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Abstract

This article reports and analyzes the results of protein contact and distance prediction

by our methods in the 14th Critical Assessment of techniques for protein Structure Pre-

diction (CASP14). A new deep learning-based contact/distance predictor was employed

based on the ensemble of two complementary coevolution features coupling with deep

residual networks. We also improved our multiple sequence alignment (MSA) genera-

tion protocol with wholesale meta-genome sequence databases. On 22 CASP14 free

modeling (FM) targets, the proposed model achieved a top-L/5 long-range precision of

63.8% and a mean distance bin error of 1.494. Based on the predicted distance poten-

tials, 11 out of 22 FM targets and all of the 14 FM/template-based modeling (TBM) tar-

gets have correctly predicted folds (TM-score >0.5), suggesting that our approach can

provide reliable distance potentials for ab initio protein folding.
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1 | INTRODUCTION

Ab initio protein structure prediction has been a longstanding chal-

lenge in the field of computational biology.1 We have witnessed evi-

dent signs of progress2,3 in the recent Critical Assessment of

techniques for protein Structure Prediction (CASP) experiments with

respect to protein structure prediction based on long-range predicted

geometric potentials, usually from supervised machine learning

methods. To accurately predict the long-range geometric restraints,

for example, inter-residue contacts, early methods derive correlations

between positions of multiple sequence alignments (MSAs) inspired

by the coevolution phenomenon.4 Those coevolution analysis

methods can be classified into local5–7 and global,8–11 that is, direct

coupling analysis (DCA), approaches, according to whether all other

positions are considered when computing the coupling between a res-

idue pair. The residue-wise correlation maps are later used by super-

vised machine learning methods as features,12–15 and have been

incorporated into multiple successful methods16–18 when coupled

with deep convolutional networks. An improved feature extraction

strategy19–23 is employed by feeding raw coevolution to a deep

ResNet24 with features to avoid possible information leakage during

post-processing. Recent approaches further extend the pipeline for

contact map prediction to distance25–27 and orientations28 and pro-

vide more precise restraints to assist protein folding.
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In this article, we introduce DeepPotential, which participated in

CASP14 for protein contact/distance prediction. DeepPotential col-

lects both local and global raw coevolution matrices with post-

processing and derives sequence-specific descriptors using a set of

candidates from a progressive MSA construction pipeline. By coupling

features with deep dilated residual convolutional networks,29

DeepPotential is capable of predicting high precision contact maps

superior to our previous approach in CASP13.21 We also have found

significant improvements by searching against multiple gigantic data-

bases. High-quality protein 3D structure models can be obtained

based on the low-error distance prediction by DeepPotential, without

the need for template information.

2 | MATERIALS AND METHODS

In CASP14, we tested DeepPotential, and the pipeline can be broken

down into a procedure of steps as shown in Figure 1. The prediction

contains steps of multi-MSA construction and selection, complemen-

tary coevolution feature extraction, and neural network prediction.

We also build tertiary protein structures from the predictions of

DeepPotential.

2.1 | Datasets

DeepPotential was trained on 26 151 experimentally solved struc-

tures collected from PDB,30 with the latest structure being time-

stamped as 2019.11.12. We first set the maximum sequence length

to 1000 and kept the representative sequences after a 35% sequence

identity clustering procedure with CD-HIT.31

2.2 | Collection of multiple sequence alignments

In CASP14, the six candidate MSAs for each target sequence were gen-

erated by searching against two whole-genome databases and four

metagenome sequence databases (Metaclust,32 BFD,33 Mgnify,34 and

IMG/M35). Following our previous work,36 a progressive strategy, that

is, stopping the search if the target Neff (Equation (1)) threshold is satis-

fied, was implemented. This early stopping criterion is found to reduce

database search time without sacrificing MSA quality for targets with a

great deal of homologs.36 The Neff value can be calculated by

Neff¼ 1ffiffiffi
L

p
XN
n¼1

1

1þPN
m¼1 Sm,n ≥0:8½ � , ð1Þ

where N is the total number of sequences in the MSA;  is the indica-

tor function; Sm,n is the sequence identity between sequence n and

sequence m. Figure 2 summarizes the entire MSA generation pipeline.

We first search against Uniclust30 (version 2020_01) and UniRef90

using HHblits37 and Jackhmmer38 and obtain MSAs for Stages 1 and

2, respectively. The resulting Stage 2 MSA will be used as the initial

profile for HMMsearch and HHblits to search against the Metaclust

(Stage 3 MSA) and BFD (Stage 4 MSA) databases, respectively. When

searching against the Mgnify and IMG/M databases in Stage 5 and

Stage 6, the MSA from Stage 4 is considered as the initial MSA profile.

Note that custom HHblits databases will be constructed from raw hits

to ensure that the output MSAs come from the same algorithm

(Hhblits2) from Stage 2 to Stage 6. For training sequences, the ordi-

narily HHblits MSA (Stage 1 MSA) was employed with Uniclust30

(version 2017_04). Once the desired MSAs are obtained, the distance

map with the highest confidence score will be considered as the final

prediction. In CASP14, we explored two confidence score

F IGURE 1 The pipeline of DeepPotential. Starting from a sequence, multiple sequence alignments (MSAs) will be constructed. Three models,
that is, the pseudolikelihood maximization of the Potts model, mutual information, and a hidden Markov model will be used to extract 2D and 1D
features. The two features will go through two sets of residual convolutional layers and tiled together. The combined hidden features will go
through another set of residual blocks for the final prediction
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configurations. For Group 010, the confidence score is defined as the

mean of the cumulative probability under 12Å of the top 10*L

predicted Cβ-Cβ distance distributions for all residue pairs, while for

Group 024, the corresponding threshold is 8 Å.

2.3 | Feature extraction

DeepPotential extracts a set of complementary features as the input

of the deep learning model. Coevolution analysis represents condi-

tional or marginal correlations between residues and thus can be criti-

cal discriminative features. In DeepPotential, two types of

coevolutionary features, the pseudolikelihood maximized Potts model

(PLM)11 and mutual information (MI), are extracted. Given the input

MSA (X) with N alignments and L sequence length, the PLM feature

can be obtained by minimizing the following loss function:

LPLM ¼�
XL
l¼1

XN
n¼1

log

exp ei Xn,ið Þþ PL
j¼1, j≠ i

Pi,j Xn,i ,Xn,j

� � !

PQ
q¼1exp ei qð Þþ PL

j¼1, j≠ i
Pi,j q,Xn,j

� � !

þλsingle
XL
i¼1

eik k22þ λpair
XL
i, j¼1

i≠ j

Pi,j
�� ��2

2
,

ð2Þ

where Q¼22 represents 20 regular amino acid types, an

undetermined amino acid type state and a gap state; e�RL�Q and

P�RL�L�Q�Q are field and coupling parameters of Potts model,

respectively; λsingle ¼1 and λpair ¼0:2� L�1ð Þ are the regularization

coefficients for e and P. The parameter Pi,j q1,q2ð Þ measures the linear

coefficient of the q1 state of residue i and the q2 state of residue

j conditioned on other residues and states, which can eliminate transi-

tive interactions in the observed interactions.

The PLM feature eliminates transitional noise in marginal correla-

tions, which should be more relevant to the structural interaction

terms between residue pairs. However, the optimization of PLM could

be ill-posed when there are no sufficient aligned sequences in the

MSA. In this regard, we utilize a raw marginal correlation measure-

ment, that is, MI, as another pairwise feature. The MI feature of resi-

due i and j is defined as:

Mi,j q1,q2ð Þ¼ fi,j q1,q2ð Þln fi,j q1,q2ð Þ
fi q1ð Þfj q2ð Þ , ð3Þ

here, fi q1ð Þ is the frequency of a residue type q1 at position i of the

MSA, fi,j q1,q2ð Þ is the co-occurrence of two residue types q1 and q2 at

positions i and j. Note that the raw MI matrix Mi,j �RQ�Q for residue

pair i and j will be kept as features without summation over

residue types. Such a formula can capture residue type pair-specific

information and provide the fine-grained feature to deep learning

model. Compared to the regular Pearson correlation, MI is capable of

measuring the non-linear relationships between variables. For each

residue pair, another three post-processed residue-wise features will

be extracted from the coevolution residue pair matrix (Pi,j and Mi,j),

that is, Frobenius norms of (1) the whole residue pair matrix, (2) resi-

due pair matrix excluding the gap state, and (3) residue pair matrix

excluding both the gap and undetermined amino acid state. The above

coevolutionary feature set records the features for the whole MSA,

while Pi,j X1,i,X1,j

� �
and Mi,j X1,i,X1,j

� �
record the target sequence-

specific parameters in the PLM and MI matrices. Thus, they are con-

sidered as extra 2D features.

In addition to the 2D features, there are four 1D features col-

lected. The first two are the field parameter e of the Potts model and

the MI matrix where j¼ i. HMM profile features (30 descriptors for

each position) are also considered as the third component by building

a profile hidden Markov models from the input alignment using the

hhmake program in the hhsuite package.39 The last feature encodes

the categorical target sequence with one-hot-encoding.

2.4 | Deep ResNet for multiple geometric map
prediction

As shown in Figure 1, the above 1D and 2D input features are fed into

10 1D residual blocks24 and 10 2D residual blocks, respectively. A

F IGURE 2 The multi-stage progressive multiple sequence alignment (MSA) construction pipeline in DeepPotential
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general structure of a residual block is shown in Figure 1, where

a shortcut link is added from previous layers to the output, compared

to the traditional convolutional neural networks. Here one weight

layer contains two layers, that is, one convolutional layer and an

instance normalization layer,40 collected sequentially. The trans-

formed 1D features with 32 channels will be tiled vertically and hori-

zontally and concatenated with transformed 2D features

(64 channels). The composited 2D features (32*2 + 64 = 128 chan-

nels) will further go through 40 2D residual blocks. The prediction

layer for each potential term performs a simple pixel-wise linear trans-

formation to the desired channel size, prior to a softmax layer. Dila-

tion is applied for both 1D and 2D convolutional layers with cycling of

1, 2, 4, 8, and 16. The padding size is then set accordingly to ensure

the consistency of feature signal spatial shapes. Dropout is used in all

residual blocks and the dropout rate was set to 0.2 globally.

The model was trained by the supervision of distance between

inter-residue Cβ atoms (Cα for glycine). The distance value is dis-

cretized into 36 equal-width bins from 2 Å to 20 Å, with additional

two bins representing distance less than 2 Å and over 20 Å. Thus, the

model can be trained with cross-entropy loss over all residue pairs. In

addition, some auxiliary tasks, that is, inter-Cα atom distance, inter-

residue orientation angles,28 and H-bond geometry terms defined on

long-range neighboring Cα atoms41 are also considered in a multi-task

learning strategy.42

2.5 | Template free structure modeling built on
DeepPotential restraints

To explore the effectiveness of predicted inter-residue distance for

protein structure prediction, we also utilized the predicted Cβ distance

distribution, along with the outputs of auxiliary tasks (predicted Cα

distance and inter-residue orientation angles) as restraints for ab initio

protein structure prediction in the form of potentials. The negative log

of geometric distributions was smoothed by a cubic spline into

smooth potentials so that they could be optimized by gradient-

descent-based methods, for example, L-BFGS implemented by the

PyRosetta package.43 Starting from a random initial conformation,

the structure was iteratively optimized using L-BFGS. To find the

global lowest energy conformation, we used an iterative strategy, and

at each iteration, random noise (�20�) in the backbone torsion angle

space was added to the previous confirmation for further energy mini-

mization. The conformation with the lowest energy value was kept for

final submission.

3 | RESULTS

We analyzed the performance of DeepPotential on 22 free modeling

(FM) (T1070-D1 was excluded since there were not sufficient long-

range contacts in this target) and 14 template-based modeling (TBM)/

FM targets from CASP14 (T1085-D2 was excluded because of the

unavailability of its experimental structure). The performance was

evaluated mainly in two tasks, that is, inter-residue contact and dis-

tance prediction. For the evaluation of predicted contacts, the con-

ventional long-range Top-N (N = L/10, L/5, L/2, and L) precision is

reported. For predicted discrete distance distribution, we report the

results with two different evaluation indexes. The first index is

the long-range Top-N bin classification ACCuracy (BACC), considering

that the distance prediction is formulated as a multi-class classification

problem:

BACC¼ 1
N

XN
i¼1

 argmax Pið Þ¼ k Dið Þ½ �: ð4Þ

Here, Pi is the distance distribution of ith residue pair ranked by the

probability of the distance less than 20Å. argmax Pið Þ finds

the predicted distance bin of residue pair i; k Dið Þ returns the bin of

experimental distance Di. In CASP14, there are 10 bins for distance

prediction, representing <4 Å, 4–6 Å, 6–8 Å, …, 16–18Å, 18–20Å,

and>20Å. It should be noted that there is a natural order among dis-

tance bins in such a formulation. Such order sorts the distance bins

according to the definition of bins in distance. Thus, we also utilize a

second index, long-range Top-N mean bin error (MBE), to provide

a closer evaluation of distance prediction by considering the closeness

in distance bins:

MBE¼ 1
N

XN
i¼1

argmax Pið Þ�k Dið Þj j: ð5Þ

A lower MBE index means better prediction, and the ideal case of

the MBE value should be 0. For distance prediction, a larger threshold

(20 Å) was considered in CASP14, compared to the threshold of 8 Å

for contacts. In this regard, we set N = L/2, L, 2L, and 5L when evalu-

ating distance prediction.

3.1 | Contact and distance prediction performance
in CASP14

The accuracy of long-range contact prediction on CASP14 FM and

FM/TBM targets for Groups 010 and 024 are listed in Table 1. On

average, the Top-L/5 precisions were 0.638 and 0.615, and 16 and

15 out of all 22 FM targets have a precision ≥0.5 for Group 010 and

Group 024, respectively. On 14 FM/TBM targets, the average Top-

L/5 precisions increased to 0.868 and 0.862, and 13 out of 14 have a

precision ≥0.5 for both of the two Groups. Such a difference is likely

because FM/TBM targets have more related samples in the training

set of DeepPotential than FM targets, because by definition they are

evolutionarily closer than the FM targets to the PDB structure by

which DeepPotential was trained. To verify, we searched each of

CASP14 domains against the training structures of DeepPotential by

TM-align. The average TM-score between FM/TBM targets and their

best template is 0.587, significantly higher than 0.497 for FM targets,

with an unpaired t-test p-value of 8e�04. FM/TBM targets also, on

average, have 258 related structures (TM-score >0.5) in the training
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set. Meanwhile, for FM targets, the corresponding number is only 28.

Such data suggest very different relationships to training samples of

DeepPotential for FM and FM/TBM targets in CASP14. In addition,

FM/TBM targets also have more sequence homologs than FM targets

(167.8 vs. 79.7 of average Neff), which provide more reliable features,

especially coevolutionary features. In Table 1, we also compare the

performance of two Groups based on the DeepPotential pipeline.

Although Group 010 had slightly higher precisions for all evaluation

indexes, the differences are not statistically significant, with 2-tailed

test p-values of .196, .410, .350, and .787, respectively, for both FM

and FM/TBM targets. Figure S1 shows the correlation between the

confidence score of selected MSAs and contact precision for Group

010 and Group 024 respectively. Both two configurations of confi-

dence score have high correlations with their Top-L long-range preci-

sions, with Pearson correlation coefficient (PCC) of 0.743 and 0.752

for Group 010 and Group 024 respectively. Such data suggest that

MSA selection based on the mean Top-N probability scores has robust

performance regardless of the specific choice of the threshold for

confidence score definition.

In Table 2, we report the two metrics for distance prediction, that

is, BACC and MBE. A similar pattern can be observed that FM/TBM

targets achieved higher accuracy or lower bin error relative to FM tar-

gets. Interestingly, unlike contact precisions that drop sharply when

evaluating Top-L/10 to Top-L contacts, we observe a relatively gentle

slope even evaluating from Top-L/2 to Top-5L ranked residue pairs.

Taking the performance of Group 010 on TBM/FM targets as an

example, the accuracy of predicted contacts, with a threshold of 8 Å,

drops from 0.898 to 0.620 (31.0% of decrease) when evaluating from

Top-L/10 to Top-L contacts. Meanwhile, for distance, the Bin accu-

racy only drops from 0.562 to 0.456 (18.9% of reduction) when

selecting from Top-L/2 to Top-5*L distance predictions, sorted by the

cumulative probability less than 20 Å. Such an observation suggests a

stable accuracy for distance prediction when sorting according to

P d< 20Å
� �

. In addition to the bin accuracy, Table S1 also shows other

multi-class classification evaluation indexes, that is, precision, recall

and F1-score, from Top-L/2 to Top-5*L distance predictions. The eval-

uation indexes for each target are the average over all classes (bins).

Similar to the precision of contact maps, Group 024 tends to have

more accurate distance prediction for FM while Group 010 favors

FM/TBM targets, respectively. For the average Top-N bin error pres-

ented in Table 2, it can be observed that both of the two Groups

maintain relatively low values. For example, the long-range Top-L

average bin errors on FM and FM/TBM targets are 1.336 (1.415) and

0.593 (0.532) for Group 010 (024), respectively. It is notable that both

Groups successfully provide 11 FM and 10 FM/TBM targets that have

an MBE lower than 1.0, even up to Top-5L selected residue pairs. Pre-

cise continuous distance prediction, utilized as potentials, will be criti-

cal to guide high-accuracy protein structure prediction.

We address the improvements of DeepPotential compared to our

previous model, TripletRes, in CASP13 (denoted as TripletRes_CASP13)

by head-to-head comparisons in Figure 3. We compare the long-range

Top-L/5 TripletRes from their own default MSAs (Figure 3A) and from

the same MSAs by DeepPotential (Figure 3B), with the results of Group

010 in CASP14 as an illustration. With the original pipeline, including

the previous MSA construction pipeline, TripletRes_CASP13 achieved a

Top-L/5 precision of 0.310 on 36 FM and FM/TBM targets; when the

newly constructed MSAs were applied, the precision rose to 0.398, an

improvement of 28.7%, suggesting the new pipeline generates higher-

quality MSAs over multiple sequence databases. Meanwhile, the preci-

sion for Group 010 in CASP14 on the same dataset was 0.483, 56.1%,

and 21.3% higher than the control TripletRes_CASP13 from the default

and the same MSAs, respectively. The corresponding p-values are

3.58e�08 and 2.35e�07 respectively. Besides, a head-to-head compari-

son of Top-L long-range contact precision between TripletRes (Post-

CASP13), introduced in our previous research,22 and Group 010 is pres-

ented in Figure S2. The TripletRes (Post-CASP13) was trained using the

same dataset with DeepPotential. The Top-L precision increases from

0.398 to 0.418 after the re-training, but still lower than the precision of

0.483 (p-value = 1.0e�05) obtained by DeepPotential. These significant

improvements could be attributed to the complete set of features

coupled with multi-task learning framework and the larger amount of

training data. However, the results show that for those targets that

DeepPotential and TripletRes models had similar performance, where

limited superiority could be found for DeepPotential. Our next work

should be focusing on proper training strategies for those extremely

hard targets.

3.2 | Constructing MSAs from gigantic databases
improves performance

In CASP14, we utilized a progressive pipeline for MSA construction

from whole-genome and meta-genome databases with an enormous

number of sequences. The employment of those sequence databases

becomes a critical element to achieve higher quality contact/distance

prediction, especially for FM targets. In Figure 4A, we show the distri-

butions of long-range Top-L/5 precisions of 22 FM targets by gradu-

ally adding the considered sequence databases. Other factors, for

TABLE 1 Mean accuracy and standard error (in brackets) of long-range predicted contacts for DeepPotential's two Groups in CASP14

Group

FM TBM/FM

L/10 L/5 L/2 L L/10 L/2 L/5 L

010 0.686 (0.086) 0.638 (0.081) 0.534 (0.068) 0.396 (0.051) 0.898 (0.057) 0.868 (0.061) 0.771 (0.062) 0.620 (0.057)

024 0.653 (0.090) 0.615 (0.084) 0.502 (0.068) 0.386 (0.051) 0.872 (0.064) 0.862 (0.059) 0.784 (0.061) 0.629 (0.059)

Abbreviation: FM, free modeling; TBM, template-based modelling.
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example, MSA selection score configuration, are fixed. Comparable

performance, that is, precisions of 0.402 versus 0.416 can be

observed with two whole-genome databases. In contrast, significant

improvements can be observed when meta-genome databases are uti-

lized by our pipeline. When Metaclust and BFD databases were

added, the precision increased to 0.495 and 0.610, 19.0% and 46.6%

higher than the best results of whole-genome databases, respectively.

Additionally, when two extra databases, that is, the Mgnify and

IMG/M databases, are considered, mean precisions of 0.647

and 0.660 can be observed respectively. There is also a consistent

improvement in median precision from 29.2% to 77.2% with the con-

sideration of more databases. Such data suggest the fundamental role

of the MSA construction pipeline and the great usefulness of the utili-

zation of meta-genome databases. It can be observed in Figure 4B

that the Neff of selected MSAs is continuously increasing along with

the addition of the corresponding databases. The detailed mean

(median) logarithm Neff values are 0.21 (�0.11), 0.54 (0.06), 1.21

(0.52), 1.9 (2.07), 2.19 (2.41), and 2.69 (3.35) when adding the

corresponding databases. The rapid improvements of contact-map

precision are likely highly driven by the MSAs with continuously

increasing Neff values at each MSA stage.

A more quantitative analysis about the impact of MSA quality on

the performance of contact/distance prediction of DeepPotential is

shown in Figure 5A–C. In Figure 5A, the long-range Top-L/5 precision

of Group 024 in CASP14 versus the Neff values of the MSAs is pres-

ented. The PCC between precision and the common logarithm of Neff

is 0.364, indicating a modest correlation. The precision of

DeepPotential is less dependent on Neff than TripletRes_CASP with

the same input MSAs, whose corresponding PCC is 0.419. As shown

in the left-upper block in Figure 5A, 10 out of 14 targets with a Neff

value lower than 10 have a precision ≥0:5, which is 3 more than that

of TripletRes_CASP; this may help explain the lower correlation coef-

ficient seen for DeepPotential than TripletRess_CASP.

In addition, we also found that the PCCs are very different for

FM and FM/TBM targets. When only FM targets are considered, the

correlation is 0.382, slightly higher than the combination of FM and

FM/TBM targets. The reason for higher correlation coefficient for FM

targets should be the extreme cases (red dots in the lower-left block

in Figure 5A) where their Neff values are all less than 1, and the

corresponding precisions are <0.3. In contrast, for FM/TBM targets,

the correlation became 0.181 with a p-value of .535 where a statisti-

cally significant correlation could not be detected. Still, we can find

one FM/TBM target that has a high Neff value and precision <0.5,

T1080-D1. Nevertheless, the 3D model built based on the geometric

restraints predicted by DeepPotential eventually had the correct fold,

with a TM-score44 of 0.503, possibly because of the modest Top-L

bin error of 1.37.

For FM targets with Neff ≥10, 10 out of 13 had precisions over

0.5, and the 3 exceptions are T1029-D1, T1093-D1, and T1093-D3.

Interestingly, for T1093-D1 and T1093-D3, if we re-run

DeepPotential based on MSAs built with domain sequences, the

corresponding precisions will be boosted to 0.821 and 1.0, even with

lower Neff values of 10.91 and 17.13. We simply visualize the MSAT
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consensus using Sequence logos45 with MSAs generated with full-

length sequence and only domain sequence in Figures S3 and S4 for

T1093-D1 and T1093-D3, respectively. The graphical characters dis-

played in Figures S3 and S4 represent significant residues and subtle

sequence patterns in the corresponding MSAs. The height of each let-

ter is made proportional to its frequency, and the letters are sorted so

the most common one is on top. We found that the patterns of con-

sensus sequences are visibly different for domain and full-length

MSAs. The average Kullback–Leibler divergencies over positional

amino acid compositions between domain and full-length MSAs are

1.30 and 1.19 for T1093-D1 and T1093-D3 respectively. For MSAs

from the full-length sequence, the average sequence identity between

aligned sequences and query sequence are 0.098 and 0.118 for

T1093-D1 and T1093-D3, respectively, which are much lower than

those of the domain sequence MSAs (0.202 and 0.232). The differ-

ences in distribution and sequence identity suggest that there could

be noisy alignments in our selected MSAs, despite their high Neff

value.

Figure 5B,C shows the long-range Top-L bin classification accu-

racy and bin error versus Neff respectively. We found a relatively

F IGURE 3 Head-to-head comparison of long-range Top-L precision between our pipeline in CASP13 and CASP14. (A) Contacts predicted
using their own multiple sequence alignments (MSAs). (B) Contacts predicted using same MSAs generated by the newer pipeline

F IGURE 4 Increases of contact long-range Top-L/5 precision and average log(Neff) with the consideration of sequence databases illustrated

in violin plots. White dots indicate the median value. Vertical black lines indicate 25% to 75% percentile. (A) Precision changes as more databases
are used. (B) Log(Neff) changes when more databases are employed
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higher PCC of 0.465 between classification accuracy and the common

logarithm of Neff, compared to that between contact precision and

the latter. The correlation indicates that there is much room for

improvement of the current model for further higher resolution dis-

tance prediction, especially for FM targets (PCC = 0.474) with limited

sequence homologs. For Top-L bin error, we can observe a modest

correlation; the corresponding PCCs are �0.363 and �0.386 for all

targets and FM targets, respectively.

3.3 | Structure modeling based on DeepPotential
in CASP14

The final goal of contact/distance prediction is to assist protein struc-

ture prediction, and the best way to evaluate the quality of distance

prediction is to analyze the quality of predicted protein structure

purely based on predicted distance. On 36 FM and FM/TBM target

domains, the 3D models based on predicted geometric descriptors by

DeepPotential achieved a mean TM-score of 0.591. When FM

domains are evaluated, the mean TM-score becomes 0.514, where

12 have correctly predicted global folds (TM-score ≥0.5). Surprisingly,

our submissions had all 14 FM/TBM folds correctly predicted, with a

mean TM-score of 0.712, ranging from 0.503 to 0.868, even though

structural templates were not used. Figure 5D shows the TM-score

and the Neff of 36 FM and FM/TBM targets. Similar to the previous

observations, there is a modest correlation between the TM-score

and the common logarithm of Neff (PCC = 0.482), but for FM/TBM

targets, the correlation is weak, even not statistically significant

(PCC = 0.158, p-value = .61). Figure S5 plots the correlation between

the TM-score of predicted structures and the precision of long-range

Top-L/2 predicted contacts. There is a significant correlation between

TM-score and precision (PCC = 0.788), indicating that the accuracy of

F IGURE 5 Illustration of the effect of multiple sequence alignments (MSAs) on the performance DeepPotential. (A) The precision of long-
range Top-L/5 contact prediction versus Neff of MSAs. (B, C) Mean bin accuracy and mean bin error of long rang Top-L distance prediction
versus Neff of MSAs. (D) TM-score of 3D models based on the prediction of DeepPotential versus Neff of MSAs
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predicted structures is highly dependent on the quality of deep learn-

ing predictions. There are hardly any cases with low contact precision

but high TM-score, which is, however, reasonable since we used a

basic protein folding procedure without other information sources, for

example, template information.

In Figure 6, we present an example FM domain, T1042-D1, to

show that DeepPotential can predict reliable distance potentials with

limited sequence alignments (Neff = 8.85) for accurate protein struc-

ture prediction. T1042-D1 is the 8th domain of a viral protein46 (PDB

ID: 6VR4) officially partitioned by CASP. In this case, the long-range

Top-L/5 precision was 0.818 and for contact map prediction, the Top-

L bin accuracy and bin error were 0.464 and 0.601, respectively. As

shown in Figure 6A, the predicted distance bin map in general suc-

cessfully recovered the distance patterns of the experimental struc-

ture except one region with some geometric interactions between N

and C-terminals. Nevertheless, the predicted structure based on the

distance map has a TM-score of 0.725.

Despite this successful prediction, we found that domain

T1047s1-D1 has an unexpectedly low TM-score. The contact Top-

L/5 precision, Top-L bin accuracy, and Top-L bin error are 1.0, 0.597,

and 0.502 respectively. However, we observed some noisy distance

predictions between a beta-sheet region (residue 50–125) and the C-

terminal structure region (residue 125–211) in Figure S6B. Those

noisy predictions pulled the two regions together and destroyed the

structure of the beta-sheet region (Figure S6D). Thus, our 3D model

had only a TM-score of 0.416, although the TM-score of the region

near the C-terminal achieved 0.632 (Figure S6E). In Figure S6A, we

plot the residue-wise prediction based on Potts model coupling

parameters and found observable noisy signals. Thus, the noisy pre-

diction partly came from the MSA and its features.

This example also exposed one weakness of our protein contact/

distance and structure prediction pipeline. The current distance predic-

tion is only formulated to predict distance under a fixed threshold, that

is, 20 Å. Thus, the subsequent restraint-based protein folding strategy

will be influenced by possibly noisy distance (or other geometric descrip-

tors) potentials. If a region has sparse connections with other parts, the

noise could completely mislead the folding. Seeking better formulations,

for example, real-distance, to obtain reliable geometric restraints with-

out the limitation of a threshold should help build better 3D models, not

only for targets similar to T1047s1, but also for the modeling of inter-

domain or inter-chain structures. One feasible way could be predicting

the parameters of distribution (e.g., the expected value [or mean] and

standard deviation of the variable's natural logarithm for log-normal dis-

tribution) for the inter-atom distance modeling. The predicted distribu-

tion map could be easily converted to smooth potentials for protein

folding. Whether such prediction would result in more accurate protein

folding still requires further examination.

4 | DISCUSSION

We have introduced DeepPotential, which participated in CASP14 for

contact and distance prediction. Our model takes an ensemble of

complementary features directly extracted from selected MSAs con-

structed by progressive searching against multiple sequence data-

bases. Detailed analysis showed that the proposed method can

produce relatively high precision contact maps that significantly out-

perform our previous method in CASP13. We also showed that the

distance predictions can be used as reliable restraints for protein

structure prediction.

F IGURE 6 An illustrative example of CASP14 domain T1042-D1. (A) Comparison of predicted discrete distance map by DeepPotential and
the distance map of the experimental structure. The distance bins are defined according to CASP format. (B) Superposition of submitted first
model (blue) and experimental structure (red)
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4.1 | What went right?

The results in CASP14 confirm the conclusion of our previous strategy

for contact/distance prediction in CASP13, that is, constructing and

selecting MSAs from multiple protein sequence databases can signifi-

cantly improve performance, especially for FM targets. In CASP14, we

further extended our MSA construction pipeline by the utilization of

large-scale meta-genome databases, which brought a further boost in

contact/distance and structure prediction. In addition, the ensemble

of multiple raw coevolution features which extract complementary

information from MSAs, together with a multi-task learning scheme,

contributed to the advantage of DeepPotential over previous

approaches.

4.2 | What went wrong?

The DeepPotential model predicts distance and other geometric terms

marginally, ignoring the inherent relationships among geometric

terms and residue pairs in the loss function. Designing a formulation

to effectively model the joint distributions between residue pairs or

geometric terms should be a necessity in our future work. Also, the

convolutional neural networks used in DeepPotential have a relatively

long max path between features of residue pairs. Considering the rev-

olutionary results obtained by AlphaFold247 in CASP14 and the recent

success of Transformer48 applied in protein sequence modeling,49–51

the Transformer framework with a direct max path should be consid-

ered in our future work to model direct long-range interactions in

space.
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