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Abstract

Objective:The increase in smartphoneusagehasenabled thepossibility ofmoreacces-

sible ways to conduct neuropsychological evaluations. The objective of this study was

to determine the feasibility of using smartphone typing dynamics with mood scores to

supplement cognitive assessment through trail making tests.

Methods: Using a custom-built keyboard, naturalistic keypress dynamics were

unobtrusively recorded in individuals with bipolar disorder (n = 11) and nonbipolar

controls (n = 8) on an Android smartphone. Keypresses were matched to digital trail

making tests part B (dTMT-B) administered daily in two periods and weekly mood

assessments. Following comparison of dTMT-Bs to the pencil-and-paper equivalent,

longitudinal mixed-effects models were used to analyze daily dTMT-B performance as

a function of typing andmood.

Results: Comparison of the first dTMT-B to paper TMT-B showed adequate reliabil-

ity (intraclass correlations = 0.74). In our model, we observed that participants who

typed slower took longer to complete dTMT-B (b=0.189, p< .001). This trendwas also

seen in individual fluctuations in typing speed and dTMT-B performance (b = 0.032,

p = .004). Moreover, participants who were more depressed completed the dTMT-B

slower than less depressed participants (b = 0.189, p < .001). A practice effect was

observed for the dTMT-Bs.

Conclusion: Typing speed in combination with depression scores has the potential

to infer aspects of cognition (visual attention, processing speed, and task switching)

in people’s natural environment to complement formal in-person neuropsychological

assessments that commonly include the trail making test.
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1 INTRODUCTION

Bipolar disorder is a mood disorder characterized by fluctuating

manic/hypomanic and depressive episodes and often show both state

(i.e., mood dependent) and trait (i.e., present during euthymia) cogni-

tive deficits (Kurtz & Gerraty, 2009; Murphy & Sahakian, 2001). These

cognitive deficits persist during periods of euthymia (Bourne et al.,

2013; Mann-Wrobel et al., 2011). Executive function, attention, ver-

bal fluency, andmemory are themost commonly reported impairments

(Malhi et al., 2007; Osuji & Cullum, 2005). To assist in determining the

nature and degree of cognitive impairment, a battery of neuropsycho-

logical tests is typically conducted (Yathamet al., 2010); however, these

tests only capture a snapshot of the functional impairments at the time

of assessment (Zulueta et al., 2020). Moreover, these assessments are

conducted in a quiet controlled environment that bears little resem-

blance to modern work places or homes. Alternatively, self-reports of

cognitive difficulties may be considered in treatment decisions, but

these are subject to memory biases and sometimes conflict with neu-

ropsychological assessments (Burdick et al., 2005).

Connected technologies like smartphones and smartwatches con-

tribute to disease monitoring and are more unobtrusive and granu-

lar than traditional methods (Hussain et al., 2019; Rashidisabet et al.,

2020). This approach has the potential to evolve into a form of per-

sonalized treatmentmedicine that focusesmore on predicting and pre-

venting symptoms based on the individual (Flores et al., 2013). To this

end, several recent studies have found that passively collected natural-

istic smartphone typing dynamics may be associated with mood state

and cognition (Cao et al., 2017; Lam et al., 2020; Mastoras et al., 2019;

Vesel et al., 2020; Zulueta et al., 2018).

This current study determines the association between naturalis-

tic smartphone typing dynamics and an adapted smartphone-based

version of the well-validated Trail Making Test (TMT), an executive

functioning measure of visual attention, processing speed, and set-

switching (Bourne et al., 2013; Yatham et al., 2010), in order to assess

the feasibility of using typing dynamics to supplement traditional cog-

nitive assessments. Traditionally, this test is administered using pen-

cil and paper but has since been adapted to digital modalities albeit

with some conflicting evidence of reliability between the original and

adapted methods, likely due to variability in the mode of administra-

tion, device type, and comparison method (Drapeau et al., 2007; Fel-

lows et al., 2017; Hannukkala et al., 2020; Latendorf et al., 2021).More

broadly, previous studies using mobile phone-based cognitive assess-

ments havebeenvalidated in comparison to their respective traditional

counterparts (Brouillette et al., 2013; Moore et al., 2017). TMTs have

been found to be affected by repeated administrations through prac-

tice effect (Buck et al., 2008; McCaffrey et al., 1993). Bartels et al.

(2011) found a significant practice effect when the TMT was adminis-

tered frequently over a 3-month period.

The objective of this studywas to examine the relationship between

keyboard dynamics and TMT part B (TMT-B; administered both as a

traditional pencil-and-paper test and serially self-administered on a

smartphone) in a group of participants consisting of both nonbipolar

controls and adults with bipolar disorder. A secondary aim sought to

TABLE 1 Descriptive statistics of participants in the study

Control

Bipolar

Disorder p-Value

n 8 11

Age (mean (SD)) 46.12 (10.72) 47.09 (10.57) .847

# dTMT-Bs (mean (SD)) 32.00 (16.05) 30.64 (17.11) .862

HDRS-17 (mean SD)) 1.02 (1.49) 12.68 (7.80) .001

YMRSa (mean (SD)) – 6.00 (3.80) –

Gender (%Male) 3 (37.5) 3 (27.3) 1.000

Abbreviations: dTMT-B: digital trail making test part B; HDRS-17: Hamil-

tonDepression Rating Scale 17-item; YMRS: YoungMania Rating Scale; SD:

standard deviation.
aYMRS is not rated in nonbipolar individuals.

determine if this relationship is modulated bymood symptoms and the

practice effect on TMT-B performance.

2 METHODS

2.1 Participants

The study participants consisted of individuals with bipolar disorder

(n = 11) and nonbipolar controls (n = 8) with no personal or family

history of psychiatric illness (see Table 1 and Zulueta et al., 2018, that

used the same study sample)whowere recruited byphoneor email and

already enrolled in the Heinz C. Prechter Longitudinal Study of Bipolar

Disorder based at the University of Michigan (McInnis et al., 2018). To

be included in the study, participants needed touse andhave familiarity

with an Android smartphone without any self-reported impairments

in fine motor skills or vision that would hinder TMT performance or

keyboard usage, and for the individuals with bipolar disorder, frequent

self-reportedmood fluctuations or previous longitudinal data suggest-

ing rapid cycling of mood symptoms. Informed consent was obtained

from all participants prior to inclusion in the study.

2.2 Data collection

Participants were issued a Samsung Galaxy Note 4 with a customized

keyboard app installed, which they used as their primary phone over

8 weeks. This keyboard replaced the default keyboard and recorded

every time a key had been pressed on the keyboard (termed a keypress

event). All keypress events were tagged using the general category of

keypresses (alphanumeric, backspaces, punctuation, etc.) and associ-

ated timestamps. Additionally, the timestamp of a system-generated

autocorrect event as well as when the user elected to select one of

three suggested words were also recorded (tagged as autocorrection

and suggestion). Actual text was not recorded. The keypress metadata

was uploaded through the app to the study server hosted at the Uni-

versity of Illinois at Chicago using secure encrypted protocols.
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F IGURE 1 An example digital trail making test part B layout (one
out of a total of 12 variations) deployed in this study

Participants took the pencil-and-paper version of the TMT-B

(pTMT-B) at the beginning and end of the study. The digital TMT-Bs

(dTMT-B) completed throughout the study were adapted to be com-

pleted on the participants’ smartphones through a separate research

app that was downloaded onto the phone with the goals of collecting

ecological momentary assessments of daily functioning and mood and

includedmodified cognition tests (Ryan et al., 2020). The dTMT-B con-

sisted of alternating numbers and letters ranging from 1 to 7 (total of

13 circles) and respondents used their fingers to connect the circles in

order, alternating between number and letter (see Figure 1). If partic-

ipants connected the wrong dot, the blue dots would change color to

red, and theywould have to correct their error by going back to the last

correct blue circle before moving on. In the morning and evening each

day at preset times determined by each participants’ preference for

days 1–17 and 45 through the end of the study, participants completed

one of 12 variations of the dTMT-B on the smartphone. The rationale

for these two different time points was to potentially capture dynamic

shifts in mood state in the bipolar illness verses one steady state of

functioning. The time the test was taken, number of wrong moves, and

total time of the test were recorded. A regression discontinuity design

was used to account for the gap in recorded dTMT-Bs in order to exam-

ine the effect of time at the beginning and end of the study separately.

The first set of dayswas regarded as the first study period, and the sec-

ond set of days was regarded as the second study period.

Research staff at theUniversity ofMichigan conducted phone inter-

views every week with the participants to administer the Hamilton

Depression Rating Scale 17-item (HDRS-17) (Hamilton, 1967) and

Young Mania Rating Scale (YMRS) (Young et al., 1978) following the

Structured InterviewGuide.

2.3 Data processing

Participants who had completed the study and contributed at least 6

dTMT-Bs and 20 keypresses per dTMT-B were included in this analy-

sis. Time windows to assign keypress events to dTMT-Bs were created

using thedTMT-B timestamps such that each timewindowconsistedof

one dTMT-B, oneHDRS-17 score, andmultiple keypresses. This group-

ing allowed us to look at the relationship between each dTMT-B and

its proximal keypresses. The time between the morning and evening

dTMT-B was divided in half, and keypresses were assigned to a time

windowaccording to their timestamp.When therewasonly onedTMT-

B over a 24-h period, keypresses during the respective half between

existing dTMT-Bswere assigned to the single dTMT-B of that date. For

gaps larger than 24 h between dTMT-Bs, keypresses of the same date

as the dTMT-Bof interestwere assigned to that dTMT-B (see Figure 2).

Keypresses that fell outside themorning andeveningdTMT-Bs fordays

with two recorded dTMT-Bs were omitted.

To calculate typing speed, the interkey delay (IKD), defined as the

time lapse between two consecutive keypresses, was calculated across

all keypresses within each time window. Median IKD was calculated

for time windows with at least 20 character-to-character transitions

of less than 8 s. The time cutoff of 8 s was previously defined by Vesel

et al. as the end of a typing session (Vesel et al., 2020). Time windows

that did notmeet these criteria were omitted from the analysis. HDRS-

17 scores were backpropagated to the date of the previous recorded

score and assigned to all dTMT-Bs within the respective date range.

2.4 Statistical analysis

The intraclass correlations (ICCs) between the pTMT-B and dTMT-B

were calculated to assess the consistency between the two modalities

(ICC > 0.5 indicating adequate reliability) (Koo & Li, 2016). The first

dTMT-B for each participant was compared to their pTMT-B taken at

the beginning of the study, and the same was done for the last dTMT-

B and pTMT-B at the end of the study. Additionally, ICCs and paired

t-tests were performed between the first and last TMT-Bs for each

modality.

Longitudinal mixed effects models (with maximum likelihood esti-

mator (MLE) fitting) were used to predict dTMT-B time (Singer &Wil-

lett, 2003). Forward-fitted hierarchical models, compared with the

likelihood-ratio test, were built to examine the fixed effect of practice

on dTMT-B time, followed by the addition of mood ratings then typing

metrics. Model 1 predicted dTMT-B time from practice controlling for

fixed effects of the time of day, age, and number of wrongmoves on the

dTMT-B. Practice was measured in days since the start of each study

period, respectively, and interacted with a discontinuity variable that

accounted for the break (4 weeks) between sequential days of doing

the trail making task. These three model parameters were needed to

account for the practice effect. Model 2 added the weekly HDRS-17

scores as level 2 (grand mean per subject) and 1 (weekly report; mul-

tiple reports centered within subject) variables along with dummy-

coded diagnosis (control vs. bipolar). Model 3 added typing speed as

level 2 (mean of the median IKDs per typing session) and 1 (typing

session at dTMT-B time window; multiple windows centered within

subject) variables. dTMT-B time, number of wrong moves, and prac-

tice were log transformed in the models so that the residuals were

more normal. All fixed terms were z-scored to be able to compare the

effects across different units. The randomeffects in themodel included
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F IGURE 2 Schematic outlining how keypresses were assigned to each digital trail making test part B (dTMT-B) to account for missing data

TABLE 2 Intraclass correlations (ICC) between the first and last
pTMT-Bs and dTMT-Bs

TMT-B ICC

Confidence

interval

Crossmodality

First pTMT-B and First dTMT-B 0.74 0.32-0.9

Last pTMT-B and Last dTMT-B 0.14 -1.38-0.69

Withinmodality

First and Last pTMT-B 0.72 0.36-0.89

First and Last dTMT-B 0.68 0.29-0.87

Abbreviations: TMT-B: trail making test part B; dTMT-B: digital trail making

test part B; pTMT-B: pencil-and-paper trail making test part B.

intercept per participant as well as the slopes of practice, the study

period, and their interaction per participant.

A within group analysis of the individuals with bipolar disorder was

performed to examine the effect of YMRS score on dTMT-B time. For-

ward fitted hierarchical longitudinal models were constructed similar

to the previous analysis in order to first predict dTMT-B from HDRS-

17 score (Model 4) followed by the addition of YMRS score (Model 5).

All analyseswere conducted inR (version3.6.3) (RCoreTeam2020).

(See supplemental methods for details.)

3 RESULTS

Therewereno significantdifferences in age, gender, ormeannumberof

dTMT-B tasks completed between the twogroups (Table 1). Individuals

with bipolar disorder on average reported mild depression and mania

symptoms (HDRS-17=12.68, YMRS=6.00),while the nonbipolar con-

trol group reportedminimal depression symptoms (HDRS-17= 1.02).

To determine performance differences between the pTMT-B versus

dTMT-B, ICCs were calculated to compare the consistency between

the first and last pTMT-B and dTMT-B of the study (Table 2). ICCswere

calculated between the first and last TMT-Bs within modality, and all

were adequate except the comparison between the last pTMT-B and

dTMT-B. The first and last TMT-Bs were compared within modality

using paired t-tests. There was a significant difference between the

TABLE 3 Model fits and significance of successive fits for the
hierarchical models for all participants

Deviance

Chi square (change in

degree of freedom) p-Value

Model 1 92.63

Model 2 76.61 16.02 (3) .001

Model 3 47.05 29.57 (2) < .001

Note:

Model 1: Age + log(# wrong moves) + Time of day administered + log(Day

from start of each period) + Study period + log(Day from start of each

period) : Study period.

Model 2: Model 1+Diagnosis+HDRS-17 (grandmean centered)+HDRS-

17 (subject centered).

Model 3: Model 2+Median typing speed (grand mean centered)+Median

typing speed (subject centered).

HDRS-17: Hamilton Depression Rating Scale 17-item; df: degrees of

freedom.

first and last dTMT-Bs (t = 4.45, p < .001) but not pTMT-Bs (t = 0.65,

p= .52).

Forward-fitted hierarchical longitudinal models were then used

to predict dTMT-B times from practice (Model 1), weekly HDRS-17

scores (Model 2), and typing speed (Model 3) with each model building

on the previous (Table 3). There was a significant improvement in each

step,meaning that each successivemodel accounted formore variance

than the previous. Model 3 was the best fit, so it will be further dis-

cussed in the subsequent sections.

Table 4 summarizes the effects of Models 1–3 of the individual

predictors on dTMT-B time in scaled estimates, where positive slopes

indicate slower dTMT-B times, and negative slopes indicate faster

dTMT-B times. Since estimates were scaled, they can be interpreted as

effect sizes relative to each other.

While significant in Model 1 (slower dTMT-B with increasing age,

p = 0.036), age was no longer a significant predictor of dTMT-B in

Model 3. The importance of age decreased as successive models were

fitted, which suggested that age had shared variance with and was

accounted for by HDRS-17 score and typing speed.

There was an expected strong effect of the number of wrongmoves

on the dTMT-B in all models. The more wrong moves a participant
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TABLE 4 Summary of hierarchical longitudinal models for all participants showing the estimates and p-values for the predictors of digital trail
making test part B time

Model 1 Model 2 Model 3

Predictors Estimates p Estimates p Estimates p

Intercept 2.909 <.001 2.914 <.001 2.898 <.001

Age 0.113 .036 0.095 0.054 0.008 .784

log(# wrongmoves) 0.222 <.001 0.221 <.001 0.220 <.001

Time of day administered 0.015 .146 0.016 0.111 0.013 .186

log(Day from start of each period) −0.077 .002 −0.076 <.001 −0.069 .004

Study period −0.055 .013 −0.049 .032 −0.039 .044

log(Day from start of each period) : Study period 0.032 .084 0.042 .048 0.041 .045

Diagnosis −0.036 0.604 −0.180 .001

HDRS-17 score (grandmean centered) 0.109 0.127 0.189 <.001

HDRS-17 score (subject centered) 0.048 <.001 0.038 .004

Median typing speed (grandmean centered) 0.189 <.001

Median typing speed (subject centered) 0.032 .004

Random effects (variance)

Residual 0.060 .058 0.058

Intercept | Subject 0.049 .039 0.010

Day since start of period | Subject 0.001 7.32e−10 0.0003

Study period | Subject 0.001 .003 0.002

Days since * Study period | Subject 0.001 .003 0.002

Model fit

Marginal R2 / conditional R2 0.389 / 0.663 .461 / .679 0.624 / 0.682

log-Likelihood −46.317 −38.307 −23.523

HDRS-17: Hamilton Depression Rating Scale 17-item.

The bold values highlighted the p-values that were significant.

made on the dTMT-B, the longer it took them to complete the task.

This predictor had the largest relative effect size for predicting

dTMT-B compared to the other predictors, consistent with scoring of

the dTMT-B.

Practice effect, modeled using days since the start of each period,

was log transformed, since we expected participants to quickly

improve on dTMT-B before plateauing. As seen in Figure 3, Model 3

showed a significant effect of the day from the start of each period

with participants speeding up on the dTMT-B on each successive

day they took it (b = −0.069, p = 0.004), suggesting a practice effect.

This effect was seen in period 1, but not period 2. At the beginning

of period 2, participants were faster on the dTMT-B than at the

beginning of period 1. This is shown in Model 3 through the significant

interaction between the day from the start of the period and the study

period (b = 0.041, p = 0.045). Finally, the time of day in which the

participants completed the dTMT-B had no effect on dTMT-B. The

relative effect sizes for these predictors were much smaller than that

of the number of wrong moves as these predictors did not directly

affect the total time of dTMT-B completion like with making wrong

moves.

Diagnosis was observed to have a significant effect on dTMT-B (b=

−0.180, p= 0.001). Individuals with bipolar disorder had faster dTMT-
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F IGURE 3 Digital trail making test part B (dTMT-B) time as a
function of practice in days since the start of the study period
generated byModel 3 with ribbons showing the 95th confidence
interval

B times than nonbipolar controls, but only when controlling for HRDS-

17 score and typing speed.

There was a significant effect of the grand mean centered HDRS-

17 score on dTMT-B (b = 0.189, p < .001; Figure 4), which suggested
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F IGURE 5 Digital trail making test part B (dTMT-B) time as a
function of grandmean centered (a) and subject centered (b) typing
speed generated byModel 3 with ribbons showing the 95th
confidence interval

that participantswhowere on averagemore depressed relative to each

other took longer to complete dTMT-B than participants who were

less depressed. In addition, the subject-centeredHDRS-17 score signif-

icantly predicted dTMT-B (b= 0.038, p= 0.004), meaning that relative

to their own weekly HDRS-17 scores, when participants were feeling

more depressed, they also took longer to complete dTMT-B. The rela-

tive effect size of the grand mean centered HDRS-17 score was larger

than that of the subject centered HDRS-17 score, suggesting that

each participants’ overall mood compared to the other participants

more strongly predicted their dTMT-B than each individuals’ fluctu-

ations in mood on their own dTMT-B. On the contrary, YMRS score

was not predictive of dTMT-B (see Tables S1 and S2 in the Supporting

Information).

As seen in Figure 5, there was a significant effect of the grand mean

centered typing speed on dTMT-B performance (b = 0.189, p < .001),

suggesting that participants who on average typed more quickly com-

pleted the dTMT-B more quickly than other participants. Addition-

ally, the subject centered typing speed significantly predicted dTMT-B

(b=0.032,p=0.004),meaning that relative to themselves, participants

who typed more slowly during one time window had a slower dTMT-

B time on that respective dTMT-B compared to their average time. As

with the HDRS-17 scores, the grand mean centered typing speed had

a larger relative effect size than that of the subject centered typing

speed,which suggested that theparticipants’ overall typing speed com-

pared to other participantswas a stronger predictor of dTMT-Bperfor-

mance than each individuals’ fluctuations in typing speed.

4 DISCUSSION

This study examined the feasibility of using passively collected smart-

phone typing speed and clinician ratings ofmood to supplement formal

neuropsychological assessments of select executive function domains.

We showed that depression severity combinedwith naturalistic smart-

phone typing speedhas the potential to supplement a person’s dTMT-B

performance.Additionally,weobservedapractice effect from frequent

repetitions of dTMT-B.

As there was adequate consistency between the first pTMT-B and

first dTMT-B taken in the study, evidenced by the corresponding ICCs,

our dTMT-B was deemed a valid medium to assess executive func-

tioning. We observed an improvement in the dTMT-B at the begin-

ning of each study period followed by a plateau in performance with a

more drastic improvement and more gradual plateau in the first study

period compared to the second. TMT-Bs have been well-documented

to show a significant practice effect upon repeated administrations

(Buck et al., 2008; McCaffrey et al., 1993) with one study suggest-

ing a time of up to 1 year between assessments to remove the prac-

tice effect (Basso et al., 1999). Since an increasing number of assess-

ments are being digitally adapted and administered more frequently,

such as through ecological momentary assessments, it is important to

understand andquantify the effect of repeated administrations. Future

studies using repeated administrations of the dTMT-B (and by extrap-

olation digital adaptations of other similar neurocognitive tasks) will

need to carefully consider, and properly account for if indicated, prac-

tice effects in the analyses. Further, caution should be exercised when

comparing performances of traditional in-person neurocognitive tasks

to those of their digital adaptations that are remotely deployed and

administered.

Second, depression severity was associated with the dTMT-B time

at both the inter- and intrasubject level. Participants who were more

depressed completed dTMT-B more slowly than participants who

were not depressed. This aligned with previous studies that found

impairment in executive functioning in depressed patients with bipolar

disorder (Kurtz & Gerraty, 2009; Martínez-Arán et al., 2004; Ryan

et al., 2012). This effect was stronger when each participants’ average

depression scorewas compared to others thanwhenwithin participant

fluctuations in depression were used to predict their fluctuations in

dTMT-B. One likely explanation is the backpropagation of the weekly
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mood scores to the dTMT-Bs during that week, which did not account

for potential mood changes between the weekly assessments and

decreased the granularity of the data for the intrasubject variability.

Interestingly and somewhat surprisingly, YMRS, on the other hand,

was not predictive of dTMT-B, which might have been due to the

moderate correlation between depression and mania scores in our

study sample that frequently exhibitedmixed features.

Third, typing speed was further associated with the dTMT-B at

the inter- and intrasubject level. Faster typers completed the dTMT-B

more quickly than slower typers. Moreover, although not as strong of

an effect, participants’ individual fluctuations in typing speed reflected

their fluctuations in dTMT-Bover the course of the study. These results

suggest that cognitive domains measured by dTMT-B, including visual

attention, processing speed, and set shifting, are also engaged while

typing on a smartphone and are potentially captured through a per-

son’s typing speed. While this study focused solely on typing speed

as determined using the median IKD, future directions could investi-

gate how other keypress measures, such as alternative ways of mea-

suring typing speed, error rate, or typing variability, are related to

specific aspects of TMT performance like errors made during task

completion.

In this study, age had a significant effect in the first hierarchi-

cal model of dTMT-B performance. However, once depression scores,

diagnosis, and typing speedwere introduced into the subsequentmod-

els, the effect was no longer significant. The change in significance

may be due to the fact that typing speed explained the effect on

dTMT-B in place of age, especially considering the effect age had on

typing speed reported by Vesel et al. (2020). Further, in our mod-

els, time of day was never a significant predictor of dTMT-B perfor-

mance. While it is unclear why this is the case, we note that Vesel

et al. examined the relationship between time of day and typing speed,

while this current study used typing speed as a fixed effect to predict

dTMT-B.

Fourth, a diagnosis of bipolar disorder was a significant predictor

of dTMT-B, though this effect was only seen after controlling for

depression score and typing speed at both the inter- and intrasubject

level. Due to the small sample size in this study, there were a small

number of participants in each group, which limits the interpretability

of the results. In partial compensation for the limited sample size, each

participant contributed numerous observations over the course of the

study, which increased the subject intravariability. These observations

though varied in frequency due to the naturalistic approach of data

collection.

There are limitations to the current study. Most importantly,

contrary to traditional in-person assessments, the environmental

variables in which the dTMT-B was collected could not be known.

The remote administration of the dTMT-Bs, although convenient for

the participant, meant that the environment in which they completed

the tasks most likely varied between tasks and participants. This

confound might at least partially explain the higher variability in the

dTMT-Bs. Other possible confounds could include the lack of a formal

neurological assessment of motor function in our study participants

and potential subtle neurological soft signs that have been reported

in those diagnosed with bipolar disorder, which might add variance to

TMT and keyboard performance independent of depression severity

(Sagheer et al., 2018).

Additionally, TMTs generally comprise of two parts: part A and B.

Our study consisted solely of part B for the digital administrations,

which meant that we were unable to separate processing speed from

set-shifting in our analyses. However, one may expect that the ability

of set-shifting is relevant in naturalistic typing (e.g., switching between

QWERTY and special character layouts). Nevertheless, further work is

needed to further replicate and determine the clinical applicability of

these findings.

5 CONCLUSION

With the rise in smartphoneusage, therehasbeenan increase inmobile

health apps looking to provide users with feedback based on constant

monitoring. The present study examined the utility of the smartphone’s

keyboard as a medium to passively measure select domains of execu-

tive function when combined with periodic assessments of the partic-

ipant’s mood. The derived metrics collected in-the-wild did not place

any extra time demand on the participant, thus providing a possible

unobtrusive way to monitor changes in select domains of executive

function at a higher granularity.
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