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Summary. Causal mediation analysis aims to characterize an exposure’s effect on

an outcome and quantify the indirect effect that acts through a given mediator or a

group of mediators of interest. With the increasing availability of measurements on a

large number of potential mediators, like the epigenome or the microbiome, new statis-

tical methods are needed to simultaneously accommodate high-dimensional mediators

while directly target penalization of the natural indirect effect (NIE) for active mediator

identification. Here, we develop two novel prior models for identification of active me-

diators in high-dimensional mediation analysis through penalizing NIEs in a Bayesian

paradigm. Both methods specify a joint prior distribution on the exposure-mediator ef-

fect and mediator-outcome effect with either (a) a four-component Gaussian mixture

prior or (b) a product threshold Gaussian prior. By jointly modeling the two parameters

that contribute to the NIE, the proposed methods enable penalization on their product

in a targeted way. Resultant inference can take into account the four-component com-

posite structure underlying the NIE. We show through simulations that the proposed

methods improve both selection and estimation accuracy compared to other competing

methods. We applied our methods for an in-depth analysis of two ongoing epidemio-

logic studies: the Multi-Ethnic Study of Atherosclerosis (MESA) and the LIFECODES

birth cohort. The identified active mediators in both studies reveal important biological

pathways for understanding disease mechanisms.

Keywords: Composite null hypothesis; Environmental exposure to phthalates; Epi-

genetics; Gaussian mixture models; High-dimensional mediators; Pathway Lasso;

Posterior inclusion probability; Product threshold Gaussian prior.

1. Introduction

Mediation analysis is of increasing importance across a wide range of disciplines
(MacKinnon et al., 2007). It investigates how an intermediate variable, called a medi-
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ator, explains the mechanism underlying a known relationship between the exposure
and the outcome. The main goal of such an analysis is to disentangle the exposure’s
effect and identify effect that acts through the mediator of interest, which is often
referred to as the indirect/mediation effect. Built on the counterfactual framework,
a causal approach to mediation analysis (VanderWeele, 2016) specifies assumptions
for a potentially causal interpretation of estimated indirect effects using the classical
formulas from Baron and Kenny (1986). Univariate mediation analysis, which ana-
lyzes one mediator at a time, has been studied extensively in areas of social, economic,
epidemiological and genetic studies (MacKinnon, 2008). With the rapid development
of high-throughput technologies and the increasing availability of large-scale omics
data, however, there is an expanding interest in performing mediation analysis in the
presence of a large number of mediators. As one of our motivating examples, the
Multi-Ethnic Study of Atherosclerosis (MESA) measured gene expression and DNA
methylation (DNAm) levels at the genome-wide scale. These molecular-level omics
traits are proposed as part of the mediating mechanism through which neighborhood
disadvantages affect physical health (Smith et al., 2017). As another motivating ex-
ample, the LIFECODES prospective birth cohort collected data on a large group of
endogenous biomarkers of lipid metabolism, inflammation, and oxidative stress. These
biomarkers are hypothesized to mediate the effects of prenatal exposure to environ-
mental contamination on adverse pregnancy outcomes. Mediation analysis in the
above high-dimensional mediator settings can facilitate our understanding of disease
etiology but is particularly challenging because the causal ordering among mediators
is often unknown a priori due to a lack of in-depth biological knowledge acquired on
the relationship among the mediators. On the other hand, it is not preferable to apply
univariate mediation analysis to the high-dimensional setting due to potential con-
founding of other mediators in the association with the outcome and mis-specification
of the true model.

To enable high-dimensional mediation analysis, several statistical methods have been
recently developed. For example, Huang and Pan (2016) and Chén et al. (2017) trans-
form the high-dimensional unordered set of mediators into lower-dimensional orthogo-
nal components using dimension reduction techniques. The extracted low-dimensional
components are then analyzed through single mediation analysis. However, it is often
not straightforward to interpret the low-dimensional components in these approaches.
Shrinkage methods via regularization have also been explored to tackle this high-
dimensional regression problem involving two models, the exposure-mediator model
and the outcome-exposure model. The Lasso (Tibshirani, 1996) penalty can be natu-
rally applied to the two models in mediation analysis. Zhang et al. (2016) also proposed
a regularized regression with minimax concave penalty for the outcome model after a
sure independence screening on mediators. The above methods penalize the mediator-
outcome and exposure-mediator coefficients separately without taking into account the
structure of the indirect effect. To directly target the mediators with strong indirect
effects, Zhao and Luo (2016) recently developed a new convex, Lasso-type penalty on
the indirect effect, which is the product of the two path coefficients. This direct penal-
ization on the pathway effects is shown to improve power for mediator selection andThis	article	is	protected	by	copyright.	All	rights	reserved



Bayesian Sparse Mediation Analysis 3

reduce the estimation bias of indirect effects. In addition to frequentist approaches,
Bayesian non-parametric models (Kim et al., 2019) have been applied in the analysis
with a moderate number of mediators. Song et al. (2019) handles high-dimensional me-
diators through a Bayesian variable selection method and specifies separate shrinkage
priors on both the exposure-mediator effects and mediator-outcome effects. However,
not modeling the indirect effects in a targeted way may lead to loss of power for se-
lection of active mediators. Therefore, a more effective mediation analysis will require
the development of statistical methods that can both handle high-dimensional medi-
ators and select active mediators via direct targeting of their indirect contribution to
the joint NIE. There is also interesting connection between mediation analysis and
directed acyclic graph (DAG), where the ordering of the nodes (exposure, mediators,
and outcome) is known. Our goal of identifying active mediators then corresponds to
graph structural learning of the edges, and any mediator with inferred links both from
the exposure and to the outcome completes a mediation pathway.

The indirect effect of a mediator is known to be proportional to the product of the
exposure-mediator and mediator-outcome effects under certain assumptions (MacKin-
non, 2008). Testing for this product term is not easy due to the complexity in its null
distribution. Recent literature began to recognize and leverage the composite struc-
ture in the null hypothesis of no indirect effect in the genome-wide mediation analysis
setting, where a one-at-a-time single mediator analysis is performed across the entire
set of mediators (Huang, 2019). Given a large number of mediators, we can character-
ize the composite space and learn about the structure of mediation through the four
components arising from the product of the two effects, i.e. one component of medi-
ators with non-zero indirect contributions (active mediators), and three components
with zero indirect contributions.

Motivated by the goal of directly targeting the non-null indirect contributions to iden-
tify active mediators in a high-dimensional mediator setting, we are interested in seek-
ing the Bayesian parallel with a joint prior on the exposure-mediator and mediator-
outcome coefficients, which is so far lacking in the literature. One common choice of the
bivariate prior would be a Gaussian prior, and it is natural to assume a four-component
Gaussian mixture structure on the two effects, corresponding to the composite struc-
ture underlying their product. On the other hand, a direct thresholding prior on the
indirect contributions would also achieve the same goal, and we can extend the hard-
thresholding priors (Ni et al., 2019; Cai et al., 2020) to product thresholding for medi-
ation analysis. Therefore, in this paper, building on the potential outcome framework
for causal inference, we develop two novel prior models for high-dimensional media-
tion analysis: (a) four-component Gaussian mixture prior, and (b) product threshold
Gaussian prior. Both models can simultaneously analyze a large number of mediators
without making any path-specific or causal ordering assumptions on mediators. The
mediator categorization into four groups provides useful interpretations on the way in
which a mediator links or does not link exposure to outcome. More importantly, by
jointly modeling the exposure-mediator and mediator-outcome coefficients via either
bivariate Gaussian distributions or thresholding functions, we place direct shrinkage
on the product of the two coefficients in a targeted way. Hence, our methods are ex-This	article	is	protected	by	copyright.	All	rights	reserved
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pected to outperform other penalization methods that apply separate shrinkage in the
two regression models independently, for identifying active mediators with non-zero
indirect contributions.

The proposed methods are generally applicable to many settings, and we examine
their performance for both large-scale genomic and environmental data. Specifically,
in the MESA cohort, our methods are implemented for high-dimensional mediation
analysis with DNAm as mediators (Bild et al., 2002), focusing on the relationship
between neighborhood disadvantage (exposure) and body mass index (BMI) as out-
come. BMI is a critical risk factor for various diseases like type 2 diabetes (T2D) and
cardiovascular disease (CVD) (Hjellvik et al., 2012). The important scientific discov-
eries made in the present study will advance biological understanding of how adverse
social circumstances influence our internal molecular environment and in turn lead to
cardiometabolic diseases. In the LIFECODES birth cohort, the proposed methods are
applied to study the collective impact of endogenous biomarkers in biological path-
ways in mediating exposure to phthalates (a group of chemicals used to make plastic
more flexible) during pregnancy on the gestational age of the newborn at delivery.
The integration of molecular/biological data with epidemiologic data in the mediation
framework provides interesting and important insights into underlying disease mecha-
nisms. Besides the data analysis, we also perform extensive simulation studies under
different structures of effects. We show through both simulations and data analysis
that our proposed methods can increase power of a joint analysis and enable efficient
identification of individual mediators.

The rest of the paper is organized as follows. In Section 2, we first define the causal
effects of interest for the multivariate mediator setting with the counterfactual frame-
work. Then we review the mediation estimands under the regression models with
high-dimensional mediators and one continuous outcome. In Section 3, we propose
two novel methods for direct shrinkage on natural indirect effects. Simulation stud-
ies are conducted and discussed in Section 4. We apply our methods to MESA and
LIFECODES data in Section 5, and conclude the paper with discussions in Section 6.

2. Notations, Definitions and Models

Consider a study of n subjects and for subject i, i = 1, . . . , n, we collect data on one

exposure Ai, p candidate mediators M i = (M
(1)
i ,M

(2)
i , . . . ,M

(p)
i )⊤, one outcome Yi,

and q covariates Ci = (C
(1)
i , . . . , C

(q)
i )⊤. In particular, we focus on the case where Yi

and M i are all continuous variables. With the same counterfactual framework as in

Song et al. (2019), let the vector M i(a) = (M
(1)
i (a),M

(2)
i (a), . . . ,M

(p)
i (a)) denote the

ith subject’s counterfactual value of the p mediators if he/she received exposure a. Let
Yi(a,m) denote the ith subject’s counterfactual outcome if the subject’s exposure were
set to a and mediators were set to m. The effect of an exposure can be decomposed
into its direct effect and effect mediated through mediators. The natural direct effect
(NDE) of the given subject is defined as Yi(a,M i(a

⋆)) − Yi(a
⋆,M i(a

⋆)), where the
exposure changes from a⋆ (the reference level) to a and mediators are hypotheticallyThis	article	is	protected	by	copyright.	All	rights	reserved



Bayesian Sparse Mediation Analysis 5

controlled at the level that would have naturally been with exposure a⋆. The natural
indirect effect (NIE) of the given subject is defined by Yi(a,M i(a)) − Yi(a,M i(a

⋆)).
The total effect (TE) can then be expressed as the summation of the NDE and the
NIE: Yi(a,M i(a))−Yi(a

⋆,M i(a
⋆)) = Yi(a,M i(a))−Yi(a,M i(a

⋆))+Yi(a,M i(a
⋆))−

Yi(a
⋆,M i(a

⋆)) = NIE + NDE.

The counterfactual variables, which are useful concepts to formally define causal ef-
fects, are not necessarily observed. To connect the counterfactuals to observed data
and estimate the average NDE and NIE from observed data, further assumptions are
required, including the consistency assumption and four non-unmeasured confounding
assumptions (VanderWeele, 2016). We elaborate those assumptions in Section 1 of
the Supplementary Materials (SM). It has been shown that under the required as-
sumptions, the average NDE and NIE can be identified by modeling Yi|Ai,M i,Ci

and M i|Ai,Ci using observed data (Song et al., 2019). Therefore we can work with
the two conditional models for Yi|Ai,M i,Ci and M i|Ai,Ci. We propose two linear
models for the two conditional relationships Yi|Ai,M i,Ci and M i|Ai,Ci. For the
outcome model, we assume

Yi = M⊤

i βm +Aiβa +C⊤

i βc + ǫY i, (1)

where βm = (βm1, . . . , βmp)
⊤; βc = (βc1, . . . , βcq)

⊤; and ǫY i ∼ N(0, σ2e). For the
mediator model, we consider a multivariate regression model that jointly analyzes all
p potential mediators together as dependent variables:

M i = Aiαa +αcCi + ǫMi, (2)

where αa = (αa1, . . . , αap)
⊤; αc = (α⊤

c1, . . . ,α
⊤

cp)
⊤; αc1, . . . ,αcp are q-by-1 vectors;

ǫMi ∼ MVN(0,Σ), with Σ capturing potential residual error covariance. ǫY i and ǫMi

are assumed to be independent of each other and independent of Ai and Ci. With the
identifiability assumptions and the modeling assumptions (linearity, no interaction in
the outcome and mediator model) in (1)-(2), we can compute the average NDE, NIE
and TE as below (Song et al., 2019). In the rest of the paper, we refer to NDE as
direct effect and NIE as indirect/mediation effect.

NDE = E[Yi(a,M i(a
⋆))− Yi(a

⋆,M i(a
⋆))|Ci] = βa(a− a⋆). (3)

NIE = E[Yi(a,M i(a))− Yi(a,M i(a
⋆))|Ci] = (a− a⋆)

p
∑

j=1

αajβmj . (4)

TE = E[Yi(a,M i(a))− Yi(a
⋆,M i(a

⋆))|Ci] = (βa +α⊤

a βm)(a− a⋆). (5)

As seen from (4), the global NIE equals to the sum over mediators,M (1),M (2), ...,M (p),
of the product of αaj and βmj . Each of the individual terms in the sum have no causal
interpretation of NIE corresponding to a specific mediator j, but rather its marginal
contribution to this global NIE. The TE here can also be identified by modeling Yi|Ai,
and by definition should not be affected by the model for mediators. Both βa and
α⊤

a βm are conditional on mediators, and their summation estimates the same TE.
Alternatively, one may define the common total effect first, and then define the direct
effect by the difference TE −α⊤

a βm. We jointly model βmj and αaj and perform
targeted shrinkage on the NIE using two prior models described in the next section.This	article	is	protected	by	copyright.	All	rights	reserved
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3. Methods

3.1. Gaussian Mixture Model (GMM)

The first model we develop to characterize the composite structure of the exposure-
mediator and mediator-outcome effects in mediation analysis and induce targeted
shrinkage on NIE is the four-component Gaussian mixture model. Mixture models
have been studied vastly for classifying subjects into different categories and infer-
ring their association patterns or category-specific properties (Zeng et al., 2018). In
the context of mediation analysis, previous mixture model approaches have primarily
been proposed in the form of a principal stratification model (Gallop et al., 2009).
Here, we introduce a Gaussian mixture model for the joint modeling of βmj and αaj

and the subsequent inference of the composite association patterns. Specifically, we
consider four components in the Gaussian mixture model: a component represent-
ing βmjαaj 6= 0, that both βmj and αaj are non-zero; a component representing
βmj 6= 0 and αaj = 0; a component representing βmj = 0 and αaj 6= 0; and a com-
ponent representing βmj = 0 and αaj = 0. To characterize the composite structure
underlying the product βmjαaj , we assume that the effects for each mediator follow a
four-component Gaussian mixture distribution:

[

βmj , αaj

]⊤
|{Vk}

3
k=1 ∼ π1MVN2(0,V1) + π2MVN2(0,V2) + π3MVN2(0,V3) + π4δ0

with prior probabilities πk (k = 1, 2, 3, 4) summing to one and MVN2 denoting a
bivariate normal distribution. Here, π1 represents the prior probability of being an
active mediator, with non-zero marginal mediation effect βmjαaj ; and V1 models the

covariance of
[

βmj , αaj

]⊤
in model (1) and (2) when both effects are non-zero. Any

inactive mediator will fall into one of the remaining three components. π2 is the prior
probability of having non-zero mediator-outcome effect but zero exposure-mediator

effect; and V2 =

[

σ22 0
0 0

]

is a low-rank covariance matrix restricting that only the effect

of mediator on outcome βmj is non-zero. π3 is the prior probability of having non-zero

exposure-mediator effect but zero mediator-outcome effect; and V3 =

[

0 0
0 σ23

]

is a

low-rank covariance matrix restricting that only the effect of exposure on mediator
αaj is non-zero. Lastly, π4 denotes the prior probability of zero mediator-outcome
effect and zero exposure-mediator effect; and δ0 is a point mass at zero. Our method
automatically classifies all the mediators into four groups based on their relationship
with exposure and outcome. We note that the recently developed Bayesian mediation
analysis method (BAMA, Song et al., 2019) can be viewed as a two-component version
of GMM: in BAMA, the mediator-outcome effect is non-zero and follows a normal
distribution with probability π1 + π2; while the exposure-mediator effect is non-zero
and follows another normal distribution with probability π1 + π3. Consequently, the
active mediator in BAMA has a priori probability (π1 + π2)(π1 + π3).

In GMM, we specify a conjugate inverse-Wishart prior on V1, V1 ∼ Inv-Wishart(Ψ0, ν),
where Ψ0 = diag {ψ01, ψ02} is a diagonal matrix, and ν is the degree of freedom, and
inverse-gamma priors on σ22, σ

2
3, σ

2
2 ∼ Inv-Gamma(ν/2, ψ01/2), σ

2
3 ∼ Inv-Gamma(ν/2, ψ02/2).This	article	is	protected	by	copyright.	All	rights	reserved
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We also assume {π1, π2, π3, π4} ∼ Dirichlet(a1, a2, a3, a4) with a1, a2 and a3 set to be
smaller than a4 to encourage sparsity of the first three components. For the coefficients
of the other covariates, we assume βa ∼ N(0, σ2a) and βc,αc1, ...,αcp ∼ MVN(0, σ2cI).
Since we often have adequate information from the data to infer βc and αc, we simply
use a limiting prior by setting σ2c → ∞. For the convenience of modeling, we also
set the correlation structure among mediators Σ as σ2gI. We use weakly informative

inverse-gamma priors on the variance hyper-parameters (σ2a, σ
2
e and σ2g) in the models.

To facilitate computation, for the jth mediator, we create a four-vector membership

indicator variable γj , where γjk = 1 if
[

βmj , αaj

]⊤
is from normal component k and

γjk = 0 otherwise. Since the priors used here are all conjugate, we implement a
standard Gibbs sampling algorithm and iterate each mediator one at a time to obtain
posterior samples. The full details of the algorithm appear in Section 2 of the SM
available online. With posterior samples, we can estimate the direct effect as the
posterior mean of βa, and for the j-th mediator, estimate its indirect contribution as
the product of the posterior mean of βmj and αaj . We also calculate the posterior
probability of both βmj and αaj being non-zero as the posterior inclusion probability
(PIP), which is P (γj1 = 1| Data). The PIP provides evidence for a non-zero indirect
contribution, and therefore we identify mediators with the highest PIP as potentially
active mediators.

3.2. Product Threshold Gaussian (PTG) Prior

Although the GMM model is flexible for a range of applications, the method does not
directly impose sparsity on βmjαaj for mediator selection. To address this issue, we
develop a product threshold Gaussian (PTG) prior for the indirect contribution of the
j-th mediator. Threshold priors have been recently proposed for Bayesian variable
selection. For example, Ni et al. (2019) introduced a hard-thresholding mechanism
in edge selection for sparse graphical structure; Cai et al. (2020) performed a feature
selection over networks using the threshold graph Laplacian prior; and Kang et al.
(2018) developed a soft-thresholding Gaussian process for scalar-on-image regression.
As compelling alternatives to shrinkage priors, the threshold priors are equivalent to
the non-local priors (Rossell and Telesca, 2017) which enjoy appealing theoretical prop-
erties and excellent performance in variable selection for high-dimensional regression,
especially when the predictors are strongly correlated (Kang et al., 2018; Cai et al.,
2020). In this work, we extend the threshold priors to the product threshold priors
for mediation analysis. In particular, for the bivariate vector (βmj , αaj), j = 1, ..., p,

βmj = β̃mj max
{

I
(

|β̃mj | > λ1

)

, I
(

|β̃mjα̃aj | > λ0

)}

αaj = α̃aj max
{

I (|α̃aj | > λ2) , I
(

|β̃mjα̃aj | > λ0

)}

where the underlying un-thresholded effects (β̃mj , α̃aj)
⊤ ∼ MVN2(0,Σu) and I(A) is

the indicator function with I(A) = 1 if A occurs and I(A) = 0 otherwise. We denote
(βmj , αaj) ∼ PTG(Σu, λ) with λ = (λ0, λ1, λ2) being thresholding parameters.This	article	is	protected	by	copyright.	All	rights	reserved
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As one may note, a mediator would escape thresholding and have non-zero indirect
contribution βmjαaj only when (i) both the absolute values of the marginal effects

β̃mj and α̃aj are larger than the threshold values, or (ii) the absolute value of the

un-thresholded product β̃mjα̃aj is larger than the threshold value. In practice, condi-
tion (ii) does not necessarily indicate condition (i). The product threshold prior will
facilitate the selection of active mediators by thresholding on the indirect contribution
of the j-th mediator in addition to its marginal effects, and shrinking insignificant
effects to zero. Similar to GMM, one group of active mediators and three groups
of inactive ones are naturally formed. The thresholding on the product term also
adds dependency between βmj and αaj , and we impose no more dependency on the

un-thresholded values, namely setting Σu = diag
{

τ2β , τ
2
α

}

in the rest of the paper.

The threshold parameters λ = (λ0, λ1, λ2) control a priori the sparsity of the non-
zero effects, and larger values tend to produce a smaller subset of active mediators.
Previous literature (Ni et al., 2019; Cai et al., 2020) have considered uniform priors on
those threshold parameters, e.g. λ0 ∼ U [0, λ0h], λ1 ∼ U [0, λ1h], λ2 ∼ U [0, λ2h], with
the upper bounds λ0h, λ1h, λ2h being some pre-defined large values. This approach
is straightforward and requires little prior knowledge. However, the control of false
positives is a concern due to the common under-estimation of λ. In this paper, we
instead determine the threshold parameters from the un-thresholded distributions and
the desired number of declared positives, and fix them a priori. For example, if we
set λ0 = 0.36, λ1 = λ2 = 0.6 under τ2β = 0.1, τ2α = 0.1, then the Monte Carlo estimate
of the prior proportion of active mediators is approximately 0.01, which could also
be tuned to match with π1 in the Gaussian mixture model. In practice, we can
grid search the three hyper-parameters together with priors on τ2β and τ2α, and find the
values that achieve desired prior proportions. The thresholds λ can also be interpreted
as the minimal detectable signal, and determined based on their practical meaning.
Although the resulting selection may be conservative and heavily informed by the
pre-defined thresholds, our specification is helpful in guarding against false positive
findings. As in the GMM model described in 3.1, conjugate inverse-gamma priors
are used for the variance terms (τ2β , τ

2
α, σ

2
e and σ2g) in the model. The full conditional

distributions for βmj and αaj are mixtures of truncated normals and can be sampled
from Gibbs sampling (Section 3 of the SM). Similar to GMM, we can calculate the
posterior mean of βmj and αaj , and the posterior probability of both βmj and αaj

being non-zero as PIP, and use the PIP to rank and select active mediators.

The proposed GMM relies on small values of π1, π2, π3 to reflect sparsity on the effects.
The Gaussian priors shrink the effects continuously toward zero, and help the model
achieve better estimation and prediction performance, but not necessarily mediator
selection by the product of βmjαaj . On the other hand, the PTG utilizes a hard
threshold function to directly select on βmjαaj and map near zero effects to zero.
Instead of centering around zero, the effects produced from PTG will be similar to
truncated normals away from zero. As a practical procedure, we suggest median
inclusion probabilities (PIP = 0.5) as the significance threshold for mediator selection.This	article	is	protected	by	copyright.	All	rights	reserved
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3.3. Other Approaches for High-dimensional Mediation Analysis

Besides GMM and PTG, we also explore a few other approaches. Many of them place
simple penalty functions or shrinkage priors on the natural indirect effects.

Univariate Mediation Analysis is perhaps the simplest approach to perform me-
diation analysis. In univariate mediation analysis, we examine one mediator at a time
and test whether the mediator has non-zero indirect effect. We extract P -values for
testing the indirect effects using the R package mediation.

Bi-Lasso The least absolute shrinkage and selection operator (Lasso) introduced by
Tibshirani (1996) is a widely used penalty function to perform both variable regular-
ization and selection. Here, we consider placing Lasso regularization on the mediator-
outcome effects and the exposure-mediator effects separately. For the mediator-outcome
effects, we attempt to minimize the following loss function based on the outcome model
(1): f(βm, βa,βc) =

1
2

∑n
i=1(Yi −M⊤

i βm −Aiβa −C⊤

i βc)
2 + λ1

∑p
j=1 |βmj |. For the

exposure-mediator effects, we attempt to minimize the following loss function based
on the mediator model (2): f(αa,αc) =

1
2

∑n
i=1(M i−Aiαa−αcCi)

⊤(M i−Aiαa−
αcCi)+λ2

∑p
j=1 |αaj |. We perform optimization in the first function using the R pack-

age glmnet and perform optimization in the second function using soft-thresholding.
We choose the two tuning parameters λ1 > 0 and λ2 > 0 through 10-fold cross val-
idation in the two functions separately. We refer this approach of applying Lasso
separately to the outcome and mediator models as Bi-Lasso.

Bi-Bayesian Lasso is effectively the Bayesian version of Bi-Lasso. It is equivalent
to placing a Bayesian Lasso prior (Park and Casella, 2008) on the mediator-outcome
effects βm and a separate Bayesian Lasso prior on the exposure-mediator effects αa.
Here, we specify the Bayesian Lasso prior for the j-th element of βm or αa as a scale
mixture of normal distributions N(0, zjσ

2
z), where the scale parameter zj follows an

exponential distribution exp(s2/2) and 1/s2 is given a diffuse inverse-gamma prior. We
implement the Bi-Bayesian Lasso using a Gibbs sampler following Park and Casella
(2008) and obtain posterior samples for βm and αa.

Pathway Lasso is a method developed by Zhao and Luo (2016) for high-dimensional
mediation analysis under the linear structural equation modeling (LSEM) framework.
The squared-error loss in the joint model is defined from equations (1) and (2) as
l(βm,αa, βa,βc,αc) =

∑n
i=1(Yi − M⊤

i βm − Aiβa − C⊤

i βc)
2 +

∑n
i=1(M i − Aiαa −

αcCi)
⊤(M i−Aiαa−αcCi). The Pathway Lasso then aims to minimize the penalized

function, f(βm,αa, βa,βc,αc) =
1
2 l(βm,αa, βa,βc,αc)+λ[

∑p
j=1{|βmjαaj |+φ(β

2
mj+

α2
aj)}+ |βa|] + ω{

∑p
j=1(|βmj |+ |αaj |)} = 1

2 l(βm,αa, βa,βc,αc) + λP1(βm,αa, βa) +

ωP2(βm,αa), φ ≥ 1/2.

The first penalty term P1 stabilizes and shrinks the estimates for the product βmjαaj .
The second penalty term P2 provides additional shrinkage on βm and αa through
a common Lasso penalty placed on both of them. We use the algorithm from Zhao
and Luo (2016) to fit Pathway Lasso. We choose the three tuning parameters (φ, ω,
and λ): φ = 2, ω = 0.1λ, and choose λ through 10-fold cross-validation as in the
original paper. HIMA is another frequentist method developed for high-dimensionalThis	article	is	protected	by	copyright.	All	rights	reserved
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mediation analysis (Zhang et al., 2016). HIMA first applies a sure independence
screening to the outcome model to select a small set of potential mediators. With the
selected mediators, HIMA then places a minimax concave penalty on the mediator-
outcome effects in the outcome model (1) to obtain effect estimates. The method
finally performs a joint significance test and rejects the null hypothesis of no indirect
effect with the j-th mediator if both βmj and αaj are significant. Using the HIMA
software, we obtain the Bonferroni corrected P -values for testing the indirect effects.

In addition to the aforementioned methods, we note that several other approaches
exist. For example, the methods developed by Huang and Pan (2016) and Chén et al.
(2017) first perform dimension reduction on the mediators to extract low dimensional
factors on the reduced dimensional space, and then carry out mediation analysis by
treating the low dimensional factors as new mediators. Because these approaches
analyze the latent factors instead of the original mediators, we do not compare our
methods with them in the present study.

4. Simulation

Simulation Overview and Evaluation Metrics We evaluate the performance of
the two proposed methods (GMM and PTG) and compare them with existing methods
in different simulation scenarios. As described in Section 3, we consider a total of eight
methods: one univariate method and seven multivariate methods that include four
Bayesian methods (GMM, PTG, BAMA and Bi-Bayesian Lasso) and three frequentist
methods (Bi-Lasso, Pathway Lasso, and HIMA). We examine the power of different
methods to detect true mediators in the simulations. To do so, we rely on PIP to
prioritize mediators in PTG, GMM and BAMA; rely on P -value to rank mediators in
the univariate method and HIMA; and rely on the estimated indirect contributions as
an measure of evidence for mediation for the remaining methods. To evaluate selection
accuracy, we calculate the true positive rate (TPR) based on a fixed false discovery rate
(FDR) of 10% and area under the ROC curve (AUC). To evaluate estimation accuracy,
we compute the mean square error (MSE) for the indirect contributions (βmjαaj) of
the truly active mediators (MSEnon-null), and MSE for the indirect contributions of
the truly inactive mediators (MSEnull). We also include the bias metric on joint NIE,
NDE and TE in the SM. We perform 200 simulation replicates for each scenario to
report the average of the above metrics.

Simulation Design - Fixed Effect Simulations We consider one small sample scenario
with n = 100, p = 200, and one large sample scenario with n = 1000, p = 2000. In
both scenarios, we set the proportions of the four different mediator groups to be
π1 = 0.05, π2 = 0.05, π3 = 0.10, π4 = 0.80. In each scenario, we further explore two
different settings. In Setting (I), we fix the non-zero effects of both βmj and αaj to
be 0.5, with their signs randomly assigned as positive or negative. In Setting (II),
we fix 40% of the non-zero βmj (or αaj) to be 0.3, 30% of them to be 0.5, and 30%
of them to be 0.7, with their signs randomly assigned as positive or negative. In
both settings, we simulate the continuous exposure {Ai, i = 1, ..., n} independently
from a standard normal distribution N(0, 1). We also included three confoundersThis	article	is	protected	by	copyright.	All	rights	reserved
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in the fixed effect simulations: the first two continuous covariates C1 and C2 are
simulated from N(2, 1) and N(0, 1) respectively, and the third binary covariate C3 is
simuated from Binom(1, 0.6). We simulate the residual error ǫY i in the outcome model
independently from N(0, 1), and simulate the residual errors ǫMi in the mediator model
from MVN(0, Σ). Here, we use the sample covariance estimated from MESA data
to serve as Σ in the simulations. Afterwards, we generate a p-vector of mediators
for the ith individual from M i = Aiαa + C1iαc1 + C2iαc2 + C3iαc3 + ǫMi, where
αc1 ∼ N(0, 0.5), αc2,αc3 ∼ N(0, 1). We also generate the outcome Yi for the ith
individual from Yi = M⊤

i βm +Aiβa − 0.1C1i + 0.3C2i + 0.2C3i + ǫY i, with βa = 0.5.

Random Effect Simulations In the above settings, we have fixed the effect sizes to
specific values across replicates. To further examine the performance of our methods
over a wide range of effect sizes, we perform additional simulations where we simulate
[

βmj , αaj

]⊤
randomly in each simulation replicate. Specifically, we generate these two

effects from three different joint distributions detailed below (Figure S1): the first two
correspond to the prior distributions assumed in PTG and GMM, respectively, while
the last one is a horseshoe distribution, i.e.

(A) Simulate effects under the PTG model:
[

βmj , αaj

]⊤
∼ PTG(diag

{

σ2u, σ
2
u

}

, λ),
where λ = (λ0, λ1, λ2) are set to satisfy the desired proportions of the four groups (π1,
π2, π3, π4). We set σ2u = 0.3 for p = 200, and σ2u = 0.1 for p = 2000.

(B) Simulate effects under the GMM model:

[

βmj

αaj

]

∼ π1MVN(0,

[

σ2 σ2/3
σ2/3 σ2

]

) +

π2MVN(0,

[

σ2 0
0 0

]

) + π3MVN(0,

[

0 0
0 σ2

]

) + π4δ0. We set σ2 = 0.3 for p = 200, and

σ2 = 0.1 for p = 2000.
(C) Simulate effects from a mixture of bivariate horseshoe distributions, which can be

generated from a scale mixture of normals:

[

βmj

αaj

]

∼ π1MVN(0, Z2
j

[

σ2 σ2/3
σ2/3 σ2

]

) +

π2MVN(0, Z2
j

[

σ2 0
0 0

]

)+π3MVN(0, Z2
j

[

0 0
0 σ2

]

)+π4δ0. Here, Zj ∼ halfCauchy(0, 1),

but truncated at a value of b to avoid impractically large values. We set σ2 = 0.5 for
p = 200, and σ2 = 0.3 for p = 2000, and b = 3. Note that the effect size distribution
assumed here is different from either of our proposed models, thus allowing us to study
the robustness of our methods. With the effect size distributions, we follow the same
procedure described as in the fixed effects settings.

We apply different methods to analyze the simulated data. In GMM, we set the
Dirichlet parameters a1 = 0.01p, a2 = a3 = 0.05p, a4 = 0.89p. We adopt an empirical
Bayesian approach to set the diagonal entries of Ψ0 as the sample variances of the
non-zero βm and αa fitted through Lasso. We set the degree of freedom ν in the
inverse-Wishart distribution to be two, which makes the distribution reasonably non-
informative while still well-defined. In PTG, we set the pre-defined minimal detectable
effect sizes (λ0, λ1, λ2) to be the 90% quantiles of the estimated |βm| and |αa| fitted
through Lasso. To be consistent with the GMM, we choose the parameter τ̂2 in the
priors τ2β ∼ IG(1.1, τ̂2), τ2α ∼ IG(1.1, τ̂2) to ensure that the prior inclusion probabilityThis	article	is	protected	by	copyright.	All	rights	reserved
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is around 0.01. For the Bayesian methods, we perform 150,000 iterations and discard
the first 100,000 iterations as burn-in. The MCMC convergence has been checked
using the potential scale reduction factor (PSRF) for the PIPs.

Results for Fixed Effect Simulations: Setting (I)-(II) Table 1 shows the results
under the fixed effects for the small sample scenario n = 100, p = 200 and the large
sample scenario n = 1000, p = 2000. Overall, our proposed methods, GMM and PTG,
outperform the other methods. These two methods achieve the highest AUC and are
up to ∼ 30% more powerful than the other methods in identifying active mediators,
with performance gain more apparent in the large sample scenario. Under Setting
(I) where the mediation effects are large, the PTG method has the highest average
TPR for both small and large sample settings. The performance of PTG is followed
by GMM and BAMA. In contrast, under Setting (II) where the mediation effects are
uneven, PTG may fail to identify some of the active mediators with small effects due to
the thresholding set by the pre-defined parameter λ. Instead, GMM performs the best
and its performance is followed by PTG and BAMA. Importantly, median inclusion
probabilities (PIP = 0.5) in both GMM and PTG can be used as a criterion to declare
active mediators (details in SM), producing decent empirical estimates for FDR in
simulations (Table S1, S2). Among the frequentist methods, the Bi-Lasso performs
best over the others and is also competitive in the small sample setting. HIMA and the
univariate method are among the worst methods for mediator selection, presumably
because neither models the entire set of mediators jointly in the outcome model.

In terms of the effects estimation, GMM has the lowest MSEnon-null across most sim-
ulation scenarios. Due to hard thresholding, PTG tends to provide a conservative list
of the active mediators. Consequently, the non-zero indirect contributions of some
active mediators are shrunk to zero in PTG, leading to relatively high MSEnon-null but
small MSEnull by PTG. Both methods provide lower bias on joint NIE and NDE, es-
pecially in the large sample scenario. Meanwhile, we find that the Pathway Lasso does
not appear to exhibit much advantage over the simple alternative Bi-Lasso. Indeed,
Pathway Lasso requires multiple tuning parameters for inducing the penalty term on
the indirect effects, and those parameters may benefit from more careful specifications
than the default setting. The univariate method in particular has a quite high MSEnull

(also large bias for NIE and NDE) as it does not apply any shrinkage on the effect
estimates. We also performed a sensitivity analysis to examine how robust the pos-
terior inference of PTG is regarding mild changes in terms of the prior choices. The
results are summarized in Table S8. In general, the lambda parameters, especially the
lower bounds for βmj and αaj , play an important role in PTG’s performance. As the
lambda parameters vary, the TPR and MSE vary in a reasonable range, and is mostly
better than the other methods.

Results for Random Effect Simulations: Setting (A)-(C) Table 2 shows the
results in the small sample scenario and Table 3 shows the results in the large sample
scenario. In all the settings, our proposed methods, PTG and GMM, outperform the
other methods with an approximately 10% power gain in identifying active mediators.
Between PTG and GMM, we find that both methods work preferably well in the settingThis	article	is	protected	by	copyright.	All	rights	reserved
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Table 1. Simulation results for fixed effects under n = 100, p = 200 and n = 1000, p =
2000, p11 is the number of truly active mediators. TPR: true positive rate at false

discovery rate (FDR) = 0.10. MSEnon-null: mean squared error for the indirect contri-

butions of truly active mediators. MSEnull: mean squared error for the indirect contri-

butions of truly inactive mediators. The results are based on 200 replicates for each

setting, and the standard errors are shown within parentheses. For PTG, we include

the pre-defined thresholds (λ0, λ1, λ2) under each setting. Bolded TPRs indicate the

top two performers.

n = 100, p = 200, p11 = 10, fixed effects (I)
Method AUC TPR MSEnon-null MSEnull × 10−4

PTG (0.15,0.4,0.4) 0.99(0.001) 0.52(0.026) 0.043 0.395
GMM 0.98(0.001) 0.44(0.022) 0.047 1.409
BAMA 0.97(0.002) 0.38(0.021) 0.063 2.471

Bi-BLasso 0.90(0.005) 0.27(0.015) 0.092 21.879
PathLasso 0.81(0.004) 0.35(0.019) 0.045 1.418
Bi-Lasso 0.80(0.008) 0.36(0.018) 0.043 0.661
HIMA 0.61(0.005) 0.23(0.010) 0.056 2.895

Univariate 0.80(0.007) 0.25(0.014) 0.060 49.764
n = 100, p = 200, p11 = 10, fixed effects (II)

Method AUC TPR MSEnon-null MSEnull × 10−4

PTG (0.15,0.4,0.4) 0.96(0.003) 0.35(0.016) 0.073 0.309
GMM 0.96(0.003) 0.37(0.017) 0.062 0.940
BAMA 0.95(0.003) 0.31(0.015) 0.075 2.389

Bi-BLasso 0.90(0.005) 0.25(0.013) 0.044 11.040
PathLasso 0.70(0.009) 0.28(0.015) 0.092 0.576
Bi-Lasso 0.72(0.006) 0.29(0.013) 0.079 0.422
HIMA 0.60(0.005) 0.21(0.010) 0.083 1.923

Univariate 0.82(0.007) 0.23(0.013) 0.081 26.540
n = 1000, p = 2000, p11 = 100, fixed effects (I)

Method AUC TPR MSEnon-null MSEnull × 10−4

PTG (0.15,0.4,0.4) 0.98(0.001) 0.64(0.008) 0.028 0.070
GMM 0.99(0.001) 0.61(0.009) 0.023 0.134
BAMA 0.98(0.001) 0.54(0.007) 0.040 0.150

Bi-BLasso 0.90(0.002) 0.23(0.004) 0.063 5.711
PathLasso 0.70(0.002) 0.20(0.005) 0.057 3.982
Bi-Lasso 0.72(0.001) 0.23(0.003) 0.051 0.293
HIMA 0.54(0.001) 0.15(0.003) 0.077 1.780

Univariate 0.89(0.002) 0.10(0.005) 0.092 225.056
n = 1000, p = 2000, p11 = 100, fixed effects (II)

Method AUC TPR MSEnon-null MSEnull × 10−6

PTG (0.15,0.4,0.4) 0.96(0.002) 0.40(0.008) 0.008 0.164
GMM 0.97(0.001) 0.48(0.006) 0.003 3.437
BAMA 0.95(0.001) 0.35(0.005) 0.005 7.485

Bi-BLasso 0.85(0.001) 0.18(0.004) 0.011 184.761
PathLasso 0.67(0.002) 0.19(0.003) 0.017 19.540
Bi-Lasso 0.70(0.001) 0.23(0.005) 0.007 5.059
HIMA 0.56(0.002) 0.08(0.003) 0.013 25.432

Univariate 0.85(0.001) 0.12(0.003) 0.075 208.660

This	article	is	protected	by	copyright.	All	rights	reserved



14 Y. Song et al.

where their corresponding effect size distribution is used. Specifically, in Setting (A)
with p = 2000, the PTG method has the highest AUC (0.98) and TPR (0.40) at FDR
= 10%. The performance of PTG is followed by GMM (AUC = 0.98, TPR = 0.37).
In Setting (B) with p = 2000, the GMM method has the highest AUC (0.95) and TPR
(0.51). The performance of GMM is followed by PTG (AUC = 0.92, TPR = 0.42).
In Setting (C) where the effects are simulated with a horseshoe distribution, we find
that GMM performs the best and its performance is followed by PTG and BAMA.
The horseshoe distribution has a tall spike near zero and heavy tails, and therefore
leads to a particularly challenging setting for most methods. The good performance
of GMM in Setting (C) thus supports the robustness of the method. In addition,
as before, both PTG and GMM provide reasonable empirical estimates of FDR and
TPR (Table S1, S2 of SM) based on a PIP = 0.5 cutoff. The accuracy gain in effects
estimation basically follows the same pattern as the power gain in mediator selection.
The computing time of the proposed methods is reported in Table S3 of SM, with
both methods being relatively efficient for p = 200 and p = 2000 cases.

Finally, among the three frequentist methods, the bi-Lasso yields higher power as
compared to the other two in all the scenarios and has smaller MSE in almost all the
settings except for the horseshoe setting. Between bi-Lasso and bi-Bayesian Lasso, we
find that the former outperforms the latter with higher TPR and smaller MSEnull. This
comparison suggests that under this sparse setup, the estimated non-sparse indirect
estimates in bi-Bayesian Lasso may not be ideal for classifying mediators as compared
to the sparse solutions produced by bi-Lasso.

Alternative to fixing the threshold parameter λ, we also consider a data-adaptive
uniform prior that favors large positive value of λ’s. That is, we first fit the Lasso
method and then use the posterior quantiles (e.g. 95% to 99%) of the estimated
|βm|, |αa| to determine the range of corresponding λ’s. To be specific, a priori,

λ1 ∼ U[|β̂m|(95%), |β̂m|(99%)], λ2 ∼ U[|α̂a|
(95%), |α̂a|

(99%)], and we always set the
value of λ0 as λ1λ2. The results (Table S6 in SM) indicate that uniform priors with
adequately large lower bounds (e.g. 95% quantiles) of λ1 (and λ2) can boost the
selection power and estimation accuracy. The thresholds specified this way also cover
a reasonably wide range, e.g. 0.2 ∼ 0.6 when the non-zero true effect is 0.5 in our
simulation. This relatively objective approach can be used to guide the selection of
λ’s in grid search.

In summary, the simulations demonstrate that GMM enjoys superior and robust per-
formance for mediator selection and effect estimation, while PTG is preferable under
potentially large non-zero effects in mediator selection.

5. Data Application

5.1. Analysis of DNA Methylation in the MESA Cohort

We applied the proposed GMM and PTG to investigate the mediation mechanism of
DNAm in the pathway from neighborhood socioeconomic disadvantage to BMI in the
MESA data. Neighborhood SES is the exposure variable and is created based on aThis	article	is	protected	by	copyright.	All	rights	reserved
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Table 2. Simulation results for random effects under n = 100, p = 200, p11 is the number of truly

active mediators. TPR: true positive rate at false discovery rate (FDR) = 0.10. MSEnon-null:

mean squared error for the indirect contributions of truly active mediators. MSEnull: mean

squared error for the indirect contributions of truly inactive mediators. The results are based

on 200 replicates for each setting, and the standard errors are shown within parentheses.

For PTG, we include the pre-defined thresholds (λ0, λ1, λ2) under each setting. Bolded TPRs

indicate the top two performers.

n = 100, p = 200, p11 = 10, PTG, σ2
u
= 0.3

Method AUC TPR MSEnon-null MSEnull × 10−4

PTG (0.15, 0.4, 0.4) 0.98(0.002) 0.45(0.020) 0.05 1.59
GMM 0.98(0.001) 0.43(0.015) 0.03 4.25
BAMA 0.98(0.001) 0.41(0.019) 0.04 2.64

Bi-BLasso 0.89(0.006) 0.35(0.017) 0.05 6.83
PathLasso 0.65(0.013) 0.31(0.015) 0.06 2.43
Bi-Lasso 0.78(0.009) 0.40(0.020) 0.05 1.12
HIMA 0.60(0.007) 0.29(0.012) 0.07 5.46

Univariate 0.85(0.008) 0.29(0.023) 0.15 76.25
n = 100, p = 200, p11 = 10, Gaussian, σ2 = 0.3

Method AUC TPR MSEnon-null × 10−3 MSEnull × 10−5

PTG (0.04, 0.2, 0.2) 0.92(0.002) 0.38(0.008) 6.24 4.05
GMM 0.94(0.003) 0.41(0.006) 3.92 3.56
BAMA 0.95(0.003) 0.38(0.011) 5.06 3.39

Bi-BLasso 0.83(0.006) 0.28(0.014) 23.31 14.38
PathLasso 0.75(0.008) 0.30(0.011) 11.57 3.09
Bi-Lasso 0.75(0.003) 0.36(0.011) 7.50 1.52
HIMA 0.65(0.005) 0.21(0.009) 14.98 7.93

Univariate 0.75(0.006) 0.26(0.025) 62.46 234.30
n = 100, p = 200, p11 = 10, Horseshoe, σ2 = 0.5, b = 3

Method AUC TPR MSEnon-null MSEnull × 10−4

PTG (0.15, 0.5, 0.3) 0.80(0.009) 0.30(0.015) 0.42 7.16
GMM 0.83(0.006) 0.33(0.011) 0.03 5.21
BAMA 0.80(0.008) 0.28(0.017) 0.11 6.28

Bi-BLasso 0.76(0.011) 0.23(0.010) 0.45 42.36
PathLasso 0.65(0.019) 0.25(0.026) 0.51 6.04
Bi-Lasso 0.68(0.009) 0.27(0.017) 0.46 5.41
HIMA 0.60(0.006) 0.20(0.010) 0.41 26.51

Univariate 0.72(0.009) 0.20(0.020) 0.44 512.33
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Table 3. Simulation results for random effects under n = 1000, p = 2000, p11 is the number of

truly active mediators. TPR: true positive rate at false discovery rate (FDR) = 0.10, MSEnon-null:

mean squared error for the indirect contributions of truly active mediators. MSEnull: mean

squared error for the indirect contributions of truly inactive mediators. The results are based

on 200 replicates for each setting, and the standard errors are shown within parentheses.

For PTG, we include the pre-defined thresholds (λ0, λ1, λ2) under each setting. Bolded TPRs

indicate the top two performers.

n = 1000, p = 2000, p11 = 100, PTG, σ2
u
= 0.1

Method AUC TPR MSEnon-null × 10−4 MSEnull × 10−6

PTG (0.05,0.15,0.15) 0.98(0.001) 0.40(0.008) 5.28 2.46
GMM 0.98(0.001) 0.37(0.010) 3.86 4.26
BAMA 0.98(0.001) 0.30(0.012) 4.84 3.62

Bi-BLasso 0.92(0.003) 0.29(0.018) 7.92 11.38
PathLasso 0.77(0.009) 0.22(0.007) 7.02 1.74
Bi-Lasso 0.83(0.003) 0.28(0.014) 5.60 1.81
HIMA 0.53(0.002) 0.14(0.004) 9.96 4.96

Univariate 0.85(0.003) 0.11(0.023) 60.24 214.57
n = 1000, p = 2000, p11 = 100, Gaussian, σ2 = 0.1

Method AUC TPR MSEnon-null × 10−3 MSEnull × 10−5

PTG (0.02,0.2,0.1) 0.92(0.002) 0.42(0.006) 4.76 0.874
GMM 0.95(0.001) 0.51(0.007) 2.09 0.712
BAMA 0.90(0.003) 0.41(0.018) 2.85 0.722

Bi-BLasso 0.88(0.002) 0.32(0.007) 4.85 1.632
PathLasso 0.78(0.011) 0.25(0.003) 4.88 1.256
Bi-Lasso 0.81(0.002) 0.38(0.010) 2.53 0.368
HIMA 0.55(0.002) 0.19(0.004) 8.41 1.544

Univariate 0.82(0.003) 0.19(0.017) 34.08 20.05
n = 1000, p = 2000, p11 = 100, Horseshoe, σ2 = 0.3, b = 3

Method AUC TPR MSEnon-null MSEnull × 10−4

PTG (0.03,0.3,0.1) 0.74(0.002) 0.29(0.008) 0.18 10.04
GMM 0.80(0.001) 0.38(0.007) 0.14 2.94
BAMA 0.75(0.002) 0.27(0.006) 0.25 3.88

Bi-BLasso 0.71(0.002) 0.09(0.003) 0.26 127.55
PathLasso 0.66(0.008) 0.05(0.002) 0.41 2.03
Bi-Lasso 0.72(0.003) 0.24(0.007) 0.24 1.57
HIMA 0.55(0.002) 0.09(0.004) 0.39 1.56

Univariate 0.77(0.003) 0.09(0.015) 0.59 644.07
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principal components analysis of 16 census-tract level variables reflecting dimensions of
education, occupation, income, poverty, housing, etc. BMI is the outcome variable and
also a critical risk factor for various diseases including T2D and CVD (Hjellvik et al.,
2012). Understanding how methylation at different CpG sites mediates the effects of
neighborhood SES on BMI can shed light on the molecular mechanisms of complex
diseases, thus leading to potential therapeutic strategies. The detailed processing
steps for MESA data are provided in the SM. Briefly, we selected 1,225 individuals
with non-missing data. Due to computational reasons, we focused on a final set of
2,000 CpG sites that have the strongest marginal associations with neighborhood SES.
We applied various methods for the mediation analysis. In the outcome model, we
adjust for age, gender, race/ethnicity, childhood socioeconomic status (SES) and adult
SES (more details on the SES variables can be found at Smith et al. (2017)). In the
mediator model, we control for age, gender, race/ethnicity, childhood SES, adult SES,
and enrichment scores for 4 major blood cell types (neutrophils, B cells, T cells and
natural killer cells) to account for potential contamination by non-monocyte cell types.
All the continuous variables are standardized to have zero mean and unit variance.

We display the PIP values for each of the 2,000 CpG sites from PTG and GMM in
Figure 1. GMM identified nine CpG sites with significant evidence for mediating the
neighborhood SES effects on BMI based on 0.5 cutoff of PIPs. In contrast, PTG
identified twelve significant CpG sites at the same threshold, which include all the
nine sites selected by GMM method. The top five CpG sites identified by the two
methods are identical. The rank correlation for the mediator rank lists obtained from
both methods is 0.87, supporting the high consistency between the two methods. We
carefully examine the nearby genes of the detected methylation sites by GMM and
PTG. Among them, genetic variation in PTK2, a gene encoding structural protein in
muscle, may be associated with BMI (Zeller et al., 2018); genetic variations in PCID2
and NFE2L1 have been shown to be associated with cardiovascular disease, glucose
and insulin resistance in human and animal systems (Zheng et al., 2015; Erdmann
et al., 2018); Differences in COX6A1P2 methylation was robustly recognized to link
with obesity development in multiple epigenome-wide studies (Kvaløy et al., 2018)
and EVI2B was reported as one of the regulatory genes related to obesity in a porcine
model (Kogelman et al., 2014). Therefore, the genes nearby the detected CpG sites
may play an important role in transmitting the effects of neighborhood SES to BMI.
For the other competing methods, BAMA and the univariate methods do not have
sufficient power to identify any significant CpG sites at 0.10 FDR. HIMA identifies one
CpG site in the gene region of PCID2 as active mediator through its joint significance
test (adjusted P -value = 6.3×10−5), and this single site has also been detected by PTG
and GMM methods. Bi-Lasso and Pathway Lasso tend to produce a large number of
false positives in simulations, and thus it is hard to verify their findings in the real
data application.This	article	is	protected	by	copyright.	All	rights	reserved
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Fig. 1. Data analysis results for the trio Neighborhood SES → DNAm → BMI in MESA data.

The upper panel shows the PIPs obtained from the GMM method, and the lower panels shows

the PIPs obtained from the PTG method. The blue lines mark the PIP = 0.5 threshold, and

we include the nearby genes of the selected CpG sites. Most of the sites are identified by

both methods, and the three genes in green are additional findings from PTG.

This	article	is	protected	by	copyright.	All	rights	reserved
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Table 4. Summary of the identified active mediators from the data application on

MESA and LIFECODES study. For PTG, we include the pre-defined thresholds

(λ0, λ1, λ2) for the two real datasets.

Method Selected Mediators
MESA: Neighborhood SES → DNAm → BMI

GMM CRHR2, NFE2L1, PTK2, PCID2, MNDA,
SLK, CREB1, CASZ1, EVI2B

PTG (0.01,0.05,0.1) CRHR2, NFE2L1, PTK2, PCID2, MNDA, CREB1,
SLK, EVI2B, OR2M5, SLC18B1, COX6A1P2, CASZ1

LIFECODES: Phthalates → Biomarkers → Gestational age
GMM 12(13)-EpoME, 9-oxoODE

PTG (3.0,2.0,1.5) 12(13)-EpoME, 8-OHdG, LTD4

5.2. Analysis of Endogenous Biomarkers and Environmental Data in the LIFECODES
Birth Cohort

As another data example, we study the collective impact of endogenous signaling
molecules derived from lipids, peptides, and DNA in mediating prenatal exposure to
environmental contaminants on the risk of preterm birth in the LIFECODES birth
cohort. Detailed description of the study is provided in the SM. Briefly, we consider
n = 161 pregnant women registered at the Brigham and Women’s Hospital in Boston,
MA between 2006 and 2008. Subjects’ urine and plasma specimens were collected
at one study visit occurring between 23.1 and 28.9 weeks gestation. Four classes of
environmental contaminants, including phthalates, phenols, polycyclic aromatic hy-
drocarbons, and trace metals, were measured in each urine sample. Among them,
phthalates are the high-production volume chemicals commonly used as plasticizers in
numerous consumer products. Previous studies have shown that everyday exposure
to phthalates during pregnancy would increase risk of delivering preterm (Ferguson
et al., 2014). Recent studies have also uncovered associations between multiple lipid
biomarkers and preterm birth (Aung et al., 2019). Based on those evidence, we aim to
understand the molecular mechanism underlying the effects of phthalates on preterm.
We first follow Aung et al. (2020) to create an environmental risk score for the phtha-
late class and treat such risk score as the exposure variable. The gestational age at
delivery was recorded as the continuous birth outcome. For mediators, we obtained
61 endogenous biomarkers from urine and plasma that included 51 eicosanoids, five
oxidative stress biomarkers and five immunological biomarkers. In the analysis, we
perform log-transformation on all measurements of the exposure metabolites and en-
dogenous biomarkers. We adjust for age and maternal BMI from the initial visit, race,
and urinary specific gravity levels inside both models of the mediation analysis. Since
the cohort is oversampled for preterm cases (< 37 weeks gestation), we multiply the
data by the case-control sampling weights to adjust for that.

We summarize the application results in Table 4. Both PTG and GMM identified
significant mediators that mediate the effects of the phthalate exposure on gestational
age at delivery based on PIP = 0.5 cutoff (Figure 2), with rank lists of mediators
positively correlated with each other (rank correlation = 0.48). Specifically, GMM
identified two significant biomarkers (9-oxooctadeca-dienoic acid [9-oxoODE], 12,13-This	article	is	protected	by	copyright.	All	rights	reserved
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epoxy-octadecenoic acid [12(13)-EpoME]). PTG identified three significant biomarkers
(8-hydroxydeoxyguanosine [8-OHdG], 12(13)-EpoME, leukotriene D4 [LTD4]), one of
which (12(13)-EpoME) overlaps with those identified by GMM. Among the identified
biomarkers, 8-OHdG is commonly utilized as a marker of oxidative stress generated
upon repair of oxidative DNA damage and has been found to be strongly associated
with decreased gestational length and increased risk of preterm (Ferguson et al., 2015);
while LTD4 has been shown to exhibit significant associations with preterm birth, and
9-oxoODE and 12(13)-EpoME had an important protective effect on preterm birth
(Aung et al., 2019). As a comparison, BAMA, HIMA and the univariate methods
fail to identify any significant active mediators at 0.10 FDR in this application. Our
results help improve the understanding of the molecular mechanisms underlying the
effects of environmental exposure on preterm, and could further lead to improvement
of treatment and prevention strategies.

Fig. 2. Data analysis results for the LIFECODES cohort. The panel shows the PIPs obtained

from GMM (blue) and PTG (yellow) methods for the trio Exposure to phthalates → Biomarkers

→ Gestational age of the newborn at delivery.
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6. Discussion

In this paper, we present two novel joint modeling approaches, PTG and GMM, for
high-dimensional mediation analysis. Our methods can jointly model a large number
of mediators and enable penalization on the indirect effects in a targeted way. Our
methods effectively characterize the high-dimensional set of potential mediators into
four groups based on the exposure-mediator and mediator-outcome effects: the active
mediating group and three non-mediating groups. These group categorizations are in
consonance with the composite structure for testing the indirect effect recently pro-
posed in genome-wide mediation analyses (Huang, 2019). With extensive simulations,
we show that our methods achieve up to 30% power gain in identifying true non-
null mediators as compared with other existing alternatives, including several recently
developed penalized and Bayesian methods for mediation analysis. We have demon-
strated the benefits of our methods with both genetic and environmental data in the
MESA and LIFECODES cohorts. For example, in the MESA cohort, we identify sev-
eral DNAm and their nearby genes, e.g. NFE2L1 and PTK2, with strong evidence for
mediating neighborhood SES effects on BMI. This is an important finding in biosocial
research where we try to characterize how the insults from our external environment
influence the internal cellular environment and finally manifest into development of a
chronic disease.

On the methodological front, we still have challenges remaining that are unsolved in
this modeling exercise. Bayesian FDR control is of great importance to safeguard
false positives in the scientific discovery. For PTG and GMM, we rely on the me-
dian inclusion probabilities (PIP = 0.5) to identify active mediators, which provides
effective FDR control as validated through simulations. For bi-Bayesian Lasso and
other continuous shrinkage methods, such as the scale mixture of normals prior, we
have attempted to define PIP using shrinkage factors following Carvalho et al. (2010).
However, we find it challenging to adapt the shrinkage factors to devise an optimal
strategy for computing PIP analogs and ranking correlated mediators. Consequently,
we have to rely on the estimated indirect contributions from these methods to rank
mediators, which may account for at least partially the relatively poor performance of
these methods. Therefore, coming up with an analog of PIP as the selection criterion
in mediation analysis for various other methods remains a topic of future investigation.

One limitation of our current work is that the proposed methods do not explicitly in-
corporate the correlation structure among mediators in the modeling process. Treating
mediators independent a priori, the models may fail to distinguish among highly corre-
lated mediators and lose power in mediator selection when two truly active mediators
tend to be correlated with each other. Correlations among mediators are commonly
seen in modern data analysis; such examples include genomic data that measure hun-
dreds of thousands of gene expressions/single nucleotide polymorphisms (SNPs), and
brain image data that contain a large number of voxels/regions. Incorporating media-
tor correlation information explicitly into our Bayesian paradigm could be a promising
direction for future work.This	article	is	protected	by	copyright.	All	rights	reserved
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7. Software

Software in the form of C++ codes is available on github https://github.com/

yanys7/GMM_PTG_Mediation.
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