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S1 Eddy momentum driven Ferrel-like cell16

S1.1 Standard formulation17

Using approximations similar to the commonly used formulation which describe the terrestrial Ferrel-cell dynamics18

[Vallis, 2017], the leading order zonal mean zonal momentum equation may be written as19

∂ū

∂t
+

∂

∂y

(
u′v′

)
− fv̄ = −Fsink, (S1)

where Fsink is a sink term. On Earth, the sink term represents a surface drag in the Ekman layer and in the Jovian20

atmosphere, if the cells are as deep as the jets [Kaspi et al., 2020], it might be Ohmic dissipation [Liu et al., 2008;21

Liu and Schneider , 2010; Kaspi et al., 2020] (i.e., Fsink = 1
4πρ̄ (∇×B)×B, where B is the 3D magnetic field and22

ρ is density). Eq. 11, adequate for the upper branch of the cells, results from applying time-averaging away from23

the sink layer. This balance leads to meridional velocities in the directions illustrated in Fig. 2b2. Alternatively,24

1Note that equation cross-references without a S refer to equations in the main text.
2Note that figure cross-references without a S refer to figures in the main text.
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applying vertical integration cancels the Coriolis terms in the vertical boundaries of the cell and the relation between25

the zonal jets, their eddy source term and the sink term becomes26

∂Ū

∂t
= − ∂

∂y

(
U ′V ′

)
− F̂sink. (S2)

where U and V are the vertically integrated velocities, and F̂sink is the vertically integrated sink term. Therefore,27

converging (diverging) eddy momentum fluxes transfer their momentum to eastward (westward) jets, as can be seen28

in the Jovian atmosphere (Fig. 1b,d). In the descriptions throughout this study, Cartesian approximations are used29

for the sake of clarity, but the actual calculations were performed using the spherical, more accurate, formulations.30

S1.2 TEM formulation for Jupiter31

The Transformed Eulerian Mean (TEM) equations, commonly invoked to quantify Lagrangian mass-transport in32

Earth’s Ferrel cells, describe a circulation driven by the diabatic heating term [Vallis, 2017]. The TEM formula-33

tion can be derived from the momentum and thermodynamic equations, under Boussinesq and quasi-geostrophic34

approximations (Vallis [2017], ch. 10.3), resulting in35

∂ū

∂t
− fv̄∗ = ∇ · F , (S3)

and36

∂b̄

∂t
− w̄∗N2 = S̄, (S4)

where v̄∗ = v̄ − ∂
∂z

(
1
N2 v′b′

)
and w̄∗ = w̄ + ∂

∂y

(
1
N2 v′b′

)
are defined as the “residual” mean meridional and vertical37

velocities, respectively, which approximate mass-transport by both Eulerian mean velocities and eddy fluxes, N2 =38

∂b̄0/∂z is the Brunt–Väisälä frequency, S̄ is the diabatic heating term, and F = − (u′v′) ĵ+
(
f
N2 v′b′

)
k̂ is the Elissan-39

Plam (EP) flux. b0 and b represent the mean (zonally- and meridionally-averaged) and the deviation from the mean40

of the buoyancy force and ĵ (k̂) is a unit vectors in the meridional (vertical) direction. On Earth, the diabatic41

heating term is important [Lachmy and Kaspi , 2020], and therefore the residual meridional velocities accurately42

represent the total meridional transport of mass in Earth’s midlatitudes.43

The midlatitude atmosphere on Earth is characterized by baroclinicity, and as a result, the second term of the44

EP flux is substantial and plays a key role in the resulting circulation. On Jupiter, the eddy fluxes beneath the45

cloud level and the diabatic heating are yet to be measured. However, gravity-measurement analysis implies that46

Jupiter’s jets are nearly barotropic in the depth range relevant to this study [Galanti and Kaspi , 2021], meaning47

that the EP flux is dominated by the first term, and w̄∗ is comparable to w̄ [Lee and Kaspi , 2021]. Therefore, under48

the barotropic limit, the equations describing the Eulerian velocities in a Ferrel-like cell might also represent the49

total mass transport in the Jovian cells.50

S1.3 Correlation analysis51

The picture illustrated in Fig. 2, relating the distribution of ammonia and the zonal winds according to the Ferrel-52

like cells hypothesis, is tested quantitatively in a correlation analysis exhibited in Fig. 3. The expected relations53

between the zonal jets and the ammonia meridional gradients in the NH are54

ū ∝

 −∂yma

∂yma

1.5 ≤ p < 6 bar (channels 4− 5) ,

p ≥ 6 bar (channels 1− 3) , p < 1.5 bar (channel 6) .
(S5)

S2



Here, ∂yma is the latitudinal gradient of the ammonia concentration (ma) and p is pressure. The channels refer to55

the six frequencies of Juno’s MWR. In the SH, as the circulation is reversed, Eq. S5 flips signs. Eq. S5 captures also56

the case of cells with westward jets, as both ū and ∂yma change sign. A Pearson correlation coefficient (S (ϑ, ch)) is57

calculated for each latitude and MWR channel, and its value is represented by a color between blue, representing a58

negative correlation, white, representing no correlation and red, representing a positive correlation. The Tb data is59

measured in a resolution of ∼ 0.6◦ latitude. The data is interpolated such that the grid size is 0.1◦ latitude, and the60

correlation for each point ϑi is calculated along a span {ϑi − 2◦,ϑi + 2◦}. This choice of a 4◦ latitudinal bin allows61

having enough data points for the statistical value of the correlation (more than 6 data pairs), and ensures the local62

nature of the results. The correlations on the MWR data are calculated between the following trends. In Fig. 3a,63

channels 1-3 and 6 and in Fig. 3c channels 4-5 the color represents the correlation ū ∝ ∂yTb. In Fig. 3a, channels 4-564

and in Fig. 3c channels 1-3 and 6 the color represents the correlation ū ∝ −∂yTb. Note that anomalies of brightness65

temperature and ammonia abundance are inversely proportional [Li et al., 2017]. In Fig. 3b the correlations at all66

channels are calculated according to ū ∝ −Tb. Here, Tb is the Nadir component of the brightness temperate [◦K]67

(other emission angles were not included in the analysis), averaged over nine Juno orbits (PJs 1, 3, 4, 5, 6, 7, 8, 9 and68

12) [Oyafuso et al., 2020]. For further discussion regarding limb-darkening Tb we point the readers to Fletcher et al.69

[2021]. ū is Jupiter’s zonally-averaged zonal wind [m s−1] measured by the Hubble space telescope during Juno’s70

third perijove [Tollefson et al., 2017], projected barotropically along the axis of rotation [Galanti and Kaspi , 2021;71

Galanti et al., 2021]. The ammonia distribution by JIRAM is estimated at a depth of ∼ 6 bar, which is the depth72

where a local minimum appears in Ma (Fig. 2a). Arbitrarily, the correlation is performed according to p > 6 bar in73

Eq. 2 (Fig. 2d) and the overall positive result points that indeed the depth level of JIRAM measurements should74

be deeper than the local minimum of Ma. The ammonia estimates from JIRAM are measured in a resolution of75

1◦ latitude. Similar to the Tb correlation analysis, the data is interpolated, and the correlation is performed on a76

4◦ latitude bin for consistency. In Fig. 3d (f) the color represents the correlation ū ∝ −∂yma (ū ∝ ∂yma) and in77

Fig. 3e the color represents the correlation ū ∝ ma. Finally, the eddy momentum flux convergence is measured in78

a resolution of 1◦ latitude, and the correlation is performed using the same latitudinal bin of 4◦. In Fig. 3g (h) the79

color represents the correlation ū ∝ −∂y
(
u′v′

)
(ū ∝ ∂y

(
u′v′

)
).80

We also examine the correlation between the zonal wind and the lightning gradient. We find a good match81

in the northern hemisphere and a weak negative correlation in the southern hemisphere, where Juno is much less82

sensitive to lightnings (Fig. S1). Note that the correlation between lightnings and the Ferrel cells is less indicative,83

as we should only examine the correlation in the rising branch of the cells. Therefore, the correlation values away84

from the rising branch should be regarded with caution.85

S1.4 Advection-relaxation model86

S1.4.1 Tb as an indicator for ammonia87

As ammonia estimates by Juno’s MWR for the high midlatitudes are not yet available, we express the Tb measure-88

ments as ammonia in order to examine the model results. For that, we define a reconstructed ammonia distribution89

from Juno MWR data (m(data)
a ), used as a benchmark for the advection-relaxation model, constructed by the mean90

ammonia calculated from MWR measurements of PJ1 (Ma, Fig. 2a) [Li et al., 2017] and Tb measurements aver-91

aged over multiple Juno orbits (PJs 1-12) [Oyafuso et al., 2020]. The standard deviation between the perijoves is92

computed as a function of latitude to validate that the latitudinal variations appearing in the Tb data are phys-93

ical (Fig. S3 for the midlatitudes and Fig. S4 for the equatorial region). We estimate the Tb anomalies (T ′b) by94

removing the cross-channel average (Tb,mean(ch)) from each MWR channel, and then decompose T ′b into Legendre95

polynomials and reconstruct the anomalies without the low polynomials to remove large scale variations. These96

variations, representing equator to pole radiation differences, are not related to ammonia variations by meridional97
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Figure S1: Correlation coefficients (upper panels) between the zonal wind (middle panels) and the lightning merid-
ional gradient (lower panels) in the midlatitudes.

Figure S2: (a) Ammonia estimate [Li et al., 2017] from Juno MWR PJ1 data. (b) ma calculated from Tb (Eq. S8).
This field is used as a benchmark (m(data)

a ) for the model results. (c) the difference between panel a and panel b.
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Figure S3: The standard deviation (STD) of the nadir Tb in the midlatitudes computed from nine different perijoves
through PJs 1-12 [Oyafuso et al., 2020], in the six MWR channels. The STD is computed after the trend removal
for each perijove, as detailed in eq. S7. For channels 1-5, the STD values are smaller than the variation seen in
the data (Fig. 1h). Note that although the STD values for channel 6 are higher, at some latitudes, than the mean
latitudinal variation (of the same channel), this channel senses at altitudes which are above the cells identified in
this study.

cells [Oyafuso et al., 2020]. The reconstructed ammonia is then98

T ′b(ϑ, ch) = Tb(ϑ, ch)− Tb,mean(ch) ∼=
N∑
i=1

Ai(ϑ, ch)Pi (sinϑ) , (S6)

T ′b,rec(ϑ, ch) =

N∑
i=30

Ai(ϑ, ch)Pi (sinϑ) , (S7)

m(data)
a (ϑ, ch) = Ma(ch)−K(ch)T ′b,rec(ϑ, ch), (S8)

where Pi are the Legendre polynomials, Ai are the associated coefficients, N = 200 is the number of polynomials99

used and K [ppm · degrees−1] is a depth-dependent ’key’, optimized at each depth using Matlab’s ’fmincon’ to100

best fit the estimated ammonia distribution from PJ1 [Li et al., 2017]. Note that Tb is available between latitudes101

90◦S to 90◦N, therefore Pi=30 is equivalent to a wavelength of approximately 12◦ latitude. As the jets widths are102

not larger the 8◦ in latitude, this truncation removes variations that are not due to the existence of meridional103

Ferrel-like cells. The overall structure of m(data)
a is very similar to the ammonia map from PJ1 [Li et al., 2017],104

while the meridional anomalies now represent well PJs 1-12 (Fig. S2). Finally, the resulting K ranges between 5 at105

1 bar to 0 at depth and is used to estimate m(data)
a at latitudes 60◦S to 60◦N. The profile is interpolated between 1106

and 240 bar, according to the relevant pressure levels of each channel (Fig. 4d). These levels are estimated according107

to the peak of the contribution function of each MWR channel, to give that channels {1, 2, 3, 4, 5, 6} correspond to108

pressure levels of {240, 30, 9, 3, 1.5, 0.7} bar [Janssen et al., 2017; Bolton et al., 2017].109
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Figure S4: The equatorial standard deviation of the nadir Tb computed from nine different perijoves through PJs
1-12 [Oyafuso et al., 2020], in the six MWR channels. The STD is computed on the original nadir coefficients.

S1.4.2 Cells construction and parameterization110

To describe the meridional cells in the simplest manner, we parameterize each cell (indexed k) with an ellipse,111

according to a parameter lk as follows112

lk =

√
(d− a)

2

a2
+

(ϑ− ϑk)
2

b2k
. (S9)

Here, d is defined as downward distance from the cloud level, and a and bk are the vertical and meridional extents113

of the cell, respectively. ϑk is the latitude of the center of cell k (black dots in Fig. S5a,b). bk is set according to114

half the width of cell k (the distance between a black line and a black dot in Fig. S5a,b). The outline of cell k115

(representing the path of the peak tangential velocity along the cell) is thereby defined by lk = 1. For simplicity,116

the velocities in a cell are defined using a normal distribution according to117

vk =Vk exp

[
−1

2

(
lk − 1

σ̃

)2
]

sinφ,

wk =Vk exp

[
−1

2

(
lk − 1

σ̃

)2
]

cosφ,

σ̃ =σ

(
cos2 ϑ+

bk
a

sin2 ϑ

)
,

(S10)

where φ = arctan
[

d−a
RJ sin(ϑ−ϑk)

]
, RJ is Jupiter’s radius and σ is a parameter for the broadness of a cell’s branch. Vk118

represents the relative strength (velocity) of cell k, parameterized according to the square root of the averaged eddy119

momentum flux convergence within the cell (Fig. S5b), and its sign represents the cell’s direction (clockwise/counter-120

clockwise), set according to the zonal wind sign at the center of the cell (Fig. S5a). The total wind is then121

v̄(r, ϑ) =
∑
k

vk(r, ϑ), w̄(r, ϑ) =
∑
k

wk(r, ϑ). (S11)
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Figure S5: (a) Vorticity (purple) and zonal wind (dashed, orange). Blue (red) triangles represent vorticity peaks
(∂ζ/∂y = 0), where the vertical branches of the cells drive upward (downward) motion. The cells’ centers are
positioned between vorticity peaks (black dots), and the cells’ extents (2bk) are the distances between pairs of black
lines. (b) Eddy momentum flux convergence (blue) and the cells’ location as in panel a. Cells’ relative strength is
set by the averaged value of eddy flux convergence within the cell (light blue circles).

S1.4.3 Optimization and numerical solution122

To solve for ma, Eq. 3 is discretized using finite differences as123

w̄i,j
mi−1,j −mi+1,j

2dr
+ v̄i,j

mi,j+1 −mi,j−1

2RJdϑ
= −Gi (mi,j −Mi) , (S12)

where the “a” subscript of m and M was removed for clarity. Here i, and j are indices for the grid points in the124

r and ϑ directions, respectively. dr and dϑ are the distances between adjacent points in each direction. Eq. S12125

constitutes one of n2 equations for n2 variables, where n is the resolution of the grid in each direction. Eq. S12 is126

rearranged in a matrix form as Ax = b such that ma can be calculated from A−1b.127

The parameters Gi, σ and a are unknowns. For this, the Matlab optimization function ’fmincon’ is used for128

deciding Gi, σ and a to best reproduce the m(data)
a map. The cost function129

f(G, σ, a) =
∑
i,j

(∣∣∣m(model)
i,j −m(data)

i,j

∣∣∣)2

(S13)

is the measure used to find the optimal parameters. The resulting value of G is shown in Fig. S6 for the case of G130

that is varying with depth, and for comparison, the solution with a constant G is shown as well. The value of σ131

was found to be ∼ 0.85 in both cases. The parameter a was found to be ∼ 1600 bar.132

S1.4.4 Robustness analysis133

To validate that the model results are robust and not sensitive to the specific parameters found by the optimization134

analysis, m(model)
i,j was also solved from equation 3 using a chosen set of parameters instead of the optimized set.135

The depth of the cells was chosen to be 3000 km (a = 1500 km), in accordance with the depth of the jets that136

was estimated from gravity measurements [Kaspi et al., 2018]. The width of the cells was chosen such that one137

standard deviation covers half a cell’s width (σ = 0.5). G is degenerated into a constant (no dependence in z) and138
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Figure S6: Comparison between model results with and without vertical variation in G. (a) The vertical variation
of the normalized source term G used for Fig. 4c. b and e, m(data)

a anomalies [ppm] in the SH. (c) The ammonia
anomalies [ppm] map produced by the advection-relaxation model with the source term from panel a. (d) Constant
normalized source term G in Eq. 3. (f) The ammonia anomalies [ppm] map produced by the advection-relaxation
model with the source tern from panel d. In panels b, c, e and f the vertical mean profile Ma is removed from the
ammonia map ma and dashed red and green lines are the upward and downward branches of the cells, respectively.
The comparison reveals that although the solution with varying source term (a) results in a better model solution
(c) compared to the measurements (b and d), the essence of the anomalies (f) is well captured with a constant
source term (d).

is set, from a scaling argument, as G = max(w)/a [s−1]. As seen in the results (Fig. S7), the modeled ammonia139

anomalies map still predicts the data convincingly. The main difference is the depth where the sign of the ammonia140

anomalies flip (between 3 and 6 bar), which is now only controlled by the input Ma [Li et al., 2017], and could not141

be ’corrected’ by a depth-dependent relaxation time scale. It can be seen that the essence of the circulation cells is142

still very apparent in the results.143

S2 Equatorial region analysis144

S2.1 Estimate for the extent of the equatorial region145

The tangent cylinder is the projection (along the axis of rotation) of the planet’s solid-body rotating core on the146

outer shell. The equatorial latitudes lie outside of the tangent cylinder, and is thereby characterized by a different147

dynamical regime than that of the midlatitudes. To separate quantitatively the midlatitudes, positioned within the148

tangent cylinder, from the equatorial region, it is required to know the depth of the atmosphere (Datm) and the149

radius of the planet (R). The latitudes of the cylinder’s edge (α) can then be derived from geometrical considerations150

as151
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Figure S7: Model robustness analysis. An example for a model run without optimization. The optimized variables
in this run are set manually according to physical considerations. The depth of the cells (a) is set to 1, 500 km
such that the cells extend 3, 000 km in accordance with gravity measurements for the depth of the zonal jets [Kaspi
et al., 2018]. The relaxation constant G is set (without height dependence) from scaling argument by equating the
relaxation term in equation 3 to the vertical advection term, leading to G = max(w)/a. The value of σ is set to
0.5. (a) The normalized vertical velocity as a function of latitude and pressure. (b) The ammonia anomalies map
that was reconstructed from Juno’s MWR measurements. (c) The map of ammonia anomalies resultant from the
degenerated model. It can be seen that the optimization procedure doesn’t change the nature of the results which is
robust. The structure of the anomalies stays largely the same both in this figure and in Fig. 4, and it stems mostly
from the latitudinal structure of the wind and the vertical stratification of the ammonia, both being derived from
observations.

α = arccos

(
1− Datm

R

)
. (S14)

Gravity analysis reveals that Jupiter’s atmosphere is approximately 3000 km deep [Guillot et al., 2018; Kaspi et al.,152

2018]. Substituting Datm = 3000 km and R = RJ = 70, 000 km in Eq. S14 gives α = ±16.8◦. This means that153

fluid columns parallel to the axis of rotation in the latitude range −17◦ ≤ ϑ ≤ 17◦, can theoretically extend154

uninterruptedly between the hemispheres.155

S2.2 Theory for the leading balance in the Jovian equatorial region156

Starting from the primitive equations[Vallis, 2017], the continuity and zonal momentum equations in spherical157

coordinates are158

∂ρ

∂t
+ ρ

(
1

RJ cosϑ

∂u

∂λ
+

1

RJ cosϑ

∂

∂ϑ
(v cosϑ) +

∂w

∂r

)
+

u

RJ cosϑ

∂ρ

∂λ
+

v

RJ

∂ρ

∂ϑ
+ w

∂ρ

∂r
= 0, (S15)

and159
∂u

∂t
+

u

RJ cosϑ

∂u

∂λ
+

v

RJ

∂u

∂ϑ
+ w

∂u

∂r
− 2Ω (sinϑ v − cosϑw)− uv

RJ
tanϑ = − 1

RJρ cosϑ

∂p

∂λ
, (S16)
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respectively, where λ is longitude. The mean density (ρm) is assumed to only change with r, and anomalies from160

it are assumed to be much smaller than the mean value. In addition, the meridional derivatives and the meridional161

velocity are assumed very small near the equator, relative to the other terms. This assumption is based on the162

symmetry around the equator. Assuming also a steady state, Eq. S15 and Eq. S16, evaluated on the equatorial163

plane (ϑ = 0◦), are then164

ρm

(
1

RJ

∂u

∂λ
+
∂w

∂r

)
+ w

∂ρm
∂r

= 0, (S17)

and165
u

RJ

∂u

∂λ
+ w

∂u

∂r
+ 2Ωw = − 1

RJρm

∂p

∂λ
. (S18)

Eq. S18 can equivalently be represented as166

1

RJ

∂u2

∂λ
+

1

ρm

∂ (wuρm)

∂r
− u

ρm

(
ρm

1

RJ

∂u

∂λ
+ ρm

∂w

∂r
+ w

∂ρm
∂r

)
+ 2Ωw = − 1

RJρm

∂p

∂λ
, (S19)

where the third term vanishes according to Eq. S17. Next, the velocities are decomposed via Reynolds decomposition167

(u = u′ + u, w = w′ + w), such that the zonal mean of Eq. S19 gives168

−
∂
(
w′u′ρm

)
∂r

= w
∂ (uρm)

∂r
+ 2ρmΩw + ρmu

∂w

∂r
. (S20)

This shows that the momentum originating from the eddy momentum flux convergence
(
∂(w′u′ρm)

∂r < 0

)
, which169

drives the equatorial superrotation [Kaspi et al., 2009], is divided between the growing equatorial super-rotating jet170 (
∂(uρm)
∂r > 0, u > 0

)
, the Coriolis force and another residual term. The growing equatorial jet has been shown in171

many numerical simulations of superrotation [Heimpel et al., 2005; Kaspi et al., 2009; Gastine et al., 2014]. It is a172

good assumption that each of the terms on the right side is of smaller magnitude than the source term on the left173

side. Finally, rearranging Eq. S20 gives174

w = − 1

∂ (uρm)

∂r︸ ︷︷ ︸
>0

+ 2ρmΩ︸ ︷︷ ︸
>0

(
∂
(
w′u′ρm

)
∂r

+ ρmu
∂w

∂r

)
︸ ︷︷ ︸

<0

> 0. (S21)

To further simplify, Eq. S21 can be shown for the case of small Rossby number:175

w = − 1

2ρmΩ

∂
(
w′u′ρm

)
∂r

> 0. (S22)

This implies that the mean upwelling (w) correlates with eddy momentum flux convergence, and therefore with176

the equatorial superrotating jet at the equatorial region. Since the superrotating jet is supposed to be driven by177

angular momentum fluxes in the direction perpendicular to the rotation axis [Heimpel et al., 2005; Kaspi et al.,178

2009; Schneider and Liu, 2009], converging in the equatorial region, Eq. S22 would take the more general form179

w⊥ = − 1

2ρmΩ
∂⊥

(
w′⊥u

′ρm

)
> 0, (S23)

where w⊥ and ∂⊥ are the velocity and the gradient in the direction perpendicular to the axis of rotation, i.e.,180

w⊥ = w cosϑ+ v sinϑ and ∂⊥ = (cosϑ) ∂r +
(
r−1 sinϑ

)
∂ϑ.181

182
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Figure S8: Meridional averaged ammonia values at different latitudinal regions. The lines are calculated according
to the inferred ammonia map from PJ1 [Li et al., 2017]. Each line is averaged at the latitudinal range described in
the legend.
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