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Identifying the optimal treatment decision rule, where the best treatment for
an individual varies according to his/her characteristics, is of great importance
when treatment effect heterogeneity exists. We develop methods for estimat-
ing the optimal treatment decision rule based on data with survival time as
the primary endpoint. Our methods are based on a flexible semiparametric
accelerated failure time model, where only the treatment contrast (ie, the differ-
ence in means between treatments) is parameterized and all other aspects are
unspecified. An individual’s treatment contrast is firstly estimated robustly by an
augmented inverse probability weighted estimator (AIPWE). Then the optimal
decision rule is estimated by minimizing the loss between the treatment contrast
and the AIPWE contrast. Two loss functions with different strategies to account
for censoring are proposed. The proposed loss functions distinguish from exist-
ing ones in that they are based on treatment contrasts, which completely deter-
mine the optimal treatment rule. Our methods can further incorporate a penalty
term to select variables that are only important for treatment decision making,
while taking advantage of all covariates predictive of outcomes to improve per-
formance. Comprehensive simulation studies have been conducted to evaluate
performances of the proposed methods relative to existing methods. The pro-
posed methods are illustrated with an application to the ACTG 175 clinical trial
on HIV-infected patients.

K E Y W O R D S

augmented inverse probability weighted estimator, decision rule, doubly robust, optimal treatment
regime, subgroup identification, variable selection

1 INTRODUCTION

The traditional framework for comparative effectiveness research has focused on average treatment effects. That is, the
goal is to identify which treatment option, among a set of candidate options, will lead to the best outcomes on average.
Within this framework implicitly one assumes that we should then treat every intended subject with the optimal treatment
option. In practice, however, it has been long recognized that heterogeneity among patients may exist with regard to
responses to different treatment options.1-3 A treatment option that is better on average may not be useful and even be
harmful to a subgroup of patients. When heterogeneity in treatment effects exists, alternative to identifying the optimal
treatment on average, a more meaningful question is to learn the optimal treatment decision rule to guide future treatment
decision making for an individual patient based on his/her characteristics. Since more than a decade ago there has been an
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increasing interest in developing statistical methods for estimating the optimal treatment decision rule.4-9 See the recent
book on optimal dynamic treatment regimes for a comprehensive review.10

The majority of the literature on estimating the optimal treatment regime has focused on continuous outcomes, with
much less work on time-to-event outcomes. Since the primary outcome in many clinical trials is mortality or time to a
major event, time-to-event outcomes are undoubtedly a very important type of outcome to study for optimal treatment
decision making. Tian et al11 proposed a clever modified covariate approach within a Cox model framework to study
treatment effect heterogeneity. The modified covariate approach is further coupled with an augmentation procedure to
improve efficiency. Extending the work of Lu et al12 for uncensored outcomes to censored outcomes, Geng et al13 studied
a robust loss-based framework where the loss is weighted by the inverse probability of not being censored to account
for censoring. Both methods of Tian et al11 and Geng et al13 are robust in the sense that they do not require working
models for outcomes to be correctly specified. In addition, both methods are able to accommodate variable selection with
regularization through an L1 penalty. Other work on estimating the optimal treatment regimes for survival data includes,
for example, Goldberg and Kosorok,14 Bai et al,15 Jiang et al,16 Hager et al,17 and Simoneau et al.18

In this article, we propose methods to estimate the optimal treatment decision rule by directly targeting the treatment
contrast function, defined as the difference in conditional expectations between treatments. As discussed in Section 2,
the contrast function between treatments completely defines the optimal treatment decision rule. We propose to estimate
the optimal decision rule by minimizing the empirical discrepancy between treatment contrasts and the estimated treat-
ment contrasts for subjects. Specifically, we estimate the treatment contrast for an individual patient using an augmented
inverse probability weighted approach, which possesses a robustness property in the setting of a randomized clinical trial
and leads to good efficiency. As a result, the resulting method also enjoys robustness and good performances.

The remainder of the article is organized as follows. Section 2 introduces notations, formally defines the optimal treat-
ment regime and discusses assumptions necessary to identify the optimal decision rule from the observed data. Section 3.1
introduce the model and Section 3.2 reviews some closely related methods that motivated the proposed methods. We
present the proposed methods and two contrast function-based loss functions in Section 3.3, with details on modeling
survival times for estimating treatment contrasts in Section 3.4. Section 3.5 studies asymptotic properties of the two loss
functions and variable selection, and discusses the impacts of inverse probability censoring weighting vs not weighting.
Comprehensive simulation studies and a real data application are reported in Sections 4 and 5, followed by a discussion
in Section 6.

2 NOTATIONS AND BACKGROUND

Consider a study with n subjects sampled from the patient population of interest. Let Ai, taking values 0 or 1, denote
the treatment received by subject i and Xi denote a p-dimensional vector of covariates. When data are obtained from a
randomized clinical trial, then we would have Ai ⟂ Xi by randomization. More generally, the treatment assignment may
depend on covariates in observational studies. As in Geng et al13 we focus on the setting of a randomized clinical trial,
but we also consider the more general setting where treatments are not randomized. Let Ti denote the survival time
of interest and Ci is the censoring time for subject i. Following Geng et al13 and as is usually assumed for a random-
ized clinical trial, we make the independent censoring assumption, denoted by Ci ⟂ (Ti,Xi,Ai). For survival data, one
observes the minimum of survival time and censoring time, and we denote Ui = min(Ti,Ci) = Ti ∧ Ci, where a ∧ b stands
for min(a, b). For convenience, we also define Yi = log(Ti), and then equivalently one gets to observe Ỹi = Yi ∧ log(Ci).
The indicator for not being censored is defined as 𝛿i = I(Ti ≤ Ci) = I(Yi ≤ log(Ci)). In summary, the observed data consist
of (Ỹi,Ui,Xi,Ai, 𝛿i), i = 1, … ,n, identically and independently across subject i.

To formally define the optimal treatment regime, we adopt the potential outcomes framework. Let T∗
i (0),T∗

i (1) be
the potential survival time had the patient, possibly contrary to fact, received treatment 0 and 1, respectively. Similarly,
Y∗

i (0),Y∗
i (1) are the potential log survival time for subject i. A treatment regime, g(X), is a function of X that takes value 0

or 1 and maps values of covariates into a treatment option. It is a treatment decision rule that dictates how the treatment
should be prescribed according to a given vector of covariates. For subject i following the treatment regime g, the corre-
sponding potential survival time is defined as T∗

i (g) = g(Xi)T∗
i (1) + {1 − g(Xi)}T∗

i (0). That is, it is equal to the potential
outcome T∗

i (a), where a = g(Xi) is the treatment decision prescribed for subject i by the decision rule g. Similarly, one may
define the potential log survival time as Y∗

i (g) = g(Xi)Y∗
i (1) + {1 − g(Xi)}Y∗

i (0). There are many possible decision rules
and our goal is to estimate the optimal treatment regime based on the observed data. That is, we aim to use the observed
data to learn the optimal treatment decision rule. In this article the optimal treatment regime is defined as the one that
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maximizes the mean potential survival time and, equivalently the mean potential log survival time. Formally, the optimal
treatment regime, gopt, satisfies

gopt = arg max
g∈

E{T∗(g)} = arg max
g∈

E{Y∗(g)},

where  denotes the set of all treatment regimes under consideration. The expectation E{Y∗(g)} is commonly referred to
as the value of the regime g.

The optimal treatment regime is defined in terms of potential outcomes, which are not completely observed even in
the absence of censoring. In order for the optimal treatment regime to be identifiable from the observed data, we make
the following standard assumptions.9

(C1) Stable unit treatment value assumption: Y = Y∗(1)A + Y∗(0)(1 − A);
(C2) No unmeasured confounders assumption: A ⟂ {Y∗(0),Y∗(1)}|X .

When data are obtained from a randomized clinical trial, the no unmeasured confounders assumption is satisfied auto-
matically by design. Under these two assumptions, the optimal treatment regime is identifiable from the observed data.
Alternative definitions of the optimal treatment regime based on the observed data under the two assumptions and some
further notations are given below; see, for example, Zhang et al19,20 for more details. It is straightforward to see that

E{Y∗(g)} = E {E[g(X)Y∗(1) + {1 − g(X)}Y∗(0)|X]}
= E[g(X)E{Y |A = 1,X} + {1 − g(X)}E{Y |A = 0,X}]
= E[g(X){u1(X) − u0(X)} + u0(X)],

where ua(X) = E(Y |A = a,X). Then the optimal treatment regime satisfies

gopt = arg max
g∈

E[g(X){u1(X) − u0(X)}]

≡ arg max
g∈

E{g(X)(X)},

where (X) = u1(X) − u0(X) and is referred to as the contrast function between treatments. Therefore, the optimal treat-
ment regime can be identified through ua(X), the conditional mean of observed outcomes given the treatment and
covariates. More specifically, the optimal treatment regime is determined by the treatment contrast (X). That is, by
solving the above optimization problem, it is clear that

gopt(X) = I((X) > 0)). (1)

The discussion above assumes no censoring exists. For survival data, further assumption regarding censoring is needed
for estimation of the optimal treatment regime from the observed data. In the following development, we assume the
independent censoring assumption described earlier.

3 METHODS

3.1 Model

As discussed above, the optimal treatment regime is directly related to the treatment contrast function (X) and, equiv-
alently, the conditional mean of outcomes given the treatment and covariates, ua(X) = E(Y |A = a,X). We assume that,
given the treatment and covariates, the log survival time follows the following semiparametric model:

Y = log(T) = M(X) + 𝛾 ′H(X)A + 𝜀, (2)

where M(X) is an unspecified function of X , H(X) is a q-dimensional function of baseline covariates X and always
includes an intercept, and 𝜀 is an error term such that E(𝜀|X ,A) = 0. For simplicity, we denote H(X) by HX . Model (2)
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is a semiparametric accelerated failure time (AFT) model. Under this model, u0(X) = E(Y |X ,A = 0) = M(X), which is
unspecified, and u1(X) = M(X) + 𝛾 ′HX . The treatment contrast function (X) equals u1(X) − u0(X) = 𝛾 ′HX and is mod-
eled parametrically. This semiparametric model only makes assumptions on the parametric form of the treatment contrast
function, leaving other aspects of the conditional mean function unspecified. Therefore, it is more robust and flexible than
the usual regression model. This semiparametric model has been popular for estimating the optimal treatment regimes
for outcomes without censoring,21 commonly referred to as A-learning. Under this model, it is easy to see that the opti-
mal treatment regime is given by gopt(X) = I(𝛾 ′HX > 0) according to (1). We comment that for censored survival data,
the mean of survival time is usually not estimable without making additional assumptions. However, under the assumed
semiparametric accelerated failure time model, even though the mean log survival time is still not estimable since no
assumptions on 𝜖 are made, the optimal treatment regime, that is, I(𝛾 ′HX > 0), is estimable as it depends only on model
coefficients but not on the underlying distribution of Y . A natural way to estimate the optimal treatment regime would
be I(�̂� ′HX > 0), where �̂� is an estimator for 𝛾 . When censoring is absent, 𝛾 and hence the optimal treatment regime can
be estimated by the G-estimation method.21 The censoring poses additional challenges. Below we briefly introduce two
methods that are closely related to and motivated the proposed methods.

3.2 Related methods

When no censoring exists, Lu et al12 proposed a general and robust framework for variable selection and estimating the
optimal treatment regime. Later Geng et al13 generalized the framework to survival outcomes to account for censoring.
Geng et al13 considered the same model given in (2) and proposed to minimize the following inverse probability censoring
weighted loss function:

1
n

n∑
i=1

𝛿i

Ĝ(Ti)

{
Yi − 𝜙(Xi; 𝜃) − 𝛾 ′HXi(Ai − 𝜋i)

}2
, (3)

where Ĝ(t) is the Kaplan-Meier estimator for the survival function of C at t, 𝜙(Xi; 𝜃) is a posited parametric function for
the baseline function M(X), and 𝜋i ≡ 𝜋(Xi) is an estimate of the propensity score P(Ai = 1|Xi). Geng et al13 demonstrated
that this method is robust for randomized clinical trials in the sense that it does not require the correct specification of
the baseline function. For variable selection, they proposed to couple the above loss function with the adaptive LASSO
penalty and minimize a penalized loss function.

When there is no censoring, Zhang et al20 proposed a general direct optimization framework to estimate the optimal
treatment regimes. Zhang et al20 showed that popular existing methods for estimating the optimal treatment regime can fit
into this direct optimization framework by a specific choice of the estimator for the contrast function (X). In particular,
the robust method of Zhang et al,19 based on augmented inverse probability weighted estimators (AIPWE) for population
means, is equivalent to estimating (X) by the following AIPWE estimator

̂(Xi) =
Ai

𝜋i
Yi −

Ai − 𝜋i

𝜋i
û1(Xi) −

{
1 − Ai

1 − 𝜋i
Yi −

𝜋i − Ai

1 − 𝜋i
û0(Xi)

}
, (4)

where ûa(X), a = 0, 1, is an estimate of E(Y |A = a,X) that will be discussed in detail later. Zhang et al19,20 have shown that
the resulting estimator for the optimal treatment regime is doubly robust in the sense that it only requires the propensity
score model or the outcome model, but not necessarily both, to be correct. For randomized clinical trials, the AIPWE
for a population mean is always consistent as the model for the treatment probability (propensity score) can always be
correct. Working models for ûa(Xi) are used for improve efficiency because the corresponding AIPWE for a population
mean is semiparametric efficient when ûa(X), a = 0, 1, are modeled correctly. As a result, robust AIPWE-based methods
have superior performances as shown in Zhang et al.19,20

3.3 Proposed loss functions

Our proposed method has a close relationship with the two methods introduced in Section 3.2. Similar to Geng et al,13 we
aim to estimate 𝛾 by minimizing a loss function that accounts for censoring. In our proposed loss function, we would like
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to take advantage of the general and robust AIPWE-based framework and the estimated contrast function (4). Our pro-
posed method is based on the following considerations. First, as discussed at the end of Section 2, the optimal treatment
regime is completely determined by the contrast function; that is, gopt(X) = I((X) > 0). Second, as briefly introduced in
Section 3.2 and demonstrated by Zhang et al,20 popular existing methods essentially differ in ways to estimate the contrast
function. In particular, the AIPWE approach (4) has been shown to be appealing in terms of robustness and efficiency.19,20

Third, according to the semiparametric model (2), we assume the true contrast function is (X) = 𝛾 ′HX . Due to these
considerations, we propose to estimate 𝛾 and hence the optimal treatment regime by minimizing the following loss
function

Ln(𝛾) =
1
n

n∑
i=1

𝛿i

Ĝ(Ti)
{̂(Xi) − 𝛾 ′HXi}

2, (5)

where ̂(Xi) is the robust AIPWE for the contrast function defined in (4). Compare the proposed loss function (5) with (3)
studied by Geng et al.13 We note that (3) minimizes a weighted discrepancy between outcomes and a function involving
several components. The form of the function, although based on sound theoretical development, is not entirely intuitive
and lacks an easy interpretation. Alternatively, the proposed loss function (5) directly minimizes a weighted discrepancy
between the estimated treatment contrast and the contrast function implied by model (2) for all subjects. In construction of
̂(Xi), one needs to estimate the treatment propensity P(A = 1|X). For randomized clinical trials, the treatment propensity
can be estimated by 𝜋i = 𝜋 = n−1∑n

i Ai. Alternatively, as the treatment probability is known by design for a randomized
trial and we may substitute 𝜋i in ̂(Xi) directly by the known constant. For example, for a randomized trial with 𝜋 = 1∕2,
it is easy to verify that

̂(X) = 2(2A − 1)
{

Y − û1(X) + û0(X)
2

}
.

In an observational study, when the treatment assignment is not randomized, one needs to model P(A = 1|X). For
example, a logistic regression model with lasso for variable selection may be used.

The loss function in (5) is weighted by the inverse probability of not being censored, which is intuitive and leads to
good theoretic properties in large samples as shown in Section 3.5. However, based on our experience, inverse probability
censoring weighting often leads to large variability in the loss function and, as a result, degraded performances empirically.
This is likely due to the fact that a proportion of subjects may have small probability of not being censored by time t =
Ti and therefore receive large weights. Alternatively, we also propose to estimate 𝛾 by minimizing the unweighted loss
function

Ln(𝛾) =
1
n

n∑
i=1

𝛿i{̂𝛿(Xi) − 𝛾 ′HXi}
2, (6)

where ̂𝛿(Xi) mimics ̂(Xi) and is defined as Ai
𝜋𝛿

i
Yi −

Ai−𝜋𝛿
i

𝜋𝛿
i

û1(Xi) −
{

1−Ai
1−𝜋𝛿

i
Yi −

𝜋𝛿
i −Ai

1−𝜋𝛿
i

û0(Xi)
}

, with 𝜋𝛿
i ≡ 𝜋𝛿(Xi) estimating

P(Ai = 1|Xi, 𝛿i = 1). Justification of this loss function is further discussed in Section 3.5 where we study the asymptotic
property of the resulting estimator for 𝛾 . Both weighted and unweighted versions of the method is studied empirically by
simulations below. Note that, although the loss function is not weighted by the inverse probability of not being censored,
censoring is accounted for appropriately in construction of ̂(Xi) as discussed in Section 3.4. For the treatment probability
P(A = 1|X , 𝛿 = 1), a logistic model with lasso for variable selection could be fit using the uncensored data.

The estimator ̂(X) also involves ûa(X), which is estimate of ua(X). We discuss the details of estimation of ua(X) below.

3.4 Estimation of ua(X)

As the outcome Y is subject to censoring, naturally one can model it using models developed for survival outcomes
to incorporate information from both censored and uncensored subjects. The Cox proportional hazards model and the
accelerated failure time model are both extensively studied models for modeling time-to-event data subject to censoring.
In our method we choose to model outcomes using a semiparametric AFT model because it directly relates covariates
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to the mean of Y , whereas the Cox model relates covariates to the hazard of Y instead. As our goal is to estimate the
conditional mean ua(X), an AFT model is a more natural and direct choice. Several methods are available for fitting the
AFT model and can be used for estimating ua(X). As discussed in Komárek et al,22 some existing methods may have less
ideal computational properties. For example, they may fail to converge or become computationally intractable when the
dimension of covariates is high. In our simulation studies we adopt the penalized Gaussian mixture method for fitting
semiparametric AFT models,22 where the baseline distribution is left unspecified and modeled flexibly using Gaussian
basis densities. Specifically, to estimate ua(X), for a = 0 and 1 separately we fit the following working AFT model based
on subjects with Ai = a, that is,

Y = log(T) = 𝛽′X̃ + 𝜎𝜀,

where X̃ = (1,X ′)′, 𝛽 is a (p + 1)-dimensional vector of coefficients, 𝜎 is a scale parameter controlling the variance, and
the density of the error term 𝜀 is unspecified and is denoted as f (e). In the method of Komárek et al,22 f (e) is modeled as
a mixture of Gaussian densities, denoted as

f (e) =
g∑

j=1
cj𝜑𝜇j,𝜎

2
0
(e),

where 𝜑𝜇j,𝜎
2
0
(e) is the Gaussian density with mean 𝜇j and variance 𝜎2

0 with values of 𝜇1, … , 𝜇g and 𝜎2
0 fixed by design and

(c1, … , cg) are mixture coefficients to be estimated. The basis functions𝜑𝜇j,𝜎
2
0
(e) are referred to as basis Gaussian densities.

As explained in Komárek et al,22 the motivation for the method stems from the penalized B-spline smoothing method for
modeling densities. The means of Gaussian densities 𝜇1, … , 𝜇g play similar roles as fixed knots in a spline smoothing
method. Basis Gaussian densities can be viewed as the limiting case of B-spline smoothing and are advantageous in
that it can model densities with infinite support. A penalized log-likelihood method was proposed to estimate unknown
parameters. Then one can estimate ûa(X) = 𝛽a

′
X̃ , where 𝛽a estimates the unknown coefficient in the AFT model for

treatment group a. The implementation of the method can be easily carried out using the R package smoothSurv.23 When
the dimension of covariates is high, then variable selection is recommended. As the method of Komárek et al22 does
not incorporate a variable selection procedure, we suggest that we first conduct variable selection before fitting the AFT
model with a smoothed error term. For example, one may conduct variable selection using the adaptive elastic net,24

implemented by the R-package AdapEnetClass. This strategy is used in our simulation studies reported in Section 4.

3.5 Asymptotic properties and variable selection

Let 𝛾0 be the true value of 𝛾 . We first consider the method where we minimize the inverse probability censoring weighted
loss function. Let �̂� be the solution that minimizes (5). Then the corresponding estimated optimal treatment regimes is
I(�̂� ′HX > 0). We have the following result regarding the asymptotic property of �̂� .

Result 1. Under certain regular conditions, for data obtained from a randomized clinical trial, regardless of whether the
model for E(Y |A,X) is correctly specified or not, as n goes to infinity, �̂� converges in probability to 𝛾0.

The proof for this result is given in the Appendix. In the proof we show that �̂� solves an estimating equation and the
true 𝛾0 is the unique solution to the population analog of the estimating equation. Therefore, �̂� is consistent for 𝛾0 by
M-estimation/Z-estimation theory.25 Therefore, the proposed method for estimating the optimal treatment regime enjoys
a nice robustness property. This robustness is a result of randomization. For observational studies, the consistency of �̂�
requires an additional assumption that the propensity score 𝜋(X) = P(A = 1|X) is modeled correctly. Results discussed
above are based on model (2), which assumes the treatment contrast can be parameterized by 𝛾HX . Regardless of whether
this is a correct parameterization, the chosen parameterization defines a class of regimes indexed by parameter 𝛾 , and
the proposed methods target the optimal decision rule within this class. Restricting to class of regimes indexed by param-
eters or of a specific form (eg, decision-tree) to incorporate considerations of clinical knowledge and practice, cost and
interpretability has been a common approach in literature.19,26

When instead one minimizes the unweighted loss function (6), the minimizer, say �̃� , still solves an estimating equation.
However, 𝛾0 is the solution to the population analog of the estimating equation under the condition that the model
for P(A = 1|X , 𝛿 = 1) is correct. As a result, the minimizer of (6) is consistent to 𝛾0 when P(A = 1|X , 𝛿 = 1) is correctly
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modeled. We comment that a weighted loss function introduces large variability in the loss function as well as the cor-
responding estimating function. This is especially true when 1∕Ĝ(Ti) is very large for some subjects due to that Ĝ(Ti) is
close to zero. As a result, �̂� may exhibit larger variability than �̃� . And the unweighted loss function may lead to a bet-
ter estimator of the optimal treatment regime in practice, although it requires modeling for P(A = 1|X , 𝛿 = 1) and the
model is not necessarily correct even in a randomized trial. The above discussion provides a heuristic justification for the
unweighted loss function and more details are in the Appendix. Our simulation studies reported in Section 4 show that
indeed the unweighted loss function leads to better performances in general. When the treatment assignment is not ran-
domized, then similar consistency results for �̂� and �̃� hold under the condition that the corresponding propensity score
model, P(A = 1|X) or P(A = 1|𝛿 = 1,X), is correctly specified, without requiring correct modeling for E(Y |A,X).

When the dimension of covariates is high, variable selection is often necessary to reduce variability of estimation.
Within the proposed framework, we can incorporate variable selection at two stages, each targeting selecting a different
set of important covariates. As discussed previously in Section 3.4, we may carry out variable selection while modeling
E(Y |A,X). At this stage, the targeting covariates are factors that are predictive of outcomes, termed as predictive variables.
Many existing methods are available for variable selection for predictive variables. Only predictive variables that interact
qualitatively with treatment are variables important for treatment decision making and these variables are referred to
as prescriptive variables. At the second stage, we target selecting prescriptive variables. To achieve this goal, as in Geng
et al13 one natural strategy is to include a penalty term in the loss function used to estimate parameters in the contrast
function. Specifically, one would then estimate 𝛾 by minimizing a penalized loss function, that is,

min
𝛾

Ln(𝛾) + 𝜆n||𝛾||1, (7)

where Ln(𝛾) is a weighted or unweighted loss function defined in (5) or (6), and ||𝛾||1 =
∑p

j=1|𝛾j| and is a lasso-type
penalty. Lasso-type penalty has been a popular choice for variable selection and has been extensively studied in statistics
literature. For example, lasso penalty is also used in the modified covariates method of Tian et al11 to select important
variables within a Cox model framework. As the proposed loss functions are based on treatment contrasts only, this vari-
able selection specifically targets only prescriptive variables important for treatment decision making. Variables that are
not important for treatment decision making but predictive of outcomes are incorporated in augmentation terms in (1)
and are useful for improving efficiency and performances.

4 SIMULATION STUDIES

We conducted several simulation studies to evaluate the performance of the proposed methods and to compare them to the
methods of Geng et al13 and Tian et al.11 Specifically, for the proposed methods, AIPWE_AFT and AIPWE_AFT∗ denote
the resulting estimator by minimizing the inverse probability censoring weighted and unweighted loss functions (5) and
(6), respectively. For each proposed method, we implement the penalized and unpenalized versions. In the implementa-
tion of each method, the corresponding model includes linear terms of covariates and their interactions with treatment,
but not interactions of covariates and higher order terms. Data were generated under various scenarios with different
sample sizes, censoring percentages, and outcome models. As in previous studies, we focus on the setting of randomized
clinical trials. Additional simulation studies mimicking observational studies are reported in the Supplementary Material.
Specifically, for each scenario, data were generated with sample sizes n= 400 and 1000. The treatment Ai was generated as
Bernoulli (0.5), mimicking a randomized clinical trial. The censoring Ci was generated as log(Ci) ∼ Uniform(0, c), where
c was chosen to induce 15% or 40% censoring rate. We denote Xi = (Xi1, … ,Xip)′, where p is the dimension of Xi and is set
to 50 in our simulations. For simplicity, we define X̃ i = (1,XT

i )
T and mq as a q-dimensional vector consisting of all m; for

example, 02 = (0, 0)T . Survival times were related to covariates and treatments according to three models detailed below.

• Model 1: This scenario is the fourth setting of Geng et al.13 The survival time is related to covariates through an
accelerated failure time model as follows.

log(Ti) = 1 + 0.5(𝛽′1Xi)(𝛽′2Xi) + 𝛾 ′X̃iAi + 𝜀i,

where 𝛽1 = (1, 1, 048)′, 𝛽2 = (1, 02,−1, 05, 1, 040)′, 𝛾 = (1, 1, 07,−0.9, 0.8, 040)′. Covariate Xi follows a multivariate normal
distribution with mean 0, variance 1 and correlation Corr(Xij,Xik) = 0.5|j−k|.
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• Model 2: This scenario is adapted from Tian et al.11

log(Ti) =
(
𝛽0 +

∑p
j=1 𝛽jXij

)2
+

(
𝛾0 +

p∑
j=1

𝛾jXij + 0.8Xi1Xi2

)
Ai + 𝜎0𝜀i,

where 𝜀i ∼ N(0, 1), 𝛽0 = (
√

3)−1, 𝛽j = (2
√

3)−1 for j = 3, … , 10 and 𝛽j = 0 otherwise, 𝛾 = (0.4, 0.8,−0.8, 0.8,−0.8, 046),
𝜎0 =

√
2. Covariate Xi follows an independent standard multivariate normal distribution.

• Model 3: Survival time Ti follows a Cox proportional hazards model.

𝜆(t|Ai,Xi) = 0.2 exp(0.2t) exp[−{0.5(𝛽′1Xi)(𝛽′2Xi) + 𝛾 ′X̃iAi}],

where 𝛽1 = (1, 1, 048)′, 𝛽2 = (1, 02,−1, 05, 1, 040)′, 𝛾 = (1, 1, 07,−0.9, 0.8, 040)′. Covariate Xi follows a multivariate normal
distribution with mean 0, variance 1.

For assessing the accuracy of the estimated treatment decision rules, PCD is the percentage of making correct treat-
ment decisions of an estimated regime ĝopt, defined as n−1∑n

i=1I{ĝopt(Xi) = gopt(Xi)}. Additionally, we report the mean
squared error of an estimator of 𝛾 , and the value of the estimated regime, that is, the expectation of potential outcomes
under the estimated regime. The value of the true optimal regime is denoted by V0. Following Geng et al,13 we report the
following metrics to evaluate the variable selection performance: the number of nonzero coefficients incorrectly identified
as zero (denoted by “Incor0”), the number of correct zero coefficients identified (denoted by “Corr0”), and the proportion
of covering all the important variables (denoted by “Cover”). The number of zero coefficients is 47 under models 1 and
3, and is 46 under model 2. Simulation results are based on 500 Monte Carlo data sets. Reported values of regimes are
calculated based on 100 000 samples under each model.

Results for models 1 to 3 are summarized in Figure 1 and Table 1. Additional results on variable selection are reported
in Table 2. We make the following comments regarding performances of various methods. First, under models 1 and 2
where survival times follow an AFT model, the two proposed methods and the “Geng et al” method perform considerably
better than the “Tian et al” method. This result is not surprising as the true outcome models are AFT models but the
method of “Tian et al” is based on the framework of Cox proportional hazards models. But we note that since the true
outcome models involve complicated interaction and nonlinear terms of covariates, working models in the proposed
methods as well as in the method of “Geng et al” are actually all incorrect. Second, under model 1, the proposed methods
perform comparably as the method of “Geng et al” when the censoring rate is low and significantly better when the
censoring rate is high. Third, under model 2 when the main effect of covariates is highly nonlinear, the proposed methods,
especially AIPWE_AFT∗, have much better performances than that of “Geng et al” regardless of the censoring rate and
sample size. Fourth, under model 3 where survival times follow a Cox model with covariates, not surprisingly the method
of “Tian et al” has the best performance because the posited model is also a Cox model but the posited working models
in the proposed methods and the method of “Geng et al” are incorrect. The performance of AIPWE_AFT∗ under this
scenario, although slightly worse than “Tian et al,” is close to that of “Tian et al” and is significantly better than the
method of “Geng et al” especially when n = 1000 or when the censoring rate is high. Finally, regarding penalization and
variable selection, we note adding a penalty term when the dimensional of covariates is high improves performances
for all methods in all scenarios with different outcome models, sample sizes and censoring rates. Overall we see that
AIPWE_AFT∗, the proposed method that minimizes the unweighted loss function, has the most robust performance
across different scenarios. In terms of variable selection, all methods perform well when the sample size is large. When
the sample size is small, the method of “Tian et al” tends to miss more important variables and have smaller proportion
of covering all important variables.

As Geng et al,13 we have also made the independence censoring assumption. Following Geng et al,13 we con-
ducted sensitivity analysis to assess the impact of violation of this assumption. In each model (models 1 to 3
considered previously), censoring was also generated according to log(Ci) = 𝜏c + 𝜂′Xi + ei, where ei followed the stan-
dard extreme value distribution, 𝜏c was chosen to control the censoring rate and 𝜂 = (1, 04, 1, 044). Results for sen-
sitivity analysis are reported in Figure 2 and Tables 3 and 4. Based on these results, we see that in general all
methods are not much sensitive to violation of the independence censoring assumption and the comparative perfor-
mances of various methods are very similar to what we have observed previously when the independence assumption
holds.
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Model3   Unpenalized    n=400 Model3   Penalized    n=400 Model3   Unpenalized    n=1000 Model3   Penalized    n=1000

Model2   Unpenalized    n=400 Model2   Penalized    n=400 Model2   Unpenalized    n=1000 Model2   Penalized    n=1000

Model1   Unpenalized    n=400 Model1   Penalized    n=400 Model1   Unpenalized    n=1000 Model1   Penalized    n=1000
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F I G U R E 1 Boxplots of PCD for various methods under simulation models 1 to 3, independent censoring with sample size n = 400 and
n = 1000, respectively [Colour figure can be viewed at wileyonlinelibrary.com]

Results on scenarios where the treatment probability depends on covariates are reported in the Supplementary Mate-
rial. Under these scenarios, all methods perform reasonably well. Notable difference is that all methods have worse
performance compared to when the treatment is randomized, which is expected as nonrandom treatment assignment
increases variability and the difficulty to learn the optimal decision rule.

Both AIPWE_AFT and the method of “Geng et al” are based on inverse probability censoring weighted loss func-
tions and both utilize AFT models as working models. Based on our simulations, AIPWE_AFT consistently performs
as well as and often significantly better than the method of “Geng et al.” The difference lies in that the proposed
method directly targets the contrast function, which determines the optimal treatment regime as discussed at the end
of Section 2, and that AIPWE_AFT exploits a robust and efficient way to estimate the contrast function. In contrast, in
the method of “Geng et al,” the loss function also involves the main effect of covariates, that is, M(Xi). AIPWE_AFT∗,
which is based on minimizing an unweighted version of the loss function, further improves performances relative to
AIPWE_AFT uniformly across all scenarios reported here and other unreported scenarios. In particular, it holds even
when the censoring rate is relatively high. This result appears counterintuitive initially. Because inverse probability of
censoring weighting is a natural idea for handling censoring and, as shown in Result 1, it leads to consistent estima-
tion of 𝛾 . As discussed in Section 3.5, inverse probability censoring weighting often introduces additional variability and
leads to unstable estimators of 𝛾 and the optimal treatment regime. As shown in the Appendix, the unweighted estima-
tor for 𝛾 is consistent under an additional assumption on the propensity score model. But it is much less variable and is
better in terms of mean squared error in all scenarios we considered as shown in Tables 1 and 3. Due to the bias and vari-
ance trade-off, the unweighted version is often a better choice under reasonable sample sizes we typically see in practice.
Based on our simulations, the inverse probability censoring weighted version only wins when the sample size is extremely
large.

http://wileyonlinelibrary.com
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T A B L E 2 Selection results under independent censoring

Model 1 Model 2 Model 3

Method Incorr0 Corr0 Cover Incorr0 Corr0 Cover Incorr0 Corr0 Cover

n = 400, CR = 15%

AIPWE_AFT∗ 0.002 28.0 0.998 0.025 28.3 0.975 0.085 30.9 0.885

AIPWE_AFT 0.010 27.6 0.992 0.065 29.5 0.950 0.095 31.4 0.905

Geng et al 0.002 26.3 0.998 0.260 26.3 0.750 0.064 28.7 0.938

Tian et al 0.322 39.4 0.718 0.846 38.9 0.462 0.208 41.2 0.820

n = 400, CR = 40%

AIPWE_AFT∗ 0.010 26.7 0.990 0.080 29.8 0.935 0.215 31.6 0.785

AIPWE_AFT 0.050 28.4 0.955 0.185 30.0 0.870 0.305 31.8 0.796

Geng et al 0.024 16.3 0.976 0.606 18.3 0.524 0.296 18.0 0.772

Tian et al 0.316 38.9 0.724 0.906 38.6 0.378 0.324 40.3 0.726

n = 1000, CR = 15%

AIPWE_AFT∗ 0 33.7 1 0 35.6 1 0 36.6 1

AIPWE_AFT 0 34.6 1 0 34.5 0.998 0 36.5 1

Geng et al 0 32.5 1 0.042 31.8 0.958 0 34.5 1

Tian et al 0.012 37.3 0.988 0.080 37.1 0.922 0.004 39.7 0.996

n = 1000, CR = 40%

AIPWE_AFT∗ 0 33.6 1 0 34.2 1 0.020 37.4 0.980

AIPWE_AFT 0.005 32.6 0.995 0.032 34.0 0.982 0.058 36.4 0.954

Geng et al 0.004 26.6 0.998 0.590 28.8 0.638 0.068 30.9 0.936

Tian et al 0.020 36.7 0.980 0.214 36.4 0.790 0.018 38.7 0.982

Abbreviations: Corr0, the number of correct zero coefficients identified; Cover, the proportion of covering all the important variables; Incorr0, the number
of nonzero coefficients incorrectly identified as zero.

5 DATA APPLICATION

We applied the various methods to data obtained from the AIDS Clinical Trials Group Protocol 175 (ACTG 175) on
HIV-infected patients. Patients in ACTG 175 were randomly assigned with equal probability to receive one of four treat-
ments: zidovudine (ZDV) monotherapy, ZDV + didanosine (ddI), ZDV + zalcitabine, and ddI monotherapy. The primary
outcome was a composite endpoint corresponding to the first time a patient had a greater than 50% decline in CD4 cell
count or death. Our analysis focused on the two combination treatments ZDV + ddI (A = 1) and ZDV + zalcitabine
(A = 0), aiming to using the observed data to learn the optimal treatment decision rule to prescribe either ZDV + ddI or
ZDV + zalcitabine to the right patients. Our analysis was based on 522 and 524 patients who have received ZDV + ddI
and ZDV + zalcitabine, respectively. On these 1046 patients, about 79.7% of them were censored due to the end of the
study or loss to follow-up.

As Zhang et al,27 our analysis considered 12 baseline covariates in deriving the optimal treatment regime: age (years),
weight (kg), Karnofsky score (scale of 0 to 100), CD4 count (cells/mm3), CD8 (cells/mm3), all of which are continuous
variables; and binary variables indicating hemophilia (0 = no, 1 = yes), homosexual activity (0 = no, 1 = yes), history
of intravenous drug use (0 = no, 1 = yes), race (0 = white, 1 = nonwhite), gender (0 = female, 1 = male), antiretroviral
history (0 = naive, 1 = experienced), and symptomatic status (0 = asymptomatic, 1 = symptomatic).

Applying the two proposed methods, AIPWE_AFT* and AIPWE_AFT, and the two comparison methods Geng et al13

and Tian et al11 to the ACTG 175 data leads to the following estimated optimal treatment decision rules:

ĝopt
AIPWE_AFT∗ = I(−1.015 + 0.022 Age + 0.367 Anti ≥ 0),
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F I G U R E 2 Sensitivity analysis: boxplots of PCD for various methods under simulation models 1 to 3, dependent censoring with
sample size n = 400 and n = 1000, respectively [Colour figure can be viewed at wileyonlinelibrary.com]

ĝopt
AIPWE_AFT = I(−1.172 + 0.025 Age + 0.010 Race + 0.406 Anti ≥ 0),

ĝopt
Geng et al = 1,

ĝopt
Tian et al = 1.

No covariates were selected in the methods of “Geng et al” and “Tian et al.” They recommend all patients receive
ZDV + ddI regardless of a patient’s characteristics. Based on the estimated decision rules, the methods of AIPWE_AFT∗

and AIPWE_AFT recommend that 485 and 498 patients, respectively, out of 1046 patients, in our observed data should
receive ZDV + ddI.

Figure 3 plots the Kaplan-Meier survival curves for patients following the estimated optimal regimes from various
methods. That is, if Ai = ĝopt(Xi) then the actual treatment received by subject i is consistent with the treatment option
that would be prescribed to him/her had he/she followed the regime and therefore T∗

i (̂g
opt) is observed. In addition to

Kaplan-Meier curves corresponding to the estimated regimes, Figure 3 also includes Kaplan-Meier curves correspond-
ing to the two fixed regimes, each of which always prescribes ZDV + ddI or ZDV + zalcitabine to all patients. Note,
the estimated regimes by “Geng et al” and “Tian et al” are the same as the regime that always prescribes ZDV + ddI
and there are a total of four Kaplan-Meier curves in Figure 3. The estimated regimes from the two proposed meth-
ods ( AIPWE_AFT∗ and AIPWE_AFT) lead to very similar survival curves. In addition, it seems that the two regimes
that always prescribe the same treatment to all patients, regardless of patients’ characteristics, have lower survival
probabilities.

As mean survival times are not estimable without imposing additional assumptions, following Geng et al,13 we also
estimated nonparametrically the potential restricted mean log survival time corresponding to various estimated regimes

http://wileyonlinelibrary.com
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T A B L E 4 Selection results under dependent censoring (sensitivity analysis)

Model 1 Model 2 Model 3

Method Incorr0 Corr0 Cover Incorr0 Corr0 Cover Incorr0 Corr0 Cover

n = 400, CR = 15%

AIPWE_AFT∗ 0.002 29.8 0.998 0.030 30.2 0.970 0.125 32.4 0.905

AIPWE_AFT 0.020 28.6 0.985 0.150 30.6 0.870 0.090 31.2 0.920

Geng et al 0.006 25.6 0.994 0.422 26.1 0.640 0.092 28.4 0.920

Tian et al 0.236 39.4 0.788 0.786 38.7 0.482 0.306 41.4 0.754

n = 400, CR = 40%

AIPWE_AFT∗ 0.010 26.8 0.992 0.075 30.0 0.930 0.300 31.0 0.740

AIPWE_AFT 0.090 28.0 0.915 0.460 29.9 0.720 0.360 31.2 0.715

Geng et al 0.022 16.0 0.978 0.634 16.8 0.546 0.256 21.2 0.770

Tian et al 0.464 40.0 0.622 1.074 38.8 0.244 0.564 41.6 0.566

n = 1000, CR = 15%

AIPWE_AFT∗ 0 33.1 1 0 34.5 1 0 35.9 1

AIPWE_AFT 0.016 32.0 1 0.010 34.4 0.990 0 35.6 1

Geng et al 0.002 31.4 0.998 0.178 31.8 0.824 0 34.0 1

Tian et al 0.010 37.1 0.990 0.094 37.1 0.910 0.008 39.9 0.992

n = 1000, CR = 40%

AIPWE_AFT∗ 0 32.7 1 0.010 36.0 0.995 0.010 36.2 0.970

AIPWE_AFT 0 31.5 1 0.085 34.7 0.925 0.035 35.4 0.965

Geng et al 0 27.5 1 0.596 26.9 0.602 0.012 32.9 0.988

Tian et al 0.034 36.7 0.966 0.510 37.4 0.492 0.060 39.7 0.942

Abbreviations: Corr0, the number of correct zero coefficients identified; Cover, the proportion of covering all the important variables; Incorr0, the number
of nonzero coefficients incorrectly identified as zero.

and the two fixed regimes. The potential restricted mean log survival time of a regime g is defined as E{Y∗(g) ∧ L} and
L = 𝜏c is chosen to be the log of the maximum follow-up time. Other than a survival curve, the potential restricted mean
log survival time of a regime g provides a scalar summary of the quality of a regime g. The estimated restricted mean log
survival time corresponding to ĝopt

AIPWE_AFT∗ and ĝopt
AIPWE_AFT are 6.432 (95% CI: 6.321,6.542) and 6.432 (95% CI: 6.318,6.545),

respectively. The estimated restricted mean log survival time corresponding to the two fixed regimes, ZDV + ddI and
ZDV + zalcitabine, are 6.372 (95% CI: 6.276,6.467) and 6.373 (95% CI: 6.272,6.474), respectively. These results are con-
sistent with Kaplan-Meier curves, suggesting the estimated regimes from AIPWE_AFT* and AIPWE_AFT are very close
and seem to be better than the two fixed regimes for this application. However, given the small sample size and large vari-
ability in estimation, no conclusive inferences can be made and the utilities of the estimated optimal treatment regimes
should be studied and confirmed by future independent studies.

We conducted 200 times 10-fold cross-validation, where each time we randomly split the data into 10 subsamples with
one being the test data set and the corresponding remaining nine subsamples being the training data set. The optimal
treatment regime was estimated using the various methods on each training data set and the restricted mean lifetime
under each of the estimated regimes was estimated nonparametrically on the corresponding test data set. The averages
and standard deviations (in parenthesis) of the estimated restricted mean lifetime under various methods on test data
sets are reported. Specifically, the average estimated restricted mean log survival time corresponding to the methods of
AIPWE_AFT∗, AIPWE_AFT, “Geng et al” and “Tian et al” are 6.388(0.037), 6.412(0.024), 6.355(0.021), and 6.370(0.019),
respectively. The estimated restricted mean log survival time corresponding to the two fixed regimes, ZDV + ddI and
ZDV+ zalcitabine, are 6.367(0.015) and 6.366(0.017), respectively. Results from cross-validation are consistent with results
obtained on the entire data set.
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F I G U R E 3 Kaplan-Meier survival curves for two treatment groups and patients following the estimated optimal treatment regime
from various methods [Colour figure can be viewed at wileyonlinelibrary.com]

6 DISCUSSION

In this article, we have proposed new and robust methods for learning the optimal treatment regime for studies with a
time-to-event outcome. The proposed methods minimize a (weighted or unweighted) empirical loss function involving
the true treatment contrast function and augmented inverse probability weighted estimates of the contrast function. In
constructing the AIPWE for the contrast function and, in particular, for the augmentation terms, one needs to build work-
ing models for the conditional expectation of survival times given the treatment and covariates. For data obtained from a
randomized trial. the proposed methods enjoy good robustness property in the sense that the proposed methods do not
require the working models for outcomes to be correctly specified. This robustness is achieved by taking advantage of the
design and the robustness property of AIPWE. In randomized trials, the treatment assignment is independent of baseline
covariates by design, which is the key that leads to the consistency of �̂� , the minimizer of the inverse censoring weighted
loss function, as shown in Result 1. When the loss function is not inverse probability censoring weighted, the minimizer
�̃� is consistent under the correct modeling of the propensity score for uncensored patients. Even though the methods are
robust against misspecification of the outcome model, it is still important to model the relationship of outcomes with
covariates and treatment well as it is essential for improving efficiency and performances in finite samples. We have pro-
posed to adapt the well-known accelerated failure time model to our framework and in particular the accelerated failure
time model with a smoothed error term. The reason is that an AFT model directly models the conditional expectation as
opposed to the hazard function in the more popular Cox model. Therefore, it can be more easily incorporated into the
augmentation terms. Our empirical studies have shown that overall the proposed methods are comparable or advanta-
geous over existing methods. In general, the proposed method with an unweighted loss function exhibits the most robust
performance across different scenarios.

The two proposed loss functions differ in whether inverse probability censoring weighting is used to account for
censoring. Inverse probability censoring weighting is a natural strategy to account for censoring. In fact, it is necessary for
consistent estimation of 𝛾 without imposing additional assumptions as shown in the Appendix. However, our ultimate
goal is not to make inference on 𝛾 . The goal is to estimate the optimal treatment regime such that one can make correct

http://wileyonlinelibrary.com
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treatment decisions for individual patients. Therefore, it is more important to consider the bias-and-variance trade-off in
our setting than a typical inference problem. As we have discussed in Sections 3.5 and 4, it is actually more advantageous
to use the unweighted loss function based on their empirical performances. An intuitive explanation is that weighting
greatly increases the variance of estimation and therefore decreases the accuracy of the estimated optimal treatment
decisions. We note that the discussion on accounting for censoring only pertains to the loss function and censoring is
appropriately accounted for in both proposed methods in the stage of modeling for outcomes.

The proposed methods can handle high-dimensional covariates by incorporating variable selections at two stages.
Variable selection can be carried out during the stage when one builds working AFT models for the time-to-events. In this
stage, we would like to select all covariates that are predictive of outcomes to improve efficiency, that is, covariates with
main effects and/or treatment interaction effects. One also can incorporate variable selection during the minimization
step by including a penalty term. In this step, the target of variable selection is on selecting variables that are important in
the true optimal treatment regime, that is, variables interact with treatment. Based on our simulation studies, penalized
methods do improve performances relative to the corresponding unpenalized methods when the number of covariates is
large.

In this article, we have focused on the setting of a randomized clinical trial where the treatment probability is known
and briefly discussed extension to observational studies. In principle, the proposed methods can be extended to observa-
tional studies by modeling the propensity score, that is, the probability of treatment given covariates, and our simulation
studies have illustrated the feasibility. However, when the estimated propensity scores vary considerably and may be close
to zero or one, it may lead to numerical difficulties. This certainly warrants further more detailed study. Our study has
focused on a learning method for learning the optimal decision rule from the observed data and we do not attempt to
make statistical inferences. Making inferences is an important but challenging problem. Recent work mostly consider the
setting without censoring.28-30 It would be interesting to study inferences for optimal treatment regimes for survival data
in the future.
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APPENDIX

We outline proofs of Result 1 in this Appendix. We consider a randomized clinical trial with randomization probability
P(A = 1) = 𝜋. We consider the simpler case where 𝜋 is known and used in constructing the contrast function. Proofs
when 𝜋 is used is similar. We can rewrite equivalently

Ĉ(Xi) =
Ai − 𝜋

𝜋(1 − 𝜋)
[{Ai𝜋 − (1 − Ai)(1 − 𝜋)}C(Xi) + 𝜖i + e(Xi)]

= C(Xi) +
Ai − 𝜋

𝜋(1 − 𝜋)
𝜖i +

Ai − 𝜋

𝜋(1 − 𝜋)
e(Xi)

= 𝛾 ′0HXi +
Ai − 𝜋

𝜋(1 − 𝜋)
𝜖i +

Ai − 𝜋

𝜋(1 − 𝜋)
e(Xi).

where e(X) = (1 − 𝜋){𝜇1(X) − 𝜇1(X)} + 𝜋{𝜇0(X) − 𝜇0(X)}. Recall G(.) is the survival function of censoring time, and Ĝ(.)
is the Kaplan-Meier estimator of G. Let Li(𝛾) = wi{Ĉ(Xi) − 𝛾HXi}

2, and Ln(𝛾) = 1∕n
∑n

i=1Li(𝛾).
The weighted loss function (5) corresponds to wi =

𝛿i

Ĝ(Ti)
. We have

L𝛾

i (𝛾, û1, û0) ≡
𝜕Li(𝛾)
𝜕𝛾

= 𝛿i

Ĝ(Ti)
2{Ĉ(Xi) − 𝛾 ′HXi}HXi

= 𝛿i

Ĝ(Ti)
2
{
𝛾 ′0HXi +

Ai − 𝜋

𝜋(1 − 𝜋)
𝜖i +

Ai − 𝜋

𝜋(1 − 𝜋)
e(Xi) − 𝛾 ′HXi

}
HXi ,
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and

𝜕Ln(𝛾)
𝜕𝛾

= 1
n

n∑
i=1

L𝛾

i (𝛾, û1, û0)

= 1
n

n∑
i=1

𝛿i

Ĝ(Ti)
2
{
𝛾 ′0HXi +

Ai − 𝜋

𝜋(1 − 𝜋)
𝜖i +

Ai − 𝜋

𝜋(1 − 𝜋)
e(Xi) − 𝛾 ′HXi

}
HXi .

Suppose 𝜇1(X)
P

−−−−−→ 𝜇∗
1(X) and 𝜇0(X)

P
−−−−−→ 𝜇∗

0(X). Note, 𝜇∗
1(X) and 𝜇∗

0(X) may not necessarily be the truth. Let e∗(X) =

(1 − 𝜋){𝜇1(X) − 𝜇∗
1(X)} + 𝜋{𝜇0(X) − 𝜇∗

0(X)}. Since Ĝ(.) is a consistent estimator of G(.), we can show that

1
n

n∑
i=1

𝛿i

Ĝ(Ti)
2
{
𝛾 ′0HXi +

A − 𝜋

𝜋(1 − 𝜋)
𝜖 + A − 𝜋

𝜋(1 − 𝜋)
e(Xi) − 𝛾 ′HXi

}
HXi

P
−−−−−→ E

[
𝛿

G(T)
2
{
𝛾 ′0HX + A − 𝜋

𝜋(1 − 𝜋)
𝜖 + A − 𝜋

𝜋(1 − 𝜋)
e∗(X) − 𝛾 ′HX

}
HX

]
= E

[
E
{

𝛿

G(T)
||||X ,A, 𝜀

}
2
{
𝛾 ′0HX + A − 𝜋

𝜋(1 − 𝜋)
𝜖 + A − 𝜋

𝜋(1 − 𝜋)
e∗(X) − 𝛾 ′HX

}
HX

]
= E

[
2
{
𝛾 ′0HX + A − 𝜋

𝜋(1 − 𝜋)
𝜖 + A − 𝜋

𝜋(1 − 𝜋)
e∗(X) − 𝛾 ′HX

}
HX

]
= 2E{(𝛾 ′0HX − 𝛾 ′HX )HX}.

Therefore, we have

1
n

n∑
i=1

L𝛾

i (𝛾, û1, û0)
P

−−−−−→ 2E{(𝛾 ′0HX − 𝛾 ′HX )HX}.

As �̂� is the unique solution to
∑n

i=1L𝛾

i (𝛾, û1, û0) = 0, and 𝛾0 is the unique solution to E{(𝛾 ′0HX − 𝛾 ′HX )HX} = 0, this implies

that �̂�
P

−−−−−→ 𝛾0 by M-estimation/Z-estimation theory.
The unweighted loss function (6) corresponds to wi = 𝛿i. Similarly, we have

L𝛾

i (𝛾, û1, û0) = 2𝛿i

{
𝛾 ′0HXi +

Ai − 𝜋𝛿
i

𝜋𝛿
i (1 − 𝜋𝛿

i )
𝜖i +

Ai − 𝜋𝛿
i

𝜋𝛿
i (1 − 𝜋𝛿

i )
e(Xi) − 𝛾 ′HXi

}
HXi ,

and

𝜕Ln(𝛾)
𝜕𝛾

= 1
n

n∑
i=1

L𝛾

i (𝛾, û1, û0)

= 1
n

n∑
i=1

2𝛿i

{
𝛾 ′0HXi +

Ai − 𝜋𝛿
i

𝜋𝛿
i (1 − 𝜋𝛿

i )
𝜖i +

Ai − 𝜋𝛿
i

𝜋𝛿
i (1 − 𝜋𝛿

i )
e(Xi) − 𝛾 ′HXi

}
HXi .

Recall 𝜋𝛿
i ≡ 𝜋𝛿(Xi). Suppose 𝜋𝛿(x)

P
−−−−−→ 𝜋𝛿∗(x), we can show that

1
n

n∑
i=1

2𝛿i

{
𝛾 ′0HXi +

Ai − 𝜋𝛿
i

𝜋𝛿
i (1 − 𝜋𝛿

i )
𝜖i +

Ai − 𝜋𝛿
i

𝜋𝛿
i (1 − 𝜋𝛿

i )
e(Xi) − 𝛾 ′HXi

}
HXi

P
−−−−−→ E

[
2𝛿

{
𝛾 ′0HX + A − 𝜋𝛿∗(X)

𝜋𝛿∗(X){1 − 𝜋𝛿∗(X)}
𝜖 + A − 𝜋𝛿∗(X)

𝜋𝛿∗(X){1 − 𝜋𝛿∗(X)}
e∗(X) − 𝛾 ′HX

}
HX

]
= 2P(𝛿 = 1)E{(𝛾 ′0HX − 𝛾 ′HX )HX |𝛿 = 1}

+ 2P(𝛿 = 1)E
{

A − 𝜋𝛿∗(X)
𝜋𝛿∗(X){1 − 𝜋𝛿∗(X)}

e∗(X)HX |𝛿 = 1
}

.
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Then we have

1
n

n∑
i=1

L𝛾

i (𝛾, û1, û0)
P

−−−−−→ 2P(𝛿 = 1)E{(𝛾 ′0HX − 𝛾 ′HX )HX |𝛿 = 1}

+ 2P(𝛿 = 1)E
{

A − 𝜋𝛿∗(X)
𝜋𝛿∗(X){1 − 𝜋𝛿∗(X)}

e∗(X)HX |𝛿 = 1
}

.

We see that 𝛾0 is still the unique solution to 2P(𝛿 = 1)E{(𝛾 ′0HX − 𝛾 ′HX )HX |𝛿 = 1} = 0. For the second term, we have

E
{

A − 𝜋𝛿∗(X)
𝜋𝛿∗(X){1 − 𝜋𝛿∗(X)}

e∗(X)HX |𝛿 = 1
}

= E
[

E
{

A − 𝜋𝛿∗(X)
𝜋𝛿∗(X){1 − 𝜋𝛿∗(X)}

e∗(X)HX |X , 𝛿 = 1
}|𝛿 = 1

]
= E

{
𝜋𝛿(X) − 𝜋𝛿∗(X)

𝜋𝛿∗(X){1 − 𝜋𝛿∗(X)}
e∗(X)HX |𝛿 = 1

}
,

where 𝜋𝛿(X) = P(A = 1|X , 𝛿 = 1). If the propensity score model for the uncensored data is correct, then we have 𝜋𝛿∗(X) =
𝜋𝛿(X), and the second term is equal 0. By the same argument, we have �̃� converges in probability to 𝛾0.

When data are obtained from an observational study, the propensity score 𝜋(X) = P(A = 1|X) is unknown and can
be estimated by 𝜋(X). Using a similar argument as in proofs for the unweighted loss function, we can show that �̂� is
consistent for 𝛾0 if the model for P(A = 1|X) is correct.


