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Purpose: Signal models based on sparse representations have received considerable attention in
recent years. On the other hand, deep models consisting of a cascade of functional layers, commonly
known as deep neural networks, have been highly successful for the task of object classification and
have been recently introduced to image reconstruction. In this work, we develop a new image recon-
struction approach based on a novel multilayer model learned in an unsupervised manner by combin-
ing both sparse representations and deep models. The proposed framework extends the classical
sparsifying transform model for images to a Multilayer residual sparsifying transform (MARS)
model, wherein the transform domain data are jointly sparsified over layers. We investigate the appli-
cation of MARS models learned from limited regular-dose images for low-dose CT reconstruction
using penalized weighted least squares (PWLS) optimization.
Methods: We propose new formulations for multilayer transform learning and image reconstruction.
We derive an efficient block coordinate descent algorithm to learn the transforms across layers, in an
unsupervised manner from limited regular-dose images. The learned model is then incorporated into
the low-dose image reconstruction phase.
Results: Low-dose CT experimental results with both the XCAT phantom and Mayo Clinic data
show that the MARS model outperforms conventional methods such as filtered back-projection and
PWLS methods based on the edge-preserving (EP) regularizer in terms of two numerical metrics
(RMSE and SSIM) and noise suppression. Compared with the single-layer learned transform (ST)
model, the MARS model performs better in maintaining some subtle details.
Conclusions: This work presents a novel data-driven regularization framework for CT image recon-
struction that exploits learned multilayer or cascaded residual sparsifying transforms. The image model
is learned in an unsupervised manner from limited images. Our experimental results demonstrate the
promising performance of the proposed multilayer scheme over single-layer learned sparsifying trans-
forms. Learned MARS models also offer better image quality than typical nonadaptive PWLS meth-
ods. © 2021 American Association of Physicists in Medicine [https://doi.org/10.1002/mp.15013]
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1. INTRODUCTION

Signal models exploiting sparsity have been shown to be use-
ful in a variety of imaging and image processing applications
such as compression, restoration, denoising, reconstruction,
etc.1–4 Natural signals can be modeled as sparse in a synthesis
dictionary (i.e., represented as a linear combinations of a few
dictionary atoms or columns) or in a sparsifying transform
domain. Transforms such as wavelets5 and the discrete cosine
transform (DCT) are well-known to sparsify images. Synthe-
sis dictionary learning6 and analysis dictionary learning7

methods adapt such models to data and involve algorithms
such as K-SVD,7 the Chasing Butterflies approach,8 and
some others. The underlying dictionary learning problems
are typically NP-hard and the corresponding algorithms often
involve computationally expensive updates that limit their
applicability to large-scale data. In contrast, the recently

proposed sparsifying transform learning approaches9 involve
exact and highly efficient updates in the algorithms. In partic-
ular, the transform model suggests that the signal is approxi-
mately sparse in a transformed domain. Furthermore,
Ravishankar et al.10–12 demonstrated the applicability of
adaptive sparsifying transforms for several applications such
as image denoising and medical image reconstruction.

On the other hand, deep models with nested network struc-
ture popularly known as deep neural networks provide remark-
able results for classification and regression across various
fields.13 Given a task-based loss function for network parame-
ter estimation, algorithms based on gradient back-propagation
sequentially reduce the error between a known target (ground
truth) and the network prediction. Another approach from a
few research groups combines deep network architectures with
probabilistic models during learning, and this generative
Bayesian model14 attains a superior performance during the
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inference process. Moreover, the connections between sparse
modeling and deep neural networks have also been exploited.
For example, the multilayer convolutional (synthesis) sparse
coding model15,16 provides a new interpretation of convolu-
tional neural networks (CNNs), where the pursuit of sparse
representation from a given input signal complies with the for-
ward pass in a CNN. In the meantime, multilayer sparsifying
transforms make the most direct connection with CNNs in the
model and enable sparsifying an input image successively over
layers,17 creating a rich and more complete sparsity model,
whose learning in an unsupervised manner and from limited
data also forms the core of this work.

One of the most important applications of such image
models is for medical image reconstruction. In particular, an
important problem in X-ray computed tomography (CT) is
reducing the X-ray exposure to patients while maintaining
good image reconstruction quality. A conventional method
for CT reconstruction is the analytical filtered back-projection
(FBP).18 However, image quality degrades severely for FBP
when the radiation dose is reduced. In contrast, model-based
image reconstruction (MBIR) exploits CT forward models
and statistical models together with image priors to achieve
often better image quality.19

A typical MBIR method for low-dose CT (LDCT) is the
penalized weighted least squares (PWLS) approach. The cost
function for PWLS includes a weighted quadratic data-
fidelity term and a penalty term or regularizer capturing prior
information or model of the object.20–22 Recent works have
shown promising LDCT reconstruction quality by incorporat-
ing data-driven models into the regularizer, where the models
are learned from datasets of images or image patches. In par-
ticular, PWLS reconstruction with adaptive sparsifying
transform-based regularization has shown promise for tomo-
graphic reconstruction.23–27 Recent work has also shown that
they may generalize better to unseen new data than super-
vised deep learning schemes.28 The adaptive transform-based
image reconstruction algorithms can exploit a variety of
image models23,26,29 learned in an unsupervised manner from
limited training images, and involve efficient closed-form
solutions for sparse coding.

In this work, we propose a new formulation and algorithm
for learning a multilayer transform model,17 where the trans-
form domain residuals (the difference between transformed
data and their sparse approximations) are successively sparsi-
fied over several layers. We refer to the model as the
Multilayer residual sparsifying transform (MARS) model.
The transforms are learned over several layers from images to
jointly minimize the transform domain residuals across lay-
ers, while enforcing sparsity conditions in each layer. Impor-
tantly, the filters beyond the first layer can help better exploit
finer features (e.g., edges and correlations) in the residual
maps. We investigate the performance of unsupervised learn-
ing of MARS models from limited data for LDCT reconstruc-
tion using PWLS. We propose efficient block coordinate
descent algorithms for both learning and reconstruction.
Experimental results with the XCAT phantom and Mayo
Clinic data illustrate that the learned MARS model

outperforms conventional methods such as FBP and PWLS
methods based on the nonadaptive edge-preserving (EP) reg-
ularizer in terms of two numerical metrics (RMSE and SSIM)
and noise suppression. Compared with the recent learned
single-layer transform model, the MARS model performs bet-
ter in maintaining some subtle details.

In the following sections, we will first study how to train
our proposed model in detail in Section 2, where we will dis-
cuss the corresponding problem formulations in Section 2.A,
followed by our algorithms in Section 2.B. The experimental
results with both the XCAT phantom and Mayo Clinic data
are presented in Section 3. Section 4 presents a discussion of
the proposed methods and results and concludes.

2. MATERIALS AND METHODS

2.A. Formulations for MARS training and LDCT
reconstruction

Here, we introduce the proposed general multilayer trans-
form learning framework and the formulation for LDCT
image reconstruction. Figure 1 illustrates the structure of our
MARS model, where Ωl denotes the transform in the lth
layer. These transforms capture higher order image informa-
tion by sparsifying the transform domain residual maps layer
by layer. The MARS learning cost and constraints are shown
in Problem (P0), which is an extension of simple single-layer
transform learning.9,17

min
fΩl , Zlg

∑
L

l¼1
kΩlRl�Zlk2F þη2l kZlk0

n o
,

s:t: Rl ¼Ωl�1Rl�1�Zl�1, 2 ≤ l≤ L, ΩT
l Ωl ¼ I, 8l:

(P0)

Here, fΩl ∈p�pg and fZl ∈p�Ng denote the sets of
learned transforms and sparse coefficient maps, respectively,
for the 1 ≤ l ≤ L layers and “F” denotes the Frobenius norm.
The total number of training patches is denoted by N. Param-
eter ηl controls the maximum allowed sparsity level (com-
puted using the ‘0 “norm” penalty) for Zl. The residual maps
fRl ∈p�Ng are defined in recursive form over layers, with
R1 denoting the input training data. We assume R1 to be a
matrix, whose columns are (vectorized) patches drawn from
image datasets. The unitary constraint for each Ωl enables
closed-form solutions for the sparse coefficient and transform
update steps in our algorithms. The MARS model learned
via (P0) can then be used to construct a data-driven regular-
izer in PWLS as shown in Problem (P1).

min
x≥ 0

1
2
ky�Axk2WþβSðxÞ, (P1)

SðxÞ≜min
fZlg

∑
L

l¼1
kΩlRl�Zlk2Fþ γ2l kZlk0

n o
,

s:t:Rl ¼Ωl�1Rl�1�Zl�1, 2≤ l≤ L, R j
1 ¼P jx, 8j:

In particular, we reconstruct the image x∈Np from noisy
sinogram data y∈Nd by solving (P1), where Np denotes the
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number of pixels. A ∈Nd�Np is the system matrix of the CT
scan and W ¼ diagfwig∈Nd�Nd is the diagonal weighting
matrix with elements being the estimated inverse variance of
yi. Operator P j ∈p�Np extracts and vectorizes the jth patch
of x as P jx. Overlapping image patches are extracted with
appropriate patch stride (one pixel stride in our experiments).
The jth columns of Rl and Zl are denoted Z j

l and R j
l , respec-

tively. The nonnegative parameters {γl} control the sparsity
of the coefficient maps in different layers, and β > 0 captures
the relative trade-off between the data-fidelity term and regu-
larizer.

2.B. Algorithms for learning and reconstruction

Figure 2 provides an overview of the proposed method.
The whole algorithm is divided into two stages: training and
reconstruction. In the training stage, we solve (P0) using a
block coordinate descent (BCD) method to learn a multilayer
sparsifying transform model in an unsupervised manner from
(unpaired) regular-dose images. For the reconstruction stage,
the prior information incorporated into learned transform
would be designed into regularizer term, and iterative algo-
rithm accomplishes the reconstruction for the CT image as
we will show in the later section.

2.B.1. MARS learning algorithm

We propose an exact block coordinate descent (BCD)
algorithm for the nonconvex Problem (P0) that cycles over
updating Zl (sparse coding step) followed by updating the
corresponding Ωl (transform update step) for 1 ≤ l ≤ L. The
algorithmic details are shown in Algorithm 1. In each step,

the remainder of the variables (that are not optimized) is kept
fixed. The BCD algorithm provides a very efficient way to
minimize the cost function and is shown to empirically work
well with appropriate initialization. Recent works involving
transform learning28,30 have shown that such efficient alter-
nating minimization or BCD algorithms can provably con-
verge to the critical points of the underlying problems. In
particular, we show that under the unitarity condition on the
transforms, every subproblem in the block coordinate descent
minimization approach can be solved exactly. We initialize
the algorithm with the 2D DCT for Ω1 and the identity matri-
ces for fΩlgLl¼2, respectively. The initial fZlg are all-zero
matrices.

Since the residuals are defined recursively in Eq. (P0), for
the sake of simplicity of the algorithmic description, we first
define matrices Bq

pðp< qÞ, which can be regarded as back-
propagation matrices from the qth to pth layers.

Bq
p ¼ΩT

pþ1Zpþ1þΩT
pþ1Ω

T
pþ2Zpþ2þ . . .þΩT

pþ1Ω
T
pþ2. . .Ω

T
qZq

¼ ∑
q

k¼pþ1

Qk
s¼pþ1

ΩT
s

 !
Zk:

(1)
(a) Sparse Coding Step for Zl

Here, we solve (P0) for Zl with all other variables fixed.
The corresponding nonconvex subproblem is as follows:

min
Zl

∑
L

i¼l
kΩiRi�Zik2F
n o

þη2l kZlk0: (2)

Using the definitions of the residual matrices and the back-
propagation matrices Bq

p ðp< qÞ along with the unitary prop-
erty of the transforms allows us to rewrite (2) as:

FIG. 1. Multilayer residual sparsifying transform model with L layers or modules. Ωl denotes the transform in the lth layer, which enables sparsifying the residual
map arising from the (l−1)th module.

FIG. 2. Overview of algorithm scheme. Our approach involves a training stage and a reconstruction stage with block coordinate descent algorithms being used in
both stages.
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min
Zl

kZl�ΩlRlk2Fþ ∑
L

i¼lþ1
kZlþBi

l�ΩlRlk2F þη2l kZlk0: (3)

We can now rewrite subproblem (3) as min
Zl

ðL � l þ 1Þ�
kZl � ðΩlRl � 1

L�lþ1∑
L
i¼lþ1B

i
lÞk2F þ η2l kZlk0. This problem

has a similar form as the single-transform sparse coding prob-
lem,9 and the optimal solution Ẑl is obtained as in Eq. (4),
where Hη(�) denotes the hard-thresholding operator that sets
elements with magnitude less than the threshold η to zero.

Ẑl ¼
Hηl=

ffiffiffiffiffiffiffiffiffiffi
L�lþ1

p ΩlRl� 1
L� lþ1

∑
L

i¼lþ1
Bi
l

� �
, 1≤ l≤ L�1,

HηLðΩLRLÞ, l¼ L:

8><
>:

(4)

(b) Transform Update Step for Ωl

Here, we fix fZlg and all Ω j (except the target Ωl in Eq.
(P0)) and solve the following subproblem:

min
Ωl

∑
L

i¼l
kΩiRi�Zik2F

n o
s:t: ΩT

l Ωl ¼ I: (5)

Similar to Eq. (3), we rewrite Eq. (5) using the backpropaga-
tion matrices Bq

p ðp< qÞ as follows:

min
Ωl:ΩT

l Ωl¼I
kΩlRl�Zlk2F þ ∑

L

i¼lþ1
kΩlRl�Zl�Bi

lk2F ,

∼ min
Ωl:ΩT

l Ωl¼I
ðL� lþ1Þ�kΩlRl�Zl� 1

L�lþ1 ∑
L

i¼lþ1
Bi
l k2F ,

(6)

where the last relation (equality) holds up to an additive term
that is independent of Ωl. We can obtain a solution to Eq. (6)
by exploiting the unitarity of Ωl. First, denoting the full sin-
gular value decomposition (SVD) of the matrix Gl below by
UlΣlVT

l , the optimal solution to Eq. (6) is as Eq. (8)

Gl ¼ Rl Zlþ 1
L�lþ1 ∑

L

i¼lþ1
Bi
l

� �T

, 1≤ l≤ L�1,

RLZT
L , l¼ L:

8><
>:

(7)

bΩl ¼VlUT
l (8)

2.B.2. Image reconstruction algorithm

The proposed PWLS-MARS algorithm for LDCT image
reconstruction exploits the learned model. We reconstruct the
image by solving the PWLS problem (P1). We propose a
block coordinate descent (BCD) algorithm for Eq. (P1) that

cycles over updating the image x and each of the sparse coef-
ficient maps Zl for 1 ≤ l ≤ L.

(a) Image Update Step for x
First, with the sparse coefficient maps fZlg fixed, we

optimize for x in Eq. (P1) by optimizing the following
subproblem:

min
x≥ 0

1
2
ky�Axk2WþβS2ðxÞ, (9)

where S2ðxÞ≜∑L
l¼1 kΩlRl � Zlk2F

n o
, with Rl ¼ Ωl�1Rl�1

�Zl�1, 2 ≤ l ≤ L, and R j
1 ¼ P jx. We use the efficient

relaxed linearized augmented Lagrangian method31 (relaxed
LALM) to obtain the solution to Eq. (9). The algorithmic
details are shown in Algorithm 2. In each iteration of the
relaxed LALM, we update the image Ti times (corresponding
to Ti inner loops in Algorithm 2). We let matrix DA denote a
diagonal majorizing matrix of ATWA and precompute the
Hessian matrix of S2ðxÞ as DS2 in Eq. (11) to accelerate the
algorithm, and the gradient of S2ðxÞ is shown in Eq. (10),
where ðBk

0Þ
j
denotes the jth column of matrix Bk

0. We
decrease the parameter ρ in Algorithm 2 according to Eq.
(12),31 where r denotes the index of inner iterations and the
relaxation parameter α ∈ [1, 2) in Eq. (12)

rS2ðxÞ¼ 2β ∑
Np

j¼1
ðP jÞT LP jx� ∑

L

k¼1
ðBk

0Þ
j

� �
, (10)

DS2 ≜r2S2ðxÞ¼ 2Lβ ∑
Np

j¼1
ðP jÞTP j, (11)

ρrðαÞ¼
1, r¼ 0,

π

αðrþ1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ð π

2αðrþ1ÞÞ
2

s
, otherwise,

8><
>:

(12)

(b) Sparse Coding Step for Each Zl

Similar to the sparse coding step during transform learning,
the solution of Eq. (P1) with respect to each sparse coefficient
map Zl is shown in Eq. (14), and is the solution of Eq. (13)

min
Zl

∑
L

i¼l
kΩiRi�Zik2F

n o
þ γ2l kZlk0,

s:t: Ri ¼Ωi�1Ri�1�Zi�1, l≤ i≤ L,

(13)

Ẑl ¼Hγl=
ffiffiffiffiffiffiffiffiffiffi
L�lþ1

p ΩlRl� 1
L� lþ1

∑
L

i¼lþ1
Bi
l

� �
: (14)

3. EXPERIMENTS

In this section, we evaluate the image reconstruction qual-
ity for the proposed PWLS-MARS algorithm and compare it
with several conventional or related methods:

• FBP: conventional FBP method with a Hanning win-
dow.

• PWLS-EP:32 PWLS reconstruction combined with the
edge-preserving regularizer RðxÞ ¼ ∑Np

j¼1∑k∈Nj
κjκkϕ
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ðxj � xkÞ, where Nj denotes the set of neighborhood
pixel indices, and κj and κk are the parameters
that encourage uniform noise.32 We use

ϕðtÞ≜ δ2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ kt=δk2

q
� 1Þ as the potential function.

The relaxed OS-LALM31 is the chosen optimizing
approach for this PWLS cost function.

To compare the image quality quantitatively, we compute
the root-mean-square error (RMSE) and the structural simi-
larity index measure (SSIM).4,33 The RMSE in Hounsfield
units (HU) is computed between the ground truth image and

reconstructed image as RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σi∈ROIðx̂i � x�i Þ2=NROI

q
,

where x̂i and x�i denote the pixel intensities of the recon-
structed and ground truth images, respectively, and NROI is
the number of pixels in the region of interest (ROI). The ROI
here was a circular (around center of image) region contain-
ing all the phantom tissues. We simulate the LDCT measure-
ments using the “Poisson + Gaussian" noisy model,34 i.e.,
ŷi ¼ PoissonfI0e�½Ax�ig þNf0, σ2g, where I0 is the incident
X-ray intensity incorporating X-ray source illumination and
the detector gain, and σ2 = 52 is the variance of electronic
noise.34

We conduct experiments with the XCAT phantom35 and
Mayo Clinic data,36, respectively. Our first experiment uses
the XCAT phantom data with a clean ground truth (reference)
to demonstrate the performance of the MARS model over
other schemes and illustrates the learned multilayer filters. In
our second experiment, we investigate the performance of
various methods on the Mayo Clinic data and provide a more
detailed comparison between MARS and other methods.
Lastly, we analyze the residual maps in the proposed model
in different layers to better understand the MARS model.

3.A. Parameter selection

For each MARS model, multiple parameters are tuned for
the learning ({ηl, 1 ≤ l ≤ L}) and reconstruction
(β, fγl, 1 ≤ l ≤ Lg) stages. Even though the number of
parameters here increases the difficulty of adjusting the

model for optimal image quality, we can choose the values of
the parameters with an empirical approach. The parameters
{ηl} during learning are to achieve a low sparsity of the
sparse coefficient maps. Normally, we set {ηl} to achieve 5–
10% sparsity for Zl. One clever method for selecting good
sparsity penalty parameters is to set them in decreasing order
over layers. This strategy is expected to work because the
residual maps in subsequent layers always contain less (or
finer) image information than the early layers. A similar
approach works for adjusting parameters in the reconstruction
stage. In the reconstruction algorithm, we tune the parameters
over ranges of values (decreasing over layers for γl) to achieve
the best reconstruction quality (i.e., RMSE and SSIM).

3.B. Results with the XCAT phantom

3.B.1. Behavior of the learned MARS models

We pre-learn MARS models with different numbers of
layers (depths) with 64 × 64 transforms. The models are
learned from 8 × 8 overlapping patches extracted from five
420 × 420 XCAT phantom slices. The number of pixels Np

and the number of overall training patches N are about
1.7 × 105 and 8.5 × 105, respectively. The training slices are
displayed in the supplement (Fig. S1). The patch stride is
1 × 1. We choose 1, 2, 3, 5, and 7 layers, respectively, during
training, which corresponds to ST, MARS2, MARS3,
MARS5, and MARS7 models. We initialize the MARS
learning algorithm with the 2D DCT matrix for the transform
in the first layer and identity matrices for transforms in deeper
layers. For each model, we ran 1000 to 1500 iterations of the
block coordinate descent training algorithm to ensure
convergence. We choose η = 75 for ST, (η1, η2) = (80, 60)
for MARS2, (η1, η2, η3) = (90, 80, 60) for MARS3,
(η1, η2, η3, η4, η5) = (120, 120, 120, 110, 110) for MARS5,
(η1, η2, η3, η4, η5, η6, η7) = (120, 120, 120, 110, 110, 80, 60)
for MARS7. Figure 3 shows some of the learned transforms,
with each transform matrix row displayed as a square patch
for simplicity. The first layer transform in the models typi-
cally displays edge-like and gradient filters that sparsify the
image. However, with more layers, finer level features are
learned to sparsify transform domain residuals in deeper lay-
ers. Nonetheless, the transforms in quite deep layers could
potentially be more easily contaminated with noise in the
training data, since the main image features are successively
filtered out over layers.

3.B.2. Simulation framework and visual results

We simulate LDCT measurements using 840 × 840
XCAT phantom slices with Δx = Δy = 0.4883 mm. The gen-
erated sinograms are of size 888 × 984, obtained with GE
2D LightSpeed fan-beam geometry corresponding to a
monoenergetic source with I0 = 1 × 104 incident photons
per ray and no scatter. For PWLS-EP, we ran 1000 iterations
of the relaxed LALM algorithm with the FBP reconstruction
as initialization and regularization parameter β ¼ 216. For the
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MARS model, we used the relaxed LALM algorithm for the
image update step with two inner iterations. We initialized
PWLS-MARS schemes with the PWLS-EP reconstruction
and used TO = 1500 outer iterations for ST and all MARS
schemes.

We firstly hand-tuned the reconstruction parameters
(β, fγl, 1 ≤ l ≤ Lg) for one test slice and treated this set of
parameters as the baseline. Similar to the PWLS-EP algo-
rithm, we could determine the optimal (in terms of optimal
RMSE) parameters for other testing slices by tuning the base
parameters in a small range. However, we found that the
change in reconstruction quality by picking a common set of
parameters instead of slice-wise optimized parameters is quite
small (only 0.2 HU in RMSE and without the loss of details).
Therefore, the same set of parameters (baseline parameters)

were used across testing cases and shown to be effective over
the cases. In particular, we selected slice 48 of the XCAT
phantom as the case for parameter tuning and set the regular-
ization parameters (after tuning over ranges of values) as
ðβ, γÞ ¼ ð2 � 105, 20Þ for ST, ðβ, γ1, γ2Þ ¼ ð9 � 104,
30, 10Þ for MARS2, ðβ, γ1, γ2, γ3Þ ¼ ð9 � 104, 25, 15, 10Þ
for MARS3, ðβ, γ1, γ2, γ3, γ4, γ5Þ ¼ ð9 � 104, 25, 15, 10,
5, 1Þ for MARS5, and ðβ, γ1, γ2, γ3, γ4, γ5, γ6, γ7Þ ¼
ð6 � 104, 30, 25, 20, 15, 10, 5, 1Þ for MARS7, respec-
tively. In Fig. S2 in the supplement, we give the reconstruc-
tions for slice 48 of the XCAT phantom with various
methods. Figures 4 and 5 here show the reconstructions for
two independent test cases (slice 20 and 60 of the XCAT
phantom). Both of them used the same set of parameters
obtained for slice 48. The zoom-in regions give an explicit

FIG. 4. Comparison of reconstructions of slice 20 of the XCAT phantom with filtered back-projection, PWLS-EP, PWLS-ST, PWLS-MARS2, PWLS-MARS3,
PWLS-MARS5, and PWLS-MARS7, respectively, at incident photon intensity I0 = 1 × 104. The display window is [800, 1200] HU.

(a) (b) (c)

(d)

(e)

FIG. 3. Transforms learned from the XCAT phantom. Transform rows are shown as 8 × 8 patches. Beyond the first layer, the rows of the transforms sparsify
across the residual channels (1D filters).

Medical Physics, 0 (0), xxxx

6 Yang et al.: MARS model for LDCT image reconstruction 6



Yang et al.: MARS model for LDCT image reconstruction6394 6394

Medical Physics, 48 (10), October 2021

comparison between the multilayer sparsifying transform
models and other methods such as FBP, PWLS-EP, and
PWLS-ST. PWLS-MARS achieves better noise reduction
and higher contrast.

3.C. Low-dose experiments with Mayo Clinic data

3.C.1. Study of model training

First, we study transform training based on Mayo Clinic
data. As shown in Fig. 6, seven 512 × 512 slices obtained at
regular dose from three patients are used for transform learn-
ing. The number of pixels Np≈2:6 � 105. Similar to the
phantom experiments, 8 × 8 overlapping patches are
extracted with a 1 × 1 patch stride. The number of overall
training patches N is about 1.8 × 106. We set η = 100 for ST,
(η1, η2) = (80, 60) for MARS2, (η1, η2, η3) = (60, 60, 40)
for MARS3, (η1, η2, η3, η4, η5) = (100, 100, 80, 80, 60) for
MARS5, (η1, η2, η3, η4, η5, η6, η7) = (150, 140, 130, 120,
110, 100, 90) for MARS7. The iteration number T = 1000 in

Algorithm 1. Figure 7 illustrates the learned transforms
obtained with Mayo Clinic data. Different from the XCAT
phantom case, these transforms up to MARS5 display more
complex features and structures. The rich features of the
MARS models better sparsify the training images over layers
compared to the single-layer model (ST).

3.C.2. Simulation framework, reconstruction
results, and comparisons

The synthesized low-dose clinical measurements are
simulated from regular-dose images at a resolution of
Δx = Δy = 0.9766 mm with a fan-beam CT geometry
corresponding to a monoenergetic source at incident photon
intensity I0 = 1 × 104. The sinograms are of size
736 × 1152. The width of each detector column is
1.2858 mm, the source to detector distance is 1085.6 mm,
and the source to rotation center distance is 595 mm. We
reconstruct images of size 512 × 512 with the pixel size
being 0.69 mm × 0.69 mm.

FIG. 5. Comparison of reconstructions of slice 60 of the XCAT phantom with filtered back-projection, PWLS-EP, PWLS-ST, PWLS-MARS2, PWLS-MARS3,
PWLS-MARS5, and PWLS-MARS7, respectively, at incident photon intensity I0 = 1 × 104. The display window is [800, 1200] HU.

FIG. 6. Seven regular-dose slices for training the multilayer residual sparsifying transform model. The first row displays four slices of patient L096 and the sec-
ond row shows three training slices from patients L067 and L143, respectively.
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We conducted experiments on one test slice used for
parameter tuning (L067-slice 120) and four independent test
slices (L109-slice 90, L192-slice90, L333-slice140, and
L506-slice 100) of the Mayo Clinic data. For PWLS-EP, we
ran 1000 iterations using relaxed OS-LALM and set regular-
ization parameter β ¼ 215:5. We used the same TO = 1500 as
the phantom experiments for Algorithm 2. The process of
selecting a general set of reconstruction parameters
(β, fγl, 1 ≤ l ≤ Lg) for the Mayo Clinic test slices is identi-
cal to that for the XCAT phantom in Section 3.B.2. The
selected regularization parameter β and the parameters γl that
control the sparsity of the coefficient maps are ðβ, γÞ ¼
ð2:5 � 104, 30Þ for ST, ðβ, γ1, γ2Þ ¼ ð1:8 � 104, 30, 10Þ
for MARS2, ðβ, γ1, γ2, γ3Þ ¼ ð1:8 � 104, 30, 12, 10Þ for
MARS3, ðβ, γ1, γ2, γ3, γ4, γ5Þ ¼ ð1:6 � 104, 30, 20, 10,

7, 5Þ for MARS5, and ðβ, γ1, γ2, γ3, γ4, γ5, γ6, γ7Þ ¼
ð3:5 � 104, 20, 17, 14, 11, 7, 4, 1Þ for MARS7, respec-
tively.

Figures 8–11 show the reconstructions of the four inde-
pendent slices using the FBP, PWLS-EP, PWLS-ST, PWLS-
MARS2, PWLS-MARS3, PWLS-MARS5, and PWLS-
MARS7 schemes, respectively. Additional Mayo Clinic
experimental results of the parameter tuning case (Fig. S3)
are shown in the supplementary document. Table I lists the
RMSE and SSIM values of reconstructions of the four inde-
pendent test slices, with the best values bolded. Generally,
the five and seven layer models provided the best RMSE and
SSIM values. They outperform the single-layer model by
1.9 HU in RMSE on average. However, the MARS5 and
MARS7 models perform similarly. In order to strengthen the

(a) (b) (c)

(d)

(e)

FIG. 7. Transforms learned from Mayo Clinic data. Beyond the first layer, the rows of the transforms are shown as (square) two-dimensional patches and sparsify
transform domain residuals.

FIG. 8. Reconstructions of slice 90 of patient L109 at incident photon intensity I0 = 1 × 104. The first row shows the reference image and reconstructions with
filtered back-projection, PWLS-EP, and PWLS-ST, respectively, and the second row shows the results with multilayer residual sparsifying transform models with
two, three, five, and seven layers, respectively. The display window is [800, 1200] HU.
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FIG. 9. Reconstructions of slice 90 of patient L192 at incident photon intensity I0 = 1 × 104. The first row shows the reference image and reconstructions with
filtered back-projection, PWLS-EP, and PWLS-ST, respectively, and the second row shows the results with multilayer residual sparsifying transform models with
two, three, five, and seven layers, respectively. The display window is [800, 1200] HU.

FIG. 10. Reconstructions of slice 140 of patient L333 at incident photon intensity I0 = 1 × 104. The first row shows the reference image and reconstructions with
filtered back-projection, PWLS-EP, and PWLS-ST, respectively, and the second row shows the results with multilayer residual sparsifying transform models with
two, three, five, and seven layers, respectively. The display window is [800, 1200] HU.

FIG. 11. Reconstructions of slice 100 of patient L506 at incident photon intensity I0 = 1 × 104. The first row shows the reference image and reconstructions with
filtered back-projection, PWLS-EP, and PWLS-ST, respectively, and the second row shows the results with multilayer residual sparsifying transform models with
two, three, five, and seven layers, respectively. The display window is [800, 1200] HU.
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benefits of the multilayer model, Table II lists the RMSE of
the reconstructions in four different ROIs (shown in the refer-
ence of Fig. 11) with seven methods for slice 100 of patient
L506. By observing the reconstructed images, we see that
although the ST model achieves a cleaner reconstruction
result than FBP and PWLS-EP, it still sacrifices some sharp-
ness of the central region and suffers from loss of details. The
deeper models have a somewhat more positive effect in terms
of maintaining subtle features, which is clearly more essential
to clinical diagnosis. Furthermore, as we will discuss later,
after considerable parameter tuning, we found that the infor-
mation contained in residual maps is gradually decreased
with the number of layers, eventually vanishing at some layer,
which suggests that very deep unsupervised models might
not offer significantly better image quality.

3.C.3. Analysis of residual maps

Here, we investigate the residual images over the layers of
the MARS7 model. Figure 12 displays the image recon-
structed with MARS7 along with the residual images in dif-
ferent layers. The residual images are generated by applying
the restoring operation ðP jÞT to the corresponding columns
of each residual matrix Rl, 1 ≤ l ≤ L, forming images
∑ jðP jÞTR j

l . Essentially, all the columns of Rl are transformed
into 8 × 8 patches and accumulated back in the image to
form the residual image in the lth layer. We can observe that
the residual images in the first three layers contain explicit
structural information and we still find some delicate details
in the fourth and fifth layers. However, we hardly see any
valuable features in the residual images for the following

layers, which is consistent with the fact that the transform is
overwhelmed by noise in quite deep layers. Therefore, the
ceiling for the potential of multilayer sparsifying transform
model may be five or seven layers. The quantitive result also
implies the same conclusion.

3.D. Runtimes for MARS

We also discuss the runtimes for the proposed MARS
model. Table III shows the average runtimes per iteration
(MARS schemes were run for the same overall number of
iterations) for various MARS models for both the XCAT
phantom and Mayo Clinic data experiments. We ran the Mat-
lab code on a machine with two 2.4 GHz 14-core Intel Xeon
E5-2680 v4 processors. We find that although training the
deep models (which would be done once offline) takes sev-
eral times as long as the shallow (single layer) model, the cost
of the reconstruction/testing step is much more similar
between deep and shallow models.

4. DISCUSSION AND CONCLUSION

In this work, we presented a strategy for unsupervised
learning of deep transform models from limited data and with
nested network structure, where the input of each layer com-
prises of the sparsifiable residual map from the preceding
layer. The learned MARS model is used to form a data-
driven regularizer in model-based image reconstruction and
proves effective for LDCT image reconstruction. The pro-
posed algorithms for learning MARS models and for image
reconstruction use highly efficient updates and are scalable.

TABLE I. RMSE in HU (first row) and SSIM (second row) of reconstructions with filtered back-projection (FBP), PWLS-EP, PWLS-ST, PWLS-MARS2, PWLS-
MARS3, PWLS-MARS5, and PWLS-MARS7, for four slices of the Mayo Clinic data at incident photon intensity I0 = 1 × 104.

FBP EP PWLS-ST PWLS-MARS2 PWLS-MARS3 PWLS-MARS5 PWLS-MARS7

L109 slice90 107.1 33.5 29.0 28.1 27.8 27.6 28.1

0.343 0.734 0.716 0.727 0.731 0.744 0.753

L192 slice90 93.7 31.5 26.3 25.3 24.9 24.6 24.9

0.350 0.747 0.737 0.744 0.750 0.765 0.781

L333 slice140 113.1 36.3 29.7 28.5 28.3 28.1 28.4

0.358 0.758 0.739 0.744 0.750 0.766 0.786

L506 slice100 65.3 34.3 27.5 26.2 25.6 25.3 25.7

0.461 0.778 0.760 0.766 0.773 0.790 0.809

For RMSE criterion, the minimum value for each row is bold; for SSIM criterion, the maximum value for each row is bold.

TABLE II. RMSE (HU) in four ROIs of reconstructions with filtered back-projection (FBP), PWLS-EP, PWLS-ST, PWLS-MARS2, PWLS-MARS3, PWLS-
MARS5, and PWLS-MARS7, for slice 100 of patient L506 of the Mayo Clinic data at incident photon intensity I0 = 1 × 104.

FBP EP PWLS-ST PWLS-MARS2 PWLS-MARS3 PWLS-MARS5 PWLS-MARS7

ROI-1 1.05 0.71 0.68 0.62 0.60 0.59 0.59

ROI-2 0.90 0.78 0.69 0.63 0.62 0.61 0.63

ROI-3 2.17 1.88 1.75 1.57 1.53 1.51 1.55

ROI-4 1.91 0.96 1.03 0.91 0.90 0.89 0.91

For RMSE criterion, the minimum value for each row is bold; for SSIM criterion, the maximum value for each row is bold.
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We trained models from patches of (regular-dose) slices of
the XCAT phantom and Mayo Clinic data and tested the
models for reconstructing other slices. The learned multilayer
models contain complex features and structures, which help
enhance image reconstruction quality of MARS models over
single-layer models. Experiments with both simulated data
from the XCAT phantom and with the synthesized clinical
data reveal that PWLS-MARS provides better reconstruction
metrics and image details compared to other methods such as
FBP, PWLS-EP, and PWLS-ST. In Figs. 8–11, we observed
that the reconstruction incorporating deep transform model
prior presented more subtle details, especially for the central

region, which normally suffers from severe artifacts in LDCT
reconstruction.

We also investigated the potential limitation in terms of
the model depth. By observing Tables I and II, we found deep
models such as MARS7 only offer little additional benefit to
RMSE and SSIM. Such a phenomenon also appears in other
related work37 in which the author believes that limited train-
ing dataset leads to the deterioration of the performance of
deep models. In order to seek the underlying reason, we
increased the training dataset from 7 slices to 14 slices while
the approximate number of patches to be fed into network has
been risen to 3 million. Table IV lists the reconstruction

TABLE IV. Comparison of reconstruction of slice 100 of patient L506 between training dataset of 7 slices and 14 slices respectively.

PWLS-ST PWLS-MARS2 PWLS-MARS3 PWLS-MARS5 PWLS-MARS7

Dataset of 7 slices RMSE 27.5 26.2 25.6 25.3 25.7

SSIM 0.760 0.766 0.773 0.790 0.809

Dataset of 14 slice RMSE 27.4 26.2 25.6 25.4 25.6

SSIM 0.759 0.766 0.773 0.790 0.810

For RMSE criterion, the minimum value for each row is bold; for SSIM criterion, the maximum value for each row is bold.

TABLE III. Average runtime per iteration of various multilayer residual sparsifying transform (MARS) models with both XCAT phantom and Mayo Clinic data
experiments. Each number displayed in this table is in seconds.

PWLS-ST PWLS-MARS2 PWLS-MARS3 PWLS-MARS5 PWLS-MARS7

XCAT phantom Training 0.8 1.4 3.5 4.7 7.8

Testing 2.9 3.2 3.6 4.4 5.1

Mayo Clinic data Training 1.5 2.8 7.4 9.3 15.2

Testing 3.1 3.4 4.1 5.0 5.8

The smallest time value for each row is bold.
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FIG. 12. Reconstruction and transform domain residual images for slice 100 of patient L506. The leftmost image on the first row is the reconstruction with
PWLS-MARS7, while the other images are the residual maps in different layers. The display windows are [800, 1200] HU and [−100, 100] HU, respectively, for
the reconstruction and the residual image, respectively.
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results of slice 100 of patient L506 with respect to training
dataset of 7 slices and 14 slices. The tiny improvement leads
us to conjecture that the limitation of the deep model may not
be due to the small set of training images. Section 3.C.3 pro-
vides an alternative explanation. We found that very deep
residual layers may not contain much structures, thus result-
ing in somewhat noisy transforms there, which may offer lit-
tle additional benefit.

As shown in Section 2.B, the block coordinate descent
(BCD) method was applied to train a MARS model. Since
the problem we address in this work is nonconvex, there
might not be a unique minimizer in general. Despite that we
use the BCD algorithm to ensure the monotone decrease over
iterations of the nonnegative objective like (P0) with a rea-
sonable initialization (i.e., with PWLS-EP). A more thorough
analysis of convergence for our scheme is left for future work.

To conclude, we proposed a general framework for MARS
learning, where the transform domain residual maps over sev-
eral layers are jointly sparsified. Our work then applied
learned MARS models to LDCT image reconstruction by
using a PWLS approach with a learned MARS regularizer.
Experimental results illustrate the promising performance of
the multilayer scheme over single-layer learned sparsifying
transforms. Learned MARS models also offer image quality
improvements over typical nonadaptive methods. Future work
will consider other strategies for learning deep sparsifying
models by exploiting pooling and other operations. In addi-
tion, more studies are required to validate the proposed meth-
od’s clinical applicability.
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APPENDIX A. SOLUTION OF THE SPARSE CODING
PROBLEM (2)

First, we can split this objective function and rewrite Eq.
(2) as follows,

min
Zl

kZl�ΩlRlk2Fþ ∑
L

i¼lþ1
kZi�ΩiRik2F þηlkZlk0: (15)

Under the condition that ΩT
l Ωl ¼ I, 8l, the following

steps are based on

kΩlRl�Zlk2F ¼kΩT
l ΩlRl�ΩT

l Zlk2F ¼kRl�ΩT
l Zlk2F: (16)

We use Eq. (16) within Eq. (15) repetitively, which leads
to the equivalent problem shown in Eq. (17),

min
Zl

kZl�ΩlRlk2F þ ∑
L

i¼lþ1
kZlþBi

l�ΩlRlk2Fþη2l kZlk0:

(17)

Combining all the quadratic terms involving Zl leads to
the following optimization problem:

min
Zl

ðL� lþ1Þ�kZl� ΩlRl� 1
L� lþ1

∑
L

i¼lþ1
Bi
l

� �
k2F þη2l kZlk0:

(18)

The solution to Eq. (18) is similar to ‘0 transform sparse
coding30 and is given as follows when 1 ≤ l ≤ L−1

Ẑl ¼Hηl=
ffiffiffiffiffiffiffiffiffiffi
L�lþ1

p ΩlRl� 1
L� lþ1

∑
L

i¼lþ1
Bi
l

� �
(19)

and when l = L, it is given as

ẐL ¼HηLðΩLRLÞ (20)

APPENDIX B. SOLUTION OF THE TRANSFORM
UPDATE PROBLEM (5)

Equation (16) also works well for simplifying (5) as fol-
lows,

min
Ωl:ΩT

l Ωl¼I
ðL� lþ1Þ�kΩlRl�Zl� 1

L� lþ1
∑
L

i¼lþ1
Bi
l k2F:

(21)

Problem (21) can be equivalently written as

min
Ωl:ΩT

l Ωl¼I
trðRlRT

l Þ�2 tr ΩlRl Zlþ 1
L� lþ1

∑
L

i¼lþ1
Bi
l

� �T
 !

:

(22)

Ignoring the constant first term, we get

max
Ωl:ΩT

l Ωl¼I
tr ΩlRl Zlþ 1

L� lþ1
∑
L

i¼lþ1
Bi
l

� �T
 !

: (23)

Subproblem (23) is identical to the corresponding subprob-
lem in single-layer sparsifying transform learning.30 We
denote the full singular value decomposition of the matrix Gl

as UlΣlVT
l . The optimal solution to Eq. (23) is then given as

VlUT
l (cf.30).
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Additional supporting information may be found online in
the Supporting Information section at the end of the article.

Fig. S1. Five reference slices for training the MARS model.
The slice numbers correspond to the location in the volume.
Fig. S2. Comparison of reconstructions of slice 48 of the
XCAT phantom with FBP, PWLS-EP, PWLS-ST, PWLS-
MARS2, PWLS-MARS3, PWLS-MARS5, and PWLS-
MARS7, respectively, at incident photon intensity
I0 = 1 × 104. The display window is [800, 1200] HU.
Fig. S3. Reconstructions of slice 120 of patient L067 at inci-
dent photon intensity I0 = 1 × 104. The first row shows the
reference image and reconstructions with FBP, PWLS-EP,
and PWLS-ST, respectively, and the second row shows the
results with MARS models with 2, 3, 5, and 7 layers, respec-
tively. The display window is [800, 1200] HU.
Table S1. RMSE in HU (first row) and SSIM (second row)
of reconstructions with FBP, PWLS-EP, PWLS-ST, PWLS-
MARS2, PWLS-MARS3, PWLS-MARS5, and PWLS-
MARS7, for slice 120 of patient L067 of Mayo Clinic data at
I0 = 1 × 104.
Supplementary Materials: Additional Experimental Results
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