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53 ABSTRACT

54 Aim: Understanding how the landscape influences gene flow is important in explaining biodiversity, especially when co-

55 distributed taxa across heterogeneous landscapes exhibit species-specific habitat associations. Here, we test predictions 

56 about the effects of forest-type on population connectivity in two sympatric species of spiny rats that differ in their forest 

57 associations. Specifically, we evaluate the hypothesis that seasonal floodplain forests (várzea) provide linear connectivity, 

58 facilitating gene flow among individuals, while non-flooded forests (terra-firme) may diminish the functional connectivity.

59

60 Location: Western Amazon, South America.

61

62 Taxon: Proechimys simonsi (non-flooded forests, terra-firme) and Proechimys steerei (seasonal floodplain forests, várzea).

63

64 Methods: We analyze about 13,000 SNPs along with characterizations of landscape heterogeneity for two forest types to 

65 test for differences in the functional connectivity. Influence of the landscape and environmental variables are quantified 

66 using maximum-likelihood population effect (MLPE) models to identify the relative importance of variables in explaining 

67 the gene flow.

68

69 Results: There are significant differences in functional connectivity between species. However, the genomic data does not 

70 support the conventional hypotheses of higher connectivity for inhabitants of várzea than those of terra-firme. Stronger 

71 genetic structure in P. steerei than P. simonsi based on IBD models suggests reduced gene flow in species associated with 

72 várzea forests. Isolation by resistance reinforces that wetland habitats inhibit and promote the functional connectivity in P. 

73 simonsi and P. steerei, respectively, although large distances along the rivers can prevent gene flow in P. steerei.

74

75 Main conclusions: Interpreting differences between connectivity in taxa apparent from genetic analyses through the lens of 

76 a single dimension of Amazonian heterogeneity – that is, forest type – may be an oversimplification. Our statistical 

77 modeling and fit of the data to different models points to specific environmental and habitat differences between the 

78 ecological divergent spiny rat species that may contribute to differences in the genetic structure of these sympatric taxa.

79

80 KEYWORDS: Isolation by resistance; Landscape genetics; MLPE mixed models; Phylogeography; RADseq; Terra-firme; 

81 Várzea.
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82 1. INTRODUCTION

83 Landscape configuration and composition can influence gene flow among populations (Manel et al., 2003) such 

84 that organisms with different ecologies can show different connectivity patterns in the same landscape (Balkenhol et al., 

85 2015). The effects of the landscape on the dispersal of organisms are understood as functional connectivity, given that it’s 

86 not geographic distance alone that determines gene flow, but also how organisms perceive and respond to landscape 

87 structure (Manel & Holderegger, 2013). As such, the divergence process may differ among sympatric taxa when the 

88 species’ ecologies affect connectivity among populations because of differences in how they perceive and respond to the 

89 landscape (Pirani et al., 2019), in addition to differences in the landscape structure of different habitat types (Massatti & 

90 Knowles, 2016; Prado et al., 2019).

91 Restrictive factors in a landscape may prevent movement and connection of the organisms (Taylor et al., 1993) 

92 through i) Isolation by Resistance (IBR), where restrictions are based on landscape structure and configuration (McRae, 

93 2006), or ii) Isolation by Distance (IBD), where geographical distance determines the amount of dispersal (Wright, 1943). 

94 Connections (or conversely isolation) between populations can relate to historical processes, such as vicariance and 

95 dispersion events (Carnaval & Moritz, 2008; Ribas et al., 2012), or reflect ecological and behavioral traits (e.g., mating 

96 patterns, migration capacity, habitat use), which may create resistance or facilitate organisms movements across 

97 heterogeneous landscapes and environments and generate different patterns of local adaptation, genetic diversity, and 

98 population structure (McRae & Beier, 2007). 

99 Studies focusing on functional connectivity, gene flow, and genetic diversity are important to explain biodiversity 

100 patterns, as well as to provide important information for conservation biology (Hoban et al., 2020), especially in poorly 

101 known environments, such as the Western Amazon (Barlow et al., 2016). Bordered by the Andean slopes to the west and 

102 the Negro River and Madeira River to the east (Leite & Rogers, 2013), the Western Amazon has a dynamic geological 

103 history unlike the rest of the Amazon and a unique river dynamic of meandering white-water rivers and seasonal floods 

104 (Hoorn et al., 2010; Matocq et al., 2000). Western Amazonian landscape is predominated by two dominant forest types: 

105 non-flooded or terra-firme forests, and seasonal floodplain forests or várzea forests. The non-flooded forests are above the 

106 maximum flood level of rivers and perennial streams, and it abuts the seasonally inundated floodplains forests (Bredin et al., 

107 2020). As non-flooded systems, except for the occasional minor inundation of flood water (Hess et al., 2015), inhabitants of 

108 the terra-firme forests are hypothesized to experience greater stability, and hence are expected to be characterized by higher 

109 genetic diversity, compared with inhabitants of the floodplain forests (Harvey et al., 2017). On the other hand, seasonal 

110 flooding of várzea forests produce a dynamic of meandering river channels (Constantine et al., 2014) in which sections of 

111 land frequently move from one river side to the other, and as such, are hypothesized to facilitate gene flow among the 

112 populations of the inhabitants of this forest (Salo et al., 1986; Matocq et al., 2000) via connectivity along the floodplains 

113 bordering rivers, as well as by temporary dispersal corridors between river basins during seasonal flooding of the várzea 

114 forests. This general framework has been supported by genetic studies of different members of the communities that inhabit 

115 the várzea forests, including species of birds (Aleixo, 2006; Cadena et al., 2011; Harvey et al., 2017), plants (Godoy et al., 

116 1999) and mammals (Matocq et al., 2000). However, questions remain about the extent to which this hypothesis can be 

117 generalized, especially in organisms with different dispersal characteristics (see Thom et al., 2020). 

118 Among the species-rich fauna that inhabits the non-flooded and seasonal floodplain forests of the Western 

119 Amazon (Voss & Emmons, 1996), the diversity of rodents stands out among mammals, especially the genus Proechimys J. 

120 A. Allen, a terrestrial spiny rat of the family Echimyidae (Fabre et al., 2016). With a wide Neotropical distribution that 
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121 extends from Central America to the Brazilian Cerrado, covering the entire Amazon region (Patton & Leite, 2015; Woods & 

122 Kilpatrick, 2005), nine of the 22 species in the genus are found in the Western Amazon (Fabre et al., 2016; Patton & Leite, 

123 2015). Within Western Amazon, records of sympatry (i.e., overlapping geographic distributions) and syntopy (i.e., 

124 overlapping collection sites) have also been documented for up to five species of Proechimys (Patton et al., 2000). Thus, 

125 sympatry among species of Proechimys is both more common and occurs across more species compared with other 

126 mammal taxa that occur sympatrically (Patton & Leite, 2015), as in the Atlantic Forest echimyid genera Phyllomys (Leite, 

127 2003) and Trinomys (Lara & Patton, 2000). This is an unusual pattern, as most co-generic Neotropical rodent species are 

128 predominantly allopatric and/or parapatric (Patton et al., 2015). Differences in their ecology, including different habitat 

129 preferences are factors frequently invoked to explain the overlapping distributional patterns of Proechimys species 

130 (Emmons, 1982; Matocq et al., 2000; Patton et al., 2000; Voss et al., 2001). However, the potential explanations for the 

131 disproportionate occurrence of sympatry (i.e., divergent ecologies) have yet to be examined with regards to their 

132 consequences for the divergence process among sympatric taxa. 

133 Here, we address this knowledge gap by testing how the pattern of connectivity within two sympatric species, P. 

134 simonsi and P. steerei, may differ in relation to the type of forest each inhabits (non-flooded versus flooded). P. simonsi 

135 primarily inhabits upland and relatively stable non-flooded forest (terra-firme) environments surrounded by flooded areas 

136 (Patton et al. 2000; Patton & Leite, 2015), whereas P. steerei occurs in the seasonal floodplain (várzea) and in higher areas 

137 within várzeas called restingas during seasonal floods or secondarily in disturbed terra-firme forests adjoining flooded areas 

138 (Matocq et al., 2000; Patton & Leite, 2015). Analyses of mitochondrial DNA (mtDNA) of individuals along the Juruá River 

139 suggested that gene flow differs between the species and is consistent with general expectations based on their forest type 

140 association (i.e. P. simonsi presented lower levels of gene flow than P. steerei; Matocq et al., 2000). However, there were 

141 some notable peculiarities. Specifically, mtDNA genetic structure is stronger among headwaters areas than lower river areas 

142 and is more pronounced in P. steerei than P. simonsi (Matocq et al., 2000), leading the authors to speculate that landscape 

143 features of the Juruá River, and possibly aspects of the species natural history traits, contributed to the counter-intuitive 

144 differences in the geographic structure of mtDNA between these species.

145 In this study, we overcome the limitations of single locus analyses by collecting genomic data from individuals 

146 sampled from multiple rivers across western Amazon to avoid site (or river) specific affects. As such, our study applies a 

147 comparative framework to address the generality of predictions about the effects of forest-type on population connectivity 

148 using analytical techniques to test if gene flow corresponds to expectations about functional connectivity. Specifically, and 

149 taking into account the mtDNA findings (Matocq et al., 2000), we evaluate support for the hypothesis that seasonal 

150 floodplain forests provide linear connectivity, facilitating gene flow among P. steerei individuals. However, considering the 

151 unexpectedly strong genetic structure of mtDNA in P. steerei, relative to P. simonsi (Matocq et al., 2000), we also test a 

152 suite of models that differ in the landscape features they contain to explore how particular factors may potentially restrict 

153 gene flow in each spiny rat taxa. As such, our study moves beyond relying solely on concordance, or the lack-there-of, 

154 among taxa as a typical means for evaluating hypotheses about the effects of species-specific traits on gene flow (see 

155 Papadopoulou & Knowles, 2016). We discuss the implications of our results for understanding how the divergence process 

156 may differ because of species-specific ecologies (i.e., inhabiting non-flooded or terra-firme forests versus seasonal 

157 floodplain forests or várzea forests) of Amazonian taxa, as well as potential linkages with the high biodiversity of the 

158 Western Amazon biome.

159
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160 2. MATERIAL AND METHODS

161 2.1. Genomic data

162 Genomic data was collected from 41 individuals of two co-distributed species of spiny rats: P. simonsi (n = 21), which 

163 inhabits non-flooded forests (terra-firme), and P. steerei (n = 20), which occupies seasonal floodplain forests (várzea) from 

164 the Western Amazon (Fig. 1). Note that sampling in the Western Amazon, as well as from different countries, is inherently 

165 difficult, and even more so for focused collections of co-distributed species, which limits the attainable sample sizes. 

166 Nevertheless, our sampling covers most of the distribution of each species, including areas of sympatry (Fig. 1), and we 

167 note that the small sample sizes are compensated to some extent by more than 10,000 SNPs sequenced with good coverage 

168 (> 30X) for each species (see Li et al., 2020; McLaughlin & Winker, 2020;  Nazareno et al., 2017).

169 Individuals were collected by the Laboratório de Mamíferos (Universidade de São Paulo) following the American 

170 Society of Mammalogists guidelines (Sikes et al., 2016) and the Brazilian legislation (permission SISBIO n. 14419-3) and 

171 are housed at the Coleção de Mamíferos da Escola Superior de Agricultura “Luiz de Queiroz, Universidade de São Paulo, 

172 Piracicaba, São Paulo, Brazil (LMUSP). In addition, some samples were obtained from several scientific collections (see 

173 Appendix S1 in Supporting Information: Table S1.1). Specimens were identified using morphologic diagnostic traits 

174 (described in Patton & Leite, 2015). One double digest Restriction-site Associated DNA (ddRAD) library was constructed 

175 following Peterson et al. (2012) protocol, generating 150 bp reads where one SNP was randomly selected per locus. More 

176 details about DNA extraction and library preparation, SNPs calling and filtering steps, see Appendix S2.1 in Supporting 

177 Information.

178

179 2.2. Genetic structure and genetic diversity

180 Genetic structure in both species was evaluated using three different model-free approaches: i) sparse non-

181 Negative Matrix Factorization algorithms (sNMF) using “LEA” v3.4.0 (Frichot & Francois, 2014), ii) Discriminant 

182 Analysis of Principal Component (DAPC) using “adegenet” v2.1.3 (Jombart & Ahmed, 2011), and iii)  Principal 

183 Component Analysis (PCA) using dudi.pca function in “adegenet” followed by Tracy-Widom tests for eigenvalues to select 

184 significant PCs (Patterson et al., 2006; Tracy & Widom, 1994). This set of analyses was chosen because of their 

185 complementarity. Specifically, as the most common method in population genomics that allows reduction of the complexity 

186 of genomic data while preserving its covariance, PCA were conducted. However, given PCA’s sensitivity to sample size, 

187 missing data, number of loci, presence of clines, and isolation by distance (Puechmaille, 2016), we used more than one 

188 method to estimate genetic structure. In particular, as model-free approaches, DAPC and sNMF do not require population 

189 genetics assumptions (such as HWE, linkage disequilibrium, and others), are computationally fast for genome-scale data, 

190 and do not require a priori definition of genetic groups. DAPC has proven effective even in complex population structures 

191 such as clines and hierarchical groups (Fenderson et al., 2020; Jombart et al., 2010). sNMF is similar to, but much faster 

192 than, STRUCTURE and ADMIXTURE for calculating ancestry coefficients (which DAPC and PCA do not) when 

193 estimating genetic clusters (Frichot et al., 2014). 

194 Ten replicates of each K-value, for K of 1 to 10 potential genetic clusters were run for the sNMF analyses with 

195 different regularization parameters values (α = 10, 100, 500, 1000, 2000, 4000) following Dalapicolla et al. (2021); the best 

196 K was estimated applying a minimum cross-entropy value (Frichot et al., 2014). For the DAPC, genetic clusters (K) 

197 between 1 and 10 were tested using all PCs (100% of the variance); the Bayesian Information Criterion (BIC) with the 

198 function find.clusters (Jombart et al., 2010; Miller et al., 2020) in “adegenet” was used to identify the best K (i.e., the one 
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199 with the lowest value, as with the cross-entropy evaluation). The xvalDapc function in “adegenet” was used to select the 

200 best number of PCs to recover genetic clusters (Miller et al., 2020). 

201 The following genetic diversity metrics were calculated for each genetic cluster identified in each species: 

202 expected heterozygosity (HEEXP), nucleotide diversity (π), and inbreeding coefficient (FIS), using the Query function 

203 available in “r2vcftools” v0.0.0.9 (Pope, 2020). Tests of significant differences in diversity values (among species and 

204 among genetic clusters) were assessed with Tukey’s test using Query function as well (see Prado et al., 2019). In addition, 

205 FST (SNP-based F-statistics) was used to measure genetic differentiation between genetic clusters using the gl.fst.pop 

206 function in “dartR” v1.9.9.1 (Gruber & Georges, 2019) with 100 bootstraps. All analyses were performed in R 3.6.3 (R 

207 Core Team, 2020).

208

209 2.3. Isolation by distance (IBD)

210 The association between geographic and genetic distance was tested using Mantel tests (Mantel, 1967) based on i) a 

211 geographic (Euclidean) distance matrix and ii) a river network distance along the main river channels, using the mantel.rtest 

212 function with 10,000 permutations in “ade4” v1.7-16 (Dray & Dufour, 2007); details on environmental distances are given 

213 in Appendix 2.2. A genetic PCA-distance between individuals was calculated using distance function in “ecodist” v2.0.7 

214 (Goslee & Urban, 2007) based on the Euclidean distance, retaining the number of PCs according to the Broke Stick Rule in 

215 screenplot function in “vegan” v2.5-7 (Oksanen et al., 2019); this metric was used because of its performance for IDB tests 

216 when sample sizes differ (Shirk et al., 2017) and it can be interpreted similarly to FST used in classical population-based 

217 Mantel tests. An analysis of covariance (ANCOVA) was performed to test if the slopes of the Mantel tests differed between 

218 species. Robustness was examined by sequential elimination and replacement of each genetic cluster (i.e., verifying whether 

219 the correlation and significance values were dependent on any specific genetic cluster). Procrustes analyses were also used 

220 to test the similarity between taxa in the structuring of genetic variation, under the expectations of isolation by distance 

221 (IBD) (Knowles et al., 2016). The associations tests between genetic variation and geography was quantified using the 

222 protest function in “vegan” package,  see details for this methodology in Appendix S2.2. All analyses were performed in R 

223 3.6.3.

224 2.4. Isolation by Resistance (IBR)

225 Isolation by Resistance (IBR) analyses were conducted using Maximum Likelihood population effects (MLPE) 

226 mixed models (Clarke et al., 2002), and are more accurate for individual-based evaluation of functional connectivity on 

227 landscape (Shirk et al., 2018). Yang’s relatedness coefficient (Yang et al., 2010), estimated in “r2vcftools” using the 

228 Relatedness function, was used as the response variable in the MLPE models because relatedness coefficients are more 

229 likely to represent recent gene flow (Balkenhol et al., 2015; Carvalho et al., 2019) and it is commonly applied for IBR tests 

230 based on individual-based genetic distances (Jaffé et al., 2019; Shirk et al., 2017). Mixed-effects regression models and least 

231 squares penalization with correlation structure were applied to account for the non-independence of genetic pairwise 

232 distances (Clarke et al., 2002), using the function lme in “nlme” v3.1-152 (Pinheiro et al., 2020) and the “corMLPE” v0.0.3 

233 package (https://github.com/nspope/corMLPE). A random effect specifying pairwise distances of individuals from the same 

234 versus different genetic clusters was used to control for population structure (Carvalho et al., 2019). Specifically, a full 

235 model containing all possible combinations among the predictors was fit to the genetic distances, considering five different 

236 resistance matrices as predictors: i) the null model based on geographic (Euclidean) distance (which we expect will not be 

237 significant predictor/component for any IBR models if landscape features are important to functional connectivity), and four 
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238 matrices representing environmental differences between non-flooded (terra-firme) forests and seasonal floodplain forests 

239 (várzea) (Table S1.2): ii) topographic distance; iii) river network distance; iv) habitat productivity distance (a resistance 

240 layer created from species distribution models, SDM, in which temperature, precipitation, and potential evapotranspiration 

241 (PET) variables act as a habitat productivity proxy (Hawkins et al., 2003; Li et al., 2011, see Appendix S2.2 and see 

242 Appendix S3: Fig S3.1) using presence-only data for both species (Table S1.3), and v) habitat resistance based on a 

243 wetlands map for the Western Amazon (Gumbricht et al., 2017), which represent movements within a landscape based on 

244 habitat preferences. Resolution for all raster variables was 30 arc-sec (~1Km² per cell), except for the wetlands raster that 

245 was resampled from the original spatial resolution (231 m²) using resample function from “raster” v3.4-10 (Hijmans & van 

246 Etten, 2015). All values in the resistance matrices were set to greater than zero to avoid errors in the model analyses (i.e., 0 

247 values were replaced with 0.001). The set of 4 variables incorporated into the competing models were chosen to capture 

248 aspects of the non-flooded (terra-firme) and seasonal floodplain (várzea) forests that differ, and hence, may result in 

249 dispersal differences in their respective inhabitants. For example, topographic distance was included because we expect 

250 species will avoid movements between different forest types, and hence altitudes. Likewise, river network distance might be 

251 a critical predictor for the seasonal floodplain inhabitants (i.e., P. steerei), with várzea forests acting as a dispersal corridor 

252 along rivers. As with topographic distance, habitat productivity distance was included as a potential significant predictor of 

253 gene flow in both species because individuals are expected to disperse more commonly between areas with similar habitat 

254 productivity, given that productivity of seasonal floodplain forests (várzea) and non-flooded forest (terra-firme) are distinct 

255 (Junk & Piedade, 1993; Wittmann et al., 2010). Lastly, habitat resistance represents differential movements of the species 

256 based on habitat preferences and direct measures of habitat type. Specifically, the P. steerei the resistance matrix was built 

257 such that wetlands facilitated dispersal, whereas for P. simonsi the resistance matrix was built with wetlands posing greater 

258 resistance to gene flow (see Appendix 2.2 and Table S1.4). If forest-types are important to functional connectivity in both 

259 species, this predictor will be significant in both species as well. Methodological details on the methodologies for 

260 calculating all resistance matrices are given in Appendix S2.2.

261 To avoid models containing highly correlated predictors, we eliminated models with highly correlated predictors 

262 (i.e., r² > 0.6; Fig. S3.2; see also Castilla et al., 2020; Jaffé et al., 2019; Rutten et al., 2019) using the dredge function from 

263 “MuMIn” v1.43.17 (https://github.com/rojaff/dredge_mc). The retained models generated in this approach therefore contain 

264 all potential predictors, as opposed to an approach of a priori removal of correlated predictors with the highest variance 

265 inflation factor for identifying models without highly correlated predictors.

266 The best IBR models (ΔAIC < 2) were identified (Harrison et al., 2018), with confidence intervals for 

267 coefficients of association estimated using restricted maximum likelihood (REML method; Silk et al., 2020). Spatial 

268 dependence of residuals from these models was evaluated by acf function in “stats” v3.6.3 (Castilla et al., 2020; Jaffé et al., 

269 2019). Likelihood ratio tests (LRT) were used to identify the best model among the nested models using the anova.lme 

270 function in the “nlme”, and the significance of predictors were estimated by chi-squared contingency table tests, using 

271 drop1 function in “stats”. Conditional coefficients of determination (conditional R²) for quantifying the variation explained 

272 by the model was calculated in “MuMIn” (Nakagawa & Schielzeth, 2013), and the semi partial RΣ
2 that measures the 

273 proportion of variance explained by each predictor (Jaeger et al., 2017) were estimated with the r2beta function in the 

274 “r2glmm” v0.1.2 (Jaeger, 2017). The relative importance of each predictor in explaining functional connectivity was 

275 determined by summing AIC weights over all models with ΔAIC < 2 using functions get.models and importance in R 

276 package “MuMIn”. All analyses were performed in R 3.6.3.

https://github.com/rojaff/dredge_mc
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277

278

279 3. RESULTS

280 After processing the raw sequence reads and applying stringent filtering criteria, 12,784 independent SNPs (i.e., one SNP 

281 randomly selected per locus) in P. simonsi (n = 17) and 13,971 independent SNPs in P. steerei (n = 19) were retained (Table 

282 S1.5). Note that fewer than the original 20 individuals per species were retained because of poor sequencing (i.e., sequences 

283 for the individual did not pass quality control filters).

284

285 3.1. Genetic structure and genetic diversity

286 Geographic structuring of genetic variation differs between the sympatric species, with stronger genetic structure apparent 

287 in P. steerei compared with P. simonsi. For example, P. simonsi individuals are scattered throughout the multivariate space 

288 (the first two PC explained 24.89% of the variance; Fig. 2a); only samples from Lower Juruá River and Purus River are 

289 relatively isolated. For P. steerei, three well-defined genetic clusters are clear in the multivariate space (the first two PCs 

290 explaining 46.1% of variation; Fig. 2b). Only one significant PC in P. simonsi, versus three significant PCs in P. steerei, 

291 was recognized by the Tracy-Widom tests of eigenvalues (Table S1.6). These results are consistent with sNMF (Fig. 2c) and 

292 DAPC analyses (Fig. S3.3). Namely, there is not widespread mixed ancestry among individuals of P. steerei; only three 

293 individuals have an ancestry with more than 20% of their genetic makeup tracing to a different cluster (Fig. 2c). This is 

294 corroborated by fairly high FST-values among the genetic clusters of P. steerei that range from 0.27 to 0.56 (see Table S1.7).

295 Genetic diversity is fairly similar between the species, although P. steerei shows higher average FIS (Table S1.8), 

296 which is not surprising given the regional genetic clusters detected in P. steerei (Fig. 2b). In fact, there are greater 

297 differences in genetic diversity among the genetic clusters within P. steerei than there are between the two species (Table 

298 S1.9; Fig. S3.4).

299

300 3.2. Isolation by Distance models

301 Significant isolation by distance (IBD) was detected in both species using the Procrustes analyses and the Mantel tests with 

302 geographic distance, and in P. steerei (the seasonal floodplain species) the Mantel test based on the river network distance 

303 was also significant (Table S1.10). These results were generally robust to sequential exclusion of a genetic clusters (GCs) 

304 (in fact, the correlation coefficient increased in most of these permutations); the exception was a marginal non-significant 

305 Mantel tests based on the river network distance when GC3 in P. steerei was removed (Table S1.10). ANCOVA did not 

306 show significant differences in the slope of genetic and geographic distances between the species (F = 2.179; p-value = 

307 0.071) (Fig. S3.5a), indicating no significant differences between the species in attenuation of gene flow with geographic 

308 distance. However, the ANCOVA indicated significant differences between the species (F = 9.2682; p-value < 0.001; Fig. 

309 S3.5c) for Mantel tests based on river network distance along the rivers, although the slopes for the individual genetic 

310 clusters in P. steerei did not differ significantly (Fig. S3.5b, d).

311 The strength of the association between genes and geography as measured by the Procrustes analyses is similar 

312 between the species (t0 = 0.799 for P. simonsi and t0 = 0.765 for P. steerei, p  < 0.001; Table S1.10); permutation tests show 

313 that the Procrustes results are robust (i.e., they did not change significantly when a genetic cluster was excluded; Table 

314 S1.11). However, despite similar degrees of association between genes and geography of the species, the deviations from 

315 expectations under IDB in each species, and/or the degree of deviation (even for shared localities), are not the same (Fig. 3). 
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316 For example, individuals from the Lower Juruá are displaced in the geo-genetic map in both species, but individuals of P. 

317 simonsi are genetically more similar to those from the Purus River region to the east, whereas the individuals of P. steerei 

318 are genetically more similar to those from the more southern and western Central Juruá (Fig. 3). Likewise, P. simonsi 

319 individuals from the Madeira are genetically more similar to those from the Central Juruá, rather than the Purus River 

320 region as in P. steerei. In general, individuals from the Upper Juruá and Madre de Dios in both species are positioned more 

321 similarly (Fig. 3), irrespective of whether the Galvez individuals are included.

322

323 3.2. Isolation by Resistance models based on different environmental predictors

324 The best IBR models in P. simonsi and P. steerei differ (Table 1; Table S1.12-S1.13) and there is no strong 

325 spatial dependence of residuals in the models for either species (Fig. S3.6). In P. simonsi four best fit models with ΔAIC < 2 

326 recover three important predictor variables for gene flow: habitat resistance, habitat productivity, and river network 

327 distances (Fig. 4a; Table 1; Table S1.14). With a lack of significant differences among the four models (based on 

328 likelihood-ratio tests), the simplest and best fit IBR model (i.e., the one with the fewest variables) is the one with habitat 

329 resistance distance (Fig. 4b; Table S1.14), explaining around 34.9% of genetic variance (Conditional R²; Table 1). 

330 Furthermore, the significance of predictors estimated by chi-squared also recovers only the habitat resistance distance as 

331 significant in each of the four models with ΔAIC < 2 (Table 1), corroborating that among the five resistance predictors, 

332 habitat resistance is the only one significantly affecting functional connectivity in P. simonsi (i.e., higher habitat resistance 

333 distances is associated with lower relatedness of individuals, or conversely increasing the genetic distance; Fig. 4c). In P. 

334 steerei the IBR analyses recover one best fit model (with ΔAIC < 2) with two important predictors: habitat resistance and 

335 the river network distance (Fig. 4d; Table 1; Table S1.14). For P. steerei only one model has a ΔAIC < 2 and it contains two 

336 predictors that the chi-squared tests identify as significant: habitat resistance and river network distances (Fig. 4e; Table 

337 S1.14), explaining 66.8% of the genetic variance (Conditional R²; Table 1). The effects of the predictor variables on 

338 functional connectivity is similar, with larger distances associated with greater genetic distances (i.e., lower values of 

339 relatedness; Fig. 4f,g). 

340 For both species habitat resistance distance has a significant effect on connectivity. Although the relative 

341 importance of this variable differs between the best fit models for each species, where it is more relevant for P. simonsi than 

342 P. steerei (i.e., RΣ
2; Table S1.15), the effect is similar when summed across models in each species (see Fig. 4). 

343 Topographic and Euclidean (Geographic) distances are not identified as having an important effect on functional 

344 connectivity in either species (see Fig 4; Table S1.14-S1.15).

345

346

347 4. DISCUSSION

348 The vast Amazon is well recognized for its incredible species richness – what is less clear is the extent to which species 

349 divergence processes follow similar routes or not. For example, not only does the heterogeneity of a landscape differ 

350 depending on the specific forest type, but differences in ecological specialization of constituent taxa are also likely to 

351 impose different constraints on gene flow. Indeed, our findings suggest that population connectivity differs between two co-

352 distributed spiny rat species. Moreover, genetic analyses do not support the hypothesis that the seasonal floodplain várzea 

353 forests favor higher connectivity among populations compared to the non-flooded terra-firme forests. Specifically, P. 

354 steerei from the várzea forests shows stronger genetic structure, higher heterozygosity and lower inbreeding than P. simonsi 
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355 from the terra-firme forests (Fig. 2; Table S1.8). Model comparisons identifying landscape features that affect functional 

356 connectivity (i.e., the dispersal capacity) in each species showed that different forest types can impose different constraints 

357 on gene flow. We discuss evidence from our statistical modeling of genetic variation that points to factors contributing to 

358 differences in the genetic structure of the ecologically divergent sympatric taxa. As with broad generalizations about 

359 Amazonian rivers acting as barriers (see Pirani et al., 2019; Smith et al., 2014), our findings suggest that such broad 

360 generalizations about gene flow in species based on their association with specific forest types may be limited as well.

361

362 4.1. Gene flow across vast geographic areas

363 For species with distributions that cover vast areas, such as the Western Amazon, the expansive distances 

364 involved are themselves expected to influence gene flow. That is, populations separated by large geographic distances are 

365 expected to experience little gene flow compared with geographic proximate ones. Unsurprisingly, this basic expectation of 

366 isolation-by-distance (IBD) is met in both spiny rate species. Geographic distance also explains similar proportions of 

367 genetic variation between the sympatric species (i.e., the strength of the relationship between geographic and genetic 

368 distance is similar; see Fig. 3, Fig. S3.5, and Table S1.10), and there is no significant difference in the attenuation of gene 

369 flow with Euclidean geographic distance between the species (Fig. S3.5). Note that the similar fits to IBD models are 

370 unlikely to be an artifact of population size disparities (see Excoffier et al., 2009; but see He et al., 2013), suggesting that 

371 connectivity does not differ between the species. However, this similarity in the fits of IBD models might reflect the 

372 geographical scale of the study. At large spatial scales of broadly distributed species, the potential effects of habitat 

373 association on connectivity may be masked by the predominant effects of geographic distance (Lanier et al., 2015; Massatti 

374 & Knowles, 2014). 

375 Despite their fit to IBD, the species show some pronounced differences in their respective deviations from IBD 

376 and geographic structuring of genetic variation (Fig. 2). For example, the deviations from IBD evident in geo-genetic space 

377 of the Procrustes analysis (Fig. 3) in the seasonal floodplain species, P. steerei, follow the river channel in the genetic 

378 cluster (GC) 1 and GC3, while the deviations in GC2 is restricted to headwaters areas (Fig. 3b). This result is consistent 

379 with the significant IBD Mantel tests based on river network distance (Table S1.10; Fig. S3.5c), as with tests in other 

380 aquatic species (e.g., Murphy et al., 2018).

381 These results reinforce the impact of rivers on gene flow. However, in the Western Amazon (and at least for the 

382 taxa studied here) an argument can be made for a more nuanced perspective, and one that recognizes that when rivers act as 

383 conduits for gene flow, the lack of river connections can leave an indelible mark on genetic variation in floodplain várzea 

384 forest inhabitants (Fig. 3). In our study, a factor limiting gene flow may be the restricted distribution of seasonal floodplain 

385 forest at headwaters (Salo et al., 1986; Hess et al., 2015). Specifically, if the lack of rivers routes for dispersal in P. steerei 

386 results in regional structuring of genetic variation (Fig. 3b), but only in this floodplain várzea forest taxon that utilizes rivers 

387 for dispersal, then the absence of region genetic structuring in P. simonsi (Fig. 3a) is less surprising. However, if rivers were 

388 acting as barriers (e.g., Ribas et al., 2012), the difference in regional structuring would remain an unresolved conundrum 

389 because it seems very unlikely that P. simonsi’s association with non-flooded terra-firme forest would make it less prone to 

390 be influenced by historical barriers associated with rivers.

391 On the surface, this perspective might seem to be contradictory with existing literature. For example, we note that 

392 the pronounced regional structuring of genetic variation detected in P. steerei is similar to expectations based on the effects 

393 of historical barriers in other Amazonian regions (e.g., Da Silva & Patton, 1998 Fernandes et al., 2013). The genetic clusters 
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394 detected in P. steerei (Fig. 2), and specifically the delineation of genetic cluster 2 and 3 (GC2 and GC3 in Fig. 3) indeed 

395 coincide with the Iquitos structural arch, a geomorphological feature that demarcates geological units associated with the 

396 origin of river basins and subbasins in the Amazon (Albert et al., 2018). However, this correspondence between genetic 

397 divergence patterns with the formation of geographic barriers (e.g., the Iquitos Arch, which blocked the transport of 

398 Andean-derived sediments from the Western Amazon during the Pliocene; van Soelen et al., 2017), which has been 

399 identified in other phylogeographic studies of vertebrates in the region (e.g., Da Silva & Patton, 1998; Gascon et al., 2000; 

400 Patton et al., 2000). Our work highlights that this correspondence should not be reflexively viewed as evidence of the river 

401 barrier hypothesis, and that it is also entirely consistent with the hypothesis of a lack of river connections, especially in 

402 species in which rivers serve as routes of dispersal (i.e., in floodplain várzea forest inhabitants, but not those from the terra-

403 firme forests).

404 As discussed below, with 46.7% in P. simonsi and 59.9% in P. steerei of genetic variance explained by the best 

405 fit IBR models (i.e., upper bound for conditional R²; Table 1), a considerable amount of variation remains unexplained by 

406 the IBR models. This indicates that there are factors that were not explicitly tested in our study. It is possible that the 

407 association between gene and geography on a regional scale relates to variation in the historical stability of the South 

408 American wetlands (Prado et al., 2019). However, studies have shown little variation in precipitation (Cheng et al., 2013), 

409 temperature (Colinvaux et al., 1996), and vegetation (Häggi et al., 2017) since the last glacial maximum (Pleistocene) in the 

410 Western Amazon. Previous mtDNA genetic studies have also suggested stable population sizes in both P. steerei and P. 

411 simonsi in the Western Amazon since the last glacial maximum (Lessa et al., 2003; Matocq et al., 2000). So, it seems 

412 unlikely stability is responsible for the differences in regional structuring of genetic variation between the spiny rat species. 

413 Dissecting the association between genes and geography further, shows that there are also some differences between the 

414 species in the structure of genetic variation locally (for example, individuals from the Lower Juruá and Purus in both 

415 species; Fig. 3). However, additional taxa are needed to evaluate the extent to which there might be a deterministic 

416 explanation, and to rule out the possibility that some of the differences reflect historical contingency.

417

418 4.2 Forest association and functional connectivity in spiny rats

419 Tests of the suite of models for explaining functional connectivity in P. steerei and P. simonsi as a function of 

420 various ecological and environmental predictor variables share some common features. All variables representing 

421 differences between forest types (habitat resistance, habitat productivity, and river network distance) were detected as 

422 important influence on functional connectivity in at least one of the species (Fig 4; for details see Table S1.15); the primary 

423 exception is topographic distance, which may simply reflect the relative lack of variation in altitude in Western Amazon at 

424 the scale of our study (Vormisto et al., 2004). Moreover, in neither species is the effect of geographic distance (while 

425 significant in the Mantel tests) a component of the best fit IBR models that incorporate environmental variables (Table 1), 

426 nor does it have a significant contribution when summing across IBR models (Fig. 4). This difference in the effect of 

427 geographic distance is not unexpected because resistance variables that co-vary with geographic distance may led to 

428 spurious inferences (Dormann et al., 2013; Fig. S3.2), and the MLPE mixed models account for the non-independence of 

429 genetic pairwise distances variables, unlike Mantel tests, which can inflate r² values (Clark et al., 2002; Harrison et al. 2018; 

430 Shirk et al., 2018; Silk et al. 2020).

431 With respect to the best fit or most probable models in predicting genetic variation, there was one key variable in 

432 common to both species: habitat resistance (river network distances were present only in P. steerei; Table 1). This variable 
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433 corroborates the potential links to mechanistic or functional predictors of gene flow for taxa with different forest 

434 associations; the variable habitat resistance also explains more than three times the genetic variance in P. simonsi species, 

435 the non-flooded (terra-firme) species, than in P. steerei (RΣ
2 in Table S1.15). Habitat resistance and river network capture 

436 different aspects of the ease of dispersal (i.e., resistance), across the landscape (see Appendix S2.2 for details on quantifying 

437 resistance for these two variables), and thus presumably gene flow across the landscape. Specifically, habitat resistance 

438 distance captures the relative likelihood of gene flow between sampled sites as a function of the distribution of wetland 

439 versus non-wetland habitats between those sites (i.e., traversing wetlands will not impose much resistance to gene flow for 

440 P. steerei, which inhabits the seasonal floodplain várzea forests, but wetlands would impose high resistance to gene flow in 

441 P. simonsi, which inhabits non-flooded terra-firme forest). In a similar fashion, connectivity via rivers is expected for P. 

442 steerei, which inhabits the seasonal floodplain forests distributed along rivers. If gene flow among sampled sites of P. 

443 steerei is primarily via river routes (as supported by Mantel tests – Table S1.10 and IBR models – Fig. 4), this could explain 

444 the small but significant contribution of the habitat resistance distance variable to functional connectivity in the species 

445 (Table S1.15). Furthermore, during the annual inundations, the seasonal floodplain species P. steerei can occupy higher 

446 areas in the várzea forests or can move to adjacent non-flooded terra-firme areas, while P. simonsi the terra-firme species 

447 remains in its habitat given lack of evidence for movement across different forest types (see Matocq et al., 2000; Patton & 

448 Leite, 2015). As such, the relative importance of different environmental variables, especially habitat resistance, in 

449 predicting function connectivity in P. steerei versus P. simonsi also suggests that species-specific traits, in this case specific 

450 forest associations, can determine functional connectivity across populations. That is, dispersal in spiny rat taxa, and 

451 specifically those associated with floodplain várzea forest (but not terra-firme forests) maybe facilitated by rivers. 

452 Studies of additional taxa, especially other mammal species, will provide the context to discern whether the spiny 

453 rat taxa studied here are atypical, or that differences in the traits of mammals compared with birds and plants underlie 

454 differing support for hypothesized connectivity based on forest-type (Papadopoulou & Knowles, 2016). We also recognize 

455 that our results are in contrast with some aspects of mtDNA study of P. steerei and P. simonsi from the Juruá River (see 

456 Matocq et al., 2000). Differences in the geographic scale of our study no doubt contributes to the differences observed 

457 between genomic variation and mtDNA variation (i.e., our results are based on analyses of individuals across the species’ 

458 ranges, which span multiple rivers).

459 Our statistical modeling and fit of the data to different models points to specific environmental and habitat 

460 differences between the ecological divergent spiny rat species that may contribute to differences in the genetic structure of 

461 these sympatric taxa. Specifically, wetland habitats inhibit and promote the functional connectivity in P. simonsi and P. 

462 steerei, respectively, although large distances along the rivers can prevent gene flow in both taxa (i.e., gene flow attenuates 

463 with geographic distance). Despite the significance of environmental and habitat variables associated with floodplain várzea 

464 forests versus non-flooded terra-firme forest that explain the genetic variation in the two taxa, it is notable that connectivity 

465 is not higher in the floodplain várzea forest species P. steerei as posited by traditional hypotheses and supported in bird 

466 species (Aleixo, 2006; Cadena et al., 2011; Harvey et al., 2017; but see Thom et al., 2020) and in some plants (Godoy et al., 

467 1999). Furthermore, a significant proportion of unexplained genetic variance in the spiny rats indicates that differences in 

468 connectivity between the taxa cannot be understood through the lens of a single dimension of Amazonian heterogeneity – 

469 that is, forest type. In fact, we develop the argument that the presence of regional geographic structuring in P. steerei that is 

470 absent in P. simonsi, suggests that the lack of river connections, as well as other unidentified factors, play an important role 

471 in restricting gene flow. 
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472 Irrespective of the combination of factors that best explains genetic variation in the spiny rats P. steerei or P. 

473 simonsi, our study does raise questions about the spectre of generalizable predictions about connectivity in species 

474 associated with seasonal floodplain várzea forests versus non-flooded terra-firme forest. As with other generalities that have 

475 been put forth for processes of divergence in the Amazon (e.g., the proposition that the major Amazon rivers act as barriers; 

476 see Pirani et al., 2019), generalized expectations for the divergence process in species that inhabit different forest types may 

477 similarly be limited in their explanatory power. Given the incredible biodiversity that characterizes the Amazon, perhaps it 

478 should not be expected that this diversity will follow a common set of predictions for genetic structure, or conversely 

479 connectivity, or surprising when it doesn’t.
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480 Tables

481 Table 1:  The best fit models (ΔAIC < 2 with the best fit model in bold) for observed geographic distribution of relatedness coefficients in P. simonsi (the non-flooded 

482 forest/terra-firme species) and in P. steerei, (the seasonal floodplain forests/várzea species) using MLPE. The contribution of each predictor variable (and standard error, 

483 in parentheses) calculated with REML (see Material and Methods for details) are shown, as the significance of chi-squared contingency table tests each predictor in the 

484 models, with * for p < 0.05, ** for p < 0.01, ns if not significant. There was no statistically significant difference in the fit of the best models (in bold) for P. simonsi 

485 species and the other models using the likelihood-ratio tests (LRT) in p-value column. Log-likelihoods (logL), and correlation coefficient, ρ, between relatedness 

486 coefficients and distances specified by each model. The conditional R² and its confidence intervals in parenthesis (a measure of variance explained by the entire model, 

487 including fixed and random effects) are also shown for the best fit models. Results for all models taking into account the correlations among the predictors variables (i.e., 

488 the uncorrelated models) are presented in Tables S1.12-S1.13.

489

Models Habitat Productivity River logL ρ Conditional R² (C.I. 95%) p-value

P. simonsi:

Habitat** + Productivity ns -0.091 (0.015) -0.020 (0.017) . 58.698 0.048 0.149

Habitat** -0.098 (0.013) . . 60.767 0.028 0.349 (0.233 – 0.467) .

Habitat** + River ns -0.095 (0.015) . -0.008 (0.015) 57.568 0.026 0.597

Habitat** + Productivity ns + River ns -0.092 (0.016) -0.021 (0.019) 0.003 (0.016) 55.577 0.050 0.345

P. steerei:

Habitat** + River** -0.032 (0.006) . -0.111 (0.008) 163.332 0.469 0.668 (0.732 – 0.599) .

490

491

492
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493 FIGURE LEGENDS

494 Figure 1. Geographical sampling of individuals for the genomics analyses of two sympatric Proechimys species from the 

495 Western Amazon, which differ in their habitat associations, with P. simonsi (shown in squares) in the non-flooded forests 

496 (terra-firme), and P. steerei (shown in triangles) in the seasonal floodplain forests (várzea). Each sample locality is color-

497 coded according to regional Amazonian rivers (see labels); gray areas represent known distribution range for these species, 

498 according to IUCN (www.iucnredlist.org) with pointed line for P. simonsi and dashed line for P. steerei; forested areas are 

499 shown in green and open areas in beige; map inset shows area of study.

500

501 Figure 2. Principal Components Analysis (PCA) of (a) P. simonsi (non-flooded forests/terra-firme, as represented by the 

502 icon) and (b) P. steerei (seasonal floodplain forests/várzea, as represented by the icon), with individuals color-coded by the 

503 different river regions (see Fig. 1 for distribution details). The three genetic clusters (GC) delineated in P. steerei were also 

504 identified by (c) the sNMF approach based on ancestry coefficients, whereas a single genetic cluster was identified for P. 

505 simonsi (see Fig. S3.3).

506

507 Figure 3. Procrustes analyses of (a) P. simonsi and (b) P. steerei with triangles representing the geographical sampling 

508 localities and circles the individuals in geo-genetic space (symbols are color-coded by the different river regions). The 

509 length of the lines connecting the individuals to their respective sample localities (i.e., circles to the triangles) represent the 

510 degree of the deviation from the expectation in geo-genetic space under an isolation by distance model, with longer lines 

511 representing greater deviations. The three genetic clusters in P. steerei (see also Fig. 2) are labeled and demarcated by 

512 dotted lines. Forested areas are shown in green on the map and open areas in beige; map inset shows area of study. Icons for 

513 the non-flooded forests/terra-firme in plot a, and the seasonal floodplain forests/várzea in plot b are shown.

514

515 Figure 4. Relative importance of each environmental predictor variable in explaining functional connectivity for the best fit 

516 models (ΔAIC < 2) among the MLPE regression models for (a) P. simonsi and (d) P. steerei are shown in blue, where the 

517 relative importance of a variable increases towards the outer edge of the circle (circular dashed lines represent 0%, 50% and 

518 100% of importance from the innermost to the outermost line, respectively). Importance values are based on the sum of AIC 

519 weights over all models that include the predictor variable (for details see Table S1.15). Also shown are the icons for the 

520 non-flooded forests/terra-firme in plot a, and the seasonal floodplain forests/várzea in plot d. Coefficient plots for best-

521 fitting models (ΔAIC ≤ 2) for (b) P. simonsi and (e) P. steerei (see Table S1.14 for details). Points represent model-

522 averaged regression coefficients and horizontal lines the 95% confidence intervals. Variables that do not touch the vertical 

523 dashed line (0.00) are considered significant for models similarly to LTR results. Isolation‐by‐resistance effects of 

524 significant variables in (c) P. simonsi and (f-g) P. steerei. Plots indicate relationship between the relatedness coefficient 

525 (REL) and habitat resistance in (c) P. simonsi and in (f) P. steerei  and river distance in (g) P. steerei. Relatedness values are 

526 decorrelated for the MLPE correlation structure.

527

528 DATA AVAILABILITY STATEMENT

529 Genetic data and Supporting Information are available in Dryad: https://doi.org/10.5061/dryad.4qrfj6qbf

530 All R scripts are available at: https://github.com/jdalapicolla/LanGen_pipeline_version2; 

531 https://github.com/jdalapicolla/IBD_models.R; https://github.com/jdalapicolla/MLPE.R 
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Tables 

Table 1:  The best fit models (ΔAIC < 2 with the best fit model in bold) for observed geographic distribution of relatedness coefficien ts in P. simonsi (the non-flooded 

forest/terra-firme species) and in P. steerei, (the seasonal floodplain forests/várzea species) using MLPE. The contribution of each predictor variable (and standard error, 

in parentheses) calculated with REML (see Material and Methods for details) are shown, as the significance of chi-squared contingency table tests each predictor in the 

models, with * for p < 0.05, ** for p < 0.01, ns if not significant. There was no statistically significant difference in the fit of the best models (in bold) for P. simonsi 

species and the other models using the likelihood-ratio tests (LRT) in p-value column. Log-likelihoods (logL), and correlation coefficient, ρ, between relatedness 

coefficients and distances specified by each model. The conditional R² and its confidence intervals in parenthesis (a measure of variance explained by the entire model, 

including fixed and random effects) are also shown for the best fit models. Results for all models taking into account the cor relations among the predictors variables (i.e., 

the uncorrelated models) are presented in Tables S1.12-S1.13. 

 

Models Habitat Productivity  River logL ρ  Conditional R² (C.I. 95% ) p-value 

P. simonsi:        

Habitat** + Productivity ns -0.091 (0.015) -0.020 (0.017) . 58.698 0.048  0.149 

Habitat**  -0.098 (0.013) . . 60.767 0.028 0.349 (0.233 – 0.467) . 

Habitat** + River ns -0.095 (0.015) . -0.008 (0.015) 57.568 0.026  0.597 

Habitat** + Productivity ns + River ns -0.092 (0.016) -0.021 (0.019) 0.003 (0.016) 55.577 0.050  0.345 

        

P. steerei:        

Habitat** + River**  -0.032 (0.006) . -0.111 (0.008) 163.332 0.469 0.668 (0.732 – 0.599) . 

 



2500 750 Km500

15°S

10°S

5°S

0°

80°W 75°W 70°W 65°W 60°W

Central Juruá

Galvez

Upper Juruá

Lower Juruá

Madeira

Madre de Dios

Purus

Ju
ru

á

P
u
ru

s

M
a
d
e
ira

Solimões

Madre
D

io
s

de

jbi_14281_f1.pdf

This	article	is	protected	by	copyright.	All	rights	reserved



●
●●

●●

●●●●

●
●

●●●

●

●●

●●

GC 1

GC 2

GC 3

(c)

GC 1

A
n

c
e
s
tr

y
 C

o
e
ff

ic
ie

n
ts

GC 2 GC 3

●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●
●

-40

-50 50

PC1 (15.6)%

0-100

P
C

2
 (

9
.2

9
%

)

0

40

80

●

Central Juruá

●
●
●
●
●
●

Galvez
Upper Juruá
Lower Juruá
Madeira
Madre de Dios
Purus

P
C

2
 (

1
5

.9
3

%
)

0

50

100

-50

PC1 (30.17)%

0 100

0.2

0.0

0.4

0.6

0.8

1.0

(a) (b) jbi_14281_f2.pdf

This	article	is	protected	by	copyright.	All	rights	reserved



jbi_14281_f3.pdf

This	article	is	protected	by	copyright.	All	rights	reserved



Estimates

0.0-0.05-0.10

River

Habitat

T
e
rm

s
4000R

E
L

 (
d

e
c
o

rr
e
la

te
d

)

0

10

-10

Habitat

0 5e+6 1e+7 20000

River

50%

0%

100%

●

●

●●
●

Habitat

Geographic

Topography

Productivity

River

(d) (e) (f) (g)

Habitat

Geographic

Topography

Productivity

100%

River

(a)

50%

0%

●

●

●
●
●

(b) (c)

R
E

L
 (

d
e
c
o

rr
e
la

te
d

)

Habitat

0

5

10

0 5e+6 1e+70.0-0.05-0.10-0.15

T
e
rm

s

Habitat

River

Productivity

Estimates

jbi_14281_f4.pdf

This	article	is	protected	by	copyright.	All	rights	reserved


