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Abstract

Speech perception is a central component of social communication. Although

principally an auditory process, accurate speech perception in everyday

settings is supported by meaningful information extracted from visual cues.

Visual speech modulates activity in cortical areas subserving auditory speech

perception including the superior temporal gyrus (STG). However, it is

unknown whether visual modulation of auditory processing is a unitary phe-

nomenon or, rather, consists of multiple functionally distinct processes. To

explore this question, we examined neural responses to audiovisual speech

measured from intracranially implanted electrodes in 21 patients with epi-

lepsy. We found that visual speech modulated auditory processes in the STG

in multiple ways, eliciting temporally and spatially distinct patterns of activity

that differed across frequency bands. In the theta band, visual speech

suppressed the auditory response from before auditory speech onset to after

auditory speech onset (�93 to 500 ms) most strongly in the posterior STG. In

the beta band, suppression was seen in the anterior STG from �311 to

�195 ms before auditory speech onset and in the middle STG from �195 to
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235 ms after speech onset. In high gamma, visual speech enhanced the audi-

tory response from �45 to 24 ms only in the posterior STG. We interpret the

visual-induced changes prior to speech onset as reflecting crossmodal

prediction of speech signals. In contrast, modulations after sound onset may

reflect a decrease in sustained feedforward auditory activity. These results are

consistent with models that posit multiple distinct mechanisms supporting

audiovisual speech perception.
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1 | INTRODUCTION

Auditory speech signals are conveyed rapidly during nat-
ural speech (three to seven syllables per second;
Chandrasekaran et al., 2009), making the identification of
individual speech sounds a computationally challenging
task (Elliott & Theunissen, 2009). Easing the complexity
of this process, audiovisual signals during face-to-face
communication help predict and constrain perceptual
inferences about speech sounds in both a bottom-up and
top-down manner (Bernstein & Liebenthal, 2014;
Lewis & Bastiaansen, 2015; Peelle & Sommers, 2015).

Multiple features extracted from visual signals can bias
or enhance auditory speech perception processes, including
lip shapes, rhythmic articulatory movements, and speaker
identity, among others (Chandrasekaran et al., 2009;
Chen & Rao, 1998; Erber, 1975; Van Wassenhove
et al., 2005). Although the net result is improved speech
perception, each of these features may influence cortical
auditory processes through distinct mechanisms. For
example, visual speech is thought to influence the temporal
structure of auditory speech processing by neurally ampli-
fying auditory speech signals that are temporally correlated
with lip closure, accomplished by modulating cortical
excitability in auditory regions (Schroeder et al., 2008).

Indeed, functional dissociations are readily found in
the auditory system. In the speech domain, research indi-
cates that the superior temporal gyrus (STG) exhibits an
anterior–posterior gradient in feature tuning, with ante-
rior regions being more sensitive to sound frequency
information and posterior regions being more sensitive to
temporal information (e.g., broadband amplitude dynam-
ics) (Hullett et al., 2016). Because visual speech facilitates
perception for both frequency details and temporal
dynamics in speech (Plass et al., 2020), it could plausibly
enhance perception through multiple distinct influences
on STG areas specialized for different aspects of the audi-
tory speech signal. Importantly, prior research indicates
that some audiovisual speech processes are associated

with neural activity in distinct oscillatory frequency
bands, suggesting that they likely correspond to unique
integrational functions across the sensory hierarchy
(Arnal et al., 2009; Kaiser et al., 2005, 2006; Peelle &
Sommers, 2015). Similarly, studies have demonstrated
audiovisual speech effects at multiple time points, includ-
ing during the observation of preparatory lip movements
and following speech onset (Besle et al., 2008). However,
identifying the specific role of each mechanism would be
helped by first identifying different functional processes
that are altered by visual speech (e.g., the modulatory
effect of visual speech in different oscillatory frequency
bands at different spatial and temporal scales).

Audiovisual speech integration studies using
invasively implanted electrodes (intracranial electroen-
cephalography [iEEG]) have focused on raw signal
amplitudes (Besle et al., 2008) or surrogate measures of
population action potentials through high gamma filtered
power (HGp) (e.g., Micheli et al., 2020), showing early
activation of auditory areas to audiovisual speech. How-
ever, these studies did not analyse the spectral composi-
tion of audiovisual effects in low- and high-frequency
ranges, which can reflect distinct forms of information
processing (Engel & Fries, 2010; Ray et al., 2008; Wang,
2010), and have tended to use small sample sizes and
single-participant statistics (e.g., Besle et al., 2008;
Micheli et al., 2020). Conversely, noninvasive EEG stud-
ies have investigated the influence of visual speech infor-
mation on low-frequency signals, with strong effects on
beta and theta activity at different time scales (Sakowitz
et al., 2005). However, as low- and high-frequency effects
were observed across separate studies and given limita-
tions of each approach (poor spatial resolution with EEG
and small sample sizes with iEEG), the interdependence
of these processes remains unclear.

Thus, at present, the field lacks a unified framework
for how visual speech information alters responses within
auditory regions. This study sought to fill this gap by
examining the interdependence of spatial, temporal, and
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spectral effects during audiovisual speech perception in a
large cohort of patients with iEEG recordings (745 elec-
trodes implanted in auditory areas of 21 individuals) who
performed an audiovisual speech task while undergoing
clinical monitoring for epilepsy. Specifically, we exam-
ined visual effects on auditory speech processes across
multiple frequency bands associated with both subthresh-
old oscillations and neural firing. Moreover, to integrate
statistical results across participants, we used linear
mixed-effects models to perform statistical inference at
the group level, facilitating generalization, and compared
observed effects to those seen at the single participant
level. Analysing these data using group-level statistics,
we found that visual speech produced multiple spatio-
temporally distinct patterns of theta, beta, and high
gamma power throughout the STG. These results are
consistent with the view that visual speech enhances
auditory speech processes through multiple functionally
distinct mechanisms and provides a map for investigating
the information represented in each process.

2 | MATERIALS AND METHODS

2.1 | Participants, implants and
recordings

Data were acquired from 21 patients with intractable epi-
lepsy undergoing clinical evaluation using iEEG. Patients
ranged in age from 15 to 58 years (mean = 37.1,
SD = 12.8) and included 10 females. iEEG was acquired
from clinically implanted depth electrodes (5-mm centre-
to-centre spacing, 2-mm diameter) and/or subdural elec-
trodes (10-mm centre-to-centre spacing, 3-mm diameter):
13 patients had subdural electrodes and 17 patients had
depth electrodes (Figure S1). Across all patients, data was
recorded from a total of 1,367 electrodes (mean = 65,
SD = 25.3, range = 24–131 per participant). The number,
location, and type of electrodes used were based on the
clinical needs of the participants. iEEG recordings were
acquired at either 1000 Hz (n = 5), 1024 Hz (n = 11 partic-
ipants), or 4096 Hz (n = 5 participants) due to differences
in clinical amplifiers. All participants provided informed
consent under an institutional review board (IRB)-
approved protocol at the University of Chicago, Rush
University, University of Michigan, or Henry Ford hospital.

2.2 | MRI and CT acquisition and
processing

Preoperative T1-weighted magnetic resonance imaging
(MRI) and a postoperative computed tomography

(CT) scans were acquired for all participants. Registration
of the preoperative MRI to postoperative CT was per-
formed using the ‘mutual information’ method con-
tained in SPM12 (Viola & Wells, 1997); no reslicing or
resampling of the CT was used. Electrode localization
was performed using custom software (Brang et al., 2016;
available for download online https://github.com/towle-
lab/electrode-registration-app/). This algorithm identifies
and segments electrodes from the CT based on intensity
values and projects subdural electrodes to the dura
surface using the shape of the electrode disk to counter-
act postoperative compression. The Freesurfer image
analysis suite (http://surfer.nmr.mgh.harvard.edu/; Dale
et al., 1999; Fischl et al., 1999) was used for subsequent
image processing procedures including cortical surface
reconstruction, volume segmentation, and anatomical
labelling (http://surfer.nmr.mgh.harvard.edu/; Dale
et al., 1999; Fischl et al., 1999).

2.3 | Tasks and stimuli

Participants were tested in the hospital at their bedside
using a 15-inch MacBook Pro computer running
Psychtoolbox (Kleiner et al., 2007). Auditory stimuli were
presented through a pair of free-field speakers placed
approximately 15� to each side of the patients’ midline,
adjacent to the laptop. Data were aggregated from three
audiovisual speech perception paradigms (using different
phonemes spoken by different individuals across tasks) to
ensure generalizability of results and an adequate sample
for group-analyses: seven participants completed
variant A, eight participants variant B, and six partici-
pants variant C. Each task presented participants with
auditory and visual speech stimuli in various combina-
tions. As this study examines the modulatory role of
visual information on auditory processes, only the
auditory-alone and audiovisual (congruent auditory–
visual signals) conditions were analysed from each task
variant.

On each trial a single phoneme was presented to the
participant (variant A: /ba/ /da/ /ta/ /tha/, variant B:
/ba/ /da/ /ga/, variant C: /ba/ /ga/ /ka/ /pa/). Figure 1
shows the timing and structure of an example trial from
task variant B. Trials began with a fixation cross against a
black screen that served as the intertrial interval (ITI),
presented for an average of 750 ms (random jitter plus or
minus 250 ms, uniformly sampled). In the audiovisual
condition, the face appeared either 750 ms before sound
onset (task variant B) or 500 ms before sound onset
(variants A and C); across all three variants, face motion
began at 500 ms before sound onset. In the auditory-
alone condition, either the fixation cross persisted until
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sound onset (variant A) or a uniform grey square (mean
contrast of the video images and equal in size) was pres-
ented for either 750 ms before sound onset (variant B) or
500 ms before sound onset (variant C). Trials were pres-
ented in a random order, and phonemes were distributed
uniformly across conditions. Although conditions were
matched in terms of trial numbers, participants com-
pleted a variable number of trials (based on task variant
and the number of blocks completed): mean = 68 trials
per condition (SD = 23, range = 32–96). Onset of each
trial was denoted online by a voltage isolated transistor–
transistor logic (TTL) pulse.

In variants A and B, following each trial, participants
were prompted to identify which phoneme they heard
either aloud or via button press. In variant C, participants
were cued to identify a phoneme on only 20% of the trials
(data not analysed). As auditory stimuli were presented
without additional noise, we anticipated high levels of
accuracy. Consistent with this, in variants A and B
accuracy did not differ across auditory-alone and audiovi-
sual conditions (behavioural data was unavailable for
one participant): auditory-alone mean accuracy = 95.3%
(SD = 6.0%), audiovisual mean accuracy = 95.8%
(SD = 6.4%), t(13) = .518, p = .61.

2.4 | iEEG data preprocessing

Data were referenced in a bipolar fashion (signals
subtracted from each immediately adjacent electrode in a
pairwise manner) to ensure that the observed signals
were derived from maximally local neuronal populations.
Only electrodes meeting anatomical criteria within
auditory areas were included in analyses. Anatomical
selection required that an electrode be proximal to an
auditory temporal lobe region as defined by the
Freesurfer anatomical labels superiortemporal,
middletemporal, and supramarginal in MNI space,
resulting in 765 bipolar electrode pairs. Excessively noisy
electrodes (either manually identified or due to variability

in the raw signal greater than 5 SD compared with all
electrodes) were removed from analyses, resulting in
745 remaining electrodes; across participants the mean
proportion of channels rejected was 3.3% (SD = 8.7%,
Range = 0% to 37.5%).

Slow drift artefacts and power-line interference were
attenuated by high-pass filtering the data at 0.1 Hz and
notch-filtering at 60 Hz (and its harmonics at 120, 180,
and 240 Hz). Each trial was then segmented into a 2-s
epoch centred around the onset of the trial. Individual
trials were then separately filtered into three frequency
ranges using wavelet convolution and then power
transformed: theta (3–7 Hz, wavelet cycles varied line-
arly from 3 to 5), beta (13–30 Hz, wavelet cycles varied
linearly from 5 to 10), and HGp (70–150 Hz in 5 Hz
intervals, wavelet cycles = 20 at 70 Hz, and increased
linearly to maintain the same wavelet duration across
frequencies); data were then resampled to 1024 Hz.
Theta, beta, and HGp were selected based on previous
reported findings of audiovisual speech integration
effects in these ranges (e.g., Arnal et al., 2009; Kaiser
et al., 2005, 2006; Micheli et al., 2020; Peelle &
Sommers, 2015). Within each frequency range and eval-
uated separately at each electrode, we identified outliers
in spectral power at each time point that were 3 scaled
median absolute deviations from the median trial
response. Outlier values were replaced with the appro-
priate upper or lower threshold value using the ‘clip’
option of the Matlab command ‘filloutliers’. Across par-
ticipants, a mean of 0.2% of values were identified as
outliers (SD = 0.1%, Range = 0.1 to 0.5%).

Though electrodes were implanted in both the left
and right hemispheres, electrodes were projected into the
left hemisphere for visualization and analyses. This was
accomplished through registering each participant’s
skull-stripped brain to the cvs_avg35_inMNI152 template
image through affine registration using the Freesurfer
function mri_robust_register (Reuter et al., 2010). Right-
hemisphere electrode coordinates were then reflected
onto the left hemisphere across the sagittal axis.

F I GURE 1 Task variant B trial schematic. All trials began with a fixation cross 1500 ms before the onset of an auditory stimulus,

lasting for an average of 750 ms (plus or minus 250-ms jitter). In the auditory-alone condition a blank screen followed the fixation cross for

750 ms. In the audiovisual condition, the face appeared at the offset of the fixation (750 ms before sound onset), with preparatory visual

movement beginning 250 ms later. Auditory phonemes (/ba/, /da/, or/ga/) onset at 0 ms in both conditions
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Functional selection was evaluated separately for
each of the three frequency bands of interest (theta, beta,
and HGp) to identify auditory-responsive electrodes:
accordingly, different electrode numbers were included
across each of the frequency analyses. To ensure
orthogonality with the examined condition differences,
the functional localizer required electrodes to demon-
strate a significant poststimulus response (0–500 ms)
regardless of condition relative to zero using one-sample
t-tests after correcting for multiple comparisons using
false discovery rate (FDR). Beta and theta selection
applied two-tailed t-tests, whereas HGp applied one-
tailed t-tests (as meaningful auditory HGp responses were
predicted to elicit HGp increases; Beauchamp, 2016).
Only electrodes meeting both anatomical and functional
criteria were included in analyses (n = 465).

2.5 | Group-level analyses

Traditionally, iEEG studies have focused on individual-
participant analyses utilizing fixed-effect statistics
(e.g., Besle et al., 2008; Chang et al., 2010; Plass
et al., 2020). While these approaches are valid for estimat-
ing parameters and effect sizes within a single individual,
they do not provide estimates across participants and
thus lack generalizability across epilepsy patients, mak-
ing inferences to the general population more difficult.
Moreover, some studies mix between- and within-
participant statistics by aggregating data from all
participants without modelling participant as a random
effect, violating independence assumptions (e.g., Lega
et al., 2017). This approach has been discussed exten-
sively under the title of ‘pseudoreplication’ and can lead
to spurious and poorly generalized results (for a discus-
sion, see Aarts et al., 2014; Lazic, 2010; Lazic et al., 2018).
These concerns for iEEG research have been raised and
theoretically addressed previously by other groups using
variants of a mixed-effects model (Kadipasaoglu
et al., 2014, 2015). To overcome these limitations, we
employed two separate analysis approaches.

2.6 | Group-level spatial analyses

To identify regions of the auditory temporal lobe that
responded differently to auditory-alone versus audiovi-
sual stimuli, we conducted individual-participant
statistics and aggregated data across participants using an
approach from the meta-analysis literature (treating each
participant as an independent replication). Specifically,
each ‘virtual’ bipolar electrode (calculated as the average
coordinates between the associated pair of electrodes)

was transformed into MNI space (Freesurfer
cvs_avg35_inMNI152) and linked to neighbouring verti-
ces (within 10-mm Euclidean distance) on the Freesurfer
MNI cortical pial surface; this one-to-many approach
mitigates the imperfection of cross-participant spatial
registration. Next, statistics were evaluated separately at
each vertex for each participant using independent-
sample t-tests, to compare auditory-alone and audiovisual
trials between �1,000 to 500 ms (auditory-onset at 0 ms;
data were averaged across 100 ms time windows prior to
statistical analyses). Within-participant statistics were
adjusted for multiple comparisons across vertices and
time using FDR (Groppe et al., 2011). The approach
yielded individual-participant p-value maps at each of
the 15 time points. P-value maps were then aggregated
across participants using Stouffer’s Z-score method
(Stouffer et al., 1949).

2.7 | Group-level regional time series
analyses

Although the meta-analysis approach establishes the
strength of an effect at the group-level, it fails to provide
group-level estimates and cannot effectively model data
from both within and between participants (as is neces-
sary in the evaluation of interactions across time, space,
and analysed frequency ranges). To model more general
group-level differences between auditory-alone and
audiovisual conditions we used linear mixed-effects
models. Because appropriately fitted models require more
data than is often present at a single vertex, we created
three regions of interest (ROIs) within the STG. ROIs
were divided into three equal partitions from the “super-
iortemporal” label in Freesurfer, comprising anterior,
middle, and posterior regions, similar to the division of
the STG used previously (Smith et al., 2013). Electrodes
within 10 mm of these labels were linked to the closest of
the three (no electrode was linked to multiple labels).
Our focus on the STG was motivated by previous demon-
strations of strong effects of lipreading in this region
(e.g., Smith et al., 2013). A numerical breakdown of the
number of electrodes and participants in each of the
three regions of the STG is provided in Table 1.

Linear mixed-effects modelling was performed using
the fitlme function in Matlab R2019a (Mathworks Inc.,
Natwick, MA). Electrodes in the same ROI from the
same participant were averaged prior to analysis to
reduce the complexity of the model and as neighbouring
electrodes share variance. Individual trials were not
averaged within or across participants prior to analysis.
Nine main-effect models were constructed, in which dif-
ferences between auditory-alone and audiovisual trials
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were separately evaluated at each of the three STG ROIs
(anterior, middle, posterior) and three frequency bands
(theta, beta, HGp) using the equation: yij ¼ β0þ
β1þu1,j
� �

participantijþu0,jþ εi,j where y represents the
iEEG trial value, with a fixed effects term for the
trial condition and a random intercept and slope term for
the participant ID. In Matlab notation, this is
represented as: iEEG_Trial_Value � Trial_Cond +

(Trial_CondjParticipant_ID). Critically, we modelled
both random intercepts and random slopes for trial con-
dition as there were multiple measurements per partici-
pant and to maintain ‘maximal’ models for confirmatory
hypothesis testing (Barr et al., 2013). Statistics for the
main-effect models were adjusted for comparisons at
multiple time points from �500 to 500ms using FDR
correction (q = .05) (Groppe et al., 2011).

Interaction models were subsequently constructed to
evaluate whether audiovisual versus auditory-alone
condition effects varied as a function of frequency
band, ROI, and time, using the Matlab notation:
iEEG_Trial_Value � Trial_Cond * FrequencyBand * ROI
* Time + (Trial_CondjParticipant_ID). Although these
model parameters were selected for inclusion based on
confirmatory hypothesis testing, we also justified model
selection using AIC comparisons. Separate models were
constructed at each 1-ms time point for the main-effect
models (shown in Figures 6–8). Data were averaged in
5-ms time bins for the interaction models due to compu-
tational complexity and memory requirements. The
inclusion of time as a random factor in interaction
models may appear to violate the assumption of indepen-
dence as spectral power demonstrates autocorrelations.
However, the inherent characteristics of the mixed effect
model’s covariance structure should account for this
dependence (Barr et al., 2013; Riha et al., 2020). More
generally, calculating degrees of freedom with linear
mixed-effect models is a readily acknowledged challenge
(e.g., Luke, 2017). Acknowledging this, model signifi-
cance was estimated using residual degrees of freedom.
To ensure that the likely inflated degrees of freedom did
not drive our effects, we additionally examined effects
using a conservative estimation of degrees of freedom,

based only on the number of participants who contrib-
uted data to a particular analysis (maximum of 21); all
interactions that were significant remained significant at
p < .001.

2.8 | Individual electrode analyses

To examine individual differences in the patterns of activ-
ity evoked across electrodes and participants, individual
electrode statistics were examined at representative
electrodes. Unpaired t-tests were conducted separately at
each time point comparing audiovisual versus auditory
HGp (random factor = trial). Statistics for the main-effect
models were adjusted for comparisons at multiple time
points from �500 to 500 ms using FDR correction
(q = .05).

To test whether one audiovisual effect predicted
another in time or whether audiovisual effects arose from
the same electrodes, we examined the linear relationship
between audiovisual effects at separate frequency bands
and time windows, measured across individual elec-
trodes. Electrodes were localized to the anterior, middle,
and posterior STG and examined separately as three
regions of interest. Activity in each frequency band was
averaged across time ranges to capture observed audiovi-
sual effects based on single frequency analyses: Pre-Aud
HGp, �45 to 0 ms; Post-Aud HGp, 0 to 24 ms; Pre-Aud
Theta, �93 to 0 ms; Post-Aud Theta, 0 to 500 ms;
Pre-Aud Beta, �311 to 0 m; Post-Aud Beta, 0 to 235 ms.
Trials were averaged within each electrode and
subtracted across conditions (auditory-alone minus
audiovisual) to yield audiovisual effects. Relationships
were estimated using linear mixed effect models
similar to those above, using the Matlab notation:
iEEG_Electrode_Value_Effect1 � iEEG_Electrode_Value_
Effect2 + (1jParticipant_ID). Effect 1 and 2 in this context
each reflect a specific frequency either before or after audi-
tory stimulus onset (e.g., does the preauditory high gamma
effect predict the postauditory beta suppression effect?).
Adding random slopes to the models did not result in bet-
ter model fit.

TAB L E 1 Number of electrodes and participants who contributed data to each group-level time series analysis, separated by STG region

and frequency band

Anterior STG Middle STG Posterior STG

Frequency N. elecs N partic. N. elecs N partic. N. elecs N partic.

HGp 22 10 150 18 66 12

Beta 59 14 138 18 62 12

Theta 72 16 162 18 72 12
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3 | RESULTS

3.1 | Group-level spatial analyses

Figure 2 shows the spectro-temporal plot of the event
related spectral power (ERSP) for audiovisual signals
from all auditory electrodes across all participants.
Data demonstrate that spectral power was distributed
over multiple frequency bands in response to
audiovisual stimuli: increased power in theta and high
gamma ranges, along with beta suppression. This,
supported by past studies, provides justification for
subsequent analyses focusing on these three frequency
bands.

3.2 | Group-level spatial analyses: Theta
power

Figure 3 shows group-level differences in theta power
(3–7 Hz) between audiovisual and auditory-alone trials.
A small but significant difference (audiovisual > audi-
tory) emerged from �700 to �600 ms before sound onset
in the supramarginal gyrus (peak coordinates: x = �60.7,
y = �56.2, z = 30.3, p = .001) with a peak-response in
this region between �600 to �500 ms before sound onset
(peak coordinates: x = �60.7, y = �56.2, z = 30.3,
p = .0003). This activation pattern reflected only a small
percentage of the supramarginal gyrus (SMG) (1.7% of
SMG vertices at time point �700 to �600 ms, and 2.6% of

F I GURE 2 Group-level plots showing event-related spectral power from 2 to 150 Hz. Data reflect iEEG activity from all anatomically

localized auditory electrodes (n = 745), first averaged across electrodes within each participant, then averaged across participants. Dotted

lines denote auditory onset. Colour scale reflects normalized power

F I GURE 3 Group-level analyses comparing theta power between audiovisual and auditory-alone conditions at 100 ms time windows

(sound onset at 0 ms). Statistics conducted vertex-wise at the individual participant level and aggregated across participants using Stouffer’s
Z-score method. Multiple comparisons applied across time and space using FDR. Top-left plot shows the number of participants who were

included at each vertex. Audiovisual stimuli elicited reduced theta power at the middle to posterior STG, peaking after the onset of the

speech sound
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SMG vertices at time point �600 to �500 ms). In contrast
to this initial pattern, the majority of condition differ-
ences were observed in the middle temporal gyrus (MTG)
and STG with significantly more power in auditory trials
compared with audiovisual trials. This pattern emerged
as early as �300 to �200 ms (peak coord: x = �47.2,
y = �33, z = �4.3, p = .0003) and peaked during the
time range 100 to 200 ms following sound onset (peak
coord: x = �60.8, y = �20.5, z = 11.4, p = 9.6e�12). The
greatest proportion of significant vertices were observed
from 200 to 300 ms (STG = 27.5%, MTG = 12.4%,
SMG = 5.4%), strongly weighted towards the middle to
posterior STG. These data suggest that the majority of
theta-related activity during audiovisual speech
processing occurs following sound onset.

3.3 | Group-level spatial analyses: Beta
power

Figure 4 shows group-level differences in beta power (13–
30 Hz) between audiovisual and auditory-alone trials. As
was observed in the theta band, a small but significant
difference (audiovisual > auditory) emerged from �700
to �600 ms before sound onset in the supramarginal
gyrus (peak coordinates: x = �60.1, y = �24.6, z = 15,
p = .005; 0.2% of SMG vertices were significant); no other
significant audiovisual > auditory differences were
observed throughout the time series. In contrast to this
initial pattern, the majority of condition differences were
observed in the STG with significantly more power in
auditory trials compared with audiovisual trials; this

observation of reduced beta power is most consistent
with increased beta suppression (see beta time series
analysis for additional evidence). This pattern emerged as
early as �400 to �300 ms (peak coord: x = �61.8,
y = �1, z = �11.8, p = .0001) along the anterior to mid-
dle STG/MTG and peaked �200 to �100 ms before sound
onset (x = �65, y = �10, z = 0.9, p = 8.8e�08); the
majority of significant vertices during this time range
were in the STG: STG = 16.2%, MTG = 3.1%,
SMG = 2.7%. Whereas the peak activation occurred from
the �200 to �100 ms time window, the greatest propor-
tion of significant vertices were observed in the �100 to
0 ms time window range: STG = 20.6%, MTG = 4.9%,
SMG = 2.3%. These data suggest that the majority of
beta-related activity during audiovisual speech processing
occurs before sound onset in contrast to the spatial and
temporal pattern of results observed for theta band activ-
ity. See time series analyses for a direct comparison of the
spatiotemporal effects between theta and beta band activ-
ity. As the differences did not emerge until after face-
onset but immediately prior to sound onset (i.e., during
which time preparatory visual movements were observed
by participants), we interpret these results to reflect pre-
dictive coding information along the STG (e.g., Bastos
et al., 2012; Peelle & Sommers, 2015).

3.4 | Group-level spatial analyses: High
gamma power

Figure 5 shows group-level differences in high gamma
power (HGp; 70–150 Hz) between audiovisual and

F I GURE 4 Group-level analyses comparing beta power between audiovisual and auditory-alone conditions at 100 ms time windows

(sound onset at 0 ms). Top-left plot shows the number of participants who contributed data to each vertex. Audiovisual stimuli elicited

greater beta suppression at the anterior to middle STG, peaking before sound onset
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auditory-alone trials. The first significant time points in
the series were observed in the MTG
(audiovisual > auditory) beginning from �700 to
�600 ms (peak coord: x = �55.8, y = �63.2, z = 8.4,
p = 1.5e�07). Small clusters of effects were observed
between �600 to �100 ms (all effects reflected less than
5% of the number of vertices in each region). Beginning
from �100 to 0 ms, however, we observed a strong cluster
of significant differences (audiovisual > auditory) in the
MTG and STG (peak coord: x = �57.4, y = �66.6,
z = 9.4, p = 8.1e�12, Region = MTG, percent significant
vertices in each region: STG = 8.2%, MTG = 10.1%,
SMG = 1.7%). This effect persisted throughout the time
series but shifted more inferior to the MTG by 400 to

500 ms (proportion significant vertices in each region:
STG = 1.4%, MTG = 12.2%, SMG = 0%). In contrast to
results in the theta and beta frequency bands, HGp
effects were largely restricted to the posterior STG/MTG.

3.5 | Group-level regional time series
analyses

Although the spatial analyses demonstrated significant
patterns of activity along the STG, MTG, and SMG, this
approach does not effectively allow comparisons across
regions or allow the examination of interactions with
time and across frequency. To model the influence of

F I GURE 5 Group-level analyses comparing high gamma power (HGp) between audiovisual and auditory-alone conditions at 100 ms

time windows (sound onset at 0 ms). Top-left plot shows the number of participants who contributed data to each vertex. Audiovisual

stimuli elicited greater power at the posterior STG, peaking beginning before sound onset

F I GURE 6 Group linear mixed-effect model (LME) estimates for each time point of theta power in auditory-alone (black) and

audiovisual (blue) trials, calculated separately at anterior (left), middle (middle), and posterior (right) regions of the STG. Shaded areas

reflect 95% confidence intervals. Pink boxes reflect significant differences after correcting for multiple comparisons. Corresponding regions

are highlighted on the cortical surfaces in yellow with the electrodes that contributed to the analysis shown as black dots (some depth

electrodes are located beneath the surface and are not visible). Significant differences in theta power emerged largely after speech sound

onset, concentrated along the posterior STG. The number of electrodes included in the ROI are shown in the subplot title
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visual speech information on spectral power at the group
level, we used linear mixed effects models for data aggre-
gated into three regions of the STG (anterior, middle, and
posterior regions), consistent with prior studies (Smith
et al., 2013). Separate models were constructed at each
time point and ROI, and multiple comparison corrections
were applied. Importantly, in our estimation of condition
effect (auditory-alone versus audiovisual), we modelled
both random intercepts and slopes (Barr et al., 2013).
Table 1 shows the number of electrodes and participants
who contributed data to each analysis. Figure S2 shows
time series analyses separated by task variant.

3.6 | Group-level regional time series
analyses: Theta power

Regardless of condition, theta power within the STG
increased steadily beginning before sound onset and
peaking immediately after sound onset, with the
strongest activity observed at the posterior STG.
Consistent with the spatial analyses, we observed signifi-
cant differences between audiovisual and auditory-alone
conditions, with audiovisual trials demonstrating reduced
auditory-related theta power (Figure 6). This condition
difference was clearest at the posterior STG, which was
significant from �93 to 500 ms (min p = 2.2e�06, peak
time = 47 ms), yet also present at the middle STG, which
was significant from 108 to 274 ms (min p = .030, peak
time = 193 ms). No significant differences were observed
at the anterior STG after correcting for multiple compari-
sons. To examine whether visual speech information
differentially affected the three STG regions, we con-
ducted a group-level linear mixed-effects model with
additional factors of Time and ROI (see Section 2 for
additional information). As expected, the effect of visual

information varied as a function of time
(Condition � Time interaction: [F(1, 2.1e+06) = 851.6,
p = 3.6e�187]), STG region (Condition � ROI interac-
tion: [F(2, 2.1e+06) = 28.7, p = 3.5e�13]) as well as the
combination of the two (Condition � Time � ROI inter-
action: [F(2, 2.1e+06) = 147.5, p = 8.8e�65]). The model
with interaction terms additionally demonstrated better
fit (AIC = 7.3e+05) compared with the same model
without interaction terms (AIC = 7.4e+05) (AIC
difference = �14,791). Taken together, these results indi-
cate that visual speech information modulates auditory
theta activity predominantly along the posterior STG,
following sound onset.

3.7 | Group-level regional time series
analyses: Beta power

Beta power in the STG showed a combination of power
increases and power decreases (beta suppression), with
the majority of activity focused on the middle to posterior
STG. Across conditions, we observed significantly greater
beta suppression during the audiovisual condition com-
pared with the auditory-alone condition, peaking before
sound onset at mid- to anterior STG regions (Figure 7).
This condition difference was observed at both the ante-
rior STG, significant from �311 to �195 ms (min
p = .002, peak time = �247 ms), and the middle STG,
significant from �195 to 235 ms (min p = .003, peak
time = �116 ms), with no significant differences
observed at the posterior STG after correcting for multi-
ple comparisons. To examine whether visual speech
information differentially affected the three STG regions,
we conducted a group-level linear mixed-effects model
with additional factors of Time and ROI. As expected, the
effect of visual information varied as a function of time

F I GURE 7 Group LME model estimates for each time point of beta power in auditory-alone (black) and audiovisual (blue) trials,

calculated separately at anterior (left), middle (middle), and posterior (right) regions of the STG. Pink boxes reflect significant differences

after correcting for multiple comparisons. Corresponding regions are highlighted on the cortical surfaces in yellow with the electrodes that

contributed to the analysis shown as black dots. Significant differences in beta power peaked before sound onset, concentrated in the middle

to posterior STG
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(Condition � Time interaction: [F(1, 2.0e+06) = 48.5,
p = 3.3e�12]), STG region (Condition � ROI interaction:
[F(2, 2.0e+06) = 44.2, p = 6.3e�20]) but a nonsignificant
combination of the two (Condition � Time � ROI
interaction: [F(2, 2.0e+06) = 2.01, p = .134]). The model
with interaction terms nevertheless demonstrated better
fit (AIC = �1.32e+05) compared with the same model
without interaction terms (AIC = �1.29e+05) (AIC
difference = �3,270).

3.8 | Group-level regional time series
analyses: High gamma power

In general, HGp in the STG showed auditory-related
power increases that were biased towards the posterior
STG. Across conditions, we observed significantly greater
HGp in the audiovisual condition compared with the
auditory-alone condition, occurring before sound onset
and localized to the posterior STG (Figure 8). This condi-
tion difference was significant only at the posterior STG,
from �45 to 24 ms (min p = .028, peak time = �9 ms).
No other significant differences were observed. To
examine whether visual speech information differentially
affected the three STG regions, we conducted a
group-level linear mixed-effects model with additional
factors of Time and ROI. As expected, the effect of
visual information varied as a function of time
(Condition � Time interaction: [F(1, 1.8e+06) = 86.7,
p = 1.3e�20]), STG region (Condition � ROI interaction:
[F(2, 1.8e+06) = 29.6, p = 1.3e�13]) as well as the
combination of the two (Condition � Time � ROI inter-
action: [F(2, 1.8e+06) = 20.0, p = 2.1e�09]). The model
with interaction terms (AIC = �1.4e+06) additionally
demonstrated better fit compared with the same model
without interaction terms (AIC = �1.1e+06) (AIC dif-
ference = �2.6e+05).

3.9 | Group-level regional time series
analyses: Interactions across frequencies

Analyses conducted separately at each of the frequency
bands demonstrated audiovisual effects in putatively dis-
tinct time ranges and spatial distributions. However, to
test the claim that the spatial and temporal patterns
observed across the frequency bands are indeed distinct,
it is necessary to model frequency band and time points
in relation to task conditions. To this end, we constructed
a group-level linear mixed-effects model that included
fixed effects of task condition, frequency band, region of
interest along the STG, and time, modelling both random
intercepts and random slopes for trial condition. Includ-
ing all frequency bands in the model yielded significant
interactions of Condition � Frequency Band [F(2, 2.9e
+07) = 277.4, p = 2.3e�64], Condition � Frequency
Band � ROI [F(4, 2.9e+07) = 72.7, p = 4.8e�43],
Condition � Frequency Band � Time [F(2, 2.9e+07)
= 2254.0, p = 1.2e�294], and Condition � Frequency
Band � ROI � Time [F(4, 2.9e+07) = 397.8,
p = 3.7e�163]. Consistent with these significant
interactions, the addition of each parameter improved
model fit based on AIC. Repeating this analysis with only
low-frequency signals associated with neural
oscillations (theta and beta) yielded the same pattern,
with significant interactions of Condition � Frequency
Band [F(2, 2.0e+07) = 346.7, p = 2.2e�40],
Condition � Frequency Band � ROI [F(2, 2.0e+07)
= 43.2, p = 1.9e�15], Condition � Frequency Ban-
d � Time [F(1, 2.0e+07) = 1645.2, p = 2.5e�121], and
Condition � Frequency Band � ROI � Time [F(2, 2.0e
+07) = 357.6, p = 9.6e�78]. Again, the addition of each
parameter improved model fit based on AIC. Taken
together, these data demonstrate that visual speech infor-
mation evokes distinct temporal and spatial patterns
through theta, beta, and HGp.

F I GURE 8 Group LME model estimates for each time point of HGp in auditory-alone (black) and audiovisual (blue) trials, calculated

separately at anterior (left), middle (middle), and posterior (right) regions of the STG. Pink boxes reflect significant differences after

correcting for multiple comparisons. Corresponding regions are highlighted on the cortical surfaces in yellow with the electrodes that

contributed to the analysis shown as black dots. Significant differences in HGp peaked before sound onset in the posterior STG
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3.10 | Individual differences in neural
activity

Although the linear mixed-effects models demonstrate
effects that are present at the group level, it is impor-
tant to note that highly significant condition differences
that deviated from these group patterns were observed
at individual electrodes in individual participants. In
particular, HGp results showed greater variability across
electrodes and participants than did theta and beta
bands. For example, whereas the most consistently
observed response was increased activity before sound
onset in posterior regions of the STG, this was not pre-
sent in all participants or all electrodes. Figure 9 shows
pairs of individual electrode responses from five partici-
pants, with the top row highlighting one STG electrode
from that participant that matches the pattern observed
at the group level, and the bottom row highlighting a
second STG electrode from the same participant that
demonstrated a different (sometimes opposite) pattern.
Indeed, Participant 9 (first column) showed the opposite
pattern across two electrodes, with the lower row
demonstrating more HGp for auditory trials before
sound onset. Of note, many of the electrodes showed
significantly reduced HGp to audiovisual versus
auditory-alone stimuli during sound processing (100–
200 ms), as reported previously (Karas et al., 2019).
Although this pattern was demonstrated in many elec-
trodes and participants, the anatomical region varied
throughout the STG and the overall pattern did not
reach significance at the group level.

3.11 | Predictability of distinct time
ranges across frequency bands

The group-level spatial and regional time series analyses
showed audiovisual effects at individual frequency bands.
However, these analyses did not show the relationship
between effects at individual electrodes, providing limited
tests of how the observed audiovisual effects were related.
To test whether one audiovisual effect predicted another
in time or whether audiovisual effects arose from the
same electrodes within a region, we examined the linear
relationship between audiovisual effects at separate
frequency bands and time windows, measured across
individual electrodes. As in the time series analyses, elec-
trodes were first localized to the anterior, middle, and
posterior STG, where the magnitude of audiovisual
effects at separate frequency bands and time windows
(before sound onset relative to after sound onset) were
compared across electrodes using linear mixed effect
models.

Results are shown in Figures S3–S5. Comparing
audiovisual effects for matching frequency bands before
and after auditory onset revealed strong linear relation-
ships for all ROIs and frequency bands (all p < .001)
(Figure S3). For example, the magnitude of the beta band
effect at the middle STG ROI before auditory sound onset
showed a strong positive linear relationship with the
magnitude of the beta band effect at the middle STG ROI
after auditory sound onset. Audiovisual effects for differ-
ent frequency bands before and after auditory onset rev-
ealed few relationships across ROIs frequency pairs

F I GURE 9 Individual participant HGp activity at audiovisual (blue) and auditory-alone (black) conditions. Each column displays data

from a different participant (two electrodes per participant). Top row displays electrodes that showed the same pattern of HGp results

observed at the group-level, with increased activity in the audiovisual condition starting before sound onset. Bottom row shows a proximal

electrode that demonstrated a different (sometimes conflicting) pattern. Shaded areas reflect 95% confidence intervals (random

factor = trials). Pink boxes reflect significant differences after correcting for multiple comparisons
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(Figure S4). Specifically, across 15 comparisons, the only
results significant at the p < .01 level were observed at
the middle STG for the comparison of preauditory HGp
relative to postauditory theta (negative linear relation-
ship, p = .003) and the posterior STG for the comparison
of preauditory theta relative to postauditory beta (positive
linear relationship, p = .002). Finally, audiovisual effects
for different frequency bands in the same time windows
also showed few relationships across ROIs frequency
pairs (Figure S5). Specifically, across 15 comparisons, the
only results significant at the p < .01 level were observed
at the middle STG for the comparison of preauditory
HGp relative to preauditory theta (negative linear
relationship, p = .007) and for the comparison of
postauditory HGp relative to postauditory theta (negative
linear relationship, p = .001).

4 | DISCUSSION

Visual signals are known to affect auditory speech
processes in multiple ways. For example, lipreading
signals provide high-level phonemic representations
(Bourguignon et al., 2020), visual motion information can
relay timing information (McGrath & Summerfield, 1985),
lip closure facilitates the parsing of word-boundaries and
speech rate (Chandrasekaran et al., 2009), lip-shape pro-
vides spectral information (Plass et al., 2020), and speaker
identity can further enhance spatial localization and mul-
tisensory binding (Brang, 2019; Vatakis & Spence, 2007).
Indeed, a persistent challenge in identifying the various
effects of audiovisual speech information has been largely
methodological in nature. fMRI studies lack the temporal
resolution to identify whether visual speech modulates
auditory regions before, simultaneously with, or after the
onset of auditory speech. On the other hand, iEEG studies
face two critical shortcomings: (1) Past studies investigat-
ing audiovisual speech integration have analysed data
using single-participant designs or traditional parametric
statistics making it hard to generalize the findings to the
group-level and thus to the general population (Besle
et al., 2008; Micheli et al., 2020; Plass et al., 2020). (2) Even
while using variants of group-level analysis such as
linear mixed-effects modelling, previous studies (Ozker
et al., 2017, 2018) have focused on HGp, which indexes
local population firing rates, ignoring low-frequency
oscillations which potentially reflect distinct audiovisual
information.

To test for the presence of separate but concurrent
visual processes in auditory areas, we measured neural
activity using intracranially implanted electrodes in a
large number of human participants (n = 21) during an
audiovisual speech perception paradigm. These data

demonstrated that at least three distinct patterns of activ-
ity occur in the STG during audiovisual speech percep-
tion relative to unimodal auditory speech perception.
(1) For the theta band, visual speech suppressed the audi-
tory response predominantly in the posterior STG from
before auditory speech onset to well after auditory speech
onset (�93 ms to 500 ms, peak time = 47 ms). (2) For the
beta band, suppression was seen in the anterior STG from
�311 to �195 ms before auditory speech onset (peak
time = �247 ms) and in the middle STG from �195 ms
to 235 ms after speech onset (peak time = �116 ms).
(3) For high gamma, visual speech enhanced the auditory
response from �45 to 24 ms only in the posterior STG
(peak time = �9 ms). We interpret these distinct patterns
as reflecting distinct neural processing in auditory
regions, potentially responsible for encoding different
types of visual information to aid in auditory speech
perception. Of note, filtered spectral power produces tem-
poral smoothing of the data (e.g., one cycle of theta band
activity is �200 ms in duration), which reduces the preci-
sion of the reported time ranges, particularly for lower
frequency bands.

Converging behavioural and neurophysiological evi-
dence suggests that audiovisual enhancements from
audiovisual speech (e.g., better detection and faster
reaction times) and visual recovery of phoneme informa-
tion are subserved by two distinct mechanisms (Eskelund
et al., 2011; Plass et al., 2014). This distinction may reflect
a neural dissociation between predictive multisensory
interactions that optimize feedforward encoding of audi-
tory information and later feedback processes that alter
auditory representations generated in the pSTS (Arnal
et al., 2009, 2011) and the posterior STG (Reale
et al., 2007). In support of this view, both visual speech
(Arnal et al., 2009; Besle et al., 2004; Van Wassenhove
et al., 2005) and other anticipatory visual cues
(Vroomen & Stekelenburg, 2010) can speed-up and
reduce the magnitude of early physiological responses
associated with auditory feedforward processing, poten-
tially reflecting optimization of auditory encoding in
accordance with temporal or acoustic constraints
imposed by visual information. These early feedforward
effects, which are insensitive to audiovisual congruity in
speech, are temporally, spatially, and spectrally distinct
from later (>300 ms) responses that are specific to
crossmodally incongruent speech (Arnal et al., 2011; Van
Wassenhove et al., 2005). These later incongruity-specific
interactions point to a hierarchical feedback regime in
which unisensory speech processing is altered in accor-
dance with integrated audiovisual information from the
pSTS (Kayser & Logothetis, 2009; Olasagasti et al., 2015)
and general speech perception areas in the STG
(Mesgarani et al., 2014). These data are consistent with
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this dissociation, with several temporally and spatially
discrete neural responses in the STG. It should also be
noted that some of these activation patterns may be due
to nonspecific effects (e.g., elevated attention or physio-
logical arousal to viewing a face).

Our observation of a dissociation among theta and
beta frequency ranges is consistent with prior EEG and
physiology research suggesting these mechanisms encode
different information about a visual signal (e.g., Kumar
et al., 2016; Wang et al., 2017). Theta activity effectively
captures ongoing auditory timing information, including
rhythmic events (e.g., Schroeder & Lakatos, 2009).
Conversely, beta band activity has been more strongly
associated with feedback signals that may predictively
encode visual information in the auditory system prior to
sound onset (e.g., Engel et al., 2010). The dissociation
between theta and HGp observed is particularly interest-
ing as HGp signals have also been implicated in a predic-
tive coding framework, such that ensembles of neurons
in the posterior STG initially activate neuronal ensembles
before sound onset, leading to refined population tuning
and thus less HGp following sound onset (Karas
et al., 2019). Although this reduction in HGp during
audiovisual trials was observed in many participants
(see Figure 9), it was not observed at the group level,
potentially due to anatomical variability in the location
of the response or due to heterogeneity across
participants.

Research on the neural source of visual signals
relayed to the auditory system have largely focused on
the left posterior temporal sulcus (pSTS). This region
demonstrates strong differences between auditory-alone
and audiovisual stimuli in both fMRI and iEEG research
(Beauchamp et al., 2004; Okada et al., 2013; Ozker
et al., 2017, 2018), and has potential causal roles in
audiovisual speech integration as revealed by lesion
mapping (Brang et al., 2020; Hickok et al., 2018)
and inhibitory transcranial magnetic stimulation
(Beauchamp et al., 2010). Although these data indicate
that some of the information observed in the present
study was likely projected through feedback pathways
originating in the pSTS, particularly given its role as a
centre for bottom-up prediction errors in language com-
prehension (Lewis & Bastiaansen, 2015), it is possible
that each distinct temporal/spatial pattern has a unique
corresponding source. Although the present study does
not provide evidence as to what information is encoded
within each spatial/temporal pattern, we suggest that
future research using causal measures or neural decoding
identify the specific visual dimensions represented.

In summary, this study demonstrates that audiovisual
speech integration elicits multiple distinct patterns of
neural activity within the STG and adjacent cortex,

occurring across separate frequencies and temporal/
spatial distributions. These data suggest that visual
modulation of auditory speech perception utilizes
multiple mechanisms, potentially reflecting independent
sources of information. Our results are also consistent a
hybrid family of integration models as proposed by Peelle
and Sommers (2015). Finally, this study additionally
shows the advantage of group-level analyses of iEEG data
using linear mixed-effect models, which can improve
statistical validity and power, and importantly, improve
generalization of results across patients and to the popu-
lation at large.
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