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Abstract 
 

This article reports and analyzes the results of protein contact and distance prediction by 
our methods in the 14th Critical Assessment of techniques for protein Structure Prediction 
(CASP14). A new deep learning-based contact/distance predictor was employed based on 
the ensemble of two complementary coevolution feature coupling with deep residual 
networks. We also improved our Multiple Sequence Alignment (MSA) generation protocol 
with wholesale meta-genome sequence databases. On 22 CASP14 Free modeling (FM) 
targets, the proposed model achieved a top-L/5 long-range precision of 63.8% and a mean 
distance bin error of 1.494. Based on the predicted distance potentials, 11 out of 22 FM 
targets and all of the 14 FM/TBM targets have correctly predicted folds (TM-score > 0.5), 
suggesting that our approach can provide reliable distance potentials for ab initio protein 
folding.  

 
Keywords: CASP, contact-map prediction, deep learning, protein structure prediction 
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Introduction 
Ab initio protein structure prediction has been a longstanding challenge in the field of 

computational biology1. We have witnessed evident signs of progress2,3 in the recent 
Critical Assessment of techniques for protein Structure Prediction (CASP) experiments 
with respect to protein structure prediction based on long-range predicted geometric 
potentials, usually from supervised machine learning methods. To accurately predict the 
long-range geometric restraints, e.g., inter-residue contacts, early methods derive 
correlations between positions of MSAs inspired by the coevolution phenomenon4. Those 
coevolution analysis methods can be classified into local5-7 and global8-11, i.e., direct 
coupling analysis (DCA), approaches, according to whether all other positions are 
considered when computing the coupling between a residue pair. The residue-wise 
correlation maps are later used by supervised machine learning methods as features12-15, 
and have been incorporated into multiple successful methods16-18 when coupled with deep 
convolutional networks. An improved feature extraction strategy19-23 is employed by 
feeding raw coevolution to a deep ResNet24 with features to avoid possible information 
leakage during post-processing. Recent approaches further extend the pipeline for contact 
map prediction to distance25-27 and orientations28 and provide more precise restraints to 
assist protein folding. 

In this article, we introduce DeepPotential, which participated in CASP14 for protein 
contact/distance prediction. DeepPotential collects both local and global raw coevolution 
matrices with post-processing and derives sequence-specific descriptors using a set of 
candidates from a progressive MSA construction pipeline. By coupling features with deep 
dilated residual convolutional networks29, DeepPotential is capable of predicting high 
precision contact maps superior to our previous approach in CASP1321. We also have 
found significant improvements by searching against multiple gigantic databases. High-
quality protein 3D structure models can be obtained based on the low-error distance 
prediction by DeepPotential, without the need for template information. 

  
Materials and methods 

In CASP14, we tested DeepPotential, and the pipeline can be broken down into a 
procedure of steps as shown in Figure 1. The prediction contains steps of multi-MSA 
construction and selection, complementary coevolution feature extraction, and neural 
network prediction. We also build tertiary protein structures from the predictions of 
DeepPotential. 

Datasets. DeepPotential was trained on 26,151 experimentally solved structures 
collected from PDB30, with the latest structure being timestamped as 2019.11.12. We first 
set the maximum sequence length to 1000 and kept the representative sequences after a 35% 
sequence identity clustering procedure with CD-HIT31. 

Collection of Multiple sequence alignments. In CASP14, the 6 candidate MSAs for 
each target sequence were generated by searching against two whole-genome databases 
and four metagenome sequence databases (Metaclust32, BFD33, Mgnify34 and IMG/M35). 
Following our previous work36, a progressive strategy, i.e., stopping the search if the target 
Neff (Equation 1) threshold is satisfied, was implemented. This early stopping criterion is 
found to reduce database search time without sacrificing MSA quality for targets with a 
great deal of homologs36. The Neff value can be calculated by 



 4 

 

Neff =
1
√𝐿𝐿

�
1

1 + ∑ 𝕀𝕀�𝑆𝑆𝑚𝑚,𝑛𝑛 ≥ 0.8�𝑁𝑁
𝑚𝑚=1

𝑁𝑁

𝑛𝑛=1

(1) 

where 𝑁𝑁 is the total number of sequences in the MSA; 𝕀𝕀 is the indicator function; 𝑆𝑆𝑚𝑚,𝑛𝑛 is 
the sequence identity between sequence n and sequence m. Figure 2 summarizes the entire 
MSA generation pipeline. We first search against Uniclust30 (version 2020_01) and 
UniRef90 using HHblits37 and Jackhmmer38 and obtain MSAs for Stage 1 and 2, 
respectively. The resulting Stage 2 MSA will be used as the initial profile for HMMsearch 
and HHblits to search against the Metaclust (Stage 3 MSA) and BFD (Stage 4 MSA) 
databases, respectively. When searching against the Mgnify and IMG/M databases in Stage 
5 and Stage 6, the MSA from Stage 4 is considered as the initial MSA profile. Note that 
custom HHblits databases will be constructed from raw hits to ensure that the output MSAs 
come from the same algorithm (Hhblits2) from Stage 2 to Stage 6. For training sequences, 
the ordinarily HHblits MSA (Stage 1 MSA) was employed with Uniclust30 (version 
2017_04). Once the desired MSAs are obtained, the distance map with the highest 
confidence score will be considered as the final prediction. In CASP14, we explored two 
confidence score configurations. For Group 010, the confidence score is defined as the 
mean of the cumulative probability under 12 Å of the top 10*L predicted Cβ-Cβ distance 
distributions for all residue pairs, while for Group 024, the corresponding threshold is 8Å.  

Feature extraction. DeepPotential extracts a set of complementary features as the input 
of the deep learning model. Coevolution analysis represents conditional or marginal 
correlations between residues and thus can be critical discriminative features. In 
DeepPotential, two types of coevolutionary features, the PseudoLikelihood Maximized 
Potts model (PLM)11 and Mutual Information (MI), are extracted. Given the input MSA 
(X) with N alignments and L sequence length, the PLM feature can be obtained by 
minimizing the following loss function: 

ℒ𝑃𝑃𝑃𝑃𝑃𝑃 = −�� log
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where 𝑄𝑄 = 22 represents 20 regular amino acid types, an undetermined amino acid type 
state and a gap state; 𝑒𝑒 ∈ 𝑅𝑅𝐿𝐿×𝑄𝑄 and 𝑃𝑃 ∈ 𝑅𝑅𝐿𝐿×𝐿𝐿×𝑄𝑄×𝑄𝑄 are field and coupling parameters of 
Potts model, respectively; 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 1  and 𝜆𝜆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 0.2 × (𝐿𝐿 − 1)  are the regularization 
coefficients for e and P. The parameter 𝑃𝑃𝑖𝑖,𝑗𝑗(𝑞𝑞1, 𝑞𝑞2) measures the linear coefficient of the 
𝑞𝑞1 state of residue i and the 𝑞𝑞2 state of residue j conditioned on other residues and states, 
which can eliminate transitive interactions in the observed interactions. 

The PLM feature eliminates transitional noise in marginal correlations, which should 
be more relevant to the structural interaction terms between residue pairs. However, the 
optimization of PLM could be ill-posed when there are no sufficient aligned sequences in 
the MSA. In this regard, we utilize a raw marginal correlation measurement, i.e., Mutual 
Information, as another pairwise feature. The Mutual Information feature of residue i and 
j is defined as: 
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𝑀𝑀𝑖𝑖,𝑗𝑗(𝑞𝑞1, 𝑞𝑞2) = 𝑓𝑓𝑖𝑖,𝑗𝑗(𝑞𝑞1, 𝑞𝑞2) ln
𝑓𝑓𝑖𝑖,𝑗𝑗(𝑞𝑞1, 𝑞𝑞2)
𝑓𝑓𝑖𝑖(𝑞𝑞1)𝑓𝑓𝑗𝑗(𝑞𝑞2)

(3) 

here, 𝑓𝑓𝑖𝑖(𝑞𝑞1) is the frequency of a residue type 𝑞𝑞1 at position i of the MSA, 𝑓𝑓𝑖𝑖,𝑗𝑗(𝑞𝑞1, 𝑞𝑞2) is 
the co-occurrence of two residue types 𝑞𝑞1 and 𝑞𝑞2 at positions i and j. Note that the raw 
Mutual Information matrix 𝑀𝑀𝑖𝑖,𝑗𝑗 ∈ 𝑅𝑅𝑄𝑄×𝑄𝑄 for residue pair i and j will be kept as features 
without summation over residue types. Such a formula can capture residue type pair-
specific information and provide the fine-grained feature to deep leaning model. Compared 
to the regular Pearson correlation, Mutual information is capable of measuring the non-
linear relationships between variables. For each residue pair, another three post-processed 
residue-wise features will be extracted from the coevolution residue pair matrix (𝑃𝑃𝑖𝑖,𝑗𝑗 and 
𝑀𝑀𝑖𝑖,𝑗𝑗), i.e., Frobenius norms of (1) the whole residue pair matrix, (2) residue pair matrix 
excluding the gap state, and (3) residue pair matrix excluding both the gap and 
undetermined amino acid state. The above coevolutionary feature set records the features 
for the whole MSA, while 𝑃𝑃𝑖𝑖,𝑗𝑗�𝑋𝑋1,𝑖𝑖 ,𝑋𝑋1,𝑗𝑗� and 𝑀𝑀𝑖𝑖,𝑗𝑗�𝑋𝑋1,𝑖𝑖 ,𝑋𝑋1,𝑗𝑗� record the target sequence-
specific parameters in the PLM and MI matrices. Thus, they are considered as extra 2-D 
features. 

In addition to the 2-D features, there are four 1-D features collected. The first two are 
the field parameter 𝑒𝑒 of the Potts model and the mutual information matrix where 𝑗𝑗 = 𝑖𝑖. 
HMM profile features (30 descriptors for each position) are also considered as the third 
component by building a profile hidden Markov models from the input alignment using 
the hhmake program in the hhsuite package39. The last feature encodes the categorical 
target sequence with one-hot-encoding.  

Deep ResNet for multiple geometric map prediction. As shown in Figure 1, the above 
1-D and 2-D input features are fed into 10 1D residual blocks24 and 10 2D residual blocks, 
respectively. A general structure of a residual block is shown in Figure 1, where a shortcut 
link is added from previous layers to the output, compared to the traditional convolutional 
neural networks. Here one weight layer contains two layers, i.e., one convolutional layer 
and an instance normalization layer40, collected sequentially. The transformed 1D features 
with 32 channels will be tiled vertically and horizontally and concatenated with 
transformed 2D features (64 channels). The composited 2D features (32*2+64=128 
channels) will further go through 40 2D residual blocks. The prediction layer for each 
potential term performs a simple pixel-wise linear transformation to the desired channel 
size, prior to a softmax layer. Dilation is applied for both 1D and 2D convolutional layers 
with cycling of 1, 2, 4, 8, and 16. The padding size is then set accordingly to ensure the 
consistency of feature signal spatial shapes. Dropout is used in all residual blocks and the 
dropout rate was set to 0.2 globally. 

The model was trained by the supervision of distance between inter-residue Cβ atoms 
(Cα for glycine). The distance value is discretized into 36 equal-width bins from 2 Å to 20 
Å, with additional two bins representing distance less than 2 Å and over 20 Å. Thus, the 
model can be trained with cross-entropy loss over all residue pairs. In addition, some 
auxiliary tasks, i.e., inter-Cα atom distance, inter-residue orientation angles28 and H-bond 
geometry terms defined on long-range neighboring Cα atoms41, are also considered in a 
multi-task learning strategy42. 

Template Free structure modeling built on DeepPotential restraints. To explore the 
effectiveness of predicted inter-residue distance for protein structure prediction, we also 
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utilized the predicted Cβ distance distribution, along with the outputs of auxiliary tasks 
(predicted Cα distance and inter-residue orientation angles) as restraints for ab initio protein 
structure prediction in the form of potentials. The negative log of geometric distributions 
were smoothed by a cubic spline into smooth potentials so that they could be optimized by 
gradient-descent based methods, e.g., L-BFGS implemented by the PyRosetta package43. 
Starting from a random initial conformation, the structure was iteratively optimized using 
L-BFGS. To find the global lowest energy conformation, we used an iterative strategy, and 
at each iteration, random noise (±20 degrees) in the backbone torsion angle space was 
added to the previous conformation for further energy minimization. The conformation 
with the lowest energy value was kept for final submission. 

 
Results 

We analyzed the performance of DeepPotential on 22 FM (T1070-D1 was excluded 
since there were not sufficient long-range contacts in this target) and 14 TBM/FM targets 
from CASP14 (T1085-D2 was excluded because of the unavailability of its experimental 
structure). The performance was evaluated mainly in two tasks, i.e., inter-residue contact 
and distance prediction. For the evaluation of predicted contacts, the conventional long-
range Top-N (N=L/10, L/5, L/2, and L) precision is reported. For predicted discrete distance 
distribution, we report the results with two different evaluation indexes. The first index is 
the long-range Top-N bin classification ACCuracy (BACC), considering that the distance 
prediction is formulated as a multi-class classification problem: 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =
1
𝑁𝑁
�𝕀𝕀[𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑃𝑃𝑖𝑖) == 𝑘𝑘(𝐷𝐷𝑖𝑖)]
𝑁𝑁

𝑖𝑖=1

(4) 

Here, 𝑃𝑃𝑖𝑖 is the distance distribution of i-th residue pair ranked by the probability of the 
distance less than 20 Å. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑃𝑃𝑖𝑖) finds the predicted distance bin of residue pair i; 
𝑘𝑘(𝐷𝐷𝑖𝑖)  returns the bin of experimental distance 𝐷𝐷𝑖𝑖 . In CASP14, there are 10 bins for 
distance prediction, representing < 4Å, 4-6Å, 6-8Å, …, 16-18Å, 18-20Å, and >20Å. It 
should be noted that there is a natural order among distance bins in such a formulation. 
Such order sorts the distance bins according to the definition of bins in distance. Thus, we 
also utilize a second index, long-range Top-N Mean Bin Error (MBE), to provide a closer 
evaluation of distance prediction by considering the closeness in distance bins: 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑁𝑁
�|𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑃𝑃𝑖𝑖) − 𝑘𝑘(𝐷𝐷𝑖𝑖)|
𝑁𝑁

𝑖𝑖=1

(5) 

A lower MBE index means better prediction, and the ideal case of the MBE value should 
be 0. For distance prediction, a larger threshold (20Å) was considered in CASP14, 
compared to the threshold of 8Å for contacts. In this regard, we set N=L/2, L, 2L, and 5L 
when evaluating distance prediction. 

Contact and distance prediction performance in CASP14. The accuracy of long-range 
contact prediction on CASP14 FM and FM/TBM targets for Group 010 and 024 are listed 
in Table 1. On average, the Top-L/5 precisions were 0.638 and 0.615, and 16 and 15 out of 
all 22 FM targets have a precision ≥ 0.5 for Group 010 and 024, respectively. On 14 
FM/TBM targets, the average Top-L/5 precisions increased to 0.868 and 0.862, and 13 out 
of 14 have a precision ≥ 0.5 for both of the two Groups. Such a difference is likely because 
FM/TBM targets have more related samples in the training set of DeepPotential than FM 
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targets, because by definition they are evolutionarily closer than the FM targets to the PDB 
structure by which DeepPotential was trained. To verify, we searched each of CASP14 
domains against the training structures of DeepPotential by TM-align. The average TM-
score between FM/TBM targets and their best template is 0.587, significantly higher than 
0.497 for FM targets, with an unpaired t-test p-value of 8e-04.  FM/TBM targets also, on 
average, have 258 related structures (TM-score > 0.5) in the training set. Meanwhile, for 
FM targets, the corresponding number is only 28. Such data suggest very different 
relationships to training samples of DeepPotential for FM and FM/TBM targets in CASP14. 
In addition, FM/TBM targets also have more sequence homologs than FM targets (167.8 
versus 79.7 of average Neff), which provide more reliable features, especially 
coevolutionary features. In Table 1, we also compare the performance of two Groups based 
on the DeepPotential pipeline. Although Group 010 had slightly higher precisions for all 
evaluation indexes, the differences are not statistically significant, with two-tailed test p-
values of 0.196, 0.410, 0.350, and 0.787, respectively, for both FM and FM/TBM targets. 
Figure S1 shows the correlation between the confidence score of selected MSAs for Group 
010 and Group 024 respectively. Both two configurations of confidence score have high 
correlations with their Top-L long-range precisions, with Pearson correlation coefficient 
(PCC) of 0.743 and 0.752 for Group 010 and Group 024 respectively. Such data suggest 
that MSA selection based on the mean Top-N probability scores has robust performance 
regardless of the specific choice of the threshold for confidence score definition. 

In Table 2, we report the two metrics for distance prediction, i.e., BACC and MBE. A 
similar pattern can be observed that FM/TBM targets achieved higher accuracy or lower 
bin error relative to FM targets. Interestingly, unlike contact precisions that drop sharply 
when evaluating Top-L/10 to Top-L contacts, we observe a relatively gentle slope even 
evaluating from Top-L/2 to Top-5L ranked residue pairs. Taking the performance of Group 
010 on TBM/FM targets as an example, the accuracy of predicted contacts, with a threshold 
of 8 Å, drops from 0.898 to 0.620 (31.0% of decrease) when evaluating from Top-L/10 to 
Top-L contacts. Meanwhile, for distance, the Bin accuracy only drops from 0.562 to 0.456 
(18.9% of reduction) when selecting from Top-L/2 to Top-5*L distance predictions, sorted 
by the cumulative probability less than 20 Å. Such an observation suggests a stable 
accuracy for distance prediction when sorting according to 𝑃𝑃(𝑑𝑑 < 20Å). In addition to the 
bin accuracy, Table S1 also shows other multi-class classification evaluation indexes, i.e., 
Precision, Recall and F1-score, from Top-L/2 to Top-5*L distance predictions. The 
evaluation indexes for each target are the average over all classes (bins). Similar to the 
precision of contact-maps, Group 024 tends to have more accurate distance prediction for 
FM while Group 010 favors FM/TBM targets, respectively. For the average Top-N Bin 
Error presented in Table 2, it can be observed that both of the two Groups maintain 
relatively low values. For example, the long-range Top-L average bin errors on FM and 
FM/TBM targets are 1.336 (1.415) and 0.593 (0.532) for Group 010 (024), respectively. It 
is notable that both Groups successfully provide 11 FM and 10 FM/TBM targets that have 
a mean bin error lower than 1.0, even up to Top-5L selected residue pairs. Precise 
continuous distance prediction, utilized as potentials, will be critical to guide high-accuracy 
protein structure prediction.  

We address the improvements of DeepPotential compared to our previous model, 
TripletRes, in CASP13 (denoted as TripletRes_CASP13) by head-to-head comparisons in 
Figure 3. We compare the long-range Top-L/5 TripletRes from their own default MSAs 
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(Figure 3A) and from the same MSAs by DeepPotential (Figure 3B), with the results of 
Group 010 in CASP14 as an illustration. With the original pipeline, including the previous 
MSA construction pipeline, TripletRes_CASP13 achieved a Top-L/5 precision of 0.310 on 
36 FM and FM/TBM targets; when the newly constructed MSAs were applied, the 
precision rose to 0.398, an improvement of 28.7%, suggesting the new pipeline generates 
higher-quality MSAs over multiple sequence databases. Meanwhile, the precision for 
Group 010 in CASP14 on the same dataset was 0.483, 56.1% and 21.3% higher than the 
control TripletRes_CASP13 from the default and the same MSAs, respectively. The 
corresponding p-values are 3.58e-08 and 2.35e-07 respectively. Besides, a head-to-head 
comparison of Top-L long-range contact precision between TripletRes (Post-CASP13), 
introduced in our previous research22, and Group 010 is presented in Figure S2. The 
TripletRes (Post-CASP13) was trained using the same dataset with DeepPotential. The 
Top-L precision increases from 0.398 to 0.418 after the re-training, but still lower than the 
precision of 0.483 (p-value = 1.0e-05) obtained by DeepPotential. These significant 
improvements could be attributed the complete set of features coupled with multi-task 
learning framework and the larger amount of training data. However, the results show that 
for those targets that DeepPotential and TripletRes models had similar performance, where 
limited superiority could be found for DeepPotential. Our next work should be focusing on 
proper training strategies for those extremely hard targets.  

Constructing MSAs from gigantic databases improves performance. In CASP14, we 
utilized a progressive pipeline for MSA construction from whole-genome and meta-
genome databases with an enormous number of sequences. The employment of those 
sequence databases becomes a critical element to achieve higher quality contact/distance 
prediction, especially for FM targets. In Figure 4A, we show the distributions of long-range 
Top-L/5 precisions of 22 FM targets by gradually adding the considered sequence 
databases. Other factors, e.g., MSA selection score configuration, are fixed. Comparable 
performance, i.e., precisions of 0.402 versus 0.416, can be observed with two whole-
genome databases. In contrast, significant improvements can be observed when meta-
genome databases are utilized by our pipeline. When Metaclust and BFD databases were 
added, the precision increased to 0.495 and 0.610, 19.0% and 46.6% higher than the best 
results of whole-genome databases, respectively. Additionally, when two extra databases, 
i.e., the Mgnify and IMG/M databases, are considered, mean precisions of 0.647 and 0.660 
can be observed respectively. There is also a consistent improvement in median precision 
from 29.2% to 77.2% with the consideration of more databases. Such data suggest the 
fundamental role of the MSA construction pipeline and the great usefulness of the 
utilization of meta-genome databases. It can be observed in Figure 4B that the Neff of 
selected MSAs is continuously increasing along with the addition of the corresponding 
databases. The detailed mean (median) logarithm Neff values are 0.21 (-0.11), 0.54 (0.06), 
1.21 (0.52), 1.9 (2.07), 2.19 (2.41), and 2.69 (3.35) when adding the corresponding 
databases. The rapid improvements of contact-map precision are likely highly driven by 
the MSAs with continuously increasing Neff values at each MSA stage. 

A more quantitative analysis about the impact of MSA quality on the performance of 
contact/distance prediction of DeepPotential is shown in Figure 5A-C. In Figure 5A, the 
long-range Top-L/5 precision of Group 024 in CASP14 versus the Neff values of the MSAs 
is presented. The Pearson correlation coefficient (PCC) between precision and the common 
logarithm of Neff is 0.364, indicating a modest correlation. The precision of DeepPotential 



 9 

 

is less dependent on Neff than TripletRes_CASP with the same input MSAs, whose 
corresponding PCC is 0.419. As shown in the left-upper block in Figure 5A, 10 out of 14 
targets with a Neff value lower than 10 have a precision ≥ 0.5, which is 3 more than that 
of TripletRes_CASP; this may help explain the lower correlation coefficient seen for 
DeepPotential than TripletRess_CASP. 

In addition, we also found that the PCCs are very different for FM and FM/TBM targets. 
When only FM targets are considered, the correlation is 0.382, slightly higher than the 
combination of FM and FM/TBM targets. The reason for higher correlation coefficient for 
FM targets should be the extreme cases (red dots in the lower-left block in Figure 5A) 
where their Neff values are all less than 1, and the corresponding precisions are < 0.3. In 
contrast, for FM/TBM targets, the correlation became 0.181 with a p-value of 0.535 where 
a statistically significant correlation could not be detected. Still, we can find one FM/TBM 
target that has a high Neff value and precision < 0.5, T1080-D1. Nevertheless, the 3D 
model built based on the geometric restraints predicted by DeepPotential eventually had 
the correct fold, with a TM-score44 of 0.503, possibly because of the modest Top-L bin 
error of 1.37.  

For FM targets with Neff ≥ 10, 10 out of 13 had precisions over 0.5, and the 3 
exceptions are T1029-D1, T1093-D1 and T1093-D3. Interestingly, for T1093-D1 and 
T1093-D3, if we re-run DeepPotential based on MSAs built with domain sequences, the 
corresponding precisions will be boosted to 0.821 and 1.0, even with lower Neff values of 
10.91 and 17.13. We simply visualize the MSA consensus using Sequence logos45 with 
MSAs generated with full-length sequence and only domain sequence in Figure S3 and 
Figure S4 for T1093-D1 and T1093-D3, respectively. The graphical characters displayed 
in Figures S3 and S4 represent significant residues and subtle sequence patterns in the 
corresponding MSAs. The height of each letter is made proportional to its frequency, and 
the letters are sorted so the most common one is on top. We found that the patterns of 
consensus sequences are visibly different for domain and full-length MSAs. The average 
Kullback-Leibler divergencies over positional amino acid compositions between domain 
and full-length MSAs are 1.30 and 1.19 for T1093-D1 and T1093-D3 respectively. For 
MSAs from the full-length sequence, the average sequence identity between aligned 
sequences and query sequence are 0.098 and 0.118 for T1093-D1 and T1093-D3, 
respectively, which are much lower than those of the domain sequence MSAs (0.202 and 
0.232). The differences in distribution and sequence identity suggest that there could be 
noisy alignments in our selected MSAs, despite their high Neff value.  

Figure 5B and 5C show the long-range Top-L bin classification accuracy and bin error 
versus Neff respectively. We found a relatively higher PCC of 0.465 between classification 
accuracy and the common logarithm of Neff, compared to that between contact precision 
and the latter. The correlation indicates that there is much room for improvement of the 
current model for further higher resolution distance prediction, especially for FM targets 
(PCC = 0.474) with limited sequence homologs. For Top-L bin error, we can observe a 
modest correlation; the corresponding PCCs are -0.363 and -0.386 for all targets and FM 
targets, respectively.  

Structure modeling based on DeepPotential in CASP14. The final goal of 
contact/distance prediction is to assist protein structure prediction, and the best way to 
evaluate the quality of distance prediction is to analyze the quality of predicted protein 
structure purely based on predicted distance. On 36 FM and FM/TBM target domains, the 
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3D models based on predicted geometric descriptors by DeepPotential achieved a mean 
TM-score of 0.591. When FM domains are evaluated, the mean TM-score becomes 0.514, 
where 12 have correctly predicted global folds (TM-score ≥  0.5). Surprisingly, our 
submissions had all 14 FM/TBM folds correctly predicted, with a mean TM-score of 0.712, 
ranging from 0.503 to 0.868, even though structural templates were not used. Figure 5D 
shows the TM-score and the Neff of 36 FM and FM/TBM targets. Similar to the previous 
observations, there is a modest correlation between the TM-score and the common 
logarithm of Neff (PCC = 0.482), but for FM/TBM targets, the correlation is weak, even 
not statistically significant (PCC = 0.158, p-value=0.61). Figure S5 plots the correlation 
between the TM-score of predicted structures and the precision of long-range Top-L/2 
predicted contacts. There is a significant correlation between TM-score and precision (PCC 
= 0.788), indicating that the accuracy of predicted structures is highly depending on the 
quality of deep learning predictions. There are hardly any cases with low contact precision 
but high TM-score, which is, however, reasonable since we used a basic protein folding 
procedure without other information sources, e.g., template information. 

In Figure 6, we present an example FM domain, T1042-D1, to show that DeepPotential 
can predict reliable distance potentials with limited sequence alignments (Neff=8.85) for 
accurate protein structure prediction. T1042-D1 is the 8th domain of a viral protein46 (PDB 
ID: 6VR4) officially partitioned by CASP. In this case, the long-range Top-L/5 precision 
was 0.818 and for contact map prediction, the Top-L bin accuracy and bin error were 0.464 
and 0.601, respectively. As shown in Figure 6A, the predicted distance bin map in general 
successfully recovered the distance patterns of the experimental structure except one region 
with some geometric interactions the between N- and C- terminals. Nevertheless, the 
predicted structure based on the distance map has a TM-score of 0.725.  

Despite this successful prediction, we found that domain T1047s1-D1 has an 
unexpectedly low TM-score. The contact Top-L/5 precision, Top-L bin accuracy and Top-
L bin error are 1.0, 0.597, and 0.502 respectively. However, we observed some noisy 
distance predictions between a beta-sheet region (residue 50-125) and the C-terminal 
structure region (residue 125-211) in Figure S6B. Those noisy predictions pulled the two 
regions together and destroyed the structure of the beta-sheet region (Figure S6D). Thus, 
our 3D model had only a TM-score of 0.416, although the TM-score of the region near the 
C-terminal achieved 0.632 (Figure S6E). In Figure S6A, we plot the residue-wise 
prediction based on Potts model coupling parameters and found observable noisy signals. 
Thus, the noisy prediction partly came from the MSA and its features. 

This example also exposed one weakness of our protein contact/distance and structure 
prediction pipeline. The current distance prediction is only formulated to predict distance 
under a fixed threshold, i.e., 20 Å. Thus, the subsequent restraint-based protein folding 
strategy will be influenced by possibly noisy distance (or other geometric descriptors) 
potentials. If a region has sparse connections with other parts, the noise could completely 
mislead the folding. Seeking better formulations, e.g., real-distance, to obtain reliable 
geometric restraints without the limitation of a threshold should help build better 3D 
models, not only for targets similar to T1047s1, but also for the modeling of inter-domain 
or inter-chain structures. One feasible way could be predicting the parameters of 
distribution (e.g., the expected value (or mean) and standard deviation of the variable's 
natural logarithm for Log-Normal Distribution) for the inter-atom distance modelling. The 
predicted distribution map could be easily converted to smooth potentials for protein 
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folding. Whether such prediction would result in more accurate protein folding still 
requires further examination.  

 
Discussion 

We have introduced DeepPotential, which participated in CASP14 for contact and 
distance prediction. Our model takes an ensemble of complementary features directly 
extracted from selected MSAs constructed by progressive searching against multiple 
sequence databases. Detailed analysis showed that the proposed method can produce 
relatively high precision contact maps that significantly outperform our previous method 
in CASP13. We also showed that the distance predictions can be used as reliable restraints 
for protein structure prediction.   

What went right? The results in CASP14 confirm the conclusion of our previous 
strategy for contact/distance prediction in CASP13, i.e., constructing and selecting MSAs 
from multiple protein sequence databases can significantly improve performance, 
especially for FM targets. In CASP14, we further extended our MSA construction pipeline 
by the utilization of large-scale meta-genome databases, which brought a further boost in 
contact/distance and structure prediction. In addition, the ensemble of multiple raw 
coevolution features which extract complementary information from MSAs, together with 
a multi-task learning scheme, contributed to the advantage of DeepPotential over previous 
approaches.  

What went wrong? The DeepPotential model predicts distance and other geometric 
terms marginally, ignoring the inherent relationships among geometric terms and residue 
pairs in the loss function. Designing a formulation to effectively model the joint 
distributions between residue pairs or geometric terms should be a necessity in our future 
work. Also, the convolutional neural networks used in DeepPotential have a relatively long 
max path between features of residue pairs. Considering the revolutionary results obtained 
by AlphaFold247 in CASP14 and the recent success of Transformer48 applied in protein 
sequence modelling49-51, the Transformer framework with a direct max path should be 
considered in our future work to model direct long-range interactions in space.  
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Tables 
 
Table 1.  Mean accuracy and standard error (in brackets) of long-range predicted contacts 
for DeepPotential’s two Groups in CASP14. 

Group FM TBM/FM 
L/10 L/5 L/2 L L/10 L/2 L/5 L 

010 0.686 
(0.086) 

0.638 
(0.081) 

0.534 
(0.068) 

0.396 
(0.051) 

0.898 
(0.057) 

0.868 
(0.061) 

0.771 
(0.062) 

0.620 
(0.057) 

024 0.653 
(0.090) 

0.615 
(0.084) 

0.502 
(0.068) 

0.386 
(0.051) 

0.872 
(0.064) 

0.862 
(0.059) 

0.784 
(0.061) 

0.629 
(0.059) 

 
Table 2. Performance of long-range Top-N distance prediction for DeepPotential’s two 
Groups in CASP14 with standard error in brackets. 

Index  Group FM TBM/FM 
L/2 L 2L 5L L/2 L 2L 5L 

Bin 
acc 010 0.387 

(0.048) 
0.369 

(0.044) 
0.370 

(0.041) 
0.338 

(0.037) 
0.562 

(0.039) 
0.535 

(0.037) 
0.502 

(0.038) 
0.456 

(0.039) 

024 0.374 
(0.047) 

0.373 
(0.045) 

0.362 
(0.043) 

0.336 
(0.039) 

0.594 
(0.034) 

0.581 
(0.040) 

0.526 
(0.039) 

0.477 
(0.044) 

Bin 
error 010 1.341 

(0.258) 
1.336 

(0.248) 
1.343 

(0.248) 
1.495 

(0.229) 
0.505 

(0.057) 
0.593 

(0.083) 
0.717 

(0.155) 
0.835 

(0.162) 

024 1.384 
(0.268) 

1.415 
(0.266) 

1.441 
(0262) 

1.559 
(0.241) 

0.453 
(0.052) 

0.532 
(0.084) 

0.699 
(0.156) 

0.826 
(0.174) 
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Figure 1. The pipeline of DeepPotential. Starting from a sequence, multiple MSAs will be 
constructed. Three models, i.e., the pseudolikelihood maximization of the Potts model, 
Mutual information, and a hidden markov model will be used to extract 2-D and 1-D 
features. The two features will go through two sets of residual convolutional layers and 
tiled together. The combined hidden features will go through another set of residual blocks 
for the final prediction. 
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Figure 2. The multi-stage progressive MSA construction pipeline in DeepPotential.  
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Figure 3. Head-to-head comparison of long-range Top-L precision between our pipeline in 
CASP13 and CASP14. (A) Contacts predicted using their own MSAs. (B) Contacts 
predicted using same MSAs generated by the newer pipeline. 
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Figure 4. Increases of contact long-range Top-L/5 precision and average log(Neff) with the 
consideration of sequence databases illustrated in violin plots. White dots indicate the 
median value. Vertical black lines indicate 25% to 75% percentile. (A) Precision changes 
as more databases are used. (B) log(Neff) changes when more databases are employed. 
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Figure 5. Illustration of the effect of MSAs on the performance DeepPotential. (A) The 
precision of long-range Top-L/5 contact prediction vs. Neff of MSAs. (B-C) Mean bin 
accuracy and Mean bin error of long rang Top-L distance prediction vs. Neff of MSAs. (D) 
TM-score of 3D models based on the prediction of DeepPotential vs. Neff of MSAs. 
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Figure 6. An illustrative example of CASP14 domain T1042-D1. (A) Comparison of 
predicted discrete distance map by DeepPotential and the distance map of the experimental 
structure. The distance bins are defined according to CASP format. (B) Superposition of 
submitted first model (blue) and experimental structure (red).   
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