelligent Vehicles Symposium (IV), Baden-Baden, Germany,

2011.

[44] F. Nashashibi, R. D. Charette and A. Lia, "Detection of Unfocused Raindrops on a

Windscreen using Low Level Image Processing," in International Conference on Control,

Automation, Robotics and Vision : ICARV’2010, Singapour, Singapore, 2010.

[45] D. Eigen, D. Krishnan and R. Fergus, "Restoring An Image Taken Through a Window

Covered with Dirt or Rain," in 2013 IEEE International Conference on Computer Vision,

Sydney, NSW, Australia, 2013.

[46] Y. Quan, S. Deng, Y. Chen and H. Ji, "Deep Learning for Seeing Through Window With

Raindrops," in IEEE/CVF International Conference on Computer Vision (ICCV), Seoul,

Korea (South), 2019.

[47] Z. Hao, S. You, Y. Li, K. Li and F. Lu, "Learning From Synthetic Photorealistic Raindrop

for Single Image Raindrop Removal," in IEEE/CVF International Conference on

Computer Vision Workshop (ICCVW), Seoul, Korea (South), 2019.

[48] D. P. Kingma and J. L. Ba, "ADAM: A METHOD FOR STOCHASTIC

OPTIMIZATION," in The 3rd International Conference for Learning Representations, San

Diego, 2015.

[49] J. Kim, D. Huh, T. Kim, J. Kim, J. Yoo and J.-S. Shim, "Raindrop-Aware GAN:

Unsupervised Learning for Raindrop-Contaminated Coastal Video Enhancement," Remote

Sensing, vol. 12, no. 20, p. 3461, 2020.

[50] A. Mittal, R. Soundararajan and A. C. Bovik, "Making a “Completely Blind” Image

Quality Analyzer," IEEE Signal Processing Letters, pp. 209-212, 3 2013.

145

[51] S. Alletto, C. Carlin, L. Rigazio, Y. Ishii and Tsukizawa, "Adherent Raindrop Removal

with Self-Supervised Attention Maps and Spatio-Temporal Generative Adversarial

Networks," in IEEE/CVF International Conference on Computer Vision Workshops,

Seoul, Korea, 2019.

[52] A. Palazzi, D. Abati, S. Calderara, F. Solera and R. Cucchiara, "Predicting the Driver's

Focus of Attention: The DR(eye)VE Project," IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 41, no. 7, pp. 1720-1733, 2019.

[53] J. Peng, Y. Xu, T. Chen and Y. Huang, "Single-image raindrop removal using concurrent

channel-spatial attention and long-short skip connections," Pattern Recognition Letters,

vol. 131, pp. 121-127, 2020.

[54] D. Ren, J. Li, M. Han and M. Shu, "Not All Areas Are Equal: A Novel Separation-

Restoration-Fusion Network for Image Raindrop Removal," in Pacific Graphics,

Wellington, New Zealand, 2020.

[55] M. Yang, K. Yu, C. Zhang, Z. Li and K. Yang, "Denseaspp for semantic segmentation in

street scenes," in IEEE Conference on Computer Vision and Pattern Recognition, Salt

Lake City, UT, USA, 2018.

[56] P. Barnum, T. Kanade and S. G. Narasimhan, "Spatio-Temporal Frequency Analysis for

Removing Rain and Snow from Videos," in IEEE Workshop on Photometric Analysis For

Computer Vision (PACV), in conjunction with ICCV, 2007.

[57] Y. Hamzeh and S. Rawashdeh, "Framework for simulating and removing rain in stereo-

image videos," in IEEE International Conference on Electro/Information Technology

(EIT), Oakland, Michigan, 2018.

[58] S. Starik and M. Werman, "Simulation of Rain in Videos," in Texture Workshop, ICCV,

2003.

[59] K. Garg and S. K. Nayar, "Detection and Removal of Rain from Videos," in IEEE

Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’04),

Washington, DC, USA, 2004.

[60] STEREOLABS, "Introducing the ZED Mini," STEREOLABS, 2018. [Online]. Available:

https://www.stereolabs.com/. [Accessed 15 2 2018].

[61] A. Geiger, P. Lenz and R. Urtasun, "Are we ready for Autonomous Driving? The KITTI

Vision Benchmark Suite," in Conference on Computer Vision and Pattern Recognition

(CVPR)}, Rhode Island, 2012.

[62] K. GARG and S. K. NAYAR, "Vision and Rain," International Journal of Computer

Vision, vol. 75, no. 1, pp. 3-27, 2007.

[63] Z. Shi, J. Long, W. Tang and C. Zhang, "Single image dehazing in inhomogeneous

atmosphere," Optik-international journal for light and electron optics, vol. 125, no. 15, pp.

3868-3875, 2014.

146

[64] Q. Zhu, J. Mai and L. Shao, "Single Image Dehazing Using Color Attenuation Prior," in

British Machine Vision Conference (BMVC), Nottingham, UK, 2014.

[65] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu and A. C. Berg, "SSD:

Single Shot MultiBox Detector," in European conference on computer vision, Springer,

Cham, , 2016.

[66] J. Redmon and A. Farhadi, "Yolov3: An incremental improvement," arXiv preprint

arXiv:1804.02767, 2018.

[67] J. W. Francis, "SSD-VGG-300 Trained on PASCAL VOC Data," The Wolfram Neural

Net Repository, 29 10 2018. [Online]. Available: https://github.com/sfzhang15/RefineDet.

[Accessed 1 4 2019].

[68] W. N. N. R. implementation, "YOLO V3 Trained on Open Images Data," 30 9 2019.

[Online]. Available:

https://resources.wolframcloud.com/NeuralNetRepository/resources/YOLO-V3-Trained-

on-Open-Images-Data/. [Accessed 15 10 2019].

[69] X. Chen, M. Buckler, J. Serrino, S. T. Cheedella and G. Vasilakis, "tf-faster-rcnn," 2 3

2017. [Online]. Available: https://github.com/endernewton/tf-faster-rcnn. [Accessed 1 9

2019].

[70] Wikipedia contributors, "Mean squared error," 4 5 2019. [Online]. Available:

https://en.wikipedia.org/w/index.php?title=Mean_squared_error&oldid=895521601.

[Accessed 26 5 2019].

[71] Wikipedia contributors, "Precision and recall," 13 5 2019. [Online]. Available:

https://en.wikipedia.org/w/index.php?title=Precision_and_recall&oldid=896900450.

[Accessed 25 5 2019].

[72] S. Ren, K. He, R. Girshick and J. Sun, "Faster r-cnn: Towards real-time object detection

with region proposal networks," in Advances in neural information processing systems,

2015.

[73] MathWorks, "Create a Gallery of Transformed Images," MathWorks Inc., [Online].

Available: https://www.mathworks.com/help/images/creating-a-gallery-of-transformed-

images.html. [Accessed 25 3 2021].

[74] S. You, R. T. Tan, R. Kawakami, Y. Mukaigawa and K. Ikeuchi, "Adherent Raindrop

Modeling, Detection and Removal in Video," IEEE Transaction on Pattern Recognition

and Machine Intelligence, vol. 38, no. 9, pp. 1721-1733, 2016.

[75] C. Carlin, "PSVL/OpenSynthrain," 22 6 2020. [Online]. Available:

https://github.com/PSVL/OpenSynthrain. [Accessed 1 6 2021].

[76] Y. Quan, S. Deng, Y. Chen and H. Ji, "ljm619/raindropAttention," 7 10 2019. [Online].

Available: https://github.com/ljm619/raindropAttention. [Accessed 1 7 2021].

147

[77] R. Qian, R. T.Tan, W. Yang, J. Su and J. Liu, "rui1996 / DeRaindrop," GitHub, 29 6 2018.

[Online]. Available: https://github.com/rui1996/DeRaindrop. [Accessed 20 1 2021].

[78] R. Yasarla and V. M. Patel, "Uncertainty Guided Multi-Scale Residual Learning-using a

Cycle Spinning CNN for Single Image De-Raining," in The IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Long Beach, California, 2019.

[79] R. Yasarla and V. M. Patel, "rajeevyasarla/UMRL--using-Cycle-Spinning," 5 3 2020.

[Online]. Available: https://github.com/rajeevyasarla/UMRL--using-Cycle-Spinning.

[Accessed 1 8 2021].

[80] P. Isola, J.-Y. Zhu, T. Zhou and A. A. Efros, "Image-to-Image Translation with

Conditional Adversarial Networks," in Proceedings of the IEEE conference on computer

vision and pattern recognition, Honolulu, Hawaii, 2017.

[81] Y. Hamzeh, Z. A. El-Shair, A. Chehade and S. A. Rawashdeh, "Dynamic Adherent

Raindrop Simulator for Automotive Vision Systems," IEEE Access, vol. 9, pp. 114808-

114820, 2021.

[82] MathWorks, "Object Detection Using YOLO v3 Deep Learning," MathWorks, 2021.

[Online]. Available: https://www.mathworks.com/help/vision/ug/object-detection-using-

yolo-v3-deep-learning.html. [Accessed 7 7 2021].

[83] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally and K. Keutzer,

"SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model

size," arXiv:1602.07360v4 [cs.CV] , 2016.

[84] A. Krizhevsky, I. Sutskever and G. E. Hinton, "ImageNet Classification with Deep

Convolutional Neural Networks," Communications of the ACM, vol. 60, pp. 84-90, 2012.

[85] P. Dollar, C. Wojek, B. Schiele and P. Perona, "Pedestrian Detection: An Evaluation of the

State of the Art," IEEE transactions on pattern analysis and machine intelligence , pp.

743-761, 8 2011.

[86] MathWorks, "Semantic Segmentation Using Deep Learning," MathWorks, 2021. [Online].

Available: https://www.mathworks.com/help/vision/ug/semantic-segmentation-using-

deep-learning.html. [Accessed 15 7 2021].

[87] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff and H. Adam, "Encoder-Decoder with

Atrous Separable Convolution for Semantic Image Segmentation," in Proceedings of the

European Conference on Computer Vision (ECCV), Munich, Germany, 2018.

[88] K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition," in

arXiv:1512.03385v1 [cs.CV] , 2015.

[89] MathWorks, "evaluateSemanticSegmentation," 2021. [Online]. Available:

https://www.mathworks.com/help/vision/ref/evaluatesemanticsegmentation.html.

[Accessed 1 8 2021].

148

[90] S. Li, I. B. Araujo, W. Ren, Z. Wang, E. K. Tokuda2, R. H. Junior2, R. Cesar-Junior, J.

Zhang, X. Guo and X. Cao, "Single Image Deraining: A Comprehensive Benchmark

Analysis," Computer Vision and Pattern Recognition , no. arXiv:1903.08558v1 [cs.CV]),

2019.

[91] Y. Pei, Y. Huang, Q. Zou, Y. Lu and S. Wang, "Does Haze Removal Help CNN-based

Image Classification?," in Proceedings of the European Conference on Computer Vision

(ECCV). , 2018.

[92] Tesla, "Transitioning to Tesla Vision," Tesla, 5 2021. [Online]. Available:

https://www.tesla.com/support/transitioning-tesla-vision. [Accessed 12 6 2021].

[93] U. Yilmaz, "The Earth Mover's Distance," 12 2 2009. [Online]. Available:

https://www.mathworks.com/matlabcentral/fileexchange/22962-the-earth-mover-s-

distance. [Accessed 2 11 2020].

[94] Y. RUBNER, C. TOMASI and L. J. GUIBAS, "The Earth Mover’s Distance as a Metric

for Image Retrieval," International Journal of Computer Vision, vol. 40, no. 2, pp. 99-121,

2000.

[95] J. Matas, O. Chum, M. Urban and T. Pajdla, "Robust wide-baseline stereo from maximally

stable extremal regions," Image and vision computing, vol. 22, no. 10, pp. 761-767, 2004.

[96] F. Bukhari and M. N. Dailey, "Automatic Radial Distortion Estimation from a Single

Image," Journal of Mathematical Imaging and Vision , vol. 45, no.

https://doi.org/10.1007/s10851-012-0342-2, pp. 31-45, 2013.

[97] J. Carreira and A. Zisserman, "Quo vadis, action recognition? a new model and the

kinetics dataset," in IEEE Conference on Computer Vision and Pattern Recognition, 2017.

[98] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler and S. Hochreiter, "GANs Trained by

a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium," Advances in

Neural Information Processing Systems (NIPS 2017), vol. 30, no. arXiv:1706.08500v6

[cs.LG] , 2018.

[99] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, G. Liu, A. Tao, J. Kautz and B. Catanzaro, "Video-to-

Video Synthesis," in Conference on Neural Information Processing Systems (NeurIPS),

Montreal, Canada , 2018.

[100] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,

J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia and

R. Jozefowicz, "TensorFlow: Large-Scale Machine Learning on Heterogeneous

Distributed Systems," arXiv:1603.04467, pp. 1-19, 2016.

[101] J. Dai, Y. Li, K. He and J. Sun, "R-FCN: Object Detection via Region-based Fully

Convolutional Networks," arXiv:1605.06409v2 [cs.CV] , 2016.

[102] D. Nguyen, K. Nguyen, S. Sridharan, I. Abbasnejad, D. Dean and C. Fookes, "Meta

Transfer Learning for Facial Emotion Recognition," in 24th International Conference on

Pattern Recognition (ICPR), Beijing, China, 2018.

149

[103] C. Fernando, D. Banarse, C. Blundell, Y. Zwols, D. Ha, A. A. Rusu, A. Pritzel and D.

Wierstra, "PathNet: Evolution Channels Gradient Descent in Super Neural Networks,"

arXiv:1701.08734v1 [cs.NE] , 2017.

[104] S. Haq and P. J. Jackson, "Speaker-Dependent Audio-Visual Emotion Recognition," in

Auditory-Visual Speech Processing (AVSP) , Norwich, UK, 2009.

[105] O. Martin, I. Kotsia, B. Macq and I. Pitas, "The enterface’ 05 audiovisual emotion

database," in 22nd International Conference on Data Engineering Workshops

(ICDEW'06), 2006.

[106] J. Talukdar, S. Gupta, P. S. Rajpura and R. S. Hegde, "Transfer Learning for Object

Detection using State-of-the-Art Deep Neural Networks," in 5th International Conference

on Signal Processing and Integrated Networks (SPIN), Noida, Delhi-NCR, 2018.

