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Abstract13

Purpose: Signal models based on sparse representations have received considerable14

attention in recent years. On the other hand, deep models consisting of a cascade of15

functional layers, commonly known as deep neural networks, have been highly suc-16

cessful for the task of object classification and have been recently introduced to image17

reconstruction. In this work, we develop a new image reconstruction approach based18

on a novel multi-layer model learned in an unsupervised manner by combining both19

sparse representations and deep models. The proposed framework extends the classical20

sparsifying transform model for images to a Multi-lAyer Residual Sparsifying trans-21

form (MARS) model, wherein the transform domain data are jointly sparsified over22

layers. We investigate the application of MARS models learned from limited regular-23

dose images for low-dose CT reconstruction using Penalized Weighted Least Squares24

(PWLS) optimization.25

Methods: We propose new formulations for multi-layer transform learning and image26

reconstruction. We derive an efficient block coordinate descent algorithm to learn the27

transforms across layers, in an unsupervised manner from limited regular-dose images.28

The learned model is then incorporated into the low-dose image reconstruction phase.29

Results: Low-dose CT experimental results with both the XCAT phantom and Mayo30

Clinic data show that the MARS model outperforms conventional methods such as31

FBP and PWLS methods based on the edge-preserving (EP) regularizer in terms of32

two numerical metrics (RMSE and SSIM) and noise suppression. Compared with the33

single-layer learned transform (ST) model, the MARS model performs better in main-34

taining some subtle details.35

Conclusions: This work presents a novel data-driven regularization framework for36

CT image reconstruction that exploits learned multi-layer or cascaded residual sparsi-37

fying transforms. The image model is learned in an unsupervised manner from limited38

images. Our experimental results demonstrate the promising performance of the pro-39

posed multi-layer scheme over single-layer learned sparsifying transforms. Learned40

MARS models also offer better image quality than typical nonadaptive PWLS meth-41

ods.42
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I. Introduction43

Signal models exploiting sparsity have been shown to be useful in a variety of of imag-44

ing and image processing applications such as compression, restoration, denoising, recon-45

struction, etc.1,2,3,4 Natural signals can be modeled as sparse in a synthesis dictionary (i.e.,46

represented as a linear combinations of a few dictionary atoms or columns) or in a spar-47

sifying transform domain. Transforms such as wavelets5 and the discrete cosine transform48

(DCT) are well-known to sparsify images. Synthesis dictionary learning6 and analysis dictio-49

nary learning7 methods adapt such models to data and involve algorithms such as K-SVD7,50

the Chasing Butterflies approach8, and some others. The underlying dictionary learning51

problems are typically NP-hard and the corresponding algorithms often involve computa-52

tionally expensive updates that limit their applicability to large-scale data. In contrast, the53

recently proposed sparsifying transform learning approaches9 involve exact and highly effi-54

cient updates in the algorithms. In particular, the transform model suggests that the signal55

is approximately sparse in a transformed domain. Furthermore, Ravishankar et al 10,11,1256

demonstrated the applicability of adaptive sparsifying transforms for several applications57

such as image denoising and medical image reconstruction.58

On the other hand, deep models with nested network structure popularly known as deep59

neural networks provide remarkable results for classification and regression across various60

fields13. Given a task-based loss function for network parameter estimation, algorithms61

based on gradient back-propagation sequentially reduce the error between a known target62

(ground truth) and the network prediction. Another approach from a few research groups63

combines deep network architectures with probabilistic models during learning, and this64

generative Bayesian model14 attains a superior performance during the inference process.65

Morever, the connections between sparse modeling and deep neural networks has also been66

exploited. For example, the multi-layer convolutional (synthesis) sparse coding model15,1667

provides a new interpretation of convolutional neural networks (CNNs), where the pursuit68

of sparse representation from a given input signal complies with the forward pass in a CNN.69

In the meantime, multi-layer sparsifying transforms make the most direct connection with70

CNNs in the model and enable sparsifying an input image successively over layers17, creating71

a rich and more complete sparsity model, whose learning in an unsupervised manner and72

from limited data also forms the core of this work.73
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page 2 Xikai Yang

One of the most important applications of such image models is for medical image re-74

construction. In particular, an important problem in X-ray computed tomography (CT) is75

reducing the X-ray exposure to patients while maintaining good image reconstruction qual-76

ity. A conventional method for CT reconstruction is the analytical filtered back-projection77

(FBP)18. However, image quality degrades severely for FBP when the radiation dose is re-78

duced. In contrast, model-based image reconstruction (MBIR) exploits CT forward models79

and statistical models together with image priors to achieve often better image quality19.80

A typical MBIR method for low-dose CT (LDCT) is the penalized weighted least squares81

(PWLS) approach. The cost function for PWLS includes a weighted quadratic data-fidelity82

term and a penalty term or regularizer capturing prior information or model of the ob-83

ject20,21,22. Recent works have shown promising LDCT reconstruction quality by incorpo-84

rating data-driven models into the regularizer, where the models are learned from datasets85

of images or image patches. In particular, PWLS reconstruction with adaptive sparsifying86

transform-based regularization has shown promise for tomographic reconstruction23,24,25,26,27.87

Recent work has also shown that they may generalize better to unseen new data than su-88

pervised deep learning schemes28. The adaptive transform-based image reconstruction algo-89

rithms can exploit a variety of image models23,26,29 learned in an unsupervised manner from90

limited training images, and involve efficient closed-form solutions for sparse coding.91

In this work, we propose a new formulation and algorithm for learning a multi-layer92

transform model17, where the transform domain residuals (the difference between trans-93

formed data and their sparse approximations) are successively sparsified over several layers.94

We refer to the model as the Multi-lAyer Residual Sparsifying transform (MARS) model.95

The transforms are learned over several layers from images to jointly minimize the transform96

domain residuals across layers, while enforcing sparsity conditions in each layer. Importantly,97

the filters beyond the first layer can help better exploit finer features (e.g., edges and cor-98

relations) in the residual maps. We investigate the performance of unsupervised learning99

of MARS models from limited data for LDCT reconstruction using PWLS. We propose100

efficient block coordinate descent algorithms for both learning and reconstruction. Exper-101

imental results with the XCAT phantom and Mayo Clinic data illustrate that the learned102

MARS model outperforms conventional methods such as FBP and PWLS methods based on103

the non-adaptive edge-preserving (EP) regularizer in terms of two numerical metrics (RMSE104

and SSIM) and noise suppression. Compared with the recent learned single-layer transform105
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model, the MARS model performs better in maintaining some subtle details.106

In the following sections, we will first study how to train our proposed model in detail107

in Section II, where we will discuss the corresponding problem formulations in Section II-A,108

followed by our algorithms in Section II-B. The experimental results with both the XCAT109

phantom and Mayo Clinic data are presented in Section III. Section IV presents a discussion110

of the proposed methods and results and concludes.111

II. Methods112

II.A. Formulations for MARS Training and LDCT reconstruction113

Here, we introduce the proposed general multi-layer transform learning framework and114

the formulation for LDCT image reconstruction. Fig. 1 illustrates the structure of our115

multi-layer residual sparsifying transform model, where Ωl denotes the transform in the lth116

layer. These transforms capture higher order image information by sparsifying the transform117

domain residual maps layer by layer. The MARS learning cost and constraints are shown in118

Problem (P0), which is an extension of simple single-layer transform learning9,17.119

min
{Ωl,Zl}

L
∑

l=1

{

‖ΩlRl − Zl‖
2
F + η2l ‖Zl‖0

}

,

s.t. Rl = Ωl−1Rl−1 − Zl−1, 2 ≤ l ≤ L, ΩT
l Ωl = I, ∀l.

(P0)120

Here, {Ωl ∈ R
p×p} and {Zl ∈ R

p×N} denote the sets of learned transforms and sparse121

coefficient maps, respectively, for the 1 ≤ l ≤ L layers and “F” denotes the Frobenius norm.122

The total number of training patches is denoted by N . Parameter ηl controls the maximum123

allowed sparsity level (computed using the ℓ0 “norm” penalty) for Zl. The residual maps124

{Rl ∈ R
p×N} are defined in recursive form over layers, with R1 denoting the input training125

data. We assume R1 to be a matrix, whose columns are (vectorized) patches drawn from126

image data sets. The unitary constraint for each Ωl enables closed-form solutions for the127

sparse coefficient and transform update steps in our algorithms. The MARS model learned128

via (P0) can then be used to construct a data-driven regularizer in PWLS as shown in129

Problem (P1).130

min
x≥0

1

2
‖y −Ax‖2W + βS(x), (P1)131
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page 4 Xikai Yang

S(x) , min
{Zl}

L
∑

l=1

{

‖ΩlRl − Zl‖
2
F + γ2

l ‖Zl‖0

}

,

s.t. Rl = Ωl−1Rl−1 − Zl−1, 2 ≤ l ≤ L ,Rj
1 = Pjx, ∀ j.

In particular, we reconstruct the image x ∈ R
Np from noisy sinogram data y ∈ R

Nd by132

solving (P1), where Np denotes the number of pixels. A ∈ R
Nd×Np is the system matrix of133

the CT scan and W = diag{wi} ∈ R
Nd×Nd is the diagonal weighting matrix with elements134

being the estimated inverse variance of yi. Operator Pj ∈ R
p×Np extracts and vectorizes135

the jth patch of x as Pjx. Overlapping image patches are extracted with appropriate patch136

stride (1 pixel stride in our experiments). The jth columns of Rl and Zl are denoted Zj
l and137

Rj
l , respectively. The non-negative parameters {γl} control the sparsity of the coefficient138

maps in different layers, and β > 0 captures the relative trade-off between the data-fidelity139

term and regularizer.140

II.B. Algorithms for Learning and Reconstruction141

Fig. 2 provides an overview of the proposed method. The whole algorithm is divided142

into two stages: training and reconstruction. In the training stage, we solve (P0) using a143

block coordinate descent (BCD) method to learn a multi-layer sparsifying transform model in144

an unsupervised manner from (unpaired) regular-dose images. For the reconstruction stage,145

the prior information incorporated into learned transform would be designed into regularizer146

term, and iterative algorithm accomplishes the reconstruction for the CT image as we will147

show in the later section.148

II.B.1. MARS Learning Algorithm149

We propose an exact block coordinate descent (BCD) algorithm for the nonconvex150

Problem (P0) that cycles over updating Zl (sparse coding step) followed by updating the151

corresponding Ωl (transform update step) for 1 ≤ l ≤ L. The algorithmic details are shown152

in Algorithm 1. In each step, the remainder of the variables (that are not optimized)153

are kept fixed. The BCD algorithm provides a very efficient way to minimize the cost154

function and is shown to empirically work well with appropriate initialization. Recent works155

involving transform learning28,30 have shown that such efficient alternating minimization or156

BCD algorithms can provably converge to the critical points of the underlying problems. In157
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particular, we show that under the unitarity condition on the transforms, every subproblem158

in the block coordinate descent minimization approach can be solved exactly. We initialize159

the algorithm with the 2D DCT for Ω1 and the identity matrices for {Ωl}
L
l=2, respectively.160

The initial {Zl} are all-zero matrices.161

Since the residuals are defined recursively in (P0), for the sake of simplicity of the162

algorithmic description, we first define matrices Bq
p(p < q), which can be regarded as back-163

propagation matrices from the qth to pth layers.164

Bq
p = ΩT

p+1Zp+1 +ΩT
p+1Ω

T
p+2Zp+2 + ...+ΩT

p+1Ω
T
p+2...Ω

T
q Zq

=

q
∑

k=p+1

( k
∏

s=p+1

ΩT
s

)

Zk.
(1)165

(a) Sparse Coding Step for Zl166

Here, we solve (P0) for Zl with all other variables fixed. The corresponding nonconvex167

subproblem is as follows:168

min
Zl

L
∑

i=l

{

‖ΩiRi − Zi‖
2
F

}

+ η2l ‖Zl‖0. (2)169

Using the definitions of the residual matrices and the backpropagation matrices Bq
p (p < q)170

along with the unitary property of the transforms allows us to rewrite (2) as:171

min
Zl

‖Zl −ΩlRl‖
2
F +

L
∑

i=l+1

‖Zl +Bi
l −ΩlRl‖

2
F + η2l ‖Zl‖0. (3)172

We can now rewrite subproblem (3) as minZl
(L− l+1)×‖Zl−(ΩlRl−

1
L−l+1

∑L
i=l+1 B

i
l)‖

2
F +173

η2l ‖Zl‖0. This problem has a similar form as the single-transform sparse coding problem9,174

and the optimal solution Ẑl is obtained as in (4), where Hη(·) denotes the hard-thresholding175

operator that sets elements with magnitude less than the threshold η to zero.176

Ẑl =







Hηl/
√
L−l+1

(

ΩlRl −
1

L−l+1

∑L
i=l+1 B

i
l

)

, 1 ≤ l ≤ L− 1,

HηL(ΩLRL), l = L.
(4)177

(b) Transform Update Step for Ωl178

Here, we fix {Zl} and all Ωj (except the target Ωl in (P0)) and solve the following179

subproblem:180
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page 6 Xikai Yang

min
Ωl

L
∑

i=l

{

‖ΩiRi − Zi‖
2
F

}

s.t. ΩT
l Ωl = I. (5)181

Similar to (3), we rewrite (5) using the backpropagation matrices Bq
p (p < q) as follows:182

min
Ωl:Ω

T
l
Ωl=I

‖ΩlRl − Zl‖
2
F +

L
∑

i=l+1

‖ΩlRl − Zl −Bi
l‖

2
F ,

∼ min
Ωl:Ω

T
l
Ωl=I

(L− l + 1)×

∥

∥

∥

∥

ΩlRl − Zl −
1

L− l + 1

L
∑

i=l+1

Bi
l

∥

∥

∥

∥

2

F

,

(6)183

where the last relation (equality) holds up to an additive term that is independent of Ωl. We184

can obtain a solution to (6) by exploiting the unitarity of Ωl. First, denoting the full singular185

value decomposition (SVD) of the matrix Gl below by UlΣlV
T
l , the optimal solution to (6)186

is as (8).187

Gl =











Rl

(

Zl +
1

L−l+1

∑L
i=l+1 B

i
l

)T

, 1 ≤ l ≤ L− 1,

RLZ
T
L, l = L.

(7)188

Ω̂l = VlU
T
l (8)189

Algorithm 1 MARS Learning Algorithm

Input: training data R1, all-zero initial {Z̃(0)
l }, initial Ω̃(0)

1 = 2D DCT, identity matrices

for initial {Ω̃(0)
l }

L

l=2, thresholds {ηl}, number of iterations T .

Output: learned transforms {Ω̃l
(T )

}.
for t = 1, 2, · · · , T do

for l = 1, 2, · · · , L do

1) Sparse Coding for Z̃l
(t)

via (4).

2) Updating Ω̃l
(t)

via (8).
end for

end for

II.B.2. Image Reconstruction Algorithm190

The proposed PWLS-MARS algorithm for low-dose CT image reconstruction exploits191

the learned model. We reconstruct the image by solving the PWLS problem (P1). We192

propose a block coordinate descent (BCD) algorithm for (P1) that cycles over updating the193

image x and each of the sparse coefficient maps Zl for 1 ≤ l ≤ L.194

(a) Image Update Step for x195
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First, with the sparse coefficient maps {Zl} fixed, we optimize for x in (P1) by optimizing196

the following subproblem:197

min
x≥0

1

2
‖y −Ax‖2W + βS2(x), (9)198

where S2(x) ,
∑L

l=1

{

‖ΩlRl − Zl‖
2
F

}

, with Rl = Ωl−1Rl−1 − Zl−1, 2 ≤ l ≤ L, and199

Rj
1 = Pjx. We use the efficient relaxed linearized augmented Lagrangian method31 (relaxed200

LALM) to obtain the solution to (9). The algorithmic details are shown in Algorithm 2. In201

each iteration of the relaxed LALM, we update the image Ti times (corresponding to Ti inner202

loops in Algorithm 2). We let matrix DA denote a diagonal majorizing matrix of ATWA203

and precompute the Hessian matrix of S2(x) as DS2 in (11) to accelerate the algorithm, and204

the gradient of S2(x) is shown in (10), where (Bk
0)

j denotes the jth column of matrix Bk
0.205

We decrease the parameter ρ in Algorithm 2 according to (12)31, where r denotes the index206

of inner iterations and the relaxation parameter α ∈ [1, 2) in (12).207

∇S2(x) = 2β

Np
∑

j=1

(Pj)T
{

LPjx−
L
∑

k=1

(Bk
0)

j

}

, (10)208

209

DS2 , ∇2S2(x) = 2Lβ

Np
∑

j=1

(Pj)TPj, (11)210

211

ρr(α) =

{

1, r = 0,
π

α(r+1)

√

1− ( π
2α(r+1)

)2, otherwise,
(12)212

213

(b) Sparse Coding Step for Each Zl214

Similar to the sparse coding step during transform learning, the solution of (P1) with215

respect to each sparse coefficient map Zl is shown in (14), and is the solution of (13).216

min
Zl

L
∑

i=l

{

‖ΩiRi − Zi‖
2
F

}

+ γ2
l ‖Zl‖0,

s.t. Ri = Ωi−1Ri−1 − Zi−1, l ≤ i ≤ L,

(13)217

218

Ẑl = Hγl/
√
L−l+1

{

ΩlRl −
1

L− l + 1

L
∑

i=l+1

Bi
l

}

. (14)219
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page 8 Xikai Yang

Algorithm 2 Image Reconstruction Algorithm

Input: initial image x̃(0), all-zero initial {Z̃(0)
l }, pre-learned {Ωl}, thresholds {γl},

α = 1.999, DA, DS2 , number of outer iterations TO, number of inner iterations Ti.
Output: reconstructed image x̃(TO).
for t = 0, 1, 2, · · · , TO − 1 do

1) Image Update: With {Z̃(t)
l } fixed,

Initialization: ρ = 1, x(0) = x̃(t), g(0) = ζ(0) = ATW(Ax(0) − y) and h(0) =
DAx

(0) − ζ(0).
for r = 0, 1, 2, · · · , Ti − 1, do







































s(r+1) = ρ(DAx
(r) − h(r)) + (1− ρ)g(r)

x(r+1) = [x(r) − (ρDA +DS2)
−1(s(r+1) +∇S2(x

(r)))]+

ζ(r+1) , ATW(Ax(r+1) − y)

g(r+1) =
ρ

ρ+ 1
(αζ(r+1) + (1− α)g(r)) +

1

ρ+ 1
g(r)

h(r+1) = α(DAx
(r+1) − ζ(r+1)) + (1− α)h(r)

decreasing ρ using (12).
end for
x̃(t+1) = x(Ti).
2) Sparse Coding: with x̃(t+1) fixed, for each 1 ≤ l ≤ L, update Z̃

(t+1)
l sequentially

by (14).
end for

III. Experiments220

In this section, we evaluate the image reconstruction quality for the proposed PWLS-221

MARS algorithm and compare it with several conventional or related methods:222

• FBP: conventional FBP method with a Hanning window.223

• PWLS-EP32: PWLS reconstruction combined with the edge-preserving regularizer224

R(x) =
∑Np

j=1

∑

k∈Nj
κjκkφ(xj − xk), where Nj denotes the set of neighborhood pixel225

indices, and κj and κk are the parameters that encourage uniform noise32. We use226

φ(t) , δ2(
√

1 + ‖t/δ‖2 − 1) as the potential function. The relaxed OS-LALM31 is the227

chosen optimizing approach for this PWLS cost function.228

To compare the image quality quantitatively, we compute the root mean square error229

(RMSE) and the structural similarity index measure (SSIM)4,33. The RMSE in Hounsfield230

units (HU) is computed between the ground truth image and reconstructed image as RMSE231

=
√

Σi∈ROI(x̂i − x∗
i )

2/NROI, where x̂i and x∗
i denote the pixel intensities of the reconstructed232
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MARS Model for LDCT Image Reconstruction: Printed May 28, 2021 page 9

and ground truth images, respectively, and NROI is the number of pixels in the region of233

interest (ROI). The ROI here was a circular (around center of image) region containing all234

the phantom tissues. We simulate the low-dose CT measurements using the “Poisson +235

Gaussian” noisy model34, i.e., ŷi = Poisson{I0e
−[Ax]i} +N{0, σ2}, where I0 is the incident236

X-ray intensity incorporating X-ray source illumination and the detector gain, and σ2 = 52237

is the variance of electronic noise34.238

We conduct experiments with the XCAT phantom35 and Mayo Clinic data36, respec-239

tively. Our first experiment uses the XCAT phantom data with a clean ground truth (refer-240

ence) to demonstrate the performance of the MARS model over other schemes and illustrates241

the learned multi-layer filters. In our second experiment, we investigate the performance of242

various methods on the Mayo Clinic data and provide a more detailed comparison between243

MARS and other methods. Lastly, we analyze the residual maps in the proposed model in244

different layers to better understand the MARS model.245

III.A. Parameter Selection246

For each MARS model, multiple parameters are tuned for the learning ({ηl, 1 ≤ l ≤ L})247

and reconstruction (β, {γl, 1 ≤ l ≤ L}) stages. Even though the number of parameters here248

increases the difficulty of adjusting the model for optimal image quality, we can choose the249

values of the parameters with an empirical approach. The parameters {ηl} during learning250

are to achieve a low sparsity of the sparse coefficient maps. Normally, we set {ηl} to achieve251

5 − 10% sparsity for Zl. One clever method for selecting good sparsity penalty parameters252

is to set them in decreasing order over layers. This strategy is expected to work because the253

residual maps in subsequent layers always contain less (or finer) image information than the254

early layers. A similar approach works for adjusting parameters in the reconstruction stage.255

In the reconstruction algorithm, we tune the parameters over ranges of values (decreasing256

over layers for γl) to achieve the best reconstruction quality (i.e., RMSE and SSIM).257
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page 10 Xikai Yang

III.B. Results with the XCAT Phantom258

III.B.1. Behavior of the Learned MARS Models259

We pre-learn MARS models with different numbers of layers (depths) with 64 × 64260

transforms. The models are learned from 8 × 8 overlapping patches extracted from five261

420 × 420 XCAT phantom slices. The number of pixels Np and the number of overall262

training patches N are about 1.7 × 105 and 8.5 × 105, respectively. The training slices are263

displayed in the supplement (Fig. S-1). The patch stride is 1× 1. We choose 1, 2, 3, 5, and264

7 layers, respectively, during training, which corresponds to ST, MARS2, MARS3, MARS5,265

and MARS7 models. We initialize the MARS learning algorithm with the 2D DCT matrix266

for the transform in the first layer and identity matrices for transforms in deeper layers. For267

each model, we ran 1000 to 1500 iterations of the block coordinate descent training algorithm268

to ensure convergence. We choose η = 75 for ST, (η1, η2) = (80, 60) for MARS2, (η1, η2,269

η3) = (90, 80, 60) for MARS3, (η1, η2, η3, η4, η5) = (120, 120, 120, 110, 110) for MARS5,270

(η1, η2, η3, η4, η5, η6, η7) = (120, 120, 120, 110, 110, 80, 60) for MARS7. Fig. 3 shows some271

of the learned transforms, with each transform matrix row displayed as a square patch for272

simplicity. The first layer transform in the models typically displays edge-like and gradient273

filters that sparsify the image. However, with more layers, finer level features are learned to274

sparsify transform-domain residuals in deeper layers. Nonetheless, the transforms in quite275

deep layers could potentially be more easily contaminated with noise in the training data,276

since the main image features are successively filtered out over layers.277

III.B.2. Simulation Framework and Visual Results278

We simulate low-dose CT measurements using 840 × 840 XCAT phantom slices with279

∆x = ∆y = 0.4883 mm. The generated sinograms are of size 888×984, obtained with GE 2D280

LightSpeed fan-beam geometry corresponding to a monoenergetic source with I0 = 1× 104281

incident photons per ray and no scatter. For PWLS-EP, we ran 1000 iterations of the relaxed282

LALM algorithm with the FBP reconstruction as initialization and regularization parameter283

β = 216. For the MARS model, we used the relaxed LALM algorithm for the image update284

step with 2 inner iterations. We initialized PWLS-MARS schemes with the PWLS-EP285

reconstruction and used TO = 1500 outer iterations for ST and all MARS schemes.286
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We firstly hand-tuned the reconstruction parameters (β, {γl, 1 ≤ l ≤ L}) for one test287

slice and treated this set of parameters as the baseline. Similar to the PWLS-EP algorithm,288

we could determine the optimal (in terms of optimal RMSE) parameters for other testing289

slices by tuning the base parameters in a small range. However, we found that the change in290

reconstruction quality by picking a common set of parameters instead of slice-wise optimized291

parameters is quite small (only 0.2 HU in RMSE and without the loss of details). Therefore,292

the same set of parameters (baseline parameters) were used across testing cases and shown293

to be effective over the cases. In particular, we selected slice 48 of the XCAT phantom as the294

case for parameter tuning and set the regularization parameters (after tuning over ranges295

of values) as (β, γ) = (2 × 105, 20) for ST, (β, γ1, γ2) = (9 × 104, 30, 10) for MARS2, (β,296

γ1, γ2, γ3) = (9× 104, 25, 15, 10) for MARS3, (β, γ1, γ2, γ3, γ4, γ5) = (9× 104, 25, 15, 10,297

5, 1) for MARS5, and (β, γ1, γ2, γ3, γ4, γ5, γ6, γ7) = (6 × 104, 30, 25, 20, 15, 10, 5, 1) for298

MARS7, respectively. In Fig. S-2 in the supplement, we give the reconstructions for slice 48299

of the XCAT phantom with various methods. Figs. 4 and 5 here show the reconstructions300

for two independent test cases (slice 20 and 60 of the XCAT phantom). Both of them301

used the same set of parameters obtained for slice 48. The zoom-in regions give an explicit302

comparison between the multi-layer sparsifying transform models and other methods such as303

FBP, PWLS-EP, and PWLS-ST. PWLS-MARS achieves better noise reduction and higher304

contrast.305

III.C. Low-dose Experiments with Mayo Clinic Data306

III.C.1. Study of Model Training307

First, we study transform training based on Mayo Clinic data. As shown in Fig. 6,308

seven 512 × 512 slices obtained at regular dose from three patients are used for transform309

learning. The number of pixels Np ≈ 2.6× 105. Similar to the phantom experiments, 8× 8310

overlapping patches are extracted with a 1× 1 patch stride. The number of overall training311

patches N is about 1.8 × 106. We set η = 100 for ST, (η1, η2) = (80, 60) for MARS2, (η1,312

η2, η3) = (60, 60, 40) for MARS3, (η1, η2, η3, η4, η5) = (100, 100, 80, 80, 60) for MARS5,313

(η1, η2, η3, η4, η5, η6, η7) = (150, 140, 130, 120, 110, 100, 90) for MARS7. The iteration314

number T = 1000 in Algorithm 1. Fig. 7 illustrates the learned transforms obtained with315

Mayo Clinic data. Different from the XCAT phantom case, these transforms up to MARS5316
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display more complex features and structures. The rich features of the MARS models better317

sparsify the training images over layers compared to the single-layer model (ST).318

III.C.2. Simulation Framework, Reconstruction Results, and Comparisons319

The synthesized low-dose clinical measurements are simulated from regular-dose images320

at a resolution of ∆x = ∆y = 0.9766 mm with a fan-beam CT geometry corresponding to a321

monoenergetic source at incident photon intensity I0 = 1 × 104. The sinograms are of size322

736×1152. The width of each detector column is 1.2858 mm, the source to detector distance323

is 1085.6 mm, and the source to rotation center distance is 595 mm. We reconstruct images324

of size 512× 512 with the pixel size being 0.69 mm × 0.69 mm.325

We conducted experiments on one test slice used for parameter tuning (L067-slice 120)326

and four independent test slices (L109-slice 90, L192-slice90, L333-slice140, L506-slice 100)327

of the Mayo Clinic data. For PWLS-EP, we ran 1000 iterations using relaxed OS-LALM328

and set regularization parameter β = 215.5. We used the same TO = 1500 as the phantom329

experiments for Algorithm 2. The process of selecting a general set of reconstruction330

parameters (β, {γl, 1 ≤ l ≤ L}) for the Mayo Clinic test slices is identical to that for331

the XCAT phantom in Section III.B.2. The selected regularization parameter β and the332

parameters γl that control the sparsity of the coefficient maps are (β, γ) = (2.5× 104, 30) for333

ST, (β, γ1, γ2) = (1.8× 104, 30, 10) for MARS2, (β, γ1, γ2, γ3) = (1.8× 104, 30, 12, 10) for334

MARS3, (β, γ1, γ2, γ3, γ4, γ5) = (1.6× 104, 30, 20, 10, 7, 5) for MARS5, and (β, γ1, γ2, γ3,335

γ4, γ5, γ6, γ7) = (3.5× 104, 20, 17, 14, 11, 7, 4, 1) for MARS7, respectively.336

Figs. 8, 9, 10, and 11 show the reconstructions of the four independent slices using the337

FBP, PWLS-EP, PWLS-ST, PWLS-MARS2, PWLS-MARS3, PWLS-MARS5, and PWLS-338

MARS7 schemes, respectively. Additional Mayo Clinic experimental results of the parameter339

tuning case (Fig. S-3) are shown in the supplementary document. Table 1 lists the RMSE340

and SSIM values of reconstructions of the four independent test slices, with the best values341

bolded. Generally, the five and seven layer models provided the best RMSE and SSIM342

values. They outperform the single-layer model by 1.9 HU in RMSE on average. However,343

the MARS5 and MARS7 models perform similarly. In order to strengthen the benefits of344

the multi-layer model, Table 2 lists the RMSE of the reconstructions in four different ROIs345

(shown in the reference of Fig. 11) with seven methods for slice 100 of patient L506. By346
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observing the reconstructed images, we see that although the ST model achieves a cleaner347

reconstruction result than FBP and PWLS-EP, it still sacrifices some sharpness of the central348

region and suffers from loss of details. The deeper models have a somewhat more positive349

effect in terms of maintaining subtle features, which is clearly more essential to clinical350

diagnosis. Furthermore, as we will discuss later, after considerable parameter tuning, we351

found that the information contained in residual maps is gradually decreased with the number352

of layers, eventually vanishing at some layer, which suggests that very deep unsupervised353

models might not offer significantly better image quality.354

III.C.3. Analysis of Residual Maps355

Here, we investigate the residual images over the layers of the MARS7 model. Fig. 12356

displays the image reconstructed with MARS7 along with the residual images in different357

layers. The residual images are generated by applying the restoring operation (Pj)T to the358

corresponding columns of each residual matrix Rl, 1 ≤ l ≤ L, forming images
∑

j(P
j)TRj

l .359

Essentially, all the columns of Rl are transformed into 8×8 patches and accumulated back in360

the image to form the residual image in the lth layer. We can observe that the residual images361

in the first three layers contain explicit structural information and we still find some delicate362

details in the fourth and fifth layers. However, we hardly see any valuable features in the363

residual images for the following layers, which is consistent with the fact that the transform364

is overwhelmed by noise in quite deep layers. Therefore, the ceiling for the potential of365

multi-layer sparsifying transform model may be 5 or 7 layers. The quantitive result also366

implies the same conclusion.367

III.D. Runtimes for MARS368

We also discuss the runtimes for the proposed MARS model. Table 3 shows the average369

runtimes per iteration (MARS schemes were run for the same overall number of iterations) for370

various MARS models for both the XCAT phantom and Mayo Clinic data experiments. We371

ran the Matlab code on a machine with two 2.4GHz 14-core Intel Xeon E5-2680 v4 processors.372
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We find that although training the deep models (which would be done once offline) takes373

several times as long as the shallow (single layer) model, the cost of the reconstruction/testing374

step is much more similar between deep and shallow models.375

IV. Discussion and Conclusion376

In this work, we presented a strategy for unsupervised learning of deep transform models377

from limited data and with nested network structure, where the input of each layer comprises378

of the sparsifiable residual map from the preceding layer. The learned Multi-lAyer Residual379

Sparsifying transform (MARS) model is used to form a data-driven regularizer in model-380

based image reconstruction and proves effective for low-dose CT image reconstruction. The381

proposed algorithms for learning MARS models and for image reconstruction use highly382

efficient updates and are scalable.383

We trained models from patches of (regular-dose) slices of the XCAT phantom and Mayo384

Clinic data and tested the models for reconstructing other slices. The learned multi-layer385

models contain complex features and structures, which help enhance image reconstruction386

quality of MARS models over single layer models. Experiments with both simulated data387

from the XCAT phantom and with the synthesized clinical data reveal that PWLS-MARS388

provides better reconstruction metrics and image details compared to other methods such as389

FBP, PWLS-EP, and PWLS-ST. In Figs. 8, 9, 10, and 11, we observed that the reconstruction390

incorporating deep transform model prior presented more subtle details, especially for the391

central region, which normally suffers from severe artifacts in low-dose CT reconstruction.392

We also investigated the potential limitation in terms of the model depth. By observing393

Tables 1 and 2, we found deep models such as MARS7 only offer little additional benefit394

of RMSE and SSIM. Such a phenomenon also appears in other related work37 in which the395

author believes that limited training dataset leads to the deterioration of the performance396

of deep models. In order to seek the underlying reason, we increased the training dataset397

from 7 slices to 14 slices while the approximate number of patches to be fed into network398

has been risen to 3 million. Table 4 lists the reconstruction results of slice 100 of patient399

L506 with respect to training dataset of 7 slices and 14 slices. The tiny improvement leads400

us to conjecture that the limitation of the deep model may not be due to the small set of401
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training images. Section. III.C.3. provides an alternative explanation. We found that very402

deep residual layers may not contain much structures, thus resulting in somewhat noisy403

transforms there, which may offer little additional benefit.404

As shown in Section II.B., the block coordinate descent (BCD) method was applied to405

train a MARS model. Since the problem we address in this work is nonconvex, there might406

not be a unique minimizer in general. Despite that we use the BCD algorithm to ensure the407

monotone decrease over iterations of the nonnegative objective like (P0) with a reasonable408

initialization (i.e., with PWLS-EP). A more thorough analysis of convergence for our scheme409

is left for future work.410

To conclude, we proposed a general framework for multi-layer residual sparsifying trans-411

form (MARS) learning, where the transform domain residual maps over several layers are412

jointly sparsified. Our work then applied learned MARS models to low-dose CT (LDCT) im-413

age reconstruction by using a PWLS approach with a learned MARS regularizer. Experimen-414

tal results illustrate the promising performance of the multi-layer scheme over single-layer415

learned sparsifying transforms. Learned MARS models also offer image quality improve-416

ments over typical nonadaptive methods. Future work will consider other strategies for417

learning deep sparsifying models by exploiting pooling and other operations. In addition,418

more studies are required to validate the proposed method’s clinical applicability.419
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Appendix I: Solution of the Sparse Coding Problem (2)433

First, we can split this objective function and rewrite (2) as follows,434

min
Zl

‖Zl −ΩlRl‖
2
F +

L
∑

i=l+1

‖Zi −ΩiRi‖
2
F + ηl‖Zl‖0. (15)435

Under the condition that ΩT
l Ωl = I, ∀l, the following steps are based on436

‖ΩlRl − Zl‖
2
F = ‖ΩT

l ΩlRl −ΩT
l Zl‖

2
F = ‖Rl −ΩT

l Zl‖
2
F . (16)437

We use (16) within (15) repetitively, which leads to the equivalent problem shown in438

(17),439

min
Zl

‖Zl −ΩlRl‖
2
F +

L
∑

i=l+1

‖Zl +Bi
l −ΩlRl‖

2
F + η2l ‖Zl‖0. (17)440

Combining all the quadratic terms involving Zl leads to the following optimization441

problem:442

min
Zl

(L− l + 1)×

∥

∥

∥

∥

Zl −

(

ΩlRl −
1

L− l + 1

L
∑

i=l+1

Bi
l

)
∥

∥

∥

∥

2

F

+ η2l ‖Zl‖0. (18)443

The solution to (18) is similar to ℓ0 transform sparse coding30 and is given as follows444

when 1 ≤ l ≤ L− 1445

Ẑl = Hηl/
√
L−l+1

(

ΩlRl −
1

L− l + 1

L
∑

i=l+1

Bi
l

)

(19)446

VII. DATA AVAILABILITYThis	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t

https://doi.org/10.7937/9npb-2637
https://doi.org/10.7937/9npb-2637
https://doi.org/10.7937/9npb-2637


MARS Model for LDCT Image Reconstruction: Printed May 28, 2021 page 17

and when l = L, it is given as447

ẐL = HηL(ΩLRL) (20)448

Appendix II: Solution of the Transform Update Problem449

(5)450

Equation (16) also works well for simplifying (5) as follows,451

min
Ωl:Ω

T
l
Ωl=I

(L− l + 1)×

∥

∥

∥

∥

ΩlRl − Zl −
1

L− l + 1

L
∑

i=l+1

Bi
l

∥

∥

∥

∥

2

F

. (21)452

Problem (21) can be equivalently written as453

min
Ωl:Ω

T
l
Ωl=I

tr(RlR
T
l )− 2tr

(

ΩlRl

(

Zl +
1

L− l + 1

L
∑

i=l+1

Bi
l

)T)

. (22)454

Ignoring the constant first term, we get455

max
Ωl:Ω

T
l
Ωl=I

tr

(

ΩlRl

(

Zl +
1

L− l + 1

L
∑

i=l+1

Bi
l

)T)

. (23)456

Subproblem (23) is identical to the corresponding subproblem in single-layer sparsifying457

transform learning30. We denote the full singular value decomposition of the matrix Gl as458

UlΣlV
T
l . The optimal solution to (23) is then given as VlU

T
l (cf.30).459
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Figure 1: MARS model with L layers or modules. Ωl denotes the transform in the lth layer,
which enables sparsifying the residual map arising from the (l − 1)th module.

Figure 2: Overview of algorithm scheme. Our approach involves a training stage and a
reconstruction stage with block coordinate descent (BCD) algorithms being used in both
stages.
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Figure 3: Transforms learned from the XCAT phantom. Transform rows are shown as 8× 8
patches. Beyond the first layer, the rows of the transforms sparsify across the residual
channels (1D filters).
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Figure 4: Comparison of reconstructions of slice 20 of the XCAT phantom with FBP, PWLS-
EP, PWLS-ST, PWLS-MARS2, PWLS-MARS3, PWLS-MARS5, and PWLS-MARS7, re-
spectively, at incident photon intensity I0 = 1 × 104. The display window is [800, 1200]
HU.
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Figure 5: Comparison of reconstructions of slice 60 of the XCAT phantom with FBP, PWLS-
EP, PWLS-ST, PWLS-MARS2, PWLS-MARS3, PWLS-MARS5, and PWLS-MARS7, re-
spectively, at incident photon intensity I0 = 1 × 104. The display window is [800, 1200]
HU.

L096-slice170 L096-slice251 L096-slice291 L096-slice330

L067-slice150 L067-slice210 L143-slice15

Figure 6: Seven regular-dose slices for training the MARS model. The first row displays four
slices of patient L096 and the second row shows three training slices from patients L067 and
L143, respectively.
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Figure 7: Transforms learned from Mayo Clinic data. Beyond the first layer, the rows of the
transforms are shown as (square) 2D patches and sparsify transform-domain residuals.

Reference FBP EP ST

MARS2 MARS3 MARS5 MARS7

Figure 8: Reconstructions of slice 90 of patient L109 at incident photon intensity I0 = 1×104.
The first row shows the reference image and reconstructions with FBP, PWLS-EP, and
PWLS-ST, respectively, and the second row shows the results with MARS models with 2,
3, 5, and 7 layers, respectively. The display window is [800, 1200] HU.
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Reference FBP EP ST

MARS2 MARS3 MARS5 MARS7

Figure 9: Reconstructions of slice 90 of patient L192 at incident photon intensity I0 = 1×104.
The first row shows the reference image and reconstructions with FBP, PWLS-EP, and
PWLS-ST, respectively, and the second row shows the results with MARS models with 2,
3, 5, and 7 layers, respectively. The display window is [800, 1200] HU.

Reference FBP EP ST

MARS2 MARS3 MARS5 MARS7

Figure 10: Reconstructions of slice 140 of patient L333 at incident photon intensity I0 =
1× 104. The first row shows the reference image and reconstructions with FBP, PWLS-EP,
and PWLS-ST, respectively, and the second row shows the results with MARS models with
2, 3, 5, and 7 layers, respectively. The display window is [800, 1200] HU.
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MARS2 MARS3 MARS5 MARS7

Figure 11: Reconstructions of slice 100 of patient L506 at incident photon intensity I0 =
1× 104. The first row shows the reference image and reconstructions with FBP, PWLS-EP,
and PWLS-ST, respectively, and the second row shows the results with MARS models with
2, 3, 5, and 7 layers, respectively. The display window is [800, 1200] HU.
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Figure 12: Reconstruction and transform-domain residual images for slice 100 of patient
L506. The leftmost image on the first row is the reconstruction with PWLS-MARS7, while
the other images are the residual maps in different layers. The display windows are [800,
1200] HU and [-100, 100] HU, respectively, for the reconstruction and the residual image,
respectively.
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Table 1: RMSE in HU (first row) and SSIM (second row) of reconstructions with
FBP, PWLS-EP, PWLS-ST, PWLS-MARS2, PWLS-MARS3, PWLS-MARS5, and PWLS-
MARS7, for four slices of the Mayo Clinic data at incident photon intensity I0 = 1× 104.

FBP EP PWLS-ST PWLS-MARS2 PWLS-MARS3 PWLS-MARS5 PWLS-MARS7

L109
slice90

107.1 33.5 29.0 28.1 27.8 27.6 28.1

0.343 0.734 0.716 0.727 0.731 0.744 0.753

L192
slice90

93.7 31.5 26.3 25.3 24.9 24.6 24.9

0.350 0.747 0.737 0.744 0.750 0.765 0.781

L333
slice140

113.1 36.3 29.7 28.5 28.3 28.1 28.4

0.358 0.758 0.739 0.744 0.750 0.766 0.786

L506
slice 100

65.3 34.3 27.5 26.2 25.6 25.3 25.7

0.461 0.778 0.760 0.766 0.773 0.790 0.809

Table 2: RMSE (HU) in four ROIs of reconstructions with FBP, PWLS-EP, PWLS-ST,
PWLS-MARS2, PWLS-MARS3, PWLS-MARS5, and PWLS-MARS7, for slice 100 of patient
L506 of the Mayo Clinic data at incident photon intensity I0 = 1× 104.

FBP EP PWLS-ST PWLS-MARS2 PWLS-MARS3 PWLS-MARS5 PWLS-MARS7

ROI-1 1.05 0.71 0.68 0.62 0.60 0.59 0.59

ROI-2 0.90 0.78 0.69 0.63 0.62 0.61 0.63

ROI-3 2.17 1.88 1.75 1.57 1.53 1.51 1.55

ROI-4 1.91 0.96 1.03 0.91 0.90 0.89 0.91

Table 3: Average runtime per iteration of various MARS models with both XCAT phantom
and Mayo Clinic data experiments. Each number displayed in this table is in seconds.

PWLS-ST PWLS-MARS2 PWLS-MARS3 PWLS-MARS5 PWLS-MARS7

XCAT
phantom

Training 0.8 1.4 3.5 4.7 7.8

Testing 2.9 3.2 3.6 4.4 5.1

Mayo Clinic
data

Training 1.5 2.8 7.4 9.3 15.2

Testing 3.1 3.4 4.1 5.0 5.8
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Table 4: Comparison of reconstruction of slice 100 of patient L506 between training dataset
of 7 slices and 14 slices respectively.

PWLS-ST PWLS-MARS2 PWLS-MARS3 PWLS-MARS5 PWLS-MARS7

dataset of
7 slices

RMSE 27.5 26.2 25.6 25.3 25.7

SSIM 0.760 0.766 0.773 0.790 0.809

dataset of
14 slices

RMSE 27.4 26.2 25.6 25.4 25.6

SSIM 0.759 0.766 0.773 0.790 0.810
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Table 1: RMSE in HU (first row) and SSIM (second row) of reconstructions with FBP, 

PWLS-EP, PWLS-ST, PWLS-MARS2, PWLS-MARS3, PWLS-MARS5, and PWLS-MARS7, for four 

slices of the Mayo Clinic data at incident photon intensity �0 = ͳ × ͳͲ4. 
 FBP EP PWLS-S

T 

PWLS-MARS

2 

PWLS-MARS

3 

PWLS-MARS

5 

PWLS-MARS

7 

L109 

Slice90 

107.

1 

33.5 29.0 28.1 27.8 27.6 28.1 

0.34

3 

0.73
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0.716 0.727 0.731 0.744 0.753 

L192 

Slice90 

93.7 31.5 26.3 25.3 24.9 24.6 24.9 

0.35

0 

0.74

7 

0.737 0.744 0.750 0.765 0.781 

L333 

Slice14

0 

113.

1 

36.3 29.7 28.5 28.3 28.1 28.4 

0.35

8 

0.75

8 

0.739 0.744 0.750 0.766 0.786 

L506 

Slice10

0 

65.3 34.3 27.5 26.2 25.6 25.3 25.7 

0.46

1 

0.77

8 

0.760 0.766 0.773 0.790 0.809 

 

 

Table 2: RMSE (HU) in four ROIs of reconstructions with FBP, PWLS-EP, PWLS-ST, 

PWLS-MARS2, PWLS-MARS3, PWLS-MARS5, and PWLS-MARS7, for slice 100 of patient L506 

of the Mayo Clinic data at incident photon intensity �0 = ͳ × ͳͲ4. 
 FBP EP PWLS-ST PWLS-MARS2 PWLS-MARS3 PWLS-MARS5 PWLS-MARS7 

ROI-1 1.05 0.71 0.68 0.62 0.60 0.59 0.59 

ROI-2 0.90 0.78 0.69 0.63 0.62 0.61 0.63 

ROI-3 2.17 1.88 1.75 1.57 1.53 1.51 1.55 

ROI-4 1.91 0.96 1.03 0.91 0.90 0.89 0.91 
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Table 3: Average runtime per iteration of various MARS models with both XCAT phantom 

and Mayo Clinic data experiments. Each number displayed in this table is in seconds. 

  PWLS-ST PWLS-MARS2 PWLS-MARS3 PWLS-MARS5 PWLS-MARS7 

XCAT 

phantom 

Training 0.8 1.4 3.5 4.7 7.8 

Testing 2.9 3.2 3.6 4.4 5.1 

Mayo 

Clinic 

data 

Training 1.5 2.8 7.4 9.3 15.2 

Testing 3.1 3.4 4.1 5.0 5.8 

 

 

Table 4: Comparison of reconstruction of slice 100 of patient L506 between training 

dataset of 7 slices and 14 slices respectively. 

  PWLS-ST PWLS-MARS2 PWLS-MARS3 PWLS-MARS5 PWLS-MARS7 

dataset 

of 7 

slices 

RMSE 27.5 26.2 25.6 25.3 25.7 

SSIM 0.760 0.766 0.773 0.790 0.809 

dataset 

of 14 

slice2 

RMSE 27.4 26.2 25.6 25.4 25.6 
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