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1 Introduction

Multiple imputation is a popular and convenient strategy for addressing missing data in modern health research.l' One common
strategy for obtaining imputations of the missing data involves filling in values for each variable with missingness one-by-one
as part of an iterative algorithm.2 In this approach, the problem of missing data handling translates into specification and esti-
mation of the imputation distribution used to fill in the missing values for each variable. Multiple versions of the filled-in data
are generated, and the goal data analysis is performed using each imputed dataset separately and combined using multiple impu-
tation combining rules.* This general missing data handling approach, called chained equations imputation or fully conditional
specification, can be easily implemented using available statistical software. A robust statistical literature provides guidance for
implementation in many common data analysis scenarios, but the majority of the statistical development and software rely on
the key assumption that missingness is unrelated to unobserved data given observed data, called missing at random (MAR).

In many practical data settings, however, the restrictive MAR assumption may not hold. In the particular setting of health
research, for example, results of medical tests may often be available for only a subset of patients. Symptom-informed medical
testing can induce a relationship between whether a test is administered and the test result, even after adjusting for other observed
data. When missingness relates to unobserved information, called missing not at random (MNAR), use of standard imputation
strategies that rely on MAR assumptions can often result in biased inference.*
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Several researchers have developed modifications to the chained equations imputation procedure that incorporate corrections
for MNAR missingness. Tompsett et al. (2018) proposed imputing each variable with missingness using a model that also adjusts
for the missingness indicators for the other variables.” The relationship between missingness and the variable being imputed is
incorporated through a fixed offset in the imputation model with a corresponding sensitivity parameter. The random indicator
method proposed in Jolani (2012) avoids the use of fixed sensitivity parameters, but existing software implicitly assumes a lo-
gistic regression model for missingness with main effects only, which may be violated in practice. Both methods rely on some
degree of approximation in the distribution of missing values given observed values.®

Additionally, these approaches to handling MNAR missingness assume that the analyst fitting the target model is also the an-
alyst imputing the data, but this may not always be the case. Carpenter et al. (2007) provides a sensitivity analysis approach that
re-weights parameter estimates from multiple imputations generated under MAR assumptions, with the structure of the weights
used to account for the MNAR missingness.'Z This method can perform well in settings where the MNAR missingness is weak,
but several authors have noted that this method can perform poorly when MNAR missingness is strong.® Corrections to this
method provided in Smuk (2015) only partially address this issue.”

In this paper, we propose a new approach for addressing not-at-random missingness that takes advantage of recent advances
in the area of stacked multiple imputations.''? In the proposed approach, multiple imputations obtained under MAR assumptions
are stacked and augmented with a weight related to the assumed MNAR missingness mechanism. Unlike the related approach
in Carpenter et al. (2007), the proposed method defines weights separately for each subject and uses weights to obtain parameter
estimates rather than solely for aggregating estimates across multiple imputations./ When all models are correctly specified, we
can obtain valid estimates of parameters of interest (e.g. means, regression model parameters, etc.) by performing a weighted
version of the target analysis on the stacked multiple imputations. We describe several strategies for obtaining corresponding
standard errors based on previous work by Beesley and Taylor (2020) and Bernhardt (2019).1%1! We demonstrate through sim-
ulation that the proposed method has excellent performance when the missingness model is correctly specified. In practice, the
missingness mechanism will not be known. We show how we can use our approach in a sensitivity analysis framework to evalu-
ate the robustness of model inference to different MNAR assumptions and describe how existing methods for eliciting sensitivity
parameters can be adapted and applied. We apply the proposed method to account for potential MNAR missingness in human
papillomavirus (HPV) test results in a study of survival for patients diagnosed with oropharyngeal cancer. We also provide R
package StackImpute to facilitate implementation as part of routine sensitivity analyses to deviations from MAR.

2 Imputation stacking approach for single variable MNAR missingness

2.1 Notation and assumptions

Let Z be a n X p matrix containing p variables measured on » independent subjects such that the first k variables in Z are
missing for some subjects and the last p — k variables (denoted W) are fully-observed for all subjects. Let R;; be an indicator
for whether variable j is measured for subject i in the data. Our goal is to obtain multiple imputations of the missing values in
Z, with which we will perform some target analysis. For example, we may be interested in the mean of the j* variable in Z
or a regression model of the first variable on the others. Throughout, let Z; denote data for the i" subject, and let Z ; denote
the j** variable. Define rows and columns in matrices R and W similarly. Let Z; _ ; denote the elements in Z; excluding the j th
variable. We will assume data are independent across subjects.

We imagine the missingness pattern R;; observed in the data is a data realization of a corresponding random variable, denoted
R,;. Collectively, we call these random indicators R. Under missing at random (MAR) assumptions, the joint distribution of
R may depend only on fully-observed data in Z, and the mechanism generating data missingness can be ignored during data
imputation.* However, it is possible that missingness depends on unobserved information in Z, called missing not at random
(MNAR). Here, we consider a particular generalization of the MAR setting where the first variable in Z, denoted Z |, may be
MNAR. For an extension of these methods under multiple variable MNAR missingness, see Supplementary Section [A]

Suppose we partition the joint model for missingness as

JRips - Ryl Z) = fRigs - . Ryl Zi Ry f (R | Z3).
where f denotes the distribution function for the corresponding variables. We will assume the following:

1. Zp. ..., Zy are MAR, with f(Rpp. ... . Ry | Zi . Ry) = fRigs .., Ry [W,).



Beesley and Taylor (2021) 3

2. Z;; may be MNAR, with f(R;;|Z;) = f(R | Z;, W7).

In Assumption 2, we allow Z;; to be MNAR such that its missingness depends on the true value of Z;; but does not depend on
the other variables with missing values. For addressing more general missingness mechanisms, see Supplementary Section[A]

2.2 Imputation and importance sampling

Let Z, ;s and Z; ,,; denote the missing and observed elements of Z;, respectively. Under a full joint model for the variables

with missingness, we can impute missing values of Z; from f(Z; ,..|Z; ;. R; = R;). In practice, we often approximate a draw
from the full joint distribution by iteratively drawing missing values for each variable in Z from its full conditional distribution,
f(Z;;|Z;_;,R; = R;). Then, we repeat this iterative process many times to obtain M imputed datasets. Rather than specifying
the full joint model for all variables with missingness, a chained equations strategy involves directly specifying a model for
each full conditional distribution, f(Z;;|Z; _;,R; = R;).# 1t can be challenging in general to determine how to specify these
conditional models as a function of R;. Under Assumptions 1-2, however, these imputation distributions can be simplified.

First, we consider imputation for Z;; in Z,, ..., Z;.. Under Assumptions 1-2, f(Z;|Z; _;, R, = R;) = f(Z;|Z,_;,R;; =
1) = f(Z;;1Z;_;). This is the same distribution we would use to impute Z;; under standard MAR assumptions, and we can
apply our usual strategies for performing this imputation, e.g. by approximating f(Z;;|Z; _;) with a regression model.

Now, we consider the imputation distribution for Z;,. Under Assumption 1, we can impute missing Z;; from

f(Zillzi,—l’Ri. =R;)= f(Zillzi,—l’Ril =0)

Parameters from this distribution are not identified from the observed data without additional assumptions. However, we note
that

f(ZZ, |\ R, =0)= P(“—:Ol")f(zﬂz,_l) = PRy =01Z) lz f(ZZ, 1\ Ry =1PR, =rlZ,_))
1 L, 1 P(Ril :0|Z,',_1) 1 I, P(Ril :0|Z,',_1) - 1 I, 1 1 L,
=p(R_] =O|ZA) f(Z-,lZ»_l,R-l — DL”L_])"‘f(ZﬂZ‘—hR‘l =0)]
i i 1 L, 1 P(Ril =O|Zi,—1) 1 1, 1

The term f(Z;,|Z;_,,R;; = 0) appears on both the left and the right of this expression. Rearranging this expression and using
that P(R;; =0|Z,) = P(R,;, =0|Z,;, W,), we have that
PR, =01Z;, W)

> 1-PR;; =01Z;,.W,)
Unlike f(Z;|Z;_;, R;; = 0), there is information in the data to estimate parameters in distribution f(Z;|Z; _;,R; = 1). The
term P(R;, = 0|Z,;, W;) is not identified from the observed data, and we will need to make untestable assumptions about this
distribution. We will address this challenge later on. Even if this missingness probability were known, drawing from [Eg. 7] can
still be difficult, since the distribution may only be known up to proportionality in some cases. Rejection sampling and other
statistical techniques can be applied to draw from directly, but these approaches can be computationally expensive and
require custom software.

One option is to approximate a draw fromusing importance sampling as in Tanner (1993) and Little and Rubin (2002).124
Define functions j(z) = f(z|Z;_|,R;; = 1) and h(z) = f(z|Z;_;,R; = 0). We can approximate a draw from A(z) by
drawing multiple candidate imputations z', ..., z™ from j(z). Then, we select candidate draw z" with probability proportional to
h(z™)/j(z™) to obtain a single imputation of Z,,. This process can then be repeated multiple times to obtain multiple imputations.
This importance sampling method can be applied if

f(Zillzi,—]’Ril =0) f(Zillzi,—l’Ril =1 (Eq. D

1. The support of j(z) contains the support for h(z).
2. Function h(z)/j(z) is bounded.

The first requirement may often be met for j(z) and h(z) as defined above. However, many candidate draws may be needed
when j(z) and h(z) are very different, i.e. the distribution of observed Z;, is very different than the distribution of missing
Z;,. The second requirement is satisfied if w(z) = ff;::—(m is bounded in z. w(z) will, of course, be bounded below by 0.
However, additional assumptions are needed to ensure w(z) is bounded above. We can ensure that w(z) is bounded above if we
assume there is some (possibly small) probability € such that e < P(R;; = 1|z, W, ) for all z. In other words, the probability of

observing Z;; must always be non-zero. While this may not strictly hold for some Z;; (e.g. those defined on the real line under
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logistic regression), we may still reasonably apply this importance sampling strategy if the probability of drawing very extreme
candidates for Z;; is small.

The above approach can become computationally expensive, since we need many candidate draws from j(z) in order to obtain
a single imputed value from A(z). An alternative approach is to first obtain M multiple imputations of Z;; and to weight these
multiple imputations proportional to w(z) in the data analysis. The exact way in which these weights should be carried through
in the analysis of multiply imputed data, however, is not obvious. Previously, Carpenter et al. (2007) proposed a strategy for
incorporating such weights into analysis of multiply imputed Z | as described in Section below.” In this paper, we will
propose a different strategy to incorporate such weights into data analysis that maintains the simplicity of the method in Carpenter
et al. (2007) but gives better properties in terms of bias in estimating parameters of interest.”

2.3 Weighting strategy of Carpenter et al. (2007)

Suppose we obtain multiple imputations of missing values in Z;; as if missingness were MAR from f(Z,|Z; _,R;; = 1). Let
6 denote our parameter of interest. A common strategy for obtaining the final estimate of § for multiply imputed data is to take
the average of parameter estimates obtained for each of the individual imputations, here denoted 4, ..., 8,,. To account for the
MNAR missingness, Carpenter et al. (2007) proposes taking a weighted average of these estimates.” The structure of the weight
proposed by Carpenter et al. (2007) was motivated by the relation in[Eg. 7] in the special case where the missingness model for
Z;, can be approximated by the following logistic regression: logit (P(R” =1|Z,, I/Vl-.)) =¢y+ P Z; + d’jv;/ W, . Omitting
some details, the weight for imputation m proposed in Carpenter et al. (2007) is defined as

a,,  exp <—¢1 > Z,.Im> (Eq. 2)
iiR,=0

where the a’s are rescaled so that 224:1 a, = 1 and Z,,,, denotes the m"* imputation of Z,,. Point estimates and standard errors
under MNAR are then obtained as follows:

M
Orinar = Z ,0,, (Eq. 3)
m=1
M M )
Var(GMNAR) = Z (XmVar(Hm) +(1+ I/M) Z A [9m - 9MNAR]
m=1 m=1

In this analysis, ¢, is treated as a sensitivity parameter, and the final analysis is performed multiple times across a plausible
range of ¢, values. This analysis approach is easy to implement and allows the imputation to be separated from the handling of
MNAR missingness. Unlike more commonly-used MNAR sensitivity analysis strategies such as those in Tompsett et al. (2018),
this approach does not require Z ; to be imputed separately for each fixed value of the sensitivity parameter.>

As discussed in Carpenter et al. (2013), however, this approach requires the true @ value to be within the range of the 8 ;
estimates obtained from each of the imputed datasets under MAR.%/ Rezvan et al. (2015) demonstrates that the approach in
Carpenter et al. (2007) can produce substantial bias when this assumption is not met.” Additionally, Rezvan et al. (2015) shows
that this approach does not guarantee a consistent estimate of # even when this assumption is met.® Smuk (2015) provides a
correction to these weights that may reduce this bias in some cases, but this correction can only be applied when we have MNAR
missingness in a single, normally-distributed variable.” Additionally, the method in Smuk (2015) cannot provide consistent
parameter estimates when the true value of 6 is outside the range of estimates obtained under MAR assumptions.

2.4 Proposed weighting and analysis strategy

The importance sampling logic in Section [2.2] implies that each imputed value of Z;; should be weighted proportional to
%m, where weights are rescaled to sum to 1 for each subject. Instead, the Carpenter et al. (2007) approach weights
vector Z | By the product of the unscaled weights for each individual Z,,, and the resulting aggregate weights are scaled to sum
to 1 across imputations.” This approach no longer distinguishes between “good" and “bad" imputations of individual Z,; (in
terms of their corresponding weights relative to the target distribution under MNAR) and instead considers imputed datasets in
aggregate. We posit that this weight aggregation step is the primary source of residual downstream bias in the final analysis.
To address this issue, we propose maintaining separate weights at the individual level and instead performing our analysis us-

ing imputation stacking. The idea behind imputation stacking is that multiply imputed datasets are stacked on top of each other
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to form a large, M n by p matrix. 6 can then be estimated by performing our target analysis on the stacked dataset. Previous
work has shown that this approach can produce estimates of # equivalent to analysis by Rubin’s combining rules.!# Historically,
this imputation stacking approach has been difficult to implement owing to the lack of easy-to-use estimators for corresponding
standard errors. Wood et al. (2008) proposed a simple method for estimating standard errors for stacked data analysis, but we
showed that this approach can result in substantially biased standard error estimates in many settings.'>'1% Recently, Beesley and
Taylor (2020) proposed a new strategy for estimating valid standard errors based on the observed data information principle of
Louis (1982).1018 Ap alternative bootstrap-based estimator has also been proposed in Bernhardt (2019)..! These advancements
have made the stacked imputation strategy an accessible and appealing analysis framework.

We propose handling MNAR missingness in Z;; through a weighted analysis of the stacked data as follows. This approach is
summarized in Figure[l]
« Step 1: Obtain M multiple imputations of Z assuming ignorable missingness (MAR).
Obtain M multiple imputations of the missing data using chained equations imputation, where each variable Z;; with missing-
ness is imputed from a regression model approximation to f(Z;;|Z; _;, R;; = 1), denoted f". Following logic commonly-used
in chained equations imputation, we approximate a draw from this distribution by first drawing the corresponding parameter,
which we will denote f., as follows:

Draw parameter f; from f(f; |Zi’f‘;, Zf’jbs, R;=1) (Eq. 4)
Impute missing Z;; from f(Zl.j|Zi’_j, R;=1p)

where Z "f’; denotes the most recent imputed version of variable Z _; and Z _‘;bs denotes the fully-observed elements in Z ;. In
practice, we can obtain a draw of f§; from a multivariate normal distribution with mean and covariance matrix estimated from
fitting a model for Z ;| Z _; to the subset of recently imputed data for which Z ; is observed. Alternatively, f; could be obtained
by fitting a model to a bootstrap sample of the same subset of the imputed data. The key here is that parameters used for imputing
Z | are drawn only using data Z; from subjects i with observed Z,,, since the distribution of Z;;|Z; _, conditioning on R;; =1
is not the same as the unconditional distribution. Fortunately, this approach for obtaining parameter draws is used by many
commonly-used statistical packages to impute missing data under MAR assumptions, e.g. package mice in R and PROC MI in
SAS. Therefore, we can often impute Z using standard imputation software assuming ignorable missingness.

« Step 2: Stack multiple imputations

Generate a M n by p dataset by stacking the M multiple imputations on top of each other, where complete cases are also repeated
M times. An alternative formulation where complete cases are included only once is discussed in Beesley and Taylor (2020).1°
« Step 3: Calculate weights

Let Z,,,, denote the m"" multiple imputation of Z;,. We then define weights

PR, =0|Z,,,,W})
1 1 . (Eq. 5)

@,y &
1-PR,;, =0|Z;,,W})

ilm>

that are rescaled such that Z,]cwz , @ = 1. We augment each row of the stacked dataset with the corresponding weight, where
rows corresponding to subjects with observed Z;; are assigned weight 1/ M.

« Step 4: Estimate parameter of interest

Let 0 be our parameter of interest. Estimate § by performing a weighted version of our target analysis on the stacked dataset,
where weights are defined as in Step 3. For example, if our goal is to estimate the mean of Z |, we can estimate a weighted
mean from the stacked dataset. If all models are correctly specified, this will produce a valid estimate for . We can estimate
corresponding standard errors using the strategies in Section[3] We provide software for applying these standard error estimators
in R package StackImpute.

2.5 Modeling missingness

The structure of the weights in [Eg. 5|depends on an assumed model for whether or not Z;; is observed, and a key limitation of
this approach is that this missingness relationship may often be unknown. Suppose, however, that we posit a working regression
model structure for this missingness model as follows:

g (PR = 11Zy . W))) = o + 01 Zy + 3 W, (Eq. 6)
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Figure 1 Visualization of proposed imputation and stacked data analysis procedure !

Step 1: Impute Step 2: Stack Step 3: Calculate weights Step 4: Estimate
At each iteration, impute Z;; from ] " Perform
Define weight for ;
_ c - TS w-weighted
Zij~f(ZijlZi-j Rij = 1) E subject i and analysis on
) imputation m stacked dataset
Create M imputed datasets ’ Wiy e~ b1 Zim @
< . .
nxp || nxp || nxp '%D where Point estimate
3 +
nxp || nxp wy =1 Sta(;:klgwpute
Mn x p Mn x (p+1) standard errors

! ¢, is a sensitivity analysis parameter. Steps 3-4 can be repeated for multiple values of ¢,. R package StackImpute (available at https:/github.com/IbeesleyBIOSTAT/
StackImpute) can be used to estimate standard errors via the methods in Section@

where ¢, may be a vector. Then, we can define
1—g ' (¢o+ D1 Zipy + D3 W)
g (b + &1 Zun + S W)

In general, this weight will not have a nice form, and it depends on unknown parameters ¢, ¢;, and ¢,. Generally, ¢; will not
be identifiable from the observed data, and we will instead treat it as a fixed sensitivity parameter. Strategies guiding the choice
of ¢, are discussed in Section [2.6] For a fixed value of ¢,, parameters ¢, and ¢, can be estimated by fitting the model in [Eg]
|§| with fixed offset ¢, Z;;,, to the (unweighted) dataset obtained by stacking the multiple imputations. This can be repeated to
generate weights for different fixed values of ¢, within a plausible window. Unlike usual sensitivity analysis strategies applied
within the chained equations algorithm as in Tompsett et al. (2018), this sensitivity parameter can be directly interpreted as the
variable’s association with its own missingness, adjusting for I/Vl

One downside of this strategy is that it requires us to specify the functional relationship between missingness in Z | and
fully-observed variables, W In the special case where [Eg. 6] corresponds to a logistic regression, however, the structure of the
weights simplifies as follows:

(Eq. 7)

W, X EXP (_¢1Zi1m) (Eq- 8

The contribution of W drops out of these weights after we rescale the weights such that Zkle ®;,, = 1. In other words, the
weights become a simple function of (1) the multiple imputations of Z;; and (2) the fixed sensitivity parameter, ¢,. This result
holds true for a more general class of logistic regression missingness models where W is allowed to have more complicated
relationships with R ;, including non-linear effects or interactions between variables in W'.

2.6 Choosing values for the sensitivity parameter

Even in settings where the degree of MNAR adjustment is entirely captured by ¢, as in choosing values for ¢, is not
straightforward. However, we can leverage existing statistical tools for eliciting sensitivity analysis parameters to guide our
choice of ¢,. Several strategies are summarized here and discussed in more detail in Supplementary Section@

One common strategy called “tipping point" analysis involves estimating 6 across a wide interval of sensitivity parameters. 502
Then, we identify bounds on the sensitivity parameter for which our study conclusions are changed in a meaningful way. Our
level of concern about deviations from MAR is then converted into a question of the plausibility of these bounds.

Since ¢, is defined in terms of the W -adjusted association between Z | and R |, it can still be difficult to determine whether a
single fixed value of the sensitivity parameter is scientifically plausible. One solution discussed in Tompsett et al. (2020)% is to
reformulate the problem in terms of more easily interpretable sensitivity parameters. Using a single set of multiple imputations
obtained under MAR, we can repeat our stacked data analysis across multiple values of ¢, to characterize how values of ¢,
are related to the target parameter, 6. For each chosen value for ¢, we can also use stacked and weighted analysis to estimate
an easier-to-interpret parameter related to missingness (e.g. P(R ; = 1|Z,,)), denoted ;. We can then evaluate our sensitivity
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analysis results in terms of the relationship between 6 and 7, rather than ¢,.

Subject matter experts can also help choose reasonable values for ¢, or some transformation, ;. In Tompsett et al. (2020)12
and Rezvan et al. (2018)"2, multiple subject matter experts were asked to provide their intuition regarding expected differences
between subjects with missing and observed data. These expectations were then combined using a process called linear pooling
to obtain a distribution of expert-elicited values for the sensitivity parameter. While previously applied to pattern mixture model-
based sensitivity analysis, this approach can also be applied under our selection modeling framework, where expert-elicited
summary statistics can be used to inform choices for ¢, either directly or through some intermediate sensitivity parameter, z,.

3 Variance estimation strategies

In Beesley and Taylor (2020), we proposed a strategy for estimating standard errors for @ obtained using maximum likelihood
estimation based on stacked and weighted data as follows.' Let J,,,, be the negative of the second derivative matrix of the
complete data log-likelihood function for the target analysis, and let U,,,, be the first derivative matrix of the complete data log-
likelihood function. Let J;‘um(e) and Uzom(ﬂ) be the contributions to the complete data information matrix and score matrix for
subject i respectively. We approximate

Ly @)~ D Y 0, L (Zi 0 = .Y @, [UL (Z,,:0) =T, (Z, ;)

i

1% (Eq. 9)

where U! (Z, ;0) = Y, 0, U! (Z,,;6). We can evaluate this expression at the maximum likelihood estimator for 6, 0, ob-
tained from maximizing the complete data log-likelihood using the weighted, stacked dataset. Inverting the resulting matrix
1,,(0) will provide an estimate for the observed data covariance matrix for 6.

A limitation of the estimator in[Eg. 9jis that it requires us to obtain the complete data score and information matrices and can
only be applied when our target analysis is maximum likelihood estimation with a valid log-likelihood function. Additionally,
this approach can produce inaccurate or even negative variances when # is small (e.g., n = 100). An alternative method proposed
in Bernhardt (2019) uses bootstrap methods to account for so-called “between imputation” variation as follows.! Let V., be
the estimated covariance matrix output by the stacked and weighted analysis, obtained using standard error estimation strategies
that account for the weights. For example, for a generalized linear model with a dispersion parameter, the dispersion parameter
must also be estimated using weighted residuals. The matrix V,, ., represents the “within imputation" variation. To capture the
“between imputation” variation, we estimate # on many bootstrap replicates of the stacked data. Unlike standard bootstrap repli-
cation, we obtain each bootstrap replicate of the stacked data by drawing with replacement from the set of indices {1,..., M}
corresponding to the M imputed datasets and then construct the bootstrapped stacked dataset composed of the drawn M im-
puted datasets, where individual imputed datasets may appear in the stack multiple times. We then re-scale weights ,,, in the
bootstrapped stack so that the weights again sum to 1 within individuals. Let V.., be the estimated covariance matrix of the
resulting @ estimates across bootstrap samples of the imputed datasets. We then estimate the overall covariance matrix as follows:

Var(éMNAR) = Vstack + (1 + M) Vberween (Eq 10)

One unappealing feature of the bootstrap-based estimator for V.., proposed in Bernhardt (2019) is that it may require a large
number of bootstrap samples, which can result in slow estimation.!' Instead, we propose estimating the “between imputation"
variation using a jackknife estimator, defined with respect to leave-one-out imputations. We estimate Vj,;,,..0, a5

Viwan =37 L 107 =01 0= 3 207

where 0 is estimated by fitting the model on the stacked data excluding the m" multiple imputation, again re-scaling the
weights to sum to 1 within subjects.

4 Simulations reproducing Rezvan et al. (2015): MNAR outcome missingness

Rezvan et al. (2015) conducted a simulation study to demonstrate settings in which the method from Carpenter et al. (2007) does
and does not perform well.®) Here, we reproduce this simulation study and compare the results obtained using our proposed
method to complete case analysis and the method in Carpenter et al. (2007).
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4.1 Simulation set-up

Suppose our goal is to estimate the association between outcome variable Z, (partially missing) and covariate Z, (fully-
observed), and suppose we have MNAR missingness in outcome Z; dependent on the true value of Z; and Z,. For each of several
simulation settings, we generate 1000 simulated datasets of n = 100 or 1000 subjects. In all settings, we generate Z, ~ N (0, 1).
We then generate Z, using one of two models: (1) Z, ~ N(0.5Z,,1) or (2) logit(P(Z, = 1|Z,)) = 0.5Z,. In both settings,
we then impose roughly 50% missingness in Z, using the following logistic regression model: logit(P(Z, observed |Z)) =
¢, Z,+Z, where ¢, = 1, 0.5, or 0. We then obtain M multiple imputation of the missing values of Z, under MAR assumptions,
where M takes values 5, 10, 50, 100, 500, or 1000. We apply the proposed method and the method in Carpenter et al. (2007)
to estimate parameters in the outcome model (either linear or logistic regression for Z, | Z,).”” We obtain parameter estimates
under different assumed values for ¢, including 0, 0.2, 0.5, 0.8, 1, and 1.2.

4.2 Point estimation

Figure 2a shows the average estimated values for outcome model parameters across 1000 simulated datasets, assuming ¢, is
known to equal 1. Complete case analysis and analysis of imputations obtained under MAR (not shown, similar to complete case
estimates) produced substantial bias in estimating outcome model parameters. Although it results in reduced bias compared to
complete case analysis, the method in Carpenter et al. (2007) produced substantial residual bias even when n and M were large.”
In contrast, the proposed method had small or negligible bias in estimating all model parameters as long as M, the number of
multiple imputations, was large enough (e.g. > 50). For example, the method in Carpenter et al. (2007) resulted in biases in
the linear regression coefficient of Z, up to 21% for n=100 and up to 14% for n=1000 with M = 1000. In comparison, the
proposed method gave much smaller biases, with corresponding biases in the linear regression coefficient of Z, down to 9% for
n=100 and down to 2% for n=1000. Results were similar for ¢»; = 0.5. In Section[D] we describe a second simulation study in
which missingness was generated for multiple covariates, one of which was MNAR. Results were similar. Additional simulations
addressing multiple variable and more complicated MNAR missingness are presented in Section [E] In these simulations, the
extensions of the proposed method described in Section [A] resulted in little bias in estimating outcome model parameters for
well-specified sensitivity parameters.

We also compare the performance of the proposed method in terms of point estimation with two existing MNAR-handling
strategies within the chained equations literature in Table[C.1] We implement the method in Tompsett et al. (2018) using the best
possible value for the corresponding offset parameter related to R |, which was estimated by fitting the pattern mixture model
in the true simulated data.” The method in Jolani (2012) implemented in mice.impute.ri was also applied.” We found that the
method in Jolani (2012) produced substantial residual bias in estimating outcome model parameters. The method in Tompsett et
al. (2018) produced little bias when the corresponding offset sensitivity parameter was correctly specified. We observed similar
results when these methods were applied to multiple variable missingness in Table [D.1]

As discussed in Section [2.6] we will rarely know the true value of ¢; or any sensitivity parameter. We can apply these
methods across different assumed values for ¢, as a sensitivity analysis to departures from MAR. Results are shown in Figure
. Point estimates from the method in Carpenter et al. (2007) did not vary much across assumed ¢, values above about 0.5.7
As demonstrated in Figure[C.1] this is because the true value of the outcome model parameter is outside the range of estimates
obtained from MAR-based imputation (range between 0.32 and 0.45, mean = 0.39). In Figure|[C.2] we compare the imputation-
specific weights obtained for the method in Carpenter et al. (2007) and for our proposed method using the data visualization
proposed in Heraud-Bousquet et al. (2012).2Y The final weighted estimate for the Carpenter et al. (2007) method is dominated
by the imputed dataset producing the most extreme MAR-based estimates for larger values of |¢, |, with weights near 1 for a
single imputed dataset. In contrast, the proposed method defines weights at the subject level, and the largest imputation-specific
weight obtained for any subject was near 0.5. For most subjects, the largest weight was about 0.06. These smaller imputation-
and subject-specific weights produce a much more stable estimation of model parameters that is much less sensitive to extreme
imputations drawn for individual subjects.

4.3 Estimation of standard errors

We may also be interested in estimating standard errors for regression model parameters. We apply the methods in Section 3]
to estimate standard errors for the proposed stacked and weighted analysis method assuming that ¢, is correctly specified. We
calculate corresponding 95% confidence intervals for estimating the coefficient of Z, in linear or logistic regression models
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Figure 2 Average estimated outcome model parameters across 1000 simulated datasets under MNAR missingness in outcome
1 .
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using each of the three variance estimation strategies and assuming a normal distribution approximation (point estimate + 1.96
x standard error estimate). Results are shown in Figure 3] When the target model was logistic regression, all of the variance
estimation strategies produced similarly good coverage rates as long as M was large enough (e.g., >50). However, the story is
more complicated for coverage rates when the target outcome model is linear regression. When true ¢; was moderate or small
(e.g., ¢; £0.5), the method proposed in Bernhardt (2019) and our jackknife modification produced nominal coverage for large
M Y However, these two approaches resulted in slight over-coverage when ¢, was large (e.g. 1). The method in based on
the observed data information principle in Louis (1982) resulted in small under-coverage for all values of ¢; # 0, with stronger
under-coverage seen for larger ¢,.1°

Asnoted in Rezvan et al. (2015), the distribution actually used to impute normally-distributed Z ; within the chained equations
imputation algorithm has heavier tails than the “ideal" normal distribution when the corresponding dispersion parameter is not
known.® To evaluate whether this explains the observed over- and under-coverages, we repeated these simulations after imputing
Z, from a normal distribution with dispersion parameter fixed at the simulation truth. This modified imputation strategy did not
impact the resulting coverage rates (results not shown), indicating that this slight over- and under-coverage was not driven by
the heavy-tailed imputation. Similar results were seen in simulations with multiple covariates as discussed in Section

Figure[C.3|provides the average run-time for each of these variance estimation strategies under a normally-distributed imputed
outcome with n = 1000. At M = 100, the method in took on average only 1.4 seconds to estimate standard errors. In
comparison, the method from Bernhardt (2019) and our jackknife modification took an average of roughly 39 and 25 seconds,
respectively. X While this difference will be negligible for many analyses, the shorter runtime of the method in@may produce
a much shorter aggregate runtime when sensitivity analyses are performed across a large grid of ¢, values. The comparison
between runtime for the proposed analysis and standard pattern mixture-type imputation will vary based on the number of
sensitivity parameter evaluations, the number of multiple imputations, and the complexity of the multiple imputation procedure.

Figure 3 Coverage of 95% confidence intervals for the coefficient of Z, from stacked and weighted analysis across 1000
simulated datasets assuming true ¢, is known
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5 TIllustrative example: missingness of HPV status in patients with oropharyngeal cancer

We apply the proposed methods to address potential MNAR missingness in a study of N=840 patients newly-diagnosed with
oropharyngeal squamous cell carcinoma at the University of Michigan. Baseline characteristics including smoking status, age,
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cancer stage, and comorbidities were collected at the time of study enrollment (at or soon after diagnosis), and patients were
then followed for cancer-related outcomes including overall survival. For over 30% of patients, HPV (human papillomavirus)
status was not evaluated at baseline. Baseline comorbidities status (none/mild/moderate/severe) is missing for roughly 27% of
patients, and there is a very small amount of missingness in smoking status and cancer stage. For additional details about patient
recruitment, data collection, and study descriptives, we refer the reader to Beesley et al. (2019). 21

Suppose our interest lies in modeling overall survival as a function of baseline characteristics. For the baseline covariates of
interest, only 45% of patients have complete data. To improve estimation efficiency and guard against bias from complete case
analysis, we want to perform multiple imputation to handle the missing data. However, we have concerns about the reasonable-
ness of the MAR assumption. In particular, we consider missingness in HPV status. Missingness in HPV status is clearly related
to year of enrollment for this cohort, reflecting the increasing acceptance of HPV status as a key prognostic factor for oropha-
ryngeal cancer patients (Figure[F.I)). As shown in Table[F.1] missingness in HPV status is also associated with smoking status
even after adjusting for year of enrollment, with current smokers being less likely to have HPV status available relative to never
smokers (log-odds ratio -0.13, 95% CI: -0.21, -0.04). In terms of oropharyngeal cancer etiology, this makes sense; two strong
risk factors for oropharynx cancer development are smoking and HPV positivity. If the patient was a current smoker, doctors
may have been less inclined to recommend testing for HPV status (at least, for earlier enrollment periods before HPV testing
had become a standard part of patient care). However, additional unobserved factors such as sexual history could have also in-
formed decision-making for whether a patient was tested for HPV infection. This could induce a MNAR association between
HPYV testing and true HPV status, where untested people may be less likely to be positive even after adjusting for other observed
baseline variables and calendar time of enrollment. We are interested in exploring to what extent our estimated parameters in
a model for overall survival are impacted by our assumptions regarding HPV missingness. In our analysis, we will allow HPV
missingness to depend on true HPV status given covariates, but we will assume that HPV status missingness does not depend
on any other unobserved information. Table[F.I]suggests there may also be an association between missingness and comorbidi-
ties, which is missing for 27% of patients. If this association is not induced by the association between comorbidities and HPV
status, our working missingness model may only partially capture the MNAR dependence.

We applied the method in Figure (1| as follows. First, we obtained 50 multiply imputed datasets assuming HPV missing-
ness is MAR. Missingness for other baseline covariates was also assumed to be MAR. Details on this imputation procedure
can be found in Supplementary Section [F| We then obtained a stacked dataset and weighted the dataset proportional to
exp (—¢1I [HPV positive]), where ¢, corresponds to the log-odds ratio for observing HPV status for HPV positive vs. HPV
negative patients. We fit a weighted Cox proportional hazards regression model for overall survival using this stacked data,
where ¢, was varied between -1 and 1. Relative to estimated log-odds ratios for missingness (Table [F.1)), a value of |¢,| > 0.2
represents very extreme MNAR dependence. The Cox proportional hazards model adjusted for HPV status, smoking status,
ACE27 comorbidities, overall cancer stage, and age at cancer diagnosis. We applied the method in[Eg. 9to estimate correspond-
ing standard errors using the partial log-likelihood.

Figure[d|shows the estimated log-hazard ratio for HPV positivity in the overall survival regression model as a function of ¢;.
We see that the point estimate for the log-hazard ratio does change in magnitude across ¢,. For example, the log-hazard ratio is
estimated as 1.19 (95% CI: 0.96, 1.42) for ¢, = 1 and 0.84 (95% CI: 0.57, 1.10) for ¢, = —1. However, for more reasonable
values of |¢, | consistent with observed associations between missingness and other variables (Table , the log-hazard ratio
only varies between about 0.99 and 1.09. Additionally, the 95% confidence intervals across all ¢, are still far from O even for
more extreme values of ¢,. If our goal was to assess whether HPV status was associated with overall survival for patients newly-
diagnosed with oropharyngeal cancer, our study findings would not be strongly impacted by assuming MAR. In this example, we
may be more concerned about the magnitude of the association between HPV status and overall survival if we are wanting to use
the resulting model to predict likely survival outcomes for new patients. To compare the impact of the choice of ¢, on discrim-
ination of resulting 5-year overall survival estimates, we calculated 5-year survival predictions for each of the 378 patients with
complete covariate data using each of the estimated survival models. We report the corresponding C-Indices and area under the
receiver operating curve (AUC) in Figure[d] The estimated C-Indices and AUC did not vary much across different values of ¢, .
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Figure 4 Estimated associations between HPV status and overall survival across assumed values for ¢, !
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6 Discussion

Chained equations multiple imputation is an appealing approach to handling missing data in many data analysis settings. How-
ever, the majority of statistical development in this area relies on a key assumption that data are missing at random (MAR).
Application of MAR-based imputation and data analysis strategies when data are not missing at random (MNAR) can produce
bias in estimating parameters of interest®,

In this paper, we propose a novel strategy for addressing single variable MNAR missingness given multiple imputations gener-
ated assuming MAR. MNAR missingness is handled through weighted data analysis applied to the stacked multiple imputations,
where the data weights are a function of an assumed model for MNAR missingness. In the special setting where the MNAR
missingness mechanism can be reasonably approximated by a standard logistic regression, the weights take a simple form and
depend only on a single sensitivity parameter. This parameter has a convenient interpretation as the log-odds ratio association
between the MNAR missingness and the true value of the variable with MNAR missingness, adjusting for fully-observed vari-
ables. In Supplementary Section[A] we extend this methodology to handle settings with more complicated MNAR missingness
in multiple variables.

The proposed method makes several advances over existing methods in this area. Unlike the related data re-weighting method
in Carpenter et al. (2007), the proposed approach defines separate weights for each subject and imputation combination.” This
prevents estimation from being dominated by a single imputed dataset. As discussed in Rezvan et al. (2015), the method in Car-
penter et al. (2007) may also produce inconsistent estimates of common parameters of interest (e.g. means, regression model
parameters, etc.) in some cases.® This is a result of the reliance on point estimates obtained under MAR assumptions, which
may be far from the truth. The proposed method uses imputed data obtained under MAR assumptions but not the corresponding
point estimates, avoiding this challenge and allowing for valid point estimation even under strong MNAR missingness.

Several authors have developed strategies for addressing MNAR missingness within the chained equations imputation pro-
cedure itself. Tompsett et al. (2018) recommends including missing data indicators as predictors in the imputation model and
handles MNAR missingness related to the imputed variable itself through a fixed offset with corresponding sensitivity parame-
ter.” This results in a regression model approximation of the “exact” imputation distribution in This approach performed
well in simulations when the corresponding offset parameter was well-specified (Tables [C.1] and [D.I)). However, imputation
and data analysis as in Tompsett et al. (2018) must be repeated across multiple values of the sensitivity parameter, which can be-
come computationally challenging for a large grid of plausible values or when the procedure for generating multiple imputations
is slow. Our proposed approach also involves repeated analysis across sensitivity parameter values, but it relies on a single set
of multiple imputations, avoiding the need to re-impute the data many times. Jolani (2012) avoids use of sensitivity parameters
entirely under assumptions that the true model generating missingness follows a logistic regression model with main effects.©
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However, we found that the implementation of this method in mice in R performed poorly in terms of large residual bias in es-
timating regression model parameters. This may be related to difficulty in identifying parameters in the missingness model and
warrants further exploration.

One historical disadvantage of the general strategy of imputation stacking was the limited statistical literature regarding stan-
dard error estimation and the lack of corresponding software for easy implementation. However, Beesley and Taylor (2020)
recently proposed a simple strategy for estimating standard errors for stacked and weighted multiple imputations (Eg. 9) inspired
by the observed data information principle in Louis (1982).191 Bernhardt (2019) proposed an alternative strategy involving
bootstrapping of multiply imputed data for estimating the between-imputation variation as in W Through simulations in
Section[d] we demonstrate that both general estimation strategies can produce reasonable standard error estimates, with some
slight under-coverage (e.g. 90%) seen for the method in and some over-coverage seen for the method in Bernhardt (2019)
when the MNAR missingness is strong. This under-coverage may be a result of the dependence between the weights (a func-
tion of the imputed data) and the target model parameter 6 due to the model-based multiple imputation procedure, and future
efforts can explore this issue in greater detail. An additional limitation of the proposed approach is that it generally requires
more imputed datasets than Rubin’s rules-based estimation. The number of required imputations will depend on the amount of
missingness, but we generally found good estimation properties for M = 50. Given sufficient M and the correct sensitivity pa-
rameter, the proposed method resulted in very low bias even for small sample sizes (e.g. n = 100).

In the main paper, we focused on the particular setting where we have MNAR missingness in a single variable. Missingness
in other variables was assumed to be MAR. In Supplementary Section @ we extend the proposed method to handle MNAR
missingness in multiple variables and to allow for more complex MNAR mechanisms. In the special case where (1) missingness
in each variable is independent of the true values for other variables with missingness and (2) the MNAR mechanisms are well-
approximated with logistic regressions, resulting weights are similar to those in[Eq. 8 but with a separate sensitivity parameter
for each variable that is MNAR. In simulations under (1) and (2), this extension performed as expected, with properties simi-
lar to those seen in simulations presented here (Figure[E.T). Future work can explore implementation for more general MNAR
missingness.

An overall advantage of the proposed method is that it disentangles the challenges of data imputation (i.e., filling in the miss-
ing values) and handling of MNAR (i.e., avoiding or reducing bias due to the MNAR missingness mechanism). This approach
can be applied to data previously imputed under MAR assumptions, and point estimation can be very easily implemented us-
ing standard software. Standard error estimation presents a greater challenge, and we provide R package Stacklmpute (available
at https://github.com/lbeesleyBIOSTAT/StackImpute) to allow users to easily obtain standard errors for many commonly-used
regression model settings, including Cox proportional hazards regression and generalized linear models. The primary disad-
vantage of the proposed methodology is the need to specify values for unidentified sensitivity parameters. This is a common
challenge for most MNAR adjustment methods, and existing strategies for eliciting sensitivity parameter values in the pattern
mixture modeling literature can be applied to inform reasonable choices for the sensitivity parameters.812 These methods will
naturally become more difficult to implement as the dimension of unidentified sensitivity parameters grows, and addressing
practical challenges to larger-dimensional sensitivity parameter elicitation is an area for future development.
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