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APPENDIX S1

Table S1.1. Information about the locality, species, institution of origin of the samples, as well as the

number of retained reads after demultiplexing. Ambrose Monell Cryo Collection, American Museum

of Natural History, New York, USA,  AMNH-AMCC;  Field Museum of Natural History, Chicago,

Illinois, USA, FMNH; Laboratório de Mamíferos da Escola Superior de Agricultura “Luiz de Queiroz,

Universidade de São Paulo, Piracicaba, São Paulo, Brazil, LMUSP; Museum of Southwestern Biology,

Alburqueque, New Mexico, USA, MSB; Museum of Vertebrate Zoology, Berkeley, California, USA,

MVZ;  Museu  de  Zoologia  da  Universidade  de  São  Paulo,  São  Paulo,  Brazil,  MZUSP;  National

Museum of  Natural  History,  Washington,  D.C.,  USA,   USNM;  Texas  Tech University,  Lubbock,

Texas, USA, TTU.



Table S1.2. Predictor variables used for creating resistance matrices for MLPE analyses (for details see methods section and Appendix 2.2

for full references). Note that because of resolution differences, the Tropical and Subtropical wetlands distribution map was resampled at

1Km² (231m²) to create variables with the same resolution. Methods column shows the R package used in analysis followed by :: and the

function name in italics.

Resistance Matrix Variables Methods Source

Geographic Distance Longitude and Latitude from samples geosphere::distm Goslee & Urban 2007

Habitat Distance Tropical and Subtropical wetlands distribution map gdistance::commuteDistance
Gumbricht et al. 2017

van Etten 2018

Productivity

Distance

12 monthly temperature variables from WorldClim 

12 monthly precipitation variables from WorldClim 

6 Potential Evapotranspiration (PET) variables from

ENVIREM 

Species Distribution Models

(SDM) 

biomod2::BIOMOD_Modeling

Fick & Hijmans 2017

https://www.worldclim.org/

Title & Bemmels 2018

https://envirem.github.io/

Thuiller et al., 2020

River Distance
river shapefile “ne_10m_rivers_lake_centerlines”

from Natural Earth Data
riverdist::riverdistancemat

Tyers 2020

 https://www.naturalearthdat

a.com

Topographic

distance
SRTM elevation data from WorldClim 2.1 topoDistance::topoDist 

Wang 2020

Fick & Hijmans 2017

https://www.worldclim.org/



Table S1.3: Validated co-occurrence points for the sympatric species  P. simonsi  and P. steerei  from

Western  Amazon used in  SDM analyses  for  creation  of  the  habitat  productivity  distance  for  IBR

analyses.

P. simonsi P. steerei

Longitude Latitude Longitude Latitude

1 -77.71047 -1.13044 -71.62369 -4.53573

2 -75.33333 0.46667 -70.73359 -6.80001

3 -77.751 -4.022 -70.85003 -6.75

4 -73.26836 -4.02398 -68.76667 -6.46669

5 -77.817 -0.983 -68.91651 -6.53356

6 -76.81724 -0.43999 -66.58528 -5.6364

7 -64.71989 -3.3539 -66.2333 -3.2833

8 -71.39377 -12.82978 -66 -3.31667

9 -71.26166 -12.68001 -65.31321 -10.84689

10 -68.57543 -12.39863 -64.84993 -15.37092

11 -68.91681 -11.3501 -65.15511 -12.43147

12 -69.23741 -12.59659 -65.06785 -11.906

13 -69.26065 -8.84739 -65.63494 -14.98761

14 -72.7633 -8.83389 -69.26065 -8.84739

15 -75.21626 -9.86708 -72.78304 -8.66663

16 -68.88173 -12.95664 -72.81662 -8.36666

17 -73.16208 -5.2495 -72.85094 -8.60044

18 -62.26745 -4.42802 -67.2833 -9.8

19 -72.94991 -11.58344 -60.11667 -3.15

20 -69.07289 -12.6 -60.55351 -3.2883

21 -71.21667 -10.13333 -60.52022 -3.08039

22 -68.76672 -6.46666 -65.70879 -2.21689

23 -68.89219 -6.58282 -64.67127 -2.53438

24 -72.81662 -8.36666 -66.21667 -11.01667



25 -66.01666 -3.31666 -66.31668 -10.98328

26 -69.20697 -12.72047 -67.2 -11.38333

27 -73.3258 -11.7667 -68.57543 -12.39863

28 -68.7667 -13.5833 -67.45 -10.7

29 -69.6122 -13.1472 -74.56879 -8.39313

30 -66.7333 -10.7667 -75.21626 -9.86708

31 -75.08802 -8.39409 -73.04723 -3.50143

32 -64.82581 -9.4455 -72.13332 -3.43328

33 -65.43986 -9.63406 -73.81561 -10.68165

34 -72.78304 -8.66663 -75.09959 -6.73333

35 -70.85003 -6.75 -67.56023 -11.49004

36 -73.66744 -4.90625 -68.84981 -11.35059

37 -76.1094 -5.89482 -66.77966 -11.74947

38 -64.6795 -9.27685 -66.09131 -10.95254

39 -68.74681 -10.99838 -73.16208 -5.2495

40 -68.67144 -9.07918 -69.07289 -12.6

41 -65.70879 -2.21689 -71.0451 -12.15612

42 -71.11199 -12.09053

43 -68.7667 -13.5833

44 -75.08802 -8.39409

45 -76.1094 -5.89482

46 -73.2282 -3.91344

47 -65.77163 -7.66384



Table S1.4. Summary statistics for each of the univariate MLPE regression models for P. simonsi and for P. steerei used to identify which

level of habitat resistance (i.e., VH, H, M, and L) would be included in the full model. All models measured the degree of association

between relatedness coefficients of individuals and the resistance distance, with 5 degrees of freedom. The best models for both species were

L (0.6 for resistance and 0.4 for conductance).

Intercept Coefficients logL AIC ΔAIC Weighted AIC

P. simonsi

Habitat  L -0.087 -0.098 67.536 -125.072 0.000 0.997

Habitat M -0.087 -0.124 61.564 -113.127 11.945 0.003

Habitat H -0.087 -0.160 54.880 -99.759 25.313 0.000

Habitat VH -0.087 -0.049 48.206 -86.411 38.661 0.000

P. steerei

Habitat  L -0.130 -0.070 119.758 -229.516 0.000 0.997

Habitat M -0.134 -0.067 113.951 -217.902 11.614 0.003

Habitat H -0.138 -0.068 107.454 -204.908 24.607 0.000

Habitat VH -0.141 -0.067 99.795 -189.590 39.925 0.000



Table S1.5. Genomic datasets used in analyses of two sympatric species of Proechimys from Western

Amazon. The number of individuals retained after processing reads, and the number of SNPs retained

after filtering of the trimmed 132 bp sequenced loci, as well as the average percent missing data by

individual and maximum by locus, and the average coverage depth considering retained individuals are

shown (see Appendix S2.1 for details of filtering and SNPs calling).

P. simonsi P. steerei

Initial individuals 21 20

 Retained individuals 17 19

Initial SNPs 47,009 99,740

LD Filter 24,016 38,090

Quality Filter 13,310 15,252

Neutral Filter 12,784 13,971

Missing data by locus 17.65% 15.79%

Missing data by individual 16.81% 18.68%

Depth coverage 31.98X 34.33X



Table S1.6. Tracy-Widom tests of eigenvalues for  P. simonsi and  P. steerei; significant PCs are in

bold.

P. simonsi P. steerei

PC Eigenvalues TW stats p-values Eigenvalues TW stats p-values

1 28740 2.462 0.005 71190 2.202 0.007

2 17080 -2.024 0.732 37740 4.021 0.000

3 15800 -2.095 0.752 16700 2.812 0.002

4 13240 -3.736 0.985 11250 -1.291 0.507

5 13120 -3.124 0.944 9964 -2.422 0.832

6 11550 -4.013 0.993 8526 -4.53 0.999

7 11360 -3.55 0.977 7670 -5.763 1.000

8 10260 -3.954 0.991 7425 -5.728 1.000

9 10100 -3.481 0.973 7352 -5.322 1.000

10 9964 -2.913 0.919 7332 -4.797 0.999

11 9825 -2.252 0.792 7006 -4.721 0.999

12 9649 -1.428 0.551 6981 -4.161 0.995

13 7002 -2.168 0.771 6919 -3.611 0.980

14 6308 -1.791 0.664 6813 -3.054 0.937

15 5534 -1.281 0.504 6438 -2.669 0.881

16 4467 -0.5552 0.291 5992 -2.227 0.786

17 5690 -1.547 0.589

18 5468 -0.5552 0.291



Table S1.7. Significant FST-values (** p-value < 0.001) between genetic clusters (GC) in Proechimys

steerei (the seasonal floodplain forests/várzea species) in lower diagonal, and 95% confidence intervals

in  upper  diagonal.  Because  a  single  genetic  cluster  was  estimated  in  P.  simonsi, FST’s  were  not

estimated. 

GC 1 GC 2 GC 3

GC 1  – 0.535 – 0.547 0.557 – 0.568 

GC 2 0.542**  – 0.266 – 0.280

GC 3 0.563** 0.273**  –



Table S1.8. Genetic  diversity  indices  for the two sympatric  Proechimys species  from the Western

Amazon, which differ in their habitat associations (i.e.,  P. simonsi occurs in the non-flooded forests,

the terra-firme, whereas P. steerei occurs in from seasonal floodplain forests, the várzea). Estimates of

diversity are also presented for each of the  three  genetic  clusters (GC) in  P. steerei;  P. simonsi is

represented by a single genetic cluster. The 95% confidence intervals are in parentheses.

Species HEXP π FIS

P. simonsi
0.346 0.347 0.310

(0.345 – 0.347) (0.345 – 0.349) (0.228 – 0.392)

P. steerei 
0.310 0.311 0.498

(0.309 –  0.310) (0.309 – 0.313) (0.440 – 0.556)

P. steerei GC 1
0.452 0.128 0.190

(0.451 – 0.453) (0.124 – 0.131) (0.133 – 0.248)

P. steerei GC 2
0.390 0.217 0.280

(0.389 – 0.392) (0.214 – 0.221) (0.163 – 0.398)

P. steerei GC 3
0.371 0.218 0.139

(0.370 – 0.373) (0.214 – 0.221) (0.09 – 0.187)

HEXP = Expected  Heterozygosity;

π = Nucleotide Diversity;

FIS  = Inbreeding Coefficient. 



Table S1.9.  Tukey’s tests of significant mean differences between species and genetic clusters (GC)

using individual-based genetic diversity indices (expected heterozygosity, HEXP, inbreeding coefficient;

FIS) for the sympatric species Proechimys simonsi, SIM (from the non-flooded forests/terra-firme), and

P. steerei, STE (from the seasonal floodplain forests/várzea).

Difference Lower Upper Adjusted p-value

HEXP

GC 1 – SIM 0.106 0.104 0.108 < 0.001

GC 2 – SIM 0.044 0.042 0.046 < 0.001

GC 3 – SIM 0.025 0.023 0.027 < 0.001

STE – SIM -0.036 -0.038 -0.035 < 0.001

GC 2 – GC 1 -0.062 -0.064 -0.059 < 0.001

GC 3 – GC 1 -0.081 -0.083 -0.078 < 0.001

STE – GC 1 -0.142 -0.144 -0.140 < 0.001

GC 3 – GC 2 -0.019 -0.021 -0.017 < 0.001

STE – GC 2 -0.081 -0.083 -0.079 < 0.001

STE – GC 3 -0.062 -0.063 -0.060 < 0.001

FIS

GC 1 – SIM -0.120 -0.298 0.058 0.326

GC 2 – SIM -0.030 -0.196 0.136 0.986

GC 3 – SIM -0.171 -0.321 -0.021 0.018

STE – SIM 0.187 0.071 0.304 < 0.001

GC 2 – GC 1 0.090 -0.122 0.301 0.751

GC 3 – GC 1 -0.051 -0.250 0.148 0.949

STE – GC 1 0.307 0.132 0.483 < 0.001

GC 3 – GC 2 -0.141 -0.330 0.048 0.230

STE – GC 2 0.217 0.054 0.381 0.004

STE – GC 3 0.359 0.211 0.506 < 0.001



Table S1.10. Tests of association between genetic and geographic distance for P. simonsi (non-flooded

forests,  terra-firme) and  P. steerei (seasonal floodplain forests,  várzea).  We performed Mantel tests

using two different distances matrices at individual level: Euclidean distance and distance considering

the river channel (Along Rivers). Tests for  P. steerei  were conducted separately as well, eliminating

each one of the three genetic cluster (GC) by turn. Pearson’s correlation coefficient,  r, measures the

strength of the association in the Mantel test, and  t0 measures the strength of the association in the

Procrustes analysis; significant values are shown in bold.

Mantel Test (Euclidean) Mantel Test (Along Rivers) Procrustes Analysis

r p-value r p-value t0 p-value

Species

P. simonsi 0.619 < 0.001 0.091 0.161 0.799 < 0.001

P. steerei 0.572 < 0.001 0.512 < 0.001 0.765 < 0.001

Dropped cluster

P. steerei GC 1 0.629 < 0.001 0.808 < 0.001 0.791 < 0.001

P. steerei GC 2 0.681 < 0.001 0.793 < 0.001 0.834 < 0.001

P. steerei GC 3 0.519 < 0.001 0.149 0.081 0.845 < 0.001



Table S1.11. Results of sequential drop-out tests to evaluate the robustness of Procrustes results (t0  =

0.764,  p < 0.001) to the inclusion of particular genetic clusters of  P. steerei (the  seasonal floodplain

forests/várzea) species, as well as other statistics from the Procrustes analysis (specifically, the strength

of association between geographic and genetic maps without the genetic cluster, t", and its p-value (in

parentheses), and the impact of dropping the cluster relative to t0, t0 – t’’; the angle of rotation between

the genetic and geographic maps without the cluster  θt”; the strength of the association between the

original genetic PCA and the genetic PCA without the genetic cluster, t’; and the angle of rotation of

the genetic matrices to minimize the sum-squared differences θt’.

Dropped cluster t’’ t0 - t’’ θt’’ t’ θt’

GC 1 0.791 (p < 0.001) 0.027 87.121 0.857 80.716

GC 2 0.834 (p < 0.001) 0.069 22.929 0.935 11.938

GC 3 0.845 (p < 0.001) 0.081 37.730 0.942 -25.923



Table S1.12.  Summary statistics for 16 uncorrelated models using MLPE regression and five predictor variables in  P. simonsi, the non-

flooded forests/terra-firme species; 16 models were retained (among the 32 models generated consider all possible combinations between

the five predictor variables) since these were the only models for which the correlation between the combined predictor variables, r², was <

0.6. The best models (ΔAIC < 2) are in bold. Models identification and coefficients for all variables are shown, along with the degrees of

freedom, df, log-likelihood, logL, Akaike's Information Criterion, AIC, the difference in AIC compared with best model, ΔAIC, and the

model importance considering all uncorrelated models (that is,  the weighted AIC).

Model Intercept Productivity Habitat River Euclidean Topography df logL AIC ΔAIC Weighted AIC

1 -0.087 -0.020 -0.091 . . . 6 68.578 -125.157 0.000 0.333

2 -0.087 . -0.098 . . . 5 67.536 -125.072 0.084 0.319

3 -0.087 . -0.095 -0.008 . . 6 67.676 -123.352 1.805 0.135

4 -0.087 -0.021 -0.092 0.003 . . 7 68.601 -123.202 1.955 0.125

5 -0.087 -0.027 . . -0.083 . 6 65.585 -119.169 5.987 0.017

6 -0.087 -0.027 . . . -0.083 6 65.450 -118.901 6.256 0.015

7 -0.087 . . -0.026 -0.083 . 6 65.357 -118.715 6.442 0.013

8 -0.087 . . -0.025 . -0.083 6 65.257 -118.514 6.643 0.012

9 -0.087 -0.019 . -0.016 -0.081 . 7 66.062 -118.124 7.032 0.010

10 -0.087 -0.018 . -0.015 . -0.081 7 65.922 -117.844 7.312 0.009

11 -0.087 . . . -0.091 . 5 63.585 -117.170 7.987 0.006

12 -0.087 . . . . -0.091 5 63.544 -117.088 8.068 0.006

13 -0.087 -0.034 . -0.031 . . 6 50.433 -88.866 36.291 0.000

14 -0.087 -0.052 . . . . 5 48.890 -87.781 37.376 0.000

15 -0.087 . . -0.051 . . 5 48.564 -87.129 38.028 0.000

16 -0.087 . . . . . 4 42.777 -77.553 47.603 0.000



Table S1.13. Summary statistics for 7 uncorrelated models using MLPE regression and five predictor variables for P. steerei, the seasonal

floodplain forests/várzea species; 7 models were retained (among the 32 models generated consider all possible combinations between the

five predictor variables) since these were the only models for which the correlation between the combined predictor variables, r², was < 0.6.

The best models (ΔAIC < 2) are in bold. Models identification and coefficients for all variables are shown, along with the degrees of

freedom, df, log-likelihood, logL, Akaike's Information Criterion, AIC, the difference in AIC compared with best model, ΔAIC, and the

model importance considering all uncorrelated models (that is, the weighted AIC).

Models Intercept Productivity Habitat River Euclidean Topography df logL AIC ΔAIC Weighted AIC

1 -0.127 . -0.032 -0.111 . . 6 172.178 -332.355 0.000 1.000

2 -0.128 . . -0.135 . . 5 158.560 -307.120 25.236 0.000

3 -0.120 . . . . -0.120 5 136.049 -262.098 70.258 0.000

4 -0.120 . . . -0.119 . 5 135.953 -261.906 70.449 0.000

5 -0.113 -0.135 . . . . 5 134.948 -259.897 72.458 0.000

6 -0.130 . -0.070 . . . 5 119.758 -229.516 102.840 0.000

7 -0.134 . . . . . 4 88.031 -168.062 164.293 0.000



Table S1.14.  Parameter  estimates  for  the  best  regression models  (ΔAIC < 2)  using  MLPE for  P.

simonsi and P. steerei, with the 95% of confidence intervals shown in parentheses. 

Predictors Estimates

P. simonsi

Habitat -0.109 (-0.136 to -0.083)

Productivity -0.001 (-0.060 to 0.008)

River Distance 0.000 (-0.036 to 0.024)

P. steerei

River Distance -0.111 (-0.128 to -0.093)

Habitat -0.032 (-0.044 to -0.021)



Table S1.15.  Importance of predictors variables in MLPE regression for  P. simonsi (the non-flooded forests/terra-firme species) and  P.

steerei (the seasonal floodplain forests/várzea species), considering the best models (i.e., with ΔAIC < 2), and coefficients of determination

(RΣ
2) for the predictor variable in the best model with confidence intervals (95% C.I.) in parentheses.  RΣ

2 corresponds to the proportion of

generalized variance explained by the fixed predictors in the best model.

Predictors
P. simonsi P. steerei

ΔAIC < 2 RΣ
2 ΔAIC < 2 RΣ

2

Habitat 1
0.349

(0.467 – 0.234)
1

0.099

(0.194  - 0.031)

Productivity 0.502 . . .

River 0.285 . 1
0.565

(0.645 – 0.479)

Topography . . . .

Euclidean . . . .



APPENDIX S2

Appendix S2.1. Details on library preparation, sequencing, SNPs calling and filtering steps.

Genomic DNA from liver and muscle samples were extracted with DNeasy Blood and Tissue

Kit  (Qiagen,  Valencia,  CA),  following  the  manufacturer's  recommendations,  except  for  the  DNA

elution step where DNA was eluted in double distilled water (ddH20). Extracted DNA was quantified

by  Qubit  fluorometer  (Life  Technologies,  Grand  Island,  NY,  USA),  and  diluted  with  ddH20  or

concentrated  in  a  SpeedVac  (ThermoFisher  Scientific,  Waltham,  MA,  USA)  at  43º  C  (medium

temperature) to a concentration of 17.6 ng/μL. Genomic library using the ddRAD-Seq technique was

prepared  following  Peterson  et  al.  (2012).  Specifically,  300  ng  of  genomic  DNA (i.e.,  17  μL  of

extracted  DNA)  were  digested  using  two  restriction  enzymes:  Eco-RI  and  Mse-I,  cleaned  with

commercial  Ampure  XP  Beads  (Beckman  Coulter,  Brea,  CA,  USA),  and  quantified  in  a  Qubit

fluorometer (Life Technologies,  Grand Island, NY, USA). Illumina adapters and a unique bar code

were ligated to 50 ng of the digested DNA in a volume of 33 μL per sample. Samples were pooled and

cleaned with commercial Ampure XP Beads (Beckman Coulter, Brea, CA, USA), and DNA fragments

were size-selected (between 350 and 450 bp) using Pippin Prep (Sage Science, Beverly, MA, USA) and

amplified by PCR. The library was cleaned with the beads again, quantified and sequenced in one lanes

of a HiSeq2500 (Illumina,  San Diego, CA, USA) at the Center for Applied Genomics in Toronto,

Canada to generate 150 bp, single-end reads.

Genomic  DNA  was  processed  using  the  STACKS  2.41  pipeline  (Rochette  et  al.,  2019).

Samples were demultiplexed, and reads with low quality, more than 2 mismatches by barcode, or with

uncalled nucleotides (Ns), were removed, as were the adapters and barcodes. The 140 bp reads were

stacked and aligned without a reference genome (i.e.,  de novo alignment) for stacks with 6 or more

reads (parameter -m) and 3 nucleotides of distance between stacks (-M) (Paris et al., 2017). A catalog

of loci for all individuals was made, with up to 3 fixed differences between individuals (-n) (Paris et al.,

2017).

Data were filtered using a customized R script and the R package “r2vcftools” v0.0.0.9 (Pope,

2020),  removing highly variables loci (> 6 segregating sites per read with 132 pb) and those with

coverage  less  than 20X, retaining  loci  with  5% minimum allele  frequency that  also conformed to

Hardy-Weinberg  equilibrium  (HWE,  p  <0.0001;  O’Leary  et  al.,  2018) and  were  not  in  linkage

disequilibrium (LD; r2 < 0.8; Larson et al., 2014). Loci with more than 20% missing data, or potentially

under selection were removed. Putative loci under selection were determined from an outlier analysis

based on principal  component  analysis  (PCA) with  Mahalanobis  distance  to  identify  outliers  in  a



multidimensional space with α = 0.05 (Lotterhos et al., 2017; Luu et al., 2017) that does not require

assignment  of  individuals  to  discrete  populations  (Privé et  al.,  2020)  using the package “pcadapt”

v4.3.3 (Luu et al., 2017); different K-values (1-10) were tested and the best K was chosen for tests of

selection based on Cattell's Rule in the PCA scree plot (Cattell, 1966), with false positive rates adjusted

based on the distribution of  p-values  and the genomic inflation  factor  (GIF) using the Benjamini-

Hochberg algorithm (François et al., 2016). 

Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research, 1(2), 245–276. 

https://doi.org/10.1207/s15327906mbr0102_10

François, O., Martins, H., Caye, K., & Schoville, S. D. (2016). Controlling false discoveries in genome scans for selection. 

Molecular Ecology, 25(2), 454–469. https://doi.org/10.1111/mec.13513

Larson, W. A., Seeb, L. W., Everett, M. V., Waples, R. K., Templin, W. D., & Seeb, J. E. (2014). Genotyping by 

sequencing resolves shallow population structure to inform conservation of Chinook salmon (Oncorhynchus 

tshawytscha). Evolutionary Applications, 7(3), 355–369. https://doi.org/10.1111/eva.12128

Lotterhos, K. E., Card, D. C., Schaal, S. M., Wang, L., Collins, C., & Verity, B. (2017). Composite measures of selection 

can improve the signal-to-noise ratio in genome scans. Methods in Ecology and Evolution, 8(6), 717–727. 

https://doi.org/10.1111/2041-210X.12774

Luu, K., Bazin, E., & Blum, M. G. B. (2017). pcadapt: an R package to perform genome scans for selection based on 

principal component analysis. Molecular Ecology Resources, 17(1), 67–77. https://doi.org/10.1111/1755-0998.12592

O’Leary, S. J., Puritz, J. B., Willis, S. C., Hollenbeck, C. M., & Portnoy, D. S. (2018). These aren’t the loci you’e looking 

for: principles of effective SNP filtering for molecular ecologists. Molecular Ecology, 27(16), 3193–3206. 

https://doi.org/10.1111/mec.14792

Paris, J. R., Stevens, J. R., & Catchen, J. M. (2017). Lost in parameter space: a road map for stacks. Methods in Ecology and

Evolution, 8(10), 1360–1373. https://doi.org/10.1111/2041-210X.12775

Peterson, B.K., Weber,  J.N., Kay, E.H., Fisher, H.S. & Hoekstra,  H.E. (2012) Double Digest RADseq: An Inexpensive

Method for De Novo SNP Discovery and Genotyping in Model and Non-Model Species L. Orlando (Ed). PLoS ONE 7,

e37135.

Pope, N. (2020). r2vcftools: An R interface for vcftools. R package version 0.0.0.9000.

Privé, F., Luu, K., Vilhjálmsson, B. J., Blum, M. G. B., & Rosenberg, M. (2020). Performing highly efficient genome scans 

for local adaptation with R package pcadapt version 4. Molecular Biology and Evolution, 37(7), 2153–2154. 

https://doi.org/10.1093/molbev/msaa053

Rochette, N. C., Rivera Colón, A. G., & Catchen, J. M. (2019). Stacks 2: Analytical methods for paired end sequencing ‐ ‐

improve RADseq based population genomics. ‐ Molecular Ecology, 28(21), 4737–4754. 

https://doi.org/10.1111/mec.15253

https://doi.org/10.1111/mec.15253
https://doi.org/10.1111/2041-210X.12775
https://doi.org/10.1111/mec.14792
https://doi.org/10.1111/1755-0998.12592
https://doi.org/10.1111/eva.12128
https://doi.org/10.1111/mec.13513


Appendix S2.2.  Details on the methodologies of the Procrustes analyses and the calculation of the

resistance matrices used in isolation by resistance (IBR) analyses and Mantel tests. All analyses were

performed in R 3.6.3.

Procrustes Analyses

Procrustes analyses were also used to test the similarity between taxa in the structuring of

genetic variation, under the expectations of isolation by distance (IBD) (Knowles et al., 2016; Wang et

al.,  2010). Unlike traditional  IBD tests, a Procrustes analysis  retains information about the relative

positions of populations both latitudinally and longitudinally, providing visualizations of the magnitude

and  the  direction  of  deviations  of  individuals  from IBD (Knowles  et  al.,  2016; Papadopoulou  &

Knowles, 2015; Peres-Neto & Jackson, 2001). Specifically,  the association between geography and

genetic variation was quantified using the first two principal components of the genetic PCA (see in

Material and Methods section on the Mantel tests) and the geographical coordinates (i.e., longitude and

latitude) of the sampling localities, minimizing the differences between the geo-genetic maps in the

multivariate space (Peres-Neto & Jackson, 2001; Wang et al., 2012). The strength of the association is

quantified by the t0-statistic that ranges from 0 (for no association) to 1 (a perfect association) (Wang et

al., 2010), and the robustness of t0 was evaluated using a sequential removal and replacement procedure

to identify sensitivities to particular geographic localities (measured by t''), or individuals (as measured

by  t',  following the nomenclature of Knowles et  al.,  2016; Prado et  al.,  2019; Wang et al.,  2012).

Analyses  were  performed  using  the  function  protest in  the  R  package  “vegan”  with  10,000

permutations.

Geographic (Euclidean) Distance

The geographic distance in km was calculated for the IBR analyses and the Mantel tests. We

estimated the distances between individuals using the distm function in the package “geosphere” v1.5-

10 (Hijmans, 2019).

Topographic Distance

Topographic distance was calculated using SRTM elevation data from WorldClim 2.1 (Fick &

Hijmans,  2017;  https://www.worldclim.org/)  and “topoDistance”  v.1.0.1 with  the package  topoDist

function (Wang, 2020).

River Network Distance



River network distance was estimated using the package “riverdist” v0.15.3 (Tyers, 2020),

using  the  shapefile  “ne_10m_rivers_lake_centerlines”  from  Natural  Earth  Data

(https://www.naturalearthdata.com/downloads). The cleanup function was used to identify and dissolve

segments,  remove  duplicate  lines,  and  insert  vertices  in  every  500 m in  the  river  network  before

applying the xy2segvert function to snap sampling points to the closest vertex available in the network;

river distances were calculated in Km using the riverdistancemat function.

Habitat Resistance Distance

The  habitat  resistance  distance  matrix  was  generated  from  the  Tropical  and  Subtropical

wetlands  distribution  map  (Gumbricht  et  al.,  2017),  a  binary  map  of  wetlands  and  non-wetlands.

However,  these wetlands classifications  also include permanent  wetlands and swamps (open areas)

where Proechimys does not occur (Wittmann et al., 2010). Because of that, we reclassified the cells in

the map to differentiate flooded areas (permanent or not) from non-flooded areas (permanently dry)

where only  P. simonsi occurs, and thus can be used as a proxy for habitat preferences. Specifically,

different resistance values were assigned to wetlands and non-wetlands habitats in a species-specific

manner since P. simonsi occurs in the non-flooded forests (terra-firme), whereas  P. steerei occurs in

from seasonal floodplain forests (várzea). Resistance distances were conducted in each species using a

range  of  resistance  values  for  each  wetland  versus  non-wetland  habitat  representing  very  high

resistance (VH), high resistance (H); moderate resistance (M), and low resistance (L). Because we had

an insufficient  number of sampling localities  and classes to  optimize resistance values  (e.g.,  using

ResistanceGA function in R; Peterman, 2018), we instead explored a range of resistance values (see

below)  for  both  wetland  and  non-wetland  habitats.  This  approach  is  admittedly  arbitrary,  but  are

nonetheless useful because we are primarily interested in whether the same or different models fit the

sympatric  taxa (as opposed to identifying the optimal  resistance value in a  single species).  For  P.

steerei, the species from seasonal floodplain forests (várzea), cells with non-wetland habitats (i.e., the 0

values from the binary map from Gumbricht et al., 2017) were replaced with higher levels of resistance

(i.e., 0.9 for the VH scenario; 0.8 for the H scenario; 0.7 for the M scenario; 0.6 for the L scenario) and

cells with wetlands (i.e., the 1 values from the binary map from Gumbricht et al., 2017) were replaced

with  low  levels  of  resistance  (i.e.,  0.1,  0.2,  0.3,  and  0.4  for  the   VH,  H,  M,  and  L  scenarios,

respectively). For P. simonsi, the species from the non-flooded forests (terra-firme), the high levels of

resistance  were  assigned  to  wetlands,  and  the  low levels  of  resistance  were  assigned  to  the  non-

wetlands  (i.e.,  the  reverse  assignment  to  cells  as  for  P.  steerei).   Resistance  distances  between

individuals  were  calculated  based  on  random-walk  commute  time  using  the  functions:  transition,



geoCorrection and commuteDistance for “gdistance” v1.3-6 (van Etten, 2018), using the  mean of 16

directions for cells connections to calculate the transition values of the grids. Among the four scenarios,

we selected only the best model (ΔAIC = 0) through MLPE univariate models and model.sel function

in “MuMIn” R package (Bartoń, 2020). The best MLPE univariate model for habitat distance was the

VH scenario (with resistance values of 0.6 and 0.4 for movements in wetlands for  P. simonsi and P.

steerei, respectively; Table S1.4).

 

Habitat Productivity Distance

For the species distribution models (SDM) 286 occurrence points were obtained by the authors

during visits to scientific collections, using only specimens identified based on morphology following

Patton & Leite (2015). All occurrence points were verified using Google Maps (http://maps.google.-

com.br),  SpeciesLink  (http://splink.cria.org.br/),  and the  ornithological  gazetteers  of  the  Neotropics

(Stephens & Traylor, 1983; Paynter & Traylor, 1991a, b) in order confirm that the name and the coor-

dinates corresponded to those designated in the museum catalog and in the specimen tags. After, filter-

ing the occurrence points using a 10 Km buffer, the remaining dataset had a total of 88 unbiased occur-

rence points (P. simonsi, n = 41; P. steerei, n = 47), and were used to build the models (Table S1.3).

Temperature, precipitation, and potential evapotranspiration (PET) variables were used as proxy

for habitat productivity  (Field et al., 1998;  Hawkins et al., 2003;  Li et al., 2011; Yang et al., 2018;

Moura et al.,  2019). Seasonal floodplain forests show higher net primary production than the non-

flooded forest (Junk and Piedade, 1993; Wittmann et al., 2010), and so both forest types might respond

differently to variation in precipitation and temperature, as determined by tree-ring chronology data

(Schöngart  et  al.,  2010).  For  the  temperature  and  precipitation  variables,  environmental  values

extracted  from  12  monthly  layers  available  in  WorldClim  2.1  (Fick  &  Hijmans,  2017;

https://www.worldclim.org/), and for the PET variables, values were extracted from six layers based on

ENVIREM variables (Title & Bemmels, 2018; https://envirem.github.io/) (Table S1.2), all 30 layers

were in a 1Km² resolution or 30 arc-seconds.

We  employed the  function  vif in  “usdm”  v1.1-18  (Naimi  et  al.,  2014)  to  select  the

environmental variables by variance inflation factor (VIF) to avoid collinearity (Dormann et al., 2013).

For each species, we calculated the VIF for all variables, eliminated the variable with the highest VIF,

and performed a new VIF estimation  without  the variable  with the highest  VIF. We repeated  this

approach of sequentially dropping one variable until we had 4 variables, at least one variable for each

group (temperature,  precipitation,  and PET),  following  the  rule  of  10  observations  by  a  predictor

(Breiner et al., 2015; Harrison et al., 2018). In the end, all remaining variables had a VIF ≤ 2, with four

http://splink.cria.org.br/)


variables  for  each  target  species  (P.  simonsi  = PET in  the  Coldest  Quarter,  PET in  the  Warmest

Quarter,  Precipitation  in  November  (Prec_11),  and Average  Temperature  in  January  (tavg_01);  P.

steerei = PET in the Coldest Quarter, Annual PET, Precipitation in September (Prec_09), and Average

Temperature in December (tavg_12).

Models were created in the program MaxEnt v3.4.1 (Phillips et al., 2006), implemented in the

“biomod2” v3.5.1 with 50 replicates, using bootstrap and 30% of occurrence points as testing samples.

To check the importance of the variables, we performed 100 replications. Study area were selected

using convex hulls on the occurrence points plus 100 Km buffer. We eliminated areas of the Andes

Mountains  where  the  genus  Proechimys did  not  occur  and  that  showed  high  environmental

heterogeneity which can bias our models. Complexity and the feature class (FC) for modeling were

chosen in “ENMeval” v0.3.1 (Muscarella et al., 2014), with ENMevaluate function. We tested eight FC

combinations: L, LQ, LQP, H, T, LQH, LQHP, and LQHPT (L = linear, Q = quadratic, H = hinge, T =

threshold, and P = product); and regularization multiplier (RM) values from 0.5 to 3.0 with increments

of 0.5, totaling 48 models. We used a lower Akaike information criterion value (i.e. ΔAIC) and other

parameters  to  select  the best  models:  higher  Area Under the Curve (AUC) values,  lower standard

deviation in replicates, and lower difference between train and test AUC. Best model for  P. simonsi

was FC = L and RM = 0.5; and for P. steerei was FC = LQ, and RM = 0.5. We calculated the Area

Under the Curve (AUC) True Skill Statistics (TSS) to validate the models.  We created an average

model with 20 replicates with higher TSS values to create our resistance matrix for habitat productivity.

We found good accuracy metrics (>0.7 for AUC and >0.4 for TSS) for the average of replicates for

AUC test (P. simonsi = 0.730; and for P. steerei = 0.713) and for TSS (P. simonsi = 0.448; and for P.

steerei = 0.398). In P. simonsi the most important variable was PET in the Warmest Quarter (49.72%),

followed by Average Temperature in January (35.04%), Precipitation in November (7.70%), and PET

in the Coldest Quarter (7.54%). For P. steerei most important variable was Precipitation in September

(58.78%) followed by Average Temperature in December (24.65%), Annual PET (15.69%), and PET

in the Coldest Quarter (0.88%). Response curves for each variable are showed in Fig. S3.1. The raw

values for suitability for each species were inverted (1-SDM) following Chan et al. (2011). After we

applied the functions: transition, geoCorrection and costDistance for “gdistance” to calculate the cost

distance between individuals  with the mean of 16 directions  for cells  connections  to  calculate  the

transition  values  of  the  grids.  All  R  scripts  are  available  at:

https://github.com/jdalapicolla/SDM_biomod2.
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APPENDIX S3

Figure S3.1. Response curves to explain the suitability of the four variables used in the species distribution models (SDM)  in P. simonsi (A-

D) and in P. steerei (E-H); percentages in parenthesis  give the importance of variables for the model after 100 replications. Units in PET

variables are in mm/month; Precipitation in mm, and Temperature in ºC. Black lines represent the curves for all 20 model replicates and the

red line for the replicate with better accuracy metric (AUC and TSS). Also shown are icons for  the non-flooded forests/terra-firme in plots

A-D, and the seasonal floodplain forests/várzea in plots E-H. 



Figure S3.2. Pairwise correlations between resistance predictor variables used in MLPE analyses in

(A) P. simonsi and (B) P. steerei, as measured by Pearson’s correlation coefficient, r2, with the values

color-coded and absolute values of the correlations (between 0 and 1) shown as the shaded proportion

of the squares. Also shown are icons for the non-flooded forests/terra-firme in plot A, and the seasonal

floodplain forests/várzea in plot B.



Figure S3.3. Number of ancestral populations (A,B) and number of genetic clusters (C,D) estimated

with sNMF and DAPC for P. simonsi (on the left) and P. steerei (on the right), respectively, where the

best number is the one with the smallest  cross-entropy (sMNF) or BIC-values (DAPC). For cross-

entropy the number of populations was consistent across different regularization parameters, showing

plots with lower cross-entropy values α = 4000 (A), and α = 4000 (B). Note that based on the DAPC

results, we focus on 3 genetic clusters in P. steerei throughout manuscript. Also shown are icons for the

non-flooded forests/terra-firme in plot A, and the seasonal floodplain forests/várzea in plot B. 



Figure S3.4. Comparison of individual-based (A) genetic diversity indices expected heterozygosity,

HEXP,  (B)  and  the  inbreeding  coefficient,  FIS,  for  P.  simonsi (the  non-flooded  forests/terra-firme

species) and  P. steerei (the seasonal floodplain forests/várzea  species),  as well as the  three  genetic

clusters (GC) in P. steerei recovered using sNMF. P. simonsi is represented by one single cluster in the

sNMF approach; all individuals were used for diversity estimates for species wide estimates.



Figure S3.5. Tests of association between genetic and geographic distance based on Mantel tests  for

(A-C) both sympatric species using all individuals (triangles and solid line for P. simonsi; squares and

dashed for  P. steerei), and for (B-D) each of the three genetic cluster (GC)  recovered using sNMF

(marked by different colored circles). Lines represent the relationships between genetic distance (based

on PCA distance among pairs of individuals) and geographical (Euclidean) distances (scaled values)

are shown in A and B and distances along the rivers are in C and D, with the 95% confidence intervals

under the linear models in the shaded gray areas. Pearson’s correlation coefficient, r, a measure of the

strength of the association, and p-values are given in Table S1.10. 



Figure S3.6. Auto-correlation function (ACF) plots showing the degree of spatial autocorrelation based on MLPE model residuals from the

best model in (A) P. simonsi and (B) P. steerei, which have weak spatial autocorrelation among samples with lag values within or close to

the confidence band (blue dashed lines). Also shown are icons for the non-flooded forests/terra-firme in plot A, and the seasonal floodplain

forests/várzea in plot B.


