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Abstract 

 

The Automotive domain is a highly regulated domain with stringent requirements that 

characterize automotive systems’ performance and safety. Automotive applications are required 

to operate under all driving conditions and meet high levels of safety standards. Vision-based 

systems in the automotive domain are accordingly required to operate at all weather conditions, 

favorable or adverse. Rain is one of the most common types of adverse weather conditions that 

reduce quality images used in vision-based algorithms. Rain can be observed in an image in two 

forms, falling rain streaks or adherent raindrops. Both forms corrupt the input images and 

degrade the performance of vision-based algorithms. This dissertation describes the work we did 

to study the effect of rain on the quality images and the target vision systems that use them as the 

main input.   To study falling rain, we developed a framework for simulating failing rain streaks. 

We also developed a de-raining algorithm that detects and removes rain streaks from the images.  

We studied the relation between image degradation due to adherent raindrops and the 

performance of the target vision algorithm and provided quantitive metrics to describe such a 

relation. We developed an adherent raindrop simulator that generates synthetic rained images, by 

adding generated raindrops to rain-free images. We used this simulator to generate rained image 

datasets, which we used to train some vision algorithms and evaluate the feasibility of using 

transfer-learning to improve DNN-based vision algorithms to improve performance under rainy 

conditions. 
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Chapter 1  

Introduction 

 

1.1 Motivation 

Autonomous driving gained a lot of momentum in the last few years, and many Original 

Equipment Manufacturers (OEMs) started commercializing some self-driving vehicles, with 

different levels of autonomous driving capabilities.  Ford Motor Company, for example, has 

completed a 500,000-mile test in April 2021 of its “BlueCruise” hands-free highway driving 

technology. Other OEMs offer similar hands-free driving assist technology, such as GM’s 

“Super Cruise”, and Tesla’s “Autopilot”.  Advanced Driver-Assist Systems (ADAS) are the 

building blocks for autonomous driving and are already integrated into most new vehicles. For 

best performance and improved robustness, these ADAS applications usually employ two or 

more sensing systems, including Radar, Lidar, ultrasonic, and cameras. On-board cameras are 

very attractive sensing options, due to their relatively low cost and the rich amount and type of 

information they can provide. Research on the effect of adverse weather conditions on the 

performance of vision-based algorithms for automotive tasks has had significant interest.  

Safety and robustness are critical aspects of all automotive applications. This means that these 

applications must operate under all driving conditions and, in case of failure, need to fail safely, 

for both vehicle occupants and others sharing the road with the target vehicle. Vision-based 

systems in the automotive domain must similarly operate at high performance and robustness 
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status, including operating under all weather conditions. It is generally accepted that adverse 

weather conditions reduce the quality of captured images and have a detrimental effect on the 

performance of vision-based algorithms that rely on these images. To guarantee a safe and robust 

operation of vision-based systems, the effect of adverse weather conditions must be addressed, 

either by denoising the source of input, or making the system less sensitive to such input noise. 

Rain is a common and major source of image quality degradation.  In our research, we focused 

on studying the effect of rain in its two forms, falling and adherent, on image quality, and 

extended this to the overall effect of rain on the operation of vision-based systems that consume 

these corrupt images. Our research work included the following aspects: 

1.2 Falling Rain Simulation 

One of the main hurdles to test the performance of vision-based systems in the automotive 

domain is the lack of reliable and large datasets, of matched rained and clear images. this is due 

to the uncontrollable and unpredictable nature of rain, and the irreversible degradation it causes 

to input images. We developed a falling rain simulator, that can generate synthetic rained 

images, with rain streaks added to the image scenes.  

1.3 Falling Rain De-Raining Algorithm 

Falling rain reduces visibility by occluding objects in the image scene it may also reduce 

illumination levels in the vehicle environment which degrades the performance of vision-based 

systems. We developed an algorithm that detects falling rain in rained images and restores 

images to the state that is very close to the rain-free images. We used datasets that were 

generated through out falling rain simulator to test this de-raining algorithm. 
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1.4 Adherent Raindrop Simulator 

We developed an adherent raindrop simulator to generate images with added synthetic raindrops.   

Adherent raindrops are close to the image plane which means they occupy bigger segments of 

the not only occlude parts of the scene, but also quality It occludes parts of the input image used 

in vision-based algorithms and blurs background texture in regions covered by them.  

We used datasets that were generated through this simulator for retraining DNN-based 

algorithms in some later research work we conducted.  

1.5 The Correlation Between Image Quality and The Performance of Target Vision 

Algorithm 

While most prior work in the field of rain detection and removal focuses on the image restoration 

aspects, they typically do not provide quantitative measures of the effect of degraded image 

quality on the performance of image-based algorithms. Rain introduces uncontrollable and 

irreversible distortions in input images, that even the state-of-the-art de-raining algorithms 

cannot fully correct. We studied the effect of degradation to rain on input images, and it relates 

to the performance of the target vision system that consumes them. Based on that, we presented a 

quantitative measure of the correlation between image quality and performance of vision-based 

algorithms.   

In the following sections, we will describe these different research areas in detail.  
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Chapter 2  

Background 

 

This chapter provides a background on some image processing techniques and image quality 

metrics that were used in this rain detection and removal research work.  

2.1 Image Processing Techniques 

2.1.1 Image Blurring 

Image blurring may be a by-product of an image denoising operation, intended to remove high-

frequency noise from images. Gradient Decent (GD) of image pixels is calculated based on their 

intensity levels, and pixels with GD greater than a predefined threshold are considered noise 

pixels. 2D lowpass filtering has the effect of averaging the intensity level of pixels in a filter 

window, which reduces the intensity GD, and thus reducing high-frequency noise in an image.  

consists of pixel areas with intensity gradient decent  

Figure 2-1 shows how a 2D Gaussian filter can be used to smooth create a blurring effect in an 

image. 
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Figure 2-1: The blurred image (right) is created by applying a blurring effect using a 2D Gaussian filter 

with a standard deviation of 4.5 to the original image (left). Sharp edges are smoothed out, which can be 

noticed on the traffic sign text becoming unreadable in the blurred image.  

The blurring effect is also used to simulate the effect of camera lenses on captured images. On-

board general-purpose cameras used in automotive applications are usually of fixed optics that 

allow light rays emitted from far objects to be projected on the camera sensor, which represents 

the image plane. The focal point of light rays emitted from closer objects fall behind the image 

plane, creating on the image plane what is known as blur circle or disk of confusion. Figure 2-2 

shows a representation of the blur circle caused by optics with fixed focal length. The diameter of 

the blur circle is given by: 

 𝜖 =
∆𝑔𝑓2

𝑂(𝑔 − ∆𝑔)(𝑔 − 𝑓) 
  (2.1) 

where O is the camera aperture size, f is the focal length, g is the distance between the camera 

lens and far objects and g is the difference in distance between far and near objects. Adding a 

blurring effect to simulated objects in an image improves visual accuracy and potentially 

improves the learning performance of deep-learning vision applications.  



 

6 

 

 

Figure 2-2: On-board cameras are equipped with optics that create focused images of far objects in the 

environment. Light rays from closer images are projected to the image plane on a disk, commonly known 

as the blur circle or disk of confusion. 

2.1.2 Blob Detection 

In image processing, a blob is an acronym for Binary Large OBjects and is defined as a 

collection of adjoint connected pixels that share a common attribute (e.g., intensity level, color) 

that distinguishes them from their neighboring pixels. Secondary attributes are usually extracted 

from these blobs, that are used to describe the image content in a condensed model, leaving the 

structural integrity of the image intact. These secondary attributes include, for example, blob size 

in pixels, the orientation of the smallest ellipse that encompasses the blob area, and the width and 

breadth of such an ellipse.  

As described by Kong et al. [1], blob detection algorithms can be either based on derivative 

expressions or local extrema in intensity landscape. Laplacian of Gaussian (LoG) [2] was 

proposed by is the earliest derivative-based blob detection algorithm. An intensity image 

function, 𝑓(𝑥, 𝑦) is first convolved with a two-dimensional Gaussian function  

 𝐺(𝑥, 𝑦) =
1

√2𝜋𝜎2
𝑒

(−
𝑥2+𝑦2

2𝜎2 )
 (2.2) 

where 𝜎 is the standard deviation, to attenuate the image and remove noise. A Laplacian operator  
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 ∇2=
𝜕2𝑓

𝜕𝑥2
+

𝜕2𝑓

𝜕𝑦2
 (2.3) 

 is applied to highlight regions of high-intensity changes. The two operators can be linearly 

combined as 

 ∇2𝐺(𝑥, 𝑦) =
𝑥2 + 𝑦2 − 2𝜎2

𝜋𝜎4
𝑒

(−
𝑥2+𝑦2

2𝜎2 )
 (2.4) 

. 

To detect a blob of radius s, a standard deviation of 𝜎 =
𝑠−1

3
  is recommended, since 99% of a 

Gaussian is concentrated within 3𝜎 [1]. Many approaches were proposed to detect blobs of 

various shapes in an image by varying the size of 𝜎 [1, 3].  

One approach to identify failing rain streaks candidates in a rainy image is to first detect blobs, 

then select the ones that match certain criteria of rain streaks, including breadth-to-width ratio, 

orientation, and average blob intensity, relative to surrounding pixels. Figure 2-3 shows how 

blob detection can be used to identify rain streak candidates in a falling rain detection algorithm. 
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Figure 2-3: Starting with a rainy image (top left), blob detection is used to identify blobs in the image (top 

right). An ellipse that best contains the blobs is identified and the aspect ratio of its major-to-minor axes is 

used to eliminate non-rain streak blobs (bottom left). Ellipse orientation is finally used to eliminate more 

blobs that do not satisfy the rain streak orientation constraint (bottom right). 

2.1.3 Depth Estimation  

Depth estimation means estimating the distance of different objects in the environment, from an 

observer. The observer can be the human eye or any sensing mechanism that is sensitive to 

distance changes, including Radar, Lidar, and ultrasonic. Many applications in the automotive 

domain, such as 3-D mapping, navigation, and augmented reality use depth estimations as an 

integral part of their algorithms. Sensor fusion of different senor inputs, like camera and 

ultrasonic) is usually used, since it increases depth estimation accuracy and improves system 

reliability. For vision-based depth estimation, depth from stereo images is the most commonly-

used approach, though good progress has been reported on depth estimation through deep-

learning, using monocular images (e.g., see Godard et al. [4]). Stereo depth estimation is based 
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on measuring the location disparities of scene points, captured by stereo camera set. As shown in 

Figure 2-4, the same scene point P is projected at different positions on the image planes of the 

two-camera stereo system. Through simple trigonometry, we can show that the disparity d = X1 – 

X2 can be used to calculate the distance Z of point P from the cameras as   

 𝑍 =
𝑓. 𝑏

𝑑
  (2.5) 

where f is the camera focal length and b is the distance between the camera centers.   

 

Figure 2-4: The position disparity of scene points as captured on stereo camera image planes can be used 

to estimate the distance to scene points. Distance is inversely related to disparity measure, meaning that 

further scene points exhibit smaller disparity than closer ones to the cameras 
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2.1.4 Brightness Adjustment 

Brightness adjustment refers to the process of shifting the intensity of image pixels from the 

original level, to a more desirable one. This is an important step in vision algorithms that are 

sensitive to intensity changes. Feature matching and image restoration are two common image 

processing applications that may benefit from brightness adjustment. The brightness adjustment 

can be achieved by linearly shifting all image pixels with a fixed bias, or by nonlinearly shifting 

the brightness zone (minimum to maximum intensity range) to a different zone. Figure 2-5 

shows different methods for applying the brightness adjustment process to an image. A fixed 

bias can be added to image pixel intensities, resulting in a brighter image with almost no change 

in contrast (top right). In the bottom left image, the histogram equalization technique was used to 

redistribute the original image intensity range over the whole [0-255] range. In the bottom right 

image, the original image intensity range was remapped to a new (tighter) range, resulting in a 

darker image with less contrast. 
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Figure 2-5: Some techniques to adjust the brightness of the image (top left) include adding a fixed bias 

(top right), using histogram equalization (bottom left), and intensity remapping (bottom right).  

2.1.5 Barrel Effect Removal 

Barrel or fisheye distortion is one of two common curvilinear distortions, caused by camera 

lenses, the other being pincushion distortion. The further the image points are from the center of 

the camera imaging sensor, the more curved inwards the image lines appear. Pincushion 

distortion is caused by low range or telescopic lenses and is opposite to barrel distortion, in a 

sense that the further the image points are from the center of the camera imaging sensor, the 

more curved outwards the image lines appear. For best performance, we ideally want to rectify 

distorted images, to get as close to a rectilinear image as possible. Figure 2-6 shows how barrel 

and pincushion distortions affect a rectilinear image.  
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.  

 

Figure 2-6: The original image (top) is captured using rectilinear lenses. The fisheye image (middle) is 

captured using a captured with a wide-angle lens. Using a long-range lens causes pincushion distortion 

(bottom) 
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In automotive applications, barrel distortion is more common, since many vehicle onboard 

cameras use wide-angle lenses to capture as much as possible of the scene around the vehicle. 

Mathematically, barrel distortion is approximated as a single-parameter polynomial as [5]   

 

𝑥𝑢 − 𝑥0 = (𝑥𝑑 − 𝑥0)(1 + 𝜆𝑟𝑑
2) 

𝑦𝑢 − 𝑦𝑜 = (𝑦𝑑 − 𝑦𝑜)(1 + 𝜆𝑟𝑑
2) 

(2.6) 

 

Or equivalently: 

 

𝑟𝑢 = 𝑟𝑑(1 + 𝜆𝑟𝑑
2) 

𝑟𝑑 = √(𝑥𝑑 − 𝑥𝑜)2 + (𝑦𝑑 − 𝑦𝑜)2 

𝑟𝑢 = √(𝑥𝑢 − 𝑥𝑜)2 + (𝑦𝑢 − 𝑦𝑜)2 

(2.7) 

where (𝑥𝑜 , 𝑦𝑜) are the coordinates of the image center, (𝑥𝑢, 𝑦𝑢) are the coordinates of the 

undistorted image pixels,  (𝑥𝑑 , 𝑦𝑑) are the coordinates of the pixels in the distorted image, 

𝑟𝑑 is the Euclidian distance from distorted image pixels to the image center,  𝑟𝑢 is the Euclidian 

distance from undistorted image pixels to the image center, and 𝜆 is the distortion faction that is 

dependent on the type of lenses used.  

2.1.6 Image Inpainting 

Image inpainting refers to the collection of techniques used to replace certain sections of an 

image with other sections, either from the same image or from another one with similar 

characteristics. Inpainting is generally used to remove undesired elements of an image or 

reconstructing corrupt sections of an image, due to noise or occlusion. The most common 

Inpainting techniques are structural-based inpainting, texture-based inpainting, and exemplar-

based inpainting [6, 7]. In structural-based inpainting, Partial differential equations are used to 

diffuse pixels from surrounding regions to the target region, preserving the direction of isophotes 



 

14 

 

(lines with constant light intensity). The process continues until all pixels are replaced. This 

technique produces a blurring effect that helps remove small defects in the image. It is not 

suitable, however, for large areas and to reconstruct regions with rich texture [7]. Texture-based 

inpainting is done by selecting patches from the source region and copying them to the missing 

sections of the target region until all target area is covered.  Exemplar-based inpainting can be 

considered a hybrid inpainting technique that borrows the patch copy-and-paste from texture-

based inpainting, and the diffusion approach from structure-based inpainting. The process starts 

by identifying the missing sections in the target region that requires inpainting. Fill priorities are 

then assigned to target pixels which determines the order in which these pixels are replaced. 

Next, patches that best match the target regions are selected and used to iteratively fill gaps in the 

target region. After each iteration, the target region boundary is updated, and fill priorities are 

updated [8]. In rain removal applications, image inpainting is used to restore areas of the rainy 

image that are corrupted or occluded by the rain presence. Figure 2-7 shows how image 

inpainting can be used to restore image areas corrupted with raindrops. 
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Figure 2-7: For a rainy image (top), the raindrop detection algorithm identifies areas of a raindrop in the 

image (middle). Image inpainting is then used to restore the image, effectively removing rain from the 

image (bottom) 
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2.2 Image Quality Metrics 

This section includes a summary of some of the most common metrics used in literature for 

evaluating the quality of images. Wang et al. [9], classified Objective image quality metrics as 

full-reference, reduced-reference, or no-reference, depending on the availability of the original, 

distortion-free image or a set of extracted features, representing that image. Mean Squared Error 

(MSE), Peak Signal to Noise Ratio (PSNR), and Structural Similarity Index (SSIM) are examples 

of full-reference quality metrics. Blind/ Referenceless Image Spatial Quality Evaluator 

(BRISQUE) and Perception-based Image Quality Evaluator (PIQE) are examples of the no-

reference quality metrics [10].  

2.2.1 Mean Square Error  

MSE measures the average of the square of errors in the estimation of reference values. 

Mathematically it is given by: 

 𝑀𝑆𝐸 =
1

𝑛
∑ (𝑋𝑖 − 𝑋̂𝑖)

2𝑛
𝑖=1   (2.8) 

where 𝑋 and 𝑋̂ are the reference and estimated sets, respectively and 𝑛 is the total number of 

estimations. Due to its simplicity, MSE is sometimes used as a cost function in deep-learning 

networks, instead of the more common ℓ1 and ℓ2 metrics (see for example Qian et al. [11]). Figure 

2-8 shows one critical weakness of MSE, namely that it is not a good representation to image 

quality, as perceived by the human eye. Despite being much clearer to human perception, the 

speckle noise image scored worse in terms of image quality (higher MSE) than the almost 

unrecognized salt-and-pepper one. 
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Figure 2-8: A Clear Image (top) is corrupted with 'salt and pepper' noise (middle) and 'speckle' noise 

(bottom).  
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2.2.2 Peak Signal-To-Noise Ratio 

Peak signal-to-Noise Ratio (PSNR) is the ratio between the maximum power of a signal and the 

power of noise corrupting the signal and is usually expressed in logarithmic scale (base 10). PSNR 

can be expressed in terms of MSE as follows [12]: 

 𝑃𝑆𝑁𝑅 = −10 log10 (
𝑀𝑆𝐸

𝑀𝐴𝑋𝐼
2) = 20log10(𝑀𝐴𝑋𝐼) − 10log10(𝑀𝑆𝐸) (2.9) 

where 𝑀𝐴𝑋𝐼 is the maximum possible pixel value of the image and PSNR is given in dB. For an 

8-bit image, 𝑀𝐴𝑋𝐼 = 255, and PSNR can be given as 𝑃𝑆𝑁𝑅 = 48.13 − 10log10(𝑀𝑆𝐸).  

This last formula shows that PSNR is strongly (inversely) related to MSE. It is no surprise that, 

like MSE, PSNR scores do not align well with human perception of image quality, as shown in 

Figure 2-9. One could argue that despite the blurriness, a human observer may recognize more of 

the image content in the Gaussian noise image, than the salt and pepper noise image. PSNR score 

for the two noisy images, however, does not align with human perception of image quality. 
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Figure 2-9: A Clear Image (top) is corrupted with 'salt and pepper' noise (middle) and ‘Gaussian’ noise 

(bottom). 
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2.2.3  Least Absolute Deviations and Least Squares Error 

Least Absolute Deviations, also known as Least Absolute Error (LAE) is commonly used in 

Convolutional Neural Networks (CCN) as a loss function ( ℓ1loss). The goal of a CNN is to 

minimize this error to convert to a satisfactory solution. It is a simple metric that can be given 

mathematically as 

 𝐿𝐴𝐸 = ∑|𝑦𝑖 − 𝑓(𝑥𝑖)|

𝑛

𝑖=1

  (2.10) 

where 𝑦𝑖 is the target (reference) value, 𝑓(𝑥𝑖) is the estimated value for an input 𝑥𝑖, and 𝑛 is the 

number of samples.  

Least Squares Error (LSE) is another metric commonly used as a loss function in CNN-based 

systems( ℓ2 loss). Mathematically it is given as 

 𝐿𝑆𝐸 = ∑(𝑦𝑖 − 𝑓(𝑥𝑖))2

𝑛

𝑖=1

 (2.11) 

We notice that MSE differs from LSE only by the sample averaging factor 
1

𝑛
 . 

Both ℓ1 and ℓ2 are usually added as penalty terms to the regularization process in CNN-based 

algorithms which is designed to prevent overfitting during the training stage. The topic of using 

ℓ1 versus ℓ2 and the difference between the two loss functions has been discussed in many 

machine-learning blogs. The following Table 2-1 shows some of the differences outlined by N. 

Tyagi [13] 
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Table 2-1: Properties of ℓ1 versus ℓ2 loss functions 

Loss function Attribute ℓ1 ℓ2 

Penalization method Penalizes the sum of the 

absolute value of weights 

penalizes the sum of square 

weights. 

Sparsity Has a sparse solution Does not have a sparse 

solution 

Robustness to outliers Robust to outliers Not Robust to outliers 

Solution uniqueness No unique solution A Unique solution can be 

reached 

 

2.2.4 Normalized Cross-Correlation 

Normalized Cross-Correlation (NCC) is a (normalized) measure of similarity of two series, as a 

function of the displacement of one relative to the other [14]. In image processing, NCC is used 

mostly for template matching and image restoration. A segment in a reference image is considered 

a match to one in a target image if NCC between them is highest. Normalization is achieved by 

subtracting from each series its mean, then dividing the result by its standard deviation. This helps 

alleviate the effect of variations of illumination intensities or due to using different sensors to 

capture each image (e.g., in stereo-vision applications). mathematically, NCC can be given by: 

 𝑁𝐶𝐶 =
1

𝑛𝜎𝑟𝜎𝑡
∑(𝑋𝑟 − 𝜇𝑟)(𝑋𝑡 − 𝜇𝑡)

𝑛

𝑖=1

 (2.12) 

where 𝑛 is the total number of pixels tested in each image, 𝑋𝑟,𝑡 are the reference and target images, 

and 𝜇𝑟,𝑡 𝑎𝑛𝑑 𝜎𝑟,𝑡 are their corresponding means and standard deviations, respectively.  
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2.2.5 Structural Similarity Index 

The quality metrics disused so far are simple to calculate and understand but they do not reflect 

the human perceived visual quality. Wang et al. [9] presented an image example with different 

types of distortions applied to it. As we showed in Figure 2-8, the speckle-distorted image scored 

worse than the one distorted with salt and pepper noise in terms of image quality (per MSE 

metric), even though its perceptual quality was much better. The structural information of the 

reference image was preserved in the contrast-stretched image and could be recovered via linear 

transform which was not the case with other types of distortion. Natural image signals are highly 

structured and the human visual system is adapted to extract structural information from images.  

Structural similarity (SSIM) is an image quality assessment measure designed around the human 

visual system (HVS). It makes use of structural information change to provide an approximation 

to perceived image distortion. The SSIM metric is constructed as a combination of luminance, 

contrast, and structure comparators as follows [9]: 

1- The luminance of each image signal is estimated using its mean intensity: 

 𝜇𝑥 =
1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1

 (2.13) 

where 𝜇𝑥 is the mean intensity of signal 𝑥, N is the total number of pixels and 𝑥𝑖 is the intensity at 

pixel 𝑖. 

2- Luminance comparison function 𝑙(𝑥, 𝑦) is then given by: 

 𝑙(𝑥, 𝑦) =
2𝜇𝑥𝜇𝑦 + 𝐶1

𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1
  (2.14) 

where the constant 𝐶1is added to protect for the near-zero denominator. 

3- The contrast of each image signal is approximated by its standard deviation 𝜎𝑥,𝑦: 
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 𝜎𝑥 = (
1

𝑁 − 1
∑(𝑥𝑖 − 𝜇𝑥)2

𝑁

𝑖=1

)

1
2

 (2.15) 

4- Contrast comparison function 𝑐(𝑥, 𝑦) is then given by: 

 𝑐(𝑥, 𝑦) =
2𝜎𝑥𝜎𝑦 + 𝐶2

𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2
 (2.16) 

where constant 𝐶2 is added to protect for the near-zero denominator. 

5- Image signal structure is associated with the unit vectors 
𝑥−𝜇𝑥

𝜎𝑥
 and 

𝑦−𝜇𝑦

𝜎𝑥𝑦
 

6- The structure comparison function is defined as: 

 

𝑠(𝑥, 𝑦) =
𝜎𝑥𝑦 + 𝐶3

𝜎𝑥𝜎𝑦 + 𝐶3
 

𝜎𝑥𝑦 =
1

𝑁 − 1
∑(𝑥𝑖 − 𝜇𝑥)(𝑦𝑖 − 𝜇𝑦)

𝑁

𝑖=1

 

(2.17) 

where 𝐶3 is added to protect for the near-zero denominator. 

7- Structure similarity index SSIM is then given by: 

 𝑆𝑆𝐼𝑀(𝑥, 𝑦) = [𝑙(𝑥, 𝑦)]𝛼. [𝑐(𝑥, 𝑦)]𝛽 . [𝑠(𝑥, 𝑦)]𝛾 (2.18) 

 

Figure 2-10 shows how SSIM is more aligned to human perception compared to MSE and PSNR 

metrics. 
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Figure 2-10: When comparing an image to itself (top left), MSE =0, PSNR=infinity, and SSIM =1, as 

expected. MSE and PSNR scores, however, are not aligned to human perception of image quality, unlike 

SSIM. 

2.2.6 Earth Movers Distance 

In image processing, EMD reflects the cost of moving one image, represented by some feature 

signature (e.g., intensity histogram), to a reference image, represented with the same signature 

type. Given two images, Image1 and Image2, one or more features are selected and clustered, to 

create signatures, [15] 

 

𝑆 =  {(𝑠1, 𝑤𝑠1) , (𝑠2, 𝑤𝑠2) , … , (𝑠3, 𝑤𝑠𝑚)} 

𝑇 =  {(𝑡1, 𝑤𝑡1) , (𝑡2, 𝑤𝑡2) , … , (𝑡𝑚, 𝑤𝑡𝑚)} 

(2.19) 

for Image1 and Image2, respectively. 
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 𝑠𝑖, 𝑤𝑠𝑖 for  1 ≤ 𝑖 ≤ 𝑚 and 𝑡𝑗 , 𝑤𝑡𝑗  for 1 ≤ 𝑗 ≤ 𝑛 represent the cluster Ids and weights for the 

two signatures. A feasible flow 𝐹 = [𝑓𝑖,𝑗]  between the two signatures must satisfy the following 

constraints: 

 

𝑓𝑖,𝑗 ≥ 0, ∀ 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛  

∑ 𝑓𝑖,𝑗 ≤𝑚
𝑖=1 𝑤𝑠𝑖, 1 ≤ 𝑖 ≤ 𝑚  

∑ 𝑓𝑖,𝑗 ≤𝑛
𝑗=1 𝑤𝑡𝑗 , 1 ≤ 𝑗 ≤ 𝑛   

∑ ∑ 𝑓𝑖,𝑗 = 𝑚𝑖𝑛{∑ 𝑤𝑠𝑖 , ∑ 𝑤𝑡𝑗
𝑛
𝑗=1

𝑚
𝑖=1 }𝑛

𝑗=1
𝑚
𝑖=1   

(2.20) 

Given a ground distance 𝐷 = [𝑑𝑖,𝑗] between the two clusters, EMD represents the solution that 

minimizes the work (flow times distance) to move one signature to match the other. 

Mathematically, this is given by [15] 

 𝐸𝑀𝐷(𝑆, 𝑇) = 𝑚𝑖𝑛 ∑ ∑ 𝑓𝑖,𝑗 𝑑𝑖,𝑗  = 
∑ ∑ fi,j di,j

n
j=1

m
i=1

∑ ∑ fi,j 
n
j=1

m
i=1

 𝑛
𝑗=1

𝑚
𝑖=1   (2.21) 

Figure 2-11 shows how the EMD metric represents the cost of restoring a progressively degraded 

image, corrupted with different types of noise. One issue with the EMD metric is that there is no 

clear correlation between human perceived image quality and EMD score. Salt and pepper noise 

image series generally had lower EMD scores, though perceptually they are worse than the 

Gaussian-degraded images. Based on this, the EMD metric is maybe suitable to track the 

progression of image quality in, for example, a learning algorithm from one integration to the 

next. It may not, however, be suitable for assessing the degradation levels of different images, 

compared to a reference.  
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Figure 2-11: The EMD metric can be used to track the progression of image quality with 

increased/decreased noise in a series (top left to bottom left or top right to bottom right). It is not, 

however, used the measure image degradation between different images qualitatively (left to right).  
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2.3  Model Performance Metrics 

Regression and classification are the two main problems that machine learning (including deep-

learning) models are designed to solve. A regression model maps an input x to an out y through a 

specific mapping function. Mathematically, this is given by 

 𝑦𝑖 = 𝑓(𝑥𝑖 , 𝛽) + 𝑒𝑖 (2.22) 

where 𝛽 represents a set of unknown parameters and 𝑒𝑖  is an additive error term.  

MSE, RMSE (Root-MSE), and MAE are some commonly-used metrics to evaluate the 

performance of a regression model. 

Classification models, on the other hand, try to answer the question: to which class of available 

classes does a sample input most likely belong? The classification can have one of the following 

four outcomes:  

1. Sample input is correctly classified to belong to the specific class. This represents a True 

Positive (TP). 

2. Sample input is correctly classified as not belonging to a specific class. This represents a 

True Negative (TN). 

3.  Sample input is incorrectly classified to belong to a specific class. This represents a False 

Positive (FP). 

4. Sample input is incorrectly classified as not belonging to a specific class. This represents 

a False Positive (TP). 

Accuracy, Precision, Recall, Jaccard index, and Dice Metrics are designed to evaluate 

classification performance, based on the outcome of classifying inputs samples.   
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2.3.1 Precision Metric 

Precision is also called positive predictive values (PPV) and it represents the portion of positive 

results that are true positive. It is given by  

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2.23) 

The precision metric is desirable when the cost of false positives is high in the classification model. 

In an automotive predictive brake system, for example, too many false classifications of obstacles 

in the path of the ego vehicle may result in the excessive application of the braking system and 

reduction in brakes' expected lifetime.   

2.3.2 Recall Metric 

The recall is also known as Sensitivity and it represents the portion of positive results that are 

correctly predicted positive. It is given by 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2.24) 

The recall is desirable when the cost of false negatives is high in the classification model. For the 

same braking system described above, misclassifying an imminent collision scenario as a no-

collision event may cause a crash event that is prohibitively expensive in terms of safety. This 

example explains why the Recall and Precision metrics are rarely considered in isolation. It is 

worth noting that both Precision and recall provide some information on the rate and type of 

classification error but both ignore the negative cases since TN outcomes are not part of the 

calculation.  

2.3.3 Accuracy Metric 

The accuracy of a classifier system is an indication of overall classification performance. It is the 

ratio of correct predictions (TP or TN) to all prediction outcomes. It is given by, 
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 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (2.25) 

2.3.4 Dice Coefficient  

Sørensen–Dice coefficient or F1 score is a similarity metric that represents the harmonic mean of 

Precision and Recall metrics [16]. Mathematically, it is given by 

 𝐷𝑖𝑐𝑒 =  
2|𝑡𝑎𝑟𝑔𝑒𝑡 ∩ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛|

|𝑡𝑎𝑟𝑔𝑒𝑡| + |𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛|
 (2.26) 

where |𝑥| represent the cardinality (number of elements) of set 𝑥. For Boolean data, this metric 

can be given by [16], 

 𝐷𝑖𝑐𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (2.27) 

 

2.3.5 Jaccard Index 

Jaccard index, also known as Intersection over Union (IoU), is another similarity metric that is 

closely related to Dice. It is given by [17], 

 𝐼𝑜𝑈 =
𝑡𝑎𝑟𝑔𝑒𝑡 ∩ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑡𝑎𝑟𝑔𝑒𝑡 ∪ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
 (2.28) 

Or for Boolean data, 

 𝐼𝑜𝑈 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (2.29) 

 

From which the relation between Jaccard index and Dice can be given by [18]: 

 

𝐷𝑖𝑐𝑒 =
2𝐼𝑜𝑈 

𝐼𝑜𝑈 + 1
 

𝐼𝑜𝑈 =
𝐷𝑖𝑐𝑒 

2 − 𝐷𝑖𝑐𝑒
 

(2.30) 
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Though the two metrics are almost functionally equivalent, IoU scores tend to be closer to worst-

case performance, whereas Dice scores are closer to average performance [19]. IoU score is used 

in many classification applications as a predefined threshold to determine whether any given 

prediction is considered a TP or an FP. This threshold is sometimes referred to as the penalty 

threshold.  In an object threshold algorithm, for example, setting the threshold to an IoU=0.5 means 

that at least 50% of the pixels in the predicted object must match those of the ground truth object, 

for the detection outcome to be accepted (TP). Figure 2-12 and shows the results of a binary 

classifier that attempts to classify sample points as either belonging to the diamond-shaped area or 

not. Table 2-2 shows the results of calculating accuracy, precision, recall, dice, and IoU metrics 

for the classification results.  

 

Figure 2-12: A binary classifier tries to determine if a sample belongs to the diamond shape or not.   
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Table 2-2: Similarity metric results for the binary classifier example. 

Variable/ Method TP TN FP FN Precision Recall Accuracy IoU Dice 

Measurement/ calculation 4 18 4 2 0.5 0.667 0.786 0.4 0.571 

 

2.3.6 Average Precision (AP)  

One common technique in the evaluation of the performance of classification models is to plot 

the precision-recall curve, for a given classification confidence level threshold (penalty 

threshold) as mentioned earlier, IoU is commonly used to represent this penalty threshold. This 

curve has an average negative slope since for a given penalty threshold, precision tends to 

decrease as recall increases. This curve is useful in representing the tradeoffs of precision versus 

recall for a given classification model.  

AP is one way to capture the characteristics of the precision-recall curve in one metric and is 

calculated as the Area Under the Curve (AUC) of the function representing precision as a 

function of recall. The PASCAL VOC2011 [20] challenge slightly modified how AP is 

calculated, to eliminate the oscillatory pattern in the precision-recall curve. In this version, the 

precision for recall 𝑟 is set to the maximum precision calculated for any 𝑟′ ≥ 𝑟. This method 

simplifies the AP calculation since the new AUC is now a collection of rectangles with easily 

calculated areas. Figure 2-13 shows an example of a precision-recall curve and the AUC as 

defined in the original and the modified AP calculations. In either method of calculation, a 

higher AP score is associated with the better overall performance of the classification algorithm, 

at a given penalty threshold. A family of precision-recall curves can be plotted on the same 

figure, each representing a class in the classifier. A set of curves can also be plotted, representing 

the precision-recall relations at different penalty thresholds. These two plots are related to the 
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way the Mean Average Precision (mAP) is calculated, which is not standard across vision 

challenges. In the PASCAL VOC2011 [20] challenge only one penalty threshold is used at 

IoU=0.5 to generate the precision-recall curves for all classes. mAP, in this case, is the average 

of the AP scores across all classes. The COCO [21] challenge, on the other hand, calculates the 

AP at penalty threshold IoU range from 0.50 to 0.95, at 0.05 resolution, for each class. The mean 

AP is then calculated per class and the mAP is the average of these means over all classes.  

 

 

Figure 2-13: AP score was originally calculated as simply the Area Under the Curve that represents the 

precision as a function of the recall. To eliminate the fluctuations in the precision values, the precision at 

any point with recall r is set to the maximum precision value of points to the right of it (r’>=r). As shown 

in the plot above, the (new) AP score is different from the original AP score that was calculated as the 

AUC.  
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Chapter 3  

Rain Detection and Removal Techniques 

 

3.1 Introduction 

Rain, a source of adverse weather conditions, deteriorates the quality of the images and 

negatively affects the performance of vision-based algorithms which use these images as the 

main source of information [22] [23] [24]. Rain can be presented in an image in two forms, 

falling rain streaks and adherent raindrops that accumulate on the camera lens cover or the 

vehicle windshield. The characteristics of rain in its two forms are different, and the distortion it 

introduces to the image is accordingly different. Because of this, researchers tackle the rain-

induced issue as two separate problems, and the solution to one form of rain distortion does not 

usually work well for the other form. The image quality metrics according to Wang et al. [9], can 

be classified as no-reference, reduced reference, or full-reference, based on the availability of 

original (distortion-free) images for evaluation.  In the context of rained images, distortion and 

image quality refer to the quality of the rained images as compared to the rain-free ones. Rain 

introduces irreversible degradations to the image by distorting its pixels, modifying some of the 

image characteristics, and occluding certain objects in the image background that are of interest 

to the target vision-based algorithms. The falling rain is both uncontrollable and unpredictable 

which makes it impossible to construct a reference (ground truth) dataset for reconstructing a 

rain-free image from a rained one. In that sense, rained images fall under the no-reference 

category based on Wang et al.'s [9] definition. Image restoration techniques try to make use of 
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certain features in the rain-free images, such as brightness and texture, to recover the sections of 

rained images that are distorted by rain. This brings the complexity of image restoration from the 

no-reference level to the reduced reference one. Attempts have been proposed to use 

synthetically-generated rain that is added to rain-free images, to create perfectly matched rain-

free/ rained datasets. This brings the image restoration problem closer to the full-referenced level 

of complexity, but it remains highly dependable on the quality of the rain simulator algorithm 

used in the process. 

We published a survey paper on the different approaches for adherent raindrop modeling, 

detection, and removal [25]. The survey described algorithms based on machine learning, as well 

as deep learning techniques.  

3.2  Summary  

In this section, we summarize in tabular format, the most important aspects of the adherent 

raindrop removal systems that were described our survey paper [25]. Table 3-1 lists the different 

raindrop models that were described in this paper. Table 3-2 summarizes the common classical 

approaches for raindrop detection. A list of different de-raining techniques is shown in Tables 3-

3. Table 3-4 shows a comparison of the Deep Learning and CNN approaches to image de-raining 

that were described in that survey paper. 
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Table 3-1: Raindrop models. 

ID Basic Idea Potential limitations 

Cord et al. 

[26] 

Assume elliptical shape for raindrops and use 

axes aspect ratio, size, and brightness constraints 

as a model for raindrops.  

It May not account for irregular raindrop 

shapes and the effect of background texture 

on raindrop appearance.  

Kurihata et 

al. [27] 

Used a PCA algorithm to generate eigendrop 

templates 

Does not account for the effect of texture on 

raindrop appearance. 

Fouad et al. 

[28] 

Use a declivity operator to describe raindrops as 

a sequence of peaks and valleys. 

Do not consider the background 

composition's role in the appearance of 

raindrops. 

Halimeh et al. 

[29] 

Developed a complex model (RIGSEC) for a 

raindrop, based on its geometric and photometric 

properties.  

Assuming part of a sphere for a raindrop and 

ignoring the blurring effect of a raindrop 

may limit model accuracy.  

Roser et al. 

[30] 

Added blurriness effect to RIGSEC and limited 

the rendering of raindrop models to certain 

regions of the image to reduce rendering time. 

Generating raindrop models at specific 

regions in the image may lower the rate of 

matching with real raindrops. 

Sugimoto et 

al. [31] 

Used MSER to improve the initial detection of 

potential raindrops and spheroid for raindrop 

approximation. 

Added complexity may make the model less 

appropriate for real-time applications. 

Stuppacher et 

al. [32] 

Modeled raindrops using height maps, 

considering raindrop dynamics and water content 

losses and gains for moving raindrops. 

The model is more suitable for CGI 

applications to generate realistic raindrop 

effects. 

Roser et al. 

[33] 
Modeled raindrops using Bézier Curves. 

Reliance on approximations of raindrop size 

from correlations between 2D ratios and tilt 

angles reduces model accuracy.  

  

Table 3-2: Raindrop detection - classical approaches. 

ID Application Approach Potential limitations 

Yan et al. [34] Weather 

classification in 

the automotive 

domain 

Use AdaBoost to combine two weak 

classifiers, HGA and HSV. Classifies   

weather as Rainy, Cloudy or Sunny 

Applications of weather classifiers 

are limited in the automotive 

domain to ADAS warnings and 

windshield wiper triggers. 

Wu et al. [35] Raindrop 

detection in the 

automotive 

domain 

Use AdaBoost to combine color, 

shape, and texture saliency maps. 

Create a raindrop visual descriptor 

and use SVM to classify the weather.  

Assumes circular 2D shape of a 

raindrop and fails under heavy 

rain conditions 

Liao et al. [36] Raindrop 

detection in the 

automotive 

domain 

Segment the scene into the roadway 

and building areas. Identify raindrop 

candidates through edge detection and 

binarization and compare their 

dimensions to the closest ellipse.  

The detection algorithm might be 

slow for real-time automotive 

applications and it fails to handle 

background noise and large 

raindrops. 

Ishizuka et al. 

[37] 

Raindrop 

detection in the 

automotive 

domain 

Daytime Detector uses Sobel for 

initial identification, then texture 

The optical flow approach used 

assumes straight-line driving and 

may fail on winding roads. It may 

also cause incorrect classification 
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ID Application Approach Potential limitations 

information, and optical flow to detect 

real raindrop pixels.  

Nighttime Detector eliminates light 

source pixels, then uses a temporal 

intensity change feature to identify 

raindrop pixels. 

as raindrops, objects that are 

moving at the same speed as the 

test vehicle. (e.g. other vehicles). 

Kurihata et al. 

[27] 

Raindrop 

detection in the 

automotive 

domain 

Use similarity degree between 

potential raindrops and eigendrop 

template to identify raindrop regions 

Does not account for the effect of 

background variations on raindrop 

characteristics (texture, 

brightness).   

Yamashita et 

al. [38] 

Raindrop 

detection in 

surveillance 

applications 

Match images from different cameras, 

then analyze intensity variance under 

low and high texture image 

backgrounds to detect raindrops. 

Requires multiple cameras which 

reduces the common FOV, and 

assumes raindrops do not occlude 

the same section of the restored 

image.  

Yamashita et 

al. [39] 

Raindrop 

detection in 

surveillance 

applications 

Capture successive image frames and 

identify them as raindrop segments, 

those that are detected near the 

expected location and satisfy size 

ratio constraints. 

Requires precise knowledge of 

rotation angle and assumes idle 

raindrops between frames which 

is true only under light rain 

conditions.  

Yamashita et 

al. [40] 

Raindrop 

detection in 

surveillance 

applications 

Similar to [39] but rotation angle is 

estimated and raindrop decision is 

made on a pixel base, by measuring 

the noise existence rates in the 

original and rotated image. 

Assumes idle raindrops between 

frames which is true only under 

light rain conditions. 

Yamashita et 

al. [41] 

Raindrop 

detection in 

surveillance 

applications 

Match stereo image pixels using NCC 

and apply one-on-one matching to 

eliminate noise. Compare measured to 

the expected disparity of raindrops to 

determine true raindrops. 

Raindrops are blurry and may not 

result in good disparity 

measurements. Also, the long 

computational time is observed as 

a result of pixel-based 

calculations. 

Yamashita et al 

[40] 

Raindrop 

detection in 

surveillance 

applications 

Create a compound image from the 

temporal image sequence and select 

raindrop pixels that show “often” in 

the noise candidate trajectory curve. 

Requires many frames and 

involves many pixel projections. 

Roser et al. 

[42] 

Weather 

classification in 

the automotive 

domain 

Use feature histogram to create a bag 

of features, and use SVM to classify 

weather as Clear, Light rain, or Heavy 

rain. 

Relatively slow, due to the large 

descriptor. Error rate increases 

with background complexity 

increase. 

Cord et al. [43] Weather 

classification in 

the automotive 

domain 

Compare the intensity gradient image 

to the threshold image and pick the 

strongest candidates. Pick raindrop 

regions based on dimensions and 

eccentricity constraints and through 

temporal analysis.  

System Requires focused 

raindrops (camera needs to be 

attached far away from the 

windshield). Raindrop size is 

relatively small (3-10 pixels) 

which may cause reduced 

accuracy.  
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ID Application Approach Potential limitations 

Cord et al. [26] Raindrop 

detection in the 

automotive 

domain 

Segment the image then uses either 

watershed or background subtraction 

to identify potential drops. Use size, 

shape, and temporal constraints to 

identify real raindrops. 

The algorithm runs slow due to 

implementation in MATLAB. 

Adding more frames improves 

performance but adds delay to the 

overall system operation time. 

Nashashibi et 

al. [44] 

Raindrop 

detection in the 

automotive 

domain 

 

 

Detect potential raindrops through 

temporal intensity change and shape 

roundness. Use a lack of clear contour 

as a raindrop characteristic, then 

verify selection by spatially matching 

raindrop regions in consecutive 

frames.  

Detection of unfocused is 

challenging and the algorithm 

fails under bright background 

conditions.  

 

Table 3-3: Raindrop-degraded image recovery. 

ID Approach Potential limitations 

Liao et al. 

[36] 

For buildings ROI, replace the raindrop 

area with the closest non-rain area (using 

an 8-connected area template). For road 

ROI, use inpainting or morphological 

operations. 

Removal time is long (0.44 to 0.68 seconds per 

frame) and it is proportional to rain density. 

The restoration of the road mark sections of the 

image is not perfect, due to the limitations of 

the inpainting method. 

Wu et al. 

[35] 

Use the inpainting technique through smooth 

propagation in the equal intensity line 

direction. 

Limited to low and medium rain intensity. 

Inpainting based on intensity does not preserve or 

recover the textural characteristics of the recovered 

regions. 

Yamashita 

et al. [39] 

Create a composite image of the original and 

rotated one, with a parameter that controls 

how much each image is contributing to the 

final composite one. 

Chromatic variations between original and rotated 

images may still exist, even with correction. This 

affects the quality of the recovered image. The 

algorithm fails if the difference between original 

and rotated images is large. 

Yamashita 

et al. [40] 

Decompose the image into structure and 

texture images. Apply inpainting process on 

structure image and texture synthesis process 

on the other.  

The Spatio-temporal analysis may be needed to 

improve texture recovery but this, in turn, may add 

delay to the processing time. 

Yamashita 

et al [41] 

Use disparity information to identify proper 

regions from the complementary image in the 

pair for raindrop pixel substitution. 

Relies on imperfect disparity map data to select 

substation pixels. Also, the approach fails if 

raindrop noise is present in both images. 

Roser et al. 

[30] 

Estimate translational and rotational 

parameter vector h probabilistically, then use 

multi-band blending to recover rained 

regions. 

While producing good results, this algorithm, both 

in its detection and recovery section seems to be 

too computationally expensive for automotive 

applications. 
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Table 3-4:  Deep learning and CNN approach to image de-raining. 

Raindrop  

Removal System 

Network Architecture Datasets and  

Testing  

Potential Limitations 

Dirt and Rain 

Noise Removal 

(Eigen et al. [45])  

multilayer convolutional 

network with two hidden layers 

with 512 units each. 

Pictures of a glass plate 

with dirt and water drops 

were taken. Patches of size 

64 X64 for dirt and were 

paired with clear patches 

and used to train and test 

the rain and dirt remover 

system.  

Restored images showed 

visible artifacts and were 

blurred where the raindrop/ 

dirt particle was removed.  

Attention GAN 

Raindrop Removal 

Algorithm (Qian et 

al. [11] ) 

1. Generative Network: 

a. Attention Map (3 layers of 

ResNet + 1 LSTM) 

b. Autoencoder (16 conv-

ReLU with skip 

connection). 

2. Discriminative Network: 

7 convolution layers with 

the kernel size (3 x 3), a 

fully connected layer of 

1024 neurons, and a 

single neuron with a 

sigmoid activation 

function 

1119 pairs of images 

(rainy and clear), with 

various background scenes 

and raindrops. Raindrops 

are synthesized by 

spraying water on a glass 

plate. 

Limited dataset for 

training and testing. 

Need for raindrop 

mask for supervised 

learning 

Joint Shape-

Channel Attention 

GAN Raindrop 

Removal 

Algorithm (Quan 

et al. [46] ) 

GAN-based on encoder-

decoder architecture with 

ResBlocks in between and 

short and long skip 

connections. Joint physical and 

channel attention blocks 

Used Qian et al. [11] 

dataset for training and 

testing. Uses PSNR and 

SSIM were used for 

evaluation and 

benchmarking. 

Dataset limitations for 

training and testing. PSNR 

and SSIM scores were only 

marginally better than 

other algorithms evaluated. 

Improved 

Raindrop Removal 

with Synthetic 

Raindrop 

Supervised 

Learning (Hoa et 

al. [47]) 

The system consists of three 

sub-networks 

rain detection network, (I-

CNNN with 5 Conv layers + 

BN and ReLU activation, and 6 

Resblocks 

reconstruction network, same 

as detection network with 8 

ResBlocks 

refine network, 2 Conv layers, 

and 2 ResBlocks 

Synthesized rainy images 

and used them for training 

and testing. Adam 

optimizer [48]was used for 

setting up training 

parameters. PSNR and 

SSIM were used for 

evaluation and 

benchmarking. 

The quality of images 

generated by the Rain 

Synthesized needs more 

independent evaluation 

against real rainy images. 

Raindrop-Aware 

GAN for Coastal 

Video 

Encoder/decoder architecture 

with short and long skip 

connections. 

Used Qian et al. [11] 

dataset as well as Anmok 

beach videos and paired 

image sets for training and 

Though outperforming 

other methods in the 

coastal setup, for urban 

setup no clear 
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Raindrop  

Removal System 

Network Architecture Datasets and  

Testing  

Potential Limitations 

Enhancement (Kim 

et al. [49]) 

testing. PSNR, NIQE [50], 

and SSIM were used for 

evaluation and 

benchmarking. 

improvement was observed 

over Qian et al. [11]. 

Self-Supervised 

Attention Maps 

with Spatio-

Temporal GAN 

(Alletto et al. [51]) 

The system is made of two 

stages. 

1. Single-Image Removal, with 

location map estimator and 

raindrop remover networks. 

both constructed based on 

encoder/decoder architecture.  

2. Spatio-temporal Raindrop 

Removal, flow estimator 

provides optical flow is learned 

from previous frames and 

concatenated with rainy image 

and estimated location map in a 

decoder/ encoder GAN 

architecture. 

Used Qian et al. [11] 

dataset as well as data set 

of augmented videos from 

DR(eye)VE dataset [52] 

with synthetically-

generated raindrops. 

PSNR and SSIM were 

used for evaluation and 

benchmarking.  

The quality of images 

generated by the Rain 

Synthesized needs more 

independent evaluation 

against real rainy images. 

Concurrent 

channel-spatial 

attention and long-

short skip 

connections (Peng 

et al. [53]) 

The system was built on the 

encoder/ decoder architecture, 

with channel and spatial 

attention blocks added. Short 

and long connections were also 

introduced.  

Used Qian et al. [11] 

dataset for training and 

testing. Uses PSNR and 

SSIM were used for 

evaluation and 

benchmarking. 

Dataset limitations for 

training and testing. The 

approach is similar to Quan 

et al. [46] with differences 

in network architecture. 

Would be interesting to 

compare the performance 

of one against the other.    

Separation-

Restoration-Fusion 

Network for Image 

Raindrop Removal 

(Ren et al. [54]) 

the system consists of three 

modules. 

1. Region separation module 

was implemented as an image 

pipeline with classical 

techniques 

2. Region restoration module 

MFGAN built on pyramid 

topology was used. 

3. region Fusion module 

IODNet connection network 

using DenseASPP [55] was 

used to construct fusing 

module 

Used Qian et al. [11] 

dataset for training and 

testing. Uses PSNR and 

SSIM were used for 

evaluation and 

benchmarking. 

Images need preprocessing 

to classify regions of the 

image based on the 

severity of the raindrop. 

The classification was 

based on experimental 

results from a limited 

dataset and may not apply 

to other scenarios.  
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3.3 Conclusion  

We described a range of research works in the field of adherent raindrop detection and removal, 

with a focus on applications in the automotive domain. Based on the reviewed research work in 

this paper, we conclude the following: 

1-  Adherent raindrop detection and removal is a more challenging problem than falling rain 

detection and removal, due to the persistence of adherent raindrops over many image frames 

and the irregularity of raindrop shapes and sizes.  

2-  Due to the closeness to the image plane, adherent raindrops look blurry and occlude larger 

areas of the captured image.  

3- Due to the above, most reviewed algorithms performed poorly under heavy rain conditions or 

fast-changing scenes with many moving objects. 

4- Simple detection algorithms were based on observed optical or physical characteristics of 

adherent raindrops and performed well if the presumed conditions were met. Performance is 

degraded quickly for any deviation from these conditions, including change of background 

image texture or illumination and the introduction of moving objects in the scene background.   

5- Complex detection algorithms performed very well under low and medium rain conditions. 

The added complexity, however, can introduce unacceptable latencies in real-time applications 

for processing rained images and removing adherent rain. 

6- Compromises were discussed to improve processing time that included limiting the ROI, 

reducing the number of model templates, and dimension reduction, among other things.   

7- The application of Deep-learning and CNN seems to be a very promising approach for solving 

the raindrop detection and rain removal problems.  
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8- The use of PSNR and SSIM metrics may not be the best choice for performance evaluation 

and benchmarking among different CNN-based algorithms. Results reported by different 

researchers showed marginal improvement in PSNR and SSIM scores which may very much 

be within the statistical margin of error. 
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Chapter 4  

Framework For Simulating and Removing Rain in Stereo-Image Videos   

 

4.1 Introduction 

Raindrops fall at high velocities relative to the exposure time of the camera, producing severely 

motion-blurred streaks in images. Fluctuations in image intensity that are caused by rain “can 

severely degrade the performance of a wide range of outdoor vision algorithms, including, feature 

detection, stereo correspondence, tracking, segmentation, and object recognition.” [22]   Some 

work was done to study the effect of rain and de-raining on the performance of vision-based 

systems [23] [56] but their work was limited to certain aspects of vision-based systems (e.g. feature 

extraction and feature tracking). Controllability of test environment and repeatability of test results 

are integral requirements to any scientific experiment. Falling rain is uncontrollable in nature and 

it is costly to simulate in a dynamic setup which may include a moving vehicle and moving objects 

in the background. It is also prohibitively costly to create repeatable drive cycles under clear and 

rainy conditions. As a result, any image quality metrics for vision-based systems under rainy and 

de-rained conditions will fall under the no-reference class, as per Wang et al. [9] classification. 

For research purposes, however, this obstacle can be overcome by one of the following 

approaches: 

A. Capture images of videos for a static background under rainy and clear conditions. This 

approach is simple enough and allows the researcher to focus on studying rain effects in an 
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image or video. It is, however, not suitable for dynamic scenes, where either the camera, 

background elements or both are dynamically moving. 

B. Capture images or videos in a dynamic, but controlled environment. This allows for studying 

more broad scenarios than the static background version but it is more complex and expensive 

to set up the test environment. 

C. Add rain effect artificially to recorded videos or captured images. This technique provides 

maximum flexibility and control over rain variables such as speed, density, orientation, etc. 

The drawback is that added rain may not exactly be true rain in an image scene.  

In this section, we present a stereo-based rain simulation and rain removal framework that facilities 

the study of the effect of rain and de-raining on vision-based automotive applications. Our work 

[57] is built on previous work presented by S. Starik et al. [58] and P. Barnum et al. [56] for rain 

simulation and rain removal techniques.  

4.2 Rain Simulation Model 

4.2.1 Method 

We built our rain simulation model based on the following characteristics of falling rain in an 

image. 

i. Falling Raindrops appear as rain streaks, due to the falling speed of raindrops and the 

exposure time per image frame. As described in section 3.2, Garg and Nayar [59] 

explained that a falling raindrop can occlude multiple image pixels on its way down, 

during each shutter exposure period.  
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ii. Rain streak pixels are generally brighter than their surrounding background pixels. This 

feature was attributed by Garg and Nayar [59] to the fact that raindrops act as tiny lenses, 

collecting light beams from their surroundings.  

iii. The closer the rain streaks to the camera are, the longer they appear on the captured 

image. As shown in Figure 4-1, the mapping of any environment point P(𝑋, 𝑌) and the 

image pixel p(𝑥, 𝑦) that represents it is a function of the lens focal length 𝑓, and the 

distance from the image plane 𝑧.  

 
Figure 4-1: Ideally, the size of an object projection in an image is inversely proportional to the distance of 

that object from the camera image plane 

For a fixed focal length, the magnitude of the pixel’s 𝑥 and y is inversely proportional to 

the distance 𝑧, as given in the equations below 

 

 
𝑥 = 𝑓

𝑋

𝑧
  

𝑦 = 𝑓
𝑌

𝑧
  

(4.1) 

 

 

iv. The further the rain streaks from the camera are, the higher their density in the image 

becomes. This is also related to the projection of environment points onto image pixels. A 

far-away plane in the environment is projected into a smaller section of the image, as 
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compared to a closer plane. in other words, for the same real estate section in the image, 

more pixels are captured that represent further objects than closer ones from the image 

plane of the camera. 

Based on these characteristics, we developed our falling rain simulator as follows: 

A. Capture a set of images for scenes that we want to add falling rain into, using a stereo camera. 

We used the Zed" stereo-vision camera [60] that was mounted on the roof of a sedan car to 

capture videos of drives around the University of Michigan, Dearborn campus, at 20Hz rate 

and 720p resolution. We captured datasets for drive cycles during different weather conditions 

including clear and overcast. Figure 4-2 shows examples of some images we captured in these 

datasets.  

  
(a) Left Image Clear (b) Right Image Clear 

  
(c)  Left Image Overcast (d)  Right Image Overcast 

Figure 4-2: Left/ Right image pairs captured with the Zed camera under clear and overcast weather 

conditions. 
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B. Calculate disparity maps from each stereo image pair and estimate the distance of objects from 

the camera accordingly. Disparity refers to the difference in the matching pixel locations, 

present in the left and right images of the stereo image pair. This process involves the 

following steps, 

i.  Find the matching pixels in the left and right images. Any matching algorithm can be used 

in this step. In MATLAB, the disparity function provides a choice between block-matching 

and semi-global block matching. In our implementation, we used the semi-global block 

matching since, as shown in figure 4-3, gave a smoother and more continuous disparity 

display, compared to the block matching one.  

 

 
Figure 4-3: Semi-Global matching generates smoother, continuous disparity maps, as compared to the 

Block matching technique. 

ii. Select a reference image (e.g., right image) and then rectify the other image, such that the 

corresponding pixels are located on the same rows of the reference image. 

iii. Calculate the disparity 𝐷 according to the equation 

 𝐷 = 𝑥 − 𝑥′ =
𝐵𝑓

𝑍
  (4.2) 

where 𝑥 and 𝑥′ are the distances of the matched pixels in the left and right image from the 

epipolar plane, and B is the distance (Baseline) between the center of the left and right 
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imaging sensor. As shown in Figure 4-4, the epipolar plane is the plane connecting the two 

imaging sensor centers to scene point X. 

 
Figure 4-4: Disparity is calculated as the difference between distances of the matching pixels in the left 

and right images from the epipoler plane. The epipoler plane is the plane connecting the left and right 

image origins (O, O’) and scene point X. 

iv. Estimate the distance of image objects from the camera, based on their disparity values. 

Pixels of close objects have higher disparity values than pixels of further objects. For our 

application, we used relative distance from the camera which has an inverse relation to the 

disparity score. 

v. Matching algorithms look for interesting features in the images, to match pixels in one 

image to those in the other. Some sections of the image, however, do not have sufficient 

features for matching, due to lack of gradient changes in the image characteristics (e.g., 

brightness), that translate to features of interest. Examples of these feature-poor segments 

may include the blue sky and the gray, unmarked road. 

If the pixels cannot be matched, the disparity cannot be calculated. To rectify this issue, we 

employed a simple technique that proved effective in filling the missing disparity gaps. We 

assumed that any areas with missing disparities above a certain level (less than a y-axis 
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value threshold) in the image plane, were likely to belong to the sky segment, and we 

assigned to it the lowest disparity value (very far means very low disparity). For segments 

below a certain level in the image that were missing disparity scores, we assumed they 

belonged to the road segment, and we gave them a higher disparity value.  

C. Calculate disparity maps from each stereo image pair and estimate the distance of objects from 

the camera. 

Objects close to the camera have larger disparity values than objects farther from the cameras. This 

is because for a light source far from the camera, the light rays are almost parallel to both the left 

and right camera in the stereo camera system. Light rays emitted from closer objects arrive at the 

two cameras at different angles, thus are perceived by different areas of the vision sensors in each 

camera. Mathematically, from equation 4.2,  

 lim
𝑧→∞

𝐷 = lim
𝑧→∞

𝐵𝑓

𝑍
 =0 (4.3) 

Based on this, depth information can roughly be estimated from the disparity map of the image 

frame. Figure 4-5 shows an example of left and right scene images, along with the calculated 

disparity map for them using MATLAB disparity function. 
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(a) Left Image (b) Right Image 

 
 (c) Disparity Map  

Figure 4-5: The Disparity map (c) is generated for the left (a) and right (b) image pair 

D. Generate random rain streak masks that have the same dimensions as that of the scene images.  

The model can be configured to generate any number of masks from 2 to16 masks, each 

representing rain streaks at one distance level from the cameras. Each rain streak starts as a 

random pixel in a mask buffer. A series of erosion and dilation processes are applied to these 

random images to generate rain streaks. We varied the length of rain streaks and their density 

as a function of the relative distance represented by each mask. One rain streak mask is 

generated at the end of this step, by combining the different masks. Figure 4-6 shows a scene 

image (left camera), the generated disparity map, and rain streak masks at two levels.   
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(a) Scene Image (left) (b) Disparity Map 

  

(c) Mask level 2 (far) (d) Mask level 8 (near) 

Figure 4-6: Based on the disparity map (b) generated for the scene image pair in (a), rain streak masks are 

randomly generated. Masks representing nearby planes show longer and less dense streaks (d), compared 

to shorted and more dense streaks for farther planes (c)  

E. Add rain masks to the image and apply a local and global blurring effect. In this step, we 

split the RGB color image into its three image channels (Red, Green, and Blue), then we add 

the rain mask to each image channel individually. Rain streak brightness is balanced using 

its surrounding pixels (background). As described earlier, rain streaks tend to be slightly 

brighter than their background. The blurring effect is then applied to the rain streaks, to 

account for the distortion caused by the camera lens, as described earlier. The three image 

channels are finally combined to create one rained image. 
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F. For images taken under clear weather conditions, we add an overcast effect by reducing the 

brightness level of the image pixels. This step is not required if the original images were 

taken under overcast weather conditions. 

G. Use the disparity map data to shift the rain streaks generated for the reference image (e.g., 

left) to the other image. This step is introduced to reduce the time needed for generating 

masks for left and right images individually. It also guarantees that the rain streaks for the 

left and right images are matched, and accurately shifted, per the generated disparity map of 

the clear image pair. Steps E and, optionally F, is then applied to account for photometric 

characteristics of the rain streaks and rained images. This step (G) is not required if the 

desired output is a mono rained image rather than stereo image pair. Figure 4-7 shows one 

image pair before and after rain streaks are added.  

 

 

 

 

 

 

 

 



 

52 

 

  
(a) Clear image (left) (b) Clear image (right) 

  
(c) Rained image (left) (d) Rained image (right) 

Figure 4-7: The falling rain simulator generates rained images (c), (d) from clear images (a), (b). The rain 

streaks in the left and right rained images are matched according to the disparity map generated for the 

original clear images. 

4.2.2 Experiments and Results 

We implemented the falling rain streaks simulator in MATLAB 2018b. for model parameters 

fine-tuning, we experimented with the following aspects 

i. The number of masks. We tested generating a different number of masks, each 

representing one disparity (inverse depth) level. For our setup, we found that 6 to 8 masks 

provided a good balance between execution time and sufficiently capturing the 

distribution of rain streaks in an image, as perceived by a human observer.  

ii. Smoothing filter weights. For seamless integration of rain streaks into the original image, 

the brightness of the rain streak must be adjusted to match, but slightly exceed, those of 

surrounding pixels. We experimented with averaging the brightness of 8-neighboring and 
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4-neighboring pixels to the rained image to use it as initial brightness for the streak pixel 

and found little difference in most cases, so we used the simpler 4-neighboring average. 

We then adjusted the brightness of the rain streak pixel to be lighter than its surroundings.  

iii. Blurring filter weights. Blurring effect is added on local levels around raindrops and also 

globally to the overall image. We experimented with different filters to implement the 

desk of confusion idea and found out that a Gaussian filter with sigma = 0.8 was best for 

local blurring. For global blurring, a Gaussian filter with sigma = 0.3 provided the best 

visual results.  

iv. We experimented with two methods for applying the overcast effect. The first involves 

bringing the brightness levels closer to the mean value at each color channel, effectively 

reducing the color content of the image. The other is a simple reduction of brightness by 

a given factor (e.g., 0.8). The prior showed slightly better results but we ended up using 

the latter for simplicity. 

We compared our generated rained images to those published as part of the KITTI Vision 

Benchmark Suits [61]. As shown in Figure 4-8, our model generated more visually 

convincing rain streaks as compared to the KITTI dataset. The original images for the KITTI 

dataset were captured under overcast conditions which made the overall rained image more 

realistic.  
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(a) Example rained image from our Simulator 

model 

(b) Example of a synthetically-generated rained 

image from KITTI Dataset 

Figure 4-8: Our generated rained image versus the KITTI one. The rain streaks in our image are closer to 

real rain streaks but the KITTI data set was captured under overcast conditions, which made their final 

images with generated rain visually convincing.  

4.3 Rain Detection and Removal Model 

4.3.1 Method 

We developed our rain detection and removal model based on the following rain streak 

characteristics  

i. Rain streaks can be represented by an elliptical shape with a length-to-breadth aspect ratio 

(AR) that is bounded by minimum and maximum values.  

ii. Rain Streaks roughly have the same orientation that is measured by the angle of the 

majority axes of the representing ellipse with the horizon. 

iii. Rain Streaks pixels are generally brighter than their surrounding background pixels 

iv. The brightness of pixels in a rain streak is generally constant from one frame to the other, 

provided the lack of background movements.  

Based on these assumptions, we developed our falling rain detection and removal as follows 

A. Identify pixels groups of pixels that are adjacent and are brighter than others in the image. 

This method is the same one that Garg and Nayar [59] used in their rain streak detection 



 

55 

 

model, where the difference between the brightness of a rain streak pixels(𝐼𝑛) at frame n and 

those in the frames before (𝐼𝑛−1) and after (𝐼𝑛+1) can be given as, 

 ∆𝐼 = 𝐼𝑛 − 𝐼𝑛−1 = 𝐼𝑛 − 𝐼𝑛+1 > 𝑐 (4.4) 

      where c is a predefined threshold. 

We used the “BlobAnalysis” object from the “vision” toolbox in MATLAB 2018B to identify 

these groups of pixels which are rain streaks candidates. The blob function returns information 

about these blobs, including their size, majority and minority axes, and orientation.  

1) Remove blobs that are too small to be considered raindrops. This step may incorrectly discard 

very small streaks but these usually do not degrade the quality of the image as much as bigger 

ones. 

2) Eliminate blobs with an aspect ratio that does not fall within the accepted range. 

3) Calculate a histogram for the remaining blob orientations and eliminate the outliers that show 

low occurrences in the histogram 

4) The remaining blobs are considered true rain streaks and are eliminated by substituting their 

pixel brightness by the average of the brightness of the same pixels in the previous and 

following frames. This is a simple, yet effective, technique for recovering image pixels 

occluded by rain streaks. The brightness of image pixels from consecutive frames is likely to 

remain the same or show little change. Averaging the brightness of pixels in the preceding 

and following frames to the rained frame is thus a reasonable approach. In addition, rain 

streaks are not likely to linger for more than one image frame so it is logical to assume that 

the pixels in the preceding and following frames are clear ones. Mathematically, the rain streak 

pixel substitution process can be given as, 
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 𝐼𝑛 =
𝐼𝑛−1 + 𝐼𝑛+1

2
 (4.5) 

 

Figure 4-9 shows the main stages of rain streak detection in our implementation. Potential rain 

streaks are extracted from rainy images, then aspect ratio and orientation constraints are applied to 

reject potential “fake” rain pixels.  

 

  
(a) Rained image (b) Falling rain streak candidates 

  
(c) Falling rain streak candidates after applying 

aspect ratio constraint 

(d) Falling rain streaks after applying the 

orientation constraint 
Figure 4-9:  Rain candidates are generated based on brightness levels only. Aspect ratio constraints and 

orientation constraints eliminate “fake” rain pixels. 

4.3.2 Experiments and Results 

To quantify the performance of the rain removal system, we used the PSNR and the SSIM metrics,  

 described in detail in sections 2.2.2 and 2.2.5., respectively.  
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Figure 4-10 shows images with light and medium intensity levels of simulated falling rain, after 

applying the de-raining algorithm.  Most of the rain in the original image was removed in both 

rained images. Very little distortion was introduced to the de-rained images, which is an indication 

that the detection part of the algorithm did not have a lot of false positives. In addition, the images 

were taken in at a slow-moving ego vehicle, meaning that was little variation in the image 

background, from one frame to the next. Figure 4-11 shows the SSIM score for a rained and de-

rained sequence of 100 images under low and medium rain intensity. We should point out the low 

and medium classifications of falling rain was done were subjectively selected through visual 

observation of rain streaks in the images. The average quality improvements from rained to de-

rained images, as given by the SSIM were 2.18% percent for medium-intensity rain, and 1.26% 

for the low-intensity rain dataset. Figure 4-12 shows the PSNR plots for the same 100 samples of 

rained and de-rained images. unlike the SSIM, the difference in PSNR between rained and de-

rained images, both measured against clear images is very small. This is due to the way PSNR is 

calculated as a pixel-based metric and thus it does not align well with human perception of the 

image quality.  
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(a) Rained Image with light Intensity falling rain  (d) Rained Image with medium Intensity falling 

rain  

  
(b) De-rained Image with light Intensity falling rain  (e) De-rained Image with medium Intensity falling 

rain 

  
(c) Original rain-free Image (f) Original rain-free Image 

Figure 4-10: Left: Rained, De-rained, and Rain-free Images with light Intensity falling rain (a, b, and c). 

Right: Rained, De-rained, and Rain-free Images with medium Intensity falling rain (d, e, and f). 
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(a) SSIM scores for the medium-intensity falling rain. 

 

(b) SSIM scores for the low-intensity falling rain. 

Figure 4-11: SSIM scores for rained and de-rained images against clear ones, in both low and medium-

intensity rain datasets, show that the quality de-rained image in most frames was better than the rained 

one, identified by a higher SSIM score.  
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(a) PSNR scores for the medium-intensity falling rain. 

 

(b) PSNR scores for the low-intensity falling rain. 

Figure 4-12: PSNR scores for rained and de-rained images against clear ones do not give a conclusive 

indication of image quality improvement due to removed rain streaks.   
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4.4 Conclusion 

We implemented a framework for simulating and removing rain that can be used to study adverse 

conditions on the performance of image-based systems. Simulated rain looked realistic both in 

terms of rain streak size and rain density. There is, however, no technique to quantitatively measure 

simulated rain vs. real rain. Using disparity maps provided a quick but crude estimation for image 

depth. This method fell short where disparity values could not be calculated reliably, which is 

usually, but not always, observed on segments of the image with small variations in intensity and 

texture. The De-raining system removed most of the visible rain in the images but added distortion. 

It was clear from test results that de-raining system parameters affect the quality of the de-rained 

image and the amount of rain removed. The system parameters need to be adjusted according to 

the density of rain in the image. Utilizing rain density information may help to improve de-raining 

system performance.    
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Chapter 5  

Effect of Adherent Rain on Vision-Based Object Detection Algorithms 

 

5.1 Introduction 

Adverse weather conditions degrade the quality of images used in vision-based advanced driver 

assistance systems (ADAS) and autonomous driving algorithms. Garg and Nayar [62] broadly 

classify adverse weather conditions into steady (fog, mist, and haze) or dynamic (rain, snow, and 

hail). Image degradation takes many forms, depending on the type of adverse condition causing 

it. Fog and haze, as examples of adverse weather conditions, cause loss of contrast and fidelity in 

captured images, due to light absorption and scattering in the turbid medium of particles and 

water droplets in the atmosphere [63, 64].   

The degradation effect of haze and fog is due to the aggregate effect of a large number of droplets, 

despite their small individual droplet size (1 - 10 µm). Raindrops, on the other hand, are larger 

(0.1-10mm), and their individual effect on image pixels can be visible by the camera [59]. 

 Adherent raindrops onto a vehicle’s windshield occlude parts of the input image and blur 

background texture in regions covered by them. Rain also changes image intensity and disturbs 

the chromatic properties of color images. Most research work in the field of rain detection and 

removal focused on the image restoration aspects of the issue, without providing qualitative 

measures to the effect of input image degradation on the performance of image-based algorithms 

that use them as their main input.  
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In this section, we describe the research work we did to quantitatively evaluated the effect of 

raindrop distortion of input images, on some state-of-the-art deep-learning-based object detection 

algorithms. We compared each detector’s performance with distorted image sets to that using 

rain-free ones, and provided quantitative scores for performance, using commonly-used quality 

metrics.  

5.2 Method 

5.2.1 Data Set  

We used ELP Dual Lens Stereo Camera Module (ELP-960P2CAM-V90-VC) to capture MJPEG 

videos 

 (2560X960 resolution at 60 frames per second) of real drive cycles. The drive cycles were 

approximately 40 minutes each and included both highway and local driving segments. A total of 

23 videos were captured, 17 of them were during variant levels of rainfall intensities. Figure 5-1 

shows a mapped section of these drive cycles. 

To create the data sets of image pairs, we captured frames right before and right after that event 

as the rained (wet) and clear ground truth images, respectively. To reduce the effect of 

background variations on detection performance, we collected some datasets in a parking lot 

setup. The background in these datasets was quiz-static, except for some street light fluctuations 

and the occasional passing of faraway objects. Figure 5-2 and Figure 5-3 show samples of the 

moving and parked vehicle datasets, under clear and rained conditions. 
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Figure 5-1:Section of the mapped track of test drive cycles. 
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(a) Rain-free Image (b) Rained Image 

Figure 5-2: Clear and rained image set from the Moving Vehicle dataset 

  

(a) Rain-free Image (b) Rained Image 

Figure 5-3:Clear and rained image set from the Parked Vehicle dataset 

5.2.2 Detection Algorithms  

We selected three state-of-the-art object detectors to be our test subjects, in evaluating the effect 

of rain-degraded images on detection performance. The three object detectors we selected Were 

the Single Shot Detector (SSD) [65], Faster Region-based Convolutional Neural Network (R-

CNN) [17], and You Only Look Once Version 3 (YOLOv3) [66].  

For the SSD, we used the model from the Wolfram Neural Net Repository implementation [67], 

which was based on the SSD-VGG-300 architecture, and used a combination of the PASCAL 

VOC2007  

( http://host.robots.ox.ac.uk/pascal/VOC/voc2007/)  dataset and PASCAL VOC2012 

(http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html) dataset for training. 

http://host.robots.ox.ac.uk/pascal/VOC/voc2007/
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html
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For the Yolov3 model, we used the Wolfram Neural Net Repository implementation [68], which 

used the Open Image dataset (https://storage.googleapis.com/openimages/web/index.html)  for 

training.  

For the Faster R-CNN detector, we used the implementation by Chen et al. [69], which was 

based on ResNet50 feature encoder architecture, and trained with the COCO dataset 

(https://cocodataset.org/#home). 

5.2.3 Quality Metrics  

To evaluate performance, we used two types of metrics. To assess the image quality and provide 

a quantitative measure of the image distortion due to rain, we used the Structural Similarity 

Index Metric (SSIM).  

As described by Wang et al. [9], SSIM is an image quality assessment measure designed around 

the human visual system (HVS). It makes use of structural information change to provide an 

approximation to perceived image distortion. Unlike error-sensitivity approaches, such as Mean 

Squared Error (MSE) [70], that estimate image quality degradation using perceived errors, SSIM 

measures degradation as the level of variations in image structural information [9]. SSIM is a 

commonly-used metric that was used by many researchers to evaluate image quality (see for 

example, [11] [47] ). SSIM is calculated as a combination of luminance 𝑙, contrast 𝑐, and 

structure 𝑠 comparator functions of two images. The structure similarity index for images x and y 

can be given by [9], 

 𝑆𝑆𝐼𝑀(𝑥, 𝑦) = [𝑙(𝑥, 𝑦)]𝛼. [𝑐(𝑥, 𝑦)]𝛽 . [𝑠(𝑥, 𝑦)]𝛾    (5.1) 

where 𝛼, 𝛽, and  𝛾 are configuration parameters that control the contribution level of each 

comparator to the overall index (they usually are set to 1). For a more detailed description of the 

SSIM, please refer to section 2.2.5. 

https://storage.googleapis.com/openimages/web/index.html
https://cocodataset.org/#home
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To evaluate the performance of the detector as a function of detected objects in each frame, we 

used Precision and Recall metrics. 

Precision is classified as positive predictive values (PPV) and it represents the portion of 

positive results that are true positive [71]. It is given in terms of True Positive (TP) and False 

Positive (FP) predictions as,  

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
  

(5.2) 

In our experiments, TP represents the number of objects correctly detected in a test frame, and  

𝐹𝑃  is the number of objects incorrectly detected in the same test frame, both relative to objects 

detected in the ground truth frame. 

Precision is a commonly used metric for the assessment of vision-based algorithms (see, for 

example [30], [35]), but it is usually used in combination with the Recall metric. For a more 

detailed description of the Precision metric, please refer to section 2.3.1. 

Recall is also known as sensitivity and it represents the fraction of relevant instances that have 

been retrieved over the total amount of relevant instances [71]. It is given by, 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =   

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(5.3) 

 where 𝐹𝑁 (False Negative) represents the number of objects not detected in the test frame, as 

compared to the ground truth frame. For a more detailed description of the Precision metric, 

please refer to section 2.3.2. 

5.3 Experiments and Results 

5.3.1 Image Quality Test Results 

We created a simple MATLAB script to detect wiper wipe events and used the script to generate 

test samples.  Each test sample is made of one frame before (Wet) and one frame after (clear 
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ground truth) the wipe event. We used a simple template-matching approach in this wipe event 

model, where the wiper pixels were used to create different templates at different stages of the 

wipe event. The algorithm then looked for these templates in each frame of the image sequences 

and identified the starting and conclusion of the wipe event.  

To evaluate the quality of the SSIM as reliable measures of image quality degradation under the 

rain, we applied this measure on short data sets, each containing one wipe event and few frames 

before and after that event. The SSIM scores were used as an indicator of the degree of similarity 

between test images and ground truth images. Figure 5.4 shows the result of measuring SSIM on 

a moving vehicle series and figure 5.5 shows the result for the idle car series.  

The following observations can be made: 

i. As the wiping event proceeds, the SSIM score increases the closer we get closer to the 

ground truth image (rain-free) image frame. This rain-free image is around image frame 

202 in the moving vehicle sequence, and around frame 1428 for the idle vehicle series. 

ii. As rain starts to accumulate after the conclusion of the wipe event, the SSIM score starts 

dropping and continues to drop as more rain is accumulated on the windshield. 

iii. SSIM scores for moving vehicle series range from 50% for the rained image to 100% for 

clear one (ground truth). For the parking lot series, the difference was about 20%. The 

difference in “useful” ranges is attributed to the strong effect of changing background 

scenes in moving vs. idle vehicles.  

Based on the above, we concluded that the SSIM was a reliable metric for assessing the quality 

of the image and the level of degradation caused by the presence of raindrops. In addition, we 

focused our analysis on the data sets with a static background (parked vehicle series), to reduce 

the effect of changing background due to factors other than rain presence in the input images.  
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Figure 5-4:  SSIM measure for image quality using moving vehicle series, during the windshield wiping 

event 

 
Figure 5-5:  SSIM measure for image quality using Parked vehicle series, during the windshield wiping 

event 

5.3.2 Object Detection Test Results 

In this section, we present the results of object detection, using different DNN models: SSD [65], 

Faster R-CNN [72] , and YOLOv3 [66]. We used the parked vehicle datasets in all our 
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experiments. For all the DNN models used, the parameters Confidence Threshold (CT) and Non-

Maximum Suppression (NMS), were set to 0.5 and 0.4, respectively. Only objects that had a 

detection score greater than or at least equal to the CT were considered in the analysis. The NMS 

parameter reflects how close the predicted location and size of an object is to its actual location 

and size in the image. Object detectors use bounding boxes of different sizes and try to match the 

detected objects to one or more of these boxes. Ideally, there shall be one bounding box per 

detected object, but it is usually the case that an object can fit inside more than one box. The 

NMS is used as a metric to optimize the process and select the box that best fits a given object. 

As shown in Figure 5-6, the NMS value is compared to the Intersection over Union (IoU) score 

for each Bounding box, which results in selecting Box 1 with a higher IoU than the NMS value, 

over Box 2. 

 
 

(a) IoU(Box 1) = 0.293 (b) IoU(Box 2) = 0.238 

Figure 5-6: Calculating IoU scores for two different bounding boxes to the same detected object. If NMS 

= 0.25, then Box 1 would be used rather than Box 2 
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The results of the three object detectors are shown below.  

5.3.2.1 SSD Results 

We used the SSD model to detect objects in our captured datasets, for an idle and moving 

vehicle, and different adherent raindrop densities. Figure 5-7 shows an example of wet and clear 

images, with objects detected using SSD. We notice that under rainy conditions, the SSD 

detectors failed to detect many objects in the parked vehicle series and did not detect the truck in 

the moving vehicle series, compared to the clear image. Also, in the rained moving vehicle 

image, the SSD incorrectly detected (FN) a boat object in the scene, where lots of raindrop 

content was observed. Figure 5-8 shows a plot of recall versus SSIM for one parking lot series 

(a), and the number of detected objects in each image frame, using the SSD object detector. In 

Figure 5-8 (a), the SSD detector’s performance seems to improve as the SSIM increases but 

saturates around an SSIM score of about 0.82. Using SSIM as an indicator of image quality 

under different rain conditions, we can conclude that the SSD detector shows robustness to rain-

induced image degradation up to a certain level. Looking at this from a different perspective, if 

de-raining is used to clear input images before they are used by the SSD object detector, then it is 

sufficient to clean the images to meet the sensitivity level of the detector. Any cleaning beyond 

this level will not cause a noticeable improvement in the detector’s performance.  
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(a) Example of SSD output on a rain-free image from 

the Parked vehicle sequence 

(b) Example of SSD output on a rained image from the 

Parked vehicle sequence 

  
(c) Example of SSD output on a rain-free image from 

the moving vehicle sequence  

(d) Example of SSD output on a rained image from the 

moving vehicle sequence 

Figure 5-7: More objects are detected using SSD in the clear image (a and c) than in the rained image (b 

and d). Moreover, some misclassifications are found in the rained image (d). For detected objects, 

detection confidence in the rained images is lower than that in the clear images. 

Figure 5-8 (b) shows that in the clear dataset, the SSD steadily detected seven or eight objects 

per frame (out of 11 actual objects in the parking lot scene). For the rained dataset, however, the 

number of objects detected sharply fluctuated between zero and eight, depending on the 

degradation level (due to raindrop presence) in each frame.  
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(a) Recall vs. SSIM for SSD object detector, using parked vehicle dataset 

 
(b) Number of objects detected in each image frame by the SSD detector, using one parked 

vehicle dataset  

Figure 5-8: Applying SSD on parking lot series, we observe a clear trend of increasing Recall values with 

increased SSIM Score (a). In addition, the number of detected objects is almost constant from one frame 

to the other in the clear image dataset but fluctuates a lot in the rained image dataset (b). 

 

We calculated the correlation between image quality, given as an SSIM score, and the Recall, for 

different data sets. The results are shown in Table 5-1. For the parking lot series, results show a 

strong correlation between image quality and object detection performance. For moving car sets, 
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the relation is observable for short data series but is weak in the longer ones. This is because, in 

the moving vehicle case, the changing background plays a bigger role than the raindrop presence 

deviating a given image frame from the series reference frames. The longer the series is, the 

move variations in the background occur and the less similar a frame becomes to the reference 

frame. Since the SSD detector’s performance is still dependent on the input image quality, the 

correlation between the recall and the SSIM scores is low for moving vehicle series. 

 

 

 

 

Table 5-1: The correlation coefficient between image quality and detection performance for different data 

series, using the SSD object detector. 

Data Series ID Vehicle condition Correlation coefficient Number of Images 

16_52_17_Pro_L Idle 0.7560 84 

16_52_17_Pro_LR Idle 0.7600 168 

16_21_25_Pro Moving 0.5596 117 

16_19_56_Pro_R Moving 0.0580 310 

 

5.3.2.2 Faster R-CNN Results  

Using the Faster R-CNN detector, we repeated the test we had conducted using the SSD detector, 

using both parked and moving datasets. Figure 5-9 shows an example of wet and clear images, 

with objects detected using Faster R-CNN. We notice that under rainy conditions, the Faster R-

CNN detectors failed to detect many objects in both the parked and moving vehicle series. Figure 

5-10 shows a plot of recall versus SSIM for one parking lot series (a), and the number of 

detected objects in each image frame, using the Faster R-CNN object detector (b). As in the SSD 

case, we observe a trend of increasing recall as the image quality (given as SSIM score) 

increases, and that the recall scores saturate after some SSIM value (around .835), and any 

increase in SSIM values after that does not translate to noticeable recall score.  
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(a) Example of Faster R-CNN output on a rain-free 

image from the Parked vehicle sequence 

(b) Example of Faster R-CNN output on a rained 

image from the Parked vehicle sequence 

  
(c) Example of Faster R-CNN output on a rain-free 

image from the moving vehicle sequence  

(d) Example of Faster R-CNN output on a rained 

image from the moving vehicle sequence 

Figure 5-9: More objects are detected using Faster R-CNN in the clear image (a and c) than in the rained 

image (b and d). For detected objects, detection confidence in the rained images is lower than that in clear 

ones. 

We also observe that there are more fluctuations in the recall scope versus SSIM score than what 

is observed in the SSD case, using the same data sets. This might be an indication that the Faster 

R-CNN model we used is more susceptible to image quality degradations than the SSD model. 

As for the number of detected objects per frame, Figure 5-10 shows that the Farter R-CNN 

detector performs slightly better than the SSD one on the same datasets tested, with detected 

objects ranging from nine to twelve per frame. The detected objects in the rained dataset show 

lots of fluctuations from one frame to the other, based on the amount of rain (image degradation 

level) in each frame.    
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(a) Recall vs. SSIM for Farter R-CNN object detector, using parked vehicle dataset 

 
(b) Number of objects detected in each image frame by the Farter R-CNN detector, using one parked vehicle 

dataset  

Figure 5-10:  Applying Farter R-CNN on parking lot series, we observe a clear trend of increasing Recall 

values with increased SSIM Score (a). In addition, the number of detected objects is almost constant from 

one frame to the other in the clear image dataset but fluctuates a lot in the rained image dataset (b). 
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As before, we calculated the correlation between image quality, given as an SSIM score, and the 

Recall, for different data sets. The results are shown in Table 5-2.  

Table 5-2: The correlation coefficient between image quality and detection performance for different data 

series, using the Faster R-CNN object detector. 

Data Series ID Vehicle condition Correlation coefficient Number of Images 

16_52_17_Pro_L Idle 0.6857 84 

16_52_17_Pro_LR Idle 0.7157 168 

16_21_25_Pro Moving 0.6091 117 

16_19_56_Pro_R Moving 0.0495 310 

 

For the parking lot series, results show a strong correlation between image quality and object 

detection performance. For moving car sets, the relation is still observable for short data series 

but is weak in the longer one, similar to the relations we got using the SSD detector. In general, 

the Faster R-CNN detected more objects on average in both rained and clear datasets, as 

compared to the SSD and YOLOv3 models we used.  

5.3.2.3 YOLOv3 Results 

We repeated the same experiments as before using the YOLOv3 object detector. Just like in the 

case of SSD and Faster R-CNN, Figure 5-11 shows the YOLOv3 detecting a smaller number of 

images in the wet samples than the clear ones. The detection confidence levels for images in the 

wet images are lower than those in clear ones.  Figure 5-12 shows similar trends to those 

observed with the SSD and Faster R-CNN object detectors. 

Table 5-3 also shows that, as in the SSD and Faster R-CNN, the correlation between detection 

performance and image quality is strong for the parked vehicle datasets but weaker for moving 

vehicles using long image sequence as an input. 
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(a) Example of Faster YOLOv3 output on a rain-free 

image from the Parked vehicle sequence 

(b) Example of Faster YOLOv3 output on a rained 

image from the Parked vehicle sequence 

  
(c) Example of YOLOv3 output on a rain-free image 

from the moving vehicle sequence  

(d) Example of Faster YOLOv3output on a rained 

image from the moving vehicle sequence 

Figure 5-11:  More objects are detected using YOLOv3 in the clear image (a and c) than in the rained 

image (b and d). For detected objects, detection confidence in the rained images is lower than that in clear 

ones.
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(a) Recall vs. SSIM for YOLOv3 object detector, using parked vehicle dataset 

 
(b) Number of objects detected in each image frame by the YOLOv3 detector, using one parked vehicle dataset  

   Figure 5-12: Applying YOLOv3 on the parking lot series, we observe a clear trend of increasing Recall  

values with increased SSIM Score (a). In addition, the number of detected objects is almost constant  

from one frame to the other in the clear image.
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Table 5-3: The correlation coefficient between image quality and detection performance for 

different data series, using the YOLOv3 object detector. 

Data Series ID Vehicle condition Correlation coefficient Number of Images 

16_52_17_Pro_L Idle 0.7793 84 

16_52_17_Pro_LR Idle 0.8750 168 

16_21_25_Pro Moving 0.4087 117 

16_19_56_Pro_R Moving 0.0099 310 

 

5.4 Analysis and Discussion 

As shown in the previous section, there is a strong relation between image quality, presented in 

the form of SSIM value, and the performance of object detectors. For the parked vehicle series, 

results show a rather strong correlation between image quality and object detection performance. 

For moving car sets, the relation is observable for short data series but is very weak when 

considering long series. As discussed earlier, variations in objects content in wet and clear 

images negatively affect both image quality (similarity) calculations and object detection 

performance. The longer the series is, the less reliable the correlation coefficient gets as a means 

of establishing a relationship.  In terms of object detectors, we observed that, in general, more 

objects were detected by YOLOv3 and Faster R-CNN than with SSD. This can be partially 

attributed to the larger class of objects these two detectors are trained to detect (COCO labels), as 

compared to SSD (PASCAL VOC labels). One more thing to consider is that since we are using 

the three object detectors as “test instruments” to study the relation between raindrop-degraded 

input images and the performance of vision-based systems, any deficiency in the design of the 

test instrument is in effect a latent variable. Each of the detector models we used seemed, to 

suffer some inconsistencies in the detection results. In some data series, for example, the number 

of objects detected in two consecutive frames was noticeably different, even though the scene 
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setup, raindrops, and background objects, did not change much between the two frames. In other 

cases, a detector would identify an object in the rained images but fail to detect the same object 

in the matching clear image frame. We predict that this latent variable has an effect on the 

correlation measure but there is no easy way to measure that effect.  No clear pattern or bias was 

observed for this latent variable representing imperfections in the detection accuracy. To reduce 

the effect of this latent variable we calculated the correlation scores based on a large size of 

image samples.  

5.5 Conclusion 

We studied the effect of image degradation due to the presence of adherent raindrops on the 

performance of a state-of-the-art object detection algorithm.  We used SSIM and Recall metrics to 

assess the quality of rained images relative to the clear ones for the same image scenes.  In the 

absence of moving objects in the background of the image sequence datasets, both metrics showed 

a strong correlation between the image quality and the presence of adherent raindrops. We then 

used the clear and rained image datasets as inputs to the object detention models and recorded the 

number of detected objects per frame and the detection confidence for each object. We also 

calculated the Recall score and used it as an indicator of the object detector performance. We then 

analyzed the relationship between image quality (SSIM and Recall) and the detector performance 

(Recall, number of objects, and detection confidence level). A strong correlation score was 

calculated between the image quality and detector performance for all the object detectors we used 

in our experiments. One interesting observation was that all the object detector models we tested 

had a level of tolerance to the image degradation due to rain. This level was different from one 

detector to the other. The difference is likely due to the design of the individual detectors, as well 

as the implementation of the designs that we used in our work. If a de-raining stage was used 
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before the object detection system, it is likely, based on this observation, that the detectors would 

yield satisfactory results (for the target system), even with less-than-perfect de-raining results. As 

a result, smaller models and less training time for the de-raining models could be used, without 

sacrificing the performance of the target vision-based system, being the object detectors in our 

case.
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Chapter 6  

Dynamic Adherent Raindrop Simulator for Automotive Vision Systems   

6.1 Introduction 

Most vision-based systems developed for automotive applications assume optimal visibility 

conditions. Deviations from these optimal conditions usually result in performance degradations 

or complete failure of vision-based systems. Reduced lighting level, for example, causes 

performance degradations in intensity-based vision algorithms, and may cause a total system 

failure in color-based algorithms that are usually more susceptible to illumination level variations. 

Raindrops that adhere to the vehicle windshield blocks certain zones of the image and introduce 

lens effects that cause both spatial and dynamic distortions to the image.  

The automotive environment is unpredictable in general. Testing vision-based automotive 

systems, to verify their robustness against noise factors requires collecting a great deal of data, to 

cover all possible operational conditions.  Collecting representative rained image data is not 

optimal, since both raindrop sample properties and scene background are uncontrollable. It is not 

possible to control the size and intensity of real adherent raindrops. This means that many 

datasets of rained images need to be collected, analyzed, and classified based on adherent 

raindrop characteristics, before being used for robustness testing and system optimization.  Lack 

of background controllability means that the clear-image ground-truth cannot be established, 

since it is not possible to repeat the exact drive cycle with and without rain, due to variations in 

background elements in different drive cycles. De-raining of rainy images presents an option for 
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estimating ground-truth, rain-free, data. This, however, is not an optimal solution either. De-

raining algorithms cannot remove all existing raindrops in an image with high accuracy and 

reliability. They also add distortion, in terms of incorrectly de-raining clear sections of a rained 

image and adding spatial and intensity distortions to the de-rained image. In this section, we 

present a rain simulator system, that adds rain to clear images, collected from real drive cycles. 

The system is dynamic, meaning that it shows the progressive accumulation of adherent 

raindrops on a vehicle windshield. The amount of rain and rate of accumulation is controllable, 

to provide the most flexibility for generating test sets at different rain conditions. Moreover, this 

section expands on and follows some of the approaches used in our prior work [24] to assess the 

effects of adherent Rain on deep learning-based object detectors, and compares it with simulated 

dynamic adherent rain. 

6.2 Method 

6.2.1 Data Collection 

For data collection, we used a dual-lens stereo camera (ELP-960P2CAM-V90-VC) that was 

attached to the vehicle dashboard, approximately 10 cm away from the windshield. We captured 

around 15 hours of videos of real drive cycles, under clear and rainy conditions, at 60 

frames/second rate and 1280X960 resolution per image frame. We wrote an algorithm in 

MATLAB scripting language to detect the beginning and end of the wipe events. The frames 

previous to a wipe event were captured as rained image samples, and the few frames right after 

that event were considered to represent the clear reference images. Figure 6-1 shows an example 

of clear (a) and wet (b) images from the data sets.  
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6.2.2 Quality Metrics 

We used two similarity metrics to test the closeness of images with real vs. simulated rain, 

namely the Structural SIMilarity (SSIM) index, and the Earth Mover Distance (EMD). A 

description of the SSIM can be found in section 2.2.5. 

  We used the “ssim” function as implemented in MATLAB 2018-b. 

 

 

 

(a) Clear Image (b) Rained Image 

Figure 6-1: Example of captured image sets, clear(a) and wet (b). 

The EMD “is a measure of distance between two probability distributions over a region D” [15]. 

A description of the EMD can be found in section 2.2.6. 

We also developed a MATLAB script to calculate Precision and Recall measures for object 

detector performance with real and simulated rain input. A description of the Precision and 

Recall metrics can be found in sections 2.3.1 and 2.3.2, respectively.  

6.3 Adherent Rain Simulator 

We start with the following assumptions while designing our adherent raindrop simulator: 

1) Adherent raindrops can take many irregular shapes, but they can be approximated with an 

ellipse, as a starting point. 
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2) An Adherent raindrop acts as a lens, adding fish-eye or barrel distortion to the image 

3) Adherent raindrops in an image are blurry and lack clear borders that define their shapes. 

4) Adherent raindrops are semi-static, in the sense that there is a very little observed movement 

of a raindrop from one frame to the next. 

Figure 6-2 shows the main stages of our raindrop generation process, which are described as 

follows: 
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Figure 6-2:  Main stages of raindrop generation include image preprocessing, barrel (fisheye) 

transformation, raindrop image processing, brightness adjustment, and blurring and edge smoothing. 
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6.3.1 Select Raindrop Shape, Size, and Position 

As shown in Figure 6-3, adherent raindrops can come in different shapes and sizes, and align in 

any possible orientation. We start with an ellipse to approximate the shape of the adherent 

raindrop (Figure 6-4).  Subsequent steps distort this ideal elliptical shape, adding more realism to 

the simulated raindrop shape.  

The size, orientation, and position of raindrops in each frame are arbitrarily selected from a 

calibratable raindrop characteristics table. Table 6-1 shows the raindrop calibration parameters, 

with some example ranges. 

 

Figure 6-3: Adherent raindrops can come in different shapes, sizes, and orientations. Photo by Good 

Stock Photos.  

 



 

89 

 

  

(a) Initial clear image (b) Simulated Raindrop position 

Figure 6-4: Starting with a clear image frame (a), the simulator generates arbitrary values for simulated 

raindrop location, size, and orientation (b). 

 

Table 6-1: Calibration parameters for generating simulated raindrops for each image frame 

Parameter Description 

DropsPerFrame Number of raindrops added to a single frame [1-3] 

DropPosition Position of a raindrop (default is the whole image area) 

DropRotation The orientation of a raindrop [80° - 150°] 

DropSize 

Size of a raindrop defined in terms of major and minor axes of an ellipse in pixels  

[10-35 x 3-10] 

6.3.2 Applying Lens Distortion 

Adherent raindrops on a windshield cause a lens distortion, similar to the fisheye or barrel effect. 

This distortion can be represented as a nonlinear spatial translation of image points into the 

raindrop pixels. This translational transformation can be approximated by [73], 

 𝑃𝑛 = 𝑃𝑜 + 𝐷𝐹 ∗ 𝑃𝑜
3  (6.1) 

where 𝑷𝒏 is the distorted pixel in the raindrop, 𝑷𝒐 is the original (environment) pixel that is 

influenced by the raindrop distortion, and 𝑫𝑭 is the distortion factor. We use the MATLAB 

function “geometricTransform2d” to represent this lens distortion effect of a raindrop. Figure 6-5 

(a) shows the distorted region after applying the lens effect. 
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6.3.3 Blurring, Resizing, Rotating 

Since the vehicle camera used in vision-based applications is usually focused on the 

environment, any close images, raindrops included, would look blurry [74, 30].  

  
(a) Raindrop region showing barrel distortion (b)  Blurred, resized, and rotated raindrop. 

Figure 6-5: Applying translational transformation on an image produces the barrel effect (a). The 

distorted region is blurred, resized, and rotated to match desired raindrop characteristics (b). 

We used the MATLAB function “imfilter” to add the blurring effect to our simulated raindrops. 

For focus-blurring, we selected the correlation option and set the blur window size to a proper 

value. For motion-blurring, we used the “fspecial” function to create a special filer type, with the 

‘motion’ option, and the X and Y motion-blurring levels set appropriately. This motion type is 

then used by the imfilter function to add a motion-blurring effect. The parameters for focus and 

motion blurring were determined experimentally. We then resize and rotate the raindrop image, 

to approximately match the encapsulating ellipse we have started with. Figure 6-5 (b) shows the 

raindrop region, after blurring and applying the resize and rotation operations. 



 

91 

 

6.3.4 Adding Raindrop to Image 

Adherent raindrops tend to be slightly brighter than their surrounding background, since they 

collect light from all areas of the image, due to the lens effect. As stated earlier, raindrops lack 

strong boundaries that separate them from their background and give them specific shapes. We 

use intensity adjustment and border dilation and filtering to allow for seamless addition of 

generated raindrops to the original (clear) image. Figure 6-6 shows samples of generated 

raindrops compared to real raindrops in a wet image. 

6.3.5 Capturing Adherent Raindrop Dynamics 

Raindrops remain adhered to the windshield surface so long as the forces exerted surface tension 

and gravitational pull are balanced. You et al. [74] found that the observed raindrop speed was 

around 0.01 pixel/s, as seen by a camera mounted on a vehicle moving at a speed of 30 km/h. 

They also observed that the motion seen inside a raindrop was 20 to 30 times slower than that 

seen in other areas of the image. In our raindrop simulator, the raindrop dynamic behavior is 

implemented as follows: 

1) No movement is applied to raindrops from one frame to the next, a reasonable approximation 

to the quasi-static movement observed by You et al. [74] .  

2) New Raindrops are added arbitrarily to the raindrops generated on previous image frames. 
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(a) Simulated (b) Real 

Figure 6-6: Generated raindrops are added to a clear image (top) that matches real raindrops of the same 

scene, captured under rainy conditions (bottom). Each raindrop pair (real, generated) is encapsulated with 

an ellipse of the same color. Real and generated raindrops are visually very similar, as perceived by a 

human observer. 

3) If a new raindrop is generated that intersects with an existing one, the distorted area is 

generated as a simple addition of the two raindrops. This method allows for approximating 

complex raindrop shapes as a combination of elliptical shapes. 

4) For simplicity, the process of refactoring large raindrops to smaller droplets (see Stuppacher 

and Supan [32])  is not implemented. This simplification holds reasonably well under light-

to-moderate raindrop intensity since the size of raindrops does not grow fast, due to the low 

probability of arbitrary raindrops intersecting over a short period.  

5) Raindrops’ mask is refreshed (all raindrops regenerated) every 20 to 30 frames 

(programmable), to account for the dynamic changes of background scene elements and, at 

the same time, making use of You et al. [74] observation about the slow change of raindrop 

pixels compared to non-raindrop areas.    
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6.4 Results and Analysis 

To validate the quality of our generated raindrops against real ones, we started with a 

clear/rained image set of the same scene. We individually picked raindrops from the rained 

image and measured their positions, sizes, and orientations. We then used our simulator to 

generate raindrops with the same characteristics as the real ones. We used SSIM and EMD 

metrics to measure the level of similarity of our generated raindrops to their real counterparts. 

We took each rain raindrop image and compared it to the corresponding simulated raindrop, 

which was generated by using the same orientation, size, and position of the real raindrop image. 

Figure 6-7 shows the similarity measure histogram between real and simulated raindrops, as 

calculated using EMD and SSIM metrics. Figure 6-8 shows that the similarity level between a 

real rained image and an image with generated raindrops increases with the addition of extra 

simulated raindrops. 
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Figure 6-7: Similarity between individual Real and Simulated raindrops is measured using EMD (top) and 

SSIM (bottom) metrics and the histograms of scores calculated for each metric. The figure shows a strong 

similarity between the real and generated raindrops 
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Figure 6-8:  Using EMD (a) and SSIM (b) as similarity measures of real rained image and clear image 

with simulated rain added shows a clear trend towards improving similarity, with the addition of 

simulated raindrops. Lower EMD scores and higher SSIM scores both mean increased similarity levels 

between compared images. 

In the second level of testing, we generated rained images by adding generated raindrops to clear 

images. Real and simulated rain image frames are then selected based on the degradation level of 

each image frame as compared to the clear image frame of the same scene. SSIM and EMD 

metrics were used as indicators of image degradation, in the sense that a worse similarity score 

of these metrics was taken as a direct indication of increased image degradation caused by 

raindrops.  Only “parking-lot” data sets were used in this series of tests, to eliminate any 

degradation from the movement of the test vehicle, relative to other objects in the scene. The 

matched real and simulated rained images are then used as inputs to three deep learning-based 

object detectors, namely Single Shot Detector (SSD), You Only Look Once version 3 

(YOLOv3), and Faster Region-based Convolutional Neural Network (RCNN). Detected objects 

are evaluated and matched, and detection performance is evaluated in two ways: 

6.4.1 Detection Confidence Level Versus Image Degradation Level 

The confidence level that is generated by the object detectors and assigned to each detected 

object (0-100%), is inspected against image degradation (dissimilarity to the clear image), over 

  

(a) EMD vs generated raindrops (b) SSID vs generated raindrops 
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all dataset frames. This process is repeated for both real and simulated rained images. Figure 6-9 

shows matched image frame pair of real and simulated rain, with objects detected in each image 

with different confidence levels. Figure 6-10 shows plots of confidence levels of one object 

(Object #2) in the image scene, against SSIM and EMD, used as measures of distortion. There is 

a clear trend of increased confidence level with decreased degradation (less rain) of rained 

images. This trend is observed in both real and simulated rained images. The error bars represent 

the mean (center of the bar) and standard deviation (length of the bar) of sample point segments, 

each segment containing sample points that have the same range of SSIM or EMD scores.  
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(a) Real rained image 

 
(b) Image with simulated rain 

Figure 6-9: Objects are detected in real (a) and simulated rained images (b), with different confidence 

levels (using YOLOv3). Bigger objects are detected with higher confidence levels than smaller ones. The 

detectors order the detected objects according to their detection confidence levels. 
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(a) Detection Confidence vs. rained-to-clear image similarity using 

SSIM metric 
(b) Detection Confidence vs. rained-to-clear image similarity 

using EMD metric 

Figure 6-10:  Detection Confidence level of Object #2 increases with decreased image degradation in both 

real and simulated rain images. The mean of sample detection confidence levels (center of error bars) has 

a strong correlation to image quality. 

Figure 6-11 shows a plot of another object (Object #10) detection confidence levels versus image 

degradation levels. The trend is still visible on both real and simulated rain images but not as 

strong as the first object. We calculated the correlation between detection confidence and image 

degradation for several objects in the real and simulated datasets. The results are shown in Table 

6-2.  As expected, object 2 showed a strong correlation between its detection score and image 

quality. The correlation scores for real and simulated rained images for object 2 were also very 

comparable. Object 10, on the other hand, showed a weaker correlation score, which explains 

why the trend was observed in Figure 6-11. The table also shows that object 1 and object 15 

show no clear correlation between detection confidence and image degradation level. Further 

analysis showed that object 1 was the largest one (car) in the image scenes, and its detection 

confidence remained high under all levels of image degradation. Object 15 was the opposite. It 

was very small and its detection confidence was low at all levels of image degradation. In both 

cases, detection confidence levels were not strongly correlated to image degradation, caused 

mainly by adherent raindrops.  
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(a) Detection Confidence vs. rained-to-clear image similarity 

using SSIM metric 
(b) Detection Confidence vs. rained-to-clear image similarity 

using EMD metric 

Figure 6-11:  For small objects in the image (e.g., Object #10), the detection confidence level is low, even 

at low image degradation levels. The correlation between detection confidence and image quality is also 

weaker than larger and brighter objects in the same image (e.g., Object #2). 

 

Table 6-2: Correlation is calculated between detection confidence and image quality for real and 

simulated rained images. Comparable correlation scores for real and simulated rained image objects. 

Some objects show weak to no correlations. 

 Correlation between Confidence and 

EMD 

Correlation between Confidence and 

SSIM 

Object 

ID 

Real Simulated Real Simulated 

1 -0.3007 0.3422 0.2536 -0.4207 

2 -0.7440 -0.6641 0.7690 0.7390 

3 -0.6552 -0.2923 0.6453 0.6167 

4 -0.7019 -0.8262 0.6827 0.8427 

5 -0.3589 -0.7343 0.4529 0.7421 

6 -0.4145 -0.5397 0.4538 0.5034 

10 -0.2617 -0.3070 0.2141 0.3390 

15 0.3912 -0.0365 -0.2431 -0.3717 

 

Figure 12 shows histograms of correlations between detection confidence and image quality, for 

fifteen objects in the scenes of the images, calculated for both real and simulated rained image 

sets.  
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Figure 6-12:  Histograms of correlation of detection confidence and image quality for both real (left) and 

simulated (right) rained images show the strongest correlation levels under both real and simulated rain. 

Only a few objects had weak correlation, and around half the objects showed relatively strong correlation 

levels (above 0.5). 

 

6.4.2 Precision and Recall Metrics Versus Image Degradation Level 

The other means of assessing the performance of our raindrop simulator is using precision and 

recall metrics, instead of just confidence levels, against image degradation levels. Initially, we 

ran detection algorithms on clear image sets and used them as the ground truth for our precision 

and recall calculations.  A detection is considered true positive (TP) if the detected object in the 

rained image (real or simulated) matched that found in the clear image. A false negative (FN) is 

considered when an object in the clear image is not detected in the rained one. A false positive 

(FP) is when the classifications of the objects detected in clear and rained images do not match 

(e.g., car vs. boat). Figure 6-13 shows the plot of recall against image degradation, represented 

with EMD measure. As can be seen from Figure 6-13, there is a clear trend of decreased recall 

scores with the increase of image degradation, represented by the EMD similarity metric. The 

trend is observed in both real and simulated rained image sets. 
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Figure 6-13:  Calculating the recall score of detected objects over all captured frames of rained images, 

with different rain intensities, shows a trend of decreased recall score with increased image quality, 

represented by the EMD similarity score. As the degradation in image quality increases, objects are 

detected less often, and recall score correlation to image quality becomes weaker. 

Table 6-3 shows the correlation value of recall score versus image quality (EMD and SSIM) for 

both real and simulated rained sets.  

 

Table 6-3: Correlation is calculated between detection confidence and image quality for real and 

simulated rained images. Comparable correlation scores for real and simulated rained image objects. 

Some objects show weak to no correlations.  
Recall vs. EMD  Recall vs. SSIM 

Real Simulated Real Simulated 

-0.7645 -0.8097 0.7253 0.8356 

Precision scores calculated on the same datasets did not show a clear dependency on the 

degradation levels of rained images. Examining the detection results, we found that the dominant 

failure mode was false negative rather than false positive. This can be explained as follows. The 

object detectors were trained with full or partial images of common objects that can be found on 

the street. A raindrop may occlude sections of an object, but the remaining un-occluded section 

may still be sufficient features to correctly classify the object. Only when the occlusion is 
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significantly large enough, that the detector fails to detect (false negative) the raindrop-occluded 

object. It is much less likely that the occlusion would leave sections of the object, which would 

cause the detector to classify it incorrectly (false positive). Since precision is calculated as 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

, it is clear why the precision score came as one for most of the samples, and thus was weakly 

correlated to the degradation level. The recall, however, is calculated as 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 so it was more 

correlated to the degradation level and showed a significant decrease with the increase of the 

degradation level.  

6.4.3 Comparative Analysis 

To evaluate the performance of our raindrop simulator against the state-of-the-art ray-tracing-

based raindrop simulators, we used Carlin’s [75] model to generate rainy images from clear 

500x500 pixel images, that we selected from our original dataset. A total of 128 images with 

different rain patterns were used. Figure 6-14 shows an example of an image with generated 

raindrops using our model and Carlin’s model. Carlin’s model generates raindrops with similar 

shape and orientation, compared to raindrops generated from our model that vary in size, shape, 

and orientation. Roser et al. [33] modeled raindrops using Bezier curves and showed that the area 

of a raindrop as seen on a windshield is proportional to its volume and maximum thickness. For 

real raindrops, the bigger the raindrop volume is, the less transparent the raindrop becomes. 

Raindrop transparency level in Carlin’s model is also higher than that generated by our model, 

and higher than what is normal for the size of raindrops generated by his model. 

For quantitative comparison, we evaluated the performance of CNN-based object detectors, using 

rained images generated by both Carlin’s model and ours. We used two metrics in our evaluation, 

detection confidence level, and detection recall score. For the confidence level evaluation, we 
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matched objects in the rained images that were generated by both models to those detected in real 

rained images. We then calculated the differences in detection confidence for each object detected 

in real and simulated rain images. Table 6-4 shows a summary of some statistical metrics for the 

object detection confidence level, using real and simulated rain datasets The two models seem to 

produce similar results in terms of object detection confidence levels, as indicated by the mean 

and standard deviation metrics of the results. 

  

Figure 6-14:  Images with raindrops that were generated by the ray-tracing method (left) and our method 

(right). Our model generates raindrops with more varieties in size, shape, and orientation compared to the 

ray-tracing model. The transparency levels in our generated raindrops are closer to that of real drops and 

are generally lower than that of raindrops generated by the ray-tracing model. 

Table 6-4 shows a summary of some statistical metrics for the object detection confidence level, 

using real and simulated rain datasets The two models seem to produce similar results in terms of 

object detection confidence levels, as indicated by the mean and standard deviation metrics of the 

results. 
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Table 6-4: Mean and standard deviation of object detection confidence levels show statistical similarity of 

results under real and simulated rain datasets. 

 Statistical metrics of detection confidence 
results 

Datasets  Mean Standard Deviation 
Real rain dataset 0.8029 0.1702 

Our generated rain dataset 0.8013 0.1852 
Ray-tracing generated dataset 0.8108 0.1857 

 

For the Recall score metric, we matched the image objects detected in simulated rained images 

from the two models, to the ones detected in the clear image (reference) dataset. Recall score is 

calculated for each image frame and the results are compared to the recall score of detection with 

real rained images. Table 6-5 shows a summary of some statistical metrics for the object detection 

recall score, using real and simulated rain datasets. The object detection recall scores are closer for 

our model to those with real raindrops than the scores calculated for the ray-tracing model.    

Table 6-5: Mean and standard deviation of object detection recall scores show statistical similarity of 

results under real and simulated rain datasets. 

 Statistical metrics of detection Recall 
results 

Datasets  Mean Standard Deviation 
Real rain dataset 0.6484 0.1956 
Our generated rain dataset 0.7601 0.1742 
Ray-tracing generated dataset 0.8132 0.0864 

 

6.5 Conclusion 

Our proposed simulator generated a visually convincing adherent raindrop on a vehicle windshield. 

The model performs best when generating simple raindrops that can be approximated with an 

ellipse. For more complex raindrop shapes, the model can be programmed to generate several 

intersecting elliptical raindrops, each approximating one section of the complex raindrop shape. 

This technique was tested by trying to mimic real raindrops of complex shapes using our simulator. 

Results showed great improvement of raindrops similarity, compared to using a single ellipse 
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representation of complex shapes. The object detection tests we conducted using three CNN-based 

deep learning object detectors showed similar behavior using real or simulated rained datasets. 

This “behavior” can be described as follows: 

1) The correlation values between recall score and image quality were very close on all datasets 

tested and using both YOLOv3 and Faster-RCNN detectors  

2) The correlation values between detection confidence levels and image quality were also close 

on all datasets and the same detectors. 

3) Big objects showed Resilience to raindrop-induced image degradation, and that behavior was 

similar in both real and simulated rained image datasets. Smaller objects in the image were 

more susceptible to the presence of raindrops and this susceptibility was similarly observed in 

both real and simulated rained datasets.  

EMD and SSIM were good metrics for evaluating degradation in image quality at different levels 

of raindrop content in an image. They, however, are not perfect. Special attention needed to be 

applied to limit the influence of dynamic background objects, whether being a distant vehicle, 

moving clouds, or even flickering street lights. We also observed that they do not always agree 

when representing image similarities, in a sense that increased SSIM score does not always mean 

a decrease in EMD score, for the same sets of images compared. This meant that these two metrics 

cannot be used interchangeably for individual image matching. For observing trends that extend 

over many samples, the metrics show similar behavior and they appropriately track the progression 

of image degradation, caused by increased raindrop presence.  

Comparison of rained images generated by the state-of-the-art ray-tracing-based model showed 

very close results, both in visual perception or the generated raindrops, and the usability of 

generated rained images in object detection system validation.   
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In terms of performance speed, we developed our raindrop simulator using MATLAB 2018b 

scripting language, with no specific optimizations. We ran it on a PC with an AMD FX-8350 

microprocessor, 16 GB of DDR3 RAM, a 500 GB SSD hard drive, and running Windows 10 

operating system. It took on average 600 ms to generate each raindrop, using the full (1280 x 650) 

image as an input. Figure 6-15 shows samples of our generated raindrop images, alongside the 

original, clear images, and real rained images with roughly the same level of rain-caused 

degradation, as our generated ones. 
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Figure 6-15:  Examples of Clear, Real, and randomly generated raindrop images from our dataset. rain 

intensity ranges from light (set 1) to relatively heavy (set 4). The generated raindrops are perceptually 

convincing to a human observer.
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Chapter 7  

Improving the Performance of Automotive Vision-based Applications Under Rainy 

Conditions 

7.1 Introduction 

Automotive systems including vision-based applications are highly regulated and are required to 

meet high performance and safety standards. This means that these systems must operate under 

all conditions, favorable or adverse. The quality of the system inputs has a direct impact on its 

performance, in the sense that noisy inputs usually result in degradation in system performance.   

Two approaches are usually implemented to reduce the effect of noisy inputs on system 

performance, denoising the inputs, or reducing system sensitivity to noise.  Filtering analog 

signals and debouncing digital ones are two examples of common input signal denoising 

techniques. Predictive modeling and sensor fusion are system design techniques that lead to 

reduced system sensitivity to noisy inputs. Rain is a type of adverse weather condition that 

degrades the quality of images and the performance of vision-based systems that consume them.  

In our research work [24], we showed that the performance of state-of-the-art object detectors 

(including YOLOv3, RCNN, and SSD) greatly degrades when applied to image sets with 

adherent raindrops content in them. Test results showed the drop in performance of the tested 

object detectors was as high as 77%, as measured by the total number of objects detected and the 

recall metric.  
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The majority of research work (see, for example, [28, 37, 45]) is focused on denoising the rain-

degraded input images to vision systems, by removing rain content from these Images.  

As we have shown in our survey paper on adherent raindrop removal techniques [25] , none of 

the reviewed de-raining algorithms could perfectly restore the rained images to resemble the 

clear ones. Classical de-raining techniques use some set of physical properties, such as raindrop 

shape, size, moving speed to create the raindrop detection model [33]. Other algorithms are 

based on the optical properties of the raindrop, including its reflective and refractive behavior 

[27], and its color and texture properties [35]. Spatio-temporal analyses are sometimes added to 

improve the detection quality of raindrops [40]. 

The improvements in deep-learning and convolution neural networks (CNN) [45, 53, 54] opened 

the door for a new set of de-raining techniques that, generally, achieved better performance 

levels compared with classical machine learning algorithms. 

CNN models, however, require large sets of data for training. For some de-raining algorithms, an 

accurate mask of raindrops is needed to train the CNN model. This requires a large set of 

matched clear and rained images to generate such a mask. Constructing such a dataset of paired 

images is not an easy task, due to the unpredictability of rain and the background objects, and 

due to the variations of the raindrop sizes, shapes, and orientations.  

7.2 Method 

We propose a different approach to improving vision-based system performance under rainy 

conditions. Rather than denoising (de-raining) the input images, we propose to reduce the 

system’s sensitivity to noisy inputs. This can be achieved by retraining models that are already 

trained with clear image sets, with matching sets of rained images. This approach eliminates the 

need for developing and training the de-raining network. Furthermore, retraining networks 
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designed for common automotive vision applications (e.g., traffic sign recognition, object 

detection, lane detection) is efficient and fast, since it employs transfer-learning, whereas 

training a de-raining network may need to be done from scratch. Table 7-1 shows some 

differences between the input denoising approach and the network retraining one. 

Table 7-1:  Differences between input denoising and network retraining approaches for improving vision 

system performance 

Performance boost approach De-raining of input images Retraining model with 

rained images Comparison points 

Training type Training from scratch  Transfer learning  

Training dataset size Large Relatively small  

Input type (Clear, Rained) pair dataset 

plus raindrop mask and/or 

structure or texture maps  

(Clear, Rained) pair dataset 

Objects of interest Natural raindrops with 

weak borders and variable 

shapes, sizes, and 

orientations 

Man-made objects with 

strong boundaries and 

uniform shapes (e.g., 

Vehicles, traffic signs, road 

marks) 

 

To test our hypothesis, we trained an object detector and semantic segmentation models a clear 

image set, then retrained it with generated raindrops dataset. A comparison of the detector’s 

performance with clear, rained, and de-rained images showed that the retraining approach 

showed better performance improvement than the de-raining approach.  
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7.3 Data Collection and Data Preprocessing 

We used different datasets for training and testing the object detection network and for training 

and testing the image semantic segmentation network. 

7.3.1 Object Detection Datasets 

  We used the 2d “Object Detection Evaluation” from the KITTI Vision Benchmark Suite [61] to 

train the baseline Yolo3 for detecting objects under rain-free conditions1. This dataset consists of 

training and testing datasets, but we have used the training dataset for both training and testing 

since it comes with object label text files. The dataset includes 7482 color images with common 

objects encountered in a drive cycle shown in the background. We modified the format of the 

label text files to be compatible with MathWorks’s deep-learning object label format.  The five 

object classes we chose for the baseline were 'Pedestrian', 'Truck', 'Car', 'Cyclist', and 'Van'. 

We collected our own dataset of paired clear and rained images, captured under different driving 

conditions and showing common road objects in the background. We used the (ELP-

960P2CAM-V90-VC) dual-lens stereo camera that was positioned approximately 10 cm away 

from the windshield. We used the wiping event as a trigger to capture rained and clear image 

pairs where the frame before the wipe event was captured as the rained image and the frame after 

it as the clear image. We selected 1162 image pairs to construct our dataset, based on the number 

of background images in the frames and the degree of similarity between clear and rained image 

pairs, looking for the highest values in both cases. We then used MALTLAB’s ‘Image 

Labeler’ app to label objects in the clear and rained image sets. We chose 'Pedestrian', 'Truck', 

 

 

1 KITTI Vision Benchmark Suite is one of the leading vision benchmark suites, that is constantly being updated to 

match the latest improvements in vision research. It incudes datasets to support research on stereo vision, scence-

flow, depth prediction and completion, odomerty, object detection, and other vision research domains. 
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'Car', and 'None' as the classes for the retrained Yolo3 network. The selection of different object 

classes from the baseline model was intentional since we wanted to mimic a real-life scenario 

where transfer learning is used to retrain a baseline network, using different training data and for 

a different desired output. We used the rained images from our dataset to test the performance of 

the retrained Yolo3 object detector.  

We applied a state-of-the-art de-raining algorithm that was developed by Quan et al. [46] [76] on 

the same rained dataset, to create a de-rained data set from our rained one, and used it for 

performance comparison analysis. Quan’s de-raining algorithm requires a set of ‘edge’ images 

that are generated from the rained image2. Figure 7-1 shows image samples from the different 

datasets we used in the object detection training and testing. There are other publically available 

implementations of other DNN-based algorithms, including the implementation of Qian et al. 

[11] [77], and Yasarla and Patel [78] [79].  

We chose Quan et al. [76]3 implementation since, first, it was an improvement over Qian’s 

algorithm for image de-raining, given that Qian’s algorithm [11] is becoming the new standard 

of adherent raindrop deraining. Quin et al. [77] also reported de-raining results that surpassed 

other DNN-based algorithms, including Eigen et al. [45] and Isola et al. [80]. Yasarl and Patel’s 

algorithm was developed for de-raining of falling rain streaks from images. As shown by Peng et 

al. [53], these rain streak removal algorithms do not yield satisfactory results compared to the 

 

 

2 We should mention that Quan’s algorithm was trained tested a publicly available dataset that was created by Qian 

et al. [89]. We did not use this dataset in our analysis, since most images did not include enough background objects 

that could be detected by the object detector. In addition, the dataset was created with synthesized rain, rather than 

real rain, by spraying waterdrops on a glass surface in front of the camera. 
3  To avoid any issue that may stem from inaccurate implementation the de-raining algorithm Proposed by Quan et 

al. [48], we used their implementation of that algorithm [88] with no modifications. 
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ones designed for adherent raindrop removal, even when they retrained those algorithms on the 

same adherent raindrop datasets used to train the adherent raindrop removal ones4. 

 

 

(a) KITTI Object Dataset (b) Our Dataset - Clear 

  

(c) Our Dataset - Rained (c) Our Dataset – De-rained 

Figure 7-1: Image samples from the different datasets we used in our research work. The KITTI dataset 

was captured under clear weather conditions, whereas our dataset was captured under rainy conditions. 

 

 

4 The falling rain streaks and adherent raindrops are two different problems in terms of type of degradation they 

cause to input images. The characteristics (features) of rain streaks and adherent raindrops which the DNN system 

uses for learning are also different. it is not surprising based on the above that retraining a rain streak removal DNN 

on adherent raindrop datasets does not yield satisfactory results.  
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7.3.2 Image Segmentation Datasets 

For the image segmentation, we used the “Semantic and Instance Segmentation Evaluation” 

dataset from the KITTI Vision Benchmark Suite [61], to train the baseline image segmentation 

network. The dataset consists of 200 images of street scenes, taken under clear weather 

conditions. Pixel-level color and gray-scale segmented images and instance-level segmented 

images are also included in the dataset. We grouped the 35 segmentation labels that the KITTI 

dataset provided, into six labels, ‘Sky’, ‘Vehicle’, ‘Person’, ‘Background’, ‘Road’, and 

‘Unlabeled’.  We used the clear images and the color pixel-level segmented images to train the 

segmentation network. We added generated rain at different levels to the original dataset, to 

create three synthetic raindrop datasets, Low_Rain, Medium_Rain, and Heavy_Rain. We 

Structural Similarity Index (SSIM) as an indicator of the amount of rain-induced image 

degradation. We used a raindrop simulator model that we had previously developed [81] to 

added generated raindrops to clear images, to create the Low_Rain, Medium_Rain, and Heavy 

_Rain datasets. An overcast effect was added to simulate real rain lighting conditions since the 

original KITTI dataset was captured under clear conditions. To do this, the color image is first 

split into its Red, Green, and Blue channels. The mean intensity for each color channel is then 

calculated, and the pixel intensities are remapped into a tighter intensity range around the mean 

intensity. This effectively reduces the color content for each channel, a natural consequence of 

reduced illumination under overcast conditions. In addition, the recombined color image from 

the three-channel images has a reduced overall intensity, as a result of reduced intensities in each 

of its color channels. The final overcast image looks darker and less color-rich than the rain-free 

one.  We used the first two generated rain sets to retrain the segmentation network and the last 



 

115 

 

one (Heavy_Rain) for testing. Figure 7-2 shows examples of the image datasets we used to train 

and test the segmentation network.  

  

(a) KITTI clear image DataSet (b) Color pixel-level segmented image 

  

(c) Training image dataset with low-medium 

raindrops content 

(d) Testing image dataset, with High raindrops 

content 

Figure 7-2: Datasets used for training and testing the image segmentation network. KITTI Semantic and 

Instance Segmentation Evaluation dataset, (a) and (b) is used to train the baseline segmentation network. 

We added an overcast effect and generated rain to the image sets in (c) and (d) to train and test the 

segmentation network under rainy conditions. 

Table 7-2 shows a summary of the datasets we used in the object detection and image 

segmentation networks.  
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Table 7-2:  A list of the datasets used in our research for training and testing the object detection and 

segmentation networks 

Set ID Usage 

KITTI_Objects Train the baseline detector using the KITTI dataset.  

Clear_Objects Retrain the baseline detector using our rain-free dataset 

GeneratedRain_Objects Retrain the baseline detector using our generated-rain dataset 

RealRain_Objects 

Test the baseline and retrained detector under real-rain 

conditions. 

Derained_Objects Test the baseline detector using de-rained. 

KITTI_Segmentation Train the baseline segmentation model using the KITTI dataset. 

GeneratedRain_Segmentation_Train 

Retrain the baseline segmentation model using generated-rain 

dataset  

GeneratedRain_Segmentation_Test Test the retrain segmentation model using generated-rain dataset 

Derained_Segmentation Test the baseline segmentation model using de-rained images 

7.4 Models Training Process and Testing 

In this section, we will describe the training process and test cases we conducted for the object 

detection and semantic image segmentation models. 

7.4.1 The Object Detection Model 

7.4.1.1 Baseline Model Setup and Training 

We used MathWorks’s Yolov3 object detector example [82] as our starting model. The detector 

was based on SqueezeNet [83] Deep Neural Network (DNN). This SqueezeNet, as the name 

implies, has a relatively small architecture but it produces accurate results comparable to much 

larger DNNs, such as AlexNet [84]. This allowed us to conduct all our training and testing on a 

desktop with relatively outdated specifications (AMD FX-8350 with 16 GB of DDR3 RAM and 
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an Nvidia 1050Ti GPU). Figure 7-3 shows the training stages and datasets used in each stage for 

the YOLOv3 object detector model.  

 
Figure 7-3: A Flow diagram showing the different YOLOv3 model training stages and the training dataset 

used in each stage 

The training process is described below. 

7.4.1.2 Train the Automotive-specific Object Detector 

We trained the starting model using the “KITTI_Objects” dataset, split as 70% training and 30% 

testing. The maximum number of epochs was set to 200, with a minimum batch size of 8 and a 

maximum learning rate of 0.001. We used image augmentation to increase input dataset size, 

without actually adding more images to the training dataset. We used six anchors to improve 

image object fitting. Both data augmentation and anchor box calculation functions are part of 

MathWorks’s YOLOv3 model. Table 7-3 shows the statistical results of testing the resultant 

object detector using the remaining 30% of the “KITTI_Objects” dataset.  Some metrics 

commonly used for detection performance assessment are the Average Precision (AP) and Log-

Average Miss Rate (LAMR). In MATLAB,  the function “evaluateDetectionPrecision” can be 

used to calculate the AP score, which was based on the PASCAL VOC2011 [20] definition of 

AP. To calculate the LAMR score, MATLAB provides the function 

“evaluateDetectionMissRate” which is implemented based on Dollar et al. pedestrian detection 
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evaluation paper [85]. Figure 7-4 shows an example image from the test dataset with detected 

objects annotated.  

Table 7-3: The average precision and log-average miss rate scores, as calculated for the five object classes 

in the automotive-domain object detector. Larger average precision scores and smaller log-average miss 

rate scores are desirable for better detection performance. 

Object Class Average Precision Log-Average Miss Rate 

Pedestrian 0.59 0.45 

Truck 0.90 0.08 

Car 0.81 0.37 

Cyclist 0.64 0.34 

Van 0.81 0.19 

    

 
Figure 7-4: An example of the output of the Yolov3 detector that was trained in stage 1. The objects are 

identified with a bounding box, with a class tag and detection confidence level shown for each object. 

7.4.1.3 Train the Rain-free Object Detector 

In this stage, we used the “RealRain_Objects” dataset to retrain the Yolov3 network from the 

previous stage, to detect three different object classes, ‘Pedestrian’, ‘Truck’ and ‘Car’. Through 

the power of transfer learning, we managed to retrain the object detector with very little change 

to the actual DNN structure. Since the dataset size in this stage is smaller than the one used in the 

previous stage, we had to run the training process for 300 epochs but we kept all other training 

parameters the same. We then tested the retrained detector using the “RealRain_Objects” real 
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rainy image set, to evaluate the detection performance degradation due to the presence of 

raindrops. We also tested the retrained object detector on the “Derained_Objects” dataset, to 

evaluate if there were any performance improvements using de-rained images versus rained 

ones. 

Table 7-4 shows a summary of the AP and LAMR performance metrics for the three object 

classes using rain-free, rained, and de-rained images. Figure 7-5 shows an example image of 

object detection at this stage. As expected, the detection performance of the YOLOv3 detector 

that was trained on a clear image degraded considerably with rained image set used as an input. 

This is indicated in both decreased AP scores and increased LAMR scores for all three object 

classes. In addition, it seems like the de-raining process degraded the detection performance even 

further than the performance under the original rained images.  

Table 7-4: The average precision and log-average miss rate scores, as calculated for the three object 

classes in the rain-free object detector. As shown in the table, there is a big degradation in detection 

performance when using rained images, and an even larger degradation when de-rained images are used. 

 Rain-free Rained De-rained 

Object 

Class 

Average 

Precision 

Log-Average 

Miss Rate 

Average 

Precision 

Log-Average 

Miss Rate 

Average 

Precision 

Log-Average 

Miss Rate 

Car 0.92 0.09 0.36 0.63 0.18 .81 

Truck 0.94 0.11 0.73 0.46 0.57 0.65 

Pedestrian 0.64 0.36 0 1 0 1 
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Figure 7-5: An example of the output of the Yolov3 detector that was trained in stage 2 using clear, 

rained, and de-rained datasets. The objects are identified with a bounding box, with a class tag and 

detection confidence level shown for each object. Not much rain content was removed by the de-raining 

algorithm and no detection performance improvement in the de-rained image compared to the rained one.  
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7.4.1.4 Train the Rained Object Detector 

For this stage, we used the “GeneratedRain_Objects” dataset to retrain the YOLOv3 object 

detector that we had trained in the previous stage. This dataset represents simulated rainy 

conditions, where generated raindrops are added to the clear images in the “RealRain_Objects” 

dataset. We then tested the retrained detector using the “RealRain_Objects” real rainy image set. 

Table 7-5 shows the AP and LAMR performance metrics for the three object classes under 

rained conditions. The detection performances for the ‘Car’ and ‘Truck’ classes were on-bar with 

those reported with the detector that was trained and tested with a Rain-free image dataset. In 

other words, retraining the rain-free object detector model with simulated rained images allowed 

it to overcome the raindrop-related image degradation, and perform at levels comparable to those 

under rain-free conditions. The detection performance for the Pedestrian class is still very low 

(AP0, LAMR1). This is because there are much fewer instances of Pedestrians in the dataset 

than cars and trucks. The AP metric is calculated as the area under the curve that represents the 

Precision-to-Recall relation. Similarly, the LAMR is calculated as the area under the curves that 

represent the mapping between Miss Rate (MR) and False Positive Per Image (FFPI) metrics. 

This type of calculation is useful since it represents the entire curve (Precision/ Recall or 

MR/FPPI) by a single reference [85]. It does seem, however, to penalize classes with low-

occurring instances in the form of very low AP and very high LAMR scores.  

 

 

 

 



 

122 

 

Table 7-5:  The average precision and log-average miss rate scores, as calculated for the three object 

classes in the rained object detector. As shown in the table, this retrained detector seems to perform as 

well as the rain-free detector that is trained and tested on rain-free images.  

Object Class Average Precision Log-Average Miss Rate 

Car 0.91 0.06 

Truck 0.95 0.08 

Pedestrian 0 1 

 

To verify that the retraining with simulated rain did not affect the performance of the object 

detector under clear rain conditions, we tested the rained detector with the original rain-free 

dataset, “Clear_Objects “. As shown in table 7-6, there is no change in performance between the 

rained detector and rain-free detector, both tested with rain-free images. 

Table 7-6:  The average precision and log-average miss rate scores, as calculated for the three object 

classes in the rained object detector. As shown in the table, this retrained detector seems to perform as 

well as the rain-free detector when tested with rain-free images. 

Object Class Average Precision Log-Average Miss Rate 

Car 0.92 0.09 

Truck 0.94 0.11 

Pedestrian 0.64 0.36 

 

7.4.2 The Image Segmentation Model 

7.4.2.1 Baseline Model Setup and Training 

We used MathWorks’s semantic segmentation example [86] as our starting model. The example 

describes the process to train Deeplab v3+ [87] which in the MATLAB example was based on a 

pre-trained Resnet-18 network [88]. Figure 7-6 shows the training process flow that we used to 

train the semantic segmentation model to segment rained images. To create a baseline 
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segmentation model for the automotive domain applications, we train the Deeplab v3+ with the 

“KITTI_Segmentation” dataset.  

 
Figure 7-6: The process for training the rained semantic segmentation model. Starting with a pre-trained 

DeepLapv3+ network, we train the model on a dataset that is more specific to automotive domain 

applications. We then retrain the segmentation model with simulated-rain images, to improve system 

robustness to rain-induced image degradation.  

We split the dataset as 75% training, 10% validation, and 15% testing datasets. We set the 

maximum epochs to 300 and the minimum batch size to 8. We set the initial learning rate to 

0.001 which is reduced after each concluded epoch. Data augmentation is used to increase the 

“effective” training dataset size without adding more images. As a common solution to 

mismatched representations of segmentation classes in the training dataset (i.e., some segments 

are much more present in the dataset than others), the training weights are adjusted to be 

inversely proportional to the frequency of occurrence of any given segmentation class. Both 

functionalities (data augmentation and training weight adjustment) are provided as functions in 

the MATLAB starting model. The output of this stage is the Baseline_Segmentation_DNN 

model which we tested using the test part of “KITTI_Segmentation”. We used the Intersection 

over Union (IoU), Accuracy, and MeanBFScore quality metrics to evaluate the quality of 

segmentation provided by the model. MathWorks provides a good explanation to IoU, Accuracy, 

and MeanBFScore quality metrics as follows [89] 
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Accuracy is the ratio of correctly classified pixels in each class to the total actual pixel in that 

class. Using the True Positive (TP), and False Negative (FN) numbers, Accuracy can be given 

as: 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (7.1) 

 

“IoU is the ratio of correctly classified pixels to the total number of ground truth and predicted 

pixels in that class” [89]. Using TP, FN, and False Positive (FP) numbers, IoU can be given as: 

 𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (7.2) 

 

MeanBFScore is a measure of the mean Boundary F1 (BF) which indicates how well the 

predicted boundary of a given class is aligned with the actual boundary of that class.  

In MATLAB, the function “evaluateSemanticSegmentation” can be used to calculate these three 

metrics in image segmentation applications.  

Table 7-7 shows a summary of model performance using the above-described metrics and Figure 

7-7 shows the confusion matrix for the different segmentation classes detected by the model. The 

table shows that the segmentation model performs well for all classes, except the “person” class. 

This is because this class is much smaller in terms of pixels compared to the others, so it would 

be more sensitive to any mismatches between predicted and actual, as calculated by the three 

metrics. The confusion matrix in Figure 7-7 shows a high rate of correct segmentation per class 

(diagonal cells) versus a low rate of incorrect classifications (off-diagonal cells). 
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Table 7-7: The Accuracy, IoU, and MeanBFScore segmentation quality metrics are shown for the classes 

that are identifiable by the baseline model across all images in the rain-free test dataset 

 

Accuracy IoU MeanBFScore 

unlabeled 0.724 0.266 0.417 

sky 0.983 0.964 0.929 

vehicle 0.967 0.828 0.837 

person 0.328 0.153 0.400 

background 0.940 0.924 0.923 

road 0.958 0.923 0.868 

 

 
Figure 7-7: The confusion matrix shows the percentage of correct and incorrect segmentation of all 

classes supported by the segmentation model. The diagonal cells represent the percentage of correct class 

segmentation, and the off-diagonal cells represent the percentage of incorrect segmentation of the pixels 

of a given class as belonging to another class.  

 

7.4.2.2 Testing the Baseline_Segmentation_DNN Model with Rained and De-Rained 

Datasets 

To evaluate the effect of rain on the semantic segmentation process, we tested the 

Baseline_Segmentation_DNN model using GeneratedRain_Segmentation_Test as the input 

dataset. As described earlier, this dataset contains the simulated rained images with heavy 
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raindrop content. Table 7-8 summarizes the segmentation performance for each label, using the 

same statistical metrics as before. Figure 7-8 shows the confusion matrix for the different 

segmentation classes detected by the model under rained conditions. As expected, the quality 

metrics show noticeable degradation in segmentation quality when the rain-free segmentation 

model was used on the rained dataset. We can see from the confusion matrix that the correct 

segmentation percentage is still much larger than the incorrect segmentation percentage under 

rained images, except for the “person” class.  

Table 7-8: Segmentation quality of the baseline model when tested with the rained image set. Noticeable 

drop in segmentation quality between rain-free and rained segmentation test, as shown by the three 

segmentation quality metrics.  

Metric Accuracy IoU MeanBFScore 

Label 

unlabeled 0.100 0.054 0.150 

sky 0.84 0.809 0.740 

vehicle 0.750 0.463 0.482 

person 0.0749 0.046 0.060 

background 0.920 0.813 0.825 

Road 0.812 0.772 0.677 
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Figure 7-8: The confusion matrix shows a drop in the correct segmentation percentage and an increase in 

incorrect segmentation percentage across all classes. The “person” class shows the largest percentage 

drop since its relatively small size makes it more susceptible to the presence of raindrops in the image.  

 

We then tested the Baseline_Segmentation_DNN model using “Derained_Segmentation” as the 

input dataset. As described earlier, this dataset is generated by feeding the 

GeneratedRain_Segmentation_Test dataset to Quan et al. [46] de-raining model, to remove 

raindrops from images. Table 7-9 summarizes the segmentation performance for each label, 

using a de-rained dataset, and Figure 7-9 shows the associated confusion matrix for the different 

segmentation classes supported by the segmentation model.  The quality metrics show noticeable 

degradation in segmentation quality when using a de-rained dataset over the original rained one. 

The largest drop in segmentation quality is observed in the “sky” and “vehicle” classes. The 

confusion matrix shows that only “road” and “background” classes have a higher correct 

segmentation percentage than incorrect ones. Another interesting observation is that the majority 

of incorrect observations are classified as “background” class. The same phenomenon was 

observed under rain-free and rained segmentation testing which indicates a possible 

segmentation bias towards the “background” class, even though we used the wights reverse-

frequency technique in our design and training. 
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Table 7-9: The segmentation quality metrics show lower performance of the rain-free (baseline) 

segmentation model with the de-rained dataset than that under rained dataset. Performance drop was 

highest for “sky” and “vehicle” classes and the least drop was observed for the “road” class 

 

Accuracy IoU MeanBFScore 

unlabeled 0.040732 0.00975 0.055519 

sky 0.37414 0.24427 0.41851 

vehicle 0.21466 0.1054 0.24246 

person 0 0 0.002181 

background 0.7009 0.52471 0.68721 

road 0.71426 0.57007 0.59807 
 

 
Figure 7-9: the confusion matrix for class segmentation results shows that only "background" and "road" 

classes still show more correct than incorrect segmentation under de-rained dataset and rain-free 

segmentation model mix. It also shows that the “background” class contributed to the most percentage of 

incorrect classifications.  

7.4.2.3 Retraining the Baseline_Segmentation_DNN 

We retrained the Baseline_Segmentation_DNN model from the previous steps using the 

“GeneratedRain_Segmentation_Train” dataset. The dataset consists of 400 images with low and 

medium intensity of generated raindrops added. We split the dataset 75% training, 10% 

validation, and 15% testing and ran the training process for 200 epochs. All other 

hyperparameters we left intact from the previous training process. As shown in Table 7-10, there 

is a big improvement in the segmentation with the rained model compared with the rain-free 
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model, both tested with real rain image dataset.  The confusion matrix in Figure 7-10 shows 

more correct to incorrect segmentation for each class recognizable by the segmentation model.  

We then retested the rained segmentation model on the rain-free image set to verify that the 

retraining with rained dataset did not degrade the segmentation quality for rain-free images. The 

results shown in Table 7-11 confirm that the segmentation model performance improved with 

retraining which highlights one unintended benefit from using simulated data for retraining.   

Table 7-10: The segmentation performance metrics show that the retrained segmentation model performs 

on the rained dataset at levels comparable to the performance of the rain-free segmentation model that is 

tested with the clear dataset. 

 

Accuracy IoU MeanBFScore 

unlabeled 0.28243 0.11976 0.22585 

sky 0.96257 0.87067 0.8123 

vehicle 0.78133 0.54641 0.57202 

person 0.3907 0.14859 0.15047 

background 0.89598 0.83996 0.84477 

road 0.89585 0.83921 0.76265 

 

 
Figure 7-10: Testing the retrained rained segmentation model with a real rain dataset shows that A higher 

percentage of pixels are correctly segmented for each class than incorrectly segmented. 
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Table 7-11: Testing the retrained rained segmentation model shows no degradation in performance over 

the original rain-free segmentation model, both tested on the same rain-free dataset. 

 

Accuracy IoU MeanBFScore 

unlabeled 0.92465 0.36152 0.50471 

sky 0.98597 0.94929 0.90088 

vehicle 0.98732 0.83456 0.80705 

person 0.98332 0.3391 0.64998 

background 0.93301 0.92611 0.91499 

road 0.9565 0.92825 0.88841 

 

7.5 Results and Analysis 

We trained a YOLOv3 model to detect common objects encountered in a common drive cycle 

and tested it using rain-free, rained, and de-rained image sets. The detector performed well on 

rain-free images, but its performance degraded under rained image set input, as expected. The 

performance degraded even further for the de-rained image set test, a result we did not expect 

when we formed our hypothesis. Our results, however, align with the task-driven evaluation 

results reported by Li et al. [90]. Based on their tests using different object detection algorithms, 

they concluded that “all existing de-raining algorithms will deteriorate the detection performance 

compared to directly using the rainy image” [90]. They hypothesized that the de-raining 

algorithms might need to be optimized to the goal of object detection. This, however, may 

require a specific de-raining solution to the target vision-based application and consequently 

reduces the useability and generalizability of the de-raining algorithms.  

By analyzing the de-raining algorithm that had been developed by Quan et al. [46], we believe 

their model was too specific to the training and testing dataset they had used. This made it less 

useful for the real rain datasets we used in our research, due to the following two factors: 
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1. Quan’s model used a training dataset that used synthetic raindrops for rained images. 

Real raindrops exhibit more variety in shape and size than the simple droplets formed by 

spraying water on a glass surface. This likely made raindrop detection harder with real 

raindrops than synthetic ones.  

2. The synthetic dataset used in Quan’s model was also taken under optimal lighting 

conditions which made it easier for raindrops to be detected. The overcast in the 

background of the real rain dataset, on the other hand, made it harder to identify 

raindrops by a human observer. This overcast in the real rain dataset likely affected the 

ability to learn raindrops by the de-raining DNN in [46] 

The retrained YOLOv3 model with a simulated raindrop dataset showed great improvement of 

the rain-free object detector, both tested with the real-rain dataset.  

The only class that did not show improved detection with the retrained rained detector was the 

“Pedestrian” class. We believe that two factors contributed to this limitation: 

1. The size of the objects representing the “Pedestrian” class was mostly smaller than the 

other two class objects. This meant that these objects were more susceptible to the 

presence of rain, which usually occluded and distorted all or most of the pixels 

representing this class in the image. 

2. The number of occurrences of the “Pedestrian” object in the dataset we used for training 

was much smaller than the other two. We counted 15 “Pedestrian” object instances in the 

whole training dataset, compared to the thousands of occurrences for the other two 

classes. Our dataset was collected on motorways in Michigan and under rainy conditions, 

so the presence of pedestrians was the exception rather than the norm.  
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We also verified that the retrained detector performance did not degrade under rain-free 

conditions by retesting the rained detector with the original rain-free dataset. The retrained rained 

model performance was similar to that of the rain-free detector under the rain-free dataset which 

made us conclude that the retrained detector retained the information learned by the original rain-

free-trained detector model. 

The semantic segmentation test cases provided similar results to the object detection ones. The 

rain-free segmentation model performed well under rain-free conditions, but its performance 

degraded when tested with rained image dataset. The degradation level was not as severe as that 

observed in the object detection application. This can be partially attributed to the fact that in the 

segmentation model, the classes were much larger than those in the object detection application, 

and thus less susceptible to the presence of raindrops in the input images. 

The segmentation model trained on the rain-free dataset performed worse on the de-rained 

images dataset than on the original rained images dataset. The performance of the retrained 

image segmentation model showed considerable improvement in segmenting rained images after 

the baseline rain-free model was trained with the simulated raindrops dataset. Retesting the 

retrained image segmentation model with the rain-free dataset showed a performance 

improvement over the rain-free model. The performance gain can be partially attributed to 

retraining the rain-free model with simulated rained images that were based on the rain-free 

ones. We argue that the rained images acted as a transformed version of the original ones, even if 

the transformation caused some level of image quality degradation. In that sense, the rained 

images augmented the original rain-free dataset, and image augmentation is a standard technique 

used in the training of the DNN to improve performance. One may argue that the retraining 

process tuned the detection and segmentation model parameters, which allowed them to denoise 
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(de-rain) the input images, before being used for the detection and segmentation tasks. We 

present the following evidence to refute that argument. 

1. The data sets used for retraining did not include any information about the raindrops 

(raindrop labels) to help the system identify them and “work around them” for the 

detection and segmentation tasks. Rather than raindrops, the labeled objects of interest in 

both models were commonly encountered in a drive cycle, including cars, trucks, sky, 

road, and pedestrians. 

2. Only rained datasets were used for retraining, not matched pairs of clear and rained 

images. so even if the detection and segmentation networks could learn raindrops, they 

were not fed with datasets to facilitate this presumed learning capability.  

3. The DNN architectures we built our detection and Segmentation models on were not of 

the GAN “family” so it was unlikely that they could discriminate raindrops and 

eliminating them through training.   

4. Training a DNN designed for the de-raining task takes a lot more training time and a 

bigger training set than what we used in our detection and segmentation models. The 

default setting for epochs in the implementation of Quin et al. algorithm was set to 4000 

[11]. The implementers of Quan et al. reported needing one hundred thousand epochs of 

training to achieve their results [76]. We, in comparison needed around 300 epochs to 

train either one of our models to a good level of performance.    

5. The performance improvement was observed on both models that were developed with 

different architectures. If we could arguably assume that the DNN architecture of one 

model allowed for raindrop detection and removal, it is less likely that another model’s 

DNN achieved the same deed. 
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As we mentioned earlier, the experiments involving using de-rained datasets that were 

generated by a state-of-the-art de-raining algorithm showed worse performance than the 

ones using rained datasets without de-raining. The same findings were reported by Li et 

al. [90] and another one on haze removal done by Pei et al. [91]. “since those deraining 

algorithms were not trained/optimized towards the end goal of object detection, they are 

unnecessary to help this goal, and the deraining process itself might have lost 

discriminative, semantically meaningful true information” [91].  We believe that there 

may be no de-raining add-on fix to this problem, in a sense that a general-purpose de-

raining algorithm can be plugged into the specific vision system (e.g., traffic light 

recognition) that would improve the system performance under rainy conditions. We 

believe it is possible to have a hybrid solution, employing both de-raining (denoising) of 

input images and reducing system sensitivity to raindrops through re-learning and 

transfer learning (system desensitization).  This hybrid approach, however, requires 

further examination of what important features are removed in the de-raining process, 

that a given vision application is looking for, to perform its intended functionality.  

 

7.6 Conclusion 

We started with a hypothesis that it would be possible to improve the performance of vision 

algorithms developed as DNN models under rained conditions, by retraining these models with 

rained image samples. We also hypothesized that the performance improvements could be in-bar 

with the improvements achieved by de-raining the input images. To put it in more generic terms, 

we proposed that decreasing the system’s sensitivity to noise could provide similar levels of 

overall system performance as those achieved by denoising the noisy system inputs.  
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To verify our hypothesis, we selected two common vision applications, namely object detection, 

and semantic image segmentation, and developed and trained their models using different rain-

free and rained image datasets. The results proved that retraining improves vision system 

performance under rainy conditions, actively expanding the useful application domain to include 

both clear and rained conditions.  

Unexpectedly, the de-raining process degraded both system performances even more than under 

rained image dataset as the system input. The state-of-the-art de-raining algorithms aim to 

optimize the de-rained output image in terms of similarity to a clear one. It might be that, though 

visually similar to a clear image, the de-rained image has some features masked or distorted 

through the de-raining process, that otherwise would have been used by a target vision 

application (e.g., objection detection) to learn desirable characteristics of the image and its 

components. We conclude that due to the lack of a generic de-raining module that can be 

plugged in before any vision algorithm, retraining with rained images is the better solution to the 

problem. 

We also showed the benefit of using synthetic data sets, in the form of images with generated 

raindrops, in retraining both object detection and image segmentation application models. Labels 

objects or segments in the original (clear) images can be reused with the synthetic dataset 

unchanged. Both the object detector and semantic segmentation models were successfully trained 

with synthetic datasets and, when tested with real rain datasets, showed great performance 

improvements. In addition, the synthetic dataset seems to play a secondary role as an image 

augmenter to the rain-free dataset which contributes to further performance improvements under 

clear rain conditions.  
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Chapter 8  

Conclusions 

 

The automotive domain is a highly regulated domain with a strong focus on safety and 

robustness under all driving conditions. Self-driving vehicles and autonomous driving have 

gained lots of momentum in the last few years, and different vehicle OEMs are already 

producing vehicles with some level of self-driving capabilities. Vision-based systems play an 

integral role in many of these self-driving vehicles. The recent improvements of deep-learning 

vision algorithms further increased the dependency on vision-based systems to the extent that 

Tesla has recently announced that its new models will drop in-vehicle RADAR systems for 

autonomous driving, and solely rely on vision-based systems [92].  

It is imperative to have a clear understanding of the limitations of vision-based systems, 

performing under different conditions, including adverse weather conditions. This dissertation 

presents a comprehensive study of rain as a  type of adverse weather condition and its effect on 

the degradation of input images and vision-based algorithms. It also describes some novel 

techniques for simulating rain presence in input images, and techniques to improve the 

performance of vision-based algorithms under rainy conditions. 

8.1 Dissertation Summary  

Rain in input images can be present in two main forms, as falling rain streaks or as adherent 

raindrops on lens covers or vehicle windshields. In the automotive domain, falling rain is the 
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main source of degradation of input images for infrastructure applications, such as automatic 

traffic lights control and traffic monitoring.   The cameras for these applications are usually 

covered in a way that protects the lens and lens covers from direct contact with rain. We 

developed a falling rain simulation model that randomly generates rain streaks and adds them to 

rain-free source images. the output is a stereo pair of color images, with rain streaks varying in 

size, density, and brightness, based on local and global characteristics of the source image scene, 

and those of the rain streaks.   We also developed a falling rain de-raining algorithm, based on 

some selected properties of rain streaks in the image. We used the generated images from our 

falling rain simulator to test the performance of the de-raining algorithm.  

In the case of ego moving vehicle with an in-vehicle camera, and in some surveillance 

applications,  adherent raindrops to vehicle windshields and lens protective covers becomes the 

dominant source of degradation to input images of vision-based applications. we developed a 

novel adherent raindrop simulator model, that takes rain-free images and adds realistic adherent 

raindrops to them. The result is a color, rained image, with adherent raindrops of different sizes, 

shapes, and positions, all controllably randomized. Unlike the main-stream ray-tracing approach 

for simulating adherent raindrops, we employed the raindrop lens barrel effect and image 

transformation techniques to generate realistic adherent raindrops in images.    

We studied the effect of the image degradation caused by the adherent raindrops on the 

performance of some vision-based algorithms. Although there is a general acceptance in the 

research body of the detrimental effect of degraded images on the overall performance of vision-

based algorithms, there has not been a complete quantitative study of that effect, to the best of 

our knowledge. We measured the performance of some state-of-the-art object detection 

algorithms on clear and rained image sets, and showed a clear correlation between image quality 
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and the performance of these object detectors, both in terms of the percentage of correct 

detections, and the confidence levels of detection of the identified objects.  

One observation from this quantitative analysis was that the object detectors under test showed 

some level of robustness to raindrop presence in the input images. This made us wonder if we 

can further improve this robustness, by further decreasing the sensitivity of the vision-based 

algorithms to the image degradation due to raindrops.  We hypothesized that by applying 

transfer-learning and relearning with rained images, we could achieve a performance boost of the 

vision-based algorithms that were in-bar with using a de-raining stage to preprocess the input 

images.    We tested our hypothesis on state-of-the-art object detection and semantic 

segmentation models. The models were first trained with rain-free image sets, then retrained with 

rained images that we generated from our adherent raindrop simulation model.  We tested the 

performance of the two algorithm models on real rain datasets that we had previously collected 

from real drive cycles and showed clear performance boosts in both.  The de-rained images did 

not provide a similar performance boost but rather showed lower performance compared to using 

the original rained images as input to the two models.  We will describe this drawback further in 

the section.  

8.2 Limitations and Future Work   

This section describes some limitations we encountered in our work and some ideas for future 

improvements. 

8.2.1 Falling Rain Streaks Simulator 

Our simulation model produced images with rain streaks that resemble real falling rain from the 

perspective of a human observer. We could not however quantitatively test these results since we 

lacked a good dataset of real falling rain images. to the extent of our knowledge, there is no 
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publicly available dataset of images with falling rain streaks, that is captured with dedicated 

outdoor cameras. It is beneficial to create such a dataset, with cameras of a type similar to the 

ones used for traffic control or automatic traffic light activation. 

8.2.2 Falling Rain Detection and Removal 

We developed an algorithm for falling rain streaks detection that was based on the physical and 

brightness properties of the rain streaks. This technique worked well in most cases but there were 

still instances where irregular rain streaks (per our constraints) were not detected. Adding 

chromatic properties may improve the detection rate of rain streaks. Deep-learning algorithms 

showed good results in restoring images with rain streaks to their rain-free versions. As we 

described in this dissertation, these algorithms were trained on synthesized rain streaks and it 

would be interesting to see how well they perform on real falling rain datasets. 

Moving objects in the image background introduced lots of noise in the falling rain streaks 

removal process. Scene flow information may improve image restoration if it is integrated into 

the falling rain streak detection process. 

8.2.3 Adherent Raindrop Simulator 

Our simulator produced images with realistic raindrops that were generated by employing optical 

properties of the raindrops (the fisheye lens effect), and intensity and chromatic properties. We 

developed our model under the Mathworks suite, using functions from the image processing 

toolset in MATLAB 2021a. The algorithm was not optimized for speed and it would be 

interesting to rewrite some time-consuming functions using more efficient languages (e.g., C++) 

or even rewriting the whole algorithm in a language with built-in image-processing capabilities, 

such as Python. 
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8.2.4 Using Relearning to Improve Performance of DNN-Based Vision Algorithms 

Our research showed clear improvement in the performance of algorithms for object detection 

and semantic segmentation. The de-raining approach, on the other hand, degraded the 

performance even more than using rained images on detection and segmentation models that 

were not retrained with rained images. The de-raining algorithm may have removed some 

important features from the input images that otherwise would have helped in the detection of 

objects and segmentation of image scenes. To test this hypothesis, we can examine the DNN 

features learned in the final layers of the DNNs, closest to the output layer. By comparing the 

type of features learned with rained, de-rained, and rain-free image sets, we may be able to 

determine which features were omitted or modified by the de-raining process. This study, if 

successful, may help design better de-raining algorithms that preserve the features critical for the 

vision-based algorithm under development.  
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