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Summary

Identifying the optimal treatment decision rule, where the best treatment for an
individual varies according to his/her characteristics, is of great importance when
treatment effect heterogeneity exists. We develop methods for estimating the optimal
treatment decision rule based on data with survival time as the primary endpoint.
Our methods are based on a flexible semiparametric accelerated failure time model,
where only the treatment contrast (i.e., the difference in means between treatments)
is parameterized and all other aspects are unspecified. An individual’s treatment
contrast is firstly estimated robustly by an augmented inverse probability weighted
estimator (AIPWE). Then the optimal decision rule is estimated by minimizing the
loss between the treatment contrast and the AIPWE contrast. Two loss functions with
different strategies to account for censoring are proposed. The proposed loss func-
tions distinguish from existing ones in that they are based on treatment contrasts,
which completely determine the optimal treatment rule. Our methods can further
incorporate a penalty term to select variables that are only important for treatment
decision making, while taking advantage of all covariates predictive of outcomes
to improve performance. Comprehensive simulation studies have been conducted to
evaluate performances of the proposed methods relative to existing methods. The
proposed methods are illustrated with an application to the ACTG 175 clinical trial
on HIV-infected patients.
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1 INTRODUCTION

The traditional framework for comparative effectiveness research has focused on average treatment effects. That is, the goal is
to identify which treatment option, among a set of candidate options, will lead to the best outcomes on average. Within this
framework implicitly one assumes that we should then treat every intended subject with the optimal treatment option. In practice,
however, it has been long recognized that heterogeneity among patients may exist with regard to responses to different treatment
options1,2,3. A treatment option that is better on average may not be useful and even be harmful to a subgroup of patients.
When heterogeneity in treatment effects exists, alternative to identifying the optimal treatment on average, a more meaningful
question is to learn the optimal treatment decision rule to guide future treatment decision making for an individual patient based
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on his/her characteristics. Since more than a decade ago there has been an increasing interest in developing statistical methods
for estimating the optimal treatment decision rule4,5,6,7,8,9. See the recent book on optimal dynamic treatment regimes for a
comprehensive review10.

The majority of the literature on estimating the optimal treatment regime has focused on continuous outcomes, with much
less work on time-to-event outcomes. Since the primary outcome in many clinical trials is mortality or time to a major event,
time-to-event outcomes are undoubtedly a very important type of outcome to study for optimal treatment decision making. Tian
et al11 proposed a clever modified covariate approach within a Cox model framework to study treatment effect heterogeneity.
The modified covariate approach is further coupled with an augmentation procedure to improve efficiency. Extending the work
of Lu et al12 for uncensored outcomes to censored outcomes, Geng et al13 studied a robust loss-based framework where the loss
is weighted by the inverse probability of not being censored to account for censoring. Both methods of Tian et al11 and Geng
et al13 are robust in the sense that they do not require working models for outcomes to be correctly specified. In addition, both
methods are able to accommodate variable selection with regularization through an L1 penalty. Other work on estimating the
optimal treatment regimes for survival data includes, for example, Goldberg and Kosorok14, Bai et al15, Jiang et al16, Hager,
Tsiatis and Davidian17, and Simoneau et al18.

In this article, we propose methods to estimate the optimal treatment decision rule by directly targeting the treatment contrast
function, defined as the difference in conditional expectations between treatments. As discussed in Section 2, the contrast func-
tion between treatments completely defines the optimal treatment decision rule. We propose to estimate the optimal decision rule
by minimizing the empirical discrepancy between treatment contrasts and the estimated treatment contrasts for subjects. Specif-
ically, we estimate the treatment contrast for an individual patient using an augmented inverse probability weighted approach,
which possesses a robustness property in the setting of a randomized clinical trial and leads to good efficiency. As a result, the
resulting method also enjoys robustness and good performances.

The remainder of the article is organized as follows. Section 2 introduces notations, formally defines the optimal treatment
regime and discusses assumptions necessary to identify the optimal decision rule from the observed data. Section 3.1 introduce
the model and Section 3.2 reviews some closely related methods that motivated the proposed methods. We present the proposed
methods and two contrast function-based loss functions in Section 3.3, with details on modeling survival times for estimating
treatment contrasts in Section 3.4. Section 3.5 studies asymptotic properties of the two loss functions and variable selection, and
discusses the impacts of inverse probability censoring weighting versus not weighting. Comprehensive simulation studies and
a real data application are reported in Sections 4 and 5, followed by a discussion in Section 6.

2 NOTATIONS AND BACKGROUND

Consider a study with n subjects sampled from the patient population of interest. LetAi, taking values 0 or 1, denote the treatment
received by subject i and Xi denote a p-dimensional vector of covariates. When data are obtained from a randomized clinical
trial, then we would have Ai ⟂ Xi by randomization. More generally, the treatment assignment may depend on covariates in
observational studies. As in Geng et al13 we focus on the setting of a randomized clinical trial, but we also consider the more
general setting where treatments are not randomized. Let Ti denote the survival time of interest and Ci the censoring time for
subject i. Following Geng et al13 and as is usually assumed for a randomized clinical trial, we make the independent censoring
assumption, denoted by Ci ⟂ (Ti, Xi, Ai). For survival data, one observes the minimum of survival time and censoring time, and
we denote Ui = min(Ti, Ci) = Ti ∧ Ci, where a ∧ b stands for min(a, b). For convenience, we also define Yi = log(Ti), and then
equivalently one gets to observe Ỹi = Yi ∧ log(Ci). The indicator for not being censored is defined as �i = I(Ti ≤ Ci) = I(Yi ≤
log(Ci)). In summary, the observed data consist of (Ỹi, Ui, Xi, Ai, �i), i = 1,… , n, identically and independently across subject i.

To formally define the optimal treatment regime, we adopt the potential outcomes framework. Let T ∗
i (0), T

∗
i (1) be the potential

survival time had the patient, possibly contrary to fact, received treatment 0 and 1 respectively. Similarly, Y ∗
i (0), Y

∗
i (1) are the

potential log survival time for subject i. A treatment regime, g(X), is a function of X that takes value 0 or 1 and maps values of
covariates into a treatment option. It is a treatment decision rule that dictates how the treatment should be prescribed according
to a given vector of covariates. For subject i following the treatment regime g, the corresponding potential survival time is
defined as T ∗

i (g) = g(Xi)T ∗
i (1) + {1 − g(Xi)}T ∗

i (0). That is, it is equal to the potential outcome T ∗
i (a), where a = g(Xi) is the

treatment decision prescribed for subject i by the decision rule g. Similarly, one may define the potential log survival time as
Y ∗
i (g) = g(Xi)Y ∗

i (1)+{1−g(Xi)}Y ∗
i (0). There are many possible decision rules and our goal is to estimate the optimal treatment

regime based on the observed data. That is, we aim to use the observed data to learn the optimal treatment decision rule. In this
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article the optimal treatment regime is defined as the one that maximizes the mean potential survival time and, equivalently the
mean potential log survival time. Formally, the optimal treatment regime, gopt, satisfies

gopt = argmax
g∈

E{T ∗(g)} = argmax
g∈

E{Y ∗(g)},

where  denotes the set of all treatment regimes under consideration. The expectation E{Y ∗(g)} is commonly referred to as the
value of the regime g.

The optimal treatment regime is defined in terms of potential outcomes, which are not completely observed even in the absence
of censoring. In order for the optimal treatment regime to be identifiable from the observed data, we make the following standard
assumptions9.

(C1) Stable unit treatment value assumption: Y = Y ∗(1)A + Y ∗(0)(1 − A);
(C2) No unmeasured confounders assumption : A⊥{Y ∗(0), Y ∗(1)}|X.

When data are obtained from a randomized clinical trial, the no unmeasured confounders assumption is satisfied automatically by
design. Under these two assumptions, the optimal treatment regime is identifiable from the observed data. Alternative definitions
of the optimal treatment regime based on the observed data under the two assumptions and some further notations are given
below; see, for example, Zhang, Tsiatis and Davidian19 and Zhang et al20 for more details. It is straightforward to see that

E{Y ∗(g)} = E
{

E[g(X)Y ∗(1) + {1 − g(X)}Y ∗(0)|X]
}

= E[g(X)E{Y |A = 1, X} + {1 − g(X)}E{Y |A = 0, X}]
= E[g(X){u1(X) − u0(X)} + u0(X)],

where ua(X) = E(Y |A = a,X). Then the optimal treatment regime satisfies

gopt = argmax
g∈

E[g(X){u1(X) − u0(X)}]

≡ argmax
g∈

E{g(X)(X)},

where (X) = u1(X) − u0(X) and is referred to as the contrast function between treatments. Therefore, the optimal treat-
ment regime can be identified through ua(X), the conditional mean of observed outcomes given the treatment and covariates.
More specifically, the optimal treatment regime is determined by the treatment contrast (X). That is, by solving the above
optimization problem, it is clear that

gopt(X) = I((X) > 0)). (1)
The discussion above assumes no censoring exists. For survival data, further assumption regarding censoring is needed for
estimation of the optimal treatment regime from the observed data. In the following development, we assume the independent
censoring assumption described earlier.

3 METHODS

3.1 Model
As discussed above, the optimal treatment regime is directly related to the treatment contrast function (X) and, equivalently,
the conditional mean of outcomes given the treatment and covariates, ua(X) = E(Y |A = a,X). We assume that, given the
treatment and covariates, the log survival time follows the following semiparametric model:

Y = log(T ) = M(X) + 
 ′H(X)A + ", (2)

where M(X) is an unspecified function of X, H(X) is a q-dimensional function of baseline covariates X and always includes
an intercept, and " is an error term such that E("|X,A) = 0. For simplicity, we denote H(X) by HX . Model (2) is a semi-
parametric accelerated failure time (AFT) model. Under this model, u0(X) = E(Y |X,A = 0) = M(X), which is unspecified,
and u1(X) = M(X) + 
 ′HX . The treatment contrast function (X) equals u1(X) − u0(X) = 
 ′HX and is modeled paramet-
rically. This semiparametric model only makes assumptions on the parametric form of the treatment contrast function, leaving
other aspects of the conditional mean function unspecified. Therefore, it is more robust and flexible than the usual regression
model. This semiparametric model has been popular for estimating the optimal treatment regimes for outcomes without cen-
soring21, commonly referred to as A-learning. Under this model, it is easy to see that the optimal treatment regime is given by
gopt(X) = I(
 ′HX > 0) according to (1). We comment that for censored survival data, the mean of survival time is usually not
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estimable without making additional assumptions. However, under the assumed semiparametric accelerated failure time model,
even though the mean log survival time is still not estimable since no assumptions on � are made, the optimal treatment regime,
i.e., I(
 ′HX > 0), is estimable as it depends only on model coefficients but not on the underlying distribution of Y . A natural way
to estimate the optimal treatment regime would be I(
̂ ′HX > 0), where 
̂ is an estimator for 
 . When censoring is absent, 
 and
hence the optimal treatment regime can be estimated by the G-estimation method21. The censoring poses additional challenges.
Below we briefly introduce two methods that are closely related to and motivated the proposed methods.

3.2 Related Methods
When no censoring exists, Lu et al12 proposed a general and robust framework for variable selection and estimating the optimal
treatment regime. Later Geng et al13 generalized the framework to survival outcomes to account for censoring. Geng et al13

considered the same model given in (2) and proposed to minimize the following inverse probability censoring weighted loss
function:

1
n

n
∑

i=1

�i
Ĝ(Ti)

{

Yi − �(Xi; �̂) − 
 ′HXi
(Ai − �̂i)

}2
, (3)

where Ĝ(t) is the Kaplan-Meier estimator for the survival function of C at t, �(Xi; �) is a posited parametric function for the
baseline function M(X), and �̂i ≡ �̂(Xi) is an estimate of the propensity score P (Ai = 1|Xi). Geng et al13 demonstrated that
this method is robust for randomized clinical trials in the sense that it does not require the correct specification of the baseline
function. For variable selection, they proposed to couple the above loss function with the adaptive LASSO penalty and minimize
a penalized loss function.

When there is no censoring, Zhang et al20 proposed a general direct optimization framework to estimate the optimal treatment
regimes. Zhang et al20 showed that popular existing methods for estimating the optimal treatment regime can fit into this direct
optimization framework by a specific choice of the estimator for the contrast function (X). In particular, the robust method
of Zhang et al19, based on augmented inverse probability weighted estimators (AIPWE) for population means, is equivalent to
estimating (X) by the following AIPWE estimator

̂(Xi) =
Ai

�̂i
Yi −

Ai − �̂i
�̂i

û1(Xi) −
{

1 − Ai

1 − �̂i
Yi −

�̂i − Ai

1 − �̂i
û0(Xi)

}

, (4)

where ûa(X), a = 0, 1, is an estimate of E(Y |A = a,X) that will be discussed in detail later. Zhang et al20 and Zhang et
al19 have shown that the resulting estimator for the optimal treatment regime is doubly robust in the sense that it only requires
the propensity score model or the outcome model, but not necessarily both, to be correct. For randomized clinical trials, the
AIPWE for a population mean is always consistent as the model for the treatment probability (propensity score) can always be
correct. Working models for ûa(Xi) are used for improve efficiency because the corresponding AIPWE for a population mean is
semiparametric efficient when ûa(X), a = 0, 1, are modeled correctly. As a result, robust AIPWE-based methods have superior
performances as shown in Zhang et al20 and Zhang et al19.

3.3 Proposed Loss Functions
Our proposed method has a close relationship with the two methods introduced in 3.2. Similar to Geng et al13, we aim to estimate

 by minimizing a loss function that accounts for censoring. In our proposed loss function, we would like to take advantage of
the general and robust AIPWE-based framework and the estimated contrast function (4). Our proposed method is based on the
following considerations. First, as discussed at the end of Section 2, the optimal treatment regime is completely determined by
the contrast function; that is, gopt(X) = I((X) > 0). Second, as briefly introduced in 3.2 and demonstrated by Zhang et al20,
popular existing methods essentially differ in ways to estimate the contrast function. In particular, the AIPWE approach (4) has
been shown to be appealing in terms of robustness and efficiency20,19. Third, according to the semiparametric model (2), we
assume the true contrast function is (X) = 
 ′HX . Due to these considerations, we propose to estimate 
 and hence the optimal
treatment regime by minimizing the following loss function

Ln(
) =
1
n

n
∑

i=1

�i
Ĝ(Ti)

{̂(Xi) − 
 ′HXi
}2, (5)
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where ̂(Xi) is the robust AIPWE for the contrast function defined in (4). Compare the proposed loss function (5) with (3)
studied by Geng et al13. We note that (3) minimizes a weighted discrepancy between outcomes and a function involving several
components. The form of the function, although based on sound theoretical development, is not entirely intuitive and lacks
an easy interpretation. Alternatively, the proposed loss function (5) directly minimizes a weighted discrepancy between the
estimated treatment contrast and the contrast function implied by model (2) for all subjects. In construction of ̂(Xi), one needs
to estimate the treatment propensity P (A = 1|X). For randomized clinical trials, the treatment propensity can be estimated by
�̂i = �̂ = n−1

∑n
i Ai. Alternatively, as the treatment probability is known by design for a randomized trial and we may substitute

�̂i in ̂(Xi) directly by the known constant. For example, for a randomized trial with � = 1∕2, it is easy to verify that

̂(X) = 2(2A − 1)
{

Y −
û1(X) + û0(X)

2

}

.

In an observational study, when the treatment assignment is not randomized, one needs to model P (A = 1|X). For example, a
logistic regression model with lasso for variable selection may be used.

The loss function in (5) is weighted by the inverse probability of not being censored, which is intuitive and leads to good
theoretic properties in large samples as shown in Section 3.5. However, based on our experience, inverse probability censoring
weighting often leads to large variability in the loss function and, as a result, degraded performances empirically. This is likely
due to the fact that a proportion of subjects may have small probability of not being censored by time t = Ti and therefore receive
large weights. Alternatively, we also propose to estimate 
 by minimizing the unweighted loss function

Ln(
) =
1
n

n
∑

i=1
�i{̂�(Xi) − 
 ′HXi

}2, (6)

where ̂�(Xi)mimics ̂(Xi) and is defined as Ai

�̂�
i
Yi−

Ai−�̂�
i

�̂�
i

û1(Xi)−
{

1−Ai

1−�̂�
i
Yi −

�̂�
i −Ai

1−�̂�
i
û0(Xi)

}

, with �̂�
i ≡ �̂�(Xi) estimatingP (Ai =

1|Xi, �i = 1). Justification of this loss function is further discussed in Section 3.5 where we study the asymptotic property of
the resulting estimator for 
 . Both weighted and unweighted versions of the method is studied empirically by simulations below.
Note that, although the loss function is not weighted by the inverse probability of not being censored, censoring is accounted for
appropriately in construction of ̂(Xi) as discussed in Section 3.4. For the treatment probability P (A = 1|X, � = 1), a logistic
model with lasso for variable selection could be fit using the uncensored data.

The estimator ̂(X) also involves ûa(X), which is estimate of ua(X). We discuss the details of estimation of ua(X) below.

3.4 Estimation of ua(X)
As the outcome Y is subject to censoring, naturally one can model it using models developed for survival outcomes to incorporate
information from both censored and uncensored subjects. The Cox proportional hazards model and the accelerated failure time
model are both extensively studied models for modeling time-to-event data subject to censoring. In our method we choose to
model outcomes using a semiparametric AFT model because it directly relates covariates to the mean of Y , whereas the Cox
model relates covariates to the hazard of Y instead. As our goal is to estimate the conditional mean ua(X), an AFT model is a
more natural and direct choice. Several methods are available for fitting the AFT model and can be used for estimating ua(X).
As discussed in Komárek et al22, some existing methods may have less ideal computational properties. For example, they may
fail to converge or become computationally intractable when the dimension of covariates is high. In our simulation studies we
adopt the penalized Gaussian mixture method for fitting semiparametric AFT models22, where the baseline distribution is left
unspecified and modeled flexibly using Gaussian basis densities. Specifically, to estimate ua(X), for a = 0 and 1 separately we
fit the following working AFT model based on subjects with Ai = a , i.e.,

Y = log(T ) = �′X̃ + �",

where X̃ = (1, X′)′, � is a (p + 1)-dimensional vector of coefficients, � is a scale parameter controlling the variance, and the
density of the error term " is unspecified and is denoted as f (e). In the method of Komárek et al22, f (e) is modeled as a mixture
of Gaussian densities, denoted as

f (e) =
g
∑

j=1
cj'�j ,�2

0
(e),
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where '�j ,�2
0
(e) is the Gaussian density with mean �j and variance �2

0 with values of �1,… , �g and �2
0 fixed by design and

(c1,… , cg) are mixture coefficients to be estimated. The basis functions '�j ,�2
0
(e) are referred to as basis Gaussian densities. As

explained in Komárek et al22, the motivation for the method stems from the penalized B-spline smoothing method for modeling
densities. The means of Gaussian densities �1,… , �g play similar roles as fixed knots in a spline smoothing method. Basis
Gaussian densities can be viewed as the limiting case of B-spline smoothing and are advantageous in that it can model densities
with infinite support. A penalized log-likelihood method was proposed to estimate unknown parameters. Then one can estimate
ûa(X) = �̂a

′
X̃, where �̂a estimates the unknown coefficient in the AFT model for treatment group a. The implementation of the

method can be easily carried out using the R package smoothSurv23. When the dimension of covariates are high, then variable
selection is recommended. As the method of Komárek et al22 does not incorporate a variable selection procedure, we suggest
that we first conduct variable selection before fitting the AFT model with a smoothed error term. For example, one may conduct
variable selection using the adaptive elastic net24, implemented by the R-package AdapEnetClass. This strategy is used in our
simulation studies reported in Section 4.

3.5 Asymptotic Properties and Variable Selection
Let 
0 be the true value of 
 . We first consider the method where we minimize the inverse probability censoring weighted loss
function . Let 
̂ be the solution that minimizes (5). Then the corresponding estimated optimal treatment regimes is I(
̂ ′HX > 0).
We have the following result regarding the asymptotic property of 
̂ .

Result 1: Under certain regular conditions, for data obtained from a randomized clinical trial, regardless of whether the model
for E(Y |A,X) is correctly specified or not, as n goes to infinity, 
̂ converges in probability to 
0.

The proof for this result is given in the Appendix. In the proof we show that 
̂ solves an estimating equation and the true 
0
is the unique solution to the population analog of the estimating equation. Therefore, 
̂ is consistent for 
0 by M-estimation/Z-
estimation theory25. Therefore, the proposed method for estimating the optimal treatment regime enjoys a nice robustness
property. This robustness is a result of randomization. For observational studies, the consistency of 
̂ requires an additional
assumption that the propensity score �(X) = P (A = 1|X) is modeled correctly. Results discussed above are based on model
(2), which assumes the treatment contrast can be parameterized by 
HX . Regardless of whether this is a correct parameter-
ization, the chosen parameterization defines a class of regimes indexed by parameter 
 , and the proposed methods target the
optimal decision rule within this class. Restricting to class of regimes indexed by parameters or of a specific form (e.g., decision-
tree) to incorporate considerations of clinical knowledge and practice, cost and interpretability has been a common approach in
literature19,26.

When instead one minimizes the unweighted loss function (6), the minimizer, say 
̃ , still solves an estimating equation.
However, 
0 is the solution to the population analog of the estimating equation under the condition that the model for P (A =
1|X, � = 1) is correct. As a result, the minimizer of (6) is consistent to 
0 when P (A = 1|X, � = 1) is correctly modeled. We
comment that a weighted loss function introduces large variability in the loss function as well as the corresponding estimating
function. This is especially true when 1∕Ĝ(Ti) are very large for some subjects due to that Ĝ(Ti) are close to zero. As a result, 
̂
may exhibit larger variability than 
̃ . And the unweighted loss function may lead to a better estimator of the optimal treatment
regime in practice, although it requires modeling for P (A = 1|X, � = 1) and the model is not necessarily correct even in a
randomized trial. The above discussion provides a heuristic justification for the unweighted loss function and more details are
in the Appendix. Our simulation studies reported in Section 4 show that indeed the unweighted loss function leads to better
performances in general. When the treatment assignment is not randomized, then similar consistency results for 
̂ and 
̃ hold
under the condition that the corresponding propensity score model, P (A = 1|X) or P (A = 1|� = 1, X), is correctly specified,
without requiring correct modeling for E(Y |A,X).

When the dimension of covariates is high, variable selection is often necessary to reduce variability of estimation. Within the
proposed framework, we can incorporate variable selection at two stages, each targeting selecting a different set of important
covariates. As discussed previously in Section 3.4, we may carry out variable selection while modeling E(Y |A,X). At this
stage, the targeting covariates are factors that are predictive of outcomes, termed as predictive variables. Many existing methods
are available for variable selection for predictive variables. Only predictive variables that interact qualitatively with treatment
are variables important for treatment decision making and these variables are referred to as prescriptive variables. At the second
stage, we target selecting prescriptive variables. To achieve this goal, as in Geng et al13 one natural strategy is to include a
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penalty term in the loss function used to estimate parameters in the contrast function. Specifically, one would then estimate 

by minimizing a penalized loss function, i.e.,

min



Ln(
) + �n||
||1, (7)

where Ln(
) is a weighted or unweighted loss function defined in (5) or (6), and ||
||1 =
∑p

j=1 |
j| and is a lasso-type penalty.
Lasso-type penalty has been a popular choice for variable selection and has been extensively studied in statistics literature. For
example, lasso penalty is also used in the modified covariates method of Tian et al11 to select important variables within a Cox
model framework. As the proposed loss functions are based on treatment contrasts only, this variable selection specifically targets
only prescriptive variables important for treatment decision making. Variables that are not important for treatment decision
making but predictive of outcomes are incorporated in augmentation terms in (1) and are useful for improving efficiency and
performances.

4 SIMULATION STUDIES

We conducted several simulation studies to evaluate the performance of the proposed methods and to compare them to the
methods of Geng et al13 and Tian et al11. Specifically, for the proposed methods, AIPWE_AFT and AIPWE_AFT∗ denote the
resulting estimator by minimizing the inverse probability censoring weighted and unweighted loss functions (5) and (6) respec-
tively. For each proposed method, we implement the penalized and unpenalized versions. In the implementation of each method,
the corresponding model includes linear terms of covariates and their interactions with treatment are considered, but not inter-
actions of covariates and higher order terms. Data were generated under various scenarios with different sample sizes, censoring
percentages, and outcome models. As in previous studies, we focus on the setting of randomized clinical trials. Additional sim-
ulation studies mimicking observational studies are reported in the Supplementary Material. Specifically, for each scenario,
data were generated with sample sizes n = 400 and 1000. The treatment Ai was generated as Bernoulli (0.5), mimicking a ran-
domized clinical trial. The censoring Ci was generated as log(Ci) ∼ Uniform(0, c), where c was chosen to induce 15% or 40%
censoring rate. We denote Xi = (Xi1,⋯ , Xip)′, where p is the dimension of Xi and is set to 50 in our simulations. For simplic-
ity, we define X̃i = (1, XT

i )
T and mq as a q-dimensional vector consists of all m; for example, 02 = (0, 0)T . Survival times were

related to covariates and treatments according to three models detailed below.
∙ Model 1: This scenario is the fourth setting of Geng et al13. The survival time is related to covariates through an accelerated

failure time model as follows.

log(Ti) = 1 + 0.5(�′1Xi)(�′2Xi) + 
 ′X̃iAi + "i,

where �1 = (1, 1, 048)′, �2 = (1, 02,−1, 05, 1, 040)′, 
 = (1, 1, 07, −0.9, 0.8, 040)′. Covariate Xi follows a multivariate normal
distribution with mean 0, variance 1 and correlation Corr(Xij , Xik) = 0.5|j−k|.
∙ Model 2: This scenario is adapted from Tian et al11.

log(Ti) =

(

�0 +
p
∑

j=1
�jXij

)2

+

(


0 +
p
∑

j=1

jXij + 0.8Xi1Xi2

)

Ai + �0"i,

where "i ∼ N(0, 1), �0 = (
√

3)−1, �j = (2
√

3)−1 for j = 3,⋯ , 10 and �j = 0 otherwise, 
 = (0.4, 0.8,−0.8, 0.8,−0.8, 046),
�0 =

√

2. Covariate Xi follows an independent standard multivariate normal distribution.
∙ Model 3: Survival time Ti follows a Cox proportional hazards model.

�(t|Ai, Xi) = 0.2 exp(0.2t) exp[−{0.5(�′1Xi)(�′2Xi) + 
 ′X̃iAi}],

where �1 = (1, 1, 048)′, �2 = (1, 02,−1, 05, 1, 040)′, 
 = (1, 1, 07, −0.9, 0.8, 040)′. Covariate Xi follows a multivariate normal
distribution with mean 0, variance 1.

For assessing the accuracy of the estimated treatment decision rules, PCD is the percentage of making correct treatment
decisions of an estimated regime ĝopt, defined as n−1

∑n
i=1 I{ĝ

opt(Xi) = gopt(Xi)}. Additionally, we report the mean squared
error of an estimator of 
 , and the value of the estimated regime, i.e., the expectation of potential outcomes under the estimated
regime. The Value of the true optimal regime is denoted byV0. Following Geng et al13, we report the following metrics to evaluate
the variable selection performance: the number of non-zero coefficients incorrectly identified as zero (denoted by “Incor0"), the
number of correct zero coefficients identified (denoted by “Corr0"), and the proportion of covering all the important variables
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(denoted by “Cover"). The number of zero coefficients is 47 under Models 1 and 3, and is 46 under Model 2. Simulation results
are based on 500 Monte Carlo data sets. Reported values of regimes are calculated based on 100,000 samples under each model.

Results for models 1-3 are summarized in Figure 1 and Table 1. Additional results on variable selection are reported in Table
2. We make the following comments regarding performances of various methods. First, under models 1 and 2 where survival
times follow an AFT model, the two proposed methods and the “Geng et al” method perform considerably better than the “Tian
et all” method. This result is not surprising as the true outcome models are AFT models but the method of “Tian et al” is based
on the framework of Cox proportional hazards models. But we note that since the true outcome models involve complicated
interaction and nonlinear terms of covariates, working models in the proposed methods as well as in the method of “Geng et
al” are actually all incorrect. Second, under model 1, the proposed methods perform comparably as the method of “Geng et al”
when the censoring rate is low and significantly better when the censoring rate is high. Third, under model 2 when the main
effect of covariates is highly nonlinear, the proposed methods, especially AIPWE_AFT∗, have much better performances than
that of “Geng et al” regardless of the censoring rate and sample size. Fourth, under model 3 where survival times follow a
Cox model with covariates, not surprisingly the method of “Tian et al” has the best performance because the posited model is
also a Cox model but the posited working models in the proposed methods and the method of “Geng et al” are incorrect. The
performance of AIPWE_AFT∗ under this scenario, although slightly worse than “Tian et al”, is close to that of “Tian et al” and
is significantly better than the method of “Geng et al” especially when n = 1000 or when the censoring rate is high. Finally,
regarding penalization and variable selection, we note adding a penalty term when the dimensional of covariates is high improves
performances for all methods in all scenarios with different outcome models, sample sizes and censoring rates. Overall we see
that AIPWE_AFT∗, the proposed method that minimizes the unweighted loss function, has the most robust performance across
different scenarios. In terms of variable selection, all methods perform well when the sample size is large. When the sample
size is small, the method of “Tian et al” tends to miss more important variables and have smaller proportion of covering all
important variables.

Both AIPWE_AFT and the method of “Geng et al” are based on inverse probability censoring weighted loss functions and
both utilize AFT models as working models. Based on our simulations, AIPWE_AFT consistently performs as well as and often
significantly better than the method of “Geng et al”. The difference lies in that the proposed method directly targets the contrast
function, which determines the optimal treatment regime as discussed at the end of Section 2, and that AIPWE_AFT exploits
a robust and efficient way to estimate the contrast function. In contrast, in the method of “Geng et al”, the loss function also
involves the main effect of covariates, i.e., M(Xi). AIPWE_AFT∗, which is based on minimizing an unweighted version of the
loss function, further improves performances relative to AIPWE_AFT uniformly across all scenarios reported here and other
unreported scenarios. In particular, it holds even when the censoring rate is relatively high. This result appears counter-intuitive
initially. Because inverse probability of censoring weighting is a natural idea for handling censoring and, as shown in Result
1, it leads to consistent estimation of 
 . As discussed in Section 3.5, inverse probability censoring weighting often introduces
additional variability and leads to unstable estimators of 
 and the optimal treatment regime. As shown in the Appendix, the
unweighted estimator for 
 is consistent under an additional assumption on the propensity score model. But it is much less
variable and is better in terms of mean squared error in all scenarios we considered as shown in Tables 1 and 3. Due to the bias
and variance trade-off, the unweighted version is often a better choice under reasonable sample sizes we typically see in practice.
Based on our simulations, the inverse probability censoring weighted version only wins when the sample size is extremely large.

As Geng et al13, we have also made the independence censoring assumption. Following Geng et al13, we conducted sensitivity
analysis to assess the impact of violation of this assumption. In each model (Models 1-3 considered previously), censoring was
also generated according to log(Ci) = �c + �′Xi + ei, where ei followed the standard extreme value distribution, �c was chosen
to control the censoring rate and � = (1, 04, 1, 044). Results for sensitivity analysis are reported in Figure 2 and Tables 3 and
4. Based on these results, we see that in general all methods are not much sensitive to violation of the independence censoring
assumption and the comparative performances of various methods are very similar to what we have observed previously when
the independence assumption holds.

Results on scenarios where the treatment probability depends on covariates are reported in the Supplementary Material.
Under these scenarios, all methods perform reasonably well. Notable difference is that all methods have worse performance
compared to when the treatment is randomized, which is expected as nonrandom treatment assignment increases variability and
the difficulty to learn the optimal decision rule.
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5 DATA APPLICATION

We applied the various methods to data obtained from the AIDS Clinical Trials Group Protocol 175 (ACTG 175) on HIV-infected
patients. Patients in ACTG 175 were randomly assigned with equal probability to receive one of four treatments: zidovudine
(ZDV) monotherapy, ZDV+didanosine (ddI), ZDV+zalcitabine, and ddI monotherapy. The primary outcome was a composite
endpoint corresponding to the first time a patient had a greater than 50% decline in CD4 cell count or death. Our analysis focused
on the two combination treatments ZDV+ddI (A = 1) and ZDV+zalcitabline (A = 0), aiming to using the observed data to
learn the optimal treatment decision rule to prescribe either ZDV+ddI or ZDV+alcitabline to the right patients. Our analysis
was based on 522 and 524 patients who have received ZDV+ddI and ZDV+zalcitabline respectively. On these 1046 patients,
about 79.7% of them were censored due to the end of the study or loss to follow-up.

As Zhang et al27, our analysis considered 12 baseline covariates in deriving the optimal treatment regime: age (years), weight
(kg), Karnofsky score (scale of 0-100), CD4 count (cells/mm3), CD8 (cells/mm3), all of which ae continuous variables; and
binary variables indicating hemophilia (0=no, 1=yes), homosexual activity (0=no, 1=yes), history of intravenous drug use
(0=no, 1=yes), race (0=white, 1=non-white), gender (0=female, 1=male), antiretroviral history (0=naive, 1=experienced) and
symptomatic status (0=asymptomatic, 1=symptomatic).

Applying the two proposed methods, AIPWE_AFT* and AIPWE_AFT, and the two comparison methods Geng et al13 and
Tian et al11 to the ACTG 175 data leads to the following estimated optimal treatment decision rules:

ĝoptAIPW E_AFT ∗ = I(−1.015 + 0.022 Age + 0.367 Anti >= 0),

ĝoptAIPW E_AFT = I(−1.172 + 0.025 Age + 0.010 Race + 0.406 Anti >= 0),

ĝoptGeng et al = 1,

ĝoptT ian et al = 1.

No covariates were selected in the methods of “Geng et al” and “Tian et al”. They recommend all patients receive ZDV+ddI
regardless of a patient’s characteristics. Based on the estimated decision rules, the methods of AIPWE_AFT∗ and AIPWE_AFT
recommends that 485 and 498 patients respectively, out of 1046 patients, in our observed data should receive ZDV+ddI.

Figure 3 plots the Kaplan-Meier survival curves for patients following the estimated optimal regimes from various methods.
That is, if Ai = ĝopt(Xi) then the actual treatment received by subject i is consistent with the treatment option that would be
prescribed to him/her had he/she followed the regime and therefore T ∗

i (ĝ
opt) is observed. In addition to Kaplan-Meier curves

corresponding to the estimated regimes, Figure 3 also includes Kaplan-Meier curves corresponding to the two fixed regimes,
each of which always prescribes ZDV+ddI or ZDV+alcitabline to all patients. Note, the estimated regimes by “Geng et al”
and “Tian et al” are the same as the regime that always prescribes ZDV+ddI and there are a total of four Kaplan-Meier curves
in Figure 3. The estimated regimes from the two proposed methods ( AIPWE_AFT∗ and AIPWE_AFT) lead to very similar
survival curves. In addition, it seems that the two regimes that always prescribe the same treatment to all patients, regardless of
patients’ characteristics, have lower survival probabilities.

As mean survival times are not estimable without imposing additional assumptions, following Geng et al13, we also estimated
nonparametrically the potential restricted mean log survival time corresponding to various estimated regimes and the two fixed
regimes. The potential restricted mean log survival time of a regime g is defined as E{Y ∗(g) ∧ L} and L = �c is chosen to be
the log of the maximum follow-up time. Other than a survival curve, the potential restricted mean log survival time of a regime
g provides a scalar summary of the quality of a regime g. The estimated restricted mean log survival time corresponding to
ĝoptAIPW E_AFT ∗ and ĝoptAIPW E_AFT are 6.432 (95% CI: 6.321, 6.542) and 6.432 (95% CI: 6.318, 6.545), respectively. The estimated
restricted mean log survival time corresponding to the two fixed regimes, ZDV+ddI and ZDV+zalcitabline, are 6.372 (95% CI:
6.276, 6.467) and 6.373 (95% CI: 6.272, 6.474), respectively. These results are consistent with Kaplan-Meier curves, suggesting
the estimated regimes from AIPWE_AFT* and AIPWE_AFT are very close and seem to be better than the two fixed regimes for
this application. However, given the small sample size and large variability in estimation, no conclusive inferences can be made
and the utilities of the estimated optimal treatment regimes should be studied and confirmed by future independent studies.

We conducted 200 times 10-fold cross-validation, where each time we randomly split the data into 10 subsamples with
one being the test data set and the corresponding remaining 9 subsamples being the traning data set. The optimal treatment
regime was estimated using the various methods on each training data set and the restricted mean lifetime under each of the
estimated regimes was estimated nonparametrically on the corresponding test data set. The averages and standard deviations
(in parenthesis) of the estimated restricted mean lifetime under various methods on test data sets are reported. Specifically, the
average estimated restricted mean log survival time corresponding to the methods of AIPWE_AFT∗, AIPWE_AFT, “Geng et
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al” and “Tian et al” are 6.388(0.037), 6.412(0.024), 6.355(0.021) and 6.370(0.019) respectively. The estimated restricted mean
log survival time corresponding to the two fixed regimes, ZDV+ddI and ZDV+zalcitabline, are 6.367(0.015) and 6.366(0.017),
respectively. Results from cross-validation are consistent with results obtained on the entire data set.

6 DISCUSSION

In this article, we have proposed new and robust methods for learning the optimal treatment regime for studies with a time-to-
event outcome. The proposed methods minimize a (weighted or unweighted) empirical loss function involving the true treatment
contrast function and augmented inverse probability weighted estimates of the contrast function. In constructing the AIPWE
for the contrast function and, in particular, for the augmentation terms, one needs to build working models for the conditional
expectation of survival times given the treatment and covariates. For data obtained from a randomized trial. the proposed methods
enjoy good robustness property in the sense that the proposed methods do not require the working models for outcomes to be
correctly specified. This robustness is achieved by taking advantage of the design and the robustness property of AIPWE. In
randomized trials, the treatment assignment is independent of baseline covariates by design, which is the key that leads to the
consistency of 
̂ , the minimizer of the inverse censoring weighted loss function, as shown in Result 1. When the loss function is
not inverse probability censoring weighted, the minimizer 
̃ is consistent under the correct modeling of the propensity score for
uncensored patients. Even though the methods are robust against misspecification of the outcome model, it is still important to
model the relationship of outcomes with covariates and treatment well as it is essential for improving efficiency and performances
in finite samples. We have proposed to adapt the well-known accelerated failure time model to our framework and in particular
the accelerated failure time model with a smoothed error term. The reason is that an AFT model directly models the conditional
expectation as opposed to the hazard function in the more popular Cox model. Therefore, it can be more easily incorporated into
the augmentation terms. Our empirical studies have shown that overall the proposed methods are comparable or advantageous
over existing methods. In general, the proposed method with an unweighted loss function exhibits the most robust performance
across different scenarios.

The two proposed loss functions differ in whether inverse probability censoring weighting is used to account for censoring.
Inverse probability censoring weighting is a natural strategy to account for censoring. In fact, it is necessary for consistent
estimation of 
 without imposing additional assumptions as shown in the Appendix. However, our ultimate goal is not to make
inference on 
 . The goal is to estimate the optimal treatment regime such that one can make correct treatment decisions for
individual patients. Therefore, it is more important to consider the bias-and-variance trade-off in our setting than a typical
inference problem. As we have discussed in Section 3.5 and Section 4, it is actually more advantageous to use the unweighted
loss function based on their empirical performances. An intuitive explanation is that weighting greatly increases variance of
estimation and therefore decreases the accuracy of the estimated optimal treatment decisions. We note that the discussion on
accounting for censoring only pertains to the loss function and censoring is appropriately accounted for in both proposed methods
in the stage of modeling for outcomes.

The proposed methods can handle high-dimensional covariates by incorporating variable selections at two stages. Variable
selection can be carried out during the stage when one builds working AFT models for the time-to-events. In this stage, we
would like to select all covariates that are predictive of outcomes to improve efficiency, i.e., covariates with main effects and/or
treatment interaction effects. One also can incorporate variable selection during the minimization step by including a penalty
term. In this step, the target of variable selection is on selecting variables that are important in the true optimal treatment regime,
that is, variables interact with treatment. Based on our simulation studies, penalized methods do improve performances relative
to the corresponding unpenalized methods when the number of covariates is large.

In this article, we have focused on the setting of a randomized clinical trial where the treatment probability is known and
briefly discussed extension to observational studies. In principle, the proposed methods can be extended to observational studies
by modeling the propensity score, i.e., the probability of treatment given covariates, and our simulation studies have illustrated
the feasibility. However, when the estimated propensity scores vary considerably and may be close to zero or one, it may lead to
numerical difficulty. This certainly warrants further more detailed study. Our study has focused on a learning method for learning
the optimal decision rule from the observed data and we do not attempt to make statistical inferences. Making inferences is an
important but challenging problem. Recent work mostly consider the setting without censoring28,29,30. It would be interesting
to study inferences for optimal treatment regimes for survival data in the future.
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DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author.

APPENDIX

We outline proofs of Result 1 in this Appendix. We consider a randomized clinical trial with randomization probability P (A =
1) = �. We consider the simpler case where � is known and used in constructing the contrast function. Proofs when �̂ is used
is similar. We can rewrite equivalently

Ĉ(Xi) =
Ai − �
�(1 − �)

[

{Ai� − (1 − Ai)(1 − �)}C(Xi) + �i + e(Xi)
]

= C(Xi) +
Ai − �
�(1 − �)

�i +
Ai − �
�(1 − �)

e(Xi)

= 
 ′0HXi
+

Ai − �
�(1 − �)

�i +
Ai − �
�(1 − �)

e(Xi).

where e(X) = (1 − �){�1(X) − �̂1(X)} + �{�0(X) − �̂0(X)}. Recall G(.) is the survival function of censoring time, and Ĝ(.)
is the Kaplan-Meier estimator of G. Let Li(
) = wi{Ĉ(Xi) − 
HXi

}2, and Ln(
) = 1∕n
∑n

i=1 Li(
).
The weighted loss function (5) corresponds to wi =

�i
Ĝ(Ti)

. We have

L

i (
, û1, û0) ≡

)Li(
)
)


=
�i

Ĝ(Ti)
2{Ĉ(Xi) − 
 ′HXi

}HXi

=
�i

Ĝ(Ti)
2
{


 ′0HXi
+

Ai − �
�(1 − �)

�i +
Ai − �
�(1 − �)

e(Xi) − 
 ′HXi

}

HXi
,

and
)Ln(
)
)


= 1
n

n
∑

i=1
L


i (
, û1, û0)

= 1
n

n
∑

i=1

�i
Ĝ(Ti)

2
{


 ′0HXi
+

Ai − �
�(1 − �)

�i +
Ai − �
�(1 − �)

e(Xi) − 
 ′HXi

}

HXi
.

Suppose �̂1(X)
P

←←←←←←←←←←←←←←←←←←→ �∗
1(X) and �̂0(X)

P
←←←←←←←←←←←←←←←←←←→ �∗

0(X). Note, �∗
1(X) and �∗

0(X) may not necessarily be the truth. Let e∗(X) =
(1 − �){�1(X) − �∗

1(X)} + �{�0(X) − �∗
0(X)}. Since Ĝ(.) is a consistent estimator of G(.), we can show that

1
n

n
∑

i=1

�i
Ĝ(Ti)

2
{


 ′0HXi
+ A − �

�(1 − �)
� + A − �

�(1 − �)
e(Xi) − 
 ′HXi

}

HXi

P
←←←←←←←←←←←←←←←←←←→ E

[ �
G(T )

2
{


 ′0HX + A − �
�(1 − �)

� + A − �
�(1 − �)

e∗(X) − 
 ′HX

}

HX

]

= E
[

E
{ �
G(T )

|X,A, "
}

2
{


 ′0HX + A − �
�(1 − �)

� + A − �
�(1 − �)

e∗(X) − 
 ′HX

}

HX

]

= E
[

2
{


 ′0HX + A − �
�(1 − �)

� + A − �
�(1 − �)

e∗(X) − 
 ′HX

}

HX

]

= 2E{(
 ′0HX − 
 ′HX)HX}.

Therefore, we have

1
n

n
∑

i=1
L


i (
, û1, û0)
P

←←←←←←←←←←←←←←←←←←→ 2E{(
 ′0HX − 
 ′HX)HX}.
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As 
̂ is the unique solution to
∑n

i=1 L


i (
, û1, û0) = 0, and 
0 is the unique solution to E{(
 ′0HX − 
 ′HX)HX} = 0, this implies

that 
̂
P

←←←←←←←←←←←←←←←←←←→ 
0 by M-estimation/Z-estimation theory.
The unweighted loss function (6) corresponds to wi = �i. Similarly, we have

L

i (
, û1, û0) = 2�i

{


 ′0HXi
+

Ai − �̂�
i

�̂�
i (1 − �̂�

i )
�i +

Ai − �̂�
i

�̂�
i (1 − �̂�

i )
e(Xi) − 
 ′HXi

}

HXi
,

and
)Ln(
)
)


= 1
n

n
∑

i=1
L


i (
, û1, û0)

= 1
n

n
∑

i=1
2�i

{


 ′0HXi
+

Ai − �̂�
i

�̂�
i (1 − �̂�

i )
�i +

Ai − �̂�
i

�̂�
i (1 − �̂�

i )
e(Xi) − 
 ′HXi

}

HXi
.

Recall �̂�
i ≡ �̂�(Xi). Suppose �̂�(x)

P
←←←←←←←←←←←←←←←←←←→ ��∗(x), we can show that

1
n

n
∑

i=1
2�i

{


 ′0HXi
+

Ai − �̂�
i

�̂�
i (1 − �̂�

i )
�i +

Ai − �̂�
i

�̂�
i (1 − �̂�

i )
e(Xi) − 
 ′HXi

}

HXi

P
←←←←←←←←←←←←←←←←←←→ E

[

2�
{


 ′0HX +
A − ��∗(X)

��∗(X){1 − ��∗(X)}
� +

A − ��∗(X)
��∗(X){1 − ��∗(X)}

e∗(X) − 
 ′HX

}

HX

]

= 2P (� = 1)E{(
 ′0HX − 
 ′HX)HX|� = 1}

+2P (� = 1)E
{ A − ��∗(X)
��∗(X){1 − ��∗(X)}

e∗(X)HX|� = 1
}

.

Then we have
1
n

n
∑

i=1
L


i (
, û1, û0)
P

←←←←←←←←←←←←←←←←←←→ 2P (� = 1)E{(
 ′0HX − 
 ′HX)HX|� = 1}

+ 2P (� = 1)E
{ A − ��∗(X)
��∗(X){1 − ��∗(X)}

e∗(X)HX|� = 1
}

.

We see that 
0 is still the unique solution to 2P (� = 1)E{(
 ′0HX − 
 ′HX)HX|� = 1} = 0. For the second term, we have

E
{ A − ��∗(X)
��∗(X){1 − ��∗(X)}

e∗(X)HX|� = 1
}

= E
[

E
{ A − ��∗(X)
��∗(X){1 − ��∗(X)}

e∗(X)HX|X, � = 1
}

|� = 1
]

= E
{ ��(X) − ��∗(X)
��∗(X){1 − ��∗(X)}

e∗(X)HX|� = 1
}

,

where ��(X) = P (A = 1|X, � = 1). If the propensity score model for the uncensored data is correct, then we have ��∗(X) =
��(X), and the second term is equal 0. By the same argument, we have 
̃ converges in probability to 
0.

When data are obtained from an observational study, the propensity score �(X) = P (A = 1|X) is unknown and can be
estimated by �̂(X). Using a similar argument as in proofs for the unweighted loss function , we can show that 
̂ is consistent for

0 if the model for P (A = 1|X) is correct.
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TABLE 2 Selection results under independent censoring. Incorr0: the number of non-zero coefficients incorrectly identified as
zero; Corr0: the number of correct zero coefficients identified; Cover: the proportion of covering all the important variables.

Model 1 Model 2 Model 3

Method Incorr0 Corr0 Cover Incorr0 Corr0 Cover Incorr0 Corr0 Cover
n=400, CR=15%

AIPWE_AFT∗ 0.002 28.0 0.998 0.025 28.3 0.975 0.085 30.9 0.885
AIPWE_AFT 0.010 27.6 0.992 0.065 29.5 0.950 0.095 31.4 0.905

Geng et al 0.002 26.3 0.998 0.260 26.3 0.750 0.064 28.7 0.938
Tian et al 0.322 39.4 0.718 0.846 38.9 0.462 0.208 41.2 0.820

n=400, CR=40%

AIPWE_AFT∗ 0.010 26.7 0.990 0.080 29.8 0.935 0.215 31.6 0.785
AIPWE_AFT 0.050 28.4 0.955 0.185 30.0 0.870 0.305 31.8 0.796

Geng et al 0.024 16.3 0.976 0.606 18.3 0.524 0.296 18.0 0.772
Tian et al 0.316 38.9 0.724 0.906 38.6 0.378 0.324 40.3 0.726

n=1000, CR=15%

AIPWE_AFT∗ 0 33.7 1 0 35.6 1 0 36.6 1
AIPWE_AFT 0 34.6 1 0 34.5 0.998 0 36.5 1

Geng et al 0 32.5 1 0.042 31.8 0.958 0 34.5 1
Tian et al 0.012 37.3 0.988 0.080 37.1 0.922 0.004 39.7 0.996

n=1000, CR=40%

AIPWE_AFT∗ 0 33.6 1 0 34.2 1 0.020 37.4 0.980
AIPWE_AFT 0.005 32.6 0.995 0.032 34.0 0.982 0.058 36.4 0.954

Geng et al 0.004 26.6 0.998 0.590 28.8 0.638 0.068 30.9 0.936
Tian et al 0.020 36.7 0.980 0.214 36.4 0.790 0.018 38.7 0.982
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TABLE 4 Selection results under dependent censoring (Sensitivity analysis). Incorr0: the number of non-zero coefficients
incorrectly identified as zero; Corr0: the number of correct zero coefficients identified; Cover: the proportion of covering all the
important variables.

Model 1 Model 2 Model 3

Method Incorr0 Corr0 Cover Incorr0 Corr0 Cover Incorr0 Corr0 Cover
n=400, CR=15%

AIPWE_AFT∗ 0.002 29.8 0.998 0.030 30.2 0.970 0.125 32.4 0.905
AIPWE_AFT 0.020 28.6 0.985 0.150 30.6 0.870 0.090 31.2 0.920

Geng et al 0.006 25.6 0.994 0.422 26.1 0.640 0.092 28.4 0.920
Tian et al 0.236 39.4 0.788 0.786 38.7 0.482 0.306 41.4 0.754

n=400, CR=40%

AIPWE_AFT∗ 0.010 26.8 0.992 0.075 30.0 0.930 0.300 31.0 0.740
AIPWE_AFT 0.090 28.0 0.915 0.460 29.9 0.720 0.360 31.2 0.715

Geng et al 0.022 16.0 0.978 0.634 16.8 0.546 0.256 21.2 0.770
Tian et al 0.464 40.0 0.622 1.074 38.8 0.244 0.564 41.6 0.566

n=1000, CR=15%

AIPWE_AFT∗ 0 33.1 1 0 34.5 1 0 35.9 1
AIPWE_AFT 0.016 32.0 1 0.010 34.4 0.990 0 35.6 1

Geng et al 0.002 31.4 0.998 0.178 31.8 0.824 0 34.0 1
Tian et al 0.010 37.1 0.990 0.094 37.1 0.910 0.008 39.9 0.992

n=1000, CR=40%

AIPWE_AFT∗ 0 32.7 1 0.010 36.0 0.995 0.010 36.2 0.970
AIPWE_AFT 0 31.5 1 0.085 34.7 0.925 0.035 35.4 0.965

Geng et al 0 27.5 1 0.596 26.9 0.602 0.012 32.9 0.988
Tian et al 0.034 36.7 0.966 0.510 37.4 0.492 0.060 39.7 0.942



Figure 1: Boxplots of PCD for various methods under simulation models 1-3, independent censoring with 

sample size n = 400 and n = 1000 respectively. 

 

Figure 2: Sensitivity analysis: boxplots of PCD for various methods under simulation models 1-3, 

dependent censoring with sample size n = 400 and n = 1000 respectively. 

 

Figure 3: Kaplan-Meier survival curves for two treatment groups and patients following the estimated 

optimal treatment regime from various methods. 
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