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Dynamic treatment regimes (DTRs) include a sequence of treatment decision rules,
in which treatment is adapted over time in response to the changes in an individual’s
disease progression and health care history. In medical practice, nested test-and-treat
strategies are common to improve cost-effectiveness. For example, for patients at risk
of prostate cancer, only patients who have high prostate-specific antigen (PSA) need a
biopsy, which is costly and invasive, to confirm the diagnosis and help determine the
treatment if needed. A decision about treatment happens after the biopsy, and is thus
nested within the decision of whether to do the test. However, current existing statis-
tical methods are not able to accommodate such a naturally embedded property of the
treatment decision within the test decision. Therefore, we developed a new statisti-
cal learning method, Step-adjusted Tree-based Reinforcement Learning, to evaluate
DTRs within such a nested multi-stage dynamic decision framework using observa-
tional data. At each step within each stage, we combined the robust semi-parametric
estimation via Augmented Inverse ProbabilityWeighting with a tree-based reinforce-
ment learning method to deal with the counterfactual optimization. The simulation
studies demonstrated robust performance of the proposed methods under different
scenarios. We further applied our method to evaluate the necessity of prostate biopsy
and identify the optimal test-and-treat regimes for prostate cancer patients using data
from the Johns Hopkins University prostate cancer active surveillance dataset.
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1 INTRODUCTION

Dynamic treatment regimes (DTRs) have gained increasing interest in the field of precision medicine in the last decade.1 This

research direction generalizes the individualized medical decisions into a time-varying treatment setting, usually at discrete

stages, and thus accommodates the updated information for each person at each stage.2,3 In DTR, actions or decisions based

on the individualized features are able to lead to more precise disease prevention and better disease management. However, the

current DTR framework is limited when the action of one treatment is nested within the action of another. A more intuitive

example that explains the limitation in practice is a test-and-treat scenario: the treatment action only happens after the happening

of a diagnostic test action, which means that the treatment action cannot happen when the diagnostic test result is not available.

In particular, in medical practice, the procedures to diagnose and treat patients are much more complicated. Most diagnosis

procedures or tests, e.g., positron emission tomography, or a biopsy test, occur prior to the selection of treatment to provide more

information about disease status, then this information would be used to select treatment. Typically, only patients who have taken

the test can be treated, and thus the decision about the treatment assignment is nested within the decision of performing the test.

For example, men with early stage asymptomatic prostate cancer who are in an active surveillance program, would regularly

have their prostate-specific antigen (PSA) and prostate tissue measured via a blood test and core needle biopsy test respectively.4

Whether to undergo definitive treatment for their prostate cancer would be strongly influenced by the results from their biopsy

test. So the possible treatment initiation only happens after having the biopsy test result, and is thus nested within the decision

of doing a biopsy or not. Such a nested dynamic clinical decision-making is not limited to prostate cancer. The occult blood

test, also known as a stool test, can also be used as a cheap and easy initial screening test for colorectal cancer.5 Patients with

abnormal finding from the stool test are then referred for a colonoscopy exam, which is costly and invasive, to confirm the

diagnosis and decide if more definitive treatment for colorectal cancer is needed. In this scenario the decision of whether to do

definitive treatment is nested in the decision of whether to do a colonoscopy which is nested within the decision to do a stool

test or not. This kind of nested clinical decision also happens with many other chronic diseases.6

In such nested test-and-treat scenarios, the impact of the test should also be considered. For some diseases, the tests used to

confirm the diagnosis or decide on the next step are easy to administer and minimally invasive, e.g., blood test and physical

examination. But some other tests done for confirmatory purposes are expensive and invasive, including the prostate biopsy

and colonoscopy. The potential side effects include pain, soreness, and infections, which should not be overlooked. For prostate

cancer, even if the test result suggests progressive disease, it is not always the case that the patient should undergo definitive

treatment, which has substantial comorbidity, since prostate cancer is a slow growing disease and a substantial number of

men may not develop deadly prostate cancer before dying from some other cause. It is well known that there is overtreatment

for prostate cancer, and that a substantial number of men receive unnecessary cancer treatments.4 Therefore, careful patient
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FIGURE 1 Hypothetical step-adjusted DTR with a treatment step nested within the test step of each intervention stage. The
decision of the test step is made based on the health history and the treatment decision is made on the basis of previous health
history and the updated history after the test.

selection for testing is needed to not only reduce the impact on the patient, but also to save medical resources for the patients who

truly need them. The current one-fits-all active surveillance protocol is not capable of taking the patient’s personalized medical

characteristics into account and then giving an individualized disease management plan.

As mentioned above, most existing frameworks using the standard formulation for evaluating DTRs overlook or simplify7,8,9

such a test-and-treat nested structure during the clinical decision making process. The diagnostic test itself dose not have a direct

impact on the disease related outcome, but the potential treatment following the test may improve the disease outcome for the

patient substantially. On the other hand, the patient without a diagnostic test at all will not have the health benefit gained from

the treatment step. Instead of simply understanding the test and treat as two sequential actions, we distinguish them to emphasize

their nested relationship. Overlooking such a test-and-treat nested structure may result in identifying imprecise and non-realistic

decision rules especially by applying backward induction. Although the information of previous test and treat history may have

been adequately captured, when the general formulation is applied in the treatment step, patients who did not have the test are

also included into the decision-making of the treatment steps. The method that applies the standard formulation could inevitably

provide an optimal treatment strategy for a patient even without a test. Such a resulting treatment strategy is not compatible with

their observed data. Therefore, we propose a new nested dynamic treatment regime (nested-DTR) framework by embedding the

treatment step within the test step of each intervention stage as shown in Figure 1. This proposed framework specifically demon-

strates how to modify the standard method in the implementation steps to incorporate the nested relationships, implement the

restricted optimization, and guarantee the estimation results are compatible with the needs raised from the biomedical problems

themselves.

In general, DTRs can be estimated from observational data, provided there is enough heterogeneity in the patient features

and their actions taken. Similarly the optimal DTR for this new nested-DTR framework can be learned from observational data

provided there is enough heterogeneity in data for both the decision to test and the decision to treat.
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In addition to extensive work on value of information methods in operations engineering and computer science within the

framework of health policy-making10,11, a great number of statistical methods have been developed to estimate the optimal

DTRs using observational data, such as Marginal Structural Model estimated with inverse probability weighting12, the Marginal

MeanModel13 and other likelihood-basedmethods.14 Thesemethods require a parametric or semi-parametric conditional model

for the counterfactual outcome as a component and thus are vulnerable to model mis-specification, especially when the data

are high dimensional or time-dependent information is accumulated. More recently, machine learning-based approaches, as a

replacement for parametric or semi-parametric models, have become increasingly popular because of their flexibility in model

assumptions and their robustness.8,15 When identifying the optimal DTRs with multiple stages, the problem resembles the

reinforcement learning (RL) problem.16 Therefore, RL methods are currently broadly applied in evaluating the optimal DTRs.

Some of this work, which involving reinforcement learning, has focused on developing easily interpretable DTRs for real-world

practice.17,18,19

To the best of our knowledge, however, none of the existing methods can be applied directly to estimate the optimal DTRs

when each stage consists of a treatment step nested within a test step. In this paper, we are trying to fill this gap and develop a

new non-parametric statistical learning method for identifying the optimal DTR within the nested dynamic decision framework.

At each step within each stage, we combine the robust semi-parametric estimator obtained using Augmented Inverse Probability

Weighting (AIPW) with a modified tree-based reinforcement learning method to optimize the expected counterfactual outcome.

The incorporation of the AIPW estimator facilitates the robustness of the estimated optimal dynamic treatment regime while

the tree-based reinforcement learning method is able to provide an interpretable optimal strategy. The remainder of this paper

is organized as follows: In Section 2 and 3, we formalize the problem of identifying the optimal DTR within the nested DTR

framework in a multiple-stage multiple-step setting from observational data and develop the nested step-adjusted tree-based

reinforcement learning method (SAT-Learning). Section 4 presents the detailed implementation of this new method. Numerical

simulation studies and an application to the Johns Hopkins University (JHU) prostate cancer active surveillance data are provided

in Sections 5 and 6. We conclude with a brief discussion in Section 7.

2 MULTIPLE-STAGE NESTED STEP-ADJUSTED DYNAMIC TREATMENT REGIMES

To address the nested decision problem above, we consider a nested multi-stage multi-step decision framework with S decision

stages. In clinical practice, every regular clinic visit, which might initiate some form of treatment, can be considered as a stage.

Within each stage s, there are J action steps. Let Ksj denote the number of decision options at step j of stage s (Ksj ≥ 2), let

Dsj denote the multiple treatment indicators of the action taken at step j of stage s in the observed data, and the value of Dsj is

dsj ∈ sj . Without loss of generality, we consider two steps within each stage, i.e., J = 2, to make the presentation easier. We
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assume the first step of stage s is the test step (action Ds1) and Ds2 in the treatment step is nested within the decision of Ds1.

For example, only the prostate cancer patients who have had the biopsy test are considered for further treatment. We denote the

patient’s history prior to action Dsj but after the previous step as Xsj . We will use overbar with subscripts s and j to denote a

vector of a variables’s history up to the step j of stage s. For example,Xs2 = (X11, X12, X21,… , Xs1, Xs2). Similarly, the action

history up to the treatment step of stage s can be denoted as Ds2 = (D11, D12, D21,… , Ds1).

We use Ysj to denote the intermediate reward outcome at the end of step j of the stage s, and thus the overall rewards vector is

(Y11, Y12,… YS2) . The outcome of interest Y is a function of all rewards, i.e., Y = f (Y11, Y12, Y21,… YS2), where f (⋅) is a pre-

specified function (e.g., sum). We also assume that Y is bounded and high values of Y are desirable. The observed data before

stage s step j (1 ≤ s ≤ S, 1 ≤ j ≤ 2) are

{X11, D11, Y11, X12,… , Ds−1,2, Ys−1,2, Xs1}ni=1 ≡ {Xs1, Ds−1,2, Y s−1,2}ni=1

for step 1 , and

{X11, D11, Y11, X12,… , Xs1, Ds1, Ys1, Xs2}ni=1 ≡ {Xs2, Ds1, Y s1}ni=1

for step 2. For brevity, we suppress the subject index i in the following text when no confusion exists. The observed data are

assumed to be independent and identically distributed for n subject from the population of interest. The history Hsj is defined

as the test results and action history prior to the action assignment Dsj . To be more specific, Hs1 = (Ds−1,2, Xs1, Y s−1,2) and

Hs2 = (Ds1, Xs2, Y s1). To illustrate the method, we also specify two action options in the test step and three options in the

treatment step of every stage, i.e., ds1 ∈ s1 = {0, 1}, Ks1 = 2, and ds2 ∈ s2 = {0, 1, 2}, Ks2 = 3. When a patient has

dsj = 0, i.e. no treatment or test is given, they will still be kept in the study cohort but not given further treatment until the next

stage s + 1. Thus, the reward is Ysj = 0 when dsj = 0. A slight modification of this occurs in our illustrative example using

the JHU Active Surveillance (AS) dataset. In AS, if a patient receives treatment in some treatment step, i.e., ds2 = 1 or 2, they

no longer needs further tests or treatments, thus would be removed from the study from that time onwards. However, as long as

their reward Y is available, their data from already observed steps would still be used in the estimation method by specifying

ds′1 = 0 and ds′2 = 0, where s′ > s.

With a treatment step nested after every test step within a stage, the nested DTR is defined as a personalized test-and-treatment

rule sequence. The rule is based on the observed history Hsj about the patient’s health status up to the action in step j of stage

s. Let g denote the above nested DTR. Formally, g = (g11, g12,… , gS2) is defined by a collection of mapping functions, where

gsj is mapped from the domain of history Hsj to the domain of Dsj , i.e.,

Hsj → gsj(Hsj) ∈ sj , 1 ≤ s < S, 1 ≤ j ≤ 2
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3 STEP-ADJUSTED OPTIMIZATION FOR NESTED DTR

Let Y ∗(g) be the counterfactual outcome if all patients follow g to assign treatment or test conditional on previous history. The

performance of g is measured by the counterfactual mean outcome E{Y ∗(g)} conditional on the patients’ history. We denote

the optimal regime as gopt. Our goal of identifying the optimal regime is to find the gopt which satisfies

E{Y ∗(gopt)} ≥ E{Y ∗(g)}

for all g ∈ , where  is the set of all potential regimes.

3.1 Optimization of gS2 and gS1 for the last stage S

The approach to finding optimal DTR includes backward induction13, therefore we illustrate the mathematical formulation from

the last stage S. For the last step of the stage, let Y ∗S2(dS2) be the counterfactual outcome if a patient makes treatment decision

dS2 conditional on previous history. We denote the optimal regime as goptS2 , which satisfies E{Y ∗S2(g
opt
S2 )} ≥ E{Y ∗S2(gS2)} for all

gS2 ∈ S2, where S2 is the set of all potential regimes at stage S and step 2.

To connect the counterfactual outcome with observed data {XS2, DS2, Y S2}, we make the following standard casual inference

assumptions2:

1. Consistency. The observed outcome coincides with the counterfactual outcome under the treatment a patient is actually

given, i.e.,

YS2 =
∑

dS2∈S2

Y ∗S2(dS2)I{gS2(HS2) = dS2}I{dS1 = 1},

where I(⋅) is the indicator function that takes the value 1 if ⋅ is true and 0 otherwise. The indicator function I(dS1 = 1)

implies only the subjects who decided to take the previous test, i.e., dS1 = 1, can have their YS2 observed.

2. No unmeasured confounding. The observed action DS2 is independent of potential counterfactual outcomes conditional

on the history HS2, i.e.,

DS2 ⟂ {Y ∗S2(0), Y
∗
S2(1), Y

∗
S2(2)} ∣ HS2,

where ⟂ denotes statistical independence. This assumption implies that the potential confounders are fully observed and

included in the dataset.

3. Positivity. For the observational data, the propensity score �dS2(HS2), the probability of receiving a certain treatment

conditional on history, is bounded away from 0 and 1, i.e., �dS2(HS2) = Pr(DS2 = dS2 ∣ HS2) ∈ [c1, c2], where

0 < c1 < c2 < 1.

For the subjects who do not have the test in the previous step, i.e., dS1 = 0, their test result that the further treatment decision is

based on cannot be observed. Therefore, only the subjects with dS1 = 1 is able to contribute to the optimization of gS2. Under
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the three assumptions, the optimization problem for the treatment of the last stage becomes

goptS2 (HS2) = arg max
gS2∈S2

EHS2

(

∑

dS2∈S2

E(YS2 ∣ DS2 = dS2,HS2)

I[gS2(HS2) = dS2]I(dS1 = 1)
)

,

(1)

where EHS2
(.) denotes the expectation with respect to the marginal joint distribution of the observed history HS2. To derive the

optimal goptS1 for whether to take the test, i.e., one step before the treatment step within the same stage S, we utilize the backwards

induction.2 In addition to the counterfactual outcome of stage s step j Y ∗sj defined in the last section, we also define a nested

step-adjusted future optimized counterfactual outcome Ỹ ∗S1. More specifically, we have Ỹ ∗S1 = {Y
∗(DS−1,2, gS1, g

opt
S2 )}, where the

treatment for stage S step 2 has been optimized. To determine the optimal goptS1 , we propose to maximize the expected nested step-

adjusted future optimized counterfactual outcome Ỹ ∗S1, i.e., g
opt
S1 = argmaxgS1∈S1 EHS1

[{Y ∗(DS−1,2, gS1, g
opt
S2 )}]. Similarly, we

assume No Unmeasured Confounding, DS1 ⟂ {Ỹ ∗S1(0), Ỹ
∗
S1(1)} ∣ Hs1 , if dS1 = 1, and DS1 ⟂ {Y ∗S1(0), Y

∗
S1(1)} ∣ Hs1 , if dS1 =

0; Positivity �dS1(HS1) = Pr(DS1 = dS1 ∣ Hsj) ∈ [c1, c2], where 0 < c1 < c2 < 1; and then the optimization problem of stage

S step 1 can be written as

goptS1 = arg max
gS1∈S1

EHS1

[
∑

dS1∈S1

{

E[Ỹ ∗S1 ∣ DS1 = dS1,HS1]I(dS1 = 1)

+ E[Y ∗S1 ∣ DS1 = dS1,HS1]I(dS1 = 0)
}

I{gS1(HS1) = dS1}
]

.

(2)

Different from (1), the optimization process (2) of goptS1 is conducted within all eligible subjects, while the optimization of goptS2

is conducted only within the patients who have the test at the previous step. Although the whole cohort contributes to the

optimization step in (2), Ỹ ∗S1 or Y
∗
S1 used in (2) actually depends on the test decision, i.e., dS1. The subjects who had the test,

i.e., dS1 = 1, essentially have one more chance to optimize their rewards through stage S step 2 compared to those without test,

and this chance is nested within the positive exam decision within the same stage.

3.2 Optimization of gs2 and gs1 for any previous stage before S

For the steps of stage s before the last stage (1 ≤ s < S), the optimal regime gopts1 and gopts2 is expressed via backward induc-

tion as well. Ỹ ∗sj is defined as the nested step-adjusted future optimized counterfactual reward, which is given that all future

stages’ and steps’ actions are already optimized. More specifically, we have Ỹ ∗s1(gs1) = {Y ∗(Ds−1,2, gs1, g
opt
s2 ,… , goptS2 )} and

Ỹ ∗s2(gs2) = {Y
∗(Ds1, gs2, g

opt
s+1,1,… , goptS2 )}. Similar to the assumptions for the last stage, we assumeNoUnmeasured Confounding

and Positivity. Under these assumptions, the optimization problems at stage s step j can be written as

gopts1 = arg maxgs1∈s1
EHs1

[
∑

ds1∈s1

E[Ỹ ∗s1 ∣ Ds1 = ds1,Hs1]I{gs1(Hs1) = ds1}
]

(3)
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and

gopts2 = arg maxgs2∈s2
EHs2

[
∑

ds2∈s2

E[Ỹ ∗s2 ∣ Ds2 = ds2,Hs2]I{gs2(Hs2) = ds2}I(ds1 = 1)
]

. (4)

4 STEP-ADJUSTED TREE-BASED REINFORCEMENT LEARNING AND ITS

IMPLEMENTATIONS

Given the observational data with test-and-treat nested decision structure, we propose to solve (1), (2), (3), and (4) through the

step-adjusted tree-based learning (SAT-Learning) method. In this method, the step-adjusted future optimized pseudo-outcome

is iteratively inducted backwards. We further assume, for stages and steps before the last step, i.e., for any s < S, j = 1 or 2,

the effect of intermediate outcome reward Ysj will be cumulatively carried forward to the final outcome20, and denote a nested

step-adjusted future optimized pseudo-outcome of stage s step j as POsj . Let �̂sj,dsj (Hsj) = Ê[POsj ∣ Dsj = dsj ,Hsj] be the

estimated mean pseudo-outcome of stage s step j. Because of the cumulative property of the reward outcome and the nested

connection between the test step and the treatment step, for any s < S, j = 1 or 2, POsj can be expressed in a recursive

form as POs1 = Ys1 +
∑S
r=s �r2,goptr2

(Hr2) × I(dr1 = 1) +
∑S
r=s+1 �r1,goptr1

(Hr1) and POs2 = Ys1 +
∑S
r=s+1[�r2,goptr2

(Hr2) × I(dr1 =

1) + �r1,goptr1
(Hr1)]. Obviously, when evaluating the pseudo-outcome in last stage, we have POS2 = YS2 for the second step and

POS1 = Ys1 + �S1,goptS1
(HS1) × I(dS1 = 1) for the first step.

To reduce the accumulated bias from the conditional mean models, instead of using the model-based values under optimal

future treatments �̂sj,dsj (Hsj) = Ê[POsj ∣ Dsj = dsj ,Hsj] from POsj , we use the actual observed intermediate outcomes plus

the expected future loss (or gain) due to the sub-optimal treatments as the modified pseudo-outcome PO′sj .
20 Specifically, the

modified pseudo-outcome of the last stage is PO′S2 = YS2, PO
′
S1 = YS1+�S2,goptS2

(HS2)−�S2,DS2
(HS2)+YS2 and for any s < S,

j = 1 or 2,

PO′sj =
S
∑

r=s+1

[

�r1,goptr1
(Hr1) − �r1,Dr1

(Hr1) + Yr1 + I[dr1 = 1][�r2,goptr2
(Hr2) − �r2,Dr2

(Hr2) + Yr2]
]

+ Ysj + I[j = 1]I[dsj = 1]
[

�s2,gopts2
(Hs2) − �s2,Ds2

(Hs2) + Ys2
]

(5)

In particular, if the subject undergoes the test at stage s, i.e., ds1 = 1, they might benefit from the potential subsequent treatment

within that stage via the optimization of the future treatment step. If the subject does not receive the test at stage s, then their

future optimized counterfactual outcome can only be optimized through the optimal actions of the future stages.

We propose to implement SAT-Learning through a modified version of a tree-based reinforcement learning method (T-RL)17,

which employs the classification and regression tree (CART).21 In the nested DTR setting, we need to include the step-wise

adjustment to account for the nested test-and-treat nature. Thus, we developed a modified tree-based algorithm to implement

SAT-Learning for estimating the optimal nested DTR. Traditionally, the decision tree of CART is built to choose a split that
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would have the purest child nodes. The purest node means having the lowest misclassification rate among all possible nodes.

Thus, purity is a crucial measure to grow a decision tree. Different from CART, SAT-Learning at each node selects the split to

improve the counterfactual mean reward, which can serve as a measure of purity in nested DTR trees, and then maximizes the

population’s counterfactual mean reward of interest. Similarly as in T-RL, to estimate the optimal DTR, we use a purity measure

for SAT-Learning based on the augmented inverse probability weighting (AIPW) estimator of the counterfactual mean outcome.

In the process of partitioning of this tree-based reinforcement learning method, for a given partition ! and !c of node Ω, let

gsj,!,d1,d2 denote the decision rule that assigns a single test/treatment action d1 to all subjects in ! and treatment d2 to subjects

in !c at stage s step j (1 ≤ s ≤ S, j = 1, 2). Then the purity measure can be defined as

sj(Ω, !) = max
d1,d2∈sj

ℙn
[

Ksj
∑

dsj=1
�̂AIPWsj,dsj

(Hsj)I{gsj,!,d1,d2(Hsj) = dsj}I(Hsj ∈ Ω)
]

, (6)

where ℙn is the empirical expectation operator and ℙn{�̂AIPWsj,dsj
(Hsj)} is the AIPW estimator of the counterfactual mean outcome

with

�̂AIPWsj,dsj
(Hsj) =

I(Dsj = dsj)
�̂sj,dsj (Hsj)

Ysj +

{

1 −
I(Dsj = dsj)
�̂sj,dsj (Hsj)

}

�̂sj,dsj (Hsj). (7)

In (7), the propensity score model is denoted as �sj,dsj (Hsj) and the conditional mean model is denoted as �sj,dsj (Hsj). Under the

foregoing three causal inference assumptions, ℙn{�̂AIPWsj,dsj
(Hsj)} is a consistent estimator of the counterfactual mean outcome

E{Y ∗(dsj)} if either the propensity score model �sj,dsj (Hsj) or the conditional mean model �sj,dsj (Hsj) is correctly specified.

Thus this AIPW estimator is doubly robust for estimating the counterfactual mean outcome of the population.18

In our nested step-adjusted multi-stage setting, for the last step of the last stage, S2 , we have YS2 in (7) as the observed reward

of the last step of the last stage. For other stage s step j before the last one (1 ≤ s < S, j = 1, 2 ors = S , j = 1), Ysj in (7) is

replaced with P̂O
′
sj , the corresponding pseudo-outcome defined in (5).

In the process of maximizing sj(Ω, !), the possible split ! of a given node Ω should be either a subset of a categorical

covariate categories or values that are not larger than the threshold. The best criteria !̂opt to split a given node is a partition

that is able to maximize the improvement in the purity, sj(Ω, !) − sj(Ω), where sj(Ω) is for the situation where we assign

the same single test/treatment action to all subject in Ω, i.e., no splitting. To control the overfitting and also make practical and

meaningful splits, a positive integer n0 is specified as the minimal node size and a positive constant � is also provided as a

threshold for the meaningful improvement. Besides the two given constant values � and n0, we apply similar Stopping Rules as

in17 to grow and split the tree. Our Stopping Rules can be found in the Supplementary materials as Algorithm 1. The depth of

a node mentioned in the stopping rules is defined as the number of edges from the node to the tree’s root node, and a root node

has a depth of 0. The nested SAT-Learning algorithm given the above purity measures and stopping rules of the partitioning is

presented in Algorithm 2 with details. (Also provided in the Supplementary materials). Note the essential difference between
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steps j=2 and j=1 is that different subjects are included into the calculation of the AIPW estimator. Only the subjects who have

taken the test at stage s, i.e., ds1 = 1, contribute to the optimization of their subsequent treatments.

When implementing SAT-Learning process, the propensity score �̂sj,dsj (Hsj) in (7) can be estimated by a multinomial logistic

regression model. This working model could incorporate linear main effect terms from history Hsj and summary variables or

interaction terms based on prior scientific knowledge from individual history Hsj . For continuous outcome, the conditional

mean estimates �̂sj,dsj (Hsj) in (7) could be obtained either from a linear parametric regression model or from other off-the-shelf

non-parametric machine learning methods, such as random forests or support vector regression, depending on the history Hsj

and the test/treatment actionDsj . For estimating the conditional mean model for binary or other count outcomes, one could use

a generalized linear models or other generalized classification tools in machine learning.

5 SIMULATION STUDIES

5.1 Simulation Studies to Evaluate the General Test-and-treat Nested DTR

We generate simulation study data that mimic the real-world observational test-and-treat study. We assume a two-stage two-step

nested dynamic treatment regime, usingDsj with subscript value s = 1, 2 to represent the stage and j = 1, 2 to represent the test

and treatment action within each stage. More specifically, we set two options in the test step as ds1 = 1 or 0 to indicate receiving

the test or not, and three treatment options in the treatment step as ds2 = 0, 1 or 2. We further define the outcome of interest as

the sum of intermediate rewards from each stage and step, i.e., Y = Y11 + Y12 + Y21 + Y22. The underlying optimal treatment is

supposed to have the largest expected reward. The other two sub-optimal treatments have lower expected rewards. We further

consider two cases. One is that the expected reward from the two sub-optimal treatments are equal while in the other case, the

expected reward of the two sub-optimal treatments are different. Therefore, in the second case, the sub-optimal reward losses

are different because patients may lose more treatment benefit due to choosing one sub-optimal treatment compared to another.

When the test step initiating each intervention step is not expensive or invasive, more patients tend to choose such a test

because they might benefit from knowing the test result for the long term disease control purpose. However, when the lab test

is unpleasant and costly, such as a prostate biopsy test, the patients would hesitate to take it. Therefore, when generating data

we consider three scenarios based on the patients’ willingness to receive the exam by modifying the parameters to set the ratio

of having or not having the test as 1:1, 2:1, and 1:2, which correspond to the equal preference, more likely and less likely to

take the exam, respectively. This preference ratio, instead of reflecting the willingness of being tested for each individual, is

more like a factor that describes the nature of the test, such as the cost, invasiveness and other side effects. For these three

scenarios, three covariates,X1 toX3, generated as the baseline covariates followN(0, 1). Two correlated covariates,X4 andX5,

are generated as time-varying biomarkers which are measured just before the decision time of the test step within each stage.
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(X4, X5)
′ ∼ N(�,Σ), where � = (0, 0)′ and Σ =

⎛

⎜

⎜

⎜

⎝

1 0.1

0.1 1

⎞

⎟

⎟

⎟

⎠

. After the test step of each stage, the covariates X12 and X22 mimic

the test results that contribute to the treatment decision nested within each test decision with other covariates. Typically, the test

results, such as biopsy results, are of great importance to the treatment decision making. X12 and X22 follow the distribution of

N(0, 1). Details of parameter setting are as follows:

Stage 1:The test decision variables,D11 ∼ Bernoulli(�11,1)with �11,1 = exp(0.6X3−0.2X2+X4)∕(1+exp(0.6X3−0.2X2+X4)).

The reward of step 1 of stage 1 is generated as Y11 = X2
4 + (0.5X3 + 3)2 × I[g

opt
11 (H11) = D11] − 3|X1| × I(D11 = 1) + �11 with

optimal regimes defined as

gopt11 (H11) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

I(X1 > −0.5)I(X4 ≤ 0.3) for Scenario 1

I(X1 > −0.8)I(X4 ≤ 1) for Scenario 2

I(X1 > 0.3)I(X4 ≤ 1.3) for Scenario 3,

and �11 ∼ N(0, 1). The Scenarios 1, 2, and 3 corresponds to patients’ equal preference, more likely, and less likely to take

the test, respectively. For patients who have taken the test, i.e., D11 = 1, we further generate the treatment assignment D12

for them as D12 ∼ Multinomial(�12,0, �12,1, �12,2) with �12,0 = 1∕(1 + exp(0.5X12 − 0.2X2) + exp(0.2X4 + 0.3X3)), �12,1 =

exp(0.5X12 − 0.2X2)∕(1 + exp(0.5X12 − 0.2X2) + exp(0.2X4 + 0.3X3)) and �12,2 = exp(0.2X4 + 0.3X3)∕(1 + exp(0.5X12 −

0.2X2) + exp(0.2X4 + 0.3X3)). Also, Y12 = I[D12 = g
opt
12 (H12)](2X12 + 3X2)2 + (X1 +X3 ∗ 2 +X4) + Y11∕3 + �12 for equal

sub-optimal reward loss; and

Y12 =I[D12 = g
opt
12 (H12)](2X12 + 3X2)2 + (X1 +X3 ∗ 2 +X4) + Y11∕3

+ 0.5I(D12 = 1)[I(g
opt
12 (H12) = 1) − 1] + 1.2I(D12 = 2)[I(g

opt
12 (H12) = 2) − 1] + �12

for unequal sub-optimal reward loss with �12 ∼ N(0, 1). The tree-type optimal regime at step 2 is specified as

gopt12 (H12) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 X12 > 0.2

1 X1 > −0.7, X12 ≤ 0.2

2 otherwise.

Stage 2:Wegenerate the test decision of stage 2,D21 ∼ Bernoulli (�21,1)with �21,1 = exp(0.5X1−0.6X2+X3)∕(1+exp(0.5X1−

0.6X2+X3)). The reward of stage 2 step 1 is generated as Y21 = X2
5 +2X1+(X3+3.2)2I[g

opt
21 (H21) = D21]−3I(D21 = 1)+ �21
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with �21 ∼ N(0, 1). The optimal regime gopt21 (H21) is specified as

gopt21 (H21) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

I(X1 ≤ −0.3) + I(X1 > −0.3)I(X5 ≥ 1) for Scenario 1

I(X1 ≤ 0.4) + I(X1 > 0.4)I(X5 ≥ 1.2) for Scenario 2

I(X1 ≤ −0.8) + I(X1 > −0.8)I(X5 ≥ 1) for Scenario 3.

Among the patients who have had the test, i.e., D21 = 1 we generate their treatment assignment D22 for the second step of

stage 2. Specifically, we generate treatment D22 ∼ Multinomial(�22,0, �22,1, �22,2) with �22,0 = 1∕(1 + exp(0.35X22 − X5) +

exp(0.3X2 + 0.2X3)), �22,1 = exp(0.35X22 − X5)∕(1 + exp(0.35X22 − X5) + exp(0.3X2 + 0.2X3)), and �22,2 = exp(0.3X2 +

0.2X3)∕(1+exp(0.35X22−X5)+exp(0.3X2+0.2X3)). The reward of stage 2 step 2 is generated as Y22 = 3I[D22 = g
opt
22 (H22)]+

Y21 + (2 +X4X5 +X3) + �22 for equal sub-optimal reward loss; and

Y22 =(3 +X22)I[D22 = g
opt
22 (H22)] + Y21 + (2 +X4X5 +X3)

+ 2I(D22 = 1)[I(g
opt
22 (H22) = 1) − 1] + I(D22 = 2)[I(g

opt
22 (H22) = 2) − 1] + �22

for unequal sub-optimal reward loss, and �22 ∼ N(0, 1). The optimal treatment regime for stage 2 gopt22 (H22) is specified as

gopt22 (H22) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 X22 > 0.5

1 X22 ≤ 0.5, X5 < 0.3

2 otherwise.

Table 1 summarizes the simulation study results across different scenarios as described above. Our SAT-Learning method for

estimating the optimal DTR involves a doubly robust semi-parametric estimator, therefore our simulations also try to demonstrate

such robustness. In addition to having one estimation scheme with the conditional mean model and the propensity score model

both correctly specified, we consider two more schemes with either the propensity score model or the conditional mean model

mis-specified by omitting some of the covariates of the true form. We consider a sample size of either 1000 or 2000 for the

training dataset, and a sample size of 2000 for the validation, and repeat the simulation 500 times. The training dataset is

used to estimate the optimal regime and then predict the optimal test-and-treat decision in the validation dataset, where the

underlying true optimal regimes are already known. The percentages of subjects correctly classified to the optimal test-and-

treatment decision in both stages combined is denoted as opt%. The average opt% and the empirical standard deviation (SD)

among the repetitions evaluate the performance.

In Table 1, the results of equal sub-optimal reward case demonstrate the loss due to sub-optimal equally inferior compared

to the optimal choice. In scenario 1, where the subjects have an even preference of having test, under the sample size n=1000,

90.1% of the patients are correctly assigned to their optimal DTRs for both stages when both the conditional mean model and
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TABLE 1 Simulation results for the general test-and-treat case for the equal and unequal reward loss for sub-optimal treatment
options: two intervention stages, three treatment options at each stage nested within the exam at each stage with 500 replications,
and n=1000 or 2000. opt% show the empirical mean and standard deviation (SD) of the percentage of subjects correctly classified
to their underlying true optimal treatments, estimated by the proposed method when (a) the conditional mean model and the
propensity score model are both correctly specified, (b) the conditional mean model is mis-specified and the propensity score
model is correctly specified, and (c) the conditional mean model is correctly specified and the propensity score model is mis-
specified. Scenarios 1,2 and 3, correspond to the cases when the true ratios of preference for having the exam v.s. not having the
exam among all patients are 1:1, 2:1 and 1:2.

Sub-optiomal Scenario 1 (1:1) Scenario 2 (2:1) Scenario 3 (1:2)
Reward opt% opt% opt%

N=1000

(a) 90.1(7.4) 86.1(9.2) 91.9(6.3)
Equal Loss (b) 84.7(7.5) 81.0(7.9) 86.9(6.4)

(c) 90.1(7.6) 86.3(9.3) 92.1(6.4)
(a) 96.2(3.8) 96.3(4.0) 97.7(2.0)

Unequal Loss (b) 92.0(6.1) 87.5(12.5) 94.7(4.1)
(c) 96.0(4.1) 96.2(4.4) 97.6(2.2)

N=2000

(a) 91.2(7.5) 86.8(9.3) 93.2(6.4)
Equal Loss (b) 85.8(6.6) 81.9(6.3) 88.2(6.1)

(c) 91.1(7.5) 86.9(9.3) 93.2(6.4)
(a) 96.9(3.4) 97.7(2.7) 98.2(1.8)

Unequal Loss (b) 96.6(3.6) 93.8(8.8) 97.7(1.7)
(c) 96.9(3.4) 97.7(2.6) 98.1(1.8)

the propensity score model are correctly specified. When either the conditional mean model or the propensity score model is

mis-specified, but not both, the overall performances are slightly worse, but still reasonably satisfactory. More specifically, when

either the propensity score model or the conditional mean model is incorrectly specified, we still get 90.1% and have 84.7%

respectively. Similar trends are found in Scenario 2 and Scenario 3, and results improve as sample size goes to N=2000. However,

when the reward loss is unequal among sub-optimal treatment options, the optimal regimes stand out among the candidate

treatments more obviously according to our data generating process, therefore, it is easier for our proposedmethod SAT-Learning

to distinguish the optimal treatment from sub-optimal ones. Thus, the simulation performance with varying sub-optimal loss is

better than when the sub-optimal loss is equal, as expected.

5.2 A Special Case when the Treated Patients no Longer Need Further Test or Treatment

We conduct another simulation study for a special case when the treated patients no longer need test and treatment again. This

simulation better mimics the monitoring and management in active surveillance for prostate cancer. Because of the significant

side-effects of curative intervention and the asymptomatic nature of prostate cancer, according to the American Society of Clin-

ical Oncology, patients with low-risk prostate cancer can consider active surveillance22 Active surveillance involves monitoring

prostate cancer by regular exam in its localized stage until further treatment is needed to halt the disease at a curable stage. More
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TABLE 2 Simulation to mimic the monitoring and management of prostate cancer: two intervention stages, two treatment
options at each stage nested within the exam at each stage with 500 replications, and n=1000 or 2000. opt% show the empirical
mean and standard deviation (SD) of the percentage of subjects correctly classified to their underlying true optimal treatments,
estimated by the proposed method when (a) the conditional mean model and the propensity score model are both correctly
specified, (b) the conditional mean model is mis-specified and the propensity score model is correctly specified, and (c) the con-
ditional mean model is correctly specified and the propensity score model is mis-specified. Different treatment rates correspond
to different proportions of patients who switch from active surveillance to curative treatment among those who have taken the
biopsy test.

Treatment Rate 5% 15% 20% 25%
opt% opt% opt% opt%

N=1000
(a) 92.8(4.9) 93.8(4.8) 94.9(4.5) 95.3(4.6)
(b) 91.6(2.1) 93.2(1.9) 93.9(1.5) 94.3(1.4)
(c) 91.8(5.6) 93.2(5.8) 94.0(5.9) 94.6(5.5)

N=2000
(a) 93.7(4.7) 94.9(4.6) 95.7(4.4) 96.7(3.7)
(b) 92.6(1.9) 94.0(1.4) 94.5(1.2) 94.7(1.1)
(c) 92.2(6.5) 93.9(6.6) 94.6(6.5) 95.5(6.1)

specifically, the patients who have taken the biopsy test, only a small proportion of them would switch from the active surveil-

lance to curative intervention. In the active surveillance, the patients who have been treated should be removed from the active

surveillance cohort, because physicians consider that they no longer need to be treated and additional treatment is not provided

and they are not eligible for the active surveillance. Therefore they should not be considered to evaluate the subsequent test or

treatment decision. We generate data under a two-stage nested DTR with two treatment options at each stage. We also mod-

ify the parameters in the data generating models to make the rates of taking the curative treatment equal to 5%, 15%, 20% and

25% in both stage. The higher the rate is, the more patients take the treatment and thus more patients will be removed from the

surveillance afterwards. The detailed information of data generation can be found in the Supplementary Materials

The simulation results are summarized in Table 2. As the results show, because of the nice doubly robust property, the

percentages of subjects correctly classified to their underlying truth both yield satisfying results even when either the propensity

score model or the conditional mean model is mis-specified, but not both. Considering sample size N=1000 as an example, when

5% of tested patients have the curative treatment and then are removed from the active surveillance, 92.8% of them are correctly

assigned to their optimal DTR for both stages when both the conditional meanmodel and the propensity scoremodel are correctly

specified. We also have 91.8% and 91.6% of the patients correctly classified to their optimal DTR when the propensity score

model or the conditional mean model is misspecified respectively. As the treatment rate increases, we are able to estimate better

optimal treatment rules from larger heterogeneous samples with more information. Therefore, it is easier for our proposed SAT-

Learning to estimate the optimal regime from this more informative sample. Thus, the simulation performance with a higher

treatment rate is slightly better than that for the lower rate case.
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6 APPLICATION TO PROSTATE CANCER ACTIVE SURVEILLANCE DATA

We illustrate SAT-Learning using the prostate cancer Active Surveillance dataset from Johns Hopkins University.22 In this active

surveillance study, enrollment of men with low risk prostate cancer started in 1995 and ended in 2015. Eligible subjects need to

have PSA density less than 0.15 �g/L per mL, clinical stage T1c disease or lower, the Gleason score between 2 and 6, at most

2 positive biopsy cores, and at most 50% tumor in any single core, all of which made them low risk. The Johns Hopkins active

surveillance protocol includes semiannual PSA and annual prostate biopsy. In the protocol, the primary reason that patients

would be recommended to undergo definitive curative radiation therapy or surgery is if the biopsy result showed an adverse

change compared to previous biopsies.

There is sufficient evidence that the approach of active surveillance, i.e. delaying curative treatment, for low-risk patients is

safe.23 The issue we will be considering is how it should be implemented. That is, rather than having an annual biopsy, as in the

protocol, should it be more individualized, with the decision of whether to undergo a biopsy based on the available data at that

time for that patient.

Not all the patients in the study followed the protocol. In the dataset we analyzed, 22% of patients did not have the scheduled

biopsy of the first year and 5% of them did not have the biopsy in the first two years. Similarly for curative therapy, quite a

number of patients did not follow the protocol.22 Such heterogeneity in the observed data allows us to apply the nested DTR

method via our proposed SAT-Learning to decide at each stage whether the patient should have the biopsy, and if so, whether

the treatment should be recommended based on the patients’ individualized characteristics. In the analysis presented below we

restrict the observational period to be from the diagnosis to year 4 and we make a two-year time unit for each stage, making two

stages, stage 1 being from diagnosis to year 2 and stage 2 being from year 2 to year 4. We use D with subscript value s = 1, 2

to denote the decisions of the two stages, and j = 1, 2 to denote the biopsy and treatment actions within the stage. Thus, if the

subject had a biopsy at the first stage, we denoteD11 = 1, otherwise,D11 = 0. For those with biopsy i.e.,D11 = 1, the treatment

choice is recorded as D12, 1 for treated and 0 for no treatment, and similarly for D21 and D22. We note that once the patient is

treated, no further biopsy or treatment will be observed. After the data preprocessing, 863 patients are kept in the dataset for

the analysis, and of these 230 did receive curative treatment. More information regarding data preprocessing can be found in

Supplementary Materials.

Although patients, in reality, are subject to different categories of treatments, such as prostatectomy, radiation therapy or

hormone therapy, in this analysis, we combine all different kinds of treatments into one category (treated) to preserve a sufficient

sample size for the treated subjects. Other patient characteristics, including age, race, baseline biopsy results, and baseline PSA

were collected at the enrollment. As the active surveillance proceeded, the corresponding PSA changes and the follow-up biopsy

results were also collected. In particular, the quantity of cancer, as measured by biopsy results, is based on both the number of
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needle cores containing cancer and the characteristic of the cancer tissue found within each single core (Gleason score). How

the individualized data was formatted to match the two year time interval for each stage is described in the Supplementary

Materials. The reward outcome of interest was chosen to reflect long term disease status, and is defined as the proportion of

PSA values which are less than 5 out of all the PSA observations collected from the end of year 4 after diagnosis to the end

of study. This reward ranges from 0 to 1, with the lower values implying more undesirable risk of prostate cancer progression.

This reward outcome only considers the disease prognosis based on PSA, and ignores the side effects brought by frequent

biopsy and unnecessary intervention.24 In particular, the painful biopsy procedure carries nonnegligible short- and long-term

risk for patients, while the non-trivial probability of a false negative biopsy also poses challenges to the medical community that

advocates for it.25 Thus, after consulting with subject matter experts, we include penalties to discount the patient’s reward and

thus to take into account possible side effects. More specifically, if the patient had a biopsy in either one of the two stages, their

reward is reduced by a factor of 87% compared to the original reward. For a patient who has ever had treatment, the reward is

reduced by a factor of 80% compared to their original reward.

To apply the proposed SAT-Learning algorithm to the active surveillance data described above, we use random forests for

the conditional mean model and a logistic regression model for the propensity score model of every step within each stage.

The estimated optimal test and treatment DTR of the two stages are shown in Figure 2 According to the estimated optimal

DTR, at the first stage, men older than 56 are recommended for a biopsy test. Among those who are younger than 56 years

old, the patients with most recent PSA higher than 3.6 are also recommended for a biopsy test. Among those doing the biopsy

test, patients with the most recent PSA higher than 3.1 and having biopsy test showing any cancer are recommended for the

treatment. At the second stage, the men whose PSA change from beginning of year 2 is larger than 1.3 are recommended for the

biopsy test. For those who take the biopsy, if their most recent PSA is higher than 3.2 or the biopsy result has more than one

biopsy core needle showing cancer positive, we recommended the physician to offer them the treatment. The standard practice

in deciding on curative treatment depends primarily on whether the Gleason grade on the biopsy is greater than or equal to 7.

In contrast, the DTR we estimated involves more variables and changes from one stage to the next, so is more individualized.

It is also notable that the Gleason thresholds in the above DTR are lower than in standard practice, which is consistent with a

suggestion in the literature.26 The reward we use, long run low PSA values, certainly does influence the estimated optimal DTR,

which involves lots of decisions based on the current PSA values. The estimated tree-based DTR presented in Figure 2 is also

sensitive to the discount factor 87% and 80% which are used to penalize the reward. Other rewards would have given different

optimal DTRs. The reward we use of long-run PSA values can be considered as a proxy for clinical meaningful “good” outcome.

An ideal reward would involve long term good quality of life and absence of prostate cancer recurrence. But data to construct

such a reward is not available for this study. A sensitivity analysis with a modified reward is presented in the Supplementary

Materials.It is possible to estimate what the improvement in the reward would have been if the patients from our study cohort had
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FIGURE 2 The estimated optimal DTR for JHU prostate cancer active surveillance data via SAT-Learning method. The trees
show how to provide optimal regime at every step based on the individualized characteristics for (A) stage one biopsy decision,
(B) stage one treatment decision if biopsy was taken in stage one,(C) stage two biopsy decision and (D) stage two treatment
decision if the biopsy was taken in stage two.

followed the optimal DTR. We calculate that if our study cohort had received the optimal DTR described above, then more than

86% of the study cohort would have seen an increase in their reward. This was especially the case among the patients who had

no biopsy experience in the study, by assigning them the optimal regimes, almost everyone will increase the reward according

to our estimates. We also calculate that the expected number of patients who would have received curative treatment if they had

followed the estimated optimal DTR is 412, which is larger than the actual number of 230, but this number is sensitive to the

factor that is used to discount the reward when a patient receives treatment.

7 DISCUSSION

Motivated by the embedded nature of the diagnosis and treatment procedures, we have developed a nested DTR framework, with

the treatment decision nested within the test decision in a multi-stage setting, and implemented the estimation of the optimal

nested DTR using a step-adjusted tree-based reinforcement learning method (SAT-Learning). This nested DTR framework

considers the test decision and the nested treatment decision in the same stage and develops the optimal nested DTRs tomaximize
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the expected long-term rewards, such as disease control. This kind of test-and-treat strategy has been considered previously in

the health policy literature.27 These methods discussed the importance of the problem, and the need to accumulate data. They

also suggested solutions that focused on the population level, but not in a rigorous mathematical framework. Our proposed

method follows the framework of DTR, which enables physicians to repeatedly tailor test and treatment decisions based on each

individual’s time-varying health histories, and thus provides an effective tool for the personalized management of disease over

time.

SAT-Learning, our proposed method to solve the nested step-adjusted DTR problem, can potentially be implemented via

modifying other learning methods that have been considered in DTR literature. However, by using a modified T-RL algorithm17,

SAT-Learning is more straightforward to implement, understand and interpret, and capable of handling various data without

distributional assumptions. Additionally, the doubly robust AIPW estimator that we utilize in the purity measure in the tree

structure also helps improve the robustness of our method against model mis-specifications.

Several developments and extensions can be explored in future studies. One possible exploration lies on dealing with poten-

tially contradictory multiple outcomes. In SAT-Learning, we consider a nested step-adjusted DTR to reduce the pain and

potential infections from frequent biopsy tests, but maintain an effective and in-time treatment to control disease progression.

If efficacy is the only purpose, one would expect more frequent tests and more aggressive treatment regardless of possible side

effect, but in the meantime, patients might experience more side effects. The desire for efficacy and the desire for less side

effects in fact contradict each other. In clinical practice, physicians are often interested in balancing multiple competing clinical

outcomes, such as overall survival, patient preference, quality of life and financial burden.28 In order to balance these multi-

ple potentially contradictory objectives, we applied a different discount factor to the patient rewards for different side effects in

the application to the JHU Prostate Cancer Active Surveillance data. Other statistical methods have been developed to trade-off

between multiple contradictory outcomes.8,29 One can further incorporate these multiple objective optimization functions into

our framework of nested DTR for future research. Another possible exploration may be considering all available actions when

the preference of multiple outcomes varies30, which would give more comprehensive information about how the optimality of

an action would be changed if the preference is modified. Sensitivity analyses can be done on the optimal regimes and would pro-

vide further guidance for the decision maker on developing a more flexible regime among all the available intervention strategy

choices.
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