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28 The Cretaceous-Paleogene (K–Pg) mass extinction 66 million years ago was characterized by a 

29 worldwide ecological catastrophe and rapid species turnover. Large-scale devastation of 

30 forested environments resulting from the Chicxulub asteroid impact likely influenced the 

31 evolutionary trajectories of multiple clades in terrestrial environments, and it has been 

32 hypothesized to have biased survivorship of non-arboreal lineages across the K–Pg boundary. 

33 Here, we evaluate patterns of substrate preferences across the K–Pg boundary among crown 

34 group mammals, a group that underwent rapid diversification following the mass extinction. 

35 Using Bayesian, likelihood, and parsimony reconstructions, we identify patterns of mammalian 

36 ecological selectivity that are broadly similar to those previously hypothesized for birds. Models 

37 based on extant taxa indicate predominant K–Pg survivorship among semi- or non-arboreal 

38 taxa, followed by numerous independent transitions to arboreality in the early Cenozoic. 

39 However, contrary to the predominant signal, some or all members of total-clade Euarchonta 

40 (Primates + Dermoptera + Scandentia) appear to have maintained arboreal habits across the 

41 K–Pg boundary, suggesting ecological flexibility during an interval of global habitat instability. 

42 We further observe a pronounced shift in character state transitions away from plesiomorphic 

43 arboreality associated with the K–Pg transition. Our findings are consistent with the hypothesis 

44 that predominantly non-arboreal taxa preferentially survived the end-Cretaceous mass 

45 extinction, and emphasize the pivotal influence of the K-Pg transition in shaping the early 

46 evolutionary trajectories of extant terrestrial vertebrates.

47 1. Introduction

48 The Cenozoic Era is colloquially known as the ''Age of Mammals'', and the modern world is 

49 populated by over 6,000 extant mammalian species exhibiting an extraordinary diversity of 

50 forms and ecologies (Nowak 1999; Burgin et al. 2018). Numerous authors have noted that the 

51 evolutionary history of extant mammalian biodiversity may have been shaped by the 

52 Cretaceous-Paleogene (K–Pg) transition, an interval that is associated with a complex set of 

53 mammalian extinctions, radiations, and shifts in species richness (Clemens 2002; Archibald 

54 2011; Wilson et al. 2014; Benevento et al. 2019; Brocklehurst et al. 2021). However, the precise 

55 influence of the K–Pg transition on the rate, timing, and nature of mammalian diversification is 

56 contentious, and may have varied among major mammalian lineages (Hedges et al. 1996; 

57 Springer et al. 2003; Bininda-Emonds et al. 2007; Wible et al. 2007; O’Leary et al. 2013; 

58 Halliday et al. 2016; Phillips 2016; Pires et al. 2018; Chen et al. 2019; Grossnickle et al. 2019).

59 Even in the best-sampled North American localities, a comprehensive, direct 

60 assessment of global patterns of mammalian ecological changes across the K–Pg boundary is 
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61 precluded by the relatively sparse mammalian fossil record in the latest Cretaceous and earliest 

62 Paleogene (Davies et al. 2017), though strong patterns of ecological selectivity are expected in 

63 light of high estimated rates of mammalian extinction (Wilson 2013; Grossnickle and Newham 

64 2016; Longrich et al. 2016). Surviving mammalian lineages appear to have undergone rapid 

65 morphological diversification from primarily small insectivorous or omnivorous forms, and they 

66 colonized a wide range of vacant ecological niches in the aftermath of the mass extinction event 

67 (Alroy 1999; Smith et al. 2010; O’Leary et al. 2013; Wilson 2014; Halliday and Goswami 2016a; 

68 Grossnickle et al. 2019; Lyson et al. 2019, Shelley et al. 2021). Theoretical studies have 

69 predicted that fossorial and semi-aquatic mammals may have had a selective advantage across 

70 the K–Pg boundary because their substrate preferences would have shielded them from the 

71 severe, short-term effects of the Chicxulub asteroid impact such as a hypothesized heat pulse 

72 and associated wildfires (Robertson et al. 2004; DeBey and Wilson 2017). Alongside global fires 

73 and longer-term climatic effects, the asteroid impact resulted in forest devastation on a global 

74 scale (Tschudy et al. 1984; Vajda et al. 2001; Nichols and Johnson 2008; Field et al. 2018; 

75 Lyson et al. 2019; Carvalho et al. 2021) and substantially altered floral communities for 

76 centuries (Wilf and Johnson 2004, Carvalho et al. 2021). Recent work on birds suggested that 

77 the collapse of global forests drove arboreal Mesozoic avialans to extinction at the K–Pg 

78 boundary, with multiple subsequent originations of arboreal habits arising among crown birds 

79 once forests had recovered (Field et al. 2018).

80 Here, we investigate patterns of substrate preference evolution across crown group 

81 mammals—another major K–Pg boundary-crossing terrestrial vertebrate clade. First, we 

82 assessed the evidence for whether mammals were subject to comparable habitat-related 

83 selectivity across the K–Pg boundary. We performed ancestral state reconstructions (ASRs) of 

84 substrate preferences on alternative phylogenetic hypotheses for extant mammals (Meredith et 

85 al. 2011; Upham et al. 2019). Though not definitive, when interpreted within the context of 

86 available fossil evidence we consider the results suggestive of a pattern of predominant K–Pg 

87 survivorship among semi-arboreal or non-arboreal mammals, with extant mammalian clades 

88 characterized by obligately arboreal ecologies generally arising in the early Cenozoic. Second, 

89 we examined the relative clade-wide frequencies of particular evolutionary transitions 

90 throughout the evolutionary history of Mammalia using a model-based approach. Our analyses 

91 identify an interval early in placental mammal evolutionary history marked by a striking increase 

92 in inferred transitions toward non-arboreality. Notably, this interval of apparent clade-wide 

93 directional selectivity towards non-arboreality aligns with plausibly K–Pg-associated 

94 cladogenesis among crown placentals, although we note that the divergence times of early 
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95 placental clades remain contentious. Acknowledging these lingering divergence time 

96 uncertainties, we contend that our analyses help illuminate the hidden influence of the K–Pg 

97 transition on major ecological patterns early in the evolutionary history of placental mammals.

98 2. Material and methods

99 Character State Assignment

100 All 164 mammalian lineages from the time-scaled phylogenetic hypothesis of Meredith et 

101 al. (2011), representing most extant family-level phylogenetic diversity, were assigned an 

102 ecological character state of arboreal, semi-arboreal, or non-arboreal (electronic supplementary 

103 material). Character states reflect where mammals form nests or otherwise reside. More 

104 explicitly, we characterize a "nest" as a construct used for: rearing young, resting, or sleeping 

105 (examples include the leaf nests of gorillas or the dreys of squirrels). Alternatively, a mammal 

106 may reside in a tree without construction of a nest, where its "residence" is primarily used for 

107 sleeping or resting, and may involve rearing young but does not involve any structural 

108 modifications to the tree (sloths, for example, often find a leafy area in a tree to sleep in but do 

109 not modify the tree or its foliage). An arboreal mammal is therefore one that, in the wild, will 

110 virtually always reside or nest in a living tree, be it amongst the branches or in an existing tree 

111 cavity. To be classed as semi-arboreal, the mammal in question will often reside or nest in a 

112 living tree in the wild but does not do so exclusively. In general, for a semi-arboreal mammal, 

113 trees are convenient but not essential, and another substrate (e.g., a rock face) may provide a 

114 suitable alternative. All species that fall outside these definitions are classed as non-arboreal, 

115 such that the mammal in question does not nest or reside in trees at all, or only does so 

116 incidentally in a small number of documented cases. We believe this coding strategy is 

117 conservative with respect to mammals that exhibit an obligately arboreal ecology for nesting and 

118 residence, and it allows us to discriminate among lineages with obligately arboreal habits from 

119 those that occupy trees facultatively or opportunistically.

120 Alternative phylogenetic frameworks

121 In order to assess the influence of phylogenetic uncertainty on our ancestral ecological 

122 reconstructions, we evaluated them with respect to well-supported phylogenetic hypotheses 

123 from Meredith et al. (2011) as well as the node-dated maximum clade credibility consensus tree 

124 from Upham et al. (2019) and its associated posterior distribution of tree topologies. Both 

125 phylogenetic hypotheses are derived from a supermatrix inference approach, with Upham et al. 

126 (2019) using sequences for 31 genes (building on the 26 from Meredith et al. 2011). Meredith et 
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127 al. (2011) used a family-level approach to build a time-calibrated tree of 164 mammalian 

128 lineages, of which 142 were single species, 16 were congeneric chimaerics, and six were 

129 chimaerics above the genus level. Upham et al. (2019) employed a method that separated 

130 phylogenetic inference into divergences between major lineages (“backbone”) and clades at the 

131 species level (“patch”) (Mishler 1994; Jetz et al. 2012) to generate a phylogeny uniting ~4,100 

132 species. Our analysis scores the subset of taxa in the Upham et al. (2019) dataset that matched 

133 the taxon set from the Meredith et al. (2011) analysis. This yielded two complementary 

134 phylogenetic consensus topologies with the same taxon set, on which we estimated character 

135 evolution. In the 12 cases where the Upham et al. (2019) dataset did not contain the same 

136 species as in Meredith et al. (2011), we replaced the missing species with its closest relative 

137 with the same character state (Supporting Information, Table S1). By considering these 

138 alternative hypotheses, we specifically assess how robust our inferences are to areas of conflict 

139 between the two consensus topologies, such as the monophyly of Euarchonta (Primates + 

140 Scandentia + Dermoptera; Upham et al. 2019) and the placement of Scandentia as the sister 

141 group to Glires (Rodentia + Lagomorpha; Meredith et al. 2011). Upham et al. (2019) cite 

142 posterior probabilities of 0.96 for the monophyly of Euarchonta and 0.78 for Dermoptera + 

143 Scandentia. Meredith et al. (2011) found that DNA and amino acid trees agree on the 

144 monophyly of Scandentia + Glires but with bootstrap support of <90%. 

145 Model selection

146 We assessed the relative fit of three alternative time-homogeneous transition models 

147 with maximum likelihood in the ape (Paradis et al. 2004) and phytools (Revell 2012) R packages 

148 (R Core Team 2014) on each consensus tree. Following Field et al. (2018), one model 

149 comprised two rates, such that transitions among all three character states (arboreal, semi-

150 arboreal, and non-arboreal) were permitted, but transitions to and from semi-arboreality were 

151 allowed a different rate from transitions that bypass this intermediate stage. A second model 

152 comprised four rates such that transitions from non-arboreal to arboreal were required to pass 

153 through semi-arboreality, with separate forward and reverse rates for each pair of state 

154 transitions. These models reflect the presumed biological reality that transitioning from non-

155 arboreality to arboreality or vice versa through an intermediate state likely occurs at a different 

156 rate than transitions lacking an intermediate state. We also tested a third maximally 

157 parameterized (six-rate) model (“ARD” - all rates different) in which forward and reverse rates 

158 were allowed to vary across all states.
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159 Hidden Markov Models (HMMs) have emerged as a powerful tool for assessing the 

160 possibility that unobserved rate heterogeneity can have an outsized influence on reconstructing 

161 the evolutionary history of discrete characters (Beaulieu et al. 2013; Beaulieu and O’Meara 

162 2016; Boyko and Beaulieu 2021). In comparison to time-homogeneous models, which assume 

163 that specified character transition rates do not evolve, HMMs provide an elegant solution for 

164 evaluating the hypothesis that the mode of character evolution has evolved throughout a clade’s 

165 evolutionary history. To assess this possibility in our data, we generated three HMMs using the 

166 corHMM R package (Beaulieu et al. 2013). Our initial analysis of time-homogeneous models 

167 revealed that the six-rate ARD and four-rate intermediate model were preferred (Table 1). 

168 Therefore, we elected to compare three HMMs based on those models. The first of these 

169 consisted of a model that included two rate classes; one with an ARD model and one with the 

170 four-rate model. The second and third HMMs reflected ARD models with two or three rate 

171 classes, respectively. In all cases, we assumed symmetric transition rates among rate classes. 

172 As time-homogeneous models are a special case of HMMs (reflecting one rate class), we 

173 compared all evaluated models with the Akaike Information Criterion (AIC).

174 Reconstructing the evolution of mammalian arboreality

175 We performed likelihood-based Ancestral State Reconstructions (ASRs) in R (R Core 

176 Team 2014). We used the ace() likelihood function in ape (Paradis et al. 2004) and a 

177 customized implementation of Bayesian stochastic mapping, described below (Bollback 2006; 

178 Revell 2012). We also performed maximum parsimony reconstructions using the 

179 ancestral.pars() function in the R package phangorn (Schliep 2011).

180  As part of the VertLife initiative (http://vertlife.org/data/mammals/) Upham et al. (2019) 

181 provided a set of 10,000 credible phylogenetic trees sampled from the Bayesian posterior 

182 distribution estimated in that study. Therefore, for analyses based on the Upham et al. (2019) 

183 consensus tree, we leveraged this resource to account for stochastic uncertainty in branch 

184 lengths and tree topology. For each of the time-homogeneous models we evaluated, we 

185 performed a Bayesian stochastic character mapping analysis across 1,000 sampled trees from 

186 the Upham et al. (2019) posterior distribution, and we estimated 500 stochastic character maps 

187 on each. These results were then summarized with respect to the Upham et al. (2019) 

188 consensus tree. For analyses directly using the consensus trees, we estimated 5,000 stochastic 

189 maps.

190 To make this task computationally tractable, we generated new R code to perform these 

191 analyses in parallel across multiple CPUs using the “parallel” (R Core Team 2014), “doSNOW” 
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192 (Wallig et al. 2020a), and “doParallel” (Wallig et al. 2020b) R libraries. Our approach (see 

193 simmap_parallel.R; https://github.com/jakeberv/mammal_arboreality) operates on “phylo” or 

194 “multiPhylo” tree objects, accelerating several aspects of this analysis. The wrapper function 

195 simmap.parallel(), takes minimally as arguments a tree or set of trees, a discrete character 

196 dataset, a time-homogeneous model, and a specified assumption about the distribution of 

197 character states at the root (optionally equal or following the FitzJohn et al. (2009) root state 

198 prior). Briefly, the function first estimates a Q matrix for each of the trees that are passed to it, 

199 using fitMK() (Revell 2012), or alternatively accepts an external Q matrix estimate. Then, 

200 depending on the options selected, simmap.parallel() generates stochastic character maps on 

201 each of the provided trees using fastSimmap() from the R package ratematrix (Caetano and 

202 Harmon 2017), the estimated Q matrix for each tree, and the stated root prior. Lastly, a final 

203 combined multiSimmap object is generated. This output can be parsed by 

204 phytools::describe.simmap() with the argument ref.tree set to the target consensus tree on 

205 which to summarize the results. We provide additional code to accelerate aspects of this 

206 summation in a modified function describe.simmap.alt(), which can otherwise be very time 

207 consuming for large numbers of trees (Eliot Miller, personal communication, March 2021).

208 Investigating clade-wide temporal patterns in character transition rates

209 In addition to individual node and branch reconstructions, we examined the relative 

210 frequencies of particular transition types through time across the two consensus trees as well as 

211 the posterior tree distribution from Upham et al. (2019). For example, in a two-rate bidirectional 

212 model with two states, forward and reverse transition rates can be time-homogeneous while the 

213 total counts of particular transition types across all branches vary through time and depend on 

214 the structure of the underlying phylogeny. Revell (2017) outlined an approach for visualizing the 

215 history of clade-wide changes in character transitions for a discrete character model under 

216 stochastic mapping. This approach first takes a stochastic character mapping simulation and 

217 partitions the underlying tree into a specified number of time bins. The average number of 

218 character transitions across branches and simulations is calculated within each time bin, and 

219 then this value is normalized for patterns of cladogenesis by dividing by the total branch length 

220 within a time bin. Revell’s (2017) example provides a pragmatic solution for visualizing the 

221 behavior of a discrete character model through time in the context of stochastic character 

222 mapping.

223 Here, we refine this approach to allow examination of temporal patterns in the relative 

224 frequencies of each transition type from a given model (see rate_through_time.R; 
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225 https://github.com/jakeberv/mammal_arboreality). We generate visualizations for stochastic 

226 character mapping under the optimal models for the Meredith et al. (2011) and Upham et al. 

227 (2019) consensus topologies, as well as for a sample of 1,000 posterior trees from Upham et al. 

228 (2019). These visualizations allow us to further examine the hypothesis that patterns of clade-

229 wide trends in transitions toward and away from arboreality may have been influenced by the K–

230 Pg transition.

231 3. Results

232 Node reconstructions

233 Under the preferred four-rate model (Table 1), stochastic mapping supports a pattern whereby 

234 arboreality emerged repeatedly and independently among several different clades following the 

235 K–Pg mass extinction. We detect at least 10 instances of post-K–Pg transitions to arboreality 

236 under the Meredith et al. (2011) framework (Fig. 1) and 11 cases across the Upham et al. 

237 (2019) dataset (Fig. 2). These general patterns hold across both alternative topologies and 

238 under parsimony and likelihood optimality criteria (Supporting information, Figs. S1-18). 

239 Bayesian stochastic mapping under the flexible ARD model suggests that state 

240 transitions that pass through a semi-arboreal intermediate are detected more frequently than 

241 direct-transitions from arboreality to non-arboreality or vice versa (Supporting information, Figs. 

242 S6, S9, S12). Additionally, the ARD model detects no direct transitions from non-arboreality to 

243 arboreality. By contrast, in the two-rate model, direct transitions from non-arboreality to 

244 arboreality are detected at a higher frequency than the reverse, while transitions away from 

245 semi-arboreality occur at an intermediate frequency (Supporting information, Figs. S2, S8, S11). 

246 We interpret these results to suggest that the transitions inferred under the ARD model are 

247 more biologically plausible than those under the two-rate model.

248 Under both the Meredith et al. (2011) and the Upham et al. (2019) consensus 

249 topologies, the preferred four-rate and ARD models reconstructed more nodes near the K–Pg 

250 boundary as semi-arboreal than did the two-rate model, especially on the Meredith et al. 

251 topology (Supporting information, Figs. S5-6, S15-16). Incorporating a sample of 1,000 tree 

252 topologies from the posterior distribution of Upham et al. (2019) made little difference in 

253 stochastic mapping reconstructions under the two-rate or ARD models (Supporting information, 

254 Figs. S15-18). However, for the optimal four-rate model, consideration of posterior topological 

255 uncertainty leads to a marked increase in circum K–Pg nodes being recovered as non-arboreal 

256 rather than semi-arboreal (compare Fig. 2 to Supporting information, Fig. S14). We suggest this 

257 is a consequence of more pronounced changes in the average estimated Q matrix (inset in Fig. 
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258 2) observed for the four-rate model when compared to the two-rate or ARD models, 

259 summarized across the posterior tree sample. Although both sets of reconstructions are 

260 generally consistent with the hypothesis of K–Pg-associated selectivity against arboreality, it is 

261 clear that considering information from the Upham et al. (2019) posterior tree set as opposed to 

262 relying solely on simplified consensus topologies impacts the interpretation of our node state 

263 reconstructions.

264 The overall signal we detect is consistent with the hypothesis of predominant 

265 survivorship of non-arboreal or semi-arboreal mammals across the K–Pg boundary: few 

266 lineages reconstructed as predominantly arboreal are inferred to have survived the K–Pg mass 

267 extinction. However, our analyses also highlight two possible exceptions: euarchontans and 

268 marsupials. On the Meredith et al. (2011) topology under all models, early members of total-

269 clade Primatomorpha (Primates + Dermoptera) are inferred to have either retained arboreal 

270 habits across the K–Pg boundary (Fig. 1; Supporting information, Fig. S4-6) or acquired 

271 arboreality shortly thereafter (see below). On the Upham et al. (2019) consensus topology, in 

272 which Euarchonta (Primates + Dermoptera + Scandentia) is inferred to be monophyletic, 

273 arboreality is reconstructed as having arisen along the euarchontan stem lineage in all models 

274 (Supporting information, Figs. S13-16). Considering posterior topological uncertainty also leads 

275 to Euarchonta being reconstructed as arboreal at the time of the K–Pg transition, whereas the 

276 majority of other lineages are reconstructed as non-arboreal under the four-rate model and 

277 semi-arboreal otherwise (Fig. 2; Supporting information, Figs. S17-18). Although not supported 

278 by Meredith et al. (2011), a monophyletic Euarchonta has frequently been supported by other 

279 phylogenetic analyses (Springer et al. 2003; Springer 2004; O’Leary et al. 2013; Chester et al. 

280 2015, 2017). Under parsimony and two likelihood models (four-rate and ARD), most marsupials 

281 are additionally reconstructed as having retained arboreal habits across the K–Pg boundary, or 

282 acquired them shortly thereafter (Fig. 1; Supporting information, Figs. S4-6, S13-16). However, 

283 this signal is diminished when considering the Upham et al. (2019) distribution of topologies 

284 (Fig. 2). 

285 Clade-wide temporal patterns in character transition rates

286 For both the Meredith et al. (2011) and Upham et al. (2019) consensus topologies, the 

287 highest frequency of character transitions detected by the optimal four-rate model falls within the 

288 range of divergence time uncertainty for many clades whose originations have been proposed 

289 to be associated with the K–Pg boundary (see Discussion). Moreover, the temporal sequence of 

290 peaks in the relative frequencies of particular character transition types appears to be consistent 
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291 with the hypothesis of selection against obligate arboreality leading up to and through the K–Pg 

292 boundary (i.e. transitions away from arboreality, followed by transitions toward arboreality, at 

293 least as indicated by analyses on the Upham et al. (2019) consensus topology). These patterns 

294 are similar for analyses performed on the Meredith et al. (2011) (Figure 3A) and Upham et al. 

295 (2019) (Figure 3B) consensus topologies, as well as the Upham et al. (2019) posterior tree 

296 sample (Figure 3C). Tracking fluctuations in the relative frequencies of mammalian ecological 

297 transitions approaching the K–Pg boundary (Figure 3), the four-rate model first detects a slight 

298 uptick and subsequent reduction in clade-wide transitions from arboreal to semi-arboreal 

299 character states, which remains low to the present. This initial pulse is followed by (or is 

300 perhaps concurrent with) a large peak in transitions from semi-arboreal to non-arboreal 

301 character states, which declines gradually to the present. This peak of character transitions 

302 toward non-arboreality appears stronger in the analyses employing the Upham et al. (2019) 

303 topologies than in the analyses using the Meredith et al. (2011) consensus topology. 

304 Subsequently, a peak in clade-wide transitions from semi-arboreal to arboreal character states 

305 is detectable in both analyses, which returns to pre K–Pg levels. Temporal patterns of character 

306 state changes from non-arboreal to semi-arboreal appear relatively flat in the Meredith et al. 

307 (2011) topology, with a stronger uptick associated with other peaks in the Upham et al. (2019) 

308 topologies. When interpreting these results, it should be noted that only one type of character 

309 transition can occur at a given time on a given branch on a given stochastic map. Therefore, an 

310 apparent increase in one type of character state transition may necessarily be associated with a 

311 decline in the frequency of a different type of character state transition.

312 These patterns emphasize that the most dramatic clade-wide mode changes appear to 

313 be associated with the interval encompassing many clade originations hypothesized to be 

314 related to the K–Pg transition. These results suggest that the early diversification of placental 

315 mammals was associated with clade-wide shifts in the relative rates of character transitions 

316 toward and away from particular ecological strategies, and that the sequence of these shifts is 

317 consistent with the hypothesis that the transient loss of available arboreal habitats at the K–Pg 

318 boundary may have driven those changes. Although the presently wide uncertainty in 

319 divergence times precludes a definitive statement, it is important to note that if our documented 

320 peaks in evolutionary transitions did occur during the Cretaceous, they could be consistent with 

321 the “Early Rise Hypothesis.” In that scenario, an ecological radiation of mammals began prior to 

322 the Cretaceous-Palaeogene transition, potentially associated with concomitant diversification 

323 events among angiosperms and selected groups of insects (Grossnickle et al. 2019a).
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324 4. Discussion

325 Inference from the fossil record

326 Our ancestral state reconstructions consistently support survivorship patterns favoring 

327 predominantly non-arboreal or semi-arboreal substrate use across the K–Pg boundary, under 

328 likelihood, Bayesian, and parsimony models. This is consistent with previous ASR approaches 

329 that recover early mammalian nodes as mostly non-arboreal until just after the K-Pg boundary 

330 (Wu et al. 2017). With few exceptions (Lyson et al. 2019), well-preserved mammalian fossils 

331 from close to the K–Pg boundary and the first ca. one million years of the extinction’s aftermath 

332 are exceedingly rare (Williamson 1996; Hartman 2002; Lofgren et al. 2004; Wilson et al. 2014). 

333 Most fossils known from this interval are too fragmentary to robustly inform reconstructions of 

334 substrate preferences. Indeed, even in cases where strong inferences about the predominant 

335 substrate use of a fossil taxon can be drawn, uncertainty regarding parameters such as nesting 

336 behaviors is unavoidable. Uncertainty surrounding the phylogenetic position of such fossils 

337 presents further challenges with respect to interpreting their implications for early ecological 

338 transitions among crown placentals (Halliday et al. 2017). Accepting these limitations, our 

339 reconstructions are consistent with the preferential survivorship of non-arboreal mammals 

340 across the K–Pg mass extinction. In contrast to evolutionary patterns among crown birds, in 

341 which strong selection for non-arboreal ecologies appears to be unambiguously supported by 

342 both phylogenetic and fossil evidence (Field et al. 2018, Field et al. 2020a), definitive 

343 assessments of selective patterns among K–Pg boundary-crossing mammals will remain 

344 elusive in the absence of additional fossil evidence. Until that time, we interpret our results in the 

345 context of the currently known circum-K–Pg mammalian fossil record, as well as the more 

346 complete records from earlier and later in mammalian evolutionary history.

347 Based on postcranial morphology, some early (ca.125 Ma) therians including Eomaia (Ji 

348 et al. 2002), Ambolestes (Bi et al. 2018), and Sinodelphys (Luo et al. 2003), have been 

349 interpreted as arboreal or scansorial, as has the oldest known therian, the ca. 160 Ma Juramaia 

350 (Luo et al. 2011). Mammalian arboreality may have been common in the Mesozoic, concurrent 

351 with increasing mammalian locomotor diversity (Chen and Wilson 2015; Grossnickle et al. 

352 2019). In contrast, later pre-K–Pg lineages for which locomotor reconstructions are possible, 

353 such as the metatherian Asiatherium (Trofimov and Szalay 1994) and the eutherians 

354 Barunlestes and Zalambdalestes (Kielan-Jaworowska 1978; Chester et al. 2010, 2012) are not 

355 interpreted to have been arboreal (Chen and Wilson 2015). Inclusion of Mesozoic fossil taxa in 

356 our reconstructions would likely inflate posterior estimates for early arboreality among 

357 mammals. However, given our focus on the K–Pg transition and not the ancestral condition of 
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358 the earliest crown mammals, we elected to restrict our analyses to taxa whose nesting and 

359 residence ecology can be scored consistently and systematically. 

360 Compared to other major crown mammalian subclades, we infer early arboreal substrate 

361 use in Primatomorpha (Meredith et al. 2011) and Euarchonta (Upham et al. 2019), implying 

362 either a rapid adoption of arboreality as forests recovered following the K–Pg transition, or 

363 retention of at least facultative arboreality across the extinction event. Although relevant fossil 

364 data are limited, we can evaluate the primatomorphan and euarchontan fossil record in order to 

365 draw inferences about the relative likelihood of these alternative scenarios. The oldest total 

366 group primates known from the fossil record (Chester and Sargis 2020), including the stem 

367 primates Purgatorius and Torrejonia and the crown primate Teilhardina, date to within 

368 approximately 10 million years following the K–Pg transition (Chester et al. 2015, 2019; Morse 

369 et al. 2019). These fossils provide insight into ancestral primate habits in the aftermath of the 

370 end-Cretaceous mass extinction. From studies of postcranial morphology, Purgatorius and other 

371 stem primates like Torrejonia are reconstructed as having been specialized for arboreal habits 

372 (Chester et al. 2015, 2019). As stem primates, this hypothesis is consistent with our inference 

373 that primatomorphans (Meredith et al. 2011) or euarchontans (Upham et al. 2019) may have 

374 retained a capacity for arboreality through the K–Pg. The inferred arboreal habits of this lineage 

375 across the K–Pg boundary is intriguing in light of an apparently strong selective filter against 

376 arboreal birds at this same time (Field et al. 2018), as well as theoretical and paleobotanical 

377 evidence suggesting forest devastation on a global scale following the Chicxulub asteroid 

378 impact (Tschudy et al. 1984; Vajda et al. 2001). Although primatomorphans or euarchontans 

379 may have retained arboreal habits in hypothetical forested refugia throughout the K–Pg 

380 transition, behavioral flexibility and facultative non-arboreality may also have facilitated the 

381 survival of arboreally adapted early primatomorphans across the K–Pg. Though extant colugos 

382 are specialized gliders and strict herbivores, extant primates have been hypothesized to be 

383 resilient in the face of rapid environmental change on account of their sociality, cognition, and 

384 dietary and locomotor flexibility (Morris et al. 2011; Mekonnen et al. 2018), and at least some of 

385 these and other traits (e.g., omnivory and small body size in the oldest known stem and crown 

386 primates; (Szalay and Delson 1979)) may have contributed to the survival of representatives of 

387 the primate total group when facing the devastation of forests at the end-Cretaceous. 

388 There is evidence under some of our models that the early evolutionary history of crown 

389 marsupials may have also occurred in an arboreal ecological context (Fig. 1; Supporting 

390 information, Figs. S4, S6, S13-14, S16, S18). Our ARD model and in some cases the similar 

391 four-rate model yield an arboreal reconstruction for the most recent common ancestor of crown 
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392 marsupials (Fig. 1; Supporting information, Figs. S6, S14, S16, S18). This inference implies 

393 repeated losses of arboreality among marsupials, which would be consistent with the 

394 hypothesized retention of plesiomorphic arboreal features in their hands and feet (Bensley 

395 1901; Haines 1958; Szalay 1984). Marsupials suffered some of the greatest diversity loss and 

396 longest recovery times in the wake of the K–Pg compared with other boundary-crossing 

397 mammalian groups (Pires et al. 2018), and we infer a signal of consistent arboreality among 

398 several marsupial lineages near the K–Pg boundary. This is congruent with the earliest known 

399 post-K–Pg metatherian skeletons from the early Paleocene of Bolivia, which have been 

400 reconstructed as scansorial, with Mayulestes inferred to be more specialized for arboreality than 

401 Pucadelphys (Argot 2003). 

402 Notably, although the fossil record of stem-group bats (Chiroptera) is sparse, the 

403 ancestors of crown bats may have been arboreal before they acquired a capacity for powered 

404 flight (Gunnell and Simmons 2005; Bishop 2008). However, our results reconstruct much of the 

405 chiropteran total-group as predominantly non-arboreal through most of the Paleocene and 

406 extending back into the Cretaceous (Fig. 2) (or, in the case of the ARD and four-rate models, 

407 potentially semi-arboreal). This is probably a result of the strict application of our character state 

408 definitions, where most extant bats were classified as non-arboreal. Many bat species are cave-

409 roosting—thus, they are classified as non-arboreal or semi-arboreal in our analyses, highlighting 

410 the fact that our classification of “non-arboreality” does not necessarily imply a predominantly 

411 ground-dwelling ecology.

412 A number of major clades whose extant representatives exhibit arboreality across 

413 multiple family-level subclades (e.g., primatomorphans or euarchontans, marsupials, and 

414 xenarthrans) may have retained a capacity for arboreal habits across the K-Pg boundary and 

415 may have already been adapted to exploit arboreal niches relatively quickly as these habitats 

416 recovered. By contrast, arboreal latecomers (e.g., dormice, tree squirrels, bats) independently 

417 acquired arboreal habits well into the Cenozoic (Figs. 1, 2). In the case of Xenarthra, the earliest 

418 known fossil representatives of this group were likely adapted for fossoriality (Gaudin and Croft 

419 2015), with arboreality in sloths evolving repeatedly and independently throughout the 

420 Cenozoic, presumably in response to factors such as diet specialization and predator evasion 

421 (Delsuc et al. 2018, 2019). This pattern appears to be reflected in our ASRs: across the majority 

422 of our analyses, we infer non-arboreal ecologies for Xenarthra until very shortly after the K–Pg 

423 boundary.

424 As in birds (Mayr 2016; Field et al. 2018), we hypothesize that non-arboreal habits were 

425 associated with increased rates of survivorship among mammals across the K–Pg boundary, 
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426 consistent with earlier qualitative proposals for enhanced survivorship among burrowing/semi-

427 aquatic mammals (Robertson et al. 2004; DeBey and Wilson 2017). Alongside selection against 

428 strict arboreality, many mammalian lineages that passed through the K–Pg mass extinction may 

429 have been characterized by reduced body size relative to their pre-extinction antecedents 

430 (Lyson et al. 2019); perhaps related to the relationship between body size and total metabolic 

431 requirements (McNab 2012; Berv and Field 2018), as well as enhanced survivorship among 

432 insectivores and omnivores compared with strict carnivores and herbivores (Sheehan and 

433 Hansen 1986; Aberhan et al. 2007). Large-bodied mammals and dietary specialists appear to 

434 have been heavily selected against in the immediate wake of the Chicxulub impact (Wilson 

435 2013; Grossnickle and Newham 2016; Lyson et al. 2019), with therians only acquiring their 

436 greatest body size range well after the mass extinction when niches previously occupied by 

437 large dinosaurs opened (Smith et al. 2010). Multituberculates show a similar increase in the 

438 disparity of their body sizes and dental complexity following the K–Pg transition, though their 

439 mean body size was apparently unaffected (Wilson et al. 2012; Weaver and Wilson 2020). 

440 Analytical assumptions

441 The evolutionary scenarios proposed here are conditional on the accuracy of the 

442 timescale of the extant mammalian radiation estimated in both the Meredith et al. (2011) and 

443 Upham et al. (2019) phylogenies. Divergence times estimated with molecular clock models 

444 (Wray 2002; Meredith et al. 2011; Bininda-Emonds et al. 2012) may greatly exceed estimates of 

445 clade ages derived from fossil evidence (Wible et al. 2007; Forest 2009; O’Leary et al. 2013), 

446 and our understanding of the factors underlying this incongruence is improving (Hillis 1987; 

447 Patterson 1987; Novacek 1993; Larson 1998; Springer et al. 2003, 2013; Brochu et al. 2004; 

448 Springer 2004; O’Leary et al. 2013; Phillips 2016; Field et al. 2020b). In Xenarthra, divergence 

449 time analyses from molecular clock models have yielded estimates for the age of the crown 

450 clade exceeding 70 Ma (Bininda-Emonds et al. 2007), whereas the oldest crown group 

451 xenarthran fossils are approximately 59 Ma (O’Leary et al. 2013; Wilson Mantilla et al. 2021). 

452 Such discrepancies, which span the K–Pg boundary (ca. 66.02 Ma; Clyde et al. 2016), indicate 

453 uncertainty regarding the “true” age of important nodes across the mammalian tree of life. This 

454 uncertainty is especially relevant to our reconstructions of crown Primatomorpha, for which 

455 molecular divergence time analyses frequently estimate a Late Cretaceous origin (Bininda-

456 Emonds et al. 2007; Janečka et al. 2007; Meredith et al. 2011), and likewise for Euarchonta 

457 (Janečka et al. 2007; Upham et al. 2019). At present, the oldest known total-clade 

458 euarchontan—the arboreal stem primate Purgatorius—appears shortly after the K–Pg 

A
u
th

o
r 

M
a
n
u
sc

ri
p
t

https://paperpile.com/c/txkSZs/da4Sl+gX8Ql
https://paperpile.com/c/txkSZs/lJF15+cGV7E
https://paperpile.com/c/txkSZs/KpyGL+lGS8q
https://paperpile.com/c/txkSZs/KpyGL+lGS8q
https://paperpile.com/c/txkSZs/1RWzZ+58zAH+MVPdl
https://paperpile.com/c/txkSZs/1RWzZ+58zAH+MVPdl
https://paperpile.com/c/txkSZs/byjqo
https://paperpile.com/c/txkSZs/U6T9R+pkAGL
https://paperpile.com/c/txkSZs/5ZYFX+RYq5w+7NZYx
https://paperpile.com/c/txkSZs/B7qk7+24cVC+rCBIi
https://paperpile.com/c/txkSZs/ki7XM+TrNHI+LYPd0+aDWje+NLynH+j2Tk5+fvcWp+lvbKY+J3HSh+rCBIi+1cOEy
https://paperpile.com/c/txkSZs/ki7XM+TrNHI+LYPd0+aDWje+NLynH+j2Tk5+fvcWp+lvbKY+J3HSh+rCBIi+1cOEy
https://paperpile.com/c/txkSZs/ki7XM+TrNHI+LYPd0+aDWje+NLynH+j2Tk5+fvcWp+lvbKY+J3HSh+rCBIi+1cOEy
https://paperpile.com/c/txkSZs/G1kce
https://paperpile.com/c/txkSZs/rCBIi+onTg
https://paperpile.com/c/txkSZs/RYq5w+G1kce+QHJXX
https://paperpile.com/c/txkSZs/RYq5w+G1kce+QHJXX
https://paperpile.com/c/txkSZs/6Q13j+QHJXX


This article is protected by copyright. All rights reserved

459 boundary, ca. 65.9 MYA (Wilson Mantilla et al. 2021). Thus, direct fossil evidence bearing on 

460 whether arboreality was retained across the K–Pg boundary in euarchontans or 

461 primatomorphans is lacking. If the “true” node age is younger than the K-Pg boundary, it would 

462 imply that arboreality may have emerged post-extinction in Euarchonta or Primatomorpha, 

463 rather than arising beforehand and being maintained across the extinction horizon. Lastly, we 

464 note that the taxon sample in the present analysis, which is mostly restricted to mammalian 

465 family-level clades, could also have introduced some bias into our analysis, though it is difficult 

466 to quantify how this might affect our results a priori (primarily, we expect transition rates to be 

467 under-estimated under the present taxon sampling strategy). Mammalian families that exhibit a 

468 range of substrate preferences across extant species-level diversity are necessarily represented 

469 in our consensus trees by only a single taxon; 36% of such families were scored as arboreal. 

470 Therefore, further exploration of these questions in the context of an expanded taxon sample 

471 would provide a fruitful direction for future research.

472 5. Conclusions

473 The short-term ecological ramifications of the K–Pg mass extinction are difficult to fully 

474 assess from our vantage point 66 million years later, but it is increasingly clear that the 

475 evolutionary trajectories of arboreal lineages across the vertebrate tree of life were deeply 

476 impacted by this mass extinction event (Vajda et al. 2001; Feng et al. 2017; Field et al. 2018). 

477 Direct fossil evidence of mammalian ecological habits from the latest Cretaceous and 

478 Paleocene will be needed to further test the patterns of mammalian ecological selectivity 

479 inferred here. The Late Cretaceous Deccanolestes has been interpreted as arboreal, as have its 

480 close relatives (the Paleocene adapisoriculids), providing a compelling example of continuous 

481 arboreality among non-euarchontan mammals that survived across the K–Pg boundary 

482 (Goswami et al. 2011). Although some Late Cretaceous multituberculates have also been 

483 proposed to have been arboreal based on isolated fragmentary humeri (DeBey and Wilson 

484 2017), inferences based on the most complete skeletal material support Late Cretaceous forms 

485 as predominantly ground dwelling or fossorial (Kielan-Jaworowska 1989; Kielan-Jaworowska 

486 and Gambaryan 1994; Weaver et al. 2021), and some Paleocene taxa as arboreal (Krause and 

487 Jenkins 1983), suggesting survival of predominantly non-arboreal multituberculates across the 

488 K–Pg with post-extinction transitions to arboreality.

489 Inferences of mammalian ecological evolution will continue to be refined in light of 

490 ongoing improvements in our understanding of mammalian phylogeny, divergence times, and 

491 the fossil record (Meredith et al. 2011; O’Leary et al. 2013; Halliday and Goswami 2016b; 
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492 Phillips 2016; Grossnickle et al. 2019; Upham et al. 2019). Nevertheless, our new results and 

493 simulations are consistent with the hypothesis that the K–Pg transition was a fundamental agent 

494 driving ecological shifts in the evolutionary history of Mammalia. The phylogeny of crown group 

495 mammals appears to retain the selective signature of end-Cretaceous forest devastation over 

496 66 million years ago, emphasizing the profound degree to which the evolutionary trajectories of 

497 extant terrestrial vertebrates were influenced by the K–Pg catastrophe.
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510 R code will be updated at the author's GitHub repository 

511 (https://github.com/jakeberv/mammal_arboreality) and is preserved as a Zenodo archive DOI: 

512 10.5281/zenodo.5338540.
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812 Table 1: Akaike Information Criterion (AIC) scores for all models evaluated on both the Meredith 

813 et al. (2011) and Upham et al. (2019) consensus topologies, indicating that the four-rate model 

814 is preferred (lowest AIC score, highlighted gray).

Model Meredith et al 2011 Upham et al 2019

2 rate 244.93 244.22

4 rate 231.92 234.30

6 rate 235.90 238.67

HRM 4 rate, 2 cat 245.64 246.21

HRM 6 rate, 2 cat 249.64 250.56

HRM 6 rate, 3 cat 268.69 270.37
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