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A An extension to multiple variable MNAR missingness

In this section, we provide a generalization of the proposed method that allows for MNAR
missingness in multiple variables, with some restrictions. Suppose the columns of Z are ordered
such that the first d variables are assumed to be MNAR. We make the following assumptions.

Suppose we partition the joint model for missingness as

f(Ri1, . . . ,Rik|Zi.) = f(Ri,d+1, . . . ,Rik|Zi.,Ri1, . . .Rid)
× f(Rid|Zi.,Ri1, . . . ,Ri,d−1)× . . .× f(Ri2|Zi.,Ri1)f(Ri1|Zi.).

where f denotes the distribution function for the corresponding variables. We will assume the
following:

1. Zi,d+1, . . . , Zik are MAR, with
f(Ri,d+1, . . . ,Rik|Zi.,Ri1, . . . ,Rid) = f(Ri2, . . . ,Rik|Wi.).

2. For j = 1, . . . , d, Zij may be MNAR, with f(Rij |Zi.,Ri1, . . . ,Ri,j−1) = f(Rij |Zij ,Wi.).

In Assumption 2, we allow Zij to be MNAR such that its missingness depends on the true
value of Zij but does not depend on the other variables with missingness or their missingness
indicators given Zij and Wi..

A.1 Imputation and weights under Assumptions 1-2

Imputation of Zi,d+1, . . . , Zik will be the same as before, since these variables are assumed to be
MAR and independent of missingness in the MNAR variables. Since we assume that missingness
is independent between the MNAR variables and that missingness in each variable is indepen-
dent of other variables with missingness, we can again re-write the imputation distribution for
each MNAR variable Zij , j = 1, . . . , d as follows:

f(Zij |Zi,−j ,Rij = 0) ∝ P (Rij = 0|Zij ,Wi.)

1− P (Rij = 0|Zij ,Wi.)
f(Zij |Zi,−j ,Rij = 1) (Eq. S1 )

Suppose that instead of imputing from Eq. S1 directly, we impute each Zij from f(Zij |Zi,−j ,Rij =
1). We can collect the “weight” terms for each one of the imputed variables to obtain an ag-
gregate weight to use for the final analysis as follows:

ωim ∝
d∏
j=1

P (Rij = 0|Zijm,Wi.)

1− P (Rij = 0|Zijm,Wi.)
(Eq. S2 )

where Zijm is the mth imputation of Zij . Suppose, now, that we can reasonably approximate
each missingness model with a logistic regression model as follows:

logit (P (Rij = 1|Zij ,Wi.)) = φ0 + φjZij + φTWjWi. (Eq. S3 )
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In this case, we can re-write the weight as

ωim ∝
d∏
j=1

exp(−φjZijm) = exp(−
d∑
j=1

φjZijm) (Eq. S4 )

This weight is a very simple function of the imputed data and d sensitivity parameters, φ1, . . . , φd.
Analysis can proceed as described in the main paper, where the form of the weights now depends
on multiple sensitivity parameters, each describing the strength of the MNAR dependence of
each variable and its own missingness, adjusting for W .

A.2 Approximated method for more complicated MNAR mechanisms

Suppose we want to consider more general MNAR missingness, where we no longer make As-
sumptions 1-2. We examine the conditional distribution we want to impute from under a chained
equations imputation philosophy: f(Zij |Zi,−j ,Ri. = Ri.). Recall, Ri. is the data realization of
random variable Ri. related to whether each of the variables is observed for subject i. We have
that

f(Zij |Zi,−j ,Ri. = Ri.) =
P (Ri. = Ri.|Zi.)
P (Ri. = Ri.|Zi.,−j)

f(Zij |Zi,−j)

=
P (Ri. = Ri.|Zi.)
P (Ri. = Ri.|Zi.,−j)

P (Rij = 1|Zi,−j)
P (Rij = 1|Zi.)

f(Zij |Zi,−j ,Rij = 1)

∝ P (Ri. = Ri.|Zi.)
P (Rij = 1|Zi.)

f(Zij |Zi,−j ,Rij = 1) (Eq. S5 )

Without Assumptions 1-2, we note that the proportionality term in Eq. S5 may depend on
multiple variables with missingness in general, not just the value of Zij . If we construct global
weights by multiplying together all of the proportionality terms for all the imputed variables, a
given imputed covariate may appear in multiple proportionality terms. The logic motivating the
importance sampling and stacking approach starts to break down in this case, and the resulting
weighted imputations may no longer correspond to a draw from the correct joint posterior
predictive distribution, even with correctly specified imputation and missingness models. In
spite of this technical limitation, we propose the following weighting strategy as an approximate
approach to handle the MNAR missingness.

The expression in Eq. S5 suggests that we might impute each Zij from f(Zij |Zi,−j ,Rij = 1)
as discussed in the main paper and weight the multiple imputations proportional to the product
of the remaining components of Eq. S5 . After pulling the term constant in j out of the product,
we define weights as follows

ωim ∝
P (Ri. = Ri.|Zi.m)∏

j:Rij=0 P (Rij = 1|Zi.m)
(Eq. S6 )

where Zi.m is the mth imputation of Zi.. In general, this form of the weight could be complicated
and may depend on the association between missingness and fully-observed variables.

We consider the special case where Rij ⊥ Rik|Zi. for all k 6= j. Restated, assume that
missingness for each variable is conditionally independent of the missingness of other variables,
given the true values for Zi.. In this case, we can simplify

ωim ∝

 ∏
j:Rij=1

P (Rij = 1|Zi.m)

×
 ∏
j:Rij=0

P (Rij = 0|Zi.m)

P (Rij = 1|Zi.m)

 (Eq. S7 )

Under logistic regression models for the missingness in each variable as in Eq. S4 , the second
product in Eq. S7 will have a simple, convenient form similar to Eq. S4 , but the first product
will not. In order to use the weight in Eq. S7 , we will need to posit a model for each MNAR
missingness mechanism. Eq. S7 further reduces to Eq. S2 when Assumptions 1-2 are satisfied.
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A.3 Exact method for more complicated MNAR mechanisms

The imputation and weighting approach proposed in A.2 is obtained by defining importance
sampling weights for each imputed variable separately and multiplying them together. This
strategy ignores that several of the imputed variables may contribute to each component of
product. Through simulation, we demonstrate later on that this merged weight may result in
some residual bias in downstream analysis for certain missingness scenarios. In this section, we
propose an alternative method motivated by the target joint posterior predictive distribution
directly.

Let Zi,mis denote the missing elements of Zi. and let Zi,obs denote the observed values of
Zi. for a given subject i. Similarly, define Ri,mis to be the collection of random missingness
indicators such that Rij = 0 and define Ri,obs to be the collection of random missingness
indicators such that Rij = 1 for subject i. We want to impute values for Zi,mis from the
following distribution:

f(Zi,mis|Zi,obs,Ri,obs =
⇀
1 ,Ri,mis =

⇀
0 ) =

P (Ri,obs =
⇀
1 |Zi.,Ri,mis =

⇀
0 )f(Zi,mis|Zi,obs,Ri,mis =

⇀
0 )

P (Ri,obs =
⇀
1 |Zi,obs,Ri,mis =

⇀
0 )

∝ P (Ri,obs =
⇀
1 |Zi.,Ri,mis =

⇀
0 )
P (Ri,mis =

⇀
0 |Zi.)

P (Ri,mis =
⇀
1 |Zi.)

f(Zi,mis|Zi,obs,Ri,mis =
⇀
1 ) (Eq. S8 )

where the notation Ri,mis =
⇀
c means that each random indicator in Ri,mis takes the value c.

Using the importance sampling logic in the main paper, we propose first obtaining multiple

draws of Zi,mis from f(Zi,mis|Zi,obs,Ri,mis =
⇀
1 ). We can implement this step using a chained

equations imputation philosophy and iteratively draw each Zij from f(Zij |Zi,−j ,Ri,mis =
⇀
1 ).

Consider a more concrete example where we want to impute Zi1 for a subject with Zi2 observed
and Zi3 missing. We would impute Zi1 from f(Zi1|Zi2, Zi3,Ri1 = 1 and Ri3 = 1). For a
different subject with only Zi1 missing, we would impute Zi1 from f(Zi1|Zi2, Zi3,Ri1 = 1).
This approach translates into different imputation distributions (or corresponding parameter
draws) for each pattern of missing values in the data.

After obtaining the multiple imputations, we then weight the resulting draws using

ωim ∝ P (Ri,obs =
⇀
1 |Zi.m,Ri,mis =

⇀
0 )
P (Ri,mis =

⇀
0 |Zi.m)

P (Ri,mis =
⇀
1 |Zi.m)

(Eq. S9 )

In the special case where Rij ⊥ Rik|Zi. for all k 6= j, the form of the weight simplifies to match
Eq. S7 exactly. In this case, the only difference between this approach and the approach in
Section A.2 is how the multiple imputations are obtained.
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B Eliciting Sensitivity Parameters

In the main paper and Section A, we describe how we can account for MNAR missingness
through analysis of stacked and weighted multiple imputations, where the form of the weights
depends on the missingness mechanism. In practice, however, this mechanism will not be known
and the goal of “correcting for” MNAR missingness is not reasonable. Instead, the goal of anal-
ysis may be to characterize the impact of various levels of deviation from MAR assumptions,
where repeated analyses are performed and interpreted as a sensitivity analysis. The challenge,
then, is in defining the space of plausible MNAR mechanisms over which to perform the sen-
sitivity analysis. In this section, we highlight several existing strategies for performing this
sensitivity analysis in the literature and describe how they could be modified and implemented
in the proposed modeling framework.

Existing methods for this type of sensitivity analysis (e.g. Tompsett et al. (2018)) usu-
ally conceptualize the problem in a pattern mixture model framework, where deviations from
MNAR are defined in terms of the differences between the distribution of the missing data for
subjects with observed and missing data. A common implementation is to posit a generalized
linear imputation model for Z.j including Z.,−j and R.,−j as predictors and including the offset
δj(1 − R.j) in the linear predictor. The parameter δj is not identified, and its fixed value can
be interpreted in terms of an assumed association between missingness in Z.j and the value of
Z.j , adjusting for Z.,−j and R.,−j . The impact of deviations from MAR assumptions are then
evaluated by repeating analysis across plausible values for δj .

Our proposed method instead casts the problem in terms of the selection modeling frame-
work, where the imputation model for Z.j is the fully identified distribution f(Z.j |Z.,−j ,R.j = 1)
and the selection/missingness mechanism, P (R.j = 1|Z), is modeled directly. Parameters in this
selection model are not fully identified, and we instead posit a generalized linear model for R.j
adjusting for Z.,−j and including the offset φjZ.j in the linear predictor. Parameter φj is not
identified and its fixed value can be interpreted in terms of an assumed association between
covariate Z.j and its own missingness, adjusting for Z.,−j .

In both pattern mixture and selection modeling frameworks, reasonable values of sensitivity
parameters can be difficult to determine, and several strategies for defining a plausible set of
sensitivity parameters have emerged in the literature. One commonly-used strategy that can be
easily implemented under the proposed modeling framework is called “tipping point” analysis
(e.g. Tompsett et al. (2018); Ratitch et al. (2013)), where analysis is repeated for a wide interval
of sensitivity parameters and we bounds of the sensitivity parameter for which our study con-
clusions are changed in a meaningful way. The extent of concern about deviations from MAR
is then converted into a question of the plausibility of these bounds.

Given that these sensitivity parameters are defined in terms of adjusted associations, it
can still be difficult to determine whether a single fixed value of the sensitivity parameter/s
is reasonable. One solution is to reformulate the sensitivity problem in terms of more easily
interpretable parameters. In Tompsett et al. (2020), sensitivity parameters δj are converted
into more easily interpretable parameters πj (e.g. the unadjusted association between Z.j and
its own missingness) by calculating πj using imputed datasets obtained for a fixed δj . This de-
fines a mapping between δj and more easily interpreted πj , and the association between πj and
the downstream inference for outcome model parameters can be directly assessed. This same
approach can be applied in the proposed modeling framework, where instead of estimating πj
using Rubin’s rules applied to multiply imputed datasets obtained using the pattern mixture
model-type offset method, we can instead estimate πj using a stacked and weighted analysis of
the MAR-based multiple imputations where weights are defined using sensitivity parameter φj .
In this way, we can convert the problem of specifying plausible values of φj to the assessment
of plausible ranges of some more interpretable parameter πj .

When determining plausible values of the sensitivity parameter, it is often desirable to con-
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sult subject matter experts. As discussed in Rezvan et al. (2018) and Tompsett et al. (2020)
among others, expectations for marginal summary statistics obtained from subject matter ex-
perts can help inform values for more complicated sensitivity parameters. While it may be
difficult to conceptualize values for sensitivity parameters δj or φj , subject matter experts may
be able to more easily provide expected outcomes or differences between people with missing
and observed data on average. Expectations obtained from several different subject matter
experts can be combined to formulate a distribution for the unknown sensitivity parameter,
and this can be used to guide sensitivity analyses. For a concrete example, suppose we want to
elicit parameter δj associated with the conditional distribution of binary covariate Zj . We could
perform our analysis across several values of δj and for each estimate a corresponding value for
the mean of Zj given Rj = 0. We can then use the expected distribution Zj |Rj = 0 obtained
from subject matter experts to define plausible values for δj , using the mapping estimated from
the imputed data. This same approach can just as easily be applied to our selection modeling
setting, where Zj given Rj = 0 can be estimated using the stacked imputed data analyzed using
weights parameterized by φj .

In this way, existing literature guiding sensitivity parameter elicitation for the pattern mix-
ture modeling framework can often be applied in the proposed selection modeling framework
as well and can be leveraged to guide choices for sensitivity parameters φ.
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C Simulation 1: additional results for single variable missing-
ness

Figure C.1: Distribution of linear regression Z2 coefficient for 100 imputed datasets under
MAR assumptions. Points correspond to corresponding re-weighting of these estimates using
the method in Carpenter et al. (2007) with assumed values of φ1 in (-1.5, 1.5). The true
coefficient value for the regression for Z2|Z1 is 0.50, denoted by the vertical line. The true
missingness model log-odds ratio, φ1, is 1.
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Table C.1: Bias in estimated Z1|Z2 model parameters across 1000 simulated datasets for alter-
native MNAR-based chained equations methods and the proposed method (n=1000, M=100).
1

Method φ1 Intercept Coefficient of Z2

Truth 1 0 0.5

Complete Case Analysis 1 0.323 0.342

Proposed Method 1 -0.009 0.507

Tompsett et al. (2018) 1 0.003 0.500

Jolani (2012) 1 0.411 0.297

Truth 0.5 0 0.5

Complete Case Analysis 0.5 0.180 0.416

Proposed Method 0.5 -0.001 0.501

Tompsett et al. (2018) 0.5 0.005 0.498

Jolani (2012) 0.5 0.266 0.376
1For the method in Tompsett et al. (2018), we did not adjust for missingness indicators for other variables when
imputing Z.1 and instead only incorporated the fixed offset as a function of R.1. This method was implemented
using the mice.impute.mnar.norm imputation method in R. The method in Jolani (2012) was implemented using
mice.impute.ri imputation method in R. For the proposed method and the method in Tompsett et al. (2018),
sensitivity parameters were fixed to the best possible value (which differs between the two methods).
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Figure C.2: Weights assigned to each of 100 multiple imputations across different assumed
values for φ1 in (-1.5, 1.5) for normally-distributed Z1. The true missingness model log-odds
ratio, φ1, is 1.1.

(a) Weights assigned to each of 100 imputed datasets (lines) for proposed method and Carpenter et al.
(2007) method
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(b) Boxplots and densities of proposed weights across 100 multiple imputations for some example subjects
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1 For the method in Carpenter et al. (2007), weights are scaled to sum to 1 across imputed datasets. For the
proposed methods, weights are scaled to sum to 1 across imputed datasets within subjects. The horizontal gray
line in both figures corresponds to the setting with equal weights assigned to all imputations.
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Figure C.3: Time to compute standard errors for linear regression based on stacked multiple
imputations as a function of M (n = 1000)
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D Simulation 2: missingness in multiple covariates

We now consider the case where we have missingness in multiple covariates. In each simula-
tion setting, we generate 1000 simulated datasets of N = 2000 subjects. In all settings, we
generate covariates (Z1, Z2, Z3) following a multivariate normal distribution with mean zero,
standard deviation 1, and covariances of 0.3. We then generate Z4 under linear regression
Z4 ∼ N(0 + 0.5Z1 + 0.5Z2 + 0.5Z3, 1). We impose MNAR missingness in Z1 under the following
model: logit(P (R1 = 1|Z)) = φ0 + φ1Z1 + 0.5Z4. Missingness model parameters were specified
to generate different degrees of deviation from MAR, with true missingness model log-odds ratio
φ1 taking values in -0.5, 0, 0.5, and 1. φ0 was chosen to give roughly a 50% missingness rate
for Z1. We also generate 50% MCAR missingness in Z2.

We then obtain 50 multiple imputations for missing values of Z1 and Z2 using the package
mice in R assuming linear regression imputation models for each variable. Using these multi-
ple imputations, we then estimate parameters in the model for Z4|Z1, Z2, Z3 either using the
method in Carpenter et al. (2007) or the proposed stacking and weighting method. Since φ1

would be usually unknown in practice, we perform this estimation for different assumed values
of log-odds ratio φ1.

Figure D.1a shows the bias in linear regression parameter estimates (model for Z4|Z1, Z2, Z3)
when φ1 is correctly specified. As before, we find that our proposed approach can do a good job
at estimating model parameters and that the method in Carpenter et al. (2007) can result in
substantial residual bias. Figure D.1b provides the estimates across different assumed values
for φ1, with the true value of φ1 highlighted with a star.
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Figure D.1: Average bias in estimated parameters from linear regression of Z4|Z1, Z2, Z3 under
MNAR missingness in covariate Z1 and MCAR missingness in covariate Z2.

(a) Bias with correctly-specified sensitivity parameter, φ1
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1 The true value of φ1 is highlighted for each simulation setting by ‘*’.
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An alternative imputation strategy is to apply the Tompsett et al. (2018) pattern mixture
model approach, where imputation of Zi1 uses Zi,−1 and 1 − R.,−1 as covariates and the co-
efficient for 1 − R.1 is a fixed sensitivity parameter. Since we assume that Zi1 is independent
of 1 − R.,−1, this approach reduces to performing imputation with a fixed offset proportional
to (1 − R.1) with corresponding sensitivity parameter controlling the degree of deviation from
MAR. This coefficient does not directly correspond to the coefficient in the missingness model.
However, we can determine the best possible value of this offset parameter for our simulated
data by fitting a regression model for true Zi1 given true Zi,−1 and Ri1. We use the resulting
ideal parameter, which would not be known in real data analyses, to benchmark the perfor-
mance of our proposed method relative to the strategy of including an offset in the imputation
model. For selection model sensitivity parameter φ in -0.5, 0, 0.5, and 1, the ideal Zi1 pattern
mixture model model parameter should be roughly 0.34, 0, -0.34, and -0.62, respectively.

Figure D.2 provides bias in outcome model parameter estimates across different values of
these alternative pattern mixture model sensitivity parameters, where the ideal offset sensitiv-
ity parameter is shown for each of the 4 simulation settings along the x-axis. Generally, if we
posit values of the sensitivity parameter near the best possible value, this method can produce
low bias. This simulation demonstrates that the Tompsett et al. (2018) approach can work in
ideal settings, as can our method. The implementation is the primary difference here, where
our sensitivity parameters correspond to the missingness model directly, and we only have to
impute once rather than separately for each value of the sensitivity parameters.

We also compare the proposed method and the method in Tompsett et al. (2018) to an
alternative method proposed in Jolani (2012), which aims to avoid the need to specify the sensi-
tivity parameter entirely. In Table D.1, we demonstrate that the current mice implementation
of this method performs poorly relative to the proposed method and the method in Tompsett
et al. (2018) under ideal settings.

Figure D.2: Average bias from fixed offset imputation method
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Figure D.3 provides the average estimated variances and coverage of 95% confidence in-
tervals for the proposed method using each of the three variance estimation strategies. We
again find that the method in Eq. 9 tends to produce slight under-coverage. Additionally,
for large values of true φ1, the method from Bernhardt (2019) and our jackknife modification
both produce slight over-coverage. Coverage rates for logistic regression model parameters are
near-nominal for all methods (not shown). Under-coverage of the method in Eq. 9 is not a
result of estimating the linear regression dispersion parameter, since the under-coverage persists
even when we fix the dispersion parameter at the simulation truth rather than estimating it
(Figure D.3, “Louis Dispersion” method).
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Figure D.3: Coverage of 95% confidence intervals and average estimated variances for lin-
ear regression coefficients from stacked and weighted analysis across 1000 simulated datasets,
assuming true φ1 is known
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(b) Average estimated variances
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The “Louis Dispersion” method uses the estimator in Eq. 9 applied to imputed data obtained after fixing the
imputation model dispersion parameters to the simulation truths.
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Table D.1: Bias in estimated Z4|Z1, Z2, Z3 model parameters across 1000 simulated datasets
for alternative MNAR-based chained equations method and the proposed method (M=100). 1

Method φ1 Intercept Coefficient of Z1 Coefficient of Z2 Coefficient of Z3

Truth 0 0 0.5 0.5 0.5

Complete Case Analysis 0 0.236 0.473 0.375 0.475

Proposed Method 0 0.000 0.499 0.499 0.500

Tompsett et al. (2018) 0 0.000 0.499 0.500 0.500

Jolani (2012) 0 -0.028 0.473 0.510 0.510

Truth -0.5 0 0.5 0.5 0.5

Complete Case Analysis -0.5 0.234 0.525 0.472 0.473

Proposed Method -0.5 0.000 0.499 0.498 0.501

Tompsett et al. (2018) -0.5 0.000 0.499 0.499 0.501

Jolani (2012) -0.5 0.067 0.521 0.488 0.490

Truth 0.5 0 0.5 0.5 0.5

Complete Case Analysis 0.5 0.236 0.429 0.477 0.477

Proposed Method 0.5 0.001 0.498 0.500 0.500

Tompsett et al. (2018) 0.5 0.000 0.498 0.501 0.500

Jolani (2012) 0.5 -0.101 0.429 0.535 0.533

Truth 1 0 0.5 0.5 0.5

Complete Case Analysis 1 0.235 0.395 0.482 0.479

Proposed Method 1 0.002 0.500 0.500 0.499

Tompsett et al. (2018) 1 0.000 0.498 0.501 0.500

Jolani (2012) 1 -0.148 0.397 0.553 0.551
1For the method in Tompsett et al. (2018), we did not adjust for missingness indicators for other variables when
imputing Z.1 and instead only incorporated the fixed offset as a function of R.1. This method was implemented
using the mice.impute.mnar.norm imputation method in R. The method in Jolani (2012) was implemented using
mice.impute.ri imputation method in R. For the proposed method and the method in Tompsett et al. (2018),
sensitivity parameters were fixed to the best possible value (which differs between the two methods).
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E Simulation 3: missingness with multiple MNAR variables

We now consider the case where we have MNAR missingness in multiple multivariate normal
covariates with (Z1, Z2, Z3, Z4) generated as in Section D. We impose MNAR missingness
in Z1 under the following model: logit(P (R1 = 1|Z)) = φ1Z1 + φ2Z2 + 0.5Z4. We impose
MNAR missingness in Z2 under logit(P (R2 = 1|Z)) = β1Z1 + β2Z2 + 0.5Z4. We consider 5
different missingness mechanism scenarios as detailed in Table E.1. Scenario 1 corresponds to a
setting where Assumptions 1-2 are satisfied and the method in Supplementary Section A.1
can be applied. For Scenarios 2-5, the critical assumption that Zij ⊥ Ri,−j |Zi,−j is violated.
For each simulated dataset, we apply the imputation and weighting strategies proposed in
Supplementary Section A.2 (denoted “Proposed, Approx.”) or Supplementary Section
A.3 (denoted “Proposed, Exact”) using 50 imputed datasets per method, assuming linear
regression imputation models for each variable.

Table E.1: Scenarios considered in Simulation 3 with MNAR missingness in Z1 and Z2
1

Missingness in Z1 Missingness in Z2

Setting φ1 φ2 β1 β2 Description of Missingness Mechanisms Assumption 2

1 0.5 0 0 0.5 Each mechanism depends on its own value Satisfied

2 0 0.5 0 0.5 Each mechanism depends on other variable. Violated

3 0.5 0 0.5 0 Both mechanisms depend only on Z1. Violated

4 0 0.5 0.5 0 Both mechanisms depend only on Z2. Violated

5 0.5 0.5 0.5 0.5 Both mechanisms depend on Z1 and Z2. Violated

1 Assumption 1 is trivially satisfied for all simulation settings considered.

Figure E.1 shows the resulting bias in linear regression parameter estimates in a model
for Z4|Z1, Z2, Z3. We also show the bias of complete case parameter estimates. We find that
both varieties of the proposed method perform well when Assumptions 1-2 are satisfied (Set-
ting 1). Although not shown, this good performance was seen across a variety of simulation
settings. When Assumptions 1-2 are violated (Settings 2-5), both methods result in reduced
bias compared to complete case analysis. However, we find that the “exact” method in Sup-
plementary Section A.3 tends to produce negligible bias, while the “approximate” method
in Supplementary Section A.2 results in some residual bias even under ideal settings.

Figure E.1: Average bias in outcome model parameters across 1000 simulated datasets in
settings with MNAR missingness in multiple variables (M=50)1
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1 Assuming true missingness mechanisms are known.
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F Additional information for oropharynx cancer example

In this section, we provide some additional information about HPV missingness and the im-
plementation of imputation assuming MAR. Missing values in HPV status (positive/negative),
smoking status (current/former/never), T-stage (T1/T2/T3/T4), overall cancer stage (I/II/II-
I/IV), and ACE7 comorbidities (none/mild/moderate/severe) were imputed 50 times using the
method in White and Royston (2009) to generate the multiple imputations. These imputations
are then stacked, and analysis proceeds using the proposed method.

For generating multiple imputations, we first obtained the Nelson-Aalen estimate for the cu-
mulative hazard of all-cause survival, denoted Λ(Ti), using the censored overall survival outcome
and event indicator, δ, in the data. Each covariate was then imputed using a regression model
adjusting for other covariates along the Λ(Ti) and δ. HPV status was imputed using a logistic
regression model adjusting for gender, smoking status, age at diagnosis, overall cancer stage,
ACE27 comorbidities, year of study enrollment, Λ(Ti) and δ. Smoking status and ACE27 score
were imputed using multinomial logistic regression adjusting for gender, HPV status, overall
cancer stage, age at diagnosis, Λ(Ti), δ, and either ACE27 score or smoking status, respectively.
T-stage and overall cancer stage were both imputed using proportional odds regression adjust-
ing for gender, smoking status, HPV status, comorbidities, age at diagnosis, Λ(Ti), δ, and either
overall cancer stage or T-stage, respectively.

Figure F.1: Observed and missing values of baseline HPV status by year of enrollment
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Table F.1: Logistic regression model estimates for the probability of observing HPV status 1

Characteristic log-odds ratio (95% CI)

Smoking

Never reference

Former (> 12 months) -0.05 (-0.14, 0.03)

Current (< 12 months) -0.13 (-0.21, -0.04)

ACE27 comorbidities

None reference

Mild 0.00 (-0.07, 0.09)

Moderate 0.04 (-0.07, 0.14)

Severe -0.17 (-0.32, -0.03)

Age at diagnosis (decades) -0.04 (-0.08, 0.00)

AJCC Cancer Stage

I reference

II 0.04 (-0.30, 0.37)

III 0.03 (-0.27, 0.34)

IV 0.08 -0.20, 0.37)

Year of enrollment (2012-2016) 0.06 (0.05, 0.07)
1 among the N = 612 subjects with fully-observed data for comorbidities, smoking status, and cancer stage.
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