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Dynamic treatment regimes (DTRs) include a sequence of treatment decision
rules, in which treatment is adapted over time in response to the changes in
an individual’s disease progression and health care history. In medical practice,
nested test-and-treat strategies are common to improve cost-effectiveness. For
example, for patients at risk of prostate cancer, only patients who have high
prostate-specific antigen (PSA) need a biopsy, which is costly and invasive, to
confirm the diagnosis and help determine the treatment if needed. A decision
about treatment happens after the biopsy, and is thus nested within the deci-
sion of whether to do the test. However, current existing statistical methods are
not able to accommodate such a naturally embedded property of the treatment
decision within the test decision. Therefore, we developed a new statistical learn-
ing method, step-adjusted tree-based reinforcement learning, to evaluate DTRs
within such a nested multistage dynamic decision framework using observa-
tional data. At each step within each stage, we combined the robust semipara-
metric estimation via augmented inverse probability weighting with a tree-based
reinforcement learning method to deal with the counterfactual optimization.
The simulation studies demonstrated robust performance of the proposed meth-
ods under different scenarios. We further applied our method to evaluate the
necessity of prostate biopsy and identify the optimal test-and-treat regimes for
prostate cancer patients using data from the Johns Hopkins University prostate
cancer active surveillance dataset.
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1 INTRODUCTION

Dynamic treatment regimes (DTRs) have gained increasing interest in the field of precision medicine in the last decade.1
This research direction generalizes the individualized medical decisions into a time-varying treatment setting, usually
at discrete stages, and thus accommodates the updated information for each person at each stage.2,3 In DTR, actions or
decisions based on the individualized features are able to lead to more precise disease prevention and better disease man-
agement. However, the current DTR framework is limited when the action of one treatment is nested within the action
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of another. A more intuitive example that explains the limitation in practice is a test-and-treat scenario: the treatment
action only happens after the happening of a diagnostic test action, which means that the treatment action cannot hap-
pen when the diagnostic test result is not available. In particular, in medical practice, the procedures to diagnose and treat
patients are much more complicated. Most diagnosis procedures or tests, for example, positron emission tomography, or
a biopsy test, occur prior to the selection of treatment to provide more information about disease status, then this infor-
mation would be used to select treatment. Typically, only patients who have taken the test can be treated, and thus the
decision about the treatment assignment is nested within the decision of performing the test.

For example, men with early stage asymptomatic prostate cancer who are in an active surveillance program, would
regularly have their prostate-specific antigen (PSA) and prostate tissue measured via a blood test and core needle biopsy
test, respectively.4 Whether to undergo definitive treatment for their prostate cancer would be strongly influenced by the
results from their biopsy test. So the possible treatment initiation only happens after having the biopsy test result, and is
thus nested within the decision of doing a biopsy or not. Such a nested dynamic clinical decision-making is not limited to
prostate cancer. The occult blood test, also known as a stool test, can also be used as a cheap and easy initial screening test
for colorectal cancer.5 Patients with abnormal finding from the stool test are then referred for a colonoscopy exam, which
is costly and invasive, to confirm the diagnosis and decide if more definitive treatment for colorectal cancer is needed. In
this scenario the decision of whether to do definitive treatment is nested in the decision of whether to do a colonoscopy
which is nested within the decision to do a stool test or not. This kind of nested clinical decision also happens with many
other chronic diseases.6

In such nested test-and-treat scenarios, the impact of the test should also be considered. For some diseases, the tests
used to confirm the diagnosis or decide on the next step are easy to administer and minimally invasive, for example, blood
test and physical examination. But some other tests done for confirmatory purposes are expensive and invasive, including
the prostate biopsy and colonoscopy. The potential side effects include pain, soreness, and infections, which should not be
overlooked. For prostate cancer, even if the test result suggests progressive disease, it is not always the case that the patient
should undergo definitive treatment, which has substantial comorbidity, since prostate cancer is a slow growing disease
and a substantial number of men may not develop deadly prostate cancer before dying from some other cause. It is well
known that there is overtreatment for prostate cancer, and that a substantial number of men receive unnecessary cancer
treatments.4 Therefore, careful patient selection for testing is needed to not only reduce the impact on the patient, but
also to save medical resources for the patients who truly need them. The current one-fits-all active surveillance protocol
is not capable of taking the patient’s personalized medical characteristics into account and then giving an individualized
disease management plan.

As mentioned above, most existing frameworks using the standard formulation for evaluating DTRs overlook or
simplify7-9 such a test-and-treat nested structure during the clinical decision-making process. The diagnostic test itself
does not have a direct impact on the disease related outcome, but the potential treatment following the test may improve
the disease outcome for the patient substantially. On the other hand, the patient without a diagnostic test at all will not
have the health benefit gained from the treatment step. Instead of simply understanding the test and treat as two sequential
actions, we distinguish them to emphasize their nested relationship. Overlooking such a test-and-treat nested structure
may result in identifying imprecise and nonrealistic decision rules especially by applying backward induction. Although
the information of previous test and treat history may have been adequately captured, when the general formulation is
applied in the treatment step, patients who did not have the test are also included into the decision-making of the treat-
ment steps. The method that applies the standard formulation could inevitably provide an optimal treatment strategy for
a patient even without a test. Such a resulting treatment strategy is not compatible with their observed data. Therefore,
we propose a new nested dynamic treatment regime (nested-DTR) framework by embedding the treatment step within the
test step of each intervention stage as shown in Figure 1. This proposed framework specifically demonstrates how to mod-
ify the standard method in the implementation steps to incorporate the nested relationships, implement the restricted
optimization, and guarantee the estimation results are compatible with the needs raised from the biomedical problems
themselves.

In general, DTRs can be estimated from observational data, provided there is enough heterogeneity in the patient
features and their actions taken. Similarly the optimal DTR for this new nested-DTR framework can be learned from
observational data provided there is enough heterogeneity in data for both the decision to test and the decision to treat.

In addition to extensive work on value of information methods in operations engineering and computer science
within the framework of health policy-making,10,11 a great number of statistical methods have been developed to esti-
mate the optimal DTRs using observational data, such as marginal structural model estimated with inverse probability
weighting,12 the marginal mean model,13 and other likelihood-based methods.14 These methods require a parametric
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F I G U R E 1 Hypothetical step-adjusted DTR with a treatment step nested within the test step of each intervention stage. The decision
of the test step is made based on the health history and the treatment decision is made on the basis of previous health history and the updated
history after the test

or semiparametric conditional model for the counterfactual outcome as a component and thus are vulnerable to model
mis-specification, especially when the data are high dimensional or time-dependent information is accumulated. More
recently, machine learning-based approaches, as a replacement for parametric or semiparametric models, have become
increasingly popular because of their flexibility in model assumptions and their robustness.8,15 When identifying the
optimal DTRs with multiple stages, the problem resembles the reinforcement learning (RL) problem.16 Therefore, RL
methods are currently broadly applied in evaluating the optimal DTRs. Some of this work, which involving reinforcement
learning, has focused on developing easily interpretable DTRs for real-world practice.17-19

To the best of our knowledge, however, none of the existing methods can be applied directly to estimate the optimal
DTRs when each stage consists of a treatment step nested within a test step. In this article, we are trying to fill this
gap and develop a new nonparametric statistical learning method for identifying the optimal DTR within the nested
dynamic decision framework. At each step within each stage, we combine the robust semiparametric estimator obtained
using augmented inverse probability weighting (AIPW) with a modified tree-based reinforcement learning method to
optimize the expected counterfactual outcome. The incorporation of the AIPW estimator facilitates the robustness of the
estimated optimal dynamic treatment regime while the tree-based reinforcement learning method is able to provide an
interpretable optimal strategy. The remainder of this article is organized as follows: In Sections 2 and 3, we formalize
the problem of identifying the optimal DTR within the nested DTR framework in a multiple-stage multiple-step setting
from observational data and develop the nested step-adjusted tree-based reinforcement learning method (SAT-Learning).
Section 4 presents the detailed implementation of this new method. Numerical simulation studies and an application to
the Johns Hopkins University (JHU) prostate cancer active surveillance data are provided in Sections 5 and 6. We conclude
with a brief discussion in Section 7.

2 MULTIPLE-STAGE NESTED STEP-ADJUSTED DYNAMIC TREATMENT
REGIMES

To address the nested decision problem above, we consider a nested multistage multistep decision framework with S
decision stages. In clinical practice, every regular clinic visit, which might initiate some form of treatment, can be con-
sidered as a stage. Within each stage s, there are J action steps. Let Ksj denote the number of decision options at step j
of stage s (Ksj ≥ 2), let Dsj denote the multiple treatment indicators of the action taken at step j of stage s in the observed
data, and the value of Dsj is dsj ∈ sj. Without loss of generality, we consider two steps within each stage, that is, J = 2,
to make the presentation easier. We assume the first step of stage s is the test step (action Ds1) and Ds2 in the treatment
step is nested within the decision of Ds1. For example, only the prostate cancer patients who have had the biopsy test
are considered for further treatment. We denote the patient’s history prior to action Dsj but after the previous step as
Xsj. We will use overbar with subscripts s and j to denote a vector of a variables’s history up to the step j of stage s. For
example, Xs2 = (X11,X12,X21, … ,Xs1,Xs2). Similarly, the action history up to the treatment step of stage s can be denoted
as Ds2 = (D11,D12,D21, … ,Ds1).

We use Ysj to denote the intermediate reward outcome at the end of step j of the stage s, and thus the overall rewards
vector is (Y11,Y12, … YS2) . The outcome of interest Y is a function of all rewards, that is, Y = f (Y11,Y12,Y21, … YS2),
where f (⋅) is a prespecified function (eg, sum). We also assume that Y is bounded and high values of Y are desirable. The
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observed data before stage s step j (1 ≤ s ≤ S, 1 ≤ j ≤ 2) are

{X11,D11,Y11,X12, … ,Ds−1,2,Ys−1,2,Xs1}n
i=1 ≡ {Xs1,Ds−1,2,Y s−1,2}n

i=1

for step 1 , and

{X11,D11,Y11,X12, … ,Xs1,Ds1,Ys1,Xs2}n
i=1 ≡ {Xs2,Ds1,Y s1}n

i=1

for step 2. For brevity, we suppress the subject index i in the following text when no confusion exists. The observed
data are assumed to be independent and identically distributed for n subject from the population of interest. The his-
tory Hsj is defined as the test results and action history prior to the action assignment Dsj. To be more specific, Hs1 =
(Ds−1,2,Xs1,Y s−1,2) and Hs2 = (Ds1,Xs2,Y s1). To illustrate the method, we also specify two action options in the test step
and three options in the treatment step of every stage, that is, ds1 ∈ s1 = {0, 1}, Ks1 = 2, and ds2 ∈ s2 = {0, 1, 2}, Ks2 = 3.
When a patient has dsj = 0, that is, no treatment or test is given, they will still be kept in the study cohort but not given
further treatment until the next stage s + 1. Thus, the reward is Ysj = 0 when dsj = 0. A slight modification of this occurs
in our illustrative example using the JHU Active Surveillance (AS) dataset. In AS, if a patient receives treatment in some
treatment step, that is, ds2 = 1 or 2, they no longer needs further tests or treatments, thus would be removed from the
study from that time onwards. However, as long as their reward Y is available, their data from already observed steps
would still be used in the estimation method by specifying ds′1 = 0 and ds′2 = 0, where s′ > s.

With a treatment step nested after every test step within a stage, the nested DTR is defined as a personalized
test-and-treatment rule sequence. The rule is based on the observed history Hsj about the patient’s health status up to the
action in step j of stage s. Let g denote the above nested DTR. Formally, g = (g11, g12, … , gS2) is defined by a collection of
mapping functions, where gsj is mapped from the domain of history Hsj to the domain of Dsj, that is,

Hsj → gsj(Hsj) ∈ sj, 1 ≤ s < S, 1 ≤ j ≤ 2.

3 STEP-ADJUSTED OPTIMIZATION FOR NESTED DTR

Let Y∗(g) be the counterfactual outcome if all patients follow g to assign treatment or test conditional on previous history.
The performance of g is measured by the counterfactual mean outcome E{Y∗(g)} conditional on the patients’ history. We
denote the optimal regime as gopt. Our goal of identifying the optimal regime is to find the gopt which satisfies

E{Y∗(gopt)} ≥ E{Y∗(g)}

for all g ∈ , where  is the set of all potential regimes.

3.1 Optimization of gS2 and gS1 for the last stage S

The approach to finding optimal DTR includes backward induction,13 therefore we illustrate the mathematical for-
mulation from the last stage S. For the last step of the stage, let Y∗

S2(dS2) be the counterfactual outcome if a patient
makes treatment decision dS2 conditional on previous history. We denote the optimal regime as gopt

S2 , which satisfies
E
{

Y∗
S2

(
gopt

S2

)}
≥ E{Y∗

S2(gS2)} for all gS2 ∈ S2, where S2 is the set of all potential regimes at stage S and step 2.

To connect the counterfactual outcome with observed data
{

XS2,DS2,Y S2

}
, we make the following standard casual

inference assumptions:2

1. Consistency. The observed outcome coincides with the counterfactual outcome under the treatment a patient is actually
given, that is,

YS2 =
∑

dS2∈S2

Y∗
S2(dS2)I{gS2(HS2) = dS2}I{dS1 = 1},
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where I(⋅) is the indicator function that takes the value 1 if ⋅ is true and 0 otherwise. The indicator function I(dS1 = 1)
implies only the subjects who decided to take the previous test, that is, dS1 = 1, can have their YS2 observed.

2. No unmeasured confounding. The observed action DS2 is independent of potential counterfactual outcomes conditional
on the history HS2, that is,

DS2 ⟂ {Y∗
S2(0),Y∗

S2(1),Y∗
S2(2)}|HS2,

where ⟂ denotes statistical independence. This assumption implies that the potential confounders are fully observed
and included in the dataset.

3. Positivity. For the observational data, the propensity score 𝜋dS2(HS2), the probability of receiving a certain treatment
conditional on history, is bounded away from 0 and 1, that is, 𝜋dS2(HS2) = Pr(DS2 = dS2|HS2) ∈ [c1, c2], where 0 < c1 <

c2 < 1.

For the subjects who do not have the test in the previous step, that is, dS1 = 0, their test result that the further treatment
decision is based on cannot be observed. Therefore, only the subjects with dS1 = 1 is able to contribute to the optimization
of gS2. Under the three assumptions, the optimization problem for the treatment of the last stage becomes

gopt
S2 (HS2) = arg max

gS2∈S2
EHS2

( ∑
dS2∈S2

E(YS2|DS2 = dS2,HS2)

× I[gS2(HS2) = dS2]I(dS1 = 1)

)
, (1)

where EHS2(.) denotes the expectation with respect to the marginal joint distribution of the observed history HS2.
To derive the optimal gopt

S1 for whether to take the test, that is, one step before the treatment step within the same
stage S, we utilize the backwards induction.2 In addition to the counterfactual outcome of stage s step j Y∗

sj defined
in the last section, we also define a nested step-adjusted future optimized counterfactual outcome Ỹ∗

S1. More specif-
ically, we have Ỹ∗

S1 = {Y∗(DS−1,2, gS1, gopt
S2 )}, where the treatment for stage S step 2 has been optimized. To determine

the optimal gopt
S1 , we propose to maximize the expected nested step-adjusted future optimized counterfactual outcome

Ỹ∗
S1, that is, gopt

S1 = arg maxgS1∈S1 EHS1[{Y∗(DS−1,2, gS1, gopt
S2 )}]. Similarly, we assume no unmeasured confounding, DS1 ⟂

{Ỹ∗
S1(0), Ỹ∗

S1(1)}|Hs1, if dS1 = 1, and DS1 ⟂ {Y∗
S1(0),Y∗

S1(1)}|Hs1, if dS1 = 0; positivity 𝜋dS1(HS1) = Pr(DS1 = dS1|Hsj) ∈
[c1, c2], where 0 < c1 < c2 < 1; and then the optimization problem of stage S step 1 can be written as

gopt
S1 = arg max

gS1∈S1
EHS1

[ ∑
dS1∈S1

{
E[Ỹ∗

S1|DS1 = dS1,HS1]I(dS1 = 1)

+E[Y∗
S1|DS1 = dS1,HS1]I(dS1 = 0)

}
I{gS1(HS1) = dS1}

]
. (2)

Different from (1), the optimization process (2) of gopt
S1 is conducted within all eligible subjects, while the optimization

of gopt
S2 is conducted only within the patients who have the test at the previous step. Although the whole cohort contributes

to the optimization step in (2), Ỹ∗
S1 or Y∗

S1 used in (2) actually depends on the test decision, that is, dS1. The subjects who
had the test, that is, dS1 = 1, essentially have one more chance to optimize their rewards through stage S step 2 compared
with those without test, and this chance is nested within the positive exam decision within the same stage.

3.2 Optimization of gs2 and gs1 for any previous stage before S

For the steps of stage s before the last stage (1 ≤ s < S), the optimal regime gopt
S1 and gopt

S2 is expressed via backward induc-
tion as well. Ỹ∗

sj is defined as the nested step-adjusted future optimized counterfactual reward, which is given that all
future stages’ and steps’ actions are already optimized. More specifically, we have Ỹ∗

s1(gs1) = {Y∗(Ds−1,2, gs1, gopt
s2 , … , gopt

S2 )}
and Ỹ∗

s2(gs2) = {Y∗(Ds1, gs2, gopt
s+1,1, … , gopt

S2 )}. Similar to the assumptions for the last stage, we assume no unmeasured
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confounding and positivity. Under these assumptions, the optimization problems at stage s step j can be written as

gopt
s1 = arg max

gs1∈s1
EHs1

[ ∑
ds1∈s1

E[Ỹ∗
s1|Ds1 = ds1,Hs1]I{gs1(Hs1) = ds1}

]
(3)

and

gopt
s2 = arg max

gs2∈s2
EHs2

[ ∑
ds2∈s2

E[Ỹ∗
s2|Ds2 = ds2,Hs2]I{gs2(Hs2) = ds2}I(ds1 = 1)

]
. (4)

4 STEP-ADJUSTED TREE-BASED REINFORCEMENT LEARNING AND ITS
IMPLEMENTATIONS

Given the observational data with test-and-treat nested decision structure, we propose to solve (1), (2), (3), and (4)
through the step-adjusted tree-based learning (SAT-Learning) method. In this method, the step-adjusted future opti-
mized pseudo-outcome is iteratively inducted backwards. We further assume, for stages and steps before the last
step, that is, for any s < S, j = 1 or 2, the effect of intermediate outcome reward Ysj will be cumulatively carried
forward to the final outcome,20 and denote a nested step-adjusted future optimized pseudo-outcome of stage s step
j as POsj. Let 𝜇sj,dsj(Hsj) = Ê[POsj|Dsj = dsj,Hsj] be the estimated mean pseudo-outcome of stage s step j. Because of
the cumulative property of the reward outcome and the nested connection between the test step and the treatment
step, for any s < S, j = 1 or 2, POsj can be expressed in a recursive form as POs1 = Ys1 +

∑S
r=s𝜇r2,gopt

r2
(Hr2) × I(dr1 =

1) +
∑S

r=s+1𝜇r1,gopt
r1
(Hr1) and POs2 = Ys1 +

∑S
r=s+1[𝜇r2,gopt

r2
(Hr2) × I(dr1 = 1) + 𝜇r1,gopt

r1
(Hr1)]. Obviously, when evaluating the

pseudo-outcome in last stage, we have POS2 = YS2 for the second step and POS1 = Ys1 + 𝜇S1,gopt
S1
(HS1) × I(dS1 = 1) for the

first step.
To reduce the accumulated bias from the conditional mean models, instead of using the model-based values under

optimal future treatments 𝜇sj,dsj(Hsj) = Ê[POsj|Dsj = dsj,Hsj] from POsj, we use the actual observed intermediate outcomes
plus the expected future loss (or gain) due to the suboptimal treatments as the modified pseudo-outcome PO′

sj.
20 Specifi-

cally, the modified pseudo-outcome of the last stage is PO′
S2 = YS2, PO′

S1 = YS1 + 𝜇S2,gopt
S2
(HS2) − 𝜇S2,DS2(HS2) + YS2 and for

any s < S, j = 1 or 2,

PO′
sj =

S∑
r=s+1

[
𝜇r1,gopt

r1
(Hr1) − 𝜇r1,Dr1 (Hr1) + Yr1 + I[dr1 = 1][𝜇r2,gopt

r2
(Hr2) − 𝜇r2,Dr2 (Hr2) + Yr2]

]
+ Ysj + I[j = 1]I[dsj = 1]

[
𝜇s2,gopt

s2
(Hs2) − 𝜇s2,Ds2(Hs2) + Ys2

]
. (5)

In particular, if the subject undergoes the test at stage s, that is, ds1 = 1, they might benefit from the potential subse-
quent treatment within that stage via the optimization of the future treatment step. If the subject does not receive the test
at stage s, then their future optimized counterfactual outcome can only be optimized through the optimal actions of the
future stages.

We propose to implement SAT-Learning through a modified version of a tree-based reinforcement learning method
(T-RL),17 which employs the classification and regression tree (CART).21 In the nested DTR setting, we need to include the
step-wise adjustment to account for the nested test-and-treat nature. Thus, we developed a modified tree-based algorithm
to implement SAT-Learning for estimating the optimal nested DTR. Traditionally, the decision tree of CART is built to
choose a split that would have the purest child nodes. The purest node means having the lowest misclassification rate
among all possible nodes. Thus, purity is a crucial measure to grow a decision tree. Different from CART, SAT-Learning
at each node selects the split to improve the counterfactual mean reward, which can serve as a measure of purity in
nested DTR trees, and then maximizes the population’s counterfactual mean reward of interest. Similarly as in T-RL,
to estimate the optimal DTR, we use a purity measure for SAT-Learning based on the augmented inverse probability
weighting (AIPW) estimator of the counterfactual mean outcome.

In the process of partitioning of this tree-based reinforcement learning method, for a given partition 𝜔 and 𝜔c of node
Ω, let gsj,𝜔,d1,d2 denote the decision rule that assigns a single test/treatment action d1 to all subjects in 𝜔 and treatment d2
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to subjects in 𝜔c at stage s step j (1 ≤ s ≤ S, j = 1, 2). Then the purity measure can be defined as

sj(Ω, 𝜔) = max
d1,d2∈sj

Pn

⎡⎢⎢⎣
Ksj∑

dsj=1
𝜇AIPW

sj,dsj
(Hsj)I{gsj,𝜔,d1,d2(Hsj) = dsj}I(Hsj ∈ Ω)

⎤⎥⎥⎦ , (6)

where Pn is the empirical expectation operator and Pn{𝜇AIPW
sj,dsj

(Hsj)} is the AIPW estimator of the counterfactual mean
outcome with

𝜇AIPW
sj,dsj

(Hsj) =
I(Dsj = dsj)
𝜋sj,dsj(Hsj)

Ysj +

{
1 −

I(Dsj = dsj)
𝜋sj,dsj(Hsj)

}
𝜇sj,dsj(Hsj). (7)

In (7), the propensity score model is denoted as 𝜋sj,dsj(Hsj) and the conditional mean model is denoted as 𝜇sj,dsj(Hsj).
Under the foregoing three causal inference assumptions, Pn{𝜇AIPW

sj,dsj
(Hsj)} is a consistent estimator of the counterfactual

mean outcome E{Y∗(dsj)} if either the propensity score model 𝜋sj,dsj(Hsj) or the conditional mean model 𝜇sj,dsj(Hsj) is
correctly specified. Thus this AIPW estimator is doubly robust for estimating the counterfactual mean outcome of the
population.18

In our nested step-adjusted multistage setting, for the last step of the last stage, S2 , we have YS2 in (7) as the observed
reward of the last step of the last stage. For other stage s step j before the last one (1 ≤ s < S, j = 1, 2 or s = S, j = 1), Ysj in
(7) is replaced with P̂O

′
sj, the corresponding pseudo-outcome defined in (5).

In the process of maximizing sj(Ω, 𝜔), the possible split 𝜔 of a given node Ω should be either a subset of a categorical
covariate categories or values that are not larger than the threshold. The best criteria �̂�opt to split a given node is a partition
that is able to maximize the improvement in the purity, sj(Ω, 𝜔) − sj(Ω), where sj(Ω) is for the situation where we
assign the same single test/treatment action to all subject in Ω, that is, no splitting. To control the overfitting and also
make practical and meaningful splits, a positive integer n0 is specified as the minimal node size and a positive constant 𝜆
is also provided as a threshold for the meaningful improvement. Besides the two given constant values 𝜆 and n0, we apply
similar stopping rules as in Reference 17 to grow and split the tree. Our stopping rules can be found in the supplementary
materials as Algorithm 1. The depth of a node mentioned in the stopping rules is defined as the number of edges from
the node to the tree’s root node, and a root node has a depth of 0. The nested SAT-Learning algorithm given the above
purity measures and stopping rules of the partitioning is presented in Algorithm 2 with details. (Also provided in the
supplementary materials). Note the essential difference between steps j = 2 and j = 1 is that different subjects are included
into the calculation of the AIPW estimator. Only the subjects who have taken the test at stage s, that is, ds1 = 1, contribute
to the optimization of their subsequent treatments.

When implementing SAT-Learning process, the propensity score 𝜋sj,dsj(Hsj) in (7) can be estimated by a multinomial
logistic regression model. This working model could incorporate linear main effect terms from history Hsj and summary
variables or interaction terms based on prior scientific knowledge from individual history Hsj. For continuous outcome,
the conditional mean estimates 𝜇sj,dsj(Hsj) in (7) could be obtained either from a linear parametric regression model or
from other off-the-shelf nonparametric machine learning methods, such as random forests or support vector regression,
depending on the history Hsj and the test/treatment action Dsj. For estimating the conditional mean model for binary
or other count outcomes, one could use a generalized linear models or other generalized classification tools in machine
learning.

5 SIMULATION STUDIES

5.1 Simulation studies to evaluate the general test-and-treat nested DTR

We generate simulation study data that mimic the real-world observational test-and-treat study. We assume a two-stage
two-step nested dynamic treatment regime, using Dsj with subscript value s = 1, 2 to represent the stage and j = 1, 2 to rep-
resent the test and treatment action within each stage. More specifically, we set two options in the test step as ds1 = 1 or 0
to indicate receiving the test or not, and three treatment options in the treatment step as ds2 = 0, 1 or 2. We further define
the outcome of interest as the sum of intermediate rewards from each stage and step, that is, Y = Y11 + Y12 + Y21 + Y22.
The underlying optimal treatment is supposed to have the largest expected reward. The other two suboptimal treatments
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have lower expected rewards. We further consider two cases. One is that the expected reward from the two suboptimal
treatments are equal while in the other case, the expected reward of the two suboptimal treatments are different. There-
fore, in the second case, the suboptimal reward losses are different because patients may lose more treatment benefit due
to choosing one suboptimal treatment compared with another.

When the test step initiating each intervention step is not expensive or invasive, more patients tend to choose such a
test because they might benefit from knowing the test result for the long-term disease control purpose. However, when
the lab test is unpleasant and costly, such as a prostate biopsy test, the patients would hesitate to take it. Therefore, when
generating data we consider three scenarios based on the patients’ willingness to receive the exam by modifying the
parameters to set the ratio of having or not having the test as 1:1, 2:1, and 1:2, which correspond to the equal preference,
more likely, and less likely to take the exam, respectively. This preference ratio, instead of reflecting the willingness of
being tested for each individual, is more like a factor that describes the nature of the test, such as the cost, invasiveness
and other side effects. For these three scenarios, three covariates, X1 to X3, generated as the baseline covariates follow
N(0, 1). Two correlated covariates, X4 and X5, are generated as time-varying biomarkers which are measured just before

the decision time of the test step within each stage. (X4,X5)′ ∼ N(𝜇,Σ), where 𝜇 = (0, 0)′ and Σ =
(

1 0.1
0.1 1

)
. After the

test step of each stage, the covariates X12 and X22 mimic the test results that contribute to the treatment decision nested
within each test decision with other covariates. Typically, the test results, such as biopsy results, are of great impor-
tance to the treatment decision-making. X12 and X22 follow the distribution of N(0, 1). Details of parameter setting are as
follows:

Stage 1: The test decision variables, D11 ∼ Bernoulli(𝜋11,1) with 𝜋11,1 = exp(0.6X3 − 0.2X2 + X4)∕(1 + exp(0.6X3 −
0.2X2 + X4)). The reward of step 1 of stage 1 is generated as Y11 = X2

4 + (0.5X3 + 3)2 × I[gopt
11 (H11) = D11] − 3|X1| × I(D11 =

1) + 𝜖11 with optimal regimes defined as

gopt
11 (H11) =

⎧⎪⎨⎪⎩
I(X1 > −0.5)I(X4 ≤ 0.3) for Scenario 1
I(X1 > −0.8)I(X4 ≤ 1) for Scenario 2
I(X1 > 0.3)I(X4 ≤ 1.3) for Scenario 3,

and 𝜖11 ∼ N(0, 1). Scenarios 1, 2, and 3 correspond to patients’ equal preference, more likely, and less likely to
take the test, respectively. For patients who have taken the test, that is, D11 = 1, we further generate the treatment
assignment D12 for them as D12 ∼ Multinomial(𝜋12,0, 𝜋12,1, 𝜋12,2) with 𝜋12,0 = 1∕(1 + exp(0.5X12 − 0.2X2) + exp(0.2X4 +
0.3X3)), 𝜋12,1 = exp(0.5X12 − 0.2X2)∕(1 + exp(0.5X12 − 0.2X2) + exp(0.2X4 + 0.3X3)) and 𝜋12,2 = exp(0.2X4 + 0.3X3)∕(1 +
exp(0.5X12 − 0.2X2) + exp(0.2X4 + 0.3X3)). Also, Y12 = I[D12 = gopt

12 (H12)](2X12 + 3X2)2 + (X1 + X3 ∗ 2 + X4) + Y11∕3 + 𝜖12
for equal suboptimal reward loss; and

Y12 = I[D12 = gopt
12 (H12)](2X12 + 3X2)2 + (X1 + X3 ∗ 2 + X4) + Y11∕3

+ 0.5I(D12 = 1)[I(gopt
12 (H12) = 1) − 1] + 1.2I(D12 = 2)[I(gopt

12 (H12) = 2) − 1] + 𝜖12

for unequal suboptimal reward loss with 𝜖12 ∼ N(0, 1). The tree-type optimal regime at step 2 is specified as

gopt
12 (H12) =

⎧⎪⎨⎪⎩
0 X12 > 0.2
1 X1 > −0.7,X12 ≤ 0.2
2 otherwise.

Stage 2: We generate the test decision of stage 2, D21 ∼ Bernoulli (𝜋21,1) with 𝜋21,1 = exp(0.5X1 − 0.6X2 + X3)∕(1 +
exp(0.5X1 − 0.6X2 + X3)). The reward of stage 2 step 1 is generated as Y21 = X2

5 + 2X1 + (X3 + 3.2)2I[gopt
21 (H21) = D21] −

3I(D21 = 1) + 𝜖21 with 𝜖21 ∼ N(0, 1). The optimal regime gopt
21 (H21) is specified as

gopt
21 (H21) =

⎧⎪⎨⎪⎩
I(X1 ≤ −0.3) + I(X1 > −0.3)I(X5 ≥ 1) for Scenario 1
I(X1 ≤ 0.4) + I(X1 > 0.4)I(X5 ≥ 1.2) for Scenario 2
I(X1 ≤ −0.8) + I(X1 > −0.8)I(X5 ≥ 1) for Scenario 3.
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T A B L E 1 Simulation results for the general test-and-treat case for the equal and unequal reward loss for suboptimal treatment
options: two intervention stages, three treatment options at each stage nested within the exam at each stage with 500 replications, and
n = 1000 or 2000

Suboptimal
Scenario
1 (1:1)

Scenario
2 (2:1)

Scenario
3 (1:2)

Reward opt% opt% opt%

n = 1000 (a) 90.1 (7.4) 86.1 (9.2) 91.9 (6.3)

Equal loss (b) 84.7 (7.5) 81.0 (7.9) 86.9 (6.4)

(c) 90.1 (7.6) 86.3 (9.3) 92.1 (6.4)

(a) 96.2 (3.8) 96.3 (4.0) 97.7 (2.0)

Unequal loss (b) 92.0 (6.1) 87.5 (12.5) 94.7 (4.1)

(c) 96.0 (4.1) 96.2 (4.4) 97.6 (2.2)

n = 2000 (a) 91.2 (7.5) 86.8 (9.3) 93.2 (6.4)

Equal loss (b) 85.8 (6.6) 81.9 (6.3) 88.2 (6.1)

(c) 91.1 (7.5) 86.9 (9.3) 93.2 (6.4)

(a) 96.9 (3.4) 97.7 (2.7) 98.2 (1.8)

Unequal loss (b) 96.6 (3.6) 93.8 (8.8) 97.7 (1.7)

(c) 96.9 (3.4) 97.7 (2.6) 98.1 (1.8)

Note: opt% shows the empirical mean and standard deviation (SD) of the percentage of subjects correctly classified to their underlying true optimal
treatments, estimated by the proposed method when (a) the conditional mean model and the propensity score model are both correctly specified, (b) the
conditional mean model is mis-specified and the propensity score model is correctly specified, and (c) the conditional mean model is correctly specified
and the propensity score model is mis-specified. Scenarios 1, 2, and 3 correspond to the cases when the true ratios of preference for having the exam vs not
having the exam among all patients are 1:1, 2:1, and 1:2.

Among the patients who have had the test, that is, D21 = 1 we generate their treatment assignment D22 for
the second step of stage 2. Specifically, we generate treatment D22 ∼ Multinomial(𝜋22,0, 𝜋22,1, 𝜋22,2) with 𝜋22,0 =
1∕(1 + exp(0.35X22 − X5) + exp(0.3X2 + 0.2X3)), 𝜋22,1 = exp(0.35X22 − X5)∕(1 + exp(0.35X22 − X5) + exp(0.3X2 + 0.2X3)),
and 𝜋22,2 = exp(0.3X2 + 0.2X3)∕(1 + exp(0.35X22 − X5) + exp(0.3X2 + 0.2X3)). The reward of stage 2 step 2 is generated as
Y22 = 3I[D22 = gopt

22 (H22)] + Y21 + (2 + X4X5 + X3) + 𝜖22 for equal suboptimal reward loss; and

Y22 = (3 + X22)I[D22 = gopt
22 (H22)] + Y21 + (2 + X4X5 + X3)

+ 2I(D22 = 1)[I(gopt
22 (H22) = 1) − 1] + I(D22 = 2)[I(gopt

22 (H22) = 2) − 1] + 𝜖22

for unequal suboptimal reward loss, and 𝜖22 ∼ N(0, 1). The optimal treatment regime for stage 2 gopt
22 (H22) is specified as

gopt
22 (H22) =

⎧⎪⎨⎪⎩
0 X22 > 0.5
1 X22 ≤ 0.5,X5 < 0.3
2 otherwise.

Table 1 summarizes the simulation study results across different scenarios as described above. Our SAT-Learning method
for estimating the optimal DTR involves a doubly robust semiparametric estimator, therefore our simulations also try to
demonstrate such robustness. In addition to having one estimation scheme with the conditional mean model and the
propensity score model both correctly specified, we consider two more schemes with either the propensity score model
or the conditional mean model mis-specified by omitting some of the covariates of the true form. We consider a sample
size of either 1000 or 2000 for the training dataset, and a sample size of 2000 for the validation, and repeat the simulation
500 times. The training dataset is used to estimate the optimal regime and then predict the optimal test-and-treat decision
in the validation dataset, where the underlying true optimal regimes are already known. The percentages of subjects
correctly classified to the optimal test-and-treatment decision in both stages combined is denoted as opt%. The average
opt% and the empirical standard deviation (SD) among the repetitions evaluate the performance.
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T A B L E 2 Simulation to mimic the monitoring and management of prostate cancer: two intervention
stages, two treatment options at each stage nested within the exam at each stage with 500 replications, and
n = 1000 or 2000.

5% 15% 20% 25%

Treatment rate opt% opt% opt% opt%

n = 1000 (a) 92.8 (4.9) 93.8 (4.8) 94.9 (4.5) 95.3 (4.6)

(b) 91.6 (2.1) 93.2 (1.9) 93.9 (1.5) 94.3 (1.4)

(c) 91.8 (5.6) 93.2 (5.8) 94.0 (5.9) 94.6 (5.5)

n = 2000 (a) 93.7 (4.7) 94.9 (4.6) 95.7 (4.4) 96.7 (3.7)

(b) 92.6 (1.9) 94.0 (1.4) 94.5 (1.2) 94.7 (1.1)

(c) 92.2 (6.5) 93.9 (6.6) 94.6 (6.5) 95.5 (6.1)

Note: opt% show the empirical mean and standard deviation (SD) of the percentage of subjects correctly classified to their
underlying true optimal treatments, estimated by the proposed method when (a) the conditional mean model and the
propensity score model are both correctly specified, (b) the conditional mean model is mis-specified and the propensity
score model is correctly specified, and (c) the conditional mean model is correctly specified and the propensity score model
is mis-specified. Different treatment rates correspond to different proportions of patients who switch from active
surveillance to curative treatment among those who have taken the biopsy test.

In Table 1, the results of equal suboptimal reward case demonstrate the loss due to suboptimal equally inferior com-
pared with the optimal choice. In scenario 1, where the subjects have an even preference of having test, under the sample
size n = 1000, 90.1% of the patients are correctly assigned to their optimal DTRs for both stages when both the condi-
tional mean model and the propensity score model are correctly specified. When either the conditional mean model or
the propensity score model is mis-specified, but not both, the overall performances are slightly worse, but still reasonably
satisfactory. More specifically, when either the propensity score model or the conditional mean model is incorrectly spec-
ified, we still get 90.1% and have 84.7% respectively. Similar trends are found in Scenarios 2 and 3, and results improve
as sample size goes to n = 2000. However, when the reward loss is unequal among suboptimal treatment options, the
optimal regimes stand out among the candidate treatments more obviously according to our data generating process;
therefore, it is easier for our proposed method SAT-Learning to distinguish the optimal treatment from suboptimal ones.
Thus, the simulation performance with varying suboptimal loss is better than when the suboptimal loss is equal, as
expected.

5.2 A special case when the treated patients no longer need further test or treatment

We conduct another simulation study for a special case when the treated patients no longer need test and treatment
again. This simulation better mimics the monitoring and management in active surveillance for prostate cancer. Because
of the significant side-effects of curative intervention and the asymptomatic nature of prostate cancer, according to
the American Society of Clinical Oncology, patients with low-risk prostate cancer can consider active surveillance22

Active surveillance involves monitoring prostate cancer by regular exam in its localized stage until further treatment
is needed to halt the disease at a curable stage. More specifically, the patients who have taken the biopsy test, only
a small proportion of them would switch from the active surveillance to curative intervention. In the active surveil-
lance, the patients who have been treated should be removed from the active surveillance cohort, because physicians
consider that they no longer need to be treated and additional treatment is not provided and they are not eligible for
the active surveillance. Therefore they should not be considered to evaluate the subsequent test or treatment deci-
sion. We generate data under a two-stage nested DTR with two treatment options at each stage. We also modify the
parameters in the data generating models to make the rates of taking the curative treatment equal to 5%, 15%, 20%,
and 25% in both stage. The higher the rate is, the more patients take the treatment and thus more patients will be
removed from the surveillance afterwards. The detailed information of data generation can be found in the supplementary
materials

The simulation results are summarized in Table 2. As the results show, because of the nice doubly robust property,
the percentages of subjects correctly classified to their underlying truth both yield satisfying results even when either the
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propensity score model or the conditional mean model is mis-specified, but not both. Considering sample size n = 1000
as an example, when 5% of tested patients have the curative treatment and then are removed from the active surveillance,
92.8% of them are correctly assigned to their optimal DTR for both stages when both the conditional mean model and
the propensity score model are correctly specified. We also have 91.8% and 91.6% of the patients correctly classified to
their optimal DTR when the propensity score model or the conditional mean model is mis-specified respectively. As the
treatment rate increases, we are able to estimate better optimal treatment rules from larger heterogeneous samples with
more information. Therefore, it is easier for our proposed SAT-Learning to estimate the optimal regime from this more
informative sample. Thus, the simulation performance with a higher treatment rate is slightly better than that for the
lower rate case.

6 APPLICATION TO PROSTATE CANCER ACTIVE SURVEILLANCE DATA

We illustrate SAT-Learning using the prostate cancer Active Surveillance dataset from Johns Hopkins University.22 In
this active surveillance study, enrollment of men with low-risk prostate cancer started in 1995 and ended in 2015. Eligible
subjects need to have PSA density less than 0.15 μg/L per mL, clinical stage T1c disease or lower, the Gleason score
between 2 and 6, at most two positive biopsy cores, and at most 50% tumor in any single core, all of which made them
low risk. The Johns Hopkins active surveillance protocol includes semiannual PSA and annual prostate biopsy. In the
protocol, the primary reason that patients would be recommended to undergo definitive curative radiation therapy or
surgery is if the biopsy result showed an adverse change compared with previous biopsies.

There is sufficient evidence that the approach of active surveillance, that is, delaying curative treatment, for low-risk
patients is safe.23 The issue we will be considering is how it should be implemented. That is, rather than having an annual
biopsy, as in the protocol, should it be more individualized, with the decision of whether to undergo a biopsy based on
the available data at that time for that patient.

Not all the patients in the study followed the protocol. In the dataset we analyzed, 22% of patients did not have
the scheduled biopsy of the first year and 5% of them did not have the biopsy in the first 2 years. Similarly for cura-
tive therapy, quite a number of patients did not follow the protocol.22 Such heterogeneity in the observed data allows
us to apply the nested DTR method via our proposed SAT-Learning to decide at each stage whether the patient should
have the biopsy, and if so, whether the treatment should be recommended based on the patients’ individualized char-
acteristics. In the analysis presented below we restrict the observational period to be from the diagnosis to year 4 and
we make a 2-year time unit for each stage, making two stages, stage 1 being from diagnosis to year 2 and stage 2 being
from year 2 to year 4. We use D with subscript value s = 1, 2 to denote the decisions of the two stages, and j = 1, 2 to
denote the biopsy and treatment actions within the stage. Thus, if the subject had a biopsy at the first stage, we denote
D11 = 1, otherwise, D11 = 0. For those with biopsy, that is, D11 = 1, the treatment choice is recorded as D12, 1 for treated
and 0 for no treatment, and similarly for D21 and D22. We note that once the patient is treated, no further biopsy or
treatment will be observed. After the data preprocessing, 863 patients are kept in the dataset for the analysis, and of
these 230 did receive curative treatment. More information regarding data preprocessing can be found in supplementary
materials.

Although patients, in reality, are subject to different categories of treatments, such as prostatectomy, radiation therapy
or hormone therapy, in this analysis, we combine all different kinds of treatments into one category (treated) to preserve
a sufficient sample size for the treated subjects. Other patient characteristics, including age, race, baseline biopsy results,
and baseline PSA were collected at the enrollment. As the active surveillance proceeded, the corresponding PSA changes
and the follow-up biopsy results were also collected. In particular, the quantity of cancer, as measured by biopsy results,
is based on both the number of needle cores containing cancer and the characteristic of the cancer tissue found within
each single core (Gleason score). How the individualized data was formatted to match the 2-year time interval for each
stage is described in the supplementary materials. The reward outcome of interest was chosen to reflect long-term disease
status, and is defined as the proportion of PSA values which are less than 5 out of all the PSA observations collected from
the end of year 4 after diagnosis to the end of study. This reward ranges from 0 to 1, with the lower values implying more
undesirable risk of prostate cancer progression. This reward outcome only considers the disease prognosis based on PSA,
and ignores the side effects brought by frequent biopsy and unnecessary intervention.24 In particular, the painful biopsy
procedure carries nonnegligible short- and long-term risk for patients, while the nontrivial probability of a false negative
biopsy also poses challenges to the medical community that advocates for it.25 Thus, after consulting with subject matter
experts, we include penalties to discount the patient’s reward and thus to take into account possible side effects. More
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F I G U R E 2 The estimated optimal DTR for JHU prostate cancer active surveillance data via SAT-Learning method. The trees show how
to provide optimal regime at every step based on the individualized characteristics for, A, stage one biopsy decision, B, stage one treatment
decision if biopsy was taken in stage one, C, stage two biopsy decision, and D, stage two treatment decision if the biopsy was taken in stage two

specifically, if the patient had a biopsy in either one of the two stages, their reward is reduced by a factor of 87% compared
with the original reward. For a patient who has ever had treatment, the reward is reduced by a factor of 80% compared
with their original reward.

To apply the proposed SAT-Learning algorithm to the active surveillance data described above, we use random forests
for the conditional mean model and a logistic regression model for the propensity score model of every step within each
stage. The estimated optimal test and treatment DTR of the two stages are shown in Figure 2. According to the estimated
optimal DTR, at the first stage, men older than 56 are recommended for a biopsy test. Among those who are younger
than 56 years old, the patients with most recent PSA higher than 3.6 are also recommended for a biopsy test. Among
those doing the biopsy test, patients with the most recent PSA higher than 3.1 and having biopsy test showing any cancer
are recommended for the treatment. At the second stage, the men whose PSA change from beginning of year 2 is larger
than 1.3 are recommended for the biopsy test. For those who take the biopsy, if their most recent PSA is higher than
3.2 or the biopsy result has more than one biopsy core needle showing cancer positive, we recommended the physician
to offer them the treatment. The standard practice in deciding on curative treatment depends primarily on whether the
Gleason grade on the biopsy is greater than or equal to 7. In contrast, the DTR we estimated involves more variables and
changes from one stage to the next, so is more individualized. It is also notable that the Gleason thresholds in the above
DTR are lower than in standard practice, which is consistent with a suggestion in the literature.26 The reward we use,
long run low PSA values, certainly does influence the estimated optimal DTR, which involves lots of decisions based on
the current PSA values. The estimated tree-based DTR presented in Figure 2 is also sensitive to the discount factor 87%
and 80% which are used to penalize the reward. Other rewards would have given different optimal DTRs. The reward
we use of long-run PSA values can be considered as a proxy for clinical meaningful “good” outcome. An ideal reward
would involve long-term good quality of life and absence of prostate cancer recurrence. But data to construct such a
reward is not available for this study. A sensitivity analysis with a modified reward is presented in the supplementary
materials. It is possible to estimate what the improvement in the reward would have been if the patients from our study
cohort had followed the optimal DTR. We calculate that if our study cohort had received the optimal DTR described
above, then more than 86% of the study cohort would have seen an increase in their reward. This was especially the case
among the patients who had no biopsy experience in the study, by assigning them the optimal regimes, almost everyone
will increase the reward according to our estimates. We also calculate that the expected number of patients who would
have received curative treatment if they had followed the estimated optimal DTR is 412, which is larger than the actual
number of 230, but this number is sensitive to the factor that is used to discount the reward when a patient receives
treatment.
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7 DISCUSSION

Motivated by the embedded nature of the diagnosis and treatment procedures, we have developed a nested DTR frame-
work, with the treatment decision nested within the test decision in a multistage setting, and implemented the estimation
of the optimal nested DTR using a step-adjusted tree-based reinforcement learning method (SAT-Learning). This nested
DTR framework considers the test decision and the nested treatment decision in the same stage and develops the optimal
nested DTRs to maximize the expected long-term rewards, such as disease control. This kind of test-and-treat strategy
has been considered previously in the health policy literature.27 These methods discussed the importance of the problem,
and the need to accumulate data. They also suggested solutions that focused on the population level, but not in a rigorous
mathematical framework. Our proposed method follows the framework of DTR, which enables physicians to repeatedly
tailor test and treatment decisions based on each individual’s time-varying health histories, and thus provides an effective
tool for the personalized management of disease over time.

SAT-Learning, our proposed method to solve the nested step-adjusted DTR problem, can potentially be imple-
mented via modifying other learning methods that have been considered in DTR literature. However, by using a
modified T-RL algorithm,17 SAT-Learning is more straightforward to implement, understand and interpret, and capa-
ble of handling various data without distributional assumptions. Additionally, the doubly robust AIPW estimator that
we utilize in the purity measure in the tree structure also helps improve the robustness of our method against model
mis-specifications.

Several developments and extensions can be explored in future studies. One possible exploration lies on dealing with
potentially contradictory multiple outcomes. In SAT-Learning, we consider a nested step-adjusted DTR to reduce the pain
and potential infections from frequent biopsy tests, but maintain an effective and in-time treatment to control disease
progression. If efficacy is the only purpose, one would expect more frequent tests and more aggressive treatment regardless
of possible side effect, but in the meantime, patients might experience more side effects. The desire for efficacy and the
desire for less side effects in fact contradict each other. In clinical practice, physicians are often interested in balancing
multiple competing clinical outcomes, such as overall survival, patient preference, quality of life, and financial burden.28

In order to balance these multiple potentially contradictory objectives, we applied a different discount factor to the patient
rewards for different side effects in the application to the JHU Prostate Cancer Active Surveillance data. Other statistical
methods have been developed to trade-off between multiple contradictory outcomes.8,29 One can further incorporate
these multiple objective optimization functions into our framework of nested DTR for future research. Another possible
exploration may be considering all available actions when the preference of multiple outcomes varies,30 which would give
more comprehensive information about how the optimality of an action would be changed if the preference is modified.
Sensitivity analyses can be done on the optimal regimes and would provide further guidance for the decision maker on
developing a more flexible regime among all the available intervention strategy choices.
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